UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS Departamento de Química

Márcia Barsottelli Procópio

PROPRIEDADES ÓTICAS NÃO LINEARES DE ÁCIDOS BORÔNICOS, COMPOSTOS CATECÓIS DE BORO, ALUMÍNIO E GÁLIO E ABSORÇÃO DE DOIS FÓTONS DE DERIVADOS DA BENZAMIDINA

Belo Horizonte 2009 UFMG/ICEx.DQ.770 T.321

Márcia Barsottelli Procópio

PROPRIEDADES ÓTICAS NÃO LINEARES DE ÁCIDOS BORÔNICOS, COMPOSTOS CATECÓIS DE BORO, ALUMÍNIO E GÁLIO E ABSORÇÃO DE DOIS FÓTONS DE DERIVADOS DA BENZAMIDINA

Tese apresentada ao Departamento de Química do Instituto de Ciências Exatas da Universidade Federal de Minas Gerais como registro parcial para a obtenção do grau de Doutor em Ciências - Química

Belo Horizonte 2009 Este trabalho é dedicado aos meus queridos pais Ontara e Clarice.

AGRADECIMENTOS

- À Deus pela minha existência e pelas bençãos.
- Ao CNPq pelo apoio científico e tecnológico concedido através da bolsa de doutorado.
- Ao Prof. Amary pelos ensinamentos e pelo tempo dedicado para a conclusão deste trabalho.
- Aos meus pais Ontara e Clarice minha eterna gratidão pela confiança e amor depositados.
- À minha irmã Natália e meu cunhado Fernando que me deram estímulo e apoio imprescindíveis para a conclusão este trabalho.
- Ao meu querido irmão Eduardo que mesmo longe sempre apoiou meu estudos.
- Aos amigos Viviane, Kátia, Jarbas, Marcelo e Ivanildo pelo incentivo e coleguismo durante todo o curso.
- Às amigos Susan, Denise, Danielle e Rejane que acompanharam minha trajetória.
- Ao Leonardo que me acompanhou durante algum período.
- À todos que estiveram presentes durante a execução deste trabalho e que me apoiaram de alguma forma.

ARTIGOS INCLUÍDOS NESTA TESE

- M. B. Procópio, A. Cesar, Polarizabilidades e Primeira Hiperpolarizabilidades Elétricas Dipolares de Ésteres E-4-amino-trans-1,3-butadienil-(1',2'-dihidroxibenzeno) de Boro, Alumínio e Gálio. Química Nova. Junho de 2009, no prelo.
- 2. M. B. Procópio, A. Cesar, *DFT/B3LYP Linear and Non-linear Optical Properties of Boronic Acid and Boronate Ester Molecules* (submetido)

Sumário

	List	de Figuras	vi
	List	de Tabelas	ix
	List	de Símbolos	iii
	Resi	no	iv
	Abs	act	ζV
1	Intr	odução	1
2	Pro	riedades Moleculares	4
	2.1	Método da Soma-sobre-estados Quânticos	4
	2.2	Método da Teoria de Resposta	7
	2.3	Absorção de Um e Dois Fótons	10
		2.3.1 Absorção de Um Fóton	10
		2.3.2 Absorção de Dois Fótons	11
3	Mét	odos Computacionais 1	3
	3.1	Métodos de Estrutura Eletrônica	15
		3.1.1 Aproximação de Hartree-Fock	15
		3.1.2 Teoria do Funcional de Densidade	18
	3.2	Aspectos Práticos Utilizados nos Cálculos das Propriedades Moleculares	23
4	Pro	riedades Óticas Não Lineares de Ácidos Borônicos 2	27
	4.1	Introdução	27
		4.1.1 Ácidos Borônicos	30
		4.1.2 Estruturas moleculares e Modos Harmônicos de	
		Vibração	31

		4.1.3	Momento de Dipolo, Polarizabilidade e	
			Hiperpolarizabilidade Elétrica	40
		4.1.4	Análise Populacional	57
5	Pro	prieda	des Óticas Não Lineares de Boro-, Alumínio- e Gálio-	
	Cat	ecol		61
	5.1	Boro-,	Alumínio- e Gálio-Catecol	61
		5.1.1	Estruturas Moleculares e Modos de Vibração	
			Harmônicos	63
		5.1.2	Momentos de Dipolo, Polarizabilidade e Primeira	
			Hiperpolarizabilidade Elétrica	72
6	Abs	sorção	de Dois Fótons de Derivados da Benzamidina	81
	6.1	Introd	ução	81
	6.2	Métod	os Computacionais e Bases de Funções Atômicas Utilizadas	83
	6.3	Estrut	uras Moleculares	83
	6.4	Absor	ção de Um Fóton	86
	6.5	Absor	ção de Dois fótons	97
7	Cor	ısidera	ções Finais	114
Re	eferê	ncias H	Bibliográficas	116

Lista de Figuras

3.1	Orientação das moléculas de (a) Ácido Borônico e (b) Boro, Alumínio e Gálio-Catecol	25
4.1	Estruturas otimizadas para as moléculas derivadas do ácidos borôni- cos (I) HiBAc, (II) MeBAc, (III) VnBAc, (IV) EtBAc, (V) cBuBAc,	
	(VI) tBuBAc, (VII) α CpBAc, (VIII) β CpBAc, (IX) α PiBAc	35
4.2	Estruturas otimizadas para as moléculas de ácidos borônicos (X) β PiBAc, (XI) α FuBAc, (XII) β FuBAc, (XIII) PhBAc, (XIV) MePh-	
	BAc, (XV) tAmVnBAc, (XVI) cAmVnBAc, (XVII) AmBuBAc	36
4.3	Estruturas otimizadas para as moléculas derivadas do ácidos borô- nicos (XVIII) AmPhBAc, (XIX) NtVnBAc, (XX) NtBuBAc, (XXI)	
	NtPhBAc e as moléculas de PNA e ANB	37
5.1	Reação de formação dos catecóis boranos a partir de alcoxiboranos.	62
5.2	Esquema das estruturas de catecóis estudados; para X $=$ B, Al ou	
	$Ga, Y = H \text{ ou } NO_2 e Z = H \text{ ou } H_2NCH = CHCH = CH$	65
5.3	Estruturas otimizadas para as moléculas de catecol borano, catecol aluminano e catecol galiano estudadas: (I) CBH, (II) CAH, (III)	
	CGH, (IV) CBA, (V) CAA, (VI) CGA, (VII) oNCB, (VIII) oNCA e	
	(IX) <i>o</i> NCG	66
5.4	Estruturas otimizadas para as moléculas de catecol borano, catecol	
	aluminano e catecol estudadas: (X) m NCB, (XI) m NCA e (XII) m NCG.	67
6.1	Diferença das estruturas com amidinas nas posições $para$ e $meta$ na	
	furamidina [44]	82
6.2	Estruturas dos derivados neutros da benzamidina	84

6.3	Esquema mostrando parâmetros geométricos de distância e ângulo
	entre ligações para os derivados da benzamidina
6.4	Esquema mostrando parâmetro geométrico de torção entre ligações
	para os derivados da benzamidina
6.5	Espectro simulado do processo de absorção um fóton para a molécula
	de benzamidina neutra e protonada
6.6	Espectro simulado do processo de absorção de um fóton para a mo-
	lécula de p -vinil-benzamidina neutra e protonada
6.7	Espectro simulado do processo de absorção de um fóton para a mo-
	lécula de p-metoxi-benzamidina neutra e protonada 95
6.8	Espectro simulado do processo de absorção um fóton para a molécula
	de <i>p</i> -bisamidina-benzeno neutra e protonada
6.9	Espectro simulado do processo de absorção de um fóton para a mo-
	lécula de p -estilbamidina neutra e protonada
6.10	Espectro simulado do processo de absorção de um fóton para a mo-
	lécula de berenil neutra e protonada
6.11	Orbitais HOMO, HOMO-1, HOMO-2, LUMO, LUMO+1, LUMO+2
	para a Benzamidina (PA), Vinil-benzamidina (VPA) e Metoxi-benzamidina,
	(MPA) neutras e protonadas. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 101
6.12	Orbitais HOMO, HOMO-1, HOMO-2, LUMO, LUMO+1, LUMO+2
	para a Bisbenzamidina (PBA) e Estilbamidina (PSA), neutras e pro-
	tonadas
6.13	Orbitais HOMO, HOMO-1, HOMO-2, LUMO, LUMO+1, LUMO+2
	para a Berenil (PTA) e Furamidina (PFA), neutras e protonadas. $\ $. 103
6.14	Espectro simulado do processos de absorção de dois fótons utilizando
	luz linearmente e circularmente polarizada para a molécula de ben-
	zamidina neutra e protonada
6.15	Espectro simulado do processos de absorção de dois fótons utilizando
	luz linearmente e circularmente polarizada para a molécula de p -vinil-
	benzamidina neutra e protonada
6.16	Espectro simulado do processos de absorção de dois fótons utilizando
	luz linearmente e circularmente polarizada para a molécula de p -
	metoxi-benzamidina neutra e protonada

6.17	Espectro simulado do processos de absorção de dois fótons utilizando
	luz linearmente e circularmente polarizada para a molécula de p -
	bisamidina-benzeno neutra e protonada
6.18	Espectro simulado do processos de absorção de dois fótons utilizando
	luz linearmente e circularmente polarizada para a molécula de p -
	estilbamidina neutra e protonada
6.19	Espectro simulado do processos de absorção de dois fótons utilizando
	luz linearmente e circularmente polarizada para a molécula de berenil
	neutra e protonada

Lista de Tabelas

4.1	Distâncias, r , em ang ström e ângulos de ligação, θ , em graus de cál-
	culos HF/6-31G** para os ácidos borônicos não substituídos 34
4.2	Distâncias, r , em ang ström e ângulos de ligação, θ , em graus de cál-
	culos HF/6-31G** para os ácidos borônicos substituídos. 38
4.3	Número de onda, $\tilde{\nu}$, em cm ⁻¹ e as atribuições dos modos vibracionais
	correspondentes característicos de ácidos borônicos 41
4.4	Número de onda, $\tilde{\nu}$, cm ⁻¹ e as atribuições dos modos vibracionais
	correspondentes característicos de ácidos borônicos 42
4.5	Número de onda, $\tilde{\nu}$, cm ⁻¹ e as atribuições dos modos vibracionais
	correspondentes característicos de ácidos borônicos 43
4.6	Momentos de dipolo para derivados de ácidos borônicos calculados
	para HF/6-31G**. As componentes cartesianas μ_x , μ_y e μ_z dos mo-
	mentos de dipolo, assim como o seu módulo μ são dados em unidades
	atômicas (u.a.). \ldots \ldots \ldots \ldots \ldots \ldots \ldots 44
4.7	Componentes diagonais das polarizabilidades, α_{ii} $(i=x,y,z)$, e polari-
	zabilidades médias, $\langle \alpha \rangle,$ de ácidos borônicos calculados para HF/Sadlej/Pol
	e HF/6-31 ⁺⁺ G**. Todos os valores estão dados em unidades atômicas
	(u.a.)
4.8	Componentes fora da diagonal das polarizabilidades, α_{ij} (i,j=x,y,z;
	$i\!\!\neq\!\!j),$ de ácidos borônicos calculados para HF/Sadlej/Pol e HF/6-
	31^{++} G**. Todos os valores estão dados em unidades atômicas (u.a.). 47
4.9	Componentes tensoriais da primeira hiperpolarizabilidade, β_{xii} (i=x, y, z),
	e componentes vetoriais primeira hiperpolarizabilidade β_x de uma
	série de ácidos borônicos calculadas para $\rm HF/Sadlej/Pol$ e $\rm HF/6-$
	$31^{++}\mathrm{G}^{**}.$ Todos os valores estão dados em unidades atômicas (u.a.) 50

4.10	Componentes tensoriais da primeira hiperpolarizabilidade, β_{yii} (i=x, y, z),	
	e componente vetorial da primeira hiperpolarizabilidade de uma série	
	de ácidos borônicos calculadas para HF/Sadlej/Pol e HF/6-31^++G**.	
	Todos os valores estão dados em unidades atômicas (u.a.). $\ . \ . \ .$	52
4.11	Componentes tensorial da primeira hiperpolarizabilidade, β_{zii} $(i=x,y,z)$	
	e $\beta_{xyz},$ e componente vetorial da primeira hiperpolarizabilidade de	
	uma série de ácidos borônicos calculadas para $\rm HF/Sadlej/Pol \; e \; HF/6-$	
	$31^{++}\mathrm{G}^{**}.$ Todos os valores estão dados em unidades atômicas (u.a.)	53
4.12	(Continuação) Componentes tensorial da primeira hiperpolarizabili-	
	dade, β_{zii} $(i=x,y,z)$ e β_{xyz} , e componente vetorial da primeira hi-	
	perpolarizabilidade de uma série de ácidos borônicos calculadas para	
	$\rm HF/Sadlej/Pol e ~HF/6-31^{++}G^{**}.$ Todos os valores estão dados em	
	unidades atômicas (u.a.)	54
4.13	Análise populacional de Cioslowski para moléculas neutras contendo	
	o grupo ácido borônico (catiônico) e grupo orgânico alifático ou aro-	
	mático	59
4.14	Análise de população de Cioslowski para moléculas neutras contendo	
	grupo ácido borônico e grupo intercalador orgânico ligado a um grupo	
	substituinte e para molécula de PNA	60
5.1	Parâmetros estruturais de distância de ligação, r , em ang ström e ân-	
	gulo entre ligações, $\theta,$ em graus calculados para HF/6-31**G^++ para	
	os boro-, alumínio- e gálio-catecó is, sem a presença do grupo $\mathrm{NO}_2.$	67
5.2	Parâmetros estruturais de distância de ligação, r , em ang ström e ân-	
	gulo entre ligações, $\theta,$ em graus calculados para HF/6-31**G^++ para	
	os boro-, alumínio- e gálio-catecóis, com grupos NO_2 nas posições 3	
	e 4 do grupo fenila	68
5.3	Número de onda, $\tilde{\nu}$, em cm^{-1} e modos vibracionais de grupos carac-	
	terísticos dos boro-, alumínio- e gálio-catecóis.	69
5.4	Número de onda, $\tilde{\nu}$, em cm^{-1} e modos vibracionais de grupos carac-	
	terísticos dos boro-, alumínio- e gálio-catecóis.	70
5.5	Número de onda, $\tilde{\nu},$ em cm^{-1} e modos vibracionais de grupos carac-	
	terísticos dos boro-, alumínio- e gálio-catecóis.	71

5.6	Componentes da polarizabilidade, α_{ii} e α_{ij} (i,j=x,y,z; i \neq j), e polari-	
	zabilidade média para as estruturas contendo grupos boro-, alumínio-	
	e gálio-catecol, em unidades atômicas (u.a.), calculados para HF/6-	
	$31^{++}G^{**}$	
5.7	Componentes da primeira hiperpolarizabilidade, $\beta_{xii} \in \beta_{yii}$ (i=x,y,z),	
	e primeiras hiperpolarizabilidades destas componentes vetoriais, para	
	as estruturas contendo grupos boro-, alumínio- e gálio-catecol, em	
	unidades atômicas (u.a.), calculados para HF/6-31 ⁺⁺ G** 74	
5.8	Componentes da primeira hiperpolarizabilidade, β_{zii} (i=x,y,z) e β_{xyz} ,	
	componente vetorial β_z e momento de dipolo, $\mu,$ para as estruturas	
	contendo grupos boro-, alumínio- e gálio-catecol, em unidades atômi-	
	cas (u.a.), calculados para HF/6-31 ⁺⁺ G**	
6.1	Medida dos parâmetros médios para geometria otimizada por $^a\mathrm{DFT}$ e	
	$^b\mathrm{PM3}$ dos derivados da amidina. Distância, $r,$ em ang ström e ângulos,	
	$\theta, \tau \in \Phi, \text{ em } graus.$	
6.2	Força de oscilador, $\delta_{OPA}(a.u.)$, e comprimento de onda, λ (nm), cal-	
	culado para $\rm DFT/6\textsc{-}31^{**}G^{++}$ para os derivados da benzamidina con-	
	tendo somente um grupo amidina	
6.3	Força de oscilador, $\delta_{OPA}(a.u.)$, e comprimento de onda, λ (nm), para	
	$\rm DFT/631^{**}G^{++}$ para os derivados da benzamidina contendo dois gru-	
	pos amidina	
6.4	Seção de choque de absorção de dois fótons, δ_{TPA} (10 ⁴ u.a.), para	
	por amidinas para eventos utilizando luz linear e circularmente pola-	
	rizada. Os comprimentos de onda λ estão expressos em unidades de	
	nm	
6.5	Seção de choque para o processo de absorção de dois fótons, δ_{TPA}	
	(10^4 u.a.) , para DFT/6-31 ^{**} G ⁺⁺ para os derivados da benzamidina,	
	utilizando luz linear e circularmente polarizada. Os comprimentos de	
	onda λ estão expressos em unidades de nm	
6.6	Seção de choque para o processo de absorção de dois fótons, δ_{TPA}	
	(10^4 u.a.) , para DFT/6-31**G ⁺⁺ para os derivados da benzamidina	
	utilizando luz linear e circularmente polarizada. Os comprimentos de	
	onda λ estão expressos em unidades de nm	

6.7	Energia de excitação para as quatro primeiras transições entre orbitais	
	ocupados (HOMO) e virtuais (LUMO), em u.a	113

Lista de Símbolos

IV	Infravermelho
HF	Hartree-Fock
DFT	Teoria do funcional de densidade (Density Functional Theory)
SHG	Geração de segundo harmônico (Second Harmonic Generation)
SCF	Campo auto-consistente (Self-Consistent Field)
CPHF	Método perturbativo acoplado de Hartree-Fock (Coupled Pertubed Hartree-Fock)
EIF	Modelo do campo interno equivalente (Equivalente Intenal Field Model)
MP2	Teoria de perturbações Moller-Plessett
DZV	Double Zeta Valence
BAc	Ácido Borônico
PNA	para-nitroanilina
ANB	trans-1-amino-4-nitro butadieno
Ar	Grupo arílico
TPA	Absorção de dois fótons (Two Photon Absorption)
OPA	Absorção de um fóton (One Photon Absorption)

Resumo

Materiais com propriedades óticas não lineares são de grande interesse tecnológico devido às suas aplicações em telecomunicações, armazenamento de dados, processamento de informações, entre outras. Materiais que possuem ótimos valores destas propriedades são amplamente empregados em processos de duplicação de freqüência de luz laser ou utilizados em dispositivos eletro-óticos, por exemplo. Materiais boratos são substâncias que exibem excelentes respostas óticas não lineares, sendo portanto, de grande interesse científico e aplicação tecnológica. Em vista disto, realizamos alguns cálculos de polarizabilidade e primeira hiperpolarizabilidade para ácidos borônicos e derivados ester de boro-, alumínio- e gálio-catecóis obtendo ótimos valores para estas propriedades.

As propriedades de absorção de dois fótons em materiais têm apresentado importantes aplicações tecnológicas como alto padrão de conversão de laser, excelente limite ótico, na fabricação de estruturas microscópicas tridimensionais, no armazenamento de dados óticos e, na biologia, como ferramenta promissora na aplicação em terapia foto-dinâmica. Pesquisas recentes indicam que as atividades absorção de dois fótons em compostos orgânicos insaturados estão relacionadas com o comprimento da cadeia de elétrons π conjugados, a presença ou não de grupos químicos com habilidades distintas de aceitar ou doar elétrons e aspectos de simetria. Também a dimensionabilidade molecular efetiva é um fator importante a ser considerado. Moléculas contendo grupos amidínicos são bases orgânicas fortes e são encontradas em algumas drogas anti-cancerígenas como a netropsina e a pentamidina. As benzamidinas, em particular, têm sido empregadas como drogas sintéticas de vários hormônios naturais como a arginina, por exemplo. À procura de materiais que apresentam boas características de absorção de dois fótons, realizamos algumas investigações teóricas para a determinação computacional de força de oscilador e seção de choque para derivados da benzamidina.

Abstract

The non linear optical properties of the materials are of great technological interest because of the applications in telecommunication, data storage and information processing they may have. Materials with optimal non linear optical parameters are widely employed in laser frequency duplication, for example, or used in electrooptical devices. Borates materials are substances that exhibit excelent non linear optical responses and are therefore of great scientific and technological applications. For this reason, we performed calulations to obtain the polarizabilities and first hyperpolarizabilities of a few boronic acids and boron, aluminium and gallium catechols derivates.

Two photon absorption properties of materials have found important technological applications such as lasing upconvertion, optical power limiting, microscopic structures in three dimensions, optical dates storage and, in biology, as a promissing tool in photodynamic therapy. Recent researches indicate that the two photon absorption performance of unsatureted organic compounds are related to the conjugation length of their molecules, the electron push and/or pull strength of suitable electron donor or electron acceptor chemical groups appended to a basic molecular structure and on the molecular symmetry aspects and to the effetive molecular dimensionability. Amidine compounds are strong organic bases and are currently used as anti-cancer drugs as netropsin and pentamidine. As another application, benzamidines have been used as sinthetic drugs of severals natural hormones as arginine, for instance. In the search for materials with good two photon absorption properties we calculate the oscillator strengths and cross section of a set of amidine derivatives that are expected to have excellente values for these parameters.

Capítulo 1

Introdução

Uma grande variedade de fenômenos originados da interação entre um campo de radiação eletromagnética e a matéria, pode ser tratada como um efeito de resposta linear no campo elétrico da radiação. O primeiro fenômeno experimental envolvendo interações não lineares entre campo eletromagnético e matéria foi demonstrado por Kerr [1] no final do século XIX, fenômeno esse que hoje recebe o seu nome. Os efeitos óticos não lineares foram mais evidenciados com o aparecimento do primeiro laser em 1960, que é uma fonte de luz suficientemente intensa e coerente. Um curto período de tempo após a descoberta do laser, em 1961, Franken [2] e co-autores observaram a geração de um segundo harmônico que é um processo de duplicação de freqüência da luz. Assim iniciou-se um novo campo da física, o da ótica não linear (ONL).

Os processos onde ocorrem transferência de carga eletrônica, quando um elétron é transferido espontâneamente de um centro doador, geralmente meta-estável, para um centro receptor, são processos quânticos em sua origem e fundamentais para vários processos físicos, químicos e biológicos. A corrosão, catálise, fotossíntese, eletroquímica, a produção e conversão de energia, condutividade elétrica em polímeros e bio-moléculas são exemplos de tais processos. A tranferência de carga introduz uma pertubação ou deslocalização eletrônica no sistema molecular, a partir da qual uma oscilação contínua de cargas é promovida. Portanto, bons grupos doadores ou receptores de elétrons induzem um aumento na eficiência de uma transferência de carga num sistema, conseqüêntemente, produzindo melhores valores para os parâmetros que governam as propriedades óticas não lineares.

Neste trabalho foram usados modelos de moléculas com estruturas do tipo push-

pull (D- π -A) para a determinação da polarizabilidade e primeira hiperpolarizabilidade molecular de derivados do ácido borônico e catecóis contendo boro, alumínio e gálio. Foram testados grupos doadores (D) de elétrons como o grupo amino ou metil e o grupo nitro retirador de elétrons. A unidade intercaladora contendo uma cadeia carbônica π -conjugada cumpre o papel de mediar uma possível transferência de elétrons entre os grupos doador e receptor de elétrons. Como intercaladores os grupos vinil, 1,3-butadienil, fenil, ciclopentadienil, pirrolil e furanil. Também foram estudadas as interferências causadas pela troca do átomo de boro, que contém um orbital vazio do tipo $2p_{\pi}$, pelos átomos de Al e Ga, da mesma família da Tabela Periódica.

O processo linear de absorção de um fóton (OPA) por um átomo ou molécula ocorre de forma mais eficaz para uma freqüência de luz próxima da freqüência de excitação do sistema quântico alvo. Para campos de radiação eletromagnética muito intensos, os processos de absorção simultânea de dois fótons (TPA) podem ocorrer se a energia da luz corresponde à metade da energia de exitação do alvo atômico ou molecular. Este processo foi proposto teoricamente por Göppert-Mayer [3] em 1931, e verificado experimentalmente, somente 30 anos mais tarde, após a descoberta do laser. A partir de então, a ótica não linear se tornou uma importante base para a área tecnológica, com um grande número de aplicações na tecnologia do laser, utilizando as possibilidades de geração da soma ou diferença de freqüências.

Uma das utilizações do processo de absorção de dois fótons é o emprego na microscopia de fluorescência com dois fótons para formação de imagens biológicas. Esse procedimento tem a vantagem de se basear em uma técnica não invasiva produzindo imagens tridimesionais com resolução sub-micrométrica [4]. Moléculas com bons valores de seção de choque para absorção de dois fótons e que apresentam uma grande faixa de excitação eletrônica são usadas comumente como marcadores (fluoróforos) biológicos nesse tipo de microscopia [4]. Existem os fluoróforos intrínsicos, que possuem fuorescência endógena, presentes em sistemas biológicos, como as proteínas contendo os aminoácidos triptofano ou tirosina. Outro tipo de fluoróforos são os extrínsicos, que são moléculas orgânicas modeladas e usadas para marcar estruturas biológicas. Esses são dois, entre vários outros, motivos de interesse para se estudar moléculas orgânicas ou inorgânicas com tais propriedades.

Do ponto de vista microscópico, os materiais que mostram uma maior eficiência

na absorção de dois fótons são aqueles que possuem bons grupos químicos doadores e receptores de elétrons ligados simétrica ou assimetricamente a um ligante conjugado plano, os chamados centros π [5]. O centro π é crucial para a atividade do processo de absorção de dois fótons, assim como para a maioria dos processos que originam as propriedades óticas não lineares de materiais [6]. A procura de materiais com boas propriedades de TPA, moléculas contendo grupos amidinas ligados à fenilas foram utilizadas. As benzamidinas e seus derivados apresentam estruturas do tipo D- π interessantes para obtenção de bons resultados dessas propriedades, além de seu interesse como drogas anti-cancerígenas [7, 8].

Capítulo 2

Propriedades Moleculares

A seguir descreveremos métodos de cálculos quânticos para a obtenção de propriedades moleculares em geral e das propriedades elétricas em particular: Método da soma-sobre-estados Quânticos e Teoria de Resposta, método utilizado em nossos estudos.

2.1 Método da Soma-sobre-estados Quânticos

Uma solução para a equação de Schrödinger

$$H_{op}\Psi_n(t) = i\hbar\partial\Psi_n(t)/\partial t \tag{2.1}$$

pode ser obtida, se a função de onda $\Psi_n(t)$ é expandida em um conjunto completo de funções de onda $\Psi_n^{(0)}$, soluções do problema não perturbado [9]

$$H_{op}^{(0)}\Psi_n^{(0)} = i\hbar\partial\Psi_n^{(0)}/\partial t = \varepsilon_n^0\Psi_n^{(0)}.$$
(2.2)

Introduzindo a expansão $\Psi(t) = \sum_k \Psi_k^{(0)} exp(-2i\varepsilon_k^0 t/\hbar) a_k(t)$, na equação de Schrödinger do problema molécula-campo elétrico, e com o auxílio da solução do problema molecular não perturbado, obtém-se o sistema de equações diferenciais de primeira ordem acoplado para o conjunto de coeficientes $a_k(t)$

$$\hbar(da_m(t))/dt = \sum_k V_{mk}(t)a_k(t), \qquad (2.3)$$

com a definição $V_{mk}(t) = \langle \psi_m^{(0)} | H_{op}^{(0)} | \psi_k^{(0)} \rangle exp(-i\omega_{km}t)$. A freqüência característica de transição entre os estados quânticos descritos pelos números quânticos $m \in k$ é $\omega_{km} = (\varepsilon_k^o - \varepsilon_m^o)/\hbar$.

Para um campo elétrico periódico separável na forma $E(\omega) = E^0 e^{\pm i\omega t}$, a solução da equação diferencial definindo os coeficientes $a_k(t)$ pode ser encontrada de forma iterativa através da expansão perturbativa $a_k(t) = \sum_n a_k^{(n)}(t)$. A condição inicial a ser satisfeita por esse conjunto de equações diferenciais de primeira ordem estabelece que o sistema molecular, imediatamente antes da perturbação elétrica ser introduzida, seja encontrado no seu estado eletrônico fundamental descrito por $\psi_{(0)}^0$. Desta maneira, em ordem zero temos,

$$a_k^{(0)} = \delta_{k0}, \tag{2.4}$$

e em primeira ordem,

$$a_k^{(1)} = \frac{\mu_{k0} E^0}{\hbar} \frac{\{1 - exp[-i(\omega_{0k} \pm \omega)t]\}}{(\omega_{k0} \pm \omega)}.$$
(2.5)

Com estes resultados, a função de onda do estado eletrônico fundamental, corrigida até primeira ordem, será

$$\Psi^{(1)}(E^{0},\omega) = \psi_{0}^{(0)} exp(-i\varepsilon_{0}^{0}/\hbar) + (1/\hbar) \sum_{k\neq 0} \psi_{k}^{(0)} \mu_{k0} E^{0} exp(-i\varepsilon_{k}^{0}t/\hbar) \{1 - exp[-i(\omega_{0k} \pm \omega)t]\} / (\omega_{k0} \pm \omega), \quad (2.6)$$

com a inclusão apenas dos termos lineares na amplitude do campo elétrico externo E_0 .

Neste grau de aproximação, o momento de dipolo elétrico do sistema pode ser calculado por:

$$\langle \mu(E^0,\omega)\rangle = \mu_{00} - (2/\hbar) \sum_{k\neq 0} \frac{\mu_{0k}\mu_{k0}}{/(\omega_{k0}\pm\omega)} E^0 e^{\pm i\omega t} + O((E^0)^2),$$
 (2.7)

onde uma contribuição que oscila muito rapidamente no tempo foi desprezada. Nessa expressão, o primeiro termo do lado direito da igualdade corresponde ao momento de

dipolo permanente da molécula, enquanto o segundo termo é imediatamente identificado com a polarizabilidade elétrica dependente da freqüência ou polarizabilidade dinâmica do sistema[10],

$$\alpha(\omega) = \frac{2}{\hbar} \sum_{k \neq 0} \frac{\mu_{0k} \mu_{k0}}{(\omega_{k0} \pm \omega)}.$$
(2.8)

Essa expressão para a polarizabilidade dinâmica inclui uma soma sobre todos os estados eletrônicos excitados k da molécula que interagem diretamente com o estado fundamental 0 via o operador momento de dipolo elétrico μ_{op} . As freqüências presentes no denominador da fração, indicam que para uma dada freqüência fixa do campo elétrico da perturbação (fora do regime de ressonância), os estados eletrônicos excitados mais próximos do estado eletrônico fundamental contribuem mais efetivamente para o valor da polarizabilidade eletrônica, principalmente, se a transição quântica entre estes dois estados for muito intensa. De forma idêntica, obtemos os coeficientes $a_k^{(n)}(t)$ em segunda (n=2), terceira (n=3) e ordens superiores, e com manipulações algébricas equivalentes às delineadas acima, pode-se obter a expressão de soma-sobre-estados para a primeira hiperpolarizabilidade elétrica dependente da freqüência, $\beta(\omega)$ e hiperpolarizabilidades de ordens superiores. Os resultados para a primeira quantidade está apresentado abaixo, para complementação [10]:

$$\beta(\omega) = \sum_{k \neq 0} \sum_{l \neq 0} \mu_{0k} \mu_{kl} \mu_{l0} / [(\omega_{k0} - \omega)(\omega_{l0} - \omega)] - \mu_{00} \sum_{k \neq 0} \mu_{0k} \mu_{k0} / (\omega_{k0} - \omega)^2.$$
(2.9)

A determinação dos parâmetros óticos não lineares definidos como soma-sobreestados quânticos, apresenta uma grande dificuldade prática. É necessário ter o conhecimento prévio das funções de onda e suas energias para os estados fundamental e excitados do problema molecular não perturbado de ordem zero. A solução da equação de Schrödinger para o estado fundamental e alguns estados excitados de baixa energia de um sistema de partículas, é, atualmente, um trabalho de rotina em química computacional, embora a obtenção das soluções de alta qualidade, ainda impõe sérias dificuldades e restrições. Entretanto, o desafio é extenuante se as expressões de soma-sobre-estados para os cálculos de $\alpha(\omega) e \beta(\omega)$ forem empregadas. Nessas determinações são requeridos um número muito grande, a rigor infinito, de estados excitados para serem incluídos como parcelas nas somas indicadas. Isso torna o emprego dessa técnica ineficiente e, portanto, bastante limitado.

