Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Química

Fabiano Magalhães

Síntese e Caracterização de Óxidos de Ferro e Compósitos para Aplicações no Tratamento Redox de Efluentes Aquosos

> Belo Horizonte 2008

UFMG. ICEx/DQ. 702^a T. 296^a

Fabiano Magalhães

Síntese e Caracterização de Óxidos de Ferro e Compósitos para Aplicações no Tratamento Redox de Efluentes Aquosos

> Tese apresentada ao Departamento de Química do Instituto de Ciências Exatas da Universidade Federal de Minas Gerais como requisito parcial para a obtenção do título de Doutor em Ciências – Química.

Universidade Federal de Minas Gerais Belo Horizonte 2008

Este trabalho foi desenvolvido sob a orientação do Prof. **Dr. Rochel Montero Lago** e sob a coorientação do Prof. **Dr. Luis C. A. Oliveira** (UFLA).

Dedico este trabalho aos meus pais Francisco e Ivete e à minha querida namorada Tânia, por todo amor, carinho, compreensão e confiança que tiveram comigo. Obrigado.

Agradecimentos

A Deus por ter me concedido saúde, determinação e oportunidade de trabalhar junto a pessoas maravilhosas que muito me ensinaram.

Ao meu orientador e amigo Rochel M. Lago pela confiança e paciência depositada em mim e pela dedicação demonstrada durante a realização deste trabalho.

Ao Luís C. A. Oliveira, meu co-orientador, por me "socorrer" na ausência do prof. Rochel, pelas brilhantes idéias e por me receber em seu laboratório em Lavras.

Aos professores e amigos José Danilo Ayala e Maria Helena Araújo e aos companheiros de laboratório Bituca, Flávia, Luis Cláuzio, Marcelo, Valéria, João, Sue Ellen, Miguel, Sabrina, Patrícia, Carla, Lívia, Érika, Jamerson, Juliana, Francisco, Mariana, Aline, Joel, Rafael e Daniele pelo agradável ambiente de trabalho, pelos bons momentos compartilhados e pela ajuda que cada um deu para a realização deste trabalho.

Em especial, agradeço a Sue Ellen, Márcio e Maraísa pela ajuda na realização de experimentos e análises de caracterização dos materiais.

À minha namorada Tânia, aos meus pais Francisco e Ivete e aos amigos Leandro, Helena, Eduardo, Juliano, Fabiana, Flávia, Maria Cláudia, Luís Eduardo, Ludmila, Elaine, Viviane, Élison, Carnot e Suely pelos excelentes finais de semana em Lavras.

Ao prof. Dr. José Domingos Fabris por nos conceder gentilmente a chave de seu laboratório e pelas análises de espectroscopia Mössbauer.

À Profa. Maria Irene Yoshida pela simpatia e paciência em nos receber no Laboratório de Análise Térmica e pela realização das análises termogravimétricas.

Ao Prof. Francisco A. R. Barbosa por ceder o equipamento para a realização das análises de COT no Laboratório de Limnologia do ICB – UFMG e a aluna Simone pela paciência e ajuda na realização das análises.

A todos os professores e funcionários do Departamento de Química da UFMG que de alguma forma contribuíram para o desenvolvimento deste trabalho.

Ao CNPq pelo apoio financeiro.

LISTA DE FIGURAS	Ι
LISTA DE TABELAS	IX
ABREVIATURAS e SÍMBOLOS	XI
RESUMO GERAL	XII
ABSTRACT	XIII
CAPÍTULO 1. INTRODUÇÃO GERAL	01
1.1. Contaminação ambiental por poluentes orgânicos	02
1.2. Processos Oxidativos Avançados	03
Sistema Fenton	04
Ozonólise	05
Fotocatálise	05
1.3. Óxidos de ferro e suas propriedades	09
Magnetita	09
Maghemita	10
Hematita	10
Goethita	11
1.4. Espectroscopia Mössbauer e Difração de Raios-X: Fundamentos	
Teóricos	13
Espectroscopia Mössbauer	13
Difração de Raios-X	16
1.5. Objetivos deste trabalho	19
1.6. Referências	21
CAPÍTULO 2. MAGNETITAS SUBSTITUÍDAS COM CROMO	
(Fe _{3-x} Cr _x O ₄): SÍNTESE, CARACTERIZAÇÃO E ATIVIDADE NA	
REAÇÃO FENTON	24
2.1. Introdução	26
2.1.1. Sistemas Fenton	26
2.1.2. Sistemas Fenton Heterogêneo	27
2.1.3. Trabalho Realizado no Grupo de Pesquisa DQ-UFMG com Sistemas	

Índice

Fenton Heterogêneo	28
2.1.4. Magnetitas substituídas (Fe _{3-x} M _x O ₄)	29
2.2. Experimental	32
2.2.1 Síntese dos catalisadores Fe _{3-x} Cr _x O ₄	32
2.2.2. Caracterização dos catalisadores Fe _{3-x} Cr _x O ₄	32
Análise da Composição das Magnetitas por Espectrometria de Absorção	
Atômica com chama	32
Espectroscopia Mössbauer	33
Difração de raios-X	33
Termogravimetria	33
Medidas de Magnetização Espontânea	33
Área superficial BET	34
Espectroscopia fotoeletrônica de raios-X	34
2.2.3. Adsorção dos Corantes Azul de metileno e Vermelho Drimaren	34
2.2.4. Testes catalíticos	35
Reações de oxidação de matéria orgânica em meio aquoso	35
Reações de decomposição do H ₂ O ₂	36
2.2.5. Estudos Mecanísticos Preliminares por Eletrospray	36
2.3. Resultados e Discussão	38
2.3.1. Caracterização dos catalisadores Fe _{3-x} Cr _x O ₄	38
Composição Química	38
Espectroscopia Mössbauer	38
Difração de Raios –X	42
Medidas de Magnetização Espontânea	45
Termogravimetria	46
2.3.2. Estudo das transições de fases	48
2.3.3. Propriedades texturais	53
2.3.4. Testes catalíticos	55
I - Reações de decomposição do H ₂ O ₂	57
II - Reações do tipo Fenton Heterogêneo	63
III - Efeito do tratamento térmico na atividade catalítica das magnetitas	