Uma alternativa, freqüentemente aplicada com sucesso para sistemas típicos que atendem as aproximações estabelecidas, considera a inclusão de apenas poucos dos estados excitados dos muitos necessários na fórmula da soma-sobre-estados. Esta aproximação, justifica-se sempre que as diferenças de energia presentes nos denominadores das frações que definem $\alpha(\omega) \in \beta(\omega)$ sejam pequenas para alguns poucos estados excitados e, portanto, contribuem dominantemente para a soma global. Também um bom critério de corte se baseia nos valores dos elementos dos momentos de dipolo de transição entre o estado fundamental e os estados excitados selecionados. Por exemplo, em sistemas moleculares que apresentam transições eletrônicas muito intensas na região ultra-violeta devido a um mecanismo de transferência de cargas - como de metal para ligante, para compostos inorgânicos ou organometálicos, ou de um grupo doador para um grupo receptor de elétrons em moléculas orgânicas pequenas ou polímeros. Estes são exemplos específicos, onde o chamado modelo de dois ou três estados fornecem resultados excelentes para a polarizabilidade e as hiperpolarizabilidades moleculares, quando comparados com os respectivos resultados experimentais.

2.2 Método da Teoria de Resposta

A solução da equação de Schrödinger para o sistema molécula-campo de radiação pela técnica de separação de variáveis, com o auxílio da solução do problema molecular não perturbado, Eq. 2.2, leva ao sistema de equações diferenciais de primeira ordem acoplado para o conjunto de coeficientes $a_k(t)$, Eq. 2.3, cuja solução formal é escrita como

$$a(t) = \mathbf{a}(t=0)exp[-(i/\hbar)\int_0^t \mathbf{V}(\tau)d\tau].$$
(2.10)

Os elementos do vetor coluna $\mathbf{a}(t)$ e a matriz $\mathbf{V}(t)$ são $[\mathbf{a}(t)]_i = a_i(t)$ e $[\mathbf{V}(t)]_{ij} = V_{ij}$, respectivamente. Observando esta forma, uma parametrização exponencial [11]

$$\Psi(t) = exp[-i\mathbf{P}_{op}(t)]\psi^{(0)} \tag{2.11}$$

é sugerida para a função de onda. O operador hermitiano $\mathbf{P}_{op}(t)$ é formado como uma combinação linear de operadores de excitação \mathbf{k}_n e sua adjunta conjugada \mathbf{k}_n^+ [11],

$$\mathbf{P}_{op}(t) = \sum_{k} (p_n(t)\mathbf{k}_n + p_n^*(t)\mathbf{k}_n^+)$$
(2.12)

Os operadores $\{\mathbf{k}_n, \mathbf{k}_n^+\}$ são definidos pelas propriedades,

$$\mathbf{k}_{n}\psi_{0}^{(0)} = \psi_{n}^{(0)}; \quad \mathbf{k}_{n}\psi_{m}^{(0)} = 0; \quad (m \neq 0)$$
$$\mathbf{k}_{n}^{+}\psi_{m}^{(0)} = \psi_{0}^{(0)}\delta_{nm}; \quad \mathbf{k}_{n}^{+}\psi_{0}^{(0)} = 0; \quad (n \neq 0)$$
(2.13)

e o conjunto de parâmetros $\{p_n(t), p_n^*(t)\}$ são funções complexas dependente do tempo. Estes são determinados requerendo que o valor esperado do operador \mathbf{k}_n ou \mathbf{k}_n^+ , satisfaça o teorema de Ehrenfest [11],

$$d\langle\Psi(t)|\mathbf{k}_{n}|\Psi(t)\rangle/dt = -(i/\hbar)\langle\Psi(t)|[k_{n}, H_{op}^{(0)} + \mathbf{V}_{op}]|\Psi(t)\rangle$$
(2.14)

ou,

$$\langle \Psi_{0}^{(0)} | d \{ exp[(i/\hbar) \mathbf{P}_{op}(t)] \mathbf{k}_{n} exp[-(i/\hbar) \mathbf{P}_{op}(t)] \} / dt | \Psi_{0}^{(0)} \rangle =$$

$$= (\varepsilon_{m}^{(0)} - \varepsilon_{0}^{(0)}) \langle \Psi_{0}^{(0)} | exp[(i/\hbar) \mathbf{P}_{op}(t)] \mathbf{k}_{n} exp[-(i/\hbar) \mathbf{P}_{op}(t)] | \Psi_{0}^{(0)} \rangle -$$

$$- (\varepsilon_{m}^{(0)} - \varepsilon_{0}^{(0)}) \langle \Psi_{0}^{(0)} | exp[(i/\hbar) \mathbf{P}_{op}(t)] [\mathbf{k}_{n}, \mathbf{V}_{op}] exp[-(i/\hbar) \mathbf{P}_{op}(t)] | \Psi_{0}^{(0)} \rangle \cdot$$

$$(2.15)$$

Uma vez determinados, os parâmetros $\{p_n(t), p_n^*(t)\}$ dependerão implicitamente do potencial V da perturbação. Assim sendo, uma solução em série de potências

$$\mathbf{P}_{op}(t) = {}^{(1)} \mathbf{P}_{op}(t) + {}^{(2)} \mathbf{P}_{op}(t) + {}^{(3)} \mathbf{P}_{op}(t) + {}^{(4)} \mathbf{P}_{op}(t) + \cdots$$
(2.16)

é procurada. ${}^{(n)}\mathbf{P}_{op}(t),$ a
 n-ésima contribuição para $\mathbf{P}_{op}(t),$ depende de
 \mathbf{V} à potência n.

Com a função de onda $\Psi(t)$ obtida acima, o valor esperado de uma grandeza física dependente do tempo, representada pelo operador $\mathbf{A}_{op}(t)$, é obtido como [11]

$$\langle \mathbf{A}_{op}(t) \rangle = \langle \psi_0^{(0)} exp[(i/\hbar) \mathbf{P}_{op}(t)] | \mathbf{A}_{op}(t) | \psi_0^{(0)} exp[-(i/\hbar) \mathbf{P}_{op}(t)] \rangle = = \langle \psi_0^{(0)} | \mathbf{A}_{op}(t) | \psi_0^{(0)} \rangle - (i/\hbar) \langle \psi_0^{(0)} | [\mathbf{A}_{op}(t), \mathbf{P}_{op}(t)] | \psi_0^{(0)} \rangle + + [(i/\hbar)^2/2] \langle \psi_0^{(0)} | [(\mathbf{A}_{op}(t), \mathbf{P}_{op}(t)), \mathbf{P}_{op}(t)] | \psi_0^{(0)} \rangle + \cdots$$
(2.17)

O primeiro termo do lado direito da igualdade representa o valor esperado da quantidade física representada pelo operador $\mathbf{A}_{op}(t)$ para o sistema não perturbado.

Introduzindo a expansão de $\mathbf{P}_{op}(t)$ em série de potências em ordem de perturbação \mathbf{V} , as primeiras contribuições de ordem inferiores para o valor esperado de $\mathbf{A}_{op}(t)$ são [11]

$$\langle {}^{(1)}\mathbf{A}_{op}(t)\rangle = -(i/\hbar)\langle \psi_0^{(0)}|\{\mathbf{A}_{op}(t), {}^{(1)}\mathbf{P}_{op}(t)\}|\psi_0^{(0)}\rangle$$
(2.18)

$$\langle {}^{(2)}\mathbf{A}_{op}(t) \rangle = -(i/\hbar) \langle \psi_{0}^{(0)} | \{ \mathbf{A}_{op}(t), {}^{(2)}\mathbf{P}_{op}(t) \} | \psi_{0}^{(0)} \rangle + + (i/2\hbar) \langle \psi_{0}^{(0)} | \{ (\mathbf{A}_{op}(t), {}^{(1)}\mathbf{P}_{op}(t)), {}^{(1)}\mathbf{P}_{op}(t) \} | \psi_{0}^{(0)} \rangle$$

$$(2.19)$$

$$\langle {}^{(3)}\mathbf{A}_{op}(t) \rangle = -(i/\hbar) \langle \psi_{0}^{(0)} | \{\mathbf{A}_{op}(t), {}^{(3)}\mathbf{P}_{op}(t)\} | \psi_{0}^{(0)} \rangle + - (i/2\hbar) \langle \psi_{0}^{(0)} | \{\mathbf{A}_{op}(t) [{}^{(1)}\mathbf{P}_{op}(t) {}^{(2)}\mathbf{P}_{op}(t) + {}^{(2)}\mathbf{P}_{op}(t) {}^{(1)}\mathbf{P}_{op}(t)] + 2 [{}^{(1)}\mathbf{P}_{op}(t)\mathbf{A}_{op}(t) {}^{(2)}\mathbf{P}_{op}(t) + {}^{(2)}\mathbf{P}_{op}(t)\mathbf{A}_{op}(t) {}^{(1)}\mathbf{P}_{op}(t)] + + [{}^{(1)}\mathbf{P}_{op}(t) {}^{(2)}\mathbf{P}_{op}(t) + {}^{(2)}\mathbf{P}_{op}(t) {}^{(1)}\mathbf{P}_{op}(t)]\mathbf{A}_{op}(t) \} | \psi_{0}^{(0)} \rangle \cdot$$
(2.20)

Estes termos, ordem a ordem, representam uma resposta do sistema molecular à perturbação representada pelo operador \mathbf{V}_{op} , e são referidas, portanto, como função resposta. Mais exatamente, a representação das funções $\langle {}^{(n)}\mathbf{A}_{op}(t)\rangle$ no espaço da freqüência obtidos via uma transformada de Fourier e que são denominados de função resposta molecular. Assim, em primeira ordem temos a (função) resposta linear

$$\langle \langle \mathbf{A}_{op}; \mathbf{V}_{op} \rangle \rangle_{\omega} = \int dt \exp[-i\omega t] \langle {}^{(1)}\mathbf{A}_{op}(t) \rangle,$$
 (2.21)

em segunda ordem a (função) resposta quadrática

$$\langle \langle \mathbf{A}_{op}; \mathbf{V}_{op}; \mathbf{V}_{op} \rangle \rangle_{\omega_1 + \omega_2} = \int dt_1 \int dt_2 \exp[-i(\omega_1 + \omega_2)t] \langle ^{(2)}\mathbf{A}_{op}(t_1, t_2) \rangle, \quad (2.22)$$

em terceira ordem a (função) resposta cúbica

$$\langle \langle \mathbf{A}_{op}; \mathbf{V}_{op}; \mathbf{V}_{op}; \mathbf{V}_{op}; \mathbf{V}_{op} \rangle \rangle_{\omega_1 + \omega_2 + \omega_3}^{\prime} = \int dt_1 \int dt_2 \int dt_3 \exp[-i(\omega_1 + \omega_2 + \omega_3)t] \langle {}^{(3)}\mathbf{A}_{op}(t_1, t_2, t_3) \rangle,$$
(2.23)

etc. As integrações são feitas no intervalo de tempo de $-\infty$ a $+\infty$ e, implicitamente, estão incluídos os fatores de convergência para as integrais indicadas.

Um exemplo destas funções resposta pode ser visto, considerando a perturbação periódica $V^{\omega}(t) = -\mu \cdot \mathbf{E}^0 e^{-i\omega t}$ de um campo elétrico de amplitude E^0 e freqüência ω à um sistema molecular representado pelo momento de dipolo elétrico μ . Em primeira ordem, a contribuição para o momento de dipolo induzido é

$$\langle \langle \mu_{op}; \mu_{op} \rangle \rangle_{\omega} = \alpha(\omega),$$
 (2.24)

sendo imediatamente identificada à polarizabilidade elétrica dependente do tempo da molécula. As respostas de ordens superiores, neste exemplo, representam a primeira, segunda, terceira, etc, hiperpolarizabilidades elétricas moleculares.

Este método baseado na teoria de resposta, tem as vantagens de ser um método geral para a obtenção de parâmetros moleculares gerados como uma resposta à tipos diversos de perturbações externas ou internas à molécula, (3) coletar implicitamente as somas sobre os estados quânticos explicitamente evidenciados, nas expressões finais resultantes das teorias de perturbação tradicionais, e (4) pode ser desenvolvido e codificado para todos os tipos de funções de onda eletrônicas usuais, Hartree-Fock, de mistura de configuração (CI), multiconfiguracionais e perturbativas.

A primeira destas vantagens faz com que este método forneça valores precisos para as propriedades moleculares desejadas. Em particular, este método mostrase superior ao método o de campos finitos e diferenciação numérica das energias eletrônicas perturbadas. A terceira vantagem viabiliza a introdução (implícita) de um número grande de estados excitados eletrônicos, na computação das propriedades desejadas. As informações detalhadas sobre as várias energias de excitação e forças do oscilador podem ser obtidas pelas análises adequadas dos pólos e resíduos das funções resposta.

2.3 Absorção de Um e Dois Fótons

2.3.1 Absorção de Um Fóton

A probabilidade de transição é descrita pela força de oscilador

$$\delta_{OPA} = \frac{2\omega_{0f}}{3} \sum_{\alpha} |\langle 0|\mu_{\alpha}|f\rangle|^2, \qquad (2.25)$$

onde ω_f é a energia de excitação do estado excitado $|f\rangle$, $|0\rangle$ denota o estado fundamental, μ_{α} é o momento de dipolo elétrico, com a soma sobre os eixos $x, y \in z$.

2.3.2 Absorção de Dois Fótons

A absorção de dois fótons está associada diretamente à parte imaginária da terceira suceptibilidades ($\chi^{(3)}$) de um material, correspondendo a hiperpolarizabilidade de segunda ordem (γ) molecular.

Microscopicamente, a expressão de soma sobre todos os estados para a hiperpolarizabilidade de segunda ordem molecular, pode ser escrita como

$$\gamma_{\alpha\beta\gamma\delta}(-\omega;\omega,-\omega,\omega) = i\frac{\hbar^{-1}}{\Gamma_f}S_{\alpha\gamma}S^*_{\delta\beta}$$
(2.26)

onde $\omega = (1/2)\omega_f$ e o elemento de matriz de transição de dois fótons. Os elements de matriz $S_{\alpha\beta}$ são obtidos por

$$S_{\alpha\beta} = \hbar^{-1} \sum_{k} \left[\frac{\langle 0|\mu_{\alpha}|k\rangle \langle k|\mu_{\beta}|f\rangle}{\omega_{k} - \omega} + \frac{\langle 0|\mu_{\beta}|k\rangle \langle k|\mu_{\alpha}|f\rangle}{\omega_{k} - \omega} \right]$$
(2.27)

onde ω_j é a energia de excitação para o estado intermediário $|\mathbf{k}\rangle$, $|0\rangle \in |\mathbf{f}\rangle$ denotam os estados inicial e final, respectivamente.

Considerando diferentes orientações da molécula com relação ao campo elétrico da radiação, a seção de choque torna-se:[12]

$$\delta_{\text{TPA}} = \begin{cases} \frac{1}{15} \sum_{i,j=x,y,z} (S_{ii}S_{jj} + 2S_{ij}S_{ij}) & \text{polarização linear,} \\ \frac{1}{15} \sum_{i,j=x,y,z} (-S_{ii}S_{jj} + 3S_{ij}S_{ij}) & \text{polarização circular.} \end{cases}$$
(2.28)

A seção de choque se relaciona com medidas experimentais pela expressão

$$\sigma_{\rm TPA} = \frac{4\pi^2 a_0^5 \alpha}{15c} \frac{\omega^2 g(\omega)}{\Gamma_f} \delta_{\rm TPA}, \qquad (2.29)$$

onde σ_{TPA} é a medida experimental da seção de choque, a_0 é o raio de Bohr, c a velocidade da luz, α a constante de estrutura fina, ω a energia do fóton da luz

incidente. O g(ω) representa uma função δ que fornece o perfil da linha espectral e Γ_f a largura de linha-a-meia-altura do estado final, o qual é assumido ser 0,1 eV para fazer uma comparação com trabalhos anteriores de seção de choque TPA.

Capítulo 3

Métodos Computacionais

Os cálculos dos parâmetros óticos não lineares de moléculas e agregados moleculares são normalmente realizados através de três métodos alternativos. Além dos métodos descritos anteriormente, soma-sobre-estados quânticos utilizando-se expressões da teoria de perturbação dependente ou independente do tempo e o método baseado na teoria de resposta, tem-se ainda o método numérico baseado em diferenças finitas das energias eletrônicas de sistemas moleculares, na presença de um campo elétrico externo perturbativo. Em comum, estes métodos iniciam-se a partir da expressão quântica do valor esperado do momento de dipolo elétrico, do estado eletrônico fundamental de um sistema molecular, induzido pela presença de um campo elétrico externo. Este momento de dipolo induzido é calculado para uma função de onda eletrônica relaxada, isto é, re-otimizada, para a presença explícita do campo elétrico da perturbação.

Na interação mais simples entre um vetor campo elétrico externo $E(\omega)$ dinâmico (dependente da freqüência angular ω) ou estático ($\omega=0$) com um sistema molecular (sistema de elétrons e núcleos atômicos), a aproximação do dipolo elétrico fornece uma energia de orientação eletrostática

$$\Delta \varepsilon_{orient} = -\mu \Delta E(\omega), \qquad (3.1)$$

adicional para o sistema molécula-campo elétrico. O vetor momento de dipolo elétrico, μ , de um conjunto de elétrons e núcleos atômicos que compõe o sistema molecular pode ser descrito como

$$\mu = -e\sum_{i} r_i + e\sum_{A} Z_A R_A, \qquad (3.2)$$

onde $r_i \in R_A$ são as coordenadas do *i*-ésimo elétron e *A*-ésimo núcleo atômico com relação a um sistema de coordenadas fixo no laboratório, respectivamente, e Z_A a carga nuclear do núcleo A. A energia de orientação eletrostática corresponde ao operador quântico semi-clássico

$$H_{op}^{(1)} = -\mu_{op} \cdot E(\omega). \tag{3.3}$$

O operador Hamiltoniano total do sistema molécula-campo elétrico, H_{op} , é escrito como a soma do operador Hamiltoniano do sistema molecular isolado, $H_{op}^{(0)}$, e o termo de perturbação $H_{op}^{(1)}$ acima definido, ou seja, $H_{op} = H_{op}^{(0)} + H_{op}^{(1)}$. A solução quântica procurada para o problema requer a solução da equação Schrödinger dependente do tempo,

$$H_{op}[E(\omega)]\Psi_n[t, E(\omega)] = -i\hbar\partial\Psi_n[t, E(\omega)]/\partial(t), \qquad (3.4)$$

para os estados eletrônicos fundamental e excitados do sistema molecular.

Para a função de onda normalizada e dependente do campo elétrico $\Psi_n[t, E(\omega)]$, o valor esperado para o momento de dipolo elétrico $\langle \mu(E(\omega)) \rangle$ é função do campo elétrico aplicado, cuja expansão em série de Taylor em torno de $E(\omega)$ igual a zero, torna-se

$$\langle \mu[E(\omega)] \rangle = \langle \Psi_n[t, E(\omega)] | \mu_{op} | \Psi_n[t, E(\omega)] \rangle$$

$$= \langle \mu(0) \rangle + \alpha(\omega) E(\omega) + (1/2!)\beta(\omega) E(\omega) E(\omega) + (1/3!)\gamma(\omega) E(\omega) E(\omega) E(\omega) + \cdots,$$

$$(3.5)$$

onde os coeficientes da expansão são interpretados como os parâmetros de resposta linear e não linear do sistema molecular ao campo aplicado. Estes são formalmente definidos como derivadas parciais do momento de dipolo induzido na molécula, pela amplitude do campo elétrico aplicado. Por exemplo, para a componente *xzz* da primeira hiperpolarizabilidade, temos

$$\beta_{xzz}(\omega) = \partial^2 \langle \mu_x[E(\omega)] \rangle / \partial E_z(\omega) \partial E_z(\omega) |_{E(\omega)=0}.$$
(3.6)

 $\mathbf{14}$

Alternativamente, a partir do valor esperado da energia eletrônica total do sistema molecular na presença da perturbação elétrica, temos

$${}^{ele}E(E(\omega)) = \langle \Psi_n[t, E(\omega)] | H_{op} | \Psi_n[t, E(\omega)] \rangle, \qquad (3.7)$$

onde ${}^{ele}E^0$ é a energia do sistema molecular não perturbado. Através de diferenciações sucessivas do valor esperado da energia ${}^{ele}E(E(\omega))$, pode-se, portanto, obter os parâmetros desejados.

Os diferentes métodos pelos quais os parâmetros $\mu(0)$, $\alpha(\omega)$, $\beta(\omega)$, $\gamma(\omega)$ podem ser obtidos são brevemente discutidas no que se segue.

3.1 Métodos de Estrutura Eletrônica

3.1.1 Aproximação de Hartree-Fock

A solução da equação de Schrödinger consiste em um ponto crucial nos cálculos realizados para se determinar com precisão as energias e propriedades dos estados estacionários de sistemas atômicos e moleculares. Por ter uma solução exata desconhecida, para os problemas gerais envolvendo sistemas físicos contendo mais de um elétron são necessárias soluções aproximadas para a equação de Schrödinger. Isto se torna possível fazendo-se uso do teorema variacional.

De acordo com o princípio de exclusão de Pauli, uma função de onda eletrônica aceitável deve possuir a propriedade de anti-simetria com relação à troca de coordenadas de quaisquer dois elétrons. Para se construir uma função de onda aproximada que satisfaça o princípio de anti-simetria, podemos escrevê-la como um determinante (determinante de Slater)

$$\mathbf{\Phi}(\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_2}, \cdots \mathbf{x_n}) = \begin{vmatrix} \varphi_1(\mathbf{x_1}) & \varphi_1(\mathbf{x_2}) & \varphi_1(\mathbf{x_3}) & \dots & \varphi_1(\mathbf{x_n}) \\ \varphi_2(\mathbf{x_1}) & \varphi_2(\mathbf{x_2}) & \varphi_2(\mathbf{x_3}) & \dots & \varphi_2(\mathbf{x_n}) \\ \varphi_3(\mathbf{x_1}) & \varphi_3(\mathbf{x_2}) & \varphi_3(\mathbf{x_3}) & \dots & \varphi_3(\mathbf{x_n}) \\ \vdots & \vdots & \vdots & \dots & \vdots \\ \varphi_n(\mathbf{x_1}) & \varphi_n(\mathbf{x_2}) & \varphi_n(\mathbf{x_3}) & \dots & \varphi_n(\mathbf{x_n}) \end{vmatrix}$$

formado por *n* funções de um elétron, $\varphi_a(r_i, \varphi_i)$, os spin-orbitais que, individualmente, representam a amplitude de probabilidade do *i*-ésimo elétron do sistema molecular. As variáveis $\{r_i, \varphi_i\} \equiv \{\mathbf{x}_i\}$ correspondem, respectivamente, às coordenadas espaciais e de spin do elétron *i*.

O método Hartree-Fock consiste em se utilizar um único determinante de Slater, para descrever a função de onda total do sistema de elétrons de um átomo ou molécula. O conjunto de spin-orbitais $\{\varphi_1(\mathbf{x}_1), \varphi_2(\mathbf{x}_2), \dots, \varphi_n(\mathbf{x}_n)\}$ é otimizado variacionalmente, a partir do funcional energia

$$E[\Phi(\varphi_1, \varphi_2, \cdots, \varphi_n)] = \frac{\langle \Phi(\varphi_1, \varphi_2, \cdots, \varphi_n) | \mathbf{H}_{op} | \Phi(\varphi_1, \varphi_2, \cdots, \varphi_n) \rangle}{\langle \Phi(\varphi_1, \varphi_2, \cdots, \varphi_n) | \Phi(\varphi_1, \varphi_2, \cdots, \varphi_n) \rangle},$$
(3.8)

sendo mantidos ortonormalizados durante todo este processo,

$$\delta[\langle \varphi_i | \varphi_j \rangle] = 0. \tag{3.9}$$

Esta aproximação reduz a dinâmica de um problema de N elétrons mutuamente interagentes (uma dinâmica correlacionada), em n problemas de um único elétron movimentando-se sob a influência do campo médio eletrostático de repulsão dos N-1 elétrons restantes, além, naturalmente, da contribuição cinética e atrações eletrostáticas pelos núcleos do sistema molecular.

A energia total de um sistema molecular contendo n elétrons e A núcleos atômicos, é representada quânticamente através do operador hamiltoniano \mathbf{H}_{op} eletrônico. Este hamiltoniano é formado pela soma dos operadores de uma e duas partículas,

$$\mathbf{H}_{op} = \sum_{i} \mathbf{h}_{op}(i) + \sum_{i < j} \mathbf{g}_{op}(i, j).$$
(3.10)

O operador de um elétron, $\mathbf{h}_{op}(i)$, inclui a energia cinética e a energia coulombiana de atração total do elétron *i* com os núcleos dos átomos que formam uma molécula; o operador de duas partículas, $\mathbf{g}_{op}(i, j)$, descreve a energia de repulsão Coulombiana total entre dois elétrons *i* e *j*.

O resultado final do processo de otimização leva à equação canônica de Hartree-Fock

$$\mathbf{F}_{op}\varphi_i(\mathbf{x}) = \varepsilon_i \varphi_i(\mathbf{x}). \tag{3.11}$$

 \mathbf{F}_{op} é o operador de Fock formado a partir dos operadores de um elétron $\mathbf{h}_{op}(\mathbf{x})$,

que engloba o termo de energia cinética e atração eletrostática pelos núcleos atômicos, e dos operadores de repulsão Coulombiana $\mathbf{J}_{op}(\mathbf{x})$ e de troca $\mathbf{K}_{op}(\mathbf{x})$,

$$\mathbf{F}_{op} \equiv \mathbf{F}_{op}(\mathbf{x}) = \mathbf{h}_{op}(\mathbf{x}) + \sum_{j} [\mathbf{J}_{j}(\mathbf{x}) - \mathbf{K}_{j}(\mathbf{x})].$$
(3.12)

Os operadores de repulsão média elétron-elétron dependem implicitamente dos spin-orbitais $\varphi_i(\mathbf{x})$, como (considerando a carga eletrônica elementar como sendo um)

$$\mathbf{J}_{j}(\mathbf{x})\xi(\mathbf{x}) = \sum_{i} \int d\mathbf{x}' \varphi_{i}^{*}(\mathbf{x}') [1/|\mathbf{x} - \mathbf{x}'|] \varphi_{i}(\mathbf{x}')\xi(\mathbf{x})$$
(3.13)

$$\mathbf{K}_{j}(\mathbf{x})\xi(\mathbf{x}) = \sum_{i} \int d\mathbf{x}' \varphi_{i}^{*}(\mathbf{x}') [1/|\mathbf{x} - \mathbf{x}'|]\xi(\mathbf{x}')\varphi_{i}(\mathbf{x}), \qquad (3.14)$$

onde $\xi(\mathbf{x})$ é um spin-orbital arbitrário.

A equação de Hartree-Fock é resolvida iterativamente de forma auto-consistente. Inicialmente, a partir de um conjunto de spin-orbitais de ordem zero $\{^{(0)}\varphi_i(\mathbf{x}), {}^{(0)}\varphi_2(\mathbf{x}), \cdots, {}^{(0)}\varphi_n(\mathbf{x})\}$, o operador de Fock de ordem zero ${}^{(0)}F_{op}$ é construído. Resolve-se, então, a equação de Hartree-Fock e um novo conjunto de spin-orbitais de primeira ordem $\{{}^{(1)}\varphi_i(\mathbf{x}), {}^{(1)}\varphi_2(\mathbf{x}), \cdots, {}^{(1)}\varphi_n(\mathbf{x})\}$ são obtidos, assim como o conjunto das auto-energias de primeira ordem $\{{}^{(1)}\varphi_i(\mathbf{x}), {}^{(1)}\varphi_2(\mathbf{x}), \cdots, {}^{(1)}\varphi_n(\mathbf{x})\}$ são obtidos, assim como o conjunto das auto-energias de primeira ordem $\{{}^{(1)}\varepsilon_i(\mathbf{x}), {}^{(1)}\varepsilon_2(\mathbf{x}), \cdots, {}^{(1)}\varepsilon_n(\mathbf{x})\}$. O processo, então, é reiniciado para os spin-orbitais de primeira ordem, que resolvida novamente a equação de Fock, leva ao conjunto de spin-orbitais (ou as densidades formadas a partir destes ou as associadas auto-energias) de ordem "k" sejam iguais, dentro de um erro prescrito, aos spin-orbitais (ou as densidades formadas a partir destes ou as associadas auto-energias) de ordem "k" sejam iguais, dentro de um erro prescrito, aos spin-orbitais (ou as densidades formadas a partir destes ou as associadas auto-energias) de ordem "k" sejam iguais, dentro de um erro prescrito, aos spin-orbitais (ou as densidades formadas a partir destes ou as associadas auto-energias) de ordem "k - 1", quando é alcançada a otimização auto-consistente dos spin-orbitais de Hartree-Fock .

A energia orbital canônica de Hartree-Fock, $-\varepsilon_i$ (de sinal trocado), corresponde, aproximadamente, ao potencial de ionização de um elétron ocupando o orbital "i"; para os orbitais remanescentes não otimizados, orbitais virtuais, $-\varepsilon_i$ é uma estimativa da afinidade eletrônica. Quantitativamente, estas interpretações físicas não levam em consideração a relaxação orbital ocasionada pela retirada, no primeiro caso, ou a inclusão, no segundo caso, de um elétron ao sistema molecular. O método HF, além de ser capaz de freqüentemente fornecer uma boa aproximação qualitativa e quantitativa para problemas de muitos corpos de um conjunto de elétrons em um sistema molecular, é também o ponto de partida para tratamentos de estrutura eletrônica mais sofisticadas. Para tanto, correções sistemáticas devem ser introduzidas para uma dinâmica correlacionada dos elétrons do sistema. Dentre os métodos pós Hartree-Fock estão os métodos variacionais de interação de configuração (CI) e multiconfiguracionais, os métodos da teoria de perturbação de muitos corpos (MBPT) e métodos baseados em grupos de elétrons, como o coupled-cluster (CC).

Na prática, a equação 3.11 é resolvida através da expansão da função de onda de um elétron $\varphi_i(\mathbf{x})$ em um conjunto de n_A funções de base $\chi_k(\mathbf{x}; A)$ sobre cada centro atoômico A: $\varphi_i(\mathbf{x}) = \sum_A^N \sum_i^{n_A} c_i^A \chi_i(\mathbf{x}; A)$. Com esse procedimento, a equação integro-diferencial 3.11 transforma-se em um conjunto de equações algébricas para serem resolvidas nos coeficientes de expansão c_i^A , um procedimento apropriado para um tratamento computacional.

3.1.2 Teoria do Funcional de Densidade

O Hamiltoniano para sistemas de elétrons interagentes não relativísticos pode ser representado pela equação

$$H = T + U + V, \tag{3.15}$$

sendo que cada termo, em unidades atômicas ($m_e = e = h = 1$), pode ser descrito como

$$T = -\frac{1}{2} \sum_{i} \nabla_{i}^{2}, \quad U = \frac{1}{2} \sum_{i \neq j} \frac{1}{|r_{i} - r_{j}|}, \quad V = \sum_{i} v(r), \quad (3.16)$$

e representam, respectivamente, os operadores energia cinética, interação elétronelétron e um potencial externo.

No método Teoria do Funcional de Densidade (DFT) trabalha-se com a densidade de elétrons total ao invés do uso de uma função de onda; essa possibilidade decorre do princípio que a energia total do estado fundamental de um sistema eletrônico pode ser escrita como um funcional da densidade eletrônica[13]. Então, o método DFT é usado para tratar a interação entre elétrons com vantagem de ser um método rápido e mais completo do que o método Hartree-Fock, devido a inclusão de correlação eletrônica na densidade eletrônica.
Teoremas de Hohenberg-Kohn

Como ponto de partida para o desenvolvimento da DFT temos dois teoremas de Hohenberg-Kohn (HK) [13]. O primeiro teorema demonstra que conhecendo-se a densidade de elétrons também pode-se conhecer o potencial externo, através de uma distribuição desta densidade em um ponto r no espaço. O número (N) de elétrons do sistema pode ser obtido através da normalização da densidade eletrônica $\rho(r)$, como mostrado na equação a seguir

$$\int \rho(r)dr = N. \tag{3.17}$$

Na DFT, a função de onda de N-elétrons, Ψ , é substituída pela densidade eletrônica de um elétron

$$\rho(r) = N \int \dots \int |\Psi(r_1, r_2, \dots, r_N, s_1, s_2, \dots, s_N)|^2 dr_2 \dots dr_N ds_1 \dots ds_N$$
(3.18)

Então podemos dizer serem todas as propriedades eletrônicas do sistema determinadas a partir da distribuição de densidade de elétrons, sendo a energia total do sistema eletrônico descrita como um funcional

$$E = E_{\nu}[\rho], \qquad (3.19)$$

sendo que para um dada densidade $\rho(r)$ existe somente uma energia correspondente $E_{\nu}[\rho]$, onde o índice ν está relacionado com um potencial externo.