Fe _{3-x} Cr _x O ₄	69
2.3.5. Estudos preliminares dos intermediários da reação Fenton por	
Eletrospray-Espectrometria de Massas	72
2.3.6. Proposta preliminar de mecanismo das reações de H ₂ O ₂ na presença de	
Fe _{3-x} Cr _x O ₄	75
2.4. Conclusões	78
2.5. Referências	79
CAPÍTULO 3. SISTEMAS ALTAMENTE REATIVOS E REGENERÁVEIS	
BASEADOS EM COMPÓSITOS CARVÃO/ÓXIDOS DE FERRO PARA	
APLICAÇÕES AMBIENTAIS	81
3.1. Introdução	73
3.1.1 Compostos de ferro em aplicações ambientais	83
3.1.2 Contaminação ambiental por Cr (VI)	83
3.1.3 Processos para a remediação ambiental do Cr (VI)	84
I – Processo de adsorção do Cr (VI)	85
II – Processos de redução do Cr (VI)	85
Barreiras Permeáveis reativas	86
3.1.4 Alcatrão	88
3.2. Objetivos específicos	90
3.3. Experimental	91
3.3.1 Síntese dos compósitos piche/óxidos de ferro	91
3.3.2 Caracterização dos compósitos piche/óxidos de ferro	91
Microscopia Eletrônica de Varredura (MEV)	92
Espectroscopia Raman	92
3.3.3. Reações	92
Reações de redução do Cr (VI)	92
Testes de dessorção do Cr (III)	93
Reações de oxidação de matéria orgânica em meio aquoso	93
Reações de decomposição do H2O2	93
3.4. Resultados e discussão	94
3.4.1 Caracterização dos compósitos piche/óxidos de ferro	94

Termogravimetria	94
Espectroscopia Mössbauer	97
Difração de raios-X	103
Medidas de magnetização espontânea	106
Medidas de área superficial BET	107
Espectroscopia Raman	109
Microscopia eletrônica de varredura	111
3.4.2 Reações utilizando os compósitos piche/óxidos de ferro	113
I - Reações de redução do Cr (VI)	113
II - Reações de decomposição do H ₂ O ₂	122
III - Testes de adsorção do corante azul de metileno	124
IV - Reações do tipo Fenton heterogêneo	126
3.5. Conclusões	128
3.6. Referências	129
CAPÍTULO A ÓXIDOS DE FERRO «-E0-O- «E0-O- F0OOH 0	
CATTOLO 4. OADOS DE FERRO u -re ₂ O ₃ , r -re ₂ O ₃ , reoon e	
CATITOLO4. OAIDOSDE FERRO $a-re_2O_3$, γ -re_2O_3, $recontrectionFe3O4:SÍNTESE,CARACTERIZAÇÃOEREAÇÕES$	
Fe ₃ O ₄ : SÍNTESE, CARACTERIZAÇÃO E REAÇÕES FOTOCATALÍTICAS	132
Fe ₃ O ₄ : SÍNTESE, CARACTERIZAÇÃO E REAÇÕES FOTOCATALÍTICAS	132 134
CARTICLO 4. OAIDOS DE FERRO 0.4FE2O3, 74E2O3, 74E3, 74E	132 134 134
Fe ₃ O ₄ : SÍNTESE, CARACTERIZAÇÃO E REAÇÕES FOTOCATALÍTICAS	 132 134 134 136
Fe ₃ O ₄ : SÍNTESE, CARACTERIZAÇÃO E REAÇÕES FOTOCATALÍTICAS	 132 134 134 136
 Fe₃O₄: SÍNTESE, CARACTERIZAÇÃO E REAÇÕES FOTOCATALÍTICAS	 132 134 134 136 136
 Fe₃O₄: SÍNTESE, CARACTERIZAÇÃO E REAÇÕES FOTOCATALÍTICAS	 132 134 136 136 136
CARTICLO 4. OADOS DE TERRO α -Fe ₂ O ₃ , p-Fe ₂ O ₃ , FeOON eFe ₃ O ₄ :SÍNTESE,CARACTERIZAÇÃO EREAÇÕESFOTOCATALÍTICAS	 132 134 136 136 136 136 136
CARTICLO 4. OAIDOS DE FERRO d'HE2O3, 9FE2O3, 9FE2O3, FECON EFe3O4:SÍNTESE,CARACTERIZAÇÃOEREAÇÕESFOTOCATALÍTICAS	 132 134 136 136 136 136 136 136 137
Fe3O4:SÍNTESE,CARACTERIZAÇÃOEREAÇÕESFOTOCATALÍTICAS	 132 134 136 136 136 136 137 138
CALITOLO4.OALDOSDEFERROCHEQO3,FEQ03,FECOLIEFe3O4:SÍNTESE,CARACTERIZAÇÃOEREAÇÕESFOTOCATALÍTICAS	 132 134 136 136 136 136 137 138 138
CATITOLO 4. OADOS DE FERRO d'ITE203, PEEOR EFe3O4:SÍNTESE,CARACTERIZAÇÃOEREAÇÕESFOTOCATALÍTICAS	 132 134 136 136 136 136 137 138 138 138
CALIFOLO4. OALDOSDEFERRO $\alpha Tre203$, $\gamma Tre203$,	 132 134 136 136 136 136 137 138 138 138
Fe3O4:SÍNTESE,CARACTERIZAÇÃOEREAÇÕESFOTOCATALÍTICAS	 132 134 136 136 136 136 137 138 138 138 138 138

4.3.1. Caracterização dos óxidos de ferro	
Espectroscopia Mössbauer	
Difração de Raios-X	
Medidas de Magnetização Espontânea	
Área superficial BET	
Termogravimetria	
4.3.2. Adsorção do Corante Têxtil Vermelho Drimaren	
4.3.3. Reações Fotocatalíticas	
I – Reações realizadas variando a massa dos catalisadores	
II - Reações realizadas variando o pH da solução	
Proposta preliminar de mecanismo de reação	
4.4. Conclusões	•••••
4.5. Referências	•••••
CAPÍTULO 5. SÍNTESE, CARACTERIZAÇÃO E ATIVID	DADE
FOTOCATALÍTICA DE COMPÓSITOS ÓXIDOS	DE
FERRO/TiO ₂	•••••
5.1. INTRODUÇÃO	•••••
5.1.1. Estratégias para aumentar a eficiência do TiO ₂	
5.2. Experimental	•••••
5.2.1. Síntese dos compósitos Fe ₂ O ₃ /TiO ₂	
5.2.2. Redução dos compósitos Fe ₂ O ₃ /TiO ₂	
5.2.3. Caracterização dos compósitos Fe ₂ O ₃ /TiO ₂	
5.2.4. Testes catalíticos	
Reações fotocatalíticas	
5.3. Resultados e Discussão	•••••
5.3.1. Caracterização dos compósitos Fe ₂ O ₃ /TiO ₂	
Difração de Raios – X	
Espectroscopia Mössbauer	
Medidas de área superficial BET	
5.3.2. Testes catalíticos	

5.3.3. Caracterização do compósito 10 % Fe $_2O_3/TiO_2$ após tratado com H $_2$ a	
300, 400 e 500 °C	179
Espectroscopia Mössbauer	179
Difração de Raios – X	182
Reações fotocatalíticas realizadas com o compósito 10 % Fe ₂ O ₃ /TiO ₂	
tratado com H ₂ a 300, 400 e 500 °C	184
5.4. Conclusões	186
5.5. Referências	187
APÊNDICE	188
1. Trabalhos publicados em periódicos	189
2. Trabalhos apresentados em congressos	190