Sendo assim, a energia do estado fundamental do sistema eletrônico pode ser escrita como um funcional de densidade, por depender da densidade eletrônica desse estado, valendo também para as componentes da energia do estado fundamental, como pode ser visto a seguir.

$$E_0[\rho_0] = T[\rho_0] + E_{ee}[\rho_0] + E_{Ne}[\rho_0], \qquad (3.20)$$

onde $T[\rho_0]$ é a energia cinética eletrônica, $E_{ee}[\rho_0]$ refere-se a energia interação de repulsão elétron-elétron e $E_{Ne}[\rho_0]$ relaciona-se a energia de atração elétron-núcleo.

Um dos funcionais é o de HK, onde separamos o potencial atrativo, que dependerá do sistema em estudo, do potencial universal $(T[\rho_0] + E_{ee}[\rho_0])$, como mostrado a seguir.

$$E_0[\rho_0] = \int \rho(\vec{r}) V_{ne} d\vec{r} + F_{HK}[\rho_0], \qquad (3.21)$$

sendo que F_{HK} é a quantidade universal da teoria DFT, independe do potencial externo $\nu(r)$.

Sendo a forma analítica exata do "potencial universal" desconhecida, todos os métodos DFT usam uma ou outra aproximação para se determinar esta quantidade para ρ_0 . Devido a essa aproximação, de $F_{HK}[\rho_0]$, não poderíamos tratar a DFT como um método *ab-initio*. Como tentativa para obtenção de F_{HK} , Thomas e Fermi (TF) [14, 15] criaram um modelo, no qual o termo da energia cinética é escrito como sendo a energia cinética de um sistema de elétrons não interagentes, com densidade $\rho(r)$ e as principais contribuições de $E_{ee}[\rho]$ são descritas pela equação,

$$E_{ee}[\rho] = \frac{1}{2} \int \int \frac{\rho(r_1)\rho(r_2)e^2}{r_{12}} dr_1 dr_2 + E_{xc}[\rho] = J[\rho] + E_{xc}[\rho], \qquad (3.22)$$

onde o primeiro termo contém a parte clássica (local) da interação elétron-elétron, como o potencial eletrostático de Coulomb $J[\rho]$, e o segundo termo contém as contribuições não clássicas de $E_{ee}[\rho]$, como as correções de auto-interação e de trocacorrelação.

O segundo teorema, permite-nos introduzir o princípio variacional da energia eletrônica total do sistema na teoria DFT, embora somente para o estado fundamental. Nesse teorema é possível minimizar a energia eletrônica do sistema, $E_{\nu}[\tilde{\rho}]$, se uma dada densidade $\tilde{\rho}(r)$ satisfizer as seguintes condições de contorno: (i) $\tilde{\rho}(r)$ ≥ 0 ; (ii) $\int \tilde{\rho}(r) dr = N$; e (iii) ν -representabilidade. A equação que descreve este teorema pode ser expressa como

$$E_0 \le E[\widetilde{\rho}] = \int \widetilde{\rho}(r)\nu(r)dr + F_{HK}[\widetilde{\rho}], \qquad (3.23)$$

onde E_0 corresponde a energia do estado eletrônico fundamental e a condição de ν -representabilidade implica que a densidade obtida deve representar o potencial externo do sistema.

A base teórica para a DFT encontra-se nesses teoremas de HK, contudo, não é esclarecida a forma da dependência da energia com a densidade. Para isso, utiliza-se o princípio variacional para determinação de $\rho(r)$ para um determinado potencial externo e não o contrário.

Método de Kohn-Sham

A minimização do funcional energia gera a energia do estado fundamental do sistema eletrônico atômico ou molecular na DFT (3.21), pelo uso do princípio variacional e de que a densidade eletrônica deve representar o número total de elétrons do sistema, Eq. (3.17). A condição de extremo para o funcional $E[\rho(r)]$ é dada por

$$\delta\{E[\rho(r)] - \mu \int \rho(r)dr\} = 0, \qquad (3.24)$$

onde μ é um multiplicador de Lagrange e é interpretado fisicamente como o potencial químico do sistema. Outra forma de escrever esta equação é como uma equação de Euler para a determinação do potencial químico (μ)

$$\mu = \nu(r) + \frac{\delta F[\rho(r)]}{\delta \rho(r)}.$$
(3.25)

A imprecisão na avaliação do funcional de energia cinética $T[\rho(r)]$, gera um grande problema para essa formulação, porém uma solução para esse problema foi proposta por Kohn-Sham (KS) em 1965 [16], Para isso foram introduzidos orbitas KS para a avaliação de $T[\rho(r)]$ em uma base orbital, como observado em métodos tradicionais que utilizam da função de onda eletrônica

$$T_s[\rho(r)] = -\frac{1}{2} \sum_{i}^{N} \langle \psi_i | \nabla^2 | \psi_i \rangle.$$
(3.26)

Levando-se em conta a associação a um ponto estacionário da $E[\rho(r)]$, a equação de Euler-Lagrange (3.25), um novo conjunto de equações auto-consistentes conhecidas, as equações de Kohn-Sham, pode ser obtido a partir desta mesma equação, como

$$\left(-\frac{1}{2}\nabla^{2} + \nu(r) + \int \frac{\rho(r')}{|r-r'|} dr' + \nu_{xc}(r) - \varepsilon_{i}\right)\psi_{i}(r) = 0, \qquad (3.27)$$

$$\rho(r) = \sum_{i}^{N} \sum_{\sigma} |\psi(r,\sigma)|^2, \qquad (3.28)$$

$$\nu_{xc}(r) = \frac{\delta E_{xc}[\rho(r)]}{\delta \rho(r)}.$$
(3.29)

 $\mathbf{22}$

É possível distinguir formalmente as equações da aproximação Hartree-Fock pela inclusão do potencial de troca e correlação (E_{xc}) . Estas equações são resolvidas pelo cálculo de E_{xc} para cada ciclo auto-consistente. Entretanto, apesar deste formalismo parecer bastante simples, as equações KS serão somente exatas para o uso de termos exatos de troca e correlação. Sendo assim, a energia do estado fundamental é escrita como

$$E = \sum_{l}^{n} \varepsilon_{i} - \frac{1}{2} \int \frac{\rho(r)\rho(r')}{|r'-r|} dr dr' - \int \nu_{xc}(r)\rho(r)dr + E_{xc}[\rho(r)], \qquad (3.30)$$

onde $E_{xc}[\rho(r)]$ contém a parte não clássica da interação elétron-elétron e uma correção residual para a energia cinética. Apesar das auto-funções ψ_i e os auto-valores ε_i das equações KS não terem um significado físico bem definido, essas quantidades apresentam uma melhor qualidade quando comparadas àquelas obtidas nos cálculos HF, uma vez que elas contêm os efeitos de correlação eletrônica e são consistentes com a distribuição física de densidade eletrônica do sistema.

3.2 Aspectos Práticos Utilizados nos Cálculos das Propriedades Moleculares

Dentre os elementos requeridos para a previsão das hiperpolarizabilidades estão os conjuntos de base de funções atômicas adequados, o tratamento de correlação eletrônica e as suas dependências (dispersão) com a freqüência da radiação eletromagnética. Uma aproximação razoável, que permite obter uma boa estimativa para as hiperpolarizabilidades é o emprego de uma função de onda Hartree-Fock com um conjunto de bases atômicas com valência duplicada e a inclusão de funções difusas e de polarização. Com relação à inclusão de correlação dos movimentos dos elétrons, estudos apontam que as hiperpolarizabilidades de moléculas estendidas são relativamente menos dependentes à esses efeitos que em sistemas moleculares menores. Estudos mostraram que a contribuição de correlação e a extensão do conjunto de base são mais importantes para as menores hiperpolarizabilidades e para as menores componentes cartesianas. [17]. Portanto, cálculos envolvendo métodos correlacionados produzem melhores resultados para as propriedades ONL, apresentando menor dependência no conjunto de funções de base se comparados com os produzidos pelo método Hartree-Fock. Além disto, a aproximação HF falha em certos casos na reprodução do sinal para a primeira hiperpolarizabilidade longitudinal, ou seja, a componente ao longo do eixo de orientação primário da molécula. Entretanto, devido ao alto custo computacional requerido pelos métodos correlacionados, resolvemos optar por utilizar apenas o método HF [18], tanto para os cálculos para as otimizações de geometria, quanto para oscálculos das propriedades ONL. Para os cálculos das propriedades ONL foi utilizado o método de teoria de resposta [11]. Cálculos de funções de onda, otimizações de geometria e propriedades óticas não lineares das estruturas modeladas foram realizados com utilização do programa de cálculos de estrutura eletrônica molecular DALTON [19]. Também foram calculados através desse programa e por método HF: os momentos de dipolo (μ), as análises populacionais e as freqüências de vibração para cada uma das estruturas estudadas. O trabalho foi desenvolvido para campos estáticos da radiação eletromagnética, ou seja, para uma freqüência $\omega_{rad} = 0$. Na comparação direta dos resultados obtidos para as propriedades ONL das moléculas com correspondentes resultados experimentais, um primeiro cuidado deve ser tomado ao se fazer as devidas correções para as contribuições da dispersão, nos parâmetro ONL calculados.

Os cálculos foram realizados para grupo de simetria C_s , sendo todas as moléculas não centrossimétricas. As orientações de todas as moléculas foram padronizadas alinhando os planos das moléculas ao plano xy do sistema de coordenadas cartesianas, com uma das ligações B-O, no caso do ácido bórico, e da ligação B-C, para as demais moléculas, direcionada ao longo do eixo x. Estas orientações são ilustradas na FIG. 3.1. A molécula de ácido bórico é estabilizada para duas formas de geometria (uma centrossimétrica e outra não-centrossimétrica), contudo, os cálculos apresentados foram conduzidos apenas para a última geometria, por aproximar-se mais de uma estrutura de ácido borônico.

Nas etapas de otimização das geometrias de todas as moléculas foi utilizado o conjunto de bases atômicas do tipo $6-31G^{**}$ [20] para os átomos de boro, carbono, nitrogênio e oxigênio. Esta base de funções atômicas é formada pela contração do conjunto primitivo de 10 e 4 funções gaussianas cartesianas dos tipos s e p, respectivamente, para 3 e 2 orbitais também dos tipos s e p, acrescido de uma função difusa do tipo d com o expoente $\delta=0.8$. De forma compacta, temos o conjunto [10s4p1d/3s2p1d] de funções atômicas. Os átomos de hidrogênio

Figura 3.1: Orientação das moléculas de (a) Ácido Borônico e (b) Boro, Alumínio e Gálio-Catecol.

contribuem com um conjunto de funções contraídas do tipo [4s1p/2s1p], com o expoente da função de polarização $\alpha_p=1,1$. Para os demais átomos foram utilizados os conjuntos de funções atômicas 6-31G^{**} equivalentes, [16s10p1d/4s3p1d] para o alumínio e [22s16p5d/5s4p3d][17] para o átomo de gálio. Na etapa final dos cálculos, as propriedades elétricas lineares e não lineares, as polarizabilidades e hiperpolarizabilidades, foram determinadas utilizando as bases do tipo 6-31⁺⁺G^{**}, Ga:[23s17p5d/6s5p3d][17,18], Al:[17s11p1d/5s4p1d] e [11s5p1d/4s3p1d] para demais átomos pesados (B,C,N e O) e [5s1p/3s1p] para os átomos de hidrogênio. Estas bases possuem duas funções difusas, do tipo *s* para átomos de hidrogênio e, dos tipos *s* e *p* para os demais átomos.

Para os ácidos borônicos os cálculos foram também realizados utilizando uma base de funções atômicas distinta, desenvolvida especialmente para a geração de polarizabilidades e hiperpolarizabilidades *ab-initio* correlacionados de alta qualidade. Este conjunto de bases, desenvolvido por Sadlej, denominada Sadlej/Pol [21], contém um número maior de funções de polarização, necessárias para uma boa descrição da densidade eletrônica de uma molécula e os efeitos de distorções causados pela aplicação de uma campo elétrico externo. Porém, o emprego sistemático desses conjuntos de funções em moléculas de tamanho médio ocasiona um alto custo computacional, por isso, eles não foram utilizados nos cálculos das hiperpolarizabilidades dos catecóis. As comparações dos resultados obtidos para as polarizabilidades e hiperpolarizabilidades dos ácidos borônicos empregando os conjuntos de funções $6-31^{++}G^{**}$ e Sadlej/Pol são indicativos de que resultados equivalentes serão obtidos, com a vantagem do uso da base $6-31^{++}G^{**}$ demandar um menor custo computacional.

Capítulo 4

Propriedades Óticas Não Lineares de Ácidos Borônicos

4.1 Introdução

As propriedades de materiais óticos não lineares são de grande interesse tecnológico devido as suas aplicações nas telecomunicações, armazenamento de dados e processamento de informações. Materiais possuidores de excelentes valores destas propriedades são amplamente empregados em processos de duplicação da freqüência de luz laser, por exemplo, ou utilizados em dispositivos eletro-óticos [22]. Os estudos dos efeitos óticos não lineares (ONL) com freqüências próximas do visível iniciaram-se com a descoberta de P. A. Franken em 1961 ao detectar a geração de um segundo harmônico (SHG) a partir da incidência de luz laser de rubi em cristal de quartzo, logo após a descoberta do primeiro laser [2]. A geração de um segundo harmônico é um processo de segunda ordem para duplicação de freqüência de uma radiação eletromagnética, muito explorado na produção de luz coerente intensa com comprimentos de onda curtos [23]. Materiais boratos são substâncias com excelentes respostas óticas não lineares, sendo portanto, de grande interesse científico e aplicação tecnológica [24]. Boratos como o pentaborato de potássio tetrahidratado, $KB_5O_8.4H_2O$, o α -diborato de bário α -BaB₂O₄ e o hexaborato de césio e lítio, CsLiB₆O₁₀, encontram aplicações tecnológicas como materiais para a manipulação de luz por processos não lineares, sendo superiores a outros correntemente utilizados como, o niobato de lítio, LiNbO₃, e o bifosfato de potássio (KDP), KH₂PO₄, por possuírem, como exemplo, faixa de transparência no ultravioleta bastante ampla, estabilidade térmica e química, etc. [25, 26]. Entre outras características importantes apresentadas por estes materiais, incluem-se tempos de resposta ultra-rápidos, menores constantes dielétricas, melhores características de processabilidade, facilitando a fabricação de filmes finos, e aumento de respostas de ONL não-ressonante relativas.[17].

Em vista do exposto acima, realizamos anteriormente alguns cálculos para propriedades ONL para os fragmentos básicos que compôem os materiais boratos, os ânions do tipo $[B_n O_m^{-q}]$ [27]. Estes fragmentos são formados por diversas combinações das unidades plana $[BO_3]$ e tetragonal $[BO_4]$. Estes sistemas formam ligações facilmente polarizáveis, em parte favorecidas pela possibilidade de haver uma nuvem de densidade eletrônica deslocalizada ao longo do plano dos triângulos elementares do grupo $[BO_3]$, em parte pelo excesso de carga negativa sobre as estruturas dos tetraedros do grupo $[BO_4^-]$, e portanto, são ótimos candidatos para exibir propriedades óticas não lineares. Os resultados mostraram que os derivados boratos contendo fragmento [BO₄], combinado com um contraíon adequado, apresentam ser mais eficientes na construção de sólidos geradores de melhores valores de primeira hiperpolarizabilidade (β). Somente moléculas não centro-simétricas podem apresentar respostas de primeira ordem β . Por isso, combinações de unidades trigonais [BO₃] simétricas, tendem a apresentarem valores nulos ou muito próximos de zero, ao contrário das combinação de unidades tetragonais $[BO_4^-]$ não centrossimétricas [27].

Moléculas orgânicas que possuem sistemas conjugados de elétrons π nas unidades individuais ou de cadeias poliméricas, constituem outra classe de materiais onde são observados boas propriedades óticas não lineares. Os sistemas orgânicos possuem orbitais contendo elétrons π em grande extensão, e portanto, cada unidade pode ser uma fonte independente de respostas óticas não lineares, sendo cada vez maisutilizados nos estudos de materiais orgânicos com estas propriedades [28].

As respostas óticas não lineares desses materiais originam-se de excitações dos elétrons π de orbitais ocupados para orbitais virtuais de menor energia. A facilidade com que ocorrem estas excitações está diretamente relacionada com a capacidade do campo de luz em afetar o movimento desses elétrons deslocalizados [17]. Desta forma, quanto mais próximas estiverem as energias dos estados fundamental e ex-

citado, mais intensas serão as transferências de cargas para geração do momentos de dipolo induzidos, conduzindo a maiores hiperpolarizabilidades. O interesse tanto experimental quanto teórico desses materiais orgânicos, está ligado à alta correlação das cargas dos elétrons π em moléculas insaturadas, polares e não centrossimétricas, características importantes que devem estar presentes em materiais ONL de interesse neste estudo.

A combinação de bons grupos doadores e retiradores de elétrons unidos através de um intercalador orgânico como fenila ou grupos com facilidade de serem substituídos, formam sistemas capazes de gerar grandes primeiras hiperpolarizabilidades moleculares, devido ao crescimento do comprimento do sistema π conjugado. A presença de um bom intercalador insaturado atuando como caminho para a deslocalização dos elétrons é imprescindível na formação de materiais com maiores não linearidades óticas, podendo conduzir a ótimos valores para a primeira hiperpolarizabilidade e não apenas uma ótima combinação de um par doador-receptor (classe de moléculas D-A). Como exemplo, podemos citar as moléculas orgânicas contendo grupos fenila alguilados $[C_6H_5(CH=CH)_nCH_2]$, como o estilbeno $[C_6H_5CH=CHC_6H_5]$, substituídos por grupos doadores e retiradores de elétrons, como o grupo amino $(-NH_2)$ e nitro $(-NO_2)$, respectivamente, com as quais cálculos teóricos e resultados experimentais desses compostos têm apresentado grande interesse na ótica não linear. Uma outra classe de sistemas moleculares de interesse são os compostos zwitterions [29] que também apresentam excelentes propriedades ONL quando comparados aos seus análogos neutros formados por grupos doadores e receptores de elétrons. Como exemplo de moléculas do tipo D - A, capazes de gerar ótimas respostas ONL, podemos citar o p-amino-nitrobenzeno, o 4-amino-4'-nitrotolano e o 4-N,N-dimetil-amino-4'-nitroestilbeno [30].

Com o interesse em estudar protótipos de materiais boratos e seus derivados que produzissem ótimos resultados de respostas ONL e, utilizando conhecimentos necessários para construção desses materiais, seguindo o conceito de D-intercalador-A, modelamos sistemas moleculares tendo a base um ácido borônico e também esteres contendo os elementos boro, alumínio e gálio ligados aos dois átomos de oxigênio de um fragmento catecol, descritos no capítulo seguinte.

4.1.1 Ácidos Borônicos

Os ácidos borônicos formam uma classe de compostos organoboranos que possuem um grupo característico $-B(OH)_2$. São produtos da segunda oxidação de boranos, sendo a sua estabilidade por oxidação atmosférica superior ao do ácido borínico, produto da primeira oxidação do borano. Uma terceira oxidação produz o ácido bórico – boro ligado a três hidroxilas – um produto bastante estável . Em geral, organoboranos têm uma estrutura do tipo $RB(OH)_2$ com R sendo um grupo orgânico alquila ou arila. Os ácidos borônicos são solúveis em água, com uma constante de acidez dependente do grupo R. Sendo o átomo de boro pouco menos eletronegativo do que o átomo de carbono, estes compostos apresentam uma pequena polarização eletrônica ao longo da ligação B - C [30].

Os ácidos borônicos são muito utilizados em sínteses orgânicas como agente alquilante, devido ao seu grande potencial eletrofílico, evitando-se longos caminhos necessários através de outros processos [30]. Estes materiais possuem também atividades como sensores de substâncias do tipo de sacarídeos, sendo utilizados, portanto, na construção e modelagem molecular desses sensores devido a sua grande seletividade com estas espécies [31]. Nos últimos tempos, os ácidos borônicos passaram de um composto peculiar e bastante negligenciado para a primeira classe de intermediários sintéticos, e espera-se que a base terapêutica desses compostos tenha finalmente se concretizado com recente aprovação como agente anti-câncer [32], passando a ser uma importante classe de compostos na química e na medicina. Os ácidos borônicos são encontrados na maioria das vezes comercializados em fase condensada (sólidos).

Muitos ácidos borônicos podem ser manuseados no ar sem especial precaução enquanto sólidos cristalinos. À temperatura ambiente, os ácidos borônicos mostram-se quimicamente estáveis em prateleira por longos períodos de tempo. Como há evidências de sua aplicação em medicina [32], muitos ácidos borônicos não apresentam toxicidade comparado com outros compostos orgânicos. Devido a sua deficiência na valência, os ácidos borônicos apresentam um vacância em orbital p e esta característica lhes confere propriedade de fraco ácido orgânico de Lewis, que pode coordenar-se a moléculas básicas com pka de 8,8 em água.

Neste trabalho estaremos dando continuidade ao estudo anteriormente realizado [27] para propriedades ONL em sistemas inorgânicos boratos. Serão consideradas substituições de duas hidroxilas do ácido borônico por substituintes orgânicos R produzindo, assim, derivados organoboranos. O objetivo deste estudo é a investigação das intensidades das respostas ONL para esta classe de compostos.

Um dos interesses nesse estudo é investigar a influência do grupo orgânico fenila (C_6H_5) nessas propriedades, grupo este que aparece substituindo uma hidroxila (OH) na molécula do ácido bórico, HOB(OH)₂, um ácido inorgânico. Com isto, é esperado se verificar um aumento nos valores das polarizabilidades e hiperpolarizabilidades elétricas do ácido fenil borônico, em relação ao seu equivalente inorgânico, o ácido bórico, causado pelo aumento da deslocalização de densidade eletrônica ao longo do esqueleto molecular devido ao efeito de conjugação de elétrons π no domínio estendido, considerando a presença do grupo ácido $-B(OH)_2$. Seguindo este princípio, outros substituintes acíclicos foram inseridos, assim como substituintes doadores e receptores de elétrons, para formação do par doador-receptor que, em princípio, conduz a aumentos nos valores de polarizabilidade (α) e primeira hiperpolarizabilidade (β).

Através de uma análise qualitativa simples espera-se que o grupo $-B(OH)_2$ atue como um grupo retirador de elétrons devido a grande eletronegatividade dos átomos de oxigênio presentes. Portanto, a combinação de um grupo alquila ou arila (R-) doador ou que funcione como mediador da doação de elétrons ao grupo ácido borônico, deve proporcionar ao derivado $R - B(OH)_2$ excelentes valores de polarizabilidade e hiperpolarizabilidades. Os resultados computacionais destas investigações serão detalhados na seção 4.1.3.

4.1.2 Estruturas moleculares e Modos Harmônicos de Vibração

As estruturas das moléculas estudadas dos derivados do ácido borônico apresentam a fórmula geral RB(OH)₂ [ou RBAc] - por simplicidade de notação - onde R é uma das variantes dentre os grupos hidroxila (Hi), metila (Me), vinila (Vn), etinila (Et), *cis*-1,3-butadien-1-ila (cBu), *trans*-1,3-butadien-1-ila (tBu), ciclopentadienila (Cp), pirrolila (Pi), furanila (Fu) e fenila (Ph) - entre parênteses estão definidos os símbolos a serem utilizados no presente texto para as moléculas estudadas. As moléculas Cp, Pi e Fu foram investigadas para as substituições do grupo ácido $B(OH)_2$ nas posições α (1) e β (2) com relação aos grupos CH_2^{-1} , NH e O². Com o objetivo de criar estruturas moleculares com uma eficiência de polarização da densidade eletrônica incrementada, os ácidos borônicos contendo os grupos orgânicos Vn, tBu e Ph foram modificados com a inclusão de substituintes amino e nitro, nas extremidades opostas ao grupo $B(OH)_2$. Para o ácido fenil borônico, também um derivado *p*-metilado foi estudado. As vinte e uma moléculas resultantes são, portanto:

(I) ácido bórico (ou ortobórico) (B(OH)₃,HiBAc),

(II) ácido metil-borônico $(CH_3B(OH)_2, MeBAc),$

(III) ácido vinil-borônico (C₂H₃B(OH)₂, VnBAc),

(IV) ácido etinil-borônico $(C_2HB(OH)_2, EtBAc),$

 (\mathbf{V}) ácido (s-cis-1,3-butadienil)-trans-1-borônico $(C_4H_5B(OH)_2, cBuBAc),$

(VI) ácido (s-trans-1,3-butadienil)-trans-1-borônico $(C_4H_5B(OH)_2, tBuBAc),$

(VII) ácido α -ciclopentadienil-borônico (α -C₅H₅B(OH)₂, α CpBAc),

(**VIII**) ácido β -ciclopentadienil-borônico (β -C₅H₅B(OH)₂, β CpBAc),

(IX) ácido α -pirrolil-borônico (α -C₄H₄NB(OH)₂, α PiBAc),

(**X**) ácido β -pirrolil-borônico (β -C₄H₄NB(OH)₂, β PiBAc),

(XI) ácido α -furanil-borônico (α -C₄H₃OB(OH)₂, α FuBAc),

(XII) ácido β -furanil-borônico (β -C₄H₃OB(OH)₂, β FuBAc),

(XIII) ácido fenil-borônico $(C_6H_5B(OH)_2, PhBAc),$

 (\mathbf{XIV}) ácido 4-metilfenil-borônico $(p-\mathrm{CH}_3\mathrm{C}_6\mathrm{H}_4\mathrm{B}(\mathrm{OH})_2, p\mathrm{MePhBAc}),$

(XV) ácido trans-3-amino-vinil-borônico (H₂NC₂H₂B(OH)₂, tAmVnBAc),

(XVI) ácido *cis*-3-amino-vinil-borônico (H₂NC₂H₂B(OH)₂, *c*AmVnBAc),

(XVII) ácido cis-4-amino-(s-trans-1,3-butadienil)s-trans-1-borônico

 $(H_2NC_4H_4B(OH)_2, tAmBuBAc),$

 (\mathbf{XVIII}) ácido 4-amino-fenil-borônico $(\mathbf{H}_2 \mathbf{NC}_6 \mathbf{H}_4 \mathbf{B}(\mathbf{OH})_2, \mathbf{AmPhBAc}),$

(XIX) ácido trans-3-nitro-vinil-borônico $(O_2NC_2H_2B(OH)_2, NtVnBAc),$

 (\mathbf{XX}) ácido *cis*-4-nitro(*s*-trans-1,3-butadienil)trans-1-borônico, (O₂NC₄H₄B(OH)₂, NtBuBAc) e

(XXI) ácido 4-nitro-fenil-borônico (O₂NC₆H₄B(OH)₂, NtPhBAc).

Finalmente, foram também incluídos os resultados dos cálculos realizados para

¹Carbono sp^3 . presente no anel de cinco membros

²Heteroátomos N e O presentes nos grupos pirrol e furano.

a molécula da 4-nitroanilina ou *para*-nitroanilina, *p*-NO₂C₆H₄NH₂ (PNA), contendo como substituintes grupos nitro e amino. Esta é uma molécula de referência para resultados comparativos de hiperpolarizabilidades, experimentais e teóricos, dado os valores relativamente grandes de sua polarizabilidade e hiperpolarizabilidade elétricas. Estes bons resultados de parâmetros óticos linear e não lineares para a PNA, se deve à presença de um bom par de substituintes doador-retirador de elétrons intercalados pelo sistema de elétrons π do anel aromático. Um outro modelo protótipo de referência estudado e que gerou ótimos resultados de respostas ONL, é o *trans*-1-amino-4-nitro butadieno (ANB), um sistema orgânico de cadeia aberta contendo elétrons π conjugados.

As estruturas otimizadas $HF/6-31G^{**}$, isto é, otimizadas por meio do método Hartree-Fock para um conjunto de bases de funções atômicas $6-31G^{**}$, de todas moléculas dos ácidos borônicos e PNA estudadas são mostradas nas Figs. 4.1, 4.2 e 4.3. A estrutura apresentada para o ácido bórico corresponde a um mínimo local na superfície de energia potencial eletrônica. A estrutura mais estável é plana com átomo de boro no centro de dois triângulos equiláteros coplanares não alinhados, formados pelos átomos de oxigênio e hidrogênio, respectivamente, e uma forma trigonal pertencente ao grupo de simetria de pontos D_{3h} . A forma energeticamente menos estável foi escolhida com o propósito de melhor adequar as comparações entre estrutura e propriedades elétricas do ácido bórico com os derivados do ácido borônico. Os respectivos ângulos e distâncias de ligações obtidos para essas moléculas estão apresentados nas Tabs. 4.1 e 4.2.

Tabela 4.1: Distâncias, r, em ang
ström e ângulos de ligação, θ , em graus de cálculos HF/6-31G** para os ácidos borônicos não substituídos.

	Ι	II	III	IV	V	VI	VII	IX	XI	XIII
r(B-O)*	$1,\!36$	$1,\!36$	$1,\!36$	$1,\!35$	$1,\!36$	$1,\!36$	$1,\!36$	$1,\!36$	$1,\!36$	$1,\!36$
r(B-C)	-	1,58	1,56	$1,\!55$	$1,\!56$	1,56	1,55	1,55	1,56	1,57
$r(O-H)^*$	$0,\!94$	$0,\!94$	$0,\!94$	$0,\!94$	$0,\!94$	$0,\!94$	$0,\!94$	$0,\!94$	$0,\!94$	$0,\!94$
r(C=C)	-	-	$1,\!32$	-	$1,\!33^{*}$	$1,\!33^{*}$	$1,\!33^{*}$	$1,\!37^{*}$	$1,\!35^{*}$	$1,\!39^{*}$
r(C-C)	-	-	-	$1,\!19$	-	-	-	-	-	-
r(N-H)	-	-	-	-	-	-	-	$0,\!99$	-	-
r(C-N)	-	-	-	-	-	-	-	$1,\!36^{*}$	-	-
r(C-O)	-	-	-	-	-	-	-	-	$1,\!35^{*}$	-
$\theta(\text{O-B-O})$	124	122	123	123	123	123	123	124	124	123
$\theta(B-O-H)^*$	117	117	117	117	117	117	117	117	117	117
$\theta(\text{C-N-C})$	-	-	-	-	-	-	-	110	-	-
$\theta(C-O-C)$	-	-	-	-	-	-	-	-	108	-
θ (C-N-H)	-	-	-	-	-	-	-	126^{*}	-	-
$\theta(C-B-O)^*$	-	119	118	118	119	119	119	118	118	119

*Valores médios.

Figura 4.1: Estruturas otimizadas para as moléculas derivadas do ácidos borônicos (I) HiBAc, (II) MeBAc, (III) VnBAc, (IV) EtBAc, (V) cBuBAc, (VI) tBuBAc, (VII) α CpBAc, (VIII) β CpBAc, (IX) α PiBAc.

Figura 4.2: Estruturas otimizadas para as moléculas de ácidos borônicos (X) β PiBAc, (XI) α FuBAc, (XII) β FuBAc, (XIII) PhBAc, (XIV) MePhBAc, (XV) tAmVnBAc, (XVI) cAmVnBAc, (XVII) AmBuBAc.

Figura 4.3: Estruturas otimizadas para as moléculas derivadas do ácidos borônicos (XVIII) AmPhBAc, (XIX) NtVnBAc, (XX) NtBuBAc, (XXI) NtPhBAc e as moléculas de PNA e ANB.

,	-									
	XIV	XV	XVI	XVII	XVIII	XIX	XX	XXI	PNA	ANB
$r(B-O)^a$	$1,\!36$	$1,\!37$	$1,\!37$	$1,\!37$	$1,\!36$	$1,\!35$	$1,\!36$	$1,\!36$	_	_
r(B-C)	$1,\!57$	$1,\!54$	$1,\!54$	$1,\!55$	1,57	$1,\!58$	1,57	1,58	-	-
$r(O-H)^a$	$0,\!94$	$0,\!94$	$0,\!94$	$0,\!94$	$0,\!94$	$0,\!94$	$0,\!94$	$0,\!94$	-	-
m r(C=C)	$1,\!39^{a}$	$1,\!33$	$1,\!33$	$1,\!33^{a}$	$1,\!39^{a}$	$1,\!31$	$1,\!32^{a}$	$1,\!39^{a}$	$1,\!39^{a}$	$1,\!33^{a}$
$r(N-H)^a$	-	$0,\!99$	$0,\!99$	$0,\!99$	$0,\!99$	-	-	-	$0,\!99$	$0,\!99$
$r(N-O)^a$	-	-	-	-	-	$1,\!19$	$1,\!19$	$1,\!19$	$1,\!20$	$1,\!17$
$r(C-H)^b$	$1,\!09$	-	-	-	-	-	-	-	-	-
$r(N-C)^c$	-	$1,\!37$	$1,\!37$	$1,\!38$	$1,\!39$	-	-	-	$1,\!37$	$1,\!38$
$r(N-C)^d$	-	-	-	-	-	$1,46^{a}$	$1,\!44$	$1,\!46$	$1,\!44$	$1,\!55$
$r(C-C)^b$	$1,\!51$	-	-	-	-	-	_	-	-	-
$\theta(\text{O-B-O})$	123	122	122	122	122	125	124	124	-	-
$\theta(\text{B-O-H})^a$	118	116	116	116	117	118	117	117	-	-
$\theta(\text{H-N-H})^a$	_	114	90	116	122	-	-	-	114	112
$\theta(\text{O-N-O})^a$	-	-	-	-	-	180	125	124	124	127
$\theta(\text{H-C-H})^c$	108	-	-	-	-	-	-	-	-	-
θ (C-B-O) ^a	119	119	119	118	119	117	118	118	-	-

Tabela 4.2: Distâncias, r, em ang
ström e ângulos de ligação, θ , em graus de cálculos HF/6-31G^{**} para os ácidos borônicos substituídos.

^aValores médios, ^bcarbono do grupo metil, ^cnitrogênio do grupo amina, ^dnitrogênio do grupo nitro.

As diversas distâncias e ângulos de ligação obtidos tem os valores ordinários encontrados na literatura [33]. Em particular, as distâncias interatômicas médias calculadas para B - O = O - H são, respectivamente, 1,36 Å e 0,94 Å, e os ângulos de ligação B - O - H e O - B - O variam entre 116° e 118°, e entre 122° e 125°, respectivamente, para o conjunto de moléculas estudadas. Esses valores aproximam-se dos números típicos encontrados em sólidos de sistemas boratos contendo unidades trigonal plana BO_3 , de estruturas cristalinas [34]. As ligações B - C relatadas na literatura para organoboranos em geral são de 1,57 Å [30], que concorda muito bem com os nossos valores.

Dentre todas as os ácidos borônicos estudados apenas a estrutura do ácido *s-cis*-1,3-butadienilborônico não é plana. O fragmento 1,3-butadienila tem uma torção em torno da ligação C₂-C₃ de aproximadamente 35^o para minimizar a repulsão eletrostática entre os átomos de hidrogênio mais próximos ligados ao carbono C₁ e C₄. A literatura descreve que a síntese do 1,3-butadieno produz o isômero *s*-cis com, aproximadamente, apenas 2,5 % de rendimento no final da reação [35].

As estruturas de todas as moléculas estudas correspondem a uma geometria de equilíbrio. Isto é verificado pelos cálculos do conjunto das 3N-6 freqüências harmônicas de vibração, que resultam ser todas reais; isto é, a matriz (hessiano) contendo as derivadas segundas da energia eletrônica em função dos 3N deslocamentos cartesianos atômicos possui 3N-6 auto-valores positivos e 6 (correspondentes aos movimentos de translação e rotação rígida) iguais a zero. Os números de onda atribuídos aos modos vibracionais de maior interesse foram identificados para a classe de moléculas dos ácidos borônicos e encontram-se nas Tabs. 4.3, 4.4 e 4.5.

Dentre os números de onda típicos observadas para boratos inorgânicos e ácidos borônicos descritos na literatura [36] para os modos vibracionais na região do infravermelho, o estiramento B - O é encontrado no intervalo de $1400 - 1310 \text{ cm}^{-1}$, em boratos e ácidos borônicos, o estiramento O - H encontrado no intervalo de $3650 - 35801 \text{ cm}^{-1}$ e deformação angular no plano e fora do plano dos grupos O - H livres são vistas nos intervalos de $1290 - 1270 \text{ cm}^{-1}$ e $630 - 210 \text{ cm}^{-1}$, respectivamente.

Intensidades fracas são previstas para as transições vibracionais na região do IV correspondentes aos modos de estiramento B - C e deformação angular O - B - O no plano para todas as moléculas, exceto aquelas contendo os substituintes AmPh-

BAc (XVIII) e NtVnBAc (XIX). Um comportamento análogo foi observado para o modo de rotação interna entre o grupo $-B(OH)_2$ característico do ácido borônico e o grupo orgânico ligado a ele. A barreira de rotação para estes compostos devem ser relativamente altas ~ 10 - 15 kcalmol⁻¹. Essas transições uma baixa intensidade para toda as moléculas, exceto para o ácido bórico. Outro modo de vibração que apresenta uma baixa intensidade é o estiramento O - H/O - H em fase. Os demais modos normais de vibração coletados são previstos apresentarem, em geral, intensidades fortes ou médias.

4.1.3 Momento de Dipolo, Polarizabilidade e Hiperpolarizabilidade Elétrica

Os momentos de dipolo elétricos foram calculados utilizado o mesmo conjunto de bases de funções atômicas, 6-31G**, usados na otimização das geometrias das moléculas. Os resultados obtidos para esse parâmetro podem ser vistos na Tab. 4.6. Os resultados observados para os momentos de dipolo dos ácidos borônicos não contendo o grupo nitro variam em uma faixa de 1 u.a. entre o mínimo de 0,30 u.a. para o ácido cis-3-aminovinil-1-borônico, cAmVnBAc (XVI), e o máximo de 1,3 u.a. para o ácido α -pirrolborônico, α PiBAc (IX), e o ácido borônico. Esses números aumentam por um fator da ordem de três, se uma substituição pelo grupo nitro - um grupo retirador - for realizada. Isso significa que o grupo ácido, $B(OH)_2$, pode estar atuando como doador de elétron e, portanto, para as substituições nitro um par doador-retirador de elétron se forma levando a um substancial aumento do momento de dipolo. Note que os ácidos nitroborônicos apresentam um momento de dipolo maior do que a *para*-nitroanilina, a molécula de referência. Observa-se também, que quanto mais extensa for a cadeia da molécula, maior será a distorção da nuvem eletrônica, principalmente sobre os átomos mais eletronegativos como de oxigênio e nitrogênio. Finalmente, a componente do momento de dipolo perpendicular ao plano formado pelo grupo $B(OH)_2$, μ_z , é nula para a maioria dos derivados organoborônicos, visto que suas moléculas apresentam estrutura plana ou têm componentes simétricas fora do plano da molécula, exceto para os derivados amidínicos que possuem no átomo de nitrogênio um par de elétrons não ligantes em posições

			-	Modos	vibracio	nais			
	$\tilde{\nu}_1$	$\tilde{\nu}_2$	$\tilde{\nu}_3$	$\tilde{\nu}_4$	$\tilde{\nu}_5$	$\tilde{\nu}_6$	$\tilde{\nu}_7$	$\tilde{\nu}_8$	$\tilde{\nu}_9$
Ι	4248	4236	1576*	1514	1123^{*}	1003	490^{*}	729	543
II	4212	4205	1515	1475	1120*	1012	811	996	26
	-	1396	-	-	-	-	-	-	-
III	4221	4213	1839	1486	1450	1004	806	788	100
	-	1584	1379	-	-	-	-	-	-
	-	-	1129	-	-	-	-	-	-
	-	-	1095^{*}	-	-	-	-	-	-
IV	4217	4209	2375	1498	1107^{*}	1010	459	719	812
	-	1427	-	-	761	864	-	-	-
V	4221	4214	1846	1489	1468	1004	897	738	210
	-	-	1457	-	-	-	-	-	-
	-	-	1110	-	-	-	-	-	-
VI	4222	4214	1883	1485	1463	1005	565^{*}	648	172
	-	1810	1434	-	-	-	-	-	-
	-	-	1350	-	-	-	-	-	-
	-	-	1111	-	-		-	-	-
VII	4221	4214	1731	1513	1171	1005	624	700	65
	-	-	1490	1459	-	-	-	-	-
	-	-	1414	-	-	-	-	-	-
VIII	4220	4214	1747	1519	1479	1005	369	729	62
	-	-	1560	1464	1408	-	-	-	-
	-	-	-	-	1089	-	-	-	-
	_	_	_	_	624	_	_	-	-

Tabela 4.3: Número de onda, $\tilde{\nu}$, em cm⁻¹ e as atribuições dos modos vibracionais correspondentes característicos de ácidos borônicos.

 $\tilde{\nu}_1$ = Estiramento O-H/O-H em fase, $\tilde{\nu}_2$ = estiramento O-H/O-H fora de fase, $\tilde{\nu}_3$ = estiramento B-C e B-O simétrico, $\tilde{\nu}_4$ = estiramento B-O assimétrico, $\tilde{\nu}_5$ = estiramento B-C e deformação angular H-O-B fora de fase, $\tilde{\nu}_6$ = deformação angular H-O-B em fase, $\tilde{\nu}_7$ = estiramento B-C e deformação angular O-B-O no plano, $\tilde{\nu}_8$ = deformação angular O-B-C fora do plano (B tetraédrico) e $\tilde{\nu}_9$ = rotação do grupo orgânico. *Ocorrência apenas da deformação angular.

				Modos	vibracio	nais			
	$\tilde{\nu}_1$	$\tilde{\nu}_2$	$\tilde{\nu}_3$	$\tilde{\nu}_4$	$\tilde{\nu}_5$	$\tilde{\nu}_6$	$\tilde{\nu}_7$	$\tilde{\nu}_8$	$\tilde{\nu}_9$
IX	4224	4217	1756	1492	1091	1003	639	764	88
	-	-	1592	-	-	-	-	-	-
	-	-	1561	-	-	-	-	-	-
Х	4223	4216	1741	1452	1506	1007	374	659	77
	-	-	1666	-	1145	-	-	-	-
	-	-	1592	-	1095	-	-	-	-
	-	-	-	-	636	-	-	-	-
XI	4224	4217	1785	1492	1462	1004	373	653	71
	-	-	1655	-	1223*	998	-	-	-
	-	-	1551	-	1086*	-	-	-	-
XII	4222	4215	1768	1464	1496	1006	371	650	73
	-	-	1702	-	1304	-	-	-	-
	-	-	1702	-	1136	-	-	-	-
	-	-	1702	-	1097	-	-	-	-
	-	-	1702	-	634	-	-	-	-
XIII	4223	4216	1805	1598	1468	1001	586	707	60
	-	-	1662	1481	-	-	-	-	-
XIV	4223	4216	1816	1473	1470	1002	331	706	22
	-	-	1553	1445	1205	-	-	-	-
	-	-	-	-	1081^{*}	-	-	-	-
XV	4224	4217	1846	1450	1518	1007	398	699	115
	-	-	1781	-	1272	-	-	-	-
	-	-	-	-	1102	-	-	-	_

Tabela 4.4: Número de onda, $\tilde{\nu}$, cm⁻¹ e as atribuições dos modos vibracionais correspondentes característicos de ácidos borônicos.

 $\overline{\tilde{\nu}_{1}}$ = Estiramento O-H/O-H em fase, $\overline{\tilde{\nu}_{2}}$ = estiramento O-H/O-H fora de fase, $\tilde{\nu}_{3}$ = estiramento B-C e B-O simétrico, $\tilde{\nu}_{4}$ = estiramento B-O assimétrico, $\tilde{\nu}_{5}$ = estiramento B-C e deformação angular H-O-B fora de fase, $\tilde{\nu}_{6}$ = deformação angular H-O-B em fase, $\tilde{\nu}_{7}$ = estiramento B-C e deformação angular O-B-O no plano, $\tilde{\nu}_{8}$ = deformação angular O-B-C fora do plano (B tetraédrico) e $\tilde{\nu}_{9}$ = rotação do grupo orgânico. *Ocorrência apenas da deformação angular.

				Modos	vibracio	onais			
	$\tilde{\nu}_1$	$\tilde{\nu}_2$	$\tilde{\nu}_3$	$\tilde{\nu}_4$	$\tilde{\nu}_5$	$\tilde{\nu}_6$	$\tilde{\nu}_7$	$\tilde{\nu}_8$	$\tilde{\nu}_9$
XVI	4221	4213	1595	1451	1390	1009	694	744	91
	-	-	-		1100	-	-	-	-
XVII	4223	4216	1829	1467	1422	1006	539*	698	124
	-	-	1515		1111	-	-	-	-
XVIII	4224	4217	1797	1471	1473	1002	332	705	68
	-	-	-	1450	1078*	-	-	-	-
XIX	4218	4211	1895	1524	1454	1001	540	662	126
	-	-	909	-	1106	-			-
XX	4219	4212	1889	1511	1466	1003	551^{*}	685	390
	-	-	1850	1641	1383	1112	497^{*}	-	214
	-	-	1796	-	1095^{*}	-	-	-	105
XXI	4221	4214	1643	1554	1463	1000	637	695	64
	-	_	-	1489	1084*	487	-	-	-

Tabela 4.5: Número de onda, $\tilde{\nu}$, cm⁻¹ e as atribuições dos modos vibracionais correspondentes característicos de ácidos borônicos.

 $\tilde{\nu}_1$ = Estiramento O-H/O-H em fase, $\tilde{\nu}_2$ = estiramento O-H/O-H fora de fase, $\tilde{\nu}_3$ = estiramento B-C e B-O simétrico, $\tilde{\nu}_4$ = estiramento B-O assimétrico, $\tilde{\nu}_5$ = estiramento B-C e deformação angular H-O-B fora de fase, $\tilde{\nu}_6$ = deformação angular H-O-B em fase, $\tilde{\nu}_7$ = estiramento B-C e deformação angular O-B-O no plano, $\tilde{\nu}_8$ = deformação angular O-B-C fora do plano (B tetraédrico) e $\tilde{\nu}_9$ = rotação do grupo orgânico. *Ocorrência apenas da deformação angular. opostas aos dois átomos de hidrogênio ligados em arranjo piramidal.

Tabela 4.6: Momentos de dipolo para derivados de ácidos borônicos calculados para HF/6-31G^{**}. As componentes cartesianas μ_x , μ_y e μ_z dos momentos de dipolo, assim como o seu módulo μ são dados em unidades atômicas (u.a.).

	μ_x	μ_y	μ_z	μ^a			μ_x	μ_y	μ_z	μ^a
Ι	$1,\!10$	-0,59	$0,\!00$	$1,\!25$	-	II	$0,\!94$	$0,\!00$	$0,\!04$	$0,\!94$
III	$0,\!99$	$0,\!00$	$0,\!00$	$0,\!99$		IV	$0,\!91$	-0,07	$0,\!00$	$0,\!91$
V	$0,\!84$	-0,10	$0,\!00$	$0,\!85$		VI	$0,\!83$	-0,10	$0,\!00$	$0,\!84$
VII	$0,\!83$	$0,\!14$	$0,\!00$	$0,\!84$		VIII	$0,\!77$	$0,\!18$	$0,\!00$	$0,\!79$
IX	$1,\!06$	$0,\!65$	$0,\!00$	$1,\!24$		Х	$0,\!27$	$0,\!49$	$0,\!00$	$0,\!56$
XI	$0,\!78$	-0,25	$0,\!00$	0.82		XII	$1,\!08$	$-0,\!12$	$0,\!00$	$1,\!09$
XIII	$0,\!93$	$0,\!00$	$0,\!00$	$0,\!93$		XIV	$0,\!74$	$0,\!00$	$0,\!02$	$0,\!74$
XV	$0,\!14$	$-0,\!41$	-0,34	$0,\!55$		XVI	$0,\!64$	-0,73	0,28	$1,\!01$
XVII	-0,08	-0,59	-0,38	$0,\!71$		XVIII	$0,\!28$	$0,\!00$	-0,40	$0,\!49$
XIX	2,74	$0,\!28$	$0,\!00$	2,75		XX	$2,\!99$	-0,38	$0,\!00$	$_{3,01}$
XXI	$2,\!96$	$0,\!00$	0.00	2,96		PNA	-2,76	$0,\!00$	$0,\!37$	2,78

 $a_{\mu} = (\mu_x^2 + \mu_y^2 + \mu_z^2)^{1/2}$, 1 u.a. = 2,541766 Debye = 2,541766x10^{-18} esu. *Valores médios.

O conjunto de bases atômicas de aplicação geral e mais flexível, $6-31^{++}G^{**}$, e um conjunto especialmente desenvolvido para determinações *ab-initio* de propriedades elétricas, denominado Sadlej/Pol, foram empregados nos cálculos das polarizabilidades (α) e primeiras hiperpolarizabalidades (β) elétricas dos derivados do ácido borônico. Os resultados obtidos para a polarizabilidade estão apresentados nas Tabs. 4.7 e 4.8. As polarizabilidades elétricas mostram um comportamento uniforme para os grupos ligantes 1,3-butadienila, ciclopentadienila, pirrolila, furanila, fenila não substituídos ou seus amino ou nitro derivados. Utilizando a base de funções atômicas Sadlej/Pol, as polarizabilidades médias desse conjunto de moléculas variam entre 70 e 102 u.a. com destaque para os derivados do ácido fenil borônico, cujas polarizabilidades estão próximas de 100 u.a., superando o valor obtido dessa propriedade para o PNA, avaliadas nas mesmas condições de cálculo. É interessante notar a pequena diferença entre as polarizabilidades dos amino e nitro derivados, embora os últimos apresentem um valor maior para essa propriedade. Com relação à presença da cadeia lateral da ramificação dos grupos orgânicos, observa-se um aumento da polarizabilidade com o grau de insaturação desses grupos, como visto a seguir, $\alpha(\text{EtBAc, IV}) \approx \alpha(\text{VnBAc, III}) < \alpha(\text{BuBAc, V e VI}) \approx \alpha(\text{CpBAc, VII e}$ VIII) $\approx \alpha(\text{PiBAc, IX e X}) \approx \alpha(\text{FuBAc, XI e XII}) < \alpha(\text{PhBAc, XIII})$; a presença de um heteroátomo de nitrogênio ou oxigênio nos anéis de cinco membros torna o ácido borônico menos polarizável, comparado com seu análogo, a ciclopentadienila, e nesses, a presença do grupo $B(\text{OH})_2$ em posições α - ou β - não tem qualquer efeito diferencial. Para todos esses compostos, a polarizabilidade é função, principalmente, da presença de ligações duplas formando um sistema de elétrons π -conjugados que permitem uma melhor deslocalização da densidade eletrônica total.

Analisando individualmente as componente diagonais das polarizabilidades pode ser observado que, em geral, $\alpha_{xx} > \alpha_{yy} > \alpha_{zz}$ com $\alpha_{yy} \approx 0.7 \alpha_{xx}$ e $\alpha_{zz} \approx 0.5 \alpha_{xx}$. Devido à orientação cartesiana padronizada escolhida para o conjunto de moléculas o grupo $B(OH)_2$ disposto no plano xy com o eixo x alinhado ao longo da bissetriz do ângulo obtuso OBO -, esses resultados mostram uma elipse de polarização no plano xy com uma excentricidade comum e uma melhor resposta da densidade eletrônica em sofrer uma polarização paralela (ao longo do eixo x) do que uma polarização perpendicular (ao longo do eixo z), sob a influência de um campo elétrico estático aplicado. Também, observa-se que a polarização longitudinal (ao longo do eixo x, α_{xx}) predomina, mas não de forma marcante, sobre a polarização transversal (ao longo do eixo y, α_{yy}) que tem como maior contribuição as deformações da densidade eletrônica ao longo de orbitais π . Este é um resultado interessante, pois a polarização longitudinal envolve elétrons π relativamente mais móveis do que os elétrons π devido aos efeitos de conjugação de ligações insaturadas da cadeia de átomos de carbono, com a participação do orbital p_z não ocupado do átomo de boro e, eventualmente, os pares de elétrons não ligantes sobre os átomos de nitrogênio e oxigênio. Igualmente interessante, é que a razão das componentes da polarizabilidade longitudinal e transversal serem aproximadamente uma constante para todos as moléculas da série estudada, da estrutura mais curta - o ácido etinilborônico, EtBAc (IV) à mais extensa - o ácido [trans-4-nitro]1,3-butadienil-1-borônico, NtBuBAc (XX), ou o ácido p-nitrofenilborônico, NtPhBAc (XXI) -, excetuando-se o HiBAc (I) e o MeBAc (II).

		Sadle	j/Pol			6-31 ⁺⁺ G**					
	α_{xx}	α_{yy}	α_{zz}	$\langle \alpha \rangle^a$	•	α_{xx}	α_{yy}	α_{zz}	$\langle \alpha \rangle^a$		
Ι	27,34	$25,\!17$	$19,\!61$	$24,\!04$		24,54	22,19	$16,\!20$	$20,\!98$		
II	$37,\!09$	$32,\!94$	$27,\!85$	$32,\!63$		$33,\!43$	$30,\!48$	$24,\!66$	$29,\!52$		
III	$57,\!13$	$35,\!49$	$35,\!48$	42,70		54,58	29, 29	$23,\!59$	$35,\!82$		
IV	$52,\!68$	$48,\!89$	$33,\!49$	$45,\!02$		48, 19	46,73	$28,\!79$	$41,\!24$		
V	$95,\!94$	66, 51	50, 50	$70,\!98$		90,46	$63,\!66$	$45,\!89$	$66,\!67$		
VI	$97,\!48$	$81,\!61$	47,72	$75,\!60$		$90,\!81$	$79,\!94$	42,22	$70,\!99$		
VII	$92,\!16$	78,57	$51,\!69$	74, 14		$86,\!32$	76, 89	$47,\!79$	$70,\!33$		
VIII	$91,\!78$	$75,\!98$	$52,\!01$	73, 26		87,96	$72,\!84$	$48,\!18$	$69,\!66$		
IX	$93,\!63$	$73,\!14$	$48,\!80$	$71,\!86$		$86,\!96$	69, 14	$44,\!86$	$66,\!99$		
Х	$89,\!11$	$73,\!35$	$48,\!64$	70, 37		$81,\!97$	67, 41	$43,\!32$	$64,\!23$		
XI	$86,\!17$	66,71	$45,\!03$	$65,\!97$		$79,\!45$	$63,\!63$	$40,\!90$	$61,\!33$		
XII	80,43	$67,\!44$	$44,\!82$	64,23		$75,\!06$	63,27	$40,\!77$	59,70		
XIII	$107,\!53$	$91,\!32$	55,23	$84,\!69$		103, 16	$87,\!44$	$50,\!69$	80,43		
XIV	$131,\!26$	$99,\!48$	$63,\!66$	$98,\!13$		$123,\!88$	$95,\!91$	$59,\!26$	$93,\!02$		
XV	$70,\!54$	56, 12	39, 10	55,25		$64,\!45$	53, 11	$34,\!70$	$50,\!75$		
XVI	$61,\!11$	64,28	$39,\!43$	$54,\!94$		$56,\!37$	60, 31	$35,\!05$	$50,\!58$		
XVII	$119,\!96$	$91,\!59$	$52,\!84$	$88,\!13$		$111,\!41$	89,32	$47,\!38$	82,70		
XVIII	$130,\!62$	$95,\!97$	$60,\!06$	$95,\!55$		$123,\!61$	$91,\!89$	$55,\!32$	$90,\!27$		
XIX	$62,\!42$	59, 19	$23,\!00$	48,20		$67,\!37$	$66,\!06$	$32,\!99$	$55,\!47$		
XX	$128,\!27$	$99,\!95$	52, 18	$93,\!47$		119,46	$98,\!34$	$45,\!78$	87,86		
XXI	$137,\!41$	$107,\!99$	59, 59	$101,\!66$		$129,\!60$	$104,\!64$	$53,\!93$	$96,\!06$		
PNA	$130,\!56$	97,71	$53,\!69$	$93,\!99$		$123,\!46$	$93,\!16$	$48,\!90$	$88,\!51$		
ANB	-	_	_	-		112,51	94,39	40,83	82,58		

Tabela 4.7: Componentes diagonais das polarizabilidades, α_{ii} (i=x,y,z), e polarizabilidades médias, $\langle \alpha \rangle$, de ácidos borônicos calculados para HF/Sadlej/Pol e HF/6-31⁺⁺G^{**}. Todos os valores estão dados em unidades atômicas (u.a.).

 $\overline{a\langle \alpha \rangle} = \sum_{i} \frac{\alpha_{ii}}{3}, 1 \text{ u.a.} = 0.148176 \text{x} 10^{-24} \text{ esu} = 0.164867 \text{x} 10^{-40} \text{ C}^2 \text{m}^2 \text{J}^{-1}.$

dos os valores estão dados em unidades atômicas (u.a.).										
	Sa	adlej/P	ol	6-	31 ⁺⁺ G	**				
	α_{xy}	α_{xz}	α_{yz}	α_{xy}	α_{xz}	α_{yz}				
Ι	0,73	0,00	$0,\!00$	$0,\!79$	$0,\!00$	$0,\!00$				
II	$0,\!00$	-0,02	$0,\!05$	$0,\!00$	-0,14	$0,\!06$				
III	$0,\!00$	$0,\!00$	$0,\!00$	$0,\!00$	$0,\!00$	$0,\!00$				
IV	8,03	$0,\!00$	$0,\!00$	8,96	$0,\!00$	$0,\!00$				
V	$5,\!65$	-6,89	$2,\!86$	$5,\!52$	-7,05	3,45				
VI	$27,\!55$	$0,\!00$	$0,\!00$	$29,\!14$	$0,\!00$	$0,\!00$				
VII	2,78	$0,\!00$	$0,\!00$	$2,\!67$	$0,\!00$	$0,\!00$				
VIII	-5,29	$0,\!00$	$0,\!00$	-5,72	$0,\!00$	$0,\!00$				
IX	$-0,\!44$	$0,\!00$	$0,\!00$	$0,\!01$	$0,\!00$	$0,\!00$				
Х	-0,81	$0,\!00$	$0,\!00$	-1,28	$0,\!00$	$0,\!00$				
XI	$-0,\!63$	$0,\!00$	$0,\!00$	$0,\!42$	$0,\!00$	$0,\!00$				
XII	$0,\!03$	$0,\!00$	$0,\!00$	-1,27	$0,\!00$	$0,\!00$				
XIII	$0,\!00$	$0,\!00$	$0,\!00$	$0,\!00$	$0,\!00$	$0,\!00$				
XIV	-0,01	-0,29	$0,\!00$	$0,\!42$	$0,\!00$	$0,\!00$				
XV	$12,\!05$	-0,26	$-0,\!17$	$12,\!41$	-0,25	-0,20				
XVI	10,77	$0,\!33$	$0,\!85$	$11,\!64$	$0,\!34$	$0,\!85$				
XVII	$35,\!43$	-0,23	$-0,\!17$	$36,\!25$	-0,24	-0,17				
XVIII	$0,\!00$	$0,\!12$	-0,01	$0,\!00$	0,26	-0,01				
XIX	$11,\!53$	0,00	$0,\!00$	11,78	$0,\!00$	$0,\!00$				
XX	$34,\!60$	0,00	$0,\!00$	$35,\!44$	$0,\!00$	$0,\!00$				
XXI	$0,\!00$	0,00	$0,\!00$	$0,\!00$	$0,\!00$	$0,\!00$				
PNA	$0,\!00$	-0,23	-0,02	$0,\!01$	0,28	0,28				
ANB	-		-	40,21	-0,24	-0,21				

Tabela 4.8: Componentes fora da diagonal das polarizabilidades, α_{ij} $(i,j=x,y,z; i\neq j)$, de ácidos borônicos calculados para HF/Sadlej/Pol e HF/6-31⁺⁺G**. Todos os valores estão dados em unidades atômicas (u.a.).

 $1 \text{ u.a.} = 0.148176 \text{x} 10^{-24} \text{ esu} = 0.164867 \text{x} 10^{-40} \text{ C}^2 \text{m}^2 \text{J}^{-1}.$

A polarização perpendicular α_{zz} para a deformação linear da densidade eletrônica ao longo dos orbitais $p_z(\pi)$ é da ordem de metade da polarização longitudinal. Como conseqüência da estrutura geométrica das moléculas em foco e da escolha da orientação do sistema cartesiano de referência, as componentes diagonais do tensor de polarizabilidade, coincide ou quase coincide, com as suas componentes principais. Os números da Tab.4.8 atestam esses resultados.

As exceções óbvias ocorrem para as moléculas que perdem a simetria de rotação C_2 em torno do eixo x e são maiores para os derivados da trans-1,3-butadienila, tBuBAc (VI), AmBuBAc (XVII) e NtBuBAc (XX), cujas componentes α_{xy} do tensor de polarizabilidade chega a ser da ordem de 30 u.a.. A utilização da base de funções atômicas 6-31⁺⁺G^{**} mostra os mesmos comportamentos notados para os resultados obtidos com a base desenvolvida por Sadlej/Pol. Entretanto, existe uma redução uniforme nos valores das polarizabilidades para a base Sadlej/Pol em torno de 5% a 10%. Esta redução é causada pelo efeito de criar uma densidade eletrônica mais compacta, mais próxima dos núcleos atômicos, isto é, uma densidade eletrônica menos difusa característica da base 6-31⁺⁺G^{**} em relação à base Sadlej/Pol. Entretanto, tendo em vista a melhor performance em termos de tempo computacional oferecido pela base 6-31⁺⁺G^{**}, estes resultados mostram que estrategicamente pode-se optar em utilizar a base 6-31⁺⁺G^{**} para cálculos de boa qualidade de polarizabilidades eletrônicas de moléculas de grandes dimensões moleculares e, então, corrigir estes valores em torno de 5% a 10% para correção do efeito de base atômica para tê-los mais próximos dos valores experimentais ou mais acurados.

Os valores da primeira hiperpolarizabilidade β estão apresentados nas Tabs. 4.9, 4.10 e 4.11. A primeira hiperpolarizabilidade eletrônica é um tensor com 27 componentes. Devido às propriedades de simetria (válidas para o caso de freqüência zero) várias dessas componentes são iguais: $\beta_{ijk} = \beta_{ikj} = \beta_{kij} = \beta_{kji} = \beta_{jik} = \beta_{jki}$, (i, j, k = x, y, z). No que se segue, referências às componentes vetoriais β_x , β_y e β_z do tensor da primeira hiperpolarizabilidade estarão sendo feitas. Essas componentes vetoriais são definidas como $\beta_i = \beta_{ixx} + \beta_{iyy} + \beta_{izz}$ (i = x, y, z).

Analisando as componentes individuais de β para os ácidos borônicos ligados a grupos alquila verificamos serem estes muito maiores que os correspondentes β para ácidos borônicos ligados a grupos OH. A maioria das componentes β_{zxx} , β_{zyy} e β_{zzz} tiveram valores nulos. As moléculas que apresentaram as maiores componentes vetoriais de β_z foram MeBAc (II), *c*BuBAc (V), *p*MePhAc (XIV), *t*AmVnBAc (XV), *c*AmVnBAc (XVI), AmPhBAc (XVII), AmPhBAc (XVII), NtPhBAc (XXI) e PNA, coincidindo com alguns dos menores valores para as componentes β_{yxx} , β_{yyy} e β_{yzz} . Algumas dessas moléculas apresentaram valores muito próximos de zero para a componente vetorial β_y , como o MeBAc (II), o AmPhBAc (XVIII) e o PNA. Estas observações se referem a ambos os conjuntos bases de funções atômicas, Sadlej/Pol e 6-31⁺⁺G^{**}, utilizadas.

No geral, a maioria das componentes não nulas da primeira hiperpolarizabilidade mostram-se crescentes em valor absoluto, quando se passa a utilizar o conjunto de base 6-31⁺⁺G^{**} à base Sadlej/Pol. A componente longitudinal β_{xxx} cresce em relação a menor molécula para todos os modelos estudados em torno de 14% a 112%, sendo observado um maior aumento para o VnBAc (III) e o PNA, por apresentarem elétrons π -conjugados que facilitam a deslocalização de elétrons. Exceções como as moléculas VnBAc (III) e NtVnBAc (XIX), diminuíram o valor dessa componente de 5%e 77%, respectivamente, mudando a base para o cálculo da Sadlej/Pol para a 6-31⁺⁺G^{**}. A componente vetorial de β , β_x , apresentou uma menor variação para o sistema inorgânico NtBuBAc (XX), de 13%, e uma variação máxima de 20 vezes para o PhBAc (XIII). Em ambos os casos, houve um decréscimo do valor absoluto devido a mudança do conjunto de base Sadlej/Pol para 6-31⁺⁺G^{**}. Observamos variações de 4% a 277% para as componentes vetoriais $\beta_{u} \in \beta_{z}$, com decréscimos de seus valores. Quando mudamos a posição do grupo ácido borônico do carbono α para o carbono β , com relação ao heteroátomo - portanto, aumenta-se a distâncias entre o heteroátomo e átomo de boro - os valores da componente vetorial da primeira hiperpolarizabilidade β_x reduzem aproximadamente à metade, tanto para a base Sadlej/Pol como a $6-31^{++}G^{**}$.

Os maiores valores absolutos encontrados para primeira hiperpolarizabilidade foram das estruturas contendo os elétrons π conjugados, devido à possibilidades de um maior fluxo de cargas para a deslocalização de elétrons. Os outros sistemas mostram valores muito pequenos para a componente vetorial de β , responsáveis pelos efeitos óticos não lineares de segunda ordem, com a mudança do conjunto de base Sadlej para 6-31⁺⁺G^{**} ocorreu de forma oscilante para todas as moléculas, ou seja, para um mesmo parâmetro foi observado hora os valores com a base 6-31⁺⁺G^{**} maiores para determinadas estruturas, hora com a base Sadlej maiores para outras.