LISTA DE FIGURAS

Figura 1.1	Esquema representativo dos POA utilizados para a oxidação de	
	contaminantes orgânicos	03
Figura 1.2	Esquema de um semicondutor mostrando a BV, a BC e o "bandgap"	06
Figura 1.3	Representação esquemática da formação do par e-/h+ e geração de	
	radicais na superfície do semicondutor TiO ₂	07
Figura 1.4	Representação esquemática da formação e recombinação do par e^{-}/h^{+}	
	na superfície de um semicondutor	07
Figura 1.5	Representação da estrutura cristalina da magnetita	10
Figura 1.6	Representação da estrutura cristalina da hematita	11
Figura 1.7	Representação da estrutura cristalina da goethita	12
Figura 1.8	Representação esquemática da emissão de radiação gama pelo	13
	decaimento do ⁵⁷ Co para ⁵⁷ Fe	
Figura 1.9	Esquema de um arranjo experimental para espectroscopia Mössbauer	
	em modo de transmissão, indicando o movimento da fonte	14
Figura 1.10	Origem dos parâmetros hiperfinos e seus efeitos sobre os espectros	15
Figura 1.11	Representação esquemática da difração de raios-X entre dois planos	
	de átomos	17
Figura 1.12	Fluxograma representativo dos objetivos específicos deste trabalho	19
Figura 2.1	Fórmula estrutural dos corantes azul de metileno (AM) e vermelho	
	drimaren (VD)	35
Figura 2.2	Esquema representativo da montagem utilizada no experimento de	
	decomposição do H ₂ O ₂ .utilizando as magnetitas Fe _{3-x} Cr _x O ₄	36
Figura 2.3	Espectro Mössbauer obtido para a magnetita a temperatura ambiente	
	(25 ⁰ C)	39
Figura 2.4	Espectro Mössbauer obtido para as magnetitas $Fe_{3-x}Cr_xO_4$ (x = 0,07;	
	0,26; 0,42 e 0,51) a temperatura ambiente (25 0 C)	40
Figura 2.5	Razão B/A dos espectros Mössbauer das magnetitas $Fe_{3-x}Cr_xO_4$ em	
	função do teor de cromo	41
Figura 2.6	Difratograma obtido para magnetita pura e substituída com cromo	

	$(Fe_{3-x}Cr_xO_{4.})$	43
Figura 2.7	Difratograma expandido do pico mais intenso da magnetita pura e	
	substituída (Fe _{3-x} Cr _x O ₄)	43
Figura 2.8	Variação dos parâmetros de rede com a quantidade de cromo presente	
	na estrutura da magnetita	45
Figura 2.9	Valores de magnetização espontânea em função do teor de cromo na	
	estrutura espinélio	46
Figura 2.10	Curvas TG obtidas para a magnetita pura e substituídas com cromo	
	(Fe _{3-x} Cr _x O ₄) em atmosfera de ar	47
Figura 2.11	Curvas DTA obtidas para a série de magnetita Fe3-xCrxO4 em	
	atmosfera de ar	48
Figura 2.12	Espectros Mössbauers obtidos a temperatura ambiente para as	
	magnetitas X_{Cr} 0,07 e 0,51 tratadas a 270 e 600 ^{0}C	50
Figura 2.13	Distribuição de fase obtida a partir dos espectros Mössbauers das	
	magnetitas X _{Cr} 0,07 e 0,51 antes a após tratamento térmico realizado a	
	270 e 600 ^o C	52
Figura 2.14	Difratogramas obtidos para a série de magnetita Fe3-xCrxO4 após	
	tratamentos a 270 e 600 °C	53
Figura 2.15	Isoterma de adsorção/dessorção da série de magnetitas Fe _{3-x} Cr _x O ₄	54
Figura 2.16	Área superficial BET em função do teor de cromo na magnetita	55
Figura 2.17	Distribuição de poros para as magnetitas pura e substituída	
	$(Fe_{3-x}Cr_xO_4)$	56
Figura 2.18	Reações de decomposição do H2O2 pela série de catalisadores	
	Fe _{3-x} Cr _x O ₄	58
Figura 2.19	Valores da constante de velocidade de decomposição do H_2O_2	
	(k_{decomp}) em função do teor de cromo nas magnetitas	
	Fe _{3-x} Cr _x O ₄	59
Figura 2.20	Valores de $K_{decomp}(espec)$ em função do teor de cromo nas magnetitas	
	$Fe_{3-x}Cr_xO_4$	60
Figura 2.21	XPS obtidos para as magnetitas X _{Cr} 0,07; 0,26 e 0,51 antes e depois	
	das reações de decomposição do H ₂ O ₂	61

Figura 2.22	Valores de k_{decomp} em função da razão Cr/Fe superficial obtido por	
	XPS	63
Figura 2.23	Cinética de adsorção dos corantes VD (A) e AM (B) nas magnetitas	
	substituídas com cromo	64
Figura 2.24	Reações do tipo Fenton para a degradação dos corantes AM (A) e VD	
	(B) utilizando a série de magnetitas Fe _{3-x} Cr _x O ₄	65
Figura 2.25	Valores de k _{descol} obtidos através do tratamento cinético das reações	
	tipo Fenton utilizando os corantes AM (A) e VD (B)	66
Figura 2.26	Constante de velocidade específica calculados para as reações do tipo	
	Fenton utilizando as magnetitas Fe _{3-x} Cr _x O ₄ para descolorir os corantes	
	AM (A) e VD (B)	67
Figura 2.27	Espectros UVvisível obtidos para reações tipo Fenton utilizando a	
	magnetita X _{Cr} 0,07 para degradar os corantes AM (A) e VD (B)	68
Figura 2.28	COT removido em função do teor de cromo nas magnetitas	
	Fe _{3-x} Cr _x O ₄	69
Figura 2.29	Reações de decomposição do H2O2 utilizando as magnetitas	
	Fe _{3-x} Cr _x O ₄ tratadas termicamente a 270 0 C (A) e 600 0 C (B)	70
Figura 2.30	Valores de k_{decomp} das magnetitas Fe _{3-x} Cr _x O ₄ não tratadas	
	termicamente e tratadas a 270 °C e 600 °C	71
Figura 2.31	Valore de k _{descol} do corante AM em função do teor de cromo obtidos	
	em reações do tipo Fenton heterogêneo utilizando as magnetitas	
	Fe _{3-x} Cr _x O ₄ antes e após tratamento térmico (270 ⁰ C)	72
Figura 2.32	Espectros de massas com ionização por eletrospray obtidos para o	
	reagente fenol e para as reações realizadas com a magnetita X_{Cr} 0,07	
	após 1 e 3 horas	73
Figura 2.33	Espectros de massas com ionização por eletrospray obtidos para a	
	sulução de AM e após 1 hora de reação realizada com a magnetita X_{Cr}	
	0,07	74
Figura 2.34	Mecanismo proposto para a degradação do corante AM	75
Figura 2.35	Proposta de mecanismo radicalar para a ativação de H_2O_2 por Fe ²⁺ da	
-	magnetita	76

Figura 2.36	Proposta de mecanismo radicalar para a ativação de H_2O_2 por Fe^{2+} nas	
	magnetitas substituídas com cromo	77
Figura 3.1	Produtos e Rendimentos médios obtidos na carbonização da madeira e	
	na separação de seus subprodutos	89
Figura 3.2	Esquema representativo dos compósitos Piche/óxidos de ferro	
	sintetizados	90
Figura 3.3	Esquema representativo da síntese dos compósitos de carbono	
	impregnado em óxidos de ferro (Piche/óxidos de ferro)	94
Figura 3.4	Curvas TG obtidas em atmosfera de N2 para a fração piche pura e para	
	a mistura piche impregnada em hematita (piche/Fe ₂ O ₃)	95
Figura 3.5	Curvas TG obtidas em atmosfera de ar para os compósitos 1:1; 2:1 e	
	4:1 piche/óxidos de ferro produzidos a 400°, 600° e 800°C	96
Figura 3.6	Espectros Mössbauer obtido para os compósitos piche/óxidos de ferro	
	tratado a 400, 600 e 800 ⁰ C	99
Figura 3.7	Área subespectral relativa obtida para as fases de óxidos de ferro	
	presente nos compósitos piche/óxidos de ferro	102
Figura 3.8	Difratogramas obtidos para hematita pura e compósitos piche/óxidos	
	de ferro tratados a 400, 600 e 800 ⁰ C	104
Figura 3.9	Isotermas de adsorção/dessorção obtidas para a série de compósitos	
	Piche/óxidos de ferro	107
Figura 3.10	Área superficial BET obtidas para a série de compósitos em função da	
	temperatura de obtenção	108
Figura 3.11	Distribuição de poros obtida para a série de compósitos piche/óxidos	
	de ferro tratados a 400, 600 e 800 ⁰ C	109
Figura 3.12	Espectros Raman obtidos para a série de compósitos piche/óxidos de	
	ferro tratados a 400, 600 e 800 °C	110
Figura 3.13	Imagens de Microscopia eletrônica de Varredura obtida para a	
	hematita pura e para os compósitos 1:1; 2:1 e 4:1 piche/óxidos de	
	ferro tratados a 400 °C	112
Figura 3.14	Redução do Cr(VI) em solução utilizando Fe ⁰ comercial e os	
	compósitos piche/óxidos de ferro tratados a 400, 600 e 800 ⁰ C	113

Figura 3.15	Constantes de velocidade (A) e específica (B) para a redução do	
	Cr(VI) em função da relação alcatrão:óxidos de ferro nos compósitos	
	tratados a 800 ⁰ C	114
Figura 3.16	Representação esquemática do processo de dessorção do íon CrO_4^{2-} e	
	adsorção do PO ₄ ³⁻ na superfície do compósito piche/óxidos de ferro	115
Figura 3.17	Variação do pH durante a reação de redução do Cr(VI) utilizando o	
	compósito 4:1 piche/óxidos de ferro tratado a 800 ⁰ C	117
Figura 3.18	Reações de reutilização do compósito 4:1 piche/óxidos de ferro	
	tratado a 800 0 C e valores de k_{red} em função do número de reação	118
Figura 3.19	Reação com o compósito 4:1 piche/óxidos de ferro desativado e	
	regenerado e valores de k _{red} em função do número de reação	119
Figura 3.20	Espectros Mössbauer obtidos para o compósito 4:1 Piche/óxidos de	
	ferro tratado a 800 °C, antes e depois de ser utilizando em reação de	
	redução do Cr(VI) e depois de ser regenerado	120
Figura 3.21	Áreas subespectrais relativas obtidas para o compósito 4:1	
	piche/óxidos de ferro tratados a 800 ºC novo (antes da reação 1),	
	usado (depois da quinta reação) e regenerado	122
Figura 3.22	Reações de decomposição do H2O2 utilizando hematita pura e série de	
	compósitos piche/óxidos de ferro tratados a 400, 600 e 800 ⁰ C	123
Figura 3.23	Valores da constante de decomposição do H ₂ O ₂ (k _{dec}) em função da	
	temperatura de obtenção (400, 600 e 800 °C)	124
Figura 3.24	Cinética de adsorção do corante azul de metileno nos compósitos	
	piche/óxidos de ferro tratados a 400, 600 e 800 ⁰ C	125
Figura 3.25	Porcentagem de corante azul de metileno adsorvido na série de	
	compósitos piche/óxidos de ferro	126
Figura 3.26	Reações do tipo Fenton heterogêneo realizada para oxidação do	
	corante AM utilizando os compósitos piche/óxidos de ferro tratados a	
	400 e 600 ⁰ C	127
Figura 4.1	Esquema representativo do reator UV	139
Figura 4.2	Espectro Mössbauer obtido para a goethita a temperatura ambiente (A)	
	e distribuição de campo obtido para goethita (B)	140

Figura 4.3	Espectro Mössbauer obtido para a hematita (A), magnetita (B) e	
	maghemita (C) a temperatura ambiente	141
Figura 4.4	Difratograma de raios-X das amostras de goethita, hematita. magnetita	
	e maghemita	143
Figura 4.5	Isoterma de adsorção/dessorção (A) e distribuição de poros (B) obtida	
	para a goethita, hematita, magnetita e maghemita	145
Figura 4.6	Curva TG obtida para a magnetita em atmosfera de ar sintético	146
Figura 4.7	Curva TG obtida para a goethita em atmosfera de ar sintético	147
Figura 4.8	Análise TG/DTA da hematita obtida em atmosfera de ar sintético	148
Figura 4.9	Fórmula estrutural do corante vermelho drimaren	149
Figura 4.10	Quantidade de corante adsorvido pela goethita, hematita, magnetita e	
	maghemita	149
Figura 4.11	Quantidade de corante adsorvida nos catalisadores em função do pH	
	da solução (100 mL solução de VD 50 mg L^{-1} e 0,3 g L^{-1} de	
	catalisador)	150
Figura 4.12	Esquema representativo da adsorção do corante VD na superfície de	
	óxido de ferro	151
Figura 4.13	Reações de oxidação do corante VD utilizando diferentes quantidades	
	de goethita	152
Figura 4.14	Reações de oxidação do corante VD utilizando diferentes quantidades	
	de hematita	153
Figura 4.15	Reações de oxidação do corante VD utilizando diferentes quantidades	
	de magnetita	153
Figura 4.16	Reações de oxidação do corante VD utilizando diferentes quantidades	
	de maghemita	154
Figura 4.17	Valores de <i>k</i> _{descol} em função da concentração de catalisador	155
Figura 4.18	Reações de degradação do corante VD utilizando soluções com Fe ³⁺ 1,	
	5 e 10 mg L^{-1} ou 0,3 g L^{-1} de goethita	156
Figura 4.19	Reações branco (solução do corante e luz UV) em diferentes valores	
	de pH	157
Figura 4.20	Reações de degradação do VD utilizando 30 mg de goethita em	