Tabela 4.9: Componentes tensoriais da primeira hiperpolarizabilidade, β_{xii} (i=x, y, z), e componentes vetoriais primeira hiperpolarizabilidade β_x de uma série de ácidos borônicos calculadas para HF/Sadlej/Pol e HF/6-31⁺⁺G^{**}. Todos os valores estão dados em unidades atômicas (u.a.).

	Sadlej/Pol					6-31 ⁺⁺ G**						
	β_{xxx}	β_{xyy}	β_{xzz}	$\beta_x{}^a$		β_{xxx}	β_{xyy}	β_{xzz}	$\beta_x{}^a$			
Ι	-33,58	$17,\!47$	$0,\!50$	$-15,\!61$		$-45,\!27$	$21,\!40$	$2,\!87$	-21,00			
II	-24,48	$27,\!80$	12,73	$16,\!05$		-47,83	$31,\!86$	$14,\!06$	-1,91			
III	-52,11	$48,\!26$	$21,\!90$	$18,\!05$		$-49,\!41$	$37,\!75$	-1,11	-12,77			
IV	-42,03	$33,\!90$	$25,\!27$	$17,\!14$		-88,89	$43,\!82$	$23,\!64$	-21,43			
V	$-123,\!50$	$51,\!05$	$23,\!36$	-49,09		-148,29	$60,\!15$	27,78	-20,12			
VI	$-140,\!47$	$38,\!49$	$37,\!03$	-64,95		$-203,\!81$	$59,\!65$	$46,\!33$	-97,83			
VII	$-171,\!94$	$65,\!15$	$42,\!87$	-63,92		-176,47	$76,\!09$	$55,\!14$	-45,24			
VIII	-83,25	$40,\!56$	$25,\!38$	-17,31		-96,84	$39,\!17$	$27,\!83$	-29,84			
IX	-213,88	$75,\!05$	$64,\!68$	-74,15		-280,90	$90,\!07$	88,72	-102,11			
Х	$-101,\!17$	$37,\!05$	$20,\!30$	$-43,\!82$		$-117,\!37$	$31,\!63$	$33,\!98$	-51,76			
XI	$-190,\!37$	$70,\!53$	$48,\!64$	-71,20		-250,48	$83,\!55$	66,73	-100,20			
XII	-90,01	$21,\!80$	10,71	-57,50		-107,74	$17,\!79$	$15,\!24$	-74,71			
XIII	-90,10	$58,\!33$	$34,\!01$	$2,\!24$		$-151,\!99$	$56,\!07$	$50,\!32$	$-45,\!60$			
XIV	$-202,\!46$	$70,\!41$	5,69	$-126,\!36$		-269,73	$84,\!80$	9,20	-175,73			
XV	$-225,\!50$	$44,\!19$	$-7,\!97$	-189,28		-306, 19	$57,\!46$	-16,77	-265,50			
XVI	-80,01	$50,\!69$	$25,\!58$	-3,74		-106,29	$63,\!46$	$21,\!55$	-21,28			
XVII	$-650,\!08$	-1,20	-13,77	$-665,\!05$		-781,40	$13,\!25$	-23,03	-791,18			
XVIII	$-475,\!59$	$96,\!81$	$4,\!18$	$-374,\!60$		-602,17	$123,\!92$	$1,\!69$	-476,56			
XIX	$-74,\!81$	-39,95	$-2,\!45$	$-117,\!21$		$-16,\!94$	-39,50	-16, 13	-72,57			
XX	$255,\!90$	-44,74	$-27,\!52$	$183,\!64$		$256,\!54$	-65,54	-30,89	$160,\!11$			
XXI	$53,\!93$	-62,54	$-21,\!91$	69.48		$81,\!95$	-56,21	-29,72	-3,98			
PNA	-834,73	$157,\!44$	$33,\!99$	-643.30		-950,70	$179,\!02$	$37,\!81$	-733,87			
ANB	-	-	-	-		-1242,66	$47,\!80$	26, 19	$-1168,\!67$			

 $\overline{{}^{a}\beta_{i}=\beta_{ixx}+\beta_{iyy}+\beta_{izz}}$, para $\beta_{vec}=\sum_{i}\frac{\mu_{i}.\beta_{i}}{|\vec{\mu}|}$. As componentes dos momentos de dipolo dos compostos de I–XXI são dados na Tab. 4.6. 1 u.a. = 0,863993x10⁻³² esu = 3,20662x10⁻⁵³ C³m³J⁻².

Esperamos que uma base como a Sadlej/Pol desenvolvida para cálculos de propriedades elétricas, seja apropriada para cálculos de parâmetros ONL, mas o seu custo computacional para estruturas mais complexas é alto, o que impossibilita obtermos resultados em tempo hábil. Comparando os tempos computacionais necessários para o cálculo dos parâmetros ONL para as duas bases utilizadas e para a maior molécula estudada, o PNA, vemos que conseguimos diminuir de 20 para 3 dias o tempo, utilizando o conjunto de bases atômicas $6-31^{++}G^{**}$ ao invés do conjunto Sadlej/Pol.

Também observamos, que a presença do grupo nitro (NO_2) nas estruturas de ácidos borônicos conduz a melhores resultados para polarizabilidades do que a presença dos grupos metila (CH_3) e amina (NH_2) . O contrário é visto para a primeira hiperpolarizabilidade. Como o grupo ácido borônico, $[B(OH)_2]$, demonstrou-se ser um retirador de elétrons, assim como o grupo NO_2 , seria esperado que não houvesse um fluxo de elétrons e, portanto, não haveria formação de um bom par doadorretirador de elétrons, para que ocorra transferência de cargas. Outra observação, é compararmos os resultados para a estrutura contendo grupo metila (CH_3) com a estrutura contendo grupo amina (NH_2) - sendo os dois grupos doadores. O NH_2 é um grupo doador de elétrons mais forte do que o grupo CH_3 , que apresentou melhores resultados para polarizabilidade e hiperpolarizabilidade, comparando estruturas orgânicas equivalentes.

Tabela 4.10: Componentes tensoriais da primeira hiperpolarizabilidade, β_{yii} (i=x,y,z), e componente vetorial da primeira hiperpolarizabilidade de uma série de ácidos borônicos calculadas para HF/Sadlej/Pol e HF/6-31⁺⁺G^{**}. Todos os valores estão dados em unidades atômicas (u.a.).

		Sadle	ej/Pol			6-31+	-+G**	
	β_{yxx}	β_{yyy}	β_{yzz}	$\beta_y{}^a$	β_{yxx}	β_{yyy}	β_{yzz}	$\beta_y{}^a$
Ι	$1,\!12$	$7,\!38$	-0,36	8,14	$2,\!13$	$10,\!60$	-1,29	$11,\!44$
II	$0,\! 0$	-0,26	$0,\!27$	0,02	$0,\!01$	-0,45	$0,\!47$	$0,\!03$
III	$0,\! 0$	0,0	0,0	$0,\!0$	0, 0	0,0	0,0	0,0
IV	-13,14	$15,\!98$	4,83	$7,\!67$	-3,93	$24,\!58$	$-1,\!92$	$18,\!73$
V	-25,72	$20,\!84$	$6,\!77$	$1,\!89$	-40,26	$45,\!83$	$13,\!04$	$18,\!61$
VI	-43,79	$39,\!99$	$13,\!25$	9,45	-32,14	$52,\!25$	$11,\!64$	$31,\!75$
VII	$0,\!06$	26,56	$7,\!22$	$33,\!84$	-2,98	$28,\!51$	$9,\!68$	$35,\!21$
VIII	$54,\!28$	$-44,\!67$	$14,\!36$	$23,\!97$	$57,\!49$	-39,88	$19,\!35$	$36,\!96$
IX	-2,46	$0,\!49$	$25,\!36$	$23,\!39$	$2,\!87$	$10,\!48$	$33,\!46$	46,81
Х	$51,\!46$	-27,97	$27,\!62$	$51,\!11$	$60,\!74$	$-49,\!38$	$38,\!07$	192,70
XI	$0,\!97$	15, 19	$20,\!63$	$36,\!79$	$9,\!94$	$12,\!29$	$25,\!26$	$47,\!49$
XII	$60,\!42$	-20,27	$24,\!68$	$64,\!83$	$59,\!67$	$-41,\!53$	$32,\!66$	$50,\!80$
XIII	$0,\! 0$	0,0	0,0	$0,\! 0$	0,0	0,0	0,0	0,0
XIV	$0,\!11$	$0,\!06$	-0,05	$0,\!12$	$0,\!01$	$0,\!09$	-0,06	-0,06
XV	-44,60	$15,\!64$	-11,82	-40,78	-55,08	$43,\!30$	-23,06	-34,84
XVI	$-24,\!87$	$-52,\!64$	-34,19	-111,70	-2,47	$-71,\!21$	$-57,\!63$	-131,31
XVII	-216,87	$29,\!97$	$-14,\!69$	-201,59	$-251,\!29$	$69,\!79$	$-27,\!14$	-208,64
XVIII	$0,\! 0$	$0,\! 0$	0,0	$0,\! 0$	0, 0	0,0	0,0	0,0
XIX	$-5,\!97$	$-38,\!37$	$0,\!08$	-44,26	1,79	-38,26	-4,66	$-41,\!13$
XX	$67,\!99$	$-74,\!45$	-12,72	-19,18	$65,\!54$	-80,95	$-15,\!09$	-30,50
XXI	$0,\! 0$	$0,\! 0$	0,0	$0,\! 0$	0, 0	0,0	0,0	0,0
PNA	$0,\!0$	-0,01	0,0	-0.01	-0,03	$0,\!12$	0,0	$0,\!09$
ANB	-	-	-	-	-413,42	186,32	1,52	-225,58

 $a_{\beta_i = \beta_{ixx} + \beta_{iyy} + \beta_{izz}}$, para $\beta_{vec} = \sum_i \frac{\mu_i \cdot \beta_i}{|\vec{\mu}|}$, 1 u.a. = 0,863993x10⁻³² esu = 3,20662x10⁻⁵³ C³m³J⁻².

Tabela 4.11: Componentes tensorial da primeira hiperpolarizabilidade, β_{zii} (*i=x,y,z*) e β_{xyz} , e componente vetorial da primeira hiperpolarizabilidade de uma série de ácidos borônicos calculadas para HF/Sadlej/Pol e HF/6-31⁺⁺G^{**}. Todos os valores estão dados em unidades atômicas (u.a.).

	Sadlej/Pol						6-31 ⁺⁺ G**						
_	β_{zxx}	β_{zyy}	β_{zzz}	$\beta_z{}^a$	β_{xyz}		β_{zxx}	β_{zyy}	β_{zzz}	β_z^a	β_{xyz}		
Ι	$0,\!0$	0,0	$0,\!0$	0, 0	0,0		0,0	0, 0	0,0	0,0	0,0		
II	$0,\!26$	8,15	-10,16	-1,75	0,16		-1,03	$14,\!24$	$-15,\!94$	-2,73	0, 19		
III	$0,\!0$	0,0	$0,\!0$	0,0	$0,\!0$		0,0	0, 0	0, 0	0,0	0,0		
IV	$0,\!0$	0,0	$0,\!0$	0,0	$0,\!0$		0,0	0, 0	0, 0	0,0	$0,\!0$		
V	12,78	$-4,\!97$	-4,07	3,74	-12,43		$12,\!15$	-4,86	$1,\!44$	8,73	-14,48		
VI	$0,\!01$	0,0	$0,\!0$	0,0	$0,\!0$		0,0	$0,\! 0$	$0,\! 0$	$0,\! 0$	0, 0		
VII	$0,\!0$	0,0	$0,\!0$	0,0	$0,\!0$		0,0	$0,\! 0$	$0,\! 0$	$0,\! 0$	0, 0		
VIII	$0,\!0$	0,0	$0,\!0$	0,0	$0,\!0$		0,0	$0,\! 0$	$0,\! 0$	$0,\! 0$	0, 0		
IX	$0,\!0$	0,0	$0,\!0$	0,0	$0,\!0$		0,0	$0,\! 0$	$0,\! 0$	$0,\! 0$	0, 0		
Х	$0,\! 0$	0,0	$0,\!0$	0,0	$0,\!0$		0,0	$0,\! 0$	$0,\! 0$	0,0	$0,\!0$		
XI	$0,\! 0$	0,0	$0,\!0$	0,0	$0,\!0$		0,0	$0,\! 0$	$0,\! 0$	0,0	$0,\!0$		
XII	$0,\! 0$	0,0	$0,\!0$	0,0	$0,\!0$		0,0	$0,\! 0$	$0,\! 0$	0,0	$0,\!0$		
XIII	$0,\!0$	0,0	$0,\!0$	0,0	$0,\!0$		0,0	0, 0	$0,\! 0$	0,0	$0,\!0$		
XIV	-1,18	$4,\!06$	-3,75	-0,82	$0,\!02$		-6,86	8,59	-5,72	-3,99	$0,\!02$		
XV	-0,07	$1,\!37$	6,14	4,46	-1,03		4,82	$1,\!30$	$15,\!86$	21,98	1,16		

 $a_{\beta_i=\beta_{ixx}+\beta_{iyy}+\beta_{izz}}$, para $\langle\beta\rangle_i=\beta_{vec}=\sum_i rac{\mu_i \cdot \beta_i}{|\vec{\mu}|}$, C³m³J⁻².

Tabela 4.12: (Continuação) Componentes tensorial da primeira hiperpolarizabilidade, β_{zii} (*i=x,y,z*) e β_{xyz} , e componente vetorial da primeira hiperpolarizabilidade de uma série de ácidos borônicos calculadas para HF/Sadlej/Pol e HF/6-31⁺⁺G^{**}. Todos os valores estão dados em unidades atômicas (u.a.).

		S	adlej/F	Pol			6-31 ⁺⁺ G**						
	β_{zxx}	β_{zyy}	β_{zzz}	$\beta_z{}^a$	β_{xyz}	_	β_{zxx}	β_{zyy}	β_{zzz}	$\beta_z{}^a$	β_{xyz}		
XVI	-0,96	2,12	-9,66	-8,50	-1,13		-1,26	$-3,\!14$	-17,96	-22,36	$-2,\!67$		
XVII	$6,\!65$	2,56	$3,\!71$	$12,\!92$	$2,\!32$		$14,\!57$	$5,\!05$	15,79	$35,\!41$	7,78		
XVIII	4,18	$5,\!55$	$3,\!88$	$_{3,61}$	-0,03		8,97	8,57	15,56	$33,\!10$	-0,03		
XIX	0,0	0,0	$0,\! 0$	0,0	$0,\! 0$		0,0	0,0	0,0	0,0	$0,\! 0$		
XX	0,0	0,0	$0,\! 0$	0,0	$0,\! 0$		0,0	0,0	0,0	0,0	$0,\! 0$		
XXI	0,0	0,0	$0,\! 0$	0,0	$0,\! 0$		0,0	0,0	0,0	0,0	$0,\!98$		
PNA	-3,80	-4,55	-4,12	$-12,\!42$	-0,06		4,51	-6,4	-13,57	$-15,\!47$	$0,\!88$		
ANB		-	-		-		$10,\!35$	$2,\!44$	10,51	$23,\!30$	4,89		
$a_{\beta_i=\beta_{ixx}}$	$\overline{\beta_i = \beta_{ixx} + \beta_{iyy} + \beta_{izz}}$, para $\langle \beta \rangle = \beta_{vec} = \sum_i \frac{\mu_i \cdot \beta_i}{ \mu }$, 1 u.a. = 0,863993x10 ⁻³² esu = 3,20662x10 ⁻⁵³												

54 4 $C^{3}m^{3}J^{-2}$

Analisando de forma geral todos as moléculas estudadas, observamos os maiores valores de β para os sistemas contendo grupos doadores de elétrons, o grupo NH₂, contendo intercaladores alifáticos. A molécula de PNA que contém um intercalador aromático é uma das exceções dentro dessa análise, devido a formação de um bom par doador e retirador de elétrons, possuindo o mais elevado valor de componente vetorial β_{xxx} dentre os modelos estudados. Outra exceção, seria o ANB onde o intercalador é uma butadienila - um intercalador alifático - com par doador-retirador ótimo, conduzindo a melhores valores que o encontrado para o PNA, devido à presença de conjugação em cadeia acíclica. Observa-se ainda dentro desses modelos alifáticos, que quanto maior o comprimento da conjugação maiores são os resultados para β . Da mesma maneira como para o ABN, observamos para o AmBuBAc (XVII), NtBuBAc (XX), AmVnBAc (XV e XVI), entre outros - onde estão presentes ligações duplas em cadeias abertas - os maiores valores da componente β_{xxx} do que PhBAc (XIII), uma molécula que contém um anel aromático com ressonância de três ligações duplas. Isto se deve, à presença de sistemas π mais compridos, pela presença de cadeias carbônicas abertas nas estruturas contendo grupos vinila e butadienila. Se compararmos as moléculas cBuBAc (V), α CpBAc (VII) e β CpBAc (VIII) observamos uma semelhança em suas estruturas, com presença de duas duplas ligações em cada uma delas. Contudo, o comprimento do sistemas π ligado ao grupo ácido borônico é maior nas duas primeiras estruturas. Na molécula β Cp o sistema π a presença de um átomo de oxigênio entre as duas duplas ligações diminui o comprimento de transferência de carga através da cadeia cíclica. Portanto, entre dois sistemas conjugados - um cíclico e outro acíclico - contendo o mesmo número de ligações duplas, observamos que a cadeia estendida (acíclica) conduz à melhores resultados de respostas ONL, apresentando uma maior deslocalização eletrônica.

A molécula de ANB foi incluída em nossos cálculos com a intenção de comparar seus resultados com teorico e experimentais, contudo, não foram encontrados resultados na literatura. Portanto, a molécula de ANB foi apenas utilizada para uma comparação com molécula análoga contendo intercalador trans-butadienila e a resultados teóricos e experimentais da molécula de PNA. Para α_{xx} obtivemos o valor de 112 u.a. para o ANB, não muito distante do valor encontrado para o PNA de 123 u.a., ambos cálculos HF com base $6 - 31^{++}G^{**}$. Comparando com resultado de cálculo teórico encontrados para a mesma componente vetorial com HF/DZV+2d
de 140 u.a. e com MP2/DZV+2d [38] de 158 u.a. para a molécula de PNA, não apresentam grandes variações dos nossos resultados. Com relação aos resultados para os dois métodos utilizados, as diferenças são de apenas 14% e 28%, e com relação ao resultado experimental [38], utilizando acetona como solvente, a diferença observada é de 20%, comparando-se os valores de $\langle \alpha \rangle$.

Portanto, o resultado obtido para a polarizabilidade não é alterado para moléculas de cadeia cíclica ou acíclica com mesmo número de duplas ligações.

Entretanto, analisando a primeira hiperpolarizabilidade observamos para β_{xxx} , valores de -1243 u.a. e -951 u.a, respectivamente, para as moléculas de ANB e de PNA com nossos cálculos HF/6-31⁺⁺G^{**}, uma diferença de 31%. Comparando nosso resultado para o PNA com resultados teóricos HF/DZV+2d e MP2/DZV+2d[24], respectivamente, de 668 u.a. e 1097 u.a., com variações, respectivamente, de 42% e 15%. Comparando com um resultado experimental [39], obtido para um comprimento de onda de 1,06 μ m, há uma grande diferença de 106%, analisando-se β_{vec} . Após serem feitas estas análises podemos confirmar os mais elevados valores de hiperpolarizabilidades para cadeias conjugadas acíclicas, com valores bastante afetados pelos efeitos solvente ou da freqüência com que será conduzido o experimento.

Ao compararmos as estruturas *cis* e *trans* do ácido 1,3-butadienil-1-borônico, verificamos que o isômero com maiores valores de α e β é o *trans*, considerando o resultado obtido para os dois conjuntos de base utilizados, $6 - 31^{++}G^{**}$ e Sadlej/Pol. Pode-se notar que a forma isomérica *cis* não se apresenta plana como ocorre para a forma *trans*, diminuindo assim a magnitude das componentes tanto de α como de β ao longo do eixo de orientação da molécula - em nosso estudos o eixo trabalho principal de orientação das moléculas foi o eixo x. Em vista disso, há um aumento das componentes fora dos eixos de orientação da molécula, que em nossos cálculos são observados para as componentes α_{xz} , α_{yz} , β_{zxx} , β_{zyy} , β_{zzz} e β_{xyz} . Desta forma, estudos com isômeros *cis* são pouco observados na obtenção de materiais que contêm propriedades ONL.

Nos cálculos das respostas ONL para o VnBAc (III) contendo um grupo doador de elétrons, NH₂, nas posições *trans* e *cis*, estruturas *t*AmVn (XV) e *c*AmVn (XVI), respectivamente, observa-se que a substituição em *trans*, ou seja, com substituinte mais distante ao grupo ácido borônico [B(OH)₂], apresenta maiores valores de β do que a substituição em *cis*, onde o substituinte se aproxima do grupo B(OH)₂. Na forma *cis*, há a possibilidade de formação de uma ligação de hidrogênio, podendo ser confirmada pelo comprimento da ligação entre hidrogênio do grupo NH₂ com oxigênio do grupo B(OH)₂, de 2,19 Å. A formação desta ligação pela torção do grupo amino com relação ao plano da molécula podem estar interferindo nos resultados do isômero *c*AmVnBAc (XVI), com grande diminuição da componente β_{xxx} , resultando na diminuição da componente vetorial β_x e do valor médio $\langle \beta \rangle$. Podemos, então, esperar que isômeros *cis* sejam capazes de formar ligações de hidrogênio, não sendo, portanto, bons protótipos para materiais possuidores de boas características ONL.

Nos modelos contendo grupos retiradores de elétrons nitro (NO_2) , a possibilidade de haver uma competição com o grupo também retirador de elétrons $B(OH)_2$ - devido à existência de uma vacância no atomo de Boro -, poderá interferir na transferência de carga no sistema. Portanto, sistemas contendo grupos ácidos borônicos, não poderiam formar bons materiais ONL na presença de grupos nitro, pela geração de baixos valores desses parâmetros óticos. Espera-se que outros modelos contendo grupo ácido borônico formando pares doador-retirador de elétrons, com grupos fortemente doadores, como os grupos -SR (R sendo um grupo alifático) e $-OMe (-OCH_3)$, possam gerar melhores valores de primeira hiperpolarizabilidades do que na presença de outro grupo retirador de elétrons.

4.1.4 Análise Populacional

As análises populacionais são utilizadas como auxiliares na compreensão dos valores de polarizabilidades e hiperpolarizabilidades possibilitando uma mais completa análise dos resultados. A análise de Cioslowski [40] foi realizada através de método HF. Nesse procedimento as cargas atômicas são obtidas pela derivada primeira do vetor momento de dipolo elétrico determinado de forma *ab-initio* com relação às coordenadas cartesianas dos vários centros atômicos que definem uma molécula. As cargas parciais de alguns grupos e átomos das moléculas dos ácidos borônicos estudadas encontram-se nas Tabs. 4.13 e 4.14.

A força com que o grupo doa elétrons, caracteriza-o como forte ou fraco doador de elétrons, dependendo da magnitude de suas cargas parciais. Portanto, quando observamos os resultados de β para o sistema contendo o grupo metila ligado a B(OH)₂, MeBAc (II), podemos considerá-lo como um fraco doador de elétrons, passando, então, a atuar como um retirador de elétrons, por possuir cargas de baixa magnitude. Os baixos valores de hiperpolarizabilidades apresentados por esta molécula podem ser explicados pela possível competitividade existente entre os dois retiradores de elétrons presentes no sistema. Os maiores valores observados para as propriedades ONL dentre as moléculas de ácido borônico ligadas somente a grupos orgânicos, são observados para as moléculas contendo grupos com maiores carga totais, como a molécula α FuBAc (XI), com carga de -0,39 e o menor valor de β é observado para a molécula que contém o grupo metila, com carga de -0,22.

Os grupos doadores de elétrons ligados a intercaladores orgânicos apresentaram em sua maioria, altos valores absolutos de população de carga e as moléculas com maiores cargas parciais tendem a conduzir a elevados valores de β devido a maior contribuição na deslocalização de cargas do sistema. Como exemplo, temos o substituinte NH₂, doador de elétrons, nas moléculas de AmBuBAc (XVII) e PNA, respectivamente, com cargas -0,52 e -0,43, onde apenas o átomo de nitrogênio nesses grupos possui carga de -0,95 e -1,65, na mesma ordem. As hiperpolarizabilidades (β_x) para essas moléculas foram de -791 u.a. e -734 u.a., valores estes elevados se comparados com de outras moléculas estudadas.

Os substituintes retiradores de elétrons, com os grupos $NO_2 \in B(OH)_2$, possuem as menores cargas parciais, em valores absolutos, para a maioria das moléculas. Entretanto, os átomos de nitrogênio e boro, presentes nestes grupos, apresentam altos valores de cargas, com magnitudes dependentes da característica do grupo, se fraco, intermediário ou forte grupo retirador de elétrons. Como exemplo, temos o grupo NO_2 , um retirador de elétrons da molécula de PNA, com carga de -0,11 e seu nitrogênio com carga de -0,89, também com menor valor absoluto que o grupo a que pertence. Os dois grupos considerados como retiradores de elétrons, o NO₂ e o B(OH)₂, apresentaram em uma mesma molécula valores absolutos baixos. Porém, o menos retirador de elétrons, o grupo ácido borônico, apresentou valores mais baixos do que o grupo nitro. Entretanto, os átomos pertencentes a esses grupos, respectivamente, N e B, apresentaram-se com a mesma magnitude. Finalmente, quanto maior o sistema π -conjugado (intercalador) ligado a fortes grupos doadores de elétrons maior sua carga e quanto menor o sistema π -conjugado ligado a fortes grupos retiradores de elétrons menor se torna a carga nesse intercalador. O grupo metil esperado ser um fraco retirador de elétrons, apresentou carga de 0.02, com

Tabela 4.13: Análise populacional de Cioslowski para moléculas neutras contendo o grupo ácido borônico (catiônico) e grupo orgânico alifático ou aromático.

	Ânion a	C b ou H b	B c	N d ou O d
Ι	-0,54	-0,88	$1,\!66$	-
II	-0,22	-0,20	$1,\!37$	-
III	-0,45	-0,46	$1,\!66$	-
IV	-0,29	-0,39	$1,\!46$	-
V	-0,34	-0,53	1,57	-
VI	-0,35	-0,55	1,59	-
VII	-0,34	-0,51	1,56	-
VIII	-0,30	-0,39	1,51	-
IX	-0,38	-0,38	$1,\!61$	-0,34
Х	-0,33	-0,50	$1,\!54$	-0,52
XI	-0,39	-0,22	$1,\!60$	-0,48
XII	-0,33	$-0,\!44$	1,52	-0,62
XIII	-0,32	-0,38	1,52	-

^{*a*} Grupo aniônico, ^{*b*} átomo do grupo aniônico ligado ao átomo de boro, ^{*c*} átomo de boro, ^{*d*} heteroátomo. 1 u.a. = 0.863993×10^{-32} esu = 3.20662×10^{-53} C³m³J⁻².

átomo de C com carga 0,15.

Analisando a carga dos átomos de carbono da cadeia dos grupos vinila e butadienila, observa-se que à medida em que o átomo se afasta de um forte grupo doador ou retirador de elétrons, à distância de um ou mais átomos de carbono, o valor absoluto dessas cargas é diminuído. Isto demonstra que os átomos da cadeia carbônica contribuem como uma ponte na transferência de elétrons. As cargas esperadas para o grupo catiônico $B(OH)_2$, isolado, era de +1, e as cargas observadas para esse grupo são menores do que *um* para todas as moléculas, confirmando assim, a tendência de retirador de elétrons deste grupo. Igualmente, podemos pensar para os grupos NO_2 , NH_2 , CH_3 , onde esperávamos que todos apresentassem carga -1, para os grupos isolados. A carga negativa sobre os dois grupos hidroxila ligados ao átomo de boro, nos permite considerar esse grupo como sendo um doador de elétrons do sistema, porém, o fluxo de elétrons é bloqueado pelo átomo de boro, pertencente a um grupo retirador de elétrons do sistema.

	B(OH) ₂ $^{a}/\mathrm{NH}_{2}$ a	Int. ^b	$\mathrm{CH}_3~^c/\mathrm{NH}_2~^c/\mathrm{NO}_2$	B $^d/{ m N}$ d	C $^e/{\rm N}$ e
XIV	$0,\!33$	-0,20	$0,\!02$	1,56	$0,\!15$
XV	$0,\!32$	$0,\!10$	-0,42	$1,\!54$	-0,85
XVI	-0,29	$0,\!04$	-0,33	$1,\!49$	-0,82
XVII	0,36	0,16	-0,52	$1,\!64$	-0,95
XVIII	$0,\!34$	$0,\!68$	-0,40	1,59	-0,82
XIX	-0,32	0,56	-0,25	1,52	$1,\!40$
XX	$0,\!38$	-0,21	-0,16	$1,\!63$	1,58
XXI	$0,\!35$	-0,16	-0,18	1,56	1,51
PNA	-0,43	0,54	-0,11	$1,\!65$	-0,89

Tabela 4.14: Análise de população de Cioslowski para moléculas neutras contendo grupo ácido borônico e grupo intercalador orgânico ligado a um grupo substituinte e para molécula de PNA.

^{*a*} Grupo $B(OH)_2$ (grupo NH_2 para PNA), ^{*b*} grupo intercalador, ^{*c*} grupo substituinte ligado ao intercalador (NO_2 para PNA), ^{*d*} átomo de boro (átomo de nitrogênio do NH_2 para PNA), ^{*e*} átomo do grupo substituinte ligado ao intercalador (átomo de nitrogênio do NO_2 para PNA).

Capítulo 5

Propriedades Óticas Não Lineares de Boro-, Alumínio- e Gálio-Catecol

5.1 Boro-, Alumínio- e Gálio-Catecol

Outro grupo de organoboranos de interesse para aplicação em ONL são os borocatecóis com fórmula molecular genérica XBO₂C₆H₄. O substituinte X representa um grupo orgânico como um alcano, alceno, alcino - cíclicos ou não - ou anéis aromáticos. O mais simples boro-catecol que pode ser formado é o catecol borano HBCat (Cat= $O_2C_6H_4$) com um átomo de hidrogênio ligado diretamente ao átomo de boro. Os catecóis boranos são formados a partir da reação de álcoois com boranos formando dialcoxiboranos, [R₂O₂BH] que após reação com alcenos e alcinos conduzem aos seus derivados, ver Fig. 5.1. Os dialcoxiboranos apresentam grande acidez de Lewis devido a presença de orbital p vazio que pode se sobrepor aos orbitais dos átomos adjacentes, como por exemplo hidrogênio, oxigênio ou halogênios, formando unidades neutras BX₃ [30].

A presença deste orbital vazio faz com que o átomo de boro participe da conjugação dos elétrons para o aparecimento de uma maior separação de carga, na deslocalização dos elétrons. Isso auxilia no surgimento de propriedades óticas não lineares em tais materiais catecóis. Elementos pertencentes à mesma família do Boro, Alumínio e Gálio, apresentam mais orbitais vazios formando ligações do tipo $p_{\pi}-p_{\pi}$ e, portanto, possibilitando a presença de uma maior separação de carga e distorção da nuvem eletrônica. Assim, além dos boro-catecóis, foram investigados também os valores das polarizabilidades e hiperpolarizabilidades de análogos alumínio e gálio catecóis.

Para se aumentar a possibilidade de um boro-catecol (alumínio-catecol ou gáliocatecol) apresentar melhores propriedades ONL deve-se procurar, como discutido acima, prolongar a conjugação do sistema de elétrons π por adição de grupos alifáticos - dando preferência às cadeias abertas e estendidas -, além de procurar formar estruturas apresentando um par de grupos doador e retirador de elétrons, posicionados estrategicamente na molécula investigada. Com este objetivo, foram adicionados adequadamente grupos orgânicos, ligados a um forte doador ou retirador de elétrons, aos grupo catecol (O₂C₆H₄) [33].

Figura 5.1: Reação de formação dos catecóis boranos a partir de alcoxiboranos.

Foram construídos, portanto, os modelos de sistemas π -conjugados de compostos de catecol, onde o grupo orgânico trans-butadienila (CH₂=CHCH=CH) está ligado ao átomo de boro completando sua trivalência ligando-se ao catecol (O₂C₆H₄). Estes grupos atuam como intercaladores para os eficientes grupos doadores e retiradores de elétrons, representados, respectivamente, neste estudo por uma amina ligada ao grupo trans-butadienila e o nitro dispostos em posição orto e para no anel aromático do grupo catecol. Este modelo permite, naturalmente, analisar também a capacidade de retirar elétrons do grupo catecol, para que uma comparação direta possa ser feita com o poder de indução de polarização de elétrons das hidroxilas $-(OH)_2$ de um ácido borônico e, portanto, se fazer uma avaliação comparativa das propriedades ONL destas duas classes de derivados organoboranos. Os resultados computacionais destas investigações serão detalhados na seção 5.1.2.