	soluções de pH 2, 4, 7, 10 e 12	158
Figura 4.21	Reações de degradação do VD utilizando 30 mg de magnetita em	
	soluções de pH 2, 4, 7 e 10	159
Figura 4.22	Reações de degradação do VD utilizando 30 mg de maghemita em	
	soluções de pH 2, 4, 7 e 10	159
Figura 4.23	Reações de degradação do VD utilizando 30 mg de hematita em	
	soluções de pH 2, 4, 7 e 10	160
Figura 4.24	Constante de velocidade de descoloração em função do pH	161
Figura 4.25	Representação esquemática da formação dos radicais 'OH na goethita	
	pelo processo de Foto-Fenton	161
Figura 5.1	Esquema representativo da promoção do elétron da BV do Fe ₂ O ₃ para	
	a BC do TiO ₂ no compósito Fe ₂ O ₃ /TiO ₂	168
Figura 5.2	Difratograma de raios-X obtido para o TiO ₂ P25 e para os compósitos	
	5, 10, 20 e 30 % Fe ₂ O ₃ /TiO ₂	172
Figura 5.3	Espectros Mössbauer obtidos para os compósitos 10 e 30 % Ht-TiO2	174
Figura 5.4	Isotermas de adsorção obtidas para o TiO2 P25 comercial (A) e para	
	os compósitos 1, 5, 10, 20 e 30 % Fe ₂ O ₃ /TiO ₂ (B)	175
Figura 5.5	Gráfico da área superficial BET dos compósitos Fe_2O_3/TiO_2 em	
	função do teor de Fe ₂ O ₃	176
Figura 5.6	Reação de degradação do VD utilizando TiO_2 e compósitos	
	Fe ₂ O ₃ /TiO ₂	177
Figura 5.7	Valores de k_{descol} em função do teor de Fe ₂ O ₃ suportado em TiO ₂	177
Figura 5.8	Valores de k_{espc} em função do teor de Fe ₂ O ₃ suportado no TiO ₂	178
Figura 5.9	Esquema representativo da redução da hematita suportada em TiO $_2$ em	
	atmosfera de H_2 a diferentes temperaturas (300, 400 e 500 °C)	179
Figura 5.10	Espectros Mössbauer obtidos a temperatura ambiente para o	
	compósito 10 % Fe ₂ O ₃ /TiO ₂ tratado com H ₂ a 300, 400 e 500 °C	181
Figura 5.11	Difratogramas obtidos com fonte de cobalto para o compósito 10 %	
	F_2O_3/TiO_2 tratado com H_2 a 300, 400 e 500 °C	183
Figura 5.12	Reações de degradação do corante VD 50 mg L^{-1} utilizando 0,3 g L^{-1}	
	do compósito 10 % Fe ₂ O ₃ /TiO ₂ , tratado com H ₂ a 300, 400 e 500 °C	

	em presença de luz UV	184
Figura 5.13	Valores de k_{descol} em função do compósito 10 % Fe ₂ O ₃ /TiO ₂ , tratado	
	com H ₂ a 300, 400 e 500 °C	185

LISTA DE TABELAS

Tabela 1.1	Potencial de oxidação de alguns oxidantes em água	04
Tabela 2.1	Trabalhos publicados recentemente, sobre Fenton heterogêneo	
Tabela 2.2	Trabalhos mais relevantes envolvendo magnetitas contendo cromo	
Tabela 2.3	Teores de ferro e cromo obtidos através das medidas de absorção	
	atômica das magnetitas Fe _{3-x} Cr _x O ₄	38
Tabela 2.4	Parâmetro hiperfinos referentes à série de magnetitas $Fe_{3-x}Cr_xO_4$ (x =	
	0,07; 0,26; 0,42 e 0,51) obtidos a temperatura ambiente (25 $^{\circ}$ C)	41
Tabela 2.5	Valores de parâmetros de rede calculados (a ₀), medidas do tamanho de	
	partícula (l) e magnetização espontânea (σ)	44
Tabela 2.6	Parâmetros hiperfinos referentes às magnetitas X_{Cr} 0,07 e 0,51 após	
	tratamento térmico a 270 e 600 °C obtidos a temperatura ambiente	51
Tabela 2.7	Dados de XPS obtidos para a série de magnetita $Fe_{3-x}Cr_xO_4$ antes e	
	após as reações de decomposição do H2O2	62
Tabela 3.1	Parâmetros hiperfinos referentes à série de compósitos piche/óxidos	
	de ferro tratados a 400, 600 e 800 0 C em atmosfera de N ₂	100
Tabela 3.2	Teores de carvão na série de compósitos piche/óxidos de ferro tratados	
	a 400, 600 e 800 ^o C	103
Tabela 3.3	Tamanho de cristalito (l) obtido utilizando-se as linhas de difração	
	mais intensa e valores de magnetização espontânea (σ)	106
Tabela 3.4	Razões entre as intensidades das bandas G e D (I_G/I_D) obtidas dos	
	espectros Raman da série de compósitos piche/óxidos de ferro tratados	
	a 400, 600 e 800 ⁰ C	110
Tabela 3.5	Teor de Cr(VI) adosrvido nos compósitos 1:1; 2:1 e 4:1 piche/óxidos	
	de ferro tratados a 800 ⁰ C	116
Tabela 3.6	Parâmetros hiperfinos dos espectros Mössbauer do compósito 4:1	
	piche/óxidos de ferro tratado a 800 °C, antes e depois de ser utilizando	
	em uma reação de redução do Cr(VI) e depois de regenerado	121

Tabala 4.1	Trabalhos encontrados na literatura que estudam a atividade			
Tabela 4.1	fotocatalítica de óxidos de ferro	135		
Tabela 4.2	Parâmetros hiperfinos para as amostras sintéticas de goethita, hematita			
	maghemita e magnetita	142		
Tabela 4.3	Tamanho de cristalito e identificação dos picos obtidos nos			
	difratogramas dos óxidos de ferro goethita, hematita, magnetita e			
	maghemita	143		
Tabela 5.1	Trabalhos encontrados na literatura que estudam a atividade			
	fotocatalítica de compósitos óxidos de ferro/TiO2	169		
Tabela 5.2	Relações de áreas entre A (anatásio), R (rutilo), H (hematita) e			
	tamanho das partículas de Fe ₂ O ₃ suportada em TiO ₂	173		
Tabela 5.3	Parâmetros hiperfinos obtidos para o espectro Mössbauer de			
	transmição dos compósitos 10 e 30 % Fe ₂ O ₃ /TiO ₂	174		
Tabela 5.4	Parâmetros hiperfinos obtidos para o compósito 10 % Fe_2O_3/TiO_2			
	tratado com H ₂ a 300, 400 e 500 °C	181		
Tabela 5.5	Identificação dos picos do ${\rm TiO}_2$ anatásio, rutilo e da hematita ($\alpha\text{-}$			
	Fe_2O_3), magnetita (Fe_3O_4), ilmenita ($FeTiO_3$)e ferro metálico (Fe^0)	183		