5.1.1 Estruturas Moleculares e Modos de Vibração Harmônicos

No capítulo anterior um conjunto de moléculas da família dos ácidos borônicos foi estudado com o interesse de se determinar os parâmetros de resposta elétrica da ótica linear (polarizabilidade) e não linear (primeira hiperpolarizabilidade) de seus membros. Comum a todas as moléculas do conjunto é a presença do grupo funcional B(OH)₂ ligado a um radical alquila ou arila contendo um sistemas de elétrons π conjugados. Através das análises das polarizabilidades e primeiras hiperpolarizabilidades eletrônicas dessa classe de compostos pode-se concluir que o grupo $-B(OH)_2$ presente nos ácidos borônicos é um grupo retirador de elétrons como é o grupo nitro, NO₂. Uma alternativa para se estender o alcance da conjugação eletrônica e o caráter retirador de elétrons do fragmento boronato $-BO_2$ com um conseqüente aumento nos valores dos parâmetros elétricos (polarizabilidades e hiperpolarizabilidades), é a substituição dos hidrogênios ácidos em $B(OH)_2$ por grupos adequados contendo elétrons π conjugados. A escolha de derivados 1,2-biradicais do benzeno é especialmente interessante, considerando a estabilidade do composto resultante, um alquil ou aril (R) 1,2-dihidroxibenzeno borano ou, por simplicidade, um catecol borano de alquila ou arila, R-BO₂C₆H₄, e as possibilidades de síntese de novos derivados desse precursor por substituições simples ou múltiplas nas posições 3, 4, 5 e 6 remanescentes no anel aromático. Por exemplo, a introdução de um grupo doador (NH_2) ou retirador (NO_2) em posições 3 ou 4 no benzeno pode induzir um aumento considerável nos valores das polarizabilidades e/ou hiperpopolarizabilidades desses compostos com relação aos análogos não substituídos. Com este objetivo, cálculos *ab-inito* foram realizados para a determinação das polarizabilidades e primeiras hiperpolarizabilidades elétricas dos catecóis boranos:

(I) 1,2-dihidroxibenzeno-borano (catecol borano, CBH),

(**IV**) trans-4-amino-(s-trans-1,3-butadienila)-1,2-dihidroxibenzeno-borano (amino-butadienila catecol borano, CBA),

(VII) *trans*-4-amino-(*s*-*trans*-1,3-butadienila)-3-nitro-1,2-dihidroxibenzeno-borano (amino-butadienila-*orto*-nitro-catecol borano, *o*-NCB),

(X) trans-4-amino-(s-trans-1,3-butadienila)-4-nitro-1,2-dihidroxibenzeno-borano

(amino-butadienila-meta-nitro-catecol borano, m-NCB).

O grupo nitro foi escolhido tendo como perspectiva aumentar a capacidade retiradora de elétrons do grupo catecol borano formado.

Os amino butadieno nitro catecóis boranos, NCB, podem ser vistos como moléculas contendo um par de grupos doador de elétrons, o grupo amino, e retirador de elétrons, o grupo nitro, separados por intercaladores contendo sistemas de elétrons π conjugados, butadieno e 1,2-dihidroxibenzeno (catecol), que, por sua vez, são separados por um centro com vacância eletrônica do tipo p, o átomo de boro. Esse átomo central possui um orbital p_{π} não ocupado que (1) tem uma boa interação com os orbitais dos sistemas π dos grupos butadienila e fenila e (2) corresponde ao orbital LUMO da molécula relativamente localizada sobre e nas proximidades do átomo de boro. A presença desse orbital LUMO mais próximo em energia do orbital HOMO (formado por um orbital π do butadienila) que orbitais virtuais, contendo contribuições dos orbitais anti-ligantes π^* sobre os grupos butadienila e fenila, é esperado propiciar um aumento nos valores das polarizabilidades e primeiras hiperpolarizabilidades elétricas moleculares desses compostos, devido uma redução efetiva na diferença das energias dos orbitais de fronteira HOMO \rightarrow LUMO. Adicionalmente, uma variação razoável nos momentos de dipolos elétricos permanentes correspondentes ao estado eletrônico fundamental e o primeiro estado eletrônico excitado tendo em vista que o caráter da transição eletrônica HOMO \rightarrow LUMO deve conter uma grande contribuição de uma transição do tipo de transferência de carga $\pi(\mathrm{Bu}) \rightarrow p_{\pi}(\mathrm{B}).$

Para melhor explorar a vacância eletrônica do orbital p_{π} do átomo de boro, moléculas análogas contendo elementos alumínio e gálio da família IIIA da tabela periódica foram também investigadas. Esses elementos formam compostos metálicos, diferente do boro, significando que uma diferença de energia HOMO \rightarrow LUMO menor pode ser esperada para os compostos alumínio- e gálio-catecóis análogos aos boro-catecóis acima listados. Assim, cálculos de polarizabilidades e primeiras hiperpolarizabilidades foram também conduzidos para os compostos:

(II) 1,2-dihidroxibenzeno-aluminano (catecol aluminano, CAH),

(III) 1,2-dihidroxibenzeno-galiato (catecol galiato, CGH),

 (\mathbf{V}) trans-4-amino-(s-trans-1,3-butadienila)-1,2-dihidroxibenzeno-aluminano (amino-butadienila-catecol aluminano, CAA),

(VI) trans-4-amino-(s-trans-1,3-butadienila)-1,2-dihidroxibenzeno-galiano (amino-butadienila-catecol galiano, CGA),

(VIII) trans-4-amino-(s-trans-1,3-butadienila)-3-nitro-1,2-dihidroxibenzenoaluminano (amino-butadienila-orto-nitro-catecol aluminano, oNCA),

 (\mathbf{IX}) trans-4-amino-(s-trans-1,3-butadienila)-3-nitro-1,2-dihidroxibenzeno-galiano (amino-butadienila-orto-nitro-catecol galiano, oNCG)

(XI) trans-4-amino-(s-trans-1,3-butadienila)-4-nitro-1,2-dihidroxibenzeno-

aluminano (amino-butadienila-meta-nitroca- tecolaluminano, mNCA),

(XII) trans-4-amino-(s-trans-1,3-butadienila)-4-nitro-1,2-dihidroxibenzeno-galiano (amino-butadienila- meta-nitro-catecol galiano, mNCG).

Os modelos contendo grupos catecóis estudados podem ser representados pela fórmula geral ZXCatY, onde Cat representa o grupo catecol, $O_2C_6H_4$ (ver Fig. 5.2), X o átomo Boro (B), Alumínio (Al) ou Gálio (Ga); Y o átomo H ou o grupo nitro (NO₂); e Z o átomo de H ou o grupo amino-butadienila (H₂NCH=CHCH=CH). Os átomos ligados aos oxigênios do grupo catecol são todos da família IIIA da tabela periódica, sendo compostos trivalentes. Os átomos de B, Al e Ga possuem, respectivamente, orbitais de valência 2p, $3p \in 4p$.

Figura 5.2: Esquema das estruturas de catecóis estudados; para X = B, Al ou Ga, Y = Hou NO₂ e Z = H ou H₂NCH=CHCH=CH.

Em um procedimento análogo ao utilizado nos estudos teóricos dos ácidos borônicos, capítulo anterior, as estruturas de todas as moléculas foram obtidas após os processos de otimização da geometria com o emprego de uma base de funções atômicas com a qualidade $6 - 31G^{**}$. Os resultados finais para alguns ângulos e distâncias de ligações selecionados são apresentadas nas Tabs. 5.1 e 5.2. Nas Figs. 5.3 e 5.4 estão ilustradas as estruturas moleculares otimizadas.

Na literatura [33] encontramos boratos como $ClBO_2C_6H_2O_2BCl$ apresentam dis-

Figura 5.3: Estruturas otimizadas para as moléculas de catecol borano, catecol aluminano e catecol galiano estudadas: (I) CBH, (II) CAH, (III) CGH, (IV) CBA, (V) CAA, (VI) CGA, (VII) *o*NCB, (VIII) *o*NCA e (IX) *o*NCG.

Figura 5.4: Estruturas otimizadas para as moléculas de catecol borano, catecol aluminano e catecol estudadas: (X) mNCB, (XI) mNCA e (XII) mNCG.

Tabela 5.1: Parâmetros estruturais de distância de ligação, r, em angström e ângulo entre ligações, θ , em graus calculados para HF/6-31**G⁺⁺ para os boro-, alumínio- e gálio-catecóis, sem a presença do grupo NO₂.

	CBH	CAH	CGH	CBA	CAA	CGA
r(X-O)	$1,\!37$	1,72	$1,\!80$	$1,\!38^{*}$	$1,73^{*}$	$1,\!81^{*}$
r(H-X)	$1,\!18$	$1,\!55$	1,53	-	-	-
r(X-C)	-	-	-	$1,\!54$	$1,\!90$	$1,\!91$
$r(N-H)^*$	-	-	-	$1,\!00^{*}$	$0,\!994^{*}$	$0,\!99^{*}$
r(N-C)	-	-	-	$1,\!37$	$1,\!37$	$1,\!37$
$\theta(\text{O-X-O})$	111	96	93	110	96	92
$\theta(\text{X-O-C})^*$	106	107	107	106	107	107
$\theta(C-X-O)^*$	-	-	-	-	133	134

* Valor médio.

tâncias de ligações experimentais B - O de 1,377 Å e ângulos O - B - O de 113,4° calculados por difração de raios-x. Da mesma forma, encontramos aluminanos como o Al $(OAr)_3$ com distância ligação Al-O em torno de 1,65 Å, e galianos do tipo

Tabela 5.2: Parâmetros estruturais de distância de ligação, r, em angström e ângulo entre ligações, θ , em graus calculados para HF/6-31**G⁺⁺ para os boro-, alumínio- e gálio-catecóis, com grupos NO₂ nas posições 3 e 4 do grupo fenila.

	o-NCB	o-NCA	o-NCG	<i>m</i> -NCB	<i>m</i> -NCA	<i>m</i> -NCG
$r(X-O)^a$	$1,\!39$	1,74	1,81	$1,\!39$	1,74	$1,\!82$
r(X-C)	1,53	$1,\!90$	$1,\!90$	1,53	$1,\!90$	$1,\!90$
$r(N-H)^a$	$0,\!99$	$0,\!99$	$0,\!99$	$0,\!99$	$0,\!99$	$0,\!99$
$r(N-C)^b$	$1,\!37$	$1,\!37$	$1,\!36$	$1,\!37$	$1,\!36$	$1,\!36$
$r(N-O)^a$	1,19	1, 19	1, 19	1, 19	$1,\!20$	$1,\!20$
$r(N-C)^c$	$1,\!45$	$1,\!45$	$1,\!45$	$1,\!45$	$1,\!45$	$1,\!45$
$\theta(\text{O-X-O})$	109	94	109	109	94	91
$\theta(\text{X-O-C})^a$	107	108	91	106	108	108
$\theta(\text{H-N-H})$	114	114	115	114	115	115
θ (H-N-C) ^a	117	118	118	117	118	118
$\theta(\text{O-N-O})$	125	125	124	124	124	124
$\theta(\text{O-N-C})^a$	118	117	118	118	118	118

^a Valor médio, ^b nitrogênio do grupo amino, ^c nitrogênio do grupo nitro.

			Mod	los vib	raciona	is		
	$\tilde{\nu}_1$	$\tilde{\nu}_2$		$\tilde{\nu}_{A}$	$\tilde{\nu}_5$	$\tilde{\nu}_{6}$	$\tilde{\nu}_{7}$	$\tilde{\nu}_{8}$
CBH	2864	2864	1651	1651	_	_	_	_
0.211	1239	1651	1447	1447	_	_	_	_
	_	1447	1325	1325	_	_	_	_
	_	_	_	1239	_	_	_	_
	_	_	_	1239	_	_	_	_
CAH	2137	2137	1646	1646	_	_	_	_
	1646	164	1420	1420	_	_	_	_
	_	1420	916	916	_	-	_	_
CGH	880	1647	1647	1647	_	_	_	_
	_	1418	1418	880	_	_	_	_
	_	_	880	_	_	_	_	_
CBA	1413	1868	1868	1868	1823	594	1823	594
	1392	1516	1823	1654	1823	594	1823	594
	-	1457	1457	1516	1823	594	1823	594
	-	1413	1392	1457	-	-	-	-
	-	-	1289	1413	-	-	-	-
CAA	945	1860	1856	1648	1757	556	1757	556
	411	1361	1648	1426	-	411	-	_
	_	945	1426	1301	_	_	_	-
	-	411	1361	-	-	-	-	-
	-	-	1301	-	-	-	-	-
CGA	877	1856	1856	1856	1801	539	1801	539
	397	1362	1801	1648	1761	397	1761	-
	-	877	1648	1423	1297	-	-	-
	-	397	1423	1297	-	-	-	-
	-	-	1362	-	-	-	-	-
	_	-	1297	-	_	_	_	-

Tabela 5.3: Número de onda, $\tilde{\nu}$, em cm⁻¹ e modos vibracionais de grupos característicos dos boro-, alumínio- e gáliocatecóis.

 $\overline{\tilde{\nu}_1 = \text{Estiramento X-O}, \tilde{\nu}_2 = \text{estiramento X-C ou X-H}, \tilde{\nu}_3 = \text{estiramento O-C}, \tilde{\nu}_4 = \text{deformação angular O-X-O}, \tilde{\nu}_5 = \text{deformação angular C-X-O no plano}, \tilde{\nu}_6 = \text{deformação angular C-X-O fora do plano}, \tilde{\nu}_7 = \text{deformação angular X-O-C no plano e } \tilde{\nu}_8 = \text{deformação angular X-O-C}$ fora do plano.

			Mod	dos vib	raciona	is		
	$\tilde{\nu}_1$	$\tilde{\nu}_2$	$\tilde{\nu}_3$	$\tilde{ u}_4$	$\tilde{\nu}_5$	$\tilde{\nu}_6$	$\tilde{\nu}_7$	$\tilde{\nu}_8$
oNCB	1872	1862	1872	1862	1813	561	1872	561
	1862	1813	1862	1636	-	-	1813	_
	1644	1789	1789	-	-	-	1789	-
	1517	1644	1636	-	-	-	1644	_
	1459	1626	1626	-	-	-	1245	-
	1411	1517	1297	-	-	-	-	-
	1297	1459	-	-	-	-	-	-
	1245	1411	-	-	-	-	-	-
	1216	-	-	-	-	-	-	-
oNCA	945	1854	1860	1646	1860	539	1799	539
	-	1362	1854	1629	-	-	1629	4-2
	-	1235	1799	1624	-	-	1362	-
	-	945	1753	1289	-	-	1289	-
	-	-	1646	1235	-	-	404	-
	-	-	1629	-	-	-	-	-
	-	-	1624	-	-	-	-	-
	-	-	1362	-	-	-	-	-
	-	-	1289	-	-	-	-	-
	-	-	1235	-	-	-	-	-
$o \mathrm{NCG}$	810	1851	1857	16-6	1857	526	1799	526
	-	1364	1851	1627	-	-	1629	-
	-	1237	1799	1237	-	-	1364	-
	-	810	1757	379	-	-	1289	-
	-	-	1646	-	-	-	-	-
	-	-	1627	-	-	-	1237	-
	-	-	1364	-	-	-	-	-
	-		1289	_	-	_	-	-

Tabela 5.4: Número de onda, $\tilde{\nu}$, em cm⁻¹ e modos vibracionais de grupos característicos dos boro-, alumínio- e gáliocatecóis

 $\label{eq:viewer} \overline{\tilde{\nu}_1 = \text{Estiramento X-O}, \ \tilde{\nu}_2 = \text{estiramento X-C ou X-H}, \ \tilde{\nu}_3 = \text{estiramento}} \\ \text{O-C}, \ \tilde{\nu}_4 = \text{deformação angular O-X-O}, \ \tilde{\nu}_5 = \text{deformação angular C-X-O} \text{ for a do plano}, \ \tilde{\nu}_6 = \text{deformação angular C-X-O for a do plano}, \ \tilde{\nu}_7 = \text{deformação angular X-O-C no plano e } \\ \tilde{\nu}_8 = \text{deformação angular X-O-C} \text{ for a do plano}.$

			Mode	os vibra	acionais	3		
	$\tilde{\nu}_1$	$\tilde{\nu}_2$	$\tilde{\nu}_3$	$\tilde{\nu}_4$	$\tilde{\nu}_5$	$\tilde{\nu}_6$	$\tilde{\nu}_7$	$\tilde{\nu}_8$
mNCB	1518	1863	1816	_	_	-	1863	-
	1459	1816	1797	-	-	-		-
	1413	1797	1789	-	-	-		-
	1385	1789	1629	-	-	-		-
	-	1518	1470	-	-	-		-
	-	1459	1413	-	-	-		-
	-	1413	1385	-	-	-		-
	-	1385	1297	-	-	-		-
mNCA	942	1854	1854	1854	-	-	1853	-
	-	1853	1799	1853	-	-	1752	-
	-	1752	1621	1621	-	-	-	-
	-	1362	1446	535	-	-	-	-
	-	942	1437	-	-	-	-	-
	-	-	1362	-	-	-	-	-
	-	-	1299	-	-	-	-	-
mNCG	896	1851	1851	1851	1799	-	1851	-
	796	1756	1799	1444	1799	-	1756	-
	-	1435	1619	8960	1799	-	-	-
	-	1365	1444	524	-	-	-	-
	-	896	1365	-	-	-	-	-
	-	796	1303	-	-	-	-	-
	-	-	896	-	-	-	-	-

Tabela 5.5: Número de onda, $\tilde{\nu}$, em cm⁻¹ e modos vibracionais de grupos característicos dos boro-, alumínio- e gáliocatecóis.

 $\tilde{\nu}_1$ = Estiramento X-O, $\tilde{\nu}_2$ = estiramento X-C ou X-H, $\tilde{\nu}_3$ = estiramento O-C, $\tilde{\nu}_4$ = deformação angular O-X-O, $\tilde{\nu}_5$ = deformação angular C-X-O no plano, $\tilde{\nu}_6$ = deformação angular C-X-O fora do plano, $\tilde{\nu}_7$ = deformação angular X-O-C no plano e $\tilde{\nu}_8$ = deformação angular X-O-C fora do plano.

 β – Ga₂O₃ com distâncias de ligação Ga – O da ordem de 1,83 Å. Os parâmetros geométricos encontrados em nossos cálculos apresentam-se próximos dos valores observados na literatura, onde observa-se o aumento da distância X-O à medida que se torna maior o raio atômico de X (B, Al ou Ga).

Nos cálculos de freqüências vibracionais (representadas pelos números de onda) para todos as moléculas foram encontrados o número correto de freqüências vibracionais existentes. Os números de onda atribuídos aos grupos catecóis encontram-se praticamente na região do infra-vermelho (IV) distante, na faixa de 1600 cm⁻¹ ate 300 cm^{-1} , começando no IV médio em 1800 cm⁻¹, sendo que apenas números de onda de intensidades maiores de 126 km/mol (1 km/mol = 974,864 u.a.) foram identificadas. Os números de onda e os correspondentes modos vibracionais foram obtidos através de cálculos teóricos utilizando o programa DALTON e encontram-se nas Tabs. de 5.3 a 5.5.

O modo de vibração de estiramento O - C é previsto ser o mais intenso para todas a moléculas contendo catecol, com números de onda entre 1872 e 880 cm⁻¹, concordando em parte com resultados colhidos na literatura de 1200 – 100 cm⁻¹. Alguns dos números de onda foram observadas acima de 1200 cm⁻¹ até 1872 cm⁻¹. Os demais modos de vibração identificados foram de estiramento X – O e X – C, respectivamente, com números de onda de 2864 – 397 cm⁻¹, 2864 – 796 cm⁻¹, e deformação angular no plano O - X - O, C - X - O e X – O - C e fora do plano C - X - O e X – O - C, respectivamente, de 1868 – 379 cm⁻¹, 1860 – 1297 cm⁻¹, 1872 – 404 cm⁻¹, 594 – 397 cm⁻¹ e 594 – 402 cm⁻¹. Este último modo para X – O - C não foi identificado para boro-, alumínio- e gálio-catecóis não substituídos, assim como o modo H – X – O.

5.1.2 Momentos de Dipolo, Polarizabilidade e Primeira Hiperpolarizabilidade Elétrica

Um dos primeiros estudos teóricos conduzidos por Oudar e Chemla [41] através de cálculos Equivalent Internal Field Model (EIF) para a molécula de nitroanilina (NA), revelam que a variação dos grupo amino (NH₂) e nitro (NO₂) nas posições *orto, meta* e *para* do anel aromático, influenciará significativamente nos resultados das respostas ONL calculadas, como as hiperpolarizabilidades. Portanto, estudamos as estruturas isoméricas com o grupo retirador NO₂ nas posições 3 e 4 do anel benzênico. Por simplicidade, a substituição na posição 3 será referida como uma substituição *orto* e na posição 4 referida como uma substituição *para*. A posição *para* apresenta os melhores resultados tanto para momento de dipolo (μ) como para as hiperpolarizabilidades ($\beta \in \gamma$), em seguida vêm as posições *meta* e *orto*, nesta ordem, com valores bem menores aos encontrados para a posição anterior. A presença do grupo butadienila gera uma maior extensão na conjugação π favorecendo a possibilidade de uma maior deformação da nuvem eletrônica. Com o mesmo propósito, incluímos grupos fortes doadores e retiradores de elétrons, respectivamente, NH₂ e NO₂, conduzindo a uma maior transferência de cargas para esta deformação eletrônica. As Tabs. 5.6, 5.7 e 5.8 contêm todos os parâmetros ONL calculados através do método HF e conjunto de base $6 - 31^{++}G^{**}$ para os modelos catecóis idealizados para o estudo.

Tabela 5.6: Componentes da polarizabilidade, $\alpha_{ii} \in \alpha_{ij}$ (i,j=x,y,z; $i \neq j$), e polarizabilidade média para as estruturas contendo grupos boro-, alumínio- e gálio-catecol, em unidades atômicas (u.a.), calculados para HF/6-31⁺⁺G^{**}.

	$lpha_{xx}$	$lpha_{yy}$	α_{zz}	$\langle \alpha \rangle$	α_{xy}	α_{xz}	α_{yz}
CBH	100, 15	$81,\!54$	$46,\!27$	$75,\!99$	0, 0	0,0	$_{0,0}$
CAH	$114,\!47$	$87,\!64$	$53,\!42$	$85,\!17$	$0,\!03$	0,0	0,0
CGH	$120,\!53$	88,44	$54,\!06$	87,68	0,0	0,0	0,0
CBA	$215,\!15$	$149,\!49$	$78,\!39$	$147,\!67$	$44,\!32$	-0,21	$-0,\!15$
CAA	$223,\!62$	$155,\!97$	$85,\!62$	$155,\!07$	42,77	-0,59	-0,43
CGA	$236,\!06$	$156,\!49$	85,70	159,42	$44,\!08$	-0,57	-0,39
o-NCB	$239,\!08$	$174,\!51$	82,04	165, 21	48,78	-0,09	-0,09
o-NCA	243,79	$179,\!31$	92,36	$171,\!82$	$47,\!47$	-6,53	$0,\!48$
o-NCG	$245,\!29$	$165,\!93$	$63,\!61$	158,28	47,71	-6,52	$0,\!91$
<i>m</i> -NCB	$244,\!64$	$167,\!93$	$81,\!52$	164,70	$51,\!53$	-0,26	-0,18
<i>m</i> -NCA	$256,\!08$	$173,\!74$	88,46	172,76	$50,\!83$	-0,66	$-0,\!41$
<i>m</i> -NCG	269,14	175,00	88,55	177,56	52,74	-0,60	-0,39

 $\overline{a \langle \alpha \rangle} = \sum_{i} \frac{\alpha_{ii}}{3}, 1 \text{ u.a.} = 0.148176 \text{ x } 10^{-24} \text{ esu} = 0.164867 \text{ x } 10^{-40} \text{ C}^2 \text{m}^2 \text{J}^{-1}.$

Tabela 5.7: Componentes da primeira hiperpolarizabilidade, $\beta_{xii} \in \beta_{yii}$ (i=x,y,z), e primeiras hiperpolarizabilidades destas componentes vetoriais, para as estruturas contendo grupos boro-, alumínio- e gálio-catecol, em unidades atômicas (u.a.), calculados para HF/6-31⁺⁺G^{**}.

	β_{xxx}	β_{xyy}	β_{xzz}	$\beta_x{}^a$	β_{yxx}	eta_{yyy}	β_{yzz}	$\beta_y{}^b$
CBH	-70,49	-44,77	-92,37	$-207,\!63$	$0,\! 0$	$0,\! 0$	0,0	0,0
CAH	$93,\!80$	$-63,\!85$	$-81,\!63$	$-51,\!68$	3,30	0,50	$0,\!06$	$3,\!86$
CGH	$250,\!22$	-61,05	-86,85	$102,\!32$	0,0	$0,\! 0$	0,0	0,0
CBA	$-1376,\!67$	-69,10	-142,56	$-1588,\!33$	-338,87	$45,\!42$	$-35,\!50$	$-328,\!95$
CAA	$-1517,\!82$	-137,77	$-205,\!99$	$-1861,\!58$	-442,86	$16,\!62$	-62,77	-489,01
CGA	-1409,75	-130,30	-186,89	$-1726,\!94$	$-435,\!06$	24,51	$-52,\!66$	$-463,\!21$
o-NCB	-1722,97	-101,27	-108,92	$-1933,\!16$	-404,83	$-95,\!83$	$14,\!83$	-485,83
o-NCA	$-1746,\!63$	-160, 10	$-172,\!45$	$-2079,\!18$	$-466,\!74$	-111,78	0,29	$-578,\!23$
o-NCG	-1515, 16	$-108,\!97$	-82,74	$-1706,\!87$	-455,78	$-50,\!44$	$-33,\!21$	$-539,\!43$
<i>m</i> -NCB	-1912,47	$-145,\!09$	$-51,\!67$	$-2109,\!23$	$-686,\!62$	$114,\!45$	-2,28	$-574,\!45$
<i>m</i> -NCA	$-2095,\!90$	$-231,\!97$	-116, 17	$-2444,\!04$	$-850,\!51$	$94,\!47$	$-31,\!50$	$-787,\!54$
<i>m</i> -NCG	-2083,35	-226,99	-91,26	$-2401,\!60$	-226,99	$105,\!40$	-19,66	-141,25

 $\overline{a \ \beta_x = \sum \beta_{xii}, \ b \ \beta_y = \sum \beta_{yii}, \ 1 \ u.a. = 0.863993 \times 10^{-32} \ esu = 3.20662 \ x \ 10^{-53} \ C^3 m^3 J^{-2}.}$

Tabela 5.8: Componentes da primeira hiperpolarizabilidade, β_{zii} (i=x,y,z) e β_{xyz} , componente vetorial β_z e momento de dipolo, μ , para as estruturas contendo grupos boro-, alumínio- e gáliocatecol, em unidades atômicas (u.a.), calculados para HF/6- $31^{++}G^{**}$.

	β_{zxx}	β_{zyy}	β_{zzz}	$\beta_z{}^a$	β_{xyz}	$\langle \beta \rangle^b$	μ^{c}
CBH	$_{0,0}$	0,0	0,0	$0,\! 0$	0,0	$-124,\!58$	0,53
CAH	$-0,\!12$	-0,02	-0,02	-0,16	-0,02	-28,79	0,59
CGH	$0,\!02$	0,0	0,0	$0,\!02$	-0,0	$102,\!34$	$0,\!96$
CBA	$16,\!96$	$5,\!30$	$15,\!00$	$37,\!26$	8,29	-1128,01	$1,\!34$
CAA	$20,\!35$	$4,\!96$	$15,\!86$	$41,\!17$	8,33	$-1385,\!65$	2,51
CGA	$19,\!38$	$4,\!55$	$14,\!89$	$38,\!82$	8,10	-1290,79	$3,\!04$
o-NCB	$17,\!20$	$5,\!54$	13,77	$36,\!51$	8,46	$-1429,\!49$	$3,\!30$
o-NCA	$2,\!01$	2,52	$13,\!41$	$17,\!94$	-12,33	-1583,68	4,22
o-NCG	$25,\!11$	$11,\!54$	2,28	$38,\!93$	$-1,\!64$	$-1324,\!42$	4,72
<i>m</i> -NCB	$-0,\!12$	-0,02	-0,02	$0,\!08$	-0,02	-1610, 16	3,72
<i>m</i> -NCA	$23,\!20$	$4,\!98$	14, 19	$42,\!37$	9,70	$-1913,\!53$	$5,\!01$
<i>m</i> -NCG	20,72	$4,\!32$	12,88	37,92	8,84	$-1502,\!96$	5,59
$\beta_{z} = \sum_{i} \beta_{z}$	$_{ii}, \ ^{b} \langle \beta \rangle$	$= \frac{3}{5} [\beta_x -$	$+\beta_{u} + \beta_{u}$	β_z] (para	$\beta_{vec} = \Sigma$	$\sum_{i} \frac{\mu_i \cdot \beta_i}{\vec{\beta}_i}$, 1	u.a. =

 $p_z = \sum_i p_{zii}$, $(p_i) = \frac{1}{5} [p_x + p_y + p_z]$ (para $p_{vec} = \sum_i \frac{1}{|\vec{\mu}|}$), 1 u.a. = 0,863993 x 10⁻³² esu = 3,20662 x 10⁻⁵³ C³m³J⁻², $c \mu = \mu_x + \mu_y + \mu_z$, 1 u.a. = 2,241766 Debye.

Analisando as polarizabilidade apresentadas pelos catecóis estudados, observamos aumentos mais expressivos, 144%, 123% e 123%, para os catecóis que contêm, respectivamente, os átomos de boro, alumínio e gálio, na presença de um intercalador π -conjugado com grupos doador e retirador de elétrons, em posição meta, se comparada à molécula mais curta, com apenas um átomo de hidrogênio ligado a átomos do grupo IIIA da tabela periódica. Todas as análises contidas neste trabalho foram realizadas para a componentes sobre o eixo x, eixo em que foram alinhadas a moléculas e que irá concentrar a maioria das coordenadas dos átomos do sistema. Na maioria dos estudos de cálculos dos parâmetros ONL microscópicos encontrados como referência, o eixo z é o eixo de orientação utilizado no alinhamento da molécula. Então, o valor de α_{xx} que encontramos corresponde ao α_{zz} na maioria dos artigos, assim sucessivamente, e o mesmo será observado para a primeira hiperpolarizabilidade, em que β_{xxx} corresponderá ao β_{zzz} em algumas das referências utilizadas.

Comparando o modelo com o grupo nitro em *orto* ao modelo com grupo nitro em meta, observamos variações de 2% a 10% para α_{xx} , e de 0,3% a 12% para $\langle \alpha \rangle$, dependendo de qual átomo de grupo IIIA está presente. A diferença de valores apresentada para esses isômeros, deve-se ao aumento do tamanho da conjugação de elétrons π quando se introduz um grupo retirador de elétrons em meta, grupo nitro, possibilitando uma maior deslocalização eletrônica. Com a inclusão do grupo nitro em *meta* às moléculas onde estão presentes o grupo doador de elétrons, o amino, e o intercalador insaturado, a butadienila, encontramos variações entre 14-15 %, para α_{xx} , e entre 11-12 %, para $\langle \alpha \rangle$. Passamos, então, a observar que somente a inclusão de um grupo doador de elétron não é suficiente para que haja aumento na polarizabilidade da molécula. A adição de um par retirador de elétrons se faz necessária, para a ocorrência de uma maior separação de cargas. Como vimos, a posição do grupo nitro também irá interferir no aumento da deslocalização eletrônica e, portanto, a posição meta é a mais adequada para se prolongar a conjugação de elétrons do que a posição orto. As demais componentes paralelas da polarizabilidade, $\alpha_{yy} \in \alpha_{zz}$, apresentam um comportamento semelhante ao das componentes α_{xx} , entretanto, com menores magnitudes.

As componentes fora da diagonal encontradas, α_{xy} , $\alpha_{xz} \in \alpha_{yz}$, apresentam-se muito próximas de zero, principalmente as componentes xz e yz. Valores mais expressivos são observados para α_{xy} de moléculas com a presença de sistemas π conjugados, com valores em torno de 47 u.a., mínimo de 42,77 u.a. e máximo de 52.74 u.a.. Porém o valor de α_{xy} depende da orientação dos eixos e não é relevante. o relevante é $\langle \alpha \rangle$. Devido ao fato da polarizabilidade ser um parâmetro ótico linear, os valores de suas componentes não irão interferir na obtenção de bons materiais ONL. Contudo, a forma como estão variando as polarizabilidades são um indício da forma como irão comportar os valores da hiperpolarizabilidades.