ABREVIATURAS E SÍMBOLOS

AM	Azul de metileno	
BC	Banda de condução	
BV	Banda de valência	
BET	Brunauer Emmett Teller	
са	Aproximadamente	
СОТ	Carbono Orgânico Total	
DRX	Difração de raios X	
XPS	Espectroscopia fotoeletrônica de raios-X	
e^{-}/h^{+}	Elétron/vacante	
h^+	Vacante	
VD	Vermelho drimaren	
POA	Processos Oxidativos Avançados	
TG	Termogravimetria	
UV	Ultravioleta	
UV/Vis	Ultravioleta visível	
PCZ	Ponto de Carga Zero	
А	Anatásio	
R	Rutilo	
δ	Deslocamento isomérico	
Е	Deslocamento quadrupolar	
Δ	Desdobramento quadrupolar	
B_{hf}	Campo hiperfino	
AR	Área subespectral relativa	

RESUMO GERAL

Nesta tese de doutorado foram desenvolvidos novos materiais baseados em óxidos de ferro para a descontaminação ambiental. A apresentação do trabalho está dividida em cinco capítulos.

O Capítulo 1 consta de uma introdução geral sobre Processos Oxidativos Avançados, óxidos de ferro e os objetivos deste trabalho.

No Capítulo 2 magnetitas substituídas com diferentes teores de cromo (Fe_{3-x}Cr_xO₄ x = 0,00; 0,07; 0,26; 0,42 e 0,51) foram utilizadas como catalisadores em dois tipos de reações: (i) decomposição do H_2O_2 e (ii) Fenton heterogêneo. Na decomposição de H_2O_2 observou-se um aumento linear das constantes de velocidade de decomposição com o teor de cromo na estrutura da magnetita. Nas reações do tipo Fenton heterogêneo realizadas para a degradação dos corantes azul de metileno e vermelho drimaren observou-se que a atividade catalítica aumentou significativamente para o catalisador com baixo teor de cromo (Fe_{2.93}Cr_{0.07}O₄).

No Capítulo 3 compósitos de carvão com Fe₃O₄ e Fe⁰ foram preparados a partir de piche de alcatrão e Fe₂O₃ em diferentes proporções (1:1; 2:1 e 4:1) e temperatura (400–800 0 C). Os compósitos foram utilizados em três tipos de reações: (i) redução do Cr(VI) para Cr(III), (ii) decomposição do H₂O₂ e (iii) oxidação do corante modelo azul de metileno em presença de H₂O₂. Os melhores resultados foram obtidos com os compósitos tratados a 800 0 C para a redução do Cr(VI) e a 400-800 $^{\circ}$ C para as reações com H₂O₂.

No Capítulo 4 são apresentadas a síntese e caracterização dos óxidos de ferro hematita (α -Fe₂O₃), goethita (FeOOH), maghemita (γ -Fe₂O₃) e magnetita (Fe₃O₄). Estes óxidos foram utilizados na degradação fotocatalítica do corante têxtil vermelho drimaren. Os melhores resultados foram obtidos para a goethita, enquanto que o α -Fe₂O₃, γ -Fe₂O₃ e Fe₃O₄ mostraram um efeito negativo.

No Capítulo 5 compósitos à base de óxidos de ferro e TiO_2 : Fe_2O_3/TiO_2 , Fe_3O_4/TiO_2 , $Fe^0/Fe_2O_3/TiO_2$ e Fe^0/TiO_2 com diferentes teores de ferro, (1, 5, 10, 20 e 30 %) foram preparados e estudados como fotocatalisadores para a degradação do corante têxtil vermelho drimaren.

ABSTRACT

In this work new materials based on iron oxides were prepared, characterized and used in environmental decontamination processes. The work is presented in five chapters.

Chapter 1 presents a general introduction on Advanced Oxidation Process, iron oxides and objectives.

In Chapter 2 chromium substituted magnetites (Fe_{3-x}Cr_xO₄ with x = 0,00; 0,07; 0,26; 0,42 e 0,51) were tested as catalysts for two reactions: (i) to decomposition of H₂O₂ to O₂ and (ii) heterogeneous Fenton oxidations. The H₂O₂ decomposition rate increased as the Cr content in the magnetite increased. For the Fenton reaction with the model dyes methylene blue and drimaren red the best results were obtained for the low Cr content magnetite (Fe_{2.93}Cr_{0.07}O₄).

In Chapter 3 composites based on carbon and Fe_3O_4 and Fe^o prepared from tar and Fe_2O_3 were tested in three reactions: (i) Cr(VI) reduction to Cr(III), (ii) decomposition of H_2O_2 to O_2 and (ii) oxidation of the dyes methylene blue with H_2O_2 . The best results for Cr(VI) reduction were obtained for the composites treated at 800 $^{\circ}C$ whereas for the H_2O_2 reactions the composite treated at 400-800 °C showed the higher activities.

In Chapter 4 hematite (α -Fe₂O₃), goethite (FeOOH), maghemite (γ -Fe₂O₃) e magnetite (Fe₃O₄) were tested on the photocatalytic degradation of the dye drimaren red. Goethite showed the best results whereas α -Fe₂O₃, γ -Fe₂O₃ e Fe₃O₄ showed a negative effect.

In Chapter 5 composites based on iron oxides and TiO₂: Fe₂O₃/TiO₂, Fe₃O₄/TiO₂, Fe⁰/Fe₂O₃/TiO₂ and Fe⁰/TiO₂ with different iron contents (1, 5, 10, 20 e 30 %) were tested for photocatalytic degradation of the dye drimaren red.

1.1. CONTAMINAÇÃO AMBIENTAL POR POLUENTES ORGÂNICOS

Desde a década de 50, pesquisas vêm sendo desenvolvidas buscando alternativas mais eficientes e de menor custo para o tratamento dos efluentes aquosos contaminados por substâncias orgânicas.¹ Estes contaminantes são na maioria das vezes substâncias tais como: fenóis, aminas, alcanos, alquenos, ácidos carboxílicos, aromáticos, corantes, surfactantes, pesticidas, dentre outros.²⁻⁴

Os principais processos utilizados no tratamento de efluentes são: tratamento biológico,⁵⁻⁷, redução⁵ (tratamento biológico anaeróbico e redução química), adsorção em sólidos porosos tais como carvão ativo,^{5,8} zeólitas,⁹ argilas,⁵ bioadsorventes,⁵ floculação química (inorgânicos e polímeros orgânicos) e outros como eletrólise e filtração por membrana.⁵ Mais recentemente, uma nova "família" de processos especiais, conhecida como POA (Processos Oxidativos Avançados) tem sido desenvolvida para o tratamento de efluentes contaminados.¹⁰

1.2. PROCESSOS OXIDATIVOS AVANÇADOS (POA)

Recentes avanços na pesquisa sobre o tratamento químico de águas residuárias têm levado à consolidação de métodos de degradação oxidativa de compostos orgânicos em meio aquoso.¹¹ Esses métodos são referidos como Processos Oxidativos Avançados (POA), compreendendo sistemas tais como:

- Fenton¹² (Fe²⁺/H₂O₂),
- Foto Fenton¹³ (UV/Fe²⁺/H₂O₂),
- Fotólise¹⁴ (H₂O₂/UV),
- Ozonólise,^{5, 15} (O₃/UV, H₂O₂/UV/O₃),
- Fotocatálise¹⁶⁻¹⁸ (TiO₂/O₂/UV).

Esses processos têm despertado grande interesse devido à alta eficiência em oxidar compostos orgânicos complexos, formando moléculas simples mais facilmente biodegradáveis e até mesmo conduzindo a total mineralização da matéria orgânica, formando dióxido de carbono (CO₂) e água.¹⁹ A essência dos POAs está principalmente na geração do radical hidroxila ([•]OH) (Figura 1.1), espécie altamente oxidante (Tabela 1.1) e não seletiva, capaz de oxidar uma grande variedade de contaminantes orgânicos.

Figura 1.1: Esquema representativo dos POAs utilizados para a oxidação de contaminantes orgânicos.

Oxidante	Potencial de redução (V)
•ОН	2,80
O ₃	2,07
H ₂ O ₂	1,77
HOO•	1,70
MnO ₄	1,69
O ₂	1,36

Tabela 1.1: Potencial de redução de alguns oxidantes em água.²⁰⁻²²

Os POAs mais estudados recentemente são: (i) o sistema Fenton, (ii) ozonólise e (iii) fotocatálise.

Sistema Fenton

O sistema Fenton (uma mistura de Fe^{2+} e H_2O_2) é um dos sistemas mais ativos para a oxidação de contaminantes orgânicos em água.²³ Esta reatividade é devida à geração *in situ* de espécies altamente oxidantes, e.g. os radicais hidroxila, de acordo com o processo simplificado:

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + HO^- + ^{\bullet}OH$$
 Equação 1.1

A reação de Fenton é realizada em um pH ótimo próximo a três, requerendo quantidades estequiométricas de Fe²⁺. Depois da reação, o efluente necessita ser neutralizado para ser descartado no corpo d'água, o que gera uma quantidade significativa de lodo. Este lodo, em quantidades grandes, deve ser removido e descartado apropriadamente, o que tem sido uma das limitações do sistema Fenton Clássico.²⁴

Ozonólise

O ozônio (O₃), um gás incolor instável com um alto potencial de oxidação²⁵ (Tabela 1.1), é um oxidante limpo o qual decompõe rapidamente depois de usado, resultando em subprodutos não tóxicos tais como O₂ e H₂O.²⁶

Na ozonólise,²⁷⁻²⁹ o ozônio é utilizado como oxidante para a destruição de contaminantes orgânicos presentes em efluentes aquosos. O ozônio em água pode levar à formação de H_2O_2 (Equação 1.2).

$$O_3 \rightarrow O_2 + O \rightarrow O + H_2O \rightarrow H_2O_2$$
 Equação 1.2

O peróxido pode então reduzir o O₃ até a formação de radicais (Equação 1.3).

$$O_3 + H_2O_2 \rightarrow HO_3 + HO_2^{\bullet} \rightarrow HO_3 \rightarrow HO^{\bullet} + O_2$$
 Equação 1.3

Todos estes processos são acelerados pela luz, especialmente na região do UV. A adição de H_2O_2 também aumenta a eficiência da oxidação com ozônio. No entanto, um fator limitante na utilização do ozônio é o alto custo de instalação e o custo operacional para a sua produção.

Fotocatálise

O princípio da fotocatálise heterogênea é a utilização da radiação UV, de fonte artificial (por exemplo lâmpada de mercúrio) ou radiação solar, que através de um fotocatalisador, gera radicais livres tais como [•]OH, que podem oxidar matéria orgânica em meio aquoso. Este processo pode ser simplificado nas seguintes equações:

$$H_2O/O_2$$
 + fotocatalisador + hv (luz) \rightarrow radicais (°OH) Equação 1.4

[•]OH + contaminantes orgânicos
$$\rightarrow$$
 oxidação $\rightarrow \rightarrow \rightarrow CO_2 + H_2O$ Equação 1.5

Os fotocatalisadores são materiais semicondutores que possuem um "bandgap" característicos entre a bandas de valência (BV) e bandas de condução (BC) (Figura 1.2).³⁰

Figura 1.2: Esquema de um semicondutor mostrando a BV, a BC e o "bandgap".

A absorção de fótons com energia superior à energia de "bandgap" resulta na promoção de um elétron da banda de valência para a banda de condução com geração concomitante do par elétron/vacante (e⁻/h⁺) nas bandas de condução e de valência, respectivamente, conforme Figura 1.3. Estas partículas carregadas eletricamente proporcionam reações de oxidação e redução. A vacante possui potencial bastante elevado e suficientemente positivo para gerar radicais ^oOH a partir de moléculas de água adsorvidas na superfície do semicondutor (Equação 1.6), os quais podem então oxidar o contaminante orgânico. O elétron na banda de condução é transferido para um agente oxidante, normalmente o oxigênio molecular, formando radicais superóxidos $O_2^{\bullet-}$ (Equação 1.7) que podem também promover a oxidação de contaminantes presentes no meio aquoso.³⁶

$$H_2O + h_{BV}^+ \rightarrow H^+ + ^{\bullet}OH$$
 Equação 1.6
 $O_2 + e_{BC}^- \rightarrow O_2^{\bullet-}$ Equação 1.7

Vários estudos têm demonstrado que o mecanismo de degradação se dá através destas espécies radicalares, i.e. radical hidroxila e também de outros radicais derivados do oxigênio $(O_2^{\bullet}, HO_2^{\bullet}, etc)$ formados pela captura de elétrons fotogerados.³¹

Figura 1.3: Representação esquemática da formação do par e^{-}/h^{+} e geração de radicais na superfície do semicondutor TiO₂.

A eficiência da fotocatálise depende da competição entre o processo em que o elétron é retirado da superfície do semicondutor e o processo de recombinação do par elétron/vacante o qual resulta na liberação de calor.³² Este processo está representado esquematicamente na Figura 1.4 e na Equação 1.8.