Os resultados encontrados para a hiperpolarizabilidade foram satisfatórios se comparados com valores observados para moléculas de *p*-nitroanilina (PNA), utilizados como referência em estudos de ONL, por apresentarem ótimos valores destes parâmetros. Os valores para β_{vec} para a PNA encontrados por Daniel *et al.* [39] são de 509 u.a. para um cálculo teórico HF/SCF (Self-Consistent-Field) estático, ou seja, desconsidera-se a presença de freqüência no processo, com conjunto de base DZV (Double- ζ -Valence)+2d, e experimental de 1956 u.a. para um comprimento de onda de 1,06 μ m. O termo β_{vec} corresponde ao produto dos momentos de dipolo sobre cada eixo pelas respectivas componentes vetoriais de β (β_x , β_y e β_z), dividido pelo módulo momento de dipolo resultante, ou seja, $\beta_{vec} = [\mu_x \beta_x + \mu_y \beta_y + \mu_z \beta_z]/|\mu|$. Como as moléculas foram alinhadas no eixo x, estaremos considerando em nossas análises os momentos de dipolo para os demais eixos muito próximos de zero, levando-nos a desconsiderar as as componentes vetoriais β_y e β_z . Portanto, esse parâmetro descrito em vários estudos pode ser considerado equivalente ao parâmetro β_x o qual definimos, desde que os resultados comparados tenham sido obtidos de moléculas previamente alinhadas em quaisquer dos eixos citados, x, y ou z.

Contudo, o resultado que obtivemos para a molécula de PNA, e que se encontram junto dos resultados dos ácidos borônicos, foi de -734 u.a para β_x , calculado para o conjunto de base $6 - 31^{++}G^{**}$. Nosso resultado apresentou uma diferença de 31%com relação ao resultado teórico e 166% com relação ao resultado experimental, em valores absolutos, em resultados observados por Daniel et al. A grande diferença entre o valor teórico que obtivemos e o observado experimentalmente, pode ser explicada através de fatores como, efeito do solvente e da freqüência, que não foram incluídos em nosso cálculos e podem modificar os valores das hiperpolarizabilidades de forma significativa. Uma forma de se minimizar estes efeitos seria a inclusão de correlação eletrônica. Para os cálculos teóricos, tem-se a influência da escolha do conjunto de base, onde a dependência com a base utilizada pode gerar resultados bem diferentes. O conjunto de base DZV utilizado na referência para o PNA de Daniel et al., é descrita como [9s1p/3s2p] para os átomo pesados e [4s/2s] para átomos de hidrogênio, onde foram adicionadas duas funções de polarização do tipo d, enquanto o conjunto de base $6 - 31^{++}G^{**}$ é descrita como [11s5p1d/4s3p1d] para os átomo pesados e [5s1p/3s1p] para átomos de hidrogênio. Podemos notar que esta base empregada em nossos cálculos possui mais funções difusas, porém, menos funções de polarização que a empregada nos cálculos de Daniel et al..

Assim como ocorreu para a polarizabilidades e dando continuidade às análises das componentes de β , notamos que as componentes β_{xxx} em nossos cálculos são maiores para os *meta*-catecóis e em seguida para os isômeros *orto*. Ambos os isômeros tiveram valores para esses parâmetros acima de 1722 u.a. e as demais moléculas apresentaram valores menores que 1409 u.a.. Notamos que os sinais identificados para β_{xxx} foram todos negativos, com exceção dos valores positivos encontrados para as moléculas de CAH e CGH. Também para a componente β_{xxx} são observadas elevações de 114%, 95% e 96%, respectivamente, somente pela inclusão do grupo intercalador butadienila ligado ao grupo amino, e de 144%, 127% e 123%, respectivamente, pela inclusão do grupo retirador de elétrons na posição meta do anel aromático, além do intercalador ligado ao doador de elétrons, respectivamente, para os catecóis de B, Al e Ga, comparando-se com o catecol mais simples estudado. É interessante observarmos que os valores de β_{xxx} para as molécula contendo o intercalador π -conjugado, apresentaram-se menores, em valor absoluto, na presença do átomo de gálio do que na presença do átomo de alumínio. Para o modelo CXH observamos um aumento de 166% no valor de β_{xxx} pela alteração do átomo de Al pelo átomo de Ga e o mesmo esperávamos que acontecesse para os demais modelos. Contudo, podemos concluir que o fato de não incluirmos funções de polarização do tipo f nos cálculos destes parâmetros, sub-estimam os valores devido à descrição dos orbitais estar incompleta, impedindo uma maior flexibilidade dos orbitais para deslocalização dos elétrons.

Em valores absolutos, os resultados que obtivemos para catecóis com β_{xxx} que variaram de 70 u.a. a 2096 u.a. são valores excelentes, se comparados aos de cálculos teóricos de β_{vec} estático de 115 u.a. e de 509 u.a., respectivamente, para as moléculas de nitrobenzeno (NB) e de PNA, ambos baseados no formalismo Coupled Pertubed Hartree-Fock (CPHF) para funções de onda SCF e base DZV+2d [39]. As demais componentes vetoriais de β no eixo x apresentam-se menos intensas, com valores entre 45-232 u.a. para β_{xyy} e 52-206 u.a. para β_{xzz} , todas com sinais negativos. Os resultados que obtivemos também encontram-se superiores aos relatados nesses estudos com NB, que foram de 52 e 19 u.a., no entanto, não apresentaram sinal negativo como as demais componentes. Ao calcularmos a componente tensorial β_x notamos mudanças nas magnitudes, portanto, os valores desses parâmetros não são indicadores diretos para a construção de moléculas com altas hiperpolarizabilidades. Nessa mesma literatura encontramos a polalizabilidade média $\langle \alpha \rangle$ como sendo de 83 u.a. para o NB e 96 u.a. para a PNA, enquanto para nossos cálculos com

como boas estruturas para utilização em processos ONL, visto que as moléculas de referência têm apresentando excelentes resultados nesses estudos.

No geral, os valores absolutos das componentes de β ao longo dos eixos y e z apresentam valores bem menores que a componente em x. A maioria dos valores médios observados para estas componentes encontram-se entre 141,25 u.a. e 787,54 u.a. para β_y , e 17,94 u.a. e 42,37 u.a. para β_z . Para CXH são encontrados valores muito pequenos, entre 0 e 3,86 u.a. para as componentes β_y e β_z , além de bastante diferente dos valores observados para as outras moléculas. Isto é explicado pelo fato de termos escolhido o eixo x como de orientação para todas as moléculas e, portanto, os modelos CXH apresentam menores valores das componentes de β em y e z do que os modelos com intercalador butadienila, visto que este grupo possui grande parte de seus átomos constituintes nesses eixos. Valores das componentes β_{zxx} , β_{zyy} e β_{zzz} para mNCB são observados muito baixos, levando a um β_z de 0,08 u.a., valores somente observados para moléculas na ausência de grupo butadienila.

O momento de dipolo (μ) aumenta à medida que são alongadas as moléculas pela inclusão de uma cadeia orgânica conjugada com grupos doador de elétrons, e posterior inclusão do grupo retirador de elétrons. Seguindo essa ordem podemos estender a conjugação de elétrons π , dando uma maior flexibilidade para deformação da nuvem eletrônica através da deslocalização desses elétrons. Dessa forma, conseguimos aumentar gradativamente os momentos de dipolo, de 0,53 u.a. para 5,59 u.a., conduzindo, conseqüêntemente a melhores valores de β . Dentre todos os catecóis estudados foram observados aumentos de μ de 11%, 63%, 40%, 87%, 21%, 9%, 28%, 12%, -21%, 35% e 12%, da molécula de CBH até mNCG, aumentos esses relacionados com cada molécula anterior na Tab. 5.8. A exceção observada para a moléculas de mNCB, apresentou um diminuição de μ de 21% com relação a molécula de *o*NCG, ocorre porque estas moléculas são muito semelhantes e apresentam valores próximos para muitos destes parâmetros, com diferenças mais evidentes com relação a troca dos elementos da família IIIA da tabela periódica, nesse caso de B para Ga.

O valor do momento de dipolo influenciará na magnitude de primeira hiperpolarizalidade, β , pode ser estimado pela equação:

$$\beta(0) \propto (\mu_{mm} - \mu_{gg}) \mu_{gm}^2 / E_{gm}^2.$$
 (5.1)

Esta é uma aproximação para a primeira hiperpolarizabilidade estática de acordo

com o modelo de dois estados quânticos[41]. Nessa aproximação, a soma da transição para todos os estados excitados possíveis, presente na expressão da primeira hiperpolarizabilidade para a teoria de perturbação de soma sobre estados quânticos, será restringida a apenas dois estados, o fundamental e um excitado. Então, na equação de β encontra-se proporcional ao quadrado do momento de transição eletrônica (μ_{gm}) e a diferença entre estes estados ($\mu_{mm} - \mu_{gg}$). Este momento de transição eletrônica é formado pelas funções de onda dos estados fundamental e excitado mais o operador momento de dipolo de transição, existindo, dessa forma, uma relação direta entre os parâmetros de μ e β . Contudo, apenas ótimos valores de momento de dipolo não são o suficiente, porque essa equação é também inversamente proporcional ao quadrado da energia de transição dos estados fundamental e excitado (E_{gm}). Com tudo isso, podemos afirmar que altos valores dessa diferença de energia podem conduzir a pequenos valores de β .

E assim, observamos em nossos resultados que à medida que se aumentam os valores dos momentos de dipolo de todas moléculas, há uma elevação dos valores médios absolutos, ou seja, três quintos do módulo da soma dos valores médios sobre os eixos principais (β_x , $\beta_y \in \beta_z$). Na verdade, em termos de valores relativos, podemos afirmar que há um aumento de $\langle \beta \rangle$ para as três primeiras moléculas em estudo e diminuição em todas as restantes, com o exceção daquelas contendo átomo de gálio e a CBH. Ocorre uma passagem de $\langle \beta \rangle$ de CBH de um valor negativo, -124,58 u.a., para um valor positivo de CGH, 102,34 u.a., intermediado por um valor de -28,79 u.a. para a molécula de CAH. As demais moléculas apresentaram elevações de 23%, 11%, 11%, 21% e 19%, respectivamente, para CAA, *o*NCB, *o*NCA, *m*NCB, *m*NCA, e quedas de -1202%, -7%, -16% e -21%, respetivamente, para CBA, CGA, *o*NCG, *m*NCG, em valores absolutos de $\langle \beta \rangle$ com relação a cada molécula imediatamente anterior a estas na tabela. A variação de 1202% representa a transição entre valores de $\langle \beta \rangle$ positivo e negativo, descrito entre CBA e CGH.

Capítulo 6

Absorção de Dois Fótons de Derivados da Benzamidina

6.1 Introdução

As propriedades de absorção de dois fótons (TPA, Two Photon Absorption) em materiais têm apresentado importantes aplicações tecnológicas como conversão do laser, fabricação de estruturas microscópicas em 3 dimensões (3D), armazenamento de dados óticos e, na biologia, como ferramentas promissoras para aplicação em terapia foto-dinâmica [5, 42]. Pesquisas recentes indicam que as atividades da TPA em compostos orgânicos insaturados estão relacionados com seus comprimentos de conjugação, força para puxar e empurrar os elétrons e os aspectos de simetria com relação aos grupos doador (D) e receptor (A) de elétrons atacando os centros π , além, da dimensionabilidade molecular efetiva [43]. Exemplos de tais sistemas são duas moléculas recentemente estudadas com estruturas do tipo D- π -A contendo um anel carbazol e fenilamina (grupos doadores) atacando sistemas conjugados vinilestilbeno na qual em ambos os casos o grupo receptor é o piridinil. Os estudos indicam que estes compostos têm grande seção de choque para TPA [7].

Cálculos de propriedades TPA foram conduzidos neste trabalho para encontrar moléculas com boas propriedades de ótica não linear. Moléculas contendo grupos amidina s são fortes bases orgânicas e são encontradas em algumas drogas anticâncer, como a netropsina e a pentamidina [7, 8]. As benzamidinas, em particular, têm sido usadas como drogas sintéticas de vários hormônios naturais como, por exemplo, a arginina [7]. Recentemente, a modelagem de muitas drogas naturais N-substituídas em bases amidínicas ganharam interesse apesar de muitas amidinas não apresentarem substituções em sítios nitrogenados. A atividade biológica de amidinas é atribuída a um hidrogênio catiônico ligado a um grupo doador que pode atuar como sítio ligante para ambos, carboxilatos e fosfatos [7]. As diamidinas interagem com a fenda¹ menor do DNA, onde há a possibilidade de formação de um complexo com ligações de hidrogênio, com as bordas das bases nitrogenadas deitadas na fenda [44]. A curvatura molecular é um importante parâmetro para que o contato na fenda menor se otimize, pois compostos que apresentarem curvatura muito grande ou muito pequena, dificultam esse contato em fenda menor, ligandose fracamente à seqüência de DNA e com baixa especificidade. Portanto, moléculas com grande sistema conjugado π ou que se ligam na posição *meta* no anel benzênico, não são adequados para uma boa curvatura molecular Fig. 6.1.

Figura 6.1: Diferença das estruturas com amidinas nas posições *para* e *meta* na furamidina [44].

Métodos terapêuticos como terapia foto-dinâmica (PDT, Photodynamic Therapy), usam fotossensitizadores, uma combinação de radiação ótica e droga. Algumas drogas quando atacam o DNA atuam impedindo a duplicação ou destruindo as células tumorígenas depois da aplicação do laser em um comprimento de onda específico, aproximadamente, 630 nm. Entretanto, para que esta luz penetre profundamente no interior dos tecidos vivos, é necessário utilizar o efeito da TPA, conduzido em comprimentos de onda do infra-vermelho próximo, onde o tecido é mais transparente.

As diamidinas são utilizadas como fármacos no tratamento contra pneumonia, causadas por *pneumocystis carini*, doença associada com AIDS (Adquired Immune

¹A hélice dupla adotada por um segmento de DNA apresenta um espeçamento devido às dobras dos grupos das bases nitrogenadas adjacentes. Esse espeçamento é denominado de fenda.

Deficiency Syndrome). Esta iniciou-se em 1958 com a descoberta da pentamidina e da estilbamidina. Outra importante utilização das amidinas começou a partir da década de 30 com a atividade anti-tumorígena, exemplificada pela atividade contra parasitas da *Leishmania sp* e *Plamodium sp*.

6.2 Métodos Computacionais e Bases de Funções Atômicas Utilizadas

Os cálculos foram feitos utilizando o método DFT/B3LYP [45, 46] para otimização da geometria para estruturas contendo um anel benzênico após uma otimização prévia por métodos semi-empíricos. Para as moléculas contendo dois anéis fenílicos com uma grande conjugação π a otimização foi somente feita por cálculos semiempíricos PM3. Os cálculos de propriedades moleculares foram também realizados utilizando o método DFT/B3LYP. O conjunto de funções atômicas utilizada para estes cálculos foi a base $6 - 31^{++}G^{**}$, contendo funções difusas para átomos leves e pesados. Através de cálculos de TPA, foram calculados os dez primeiros estados excitados singletos para as moléculas estudadas. Para estes cálculos foi usado o método Teoria de Resposta implementado no programa DALTON [19]. Também foram calculadas as respostas de absorção de um fóton (OPA) para os seis primeiros estados excitados, como auxiliar na análise dos resultados de TPA.

6.3 Estruturas Moleculares

A força de oscilador e seção de choque obtidas nos cálculos de um e dois fótons foram conduzidas para as seguintes moléculas: benzamidina (PA), p-vinilbenzamidina (VPA), p-metoxi-benzamidina (MPA), p-bisamidina-benzeno (PBA), p-estilbamidina (PSA), berenil (PTA) e furamidina (PFA). Também foram estudadas as moléculas protonadas no grupo imino. As estruturas dos derivados benzamidínicos estudados estão apresentadas na Fig. 6.2. Todas as moléculas apresentam grupo amidina que se apresenta torcido com relação ao plano do sistema π do anel

Figura 6.2: Estruturas dos derivados neutros da benzamidina.

aromático central. Nas Figs. 6.3 e 6.4 estão apresentados os esquemas com todos os parâmetros informados na Tab. 6.1. Observamos que amidinas do mesmo lado apresentam ângulos de torção com diferença de apenas três e cinco graus. Entretanto, as amidinas em lados opostos a sistemas π -conjugado, apresentam diferenças que podem variar em até cinco graus para a maioria das moléculas, e de 20° para a molécula de estilbamidina neutra e 68° para as protonadas. Observamos que moléculas com sistema π como fenil ou estilbenil são planas e a molécula do berenil são torcidas, com ângulos de torção entre o anel benzênico e o nitrogênio amidínico do

triazeno, de aproximadamente 19^o e 32^o , respectivamente, para cada amidina.

Figura 6.3: Esquema mostrando parâmetros geométricos de distância e ângulo entre ligações para os derivados da benzamidina.

Figura 6.4: Esquema mostrando parâmetro geométrico de torção entre ligações para os derivados da benzamidina.

A torção entre os grupos amidina e fenila é observada para todas as moléculas estudadas, tanto as neutras como as protonadas, contudo as maiores torções são observadas para a forma protonada. As moléculas neutras apresentam ângulos com valores entre 29° e 73°, e as moléculas protonadas apresentam valores entre 33° e 57° para otimizações por métodos semi-empíricos. A estrutura apresentada pelo berenil é adequada para uma possível ligação na fenda menor e Z-DNA (DNA com o passo da hélice para a esquerda) devido à sua curvatura para o lado esquerdo e a forma de hélice. Através de estudos de difração de raios-X observa-se que suas planaridade e conformação, quando isolado, são mantidas. Contudo, a torção entre triazeno e

ponte, e plano do fenil e amidinium são, respectivamente, 5^{o} e menor do que 21^{o} [47]. Em nossos cálculos foram observados para as moléculas neutras e protonadas torções maiores do que o observado por difração de raios X, sendo, respectivamente, de $68^{o} \pm 3^{o}$ e $56^{o} \pm 1^{o}$.

Moléculas menores como benzamidina, p-vinil-benzamidina e p-metoxi benzamidina, são moléculas de partida para a maioria das outras moléculas de interesse estudadas. Por exemplo, a molécula de pentamidina pode ser construída pela adição de duas moléculas p-metoxi-benzamidina ligadas através do grupo propeno. Desse modo, estudando o comportamento da propriedade de TPA da p-metoxibenzamidina podemos ter uma previsão dos valores que serão obtidos para análogos estendidos, como a pentamidina. A molécula de estibilamidina também é formada pela adição das moléculas de p-vinyl-benzamidine e de benzamidina, onde há a extensão da conjugação π . Também estudamos o berenil, molécula de grande interesse devido à presença de sistemas π -conjugados extendidos com comprimentos de 12,49 Å e 12,70 Å, respectivamente, para moléculas neutras e protonadas. Esses valores são muito próximos ao comprimento total da conjugação observado para a estilbamidina que é de 12,25 Å. A curvatura apresentada pela estrutura do berenil favorece sua ligação com o DNA em fenda menor. Além disso o berenil também possui uma importante atividade biológica. As moléculas bisamidinicas são encontradas di-protonadas em pH fisiológico. Esta protonação surge após ligação do hidrogênio ao par de bases nitrogenadas do DNA.

6.4 Absorção de Um Fóton

Os espectros de OPA dos derivados da benzamidia foram plotados na região de 400 nm a 100 nm, Fig. ??. O cromóforo de partida utilizado neste estudo, a benzamidina, atua como elétron doadora e aparece em todas as estruturas estudadas. Além disso, avaliamos a influência da inclusão de mais um sistema π -conjugado e a presença de outros grupos doadores de elétrons em posição *para* ao grupo amidina no anel aromático, com relação as propriedades de transição de um fóton.

Na Tab. 6.2, o comprimento de onda de OPA máximo (λ_{max}) do *p*-vinil-benzamidina é deslocado 5 nm (187-182 nm) com relação à molécula de referência. Este λ_{max}

Tabela 6.1: Medida dos parâmetros médios para geometria otimizada por ^aDFT e ^bPM3 dos derivados da amidina. Distância, r, em angström e ângulos, θ , τ e Φ , em graus.

	r	θ	au	Θ	Φ
a PA	$1,\!49$	119	35	-	-
a PA ⁺¹	$1,\!47$	120	36	-	-
$^{a}\mathrm{VPA}$	$1,\!49$	119	35	-	-
$^{a}\mathrm{VPA^{+1}}$	$1,\!46$	120	33	-	-
$^{a}\mathrm{MPA}$	$1,\!46$	119	33	-	-
$^{a}\mathrm{MPA^{+1}}$	$1,\!45$	119	29	-	-
^a PBA	1,50	119	35	-	-
$^{a}\mathrm{PBA^{+2}}$	$1,\!49$	121	43	-	-
${}^{b}\mathrm{PSA}$	$1,\!48$	117	57/78	2/2	138
${}^{b}\mathrm{PSA}^{+2}$	$1,\!47$	121	55/123	1/0	113
${}^{b}\mathrm{P}\mathrm{TA}$	$1,\!48$	117	66/71	90/146	24/48
${}^{b}\mathrm{PTA}^{+2}$	$1,\!47$	121	56	1/5	27/50
${}^{b}\mathrm{PFA}$	$1,\!48$	119	30	24/39	97/137
$^{b}\mathrm{PFA^{+2}}$	$1,\!47$	117	9	14/22	4/10

Os ângulos de torção e ligação τ , Θ e Φ são apresentados nos esquemas das Fig. 6.3 e 6.4.

corresponde a uma força de oscilador (δ_{OPA}) de 0,31 u.a., significando um decréscimo de 20% (0,39-0,31 u.a.). Para a molécula protonada de *p*-vinil benzamidina, o mais intenso δ_{OPA} é 0,49 ua, o que representa 176% maior do que o observado para a benzamidina protonada. O maior valor de δ_{OPA} , corresponde a um λ_{max} de 327 nm do primeiro estado singleto excitado do *p*-vinil-benzamidine, enquanto para a benzamidina, o λ_{max} corresponde a 168 nm.

A adição do grupo metoxi em posição *para* na benzamidina, modifica o δ_{OPA} reduzindo 0,05 u.a. (0,39-0,34 u.a.) para a molécula neutra e elevando 0,26 u.a. (0,54-0,28 u.a.) para a molécula protonada. O comprimento de onda cresce de 2 e 7 nm, respectivamente, para neutra e protonada. Contudo, na adição de uma segunda amidina ao anel aromático em posição *para*, formando a bisamidino-benzeno, reduzindo em zero e 0,19 u.a., respectivamente, os valores de δ_{OPA} do neutro e cátion. O mesmo ocorre para as outras substituições, λ_{max} não apresenta quase nenhum decréscimo para as moléculas neutras e as moléculas protonadas. O valor máximo observado depois da inclusão do metoxi, grupo doador de elétrons para a benzamidina, e sistemas π , é de 0,54 u.a. para a molécula catiônica.

O melhor resultado de força de oscilador é observado para a inclusão de ambos os grupos importantes, um doador (a amidina) e um grande sistema π -conjugado (o estilbeno), formando a molécula de estilbamidina. Com esta combinação, o primeiro estado excitado para a molécula neutra apresenta maior λ_{max} em 333 nm e para a protonada em 370 nm, ambos na região próxima do visível. O valor de δ_{OPA} para a molécula de estilbamidina é 1,10 u.a. e para a protonada é 1,03 u.a., valores estes três a quatro vezes superiores ao valor encontrado para a benzamidina. As outras transições da estilbamidina apresentam baixo valores de δ_{OPA} se comparado com os outros estados, entre 0,17 u.a. e 0,16 u.a..

A adição de um grupo triazeno entre dois grupos amidinas formando a molécula de berenil, alonga a cadeia carbônica. Os maiores valores de λ_{max} são encontrados para estas moléculas contendo grupos estilbenzeno do que as moléculas contendo grupos berenil. A molécula de berenil apresenta δ_{OPA} de 0,61 u.a. à 326 nm para neutras e 0,92 u.a. à 366 nm para protonadas. Estes valores de δ_{OPA} são menores que os valores encontrados para a estilbamidina, sendo para a molécula neutra uma diferença de 0,49 u.a. e para a protonada de 0,11 ua. A molécula de berenil mostra valores de δ_{OPA} 1,6 e 3,3 vezes maiores do que as moléculas neutras e protonadas, respectivamente, com relação a nossa molécula de referência. É possível ver que as moléculas de estilbamidina e berenil apresentam resultados parecidos para probabilidade de transição de OPA.

6.4 Absorção de Um Fóton

	Molécula Neutra					Molécula Protonada					
Р	А	VI	РА	MI	PA	PA	PA^{+1}		VPA^{+1}		A^{+1}
λ_{OPA}	δ_{OPA}	λ_{OPA}	δ_{OPA}	λ_{OPA}	δ_{OPA}	λ_{OPA}	δ_{OPA}	λ_{OPA}	δ_{OPA}	λ_{OPA}	δ_{OPA}
247	0,00	275	0,19	253	0,02	279	$0,\!02$	327	$0,\!49$	294	$0,\!43$
243	$0,\!06$	267	$0,\!06$	243	$0,\!15$	253	0,25	286	$0,\!02$	269	$0,\!01$
241	$0,\!00$	259	$0,\!04$	236	$0,\!06$	204	$0,\!02$	243	$0,\!03$	230	$0,\!08$
226	$0,\!01$	251	0,28	230	$0,\!02$	190	$0,\!02$	224	$0,\!12$	207	$0,\!00$
214	$0,\!02$	230	$0,\!01$	224	$0,\!11$	189	0,23	214	$0,\!06$	192	$0,\!00$
210	$0,\!11$	216	$0,\!03$	215	$0,\!02$	186	$0,\!08$	206	$0,\!00$	191	$0,\!08$
183	$0,\!23$	209	$0,\!09$	195	$0,\!18$	184	$0,\!00$	196	$0,\!07$	188	$0,\!07$
182	$0,\!39$	203	$0,\!03$	184	$0,\!34$	169	0, 19	196	$0,\!01$	179	$0,\!03$
174	$0,\!20$	192	$0,\!07$	174	0,28	168	0,28	192	$0,\!06$	175	$0,\!54$
167	$0,\!01$	187	$0,\!31$	168	$0,\!00$	167	0,00	189	$0,\!01$	171	$0,\!00$
165	$0,\!07$	182	0,09	168	$0,\!00$	161	$0,\!14$	187	$0,\!48$	185	$0,\!00$
160	$0,\!01$	181	$0,\!00$	165	$0,\!05$	160	$0,\!14$	174	$0,\!01$	169	$0,\!04$
158	$0,\!00$	180	$0,\!06$	164	$0,\!02$	160	$0,\!01$	173	$0,\!03$	163	0,00
159	$0,\!01$	176	0,09	164	$0,\!01$	157	$0,\!01$	168	$0,\!11$	162	$0,\!01$
157	$0,\!03$	173	$0,\!00$	163	$0,\!03$	154	$0,\!00$	166	$0,\!01$	160	$0,\!01$
156	$0,\!16$	170	$0,\!07$	161	$0,\!02$	146	$0,\!01$	164	$0,\!00$	159	$0,\!01$

Tabela 6.2: Força de oscilador, $\delta_{OPA}(a.u.)$, e comprimento de onda, λ (nm), calculado para DFT/6-31**G⁺⁺ para os derivados da benzamidina contendo somente um grupo amidina.

Molécula Neutra							Molécula Protonada								
PBA		PSA		РЭ	PTA		PBA^{+2}			PSA^{+2}			PTA^{+2}		
λ_{OPA}	δ_{OPA}	λ_{OPA}	δ_{OPA}	λ_{OPA}	δ_{OPA}		λ_{OPA}	δ_{OPA}	. –	λ_{OPA}	δ_{OPA}	. –	λ_{OPA}	δ_{OPA}	
268	$0,\!12$	333	1,10	356	$0,\!09$		271	0,03	· -	370	$1,\!03$		405	0,00	
266	$0,\!01$	296	$0,\!00$	326	$0,\!62$		240	$0,\!39$		326	$0,\!00$		366	$0,\!92$	
261	$0,\!01$	294	$0,\!02$	294	$0,\!01$		218	$0,\!02$		290	$0,\!03$		323	$0,\!07$	
257	$0,\!01$	284	$0,\!00$	287	$0,\!01$		218	$0,\!03$		290	$0,\!00$		306	$0,\!07$	
251	$0,\!00$	274	$0,\!00$	283	$0,\!03$		210	$0,\!00$		275	$0,\!16$		286	$0,\!04$	
236	$0,\!00$	272	$0,\!00$	266	$0,\!03$		198	$0,\!00$		252	$0,\!00$		285	$0,\!00$	
231	$0,\!02$	271	$0,\!06$	264	$0,\!08$		193	$0,\!06$		251	$0,\!01$		281	$0,\!08$	
224	$0,\!19$	248	$0,\!00$	262	$0,\!02$		188	$0,\!47$		249	$0,\!00$		277	$0,\!01$	
219	$0,\!01$	242	$0,\!17$	246	$0,\!14$		187	$0,\!00$		248	$0,\!00$		260	$0,\!15$	
215	$0,\!08$	241	$0,\!00$	244	$0,\!05$		181	$0,\!01$		227	$0,\!13$		254	$0,\!00$	
190	$0,\!01$	231	$0,\!00$	239	$0,\!07$		181	$0,\!00$		221	$0,\!03$		249	$0,\!03$	
189	$0,\!16$	231	$0,\!02$	237	$0,\!02$		173	$0,\!00$		218	$0,\!00$		248	$0,\!04$	
185	$0,\!26$	225	$0,\!00$	233	$0,\!02$		167	$0,\!02$		216	$0,\!08$		248	$0,\!01$	
181	$0,\!39$	224	$0,\!00$	232	$0,\!00$		167	$0,\!10$		204	$0,\!00$		243	$0,\!03$	
176	$0,\!05$	223	$0,\!00$	231	$0,\!01$		164	$0,\!00$		252	$0,\!01$		240	$0,\!02$	
176	$0,\!07$	221	$0,\!01$	230	$0,\!00$		163	$0,\!33$		206	$0,\!01$		239	$0,\!00$	

Tabela 6.3: Força de oscilador, $\delta_{OPA}(a.u.)$, e comprimento de onda, λ (nm), para DFT/6-31^{**}G⁺⁺ para os derivados da benzamidina contendo dois grupos amidina.
Em uma análise do espectro de OPA podemos ver que entre benzamidinas neutras e protonadas, as últimas apresentam deslocamentos para maiores comprimentos de onda. As diferenças do comprimento de onda de OPA para as moléculas neutras e prtonadas de PA, VPA, MPA, PBA, PSA e PTA são, respectivamente, 32 nm, 52 nm, 41 nm, 3 nm, 37 nm e 49 nm, onde podemos ver que a PBA apresenta praticamente os mesmos valores para ambas as formas, neutras ou protonadas. As intensidades mostram, portanto, serem maiores para a maioria das moléculas e com bandas mais largas.

Os espectros de banda de um e dois fótons foram simulados considerando, respectivamente, os 16 e 10 primeiros estados excitados singleto através de uma convolução por funções Gaussianas de largura-a-meia-altura de 20 cm⁻¹. A simulação para a construção de um espectro de bandas foi feita para melhor aproximar o espectro teórico ao experimental com a inclusão de uma largura de linha devido às excitações vibracionais. Nas Figs. 6.5-6.10 são mostrados os espectros de banda para todas as moléculas estudadas, sendo deslocadas de 0,1 nm as intensidades das espécies protonadas com relação às neutras para melhor visualização.

No espectro para as espécies neutras podem ser observadas as presenças de duas ou três bandas de maiores intensidades de transição. A benzamidina apresenta a primeira banda com pequena intensidade, em 250 nm, correspondendo a uma provável transição HOMO \rightarrow LUMO, com pequena sobreposição de orbital como observada na Fig. 6.5, do nitrogênio da diamidina. A sobreposição do orbital surge devido à maior tranferência de elétrons ou de carga. Mais duas bandas de alta intensidade, talvez correspondentes 54 a transições de HOMO - 1 ou HOMO para LUMO ou LUMO -1, são observadas no espectro das espécies neutras. A segunda banda ganha uma pouco mais de intensidade do que a primeira banda e pode corresponder às transições de HOMO - 1 para LUMO, onde vemos na Fig. 6.8, uma maior sobreposição de orbitais sobre o fenil e a diamidina. As bandas seguintes apresentam-se bastante intensas se comparadas com as duas primeiras e. portanto, podem pertencer a transições de HOMO - 1 para LUMO + 1, onde ocorre maior possibilidade de tranferência de carga. Para as outras três espécies neutras - p-vinil-benzamidina, p-metoxi-benzamidina e p-bis-amidina-benzeno -, bem como acontece com a benzamidina, são observadas duas primeiras bandas menos intensas do que uma terceira. Essas bandas correspondem a transições próximas aos orbitais

Figura 6.5: Espectro simulado do processo de absorção um fóton para a molécula de benzamidina neutra e protonada.

HOMO e LUMO, e devido a esta proximidade estas moléculas apresentam espectros de transição de um fóton com perfis bastante aproximados. Entretanto, as moléculas de estilbamidina e berenil apresentam espectros com perfis opostos aos observados para as moléculas descritas acima. Há uma primeira banda de maior intensidade do que as bandas seguintes e deslocada de 40-100 nm com relação aos espectros das moléculas anteriores.

Os espectros das moléculas protonadas mostram uma primeira banda bastante intensa, exceto a benzamidina e a p-bis-benzamidina protonadas que mostram uma banda de baixa intensidade, aproximadamente em 275 nm, correspondendo a transições com pequena sobreposição de orbitais, talvez transições de HOMO para LUMO. As transições observadas de maior intensidade correspondem, provavelmente, a transições HOMO $-1 \rightarrow$ LUMO com alta sobreposição sobre o anel benzênico. As bandas apresentadas no espectro da p-vinil-benzamidina, p-metoxi-benzamidina e

Figura 6.6: Espectro simulado do processo de absorção de um fóton para a molécula de p-vinil-benzamidina neutra e protonada.

benzamidina são mais intensas para as moléculas maiores. A distância entre a primeira e a segunda banda, em um mesmo espectro, é de aproximadamente 100 nm, onde pode ocorrer transições de muito pequena intensidade para as quatro primeiras moléculas protonadas, mas esta não é observada para os espectros neutros. Também são observadas a presença de algumas bandas no espectro das moléculas neutras com pequena intensidade, as quais para as moléculas protonadas são ausentes ou deslocadas. Estas transições podem corresponder à transições do tipo HOMO - 2para LUMO + 1, por exemplo, originado de pouca sobreposição de orbitais, com correspondentes bandas muito pequenas no espectro da molécula protonada em comparação com a molécula neutra da benzamidina. Analisando os orbitais HOMO e LUMO nas Fig. 6.11, 6.12 e 6.13, pode-se notar mais claramente as supostas sobreposições com transferência de carga. Nestas figuras estão somente apresentados os três últimos orbitais ocupados e os três primeiros orbitais virtuais, apenas para

Figura 6.7: Espectro simulado do processo de absorção de um fóton para a molécula de p-metoxi-benzamidina neutra e protonada.

representação.

Os espectros das moléculas protonadas mostram uma primeira banda intensa deslocada de 30-50 nm para maiores comprimentos de onda com relação à primeira banda da molécula neutra. A segunda banda também ganha intensidade em moléculas protonadas, se comparada com a segunda banda observada para as moléculas neutras. Isto se deve, possivelmente, a grande sobreposição de orbitais HOMO – 1 e LUMO nestas espécies. Os espectros da *p*-metoxi-benzamidina, neutra e protonada, apresentam-se próximo de 180-230 nm, sendo a banda da molécula protonada mais intensa. Nas Fig. 6.11, 6.12, 6.13 observamos uma pequena sobreposição entre orbitais HOMO – 1 e LUMO – N (N = 0, 1) para a espécie neutra. As moléculas de estilbamidina e de berenil apresentam espectros semelhantes. Ambas as moléculas apresentam três bandas com pequenos deslocamentos da molécula neutra para a protonada para maiores comprimentos de onda, e a segunda banda da molécula

95

Figura 6.8: Espectro simulado do processo de absorção um fóton para a molécula de *p*-bisamidina-benzeno neutra e protonada.

neutra de berenil perdendo bastante intensidade na forma protonada. Estas baixas intensidades das bandas do berenil se devem à pouca transferência de elétrons pelos orbitais HOMO e LUMO desta molécula.

Figura 6.9: Espectro simulado do processo de absorção de um fóton para a molécula de p-estilbamidina neutra e protonada.

6.5 Absorção de Dois fótons

O processo de absorção de dois fótons dessas moléculas extende-se da região do visível (405 nm) ao ultra-violeta (247 nm). Os maiores valores de seção de choque (δ_{TPA}) no processo de TPA são observados pela substituição do grupo fenila pelo grupo estilbenila devido ao aumento no comprimento da conjugação π e a adição de mais uma amidina (doador de grupo elétrons) que formam sistemas do tipo D- π -D. Estas substituições correspondem a um acréscimo de aproximadamente 100 vezes o valor de δ_{TPA} da molécula de partida, onde se observa a presença de um doador amidina e um grupo com sistema π -conjugado, o anel aromático fenila. Nas Figs. 6.14-6.19 são mostrados os espectros de banda calculados para as moléculas estudadas neutras e protonadas.

Figura 6.10: Espectro simulado do processo de absorção de um fóton para a molécula de berenil neutra e protonada.

O aumento da cadeia de elétrons π -conjugagos causado pela adição de um grupo vinil ao anel benzênico, implica em um aumento da seção de choque de 36 e 9 vezes a polarização linear e de 29 e 7 vezes a polarização circular, respectivamente, para as formas neutras e protonadas, como pode se observar nas Tabs.6.4, 6.5 e 6.6. Para a substituição do grupo vinil pelo grupo metoxi doador de elétron, observamos o crescimento nos valores da seção de choque de 4-5 vezes na polarização linear e de 3-5 vezes na polarização circular com relação a molécula de benzamidina. Portanto, alongando o sistema π com outro grupo doador, o metoxi, os valores de δ_{TPA} diminuem, como ocorre com os valores de força de oscilador. Se compararmos, contudo, a inserção do grupo doador metoxi e uma segunda amidina, ambos grupos doadores, podemos ver que os valores não diferem tanto om relação ao δ_{TPA} observado para a molécula de benzamidina. Da mesma forma encontramos melhores resultados de δ_{TPA} pela inclusão do grupo estilbeno e de uma amidina, passando assim a apresentar duas amidinas, ou seja, dois grupos elétron-doadores, e esses valores passam a ser, aproximadamente, de 33-280 vezes maiores do que os valores da molécula de benzamidina. Além disso, observamos que moléculas protonadas mostram valores de δ_{OPA} e δ_{TPA} maiores do que os valores das moléculas neutras. Por exemplo, para a molécula de estilbamidina são observados aumentos de 2 vezes no valor de δ_{TPA} , o que corrresponde a um aumento de quase 100%. Ao compararmos nossos resultados da estilbamidina com os resultados observados por Wang et al. [5] para a molécula di-N,N-diphenylamine-stilbene, notamos serem os nossos três vezes maiores tanto para a absorção de um como de dois fótons. Comparando-se a molécula estilbamidina com molécul de berenil, onde há a presença de três átomos de nitrogênio na cadeia que intercala os grupos benzamidinas ao invés de apenas cadeias carbônicas conjugadas, podemos observar que os valores de δ_{TPA} podem ser diminuidos em aproximadamente 3 vezes para a molécula neutra. Para a molécula protonada são observadas pequenas diferenças nos valores de δ_{TPA} , com diminuições de 12 e 15%. Os comprimentos de onda em que são observadas as maiores intensidades de transições de dois fótons apresentam-se com deslocamentos de 40-50 nm.

Os espectros nos mostram de um modo mais geral como as intensidades das transições aumentam com a inclusão de maiores grupos intercaladores e que para a maioria das moléculas são observadas serem mais intensas as bandas para a forma protonada do que para a forma neutra. Uma exceção é observada para a molécula de *p*-vinil-benzamidina que apresenta maior intensidade das suas bandas que moléculas maiores, como *p*-metoxi benzamidina e bisamidino-benzeno e que apresenta maior intensidade na forma neutra do que na protonada para a absorção de dois fótons para o plano de luz linearmente e circularmente polarizado. Também observa-se que há um deslocamento para maiores comprimentos de onda à medida que são utilizadas estruturas com maiores extensões. Isto talvez seja devido à maior sobreposição de orbitais para esta molécula do que para a molécula contendo, por exemplo, um grupo metoxi.

Todas estas análises foram feitas considerando-se as transições eletrônicas mais intensas para cada uma dessas moléculas. Como a molécula de referência – a benzamidina – apresenta uma estrutura contendo duas ligações π , ao compararmos com algumas moléculas que estudamos de estruturas semelhantes, podemos considerar nossos valores bastante satisfatórios pela utilização de amidinas atuando como doadora de elétrons para a cadeia conjugada.

Figura 6.11: Orbitais HOMO, HOMO-1, HOMO-2, LUMO, LUMO+1, LUMO+2 para a Benzamidina (PA), Vinil-benzamidina (VPA) e Metoxi-benzamidina, (MPA) neutras e protonadas.

Figura 6.12: Orbitais HOMO, HOMO-1, HOMO-2, LUMO, LUMO+1, LUMO+2 para a Bisbenzamidina (PBA) e Estilbamidina (PSA), neutras e protonadas.

Figura 6.13: Orbitais HOMO, HOMO-1, HOMO-2, LUMO, LUMO+1, LUMO+2 para a Berenil (PTA) e Furamidina (PFA), neutras e protonadas.

		-											
PA			PA^{+1}			VPA				VPA^{+1}			
$\lambda_{ ext{TPA}}$	$\delta_{\mathrm{TPA}}{}^l$	$\delta_{\mathrm{TPA}}{}^{c}$	$\lambda_{ ext{TPA}}$	$\delta_{\mathrm{TPA}}{}^l$	$\delta_{\mathrm{TPA}}{}^{c}$	$\lambda_{ ext{TPA}}$	$\delta_{\mathrm{TPA}}{}^l$	$\delta_{\mathrm{TPA}}{}^c$		$\lambda_{ ext{TPA}}$	$\delta_{\mathrm{TPA}}{}^l$	$\delta_{\mathrm{TPA}}{}^{c}$	
494	$0,\!01$	0,01	558	$0,\!06$	0,09	550	$0,\!97$	0,79		654	$12,\!93$	9,21	
486	0,26	$0,\!31$	506	$1,\!47$	1,22	534	$0,\!02$	$0,\!03$		572	$0,\!00$	$0,\!00$	
482	$0,\!04$	$0,\!05$	408	$0,\!04$	$0,\!07$	518	$0,\!01$	$0,\!04$		486	$0,\!63$	$0,\!43$	
452	$0,\!01$	$0,\!00$	380	$0,\!07$	$0,\!03$	502	$2,\!10$	$1,\!60$		448	9,30	$6,\!15$	
428	0,20	$0,\!16$	378	$0,\!41$	0,23	460	$0,\!03$	$0,\!02$		428	$1,\!29$	$0,\!95$	
420	$0,\!11$	$0,\!12$	372	$0,\!10$	$0,\!14$	432	$0,\!65$	$0,\!46$		412	$0,\!00$	$0,\!01$	
366	$0,\!06$	$0,\!05$	368	$0,\!02$	$0,\!03$	418	$0,\!81$	$0,\!61$		392	$0,\!00$	$0,\!00$	
364	$0,\!36$	$0,\!28$	338	$1,\!18$	$1,\!02$	406	$12,\!93$	8,94		392	$0,\!04$	$0,\!06$	
348	$0,\!34$	$0,\!22$	336	$0,\!02$	$0,\!03$	384	$0,\!00$	$0,\!00$		384	$0,\!35$	0,52	
334	0.02	0.01	334	0.25	0.28	374	0.38	0.28		378	0.06	0.08	

Tabela 6.4: Seção de choque de absorção de dois fótons, δ_{TPA} (10⁴ u.a.), para por amidinas para eventos utilizando luz linear e circularmente polarizada. Os comprimentos de onda λ estão expressos em unidades de nm.

^{*l*} Polarização linear, ^{*c*} polarização circular.

6.5 Absorção de Dois fótons

Tabela 6.5: Seção de choque para o processo de absorção de dois fótons, δ_{TPA} (10⁴ u.a.), para DFT/6-31^{**}G⁺⁺ para os derivados da benzamidina, utilizando luz linear e circularmente polarizada. Os comprimentos de onda λ estão expressos em unidades de nm.

MPA			MPA^{+1}			PBA				PBA^{+2}			
$\lambda_{ ext{TPA}}$	$\delta_{\mathrm{TPA}}{}^l$	$\delta_{\mathrm{TPA}}{}^{c}$	$\lambda_{ ext{TPA}}$	$\delta_{\mathrm{TPA}}{}^l$	$\delta_{\mathrm{TPA}}{}^{c}$	$\lambda_{ ext{TPA}}$	$\delta_{\mathrm{TPA}}{}^{l}$	$\delta_{\mathrm{TPA}}{}^{c}$		$\lambda_{ ext{TPA}}$	$\delta_{\mathrm{TPA}}{}^l$	$\delta_{\mathrm{TPA}}{}^{c}$	
506	0,02	0,01	588	4,71	$\overline{3,\!66}$	536	0,00	0,00		542	0,00	0,00	
486	$0,\!18$	$0,\!17$	538	$0,\!03$	$0,\!02$	530	$0,\!72$	0,74		480	$0,\!00$	$0,\!00$	
472	0,06	$0,\!07$	460	$0,\!03$	$0,\!02$	522	$0,\!00$	$0,\!00$		436	$0,\!16$	$0,\!25$	
460	0,08	0,09	414	$0,\!001$	$0,\!01$	510	$1,\!89$	$1,\!54$		436	$0,\!24$	$0,\!36$	
448	$1,\!66$	$1,\!42$	384	$5,\!22$	$3,\!36$	506	$0,\!00$	$0,\!00$		420	$0,\!34$	$0,\!51$	
430	$0,\!04$	$0,\!03$	382	$0,\!41$	$0,\!35$	472	$0,\!05$	$0,\!03$		396	7,92	$5,\!64$	
390	0,06	$0,\!08$	376	$0,\!34$	$0,\!49$	464	$0,\!00$	$0,\!00$		386	$0,\!00$	$0,\!00$	
368	$1,\!18$	$0,\!80$	358	$0,\!03$	$0,\!05$	448	$0,\!00$	$0,\!00$		376	$0,\!00$	$0,\!00$	
348	0,71	0,53	350	$0,\!28$	$0,\!16$	434	$0,\!00$	$0,\!00$		374	$0,\!14$	$0,\!12$	
336	$0,\!01$	$0,\!01$	342	$0,\!01$	$0,\!01$	432	$0,\!15$	0,10		362	$0,\!00$	$0,\!00$	

¹ Polarização linear, ^c polarização circular.

6.5 Absorção de Dois fótons

Os comprimentos de onda a estas expressos em unidades de nín.													
PSA			PSA^{+2}					PTA		PTA^{+2}			
$\lambda_{ ext{TPA}}$	$\delta_{\mathrm{TPA}}{}^l$	$\delta_{\mathrm{TPA}}{}^{c}$	$\lambda_{ ext{TPA}}$	$\delta_{\mathrm{TPA}}{}^l$	$\delta_{\mathrm{TPA}}{}^{c}$		$\lambda_{ ext{TPA}}$	$\delta_{\mathrm{TPA}}{}^l$	$\delta_{\mathrm{TPA}}{}^{c}$	$\lambda_{ ext{TPA}}$	$\delta_{\mathrm{TPA}}{}^{l}$	$\delta_{\mathrm{TPA}}{}^{c}$	
666	0,23	0,18	740	$0,\!03$	0,00		712	$0,\!47$	$0,\!31$	810	$0,\!05$	$0,\!05$	
592	$0,\!65$	$0,\!48$	650	196,20	$132,\!60$		652	13, 17	8,79	734	$22,\!59$	$17,\!34$	
588	$31,\!20$	21,51	580	$0,\!00$	$0,\!00$		588	22,77	$15,\!21$	656	$173,\!40$	112,50	
568	44,40	$29,\!67$	580	$0,\!79$	$0,\!97$		572	0,70	$0,\!41$	612	0,22	$0,\!22$	
548	5,85	$3,\!90$	550	$0,\!07$	$0,\!05$		566	32,70	$20,\!76$	572	$0,\!08$	$0,\!12$	
544	$0,\!46$	$0,\!65$	504	$43,\!50$	$28,\!92$		530	$3,\!81$	3,03	568	$0,\!12$	$0,\!07$	
542	9,03	$6,\!15$	504	$16,\!41$	$11,\!04$		528	0,79	$0,\!82$	562	2,21	$2,\!94$	
496	$100,\!80$	68, 10	502	$19,\!98$	$13,\!80$		526	$4,\!89$	$3,\!84$	554	2,11	64,20	
484	$1,\!48$	$0,\!99$	498	$0,\!18$	0, 19		492	47,10	$31,\!80$	520	$64,\!20$	43,20	
482	$4,\!17$	2,85	496	$0,\!01$	$0,\!01$		488	$1,\!85$	$1,\!27$	506	6,09	$4,\!20$	

Tabela 6.6: Seção de choque para o processo de absorção de dois fótons, δ_{TPA} (10⁴ u.a.), para DFT/6-31^{**}G⁺⁺ para os derivados da benzamidina utilizando luz linear e circularmente polarizada. Os comprimentos de onda λ estão expressos em unidades de nm.

¹ Polarização linear, ^c polarização circular.

Figura 6.14: Espectro simulado do processos de absorção de dois fótons utilizando luz linearmente e circularmente polarizada para a molécula de benzamidina neutra e protonada.

[!htb] [!htb] [!htb] [!htb]

As transições possíveis que ocorrem nos processos de OPA envolvendo estados ocupados (HOMO – N, N=0,1,2,...) e não ocupados (LUMO + N, N=0,1,2,...), podem ser estimados através da diferença de energia entre esses orbitais. Serão consideradas apenas transições envolvendo orbitais π , como visto na Tab. 6.7. Os orbitais envolvidos nestas absorções de HOMO \rightarrow LUMO correspondem a transições eletrônicas de orbitais ligantes amidínicos para carbonos e nitrogênios fenílicos. A transição HOMO – 1 \rightarrow LUMO occorre entre orbitais do carbono fenílico próximos aos grupos amidina para os próprios orbitais amidínicos. As transições eletrônicas HOMO – 1 são provenientes de orbitais não ligantes para ligantes nos carbonos fenílicos. Os cálculos de seção de choque e, conseqüêntemente, energia de excitação foram conduzidos para os 16 primeiros estados de transição. Portanto,

Figura 6.15: Espectro simulado do processos de absorção de dois fótons utilizando luz linearmente e circularmente polarizada para a molécula de p-vinilbenzamidina neutra e protonada.

algumas possíveis transições não poderam ser identificadas dentre estas primeiras.

Em geral, orbitais HOMO pertencem ao grupo amidínico e são do tipo $\pi(C - N)$ e $p_{\pi}(N)$, enquanto orbitais LUMO são somente formados por orbitais π anti-ligantes de átomos de N e C. A transição de HOMO \rightarrow LUMO é uma transição muito forte e permitida por regra de seleção e envolve orbitais π . Os orbitais HOMO - 1 envolvem orbitais σ ligante e anti-ligante de C, C - N e C - H. Uma transição também esperada ser forte ocorre entre este orbital HOMO - 1 e um orbital LUMO. O orbital HOMO - 2 é um orbital $\pi(C - N)$ e $p_{\pi}N$.

A benzamidina e a metoxibenzamidina apresentam orbitais semelhantes envolvendo, conseqüêntemente, transições semelhantes. A benzamidina apresenta fortes transições entre dois orbitals $\pi(C - C)$, anti-ligantes entre eles com relação ao grupo benzeno, para orbitais $\pi(C)$ anti-ligantes e para orbitais π da amidina. A transferên-

Figura 6.16: Espectro simulado do processos de absorção de dois fótons utilizando luz linearmente e circularmente polarizada para a molécula de *p*-metoxibenzamidina neutra e protonada.

cia de elétrons de benzeno para benzeno e de amidina para amidina, podem ser ou não bastante fortes, como ocorre nas transições de $HOMO - 1 \rightarrow LUMO + 1$ com as moléculas de metoxi-benzamidina e bisbenzamidina protonadas e, na furamidina, também protonada, em transições do tipo $HOMO - 2 \rightarrow LUMO + 2$. Na tabela 6.7 podemos observar as energias gastas para as quatro primeiras possíveis transições de orbitais ocupados para orbitais vazios.

109

Figura 6.17: Espectro simulado do processos de absorção de dois fótons utilizando luz linearmente e circularmente polarizada para a molécula de pbisamidina-benzeno neutra e protonada.

Figura 6.18: Espectro simulado do processos de absorção de dois fótons utilizando luz linearmente e circularmente polarizada para a molécula de pestilbamidina neutra e protonada.

Figura 6.19: Espectro simulado do processos de absorção de dois fótons utilizando luz linearmente e circularmente polarizada para a molécula de berenil neutra e protonada.

	Energia de transição										
	HOMO→LUMO		HOMO	\rightarrow LUMO+1	HOMO	D-1→LUMO	$HOMO-1 \rightarrow LUMO+1$				
	Obs.	Esp. (n)	Obs.	Esp. (n)	Obs.	Esp. (n)	Obs.	Esp. (n)			
PA	0,20	0,20~(4)	0,22	0,22~(6)	0,22	0,21~(5)	0,24	0,25~(7)			
PA^{+1}	$0,\!19$	$0,\!18\ (2)$	0,25	0,25~(7)	0, 19	0,23~(3)	0,25	0,27~(8)			
VPA	$0,\!18$	$0,\!18\ (3)$	0,21	0,21~(6)	0, 19	0,20~(5)	0,23	0,22~(8)			
VPA^{+1}	$0,\!16$	0,16~(2)	0,21	0,21~(5)	0, 19	0, 19~(3)	0,25	0,24~(11)			
MPA	0,20	0,20 (5)	0,21	0,21~(6)	0,23	0,22~(7)	0,23	0,25~(8)			
MPA^{+1}	$0,\!16$	0,17~(2)	0,22	0,22~(4)	0,25	0,25~(9)	$0,\!31$	0,29~(16)			
PBA	$0,\!19$	0,19(12)	0,24	0,24~(9)	0,23	0,22~(5)	0,28	0,28~(16)			
PBA^{+2}	$0,\!19$	0,19~(2)	0,24	0,24~(8)	0,20	0,21~(3)	0,26	$0,25\ (11)$			
PSA	$0,\!15$	0,14~(1)	0,20	$0,20\ (11)$	$0,\!17$	0,17~(7)	0,22	- (16)			
PSA^{+2}	$0,\!13$	0,14~(2)	0,16	0,16~(3)	$0,\!18$	0,18~(6)	0,20	$0,21\ (12)$			
ΡTΑ	$0,\!15$	$0,\!15~(3)$	0,20	0,20~(16)	$0,\!17$	0,17~(7)	0,22	- (>16)			
PTA^{+2}	$0,\!14$	$0,\!14~(3)$	0,16	0,16~(5)	$0,\!15$	0,15~(4)	$0,\!17$	0,16 (8)			

Tabela 6.7: Energia de excitação para as quatro primeiras transições entre orbitais ocupados (HOMO) e virtuais (LUMO), em u.a..

 $\overline{\mathrm{Obs.}}$ = energia observada por diferença de energias orbitais transição, Esp. = energia esperada de acordo com estados de transição calculados, n = número do estado.

Capítulo 7

Considerações Finais

Grupos boratos $-BO_2$ presentes em ácido borônico e catecóis borano podem substituir grupos nitro (NO₂) em materiais moleculares que apresentam boas respostas ONL. Isso é devido às características de retirador de elétrons apresentadas por esse grupo. Os catecóis borano $-BO_2C_6H_4$ possuem a vantagem de permitir que substituições químicas de interesse possam ser efetuadas no anel aromático. Essas substituições podem ser importantes para a obtenção de compostos organoboranos solúveis em solventes de interesse ou a necessidade de se criar efeitos estéricos para proteger algum centro especial na molécula. Também podem se fazer necessárias particulares substituições para que se torne uma molécula assimétrica numa molécula centrossimétrica. Estruturas moleculares centrosimétricas não são adequadas para prospecções tecnológicas da ONL que dependem da primeira hiperpolarizabilidade, pois essas terão todas as componentes do tensor $\beta(\omega)$ nulas.

Um outro tipo de material que apresenta boas respostas óticas não lineares são pequenos clusters de organometálicos. Nos nossos estudos com catecóis de Al e Ga, podemos observar que a presença de metais podem aumentar a extensão da conjugação do sistema de elétrons π de uma cadeia orgânica pela interação com os seus orbitais d, como Al (4d) e Ga (5d). Nesses sitemas são observados aumentos nos valores calculados de α e β , se comparados com os resultados apresentados pelos compostos análogos contendo o átomo de boro [B (3d)].

Em geral, as polarizabilidades e primeiras hiperpolarizabilidades calculadas pelo método HF de derivados alifáticos saturados e insaturados do ácido borônico são muito menores que as calculadas para a *para*-nitroanilina (PNA). Uma melhor performance é contudo obtida para os derivados alifáticos insaturados e aromáticos contendo grupos retiradores ou doadores de elétrons posicionados em extremidades opostas e conjugadas com o fragmento borato $-B(OH_2)$. Para os derivados catecóis são observados uma maior deslocalização de elétrons π e o conseqüente aumento dos valores calculados de β . Por exemplo, a extensão da conjugação pela adição do grupo trans-(trans-4-amino)-1,3-butadieno ao catecol borato.

Nos processos de absorção de dois fótons por derivados análogos da bisbenzamidina são observados alguns efeitos interessantes do aumento da seção de choque (δ_{TPA}) com o aumento do comprimento do sistema conjugado de elétrons π , em especial pela inserção de grupos orgânicos doadores de elétrons como o fragmento metoxi na posição *para* na benzamidina. Os maiores valores de δ_{TPA} são observados quando existe uma substituição do grupo benzênico central pelo núcleo base estilbeno contendo dois aneis benzênicos em posição *trans* separados por uma unidade vinílica insaturada. Essa estrutura permite um aumento no crescimento do comprimento da conjugação π que, pela adição de dois grupos terminais amidínicos forma um sistema D- π -D. Dessa conformação molecular, a configuração eletrônica do sistema deslocalizado π confere um aumento de 104 vezes para δ_{TPA} comparado ao valor da seção de choque da molécula de referência, a benzamidina. De interesse prático para as amidinas presentes em solução, observamos que as bisamidinas di-protonadas protonadas apresentam valores de δ_{TPA} muito maiores do que os correspondentes parentes neutros.

Referências Bibliográficas

- R. W. Munn, Principles and Applications of Nonlinear Optical Materials, Blackie Academic and Professional, London, 1993. Cap. 2.
- [2] P. A. Franken, A. E. Hill, C. W. Peters e G. Weinreich, Phys. Rev. Lett., 7 (1961), 118.
- [3] D. Arivuoli, Pramana Journal of Physics, 57 (2001), 871.
- [4] P. T. C. So, C. Y. Dong, B. R. Masters, K. M. Berland, Annual Review Biomedic Engeneer, 2 (2000), 399.
- [5] C-K. Wang, P. Macak, Y. Luo, H. Ågren, J. Chem. Phys., 114 (2001), 9813.
- [6] O. Rúbio-Pons, Y. Luo, H. Ågren, J. Chem. Phys., 124 (2006), 124.
- [7] A. Kraft, L. Peters, H. R. Powell, *Tetrahedron*, **58** (2002), 3499.
- [8] W. D. Wilson, F. A Tanious, D. Ding., A Kumar, D. W. Boykin, P. Colson, C. Houssier, C. Bailly, J. Am. Soc., 120 (1998), 10310.
- [9] P. W. Atkins, Molecular Quantum Mecanics, Oxford Student Edition, 1998. Cap 13 e 14.
- [10] D. M. Bishop, *Reviews of Modern Physics*, **62** (1990), 343.
- [11] Y. Luo, Response Theory and Calculations of Molecular Hyperpolarizabilities. Linköping: Linköping Studies in Science and Tchnology, 1994. 95p. (Licenciature Thesis)
- [12] W. M. McClain, J. Chem. Phys., 55 (1971), 2789.
- [13] P. Hohenberg, W. Kohn, *Phys. Rev. B*, **136** (1964), 864.

REFERÊNCIAS BIBLIOGRÁFICAS REFERÊNCIAS BIBLIOGRÁFICAS

- [14] L. H. Thomas, Proc. Camb. Phil. Soc., 23 (1927), 542.
- [15] E. Fermi, Rend. Accad. Lincei., 6 (1926), 602.
- [16] W. Khon, L. J. Sham, *Phys. Rev. A*, **140** (1965), 1133.
- [17] D. R. Kanis, M. A Ratner, T. J. Marks, *Chem. Rev.*, **94** (1994), 195.
- [18] D. F. Eaton, G. R. Meredith, J. S. Miller, Adv. Mater. (Wenheim Fed. Rep. Ger.), 4 (1992), 45.
- [19] T. Helgaker, K. L. Bak, H. Ågren, H. J. Jensen, P. Jörgensen, H. Koch, K. V. Mikkelsen, J. Olsen, K. Ruud, P. R. Taylor, and O. Vahtras: *DALTON*, a second-order MCSCF molecular property program, 1995.
- [20] V. Rassolov, J. A. Pople, M. Ratner, P. C. Redfern, L. A. Curtiss, J. Comp Chem., 22 (2001), 976.
- [21] A. J. Sadlej, Coll. Czech. Chem. Commun., 53 (1988), 1995.
- [22] S. R. Marder, D. N.Beratan, L.-T. Cheng, *Science*, **252** (1991), 103.
- [23] A. A. Hasanein, In: Modern Nonlinear Optics, Part 2 (Advanced Chemical Physics), M. Evans, S. Kielich (Ed.), seriesV. LXXXV, John Wiley & Sons, 1993.
- [24] P. Becker, Advanced Materials, **10** (1998), 979.
- [25] D. A. Keszler. Borates: Solid State Chemistry. In: Encyclopedia of Inorganic Chemistry., ed. Chichester: John Wiley & Sons, 1994, p.318.
- [26] T. Sasaki, Y. Mori, I. Kuroda, S. Nakajima, K. Yamaguchi, S. Watanabe, Acta Crystallogr. C, 51 (1995), 2222.
- [27] M. B. Procópio. Cálculos Quânticos de Propriedades Oticas Não Lineares de Fragmentos Boratos [B_nO_{mq}⁻]. 2000. Dissertação de mestrado, Departamento de Química - ICEx - UFMG, Belo Horizonte.
- [28] N. J. Long, Angew. Chem. Int. Ed. Engl., **34** (1995), 21.

- [29] S. Sitha, J. L. Rao, K. Bahanuprakash, B. M. Cloudary, J. Phys. Chem. A, 105 (2001), 8727.
- [30] N. N. Greenwood, Boron Oxygen Compounds. In: Comprehensive Inorganic Chemistry, 2nd. ed. [Oxford] Pergamon Press: distributeby Compendium Publis, 1973, p.665.
- [31] S. Arimori, M. L. Bell, C. S. Oh, K. A. Frimat, T. D. James, *Chem. Commun.*, 18 (2001), 1836.
- [32] D. G. Hall, Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine, ed. Wiley-VCH, 2005, p.1.
- [33] F. A. Cotton, G. Wilkinson, C. A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th. ed., New York: Jonh Wiley & Sons, 1999, p.131.
- [34] W. H. Zachariansen, Acta Crystallogr., 7 (1954), 305.
- [35] N. L. Allinger, Organic Chemsitry, 3rd. Ed., New York: Worth Publishers, 1971
- [36] W. A. Bueno, Manual de Espectroscopia Vibracional, Mc. Grawl-Hill, 1989.
- [37] C. Lambert, S. Staler, G. Burhill, C. Brauchle, Angw. Chem. Int. Ed. Engl., 35 (1996), 644.
- [38] F. Sim, S. Chin, M. Dupuis, J. E. Rice, J. Phys. Chem., 97 (1993), 1158.
- [39] C. Daniel, M. Dupuis, Chem. Phys. Lett., **171** (1990), 209.
- [40] J. Cioslowski, J. Am. Chem. Soc., **111** (1989), 8333.
- [41] J. L. Oudar, D. S. Chemla, J. Chem. Phys., 66 (1977), 2664.
- [42] S. Neidle, D. E. Thurston, *Nature* **5** (2005), 285.
- [43] Y-H. Sun , K. Zhao, C-K. Wang , Y. Luo, Y. Yan, X-T. Tao, M-H Jiang, Chem. Phys. Let., **394** (2004), 176.
- [44] B. Nguyen, M. P. H. Lee, D. Hamelberg, A. Joubert, C. Bailly, R. Brun, S. Neidle, W. D. Wilson, J. Am. Chem. Soc., 124 (2002), 13680.

- [45] A. D. Beck, J. Chem. Phys., 98 (1993), 5648.
- [46] C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B*, **37** (1998), 785.
- [47] D. G. Brown, M. R. Sanderson, J. V. Skelly, T. C. Jenkins, T. Brown, E. Garman, D. I. Stuart, S. Neidle, *EMBO J.*, 9 (1990), 1334. M. Albota, D. Beijone, J-L. Bredás, J. E. Ehrlich, J-Y Fu, A. Heikal, *et al.*, *Science*, 281 (1998), 1653.