Figura 1.4: Representação esquemática da formação e recombinação do par e^{-}/h^{+} na superfície de um semicondutor.

$$\operatorname{TiO}_2(e_{BC}^- + h_{BV}^+) \rightarrow \operatorname{TiO}_2^- + \Delta$$
 Equação 1.8

Os processos de recombinação do par e^{-}/h^{+} e a transferência interfacial de cargas são competitivos e a prevalência de um ou outro definirão a atividade fotocatalítica do

semicondutor. Nesse sentido, o oxigênio apresenta uma importante função como seqüestrador de elétrons, impedindo a recombinação e atuando, também, como oxidante.³³

1.3. ÓXIDOS DE FERRO E SUAS PROPRIEDADES

Óxidos de ferro são materiais de ocorrência natural e estão em abundância na crosta Terrestre. Estes óxidos possuem uma química muito interessante devido às suas propriedades magnéticas, elétricas, físico-químicas e morfológicas. A seguir são apresentados alguns óxidos de ferro estudados neste trabalho.

Magnetita - Fe₃O₄

A magnetita é o óxido magnético mais abundante em rochas ígneas, metamórficas e sedimentares, sendo rara a sua ocorrência na forma pura, a qual possui magnetização de saturação teórica (σ) de 100 J T⁻¹ kg⁻¹ a 20 °C.³⁴ Suas propriedades magnéticas e elétricas são funções não apenas de seus raios iônicos e de valência, mas também, das propriedades químicas e morfológicas, estequiométricas e tamanhos de partícula.³⁵

A magnetita difere dos outros óxidos por possuir em sua estrutura ferro bivalente e trivalente. Apresenta um sistema de cristalização cúbico com estrutura do tipo espinélio invertido (Figura 1.5). Em sua célula unitária, a magnetita apresenta oito íons Fe^{3+} localizados no sítio tetraédrico (ou sítio A) e no sítio octaédrico (ou sítio B) oito íons Fe^{3+} e 8 íons Fe^{2+} (Figura 1.5). Sua fórmula pode então ser escrita da seguinte maneira $[Fe^{3+}_{8}]{Fe^{3+}_{8}Fe^{2+}_{8}}O_{32}$, onde [] representa o sítio tetraédrico e { } o sítio octaédrico.³⁶

Figura 1.5. Representação da estrutura cristalina da magnetita.

Maghemita γ -Fe₂O₃

A estrutura da maghemita é muito similar à da magnetita (estrutura cúbica espinélio), porém a principal diferença é a presença de Fe^{3+} como o único cátion na γ -Fe₂O₃. Em cada célula unitária (cúbica) contém em média 32 íons O²⁻, 21,33 íons Fe³⁺ e 2,66 vacâncias, sendo que os cátions estão distribuídos em 8 sítios tetraédricos e 16 octaédricos. As vacâncias estão localizadas nos sítios octaédricos.^{36,37}

A maghemita é um óxido ferrimagnético a temperatura ambiente e suas propriedades magnéticas dependem do tamanho de partículas e dos efeitos de superfície. Partículas maiores que 10 nm são magnéticas a temperatura ambiente, enquanto partículas menores são superparamagnéticas.³⁴

Hematita α -Fe₂O₃

A hematita possui a mesma fórmula que a maghemita, porém com estruturas cristalinas diferentes. A α -Fe₂O₃ apresenta célula unitária hexagonal formada por pares de

10

 $Fe(O)_6$ octaédricos ligados (Figura 1.6). Ela é muito estável e pode ser obtida a partir do tratamento térmico da γ -Fe₂O₃ que provoca a mudança da estrutura cúbica para hexagonal.^{35,36}

Figura 1.6. Representação da estrutura cristalina da hematita.

Diferente da magnetita e da magnemita, a hematita é um óxido fracamente ferromagnético a temperatura ambiente.³⁴

Goethita FeOOH

A goethita é um mineral do grupo dos oxi-hidróxi. Ela possui uma estrutura ortorrômbica com cada íon Fe^{3+} coordenado com três O^{2-} e três OH^- , formando octaédricos^{35,36} (Figura 1.7). É antiferromagnética e termicamente estável, mas quando aquecida a temperaturas superiores a 200 ^oC, sofre desidroxilação formando hematita (α -Fe₂O₃).

Figura 1.7. Representação da estrutura cristalina da goethita.

1.4. ESPECTROSCOPIA MÖSSBAUER E DIFRAÇÃO DE RAIOS-X: FUNDAMENTOS TEÓRICOS

Espectroscopia Mössbauer

A espectroscopia Mössbauer é baseada no chamado efeito Mössbauer, que consiste na absorção ressonante de radiação gama nuclear sem recuo nuclear.³⁸⁻⁴⁰ Embora não possa ser aplicada a qualquer elemento químico, esta técnica é de grande importância, sendo utilizada principalmente nos casos do ferro e estanho.

Na espectroscopia Mössbauer uma fonte radioativa adequada é utilizada para emitir radiação gama, que por sua vez pode ser absorvida por núcleos específicos presentes na amostra. No caso do ferro, por exemplo, uma fonte de ⁵⁷Co, ao decair para ⁵⁷Fe emite, entre outras, radiação com energia de 14,4 keV (Figura 1.8).

Figura 1.8: Representação esquemática da emissão de radiação gama pelo decaimento do ⁵⁷Co para ⁵⁷Fe.

Esta radiação pode ser absorvida por núcleos de ⁵⁷Fe presentes na amostra. A intensidade da absorção observada depende da porcentagem e da abundancia isotópica do núcleo absorvedor, bem como da fração destes núcleos que realizam absorção ressonante sem sofrer recuo.³⁸⁻⁴⁰

Interações entre os núcleos absorvedores com outros núcleos, com elétrons e com campos eletromagnéticos externos podem provocar o deslocamento e/ou o desdobramento de seus níveis de energia, de forma que a energia emitida pela fonte possa não mais ser absorvida. Para contornar este problema, a fonte de radiação é mantida em movimento oscilatório (Figura 1.9), de forma que o efeito Doppler causado por este movimento varie constantemente a energia emitida, possibilitando fazer uma varredura da absorção dentro de uma faixa de energia. É por este motivo que os espectros Mössbauer são geralmente mostrados em termo de velocidade da fonte (em mm s⁻¹).³⁸

Figura 1.9: Esquema de um arranjo experimental para espectroscopia Mössbauer em modo de transmissão, indicando o movimento da fonte.

As interações do núcleo absorvedor são chamadas de interações Mössbauer ou, mais comumente, interações hiperfinas, dando origem aos denominados parâmetros hiperfinos. Estas podem ser de três tipos, e seus efeitos sobre o espectro Mössbauer (Figura 1.10) permitem inferir diversas características de uma amostra qualquer. As interações e os parâmetros hiperfinos serão explicados a seguir, considerando-se o caso do ⁵⁷Fe como núcleo absorvedor.³⁸

Figura 1.10: Origem dos parâmetros hiperfinos e seus efeitos sobre os espectros.

I - Interação Monopolar Elétrica

A interação monopolar elétrica ocorre entre os núcleos absorvedores e os elétrons que os cercam. Esta interação está associada, assim, a densidade eletrônica ao redor do núcleo absorvedor. Na espectroscopia Mössbauer esta interação é representada pelo parâmetro hiperfino denominado deslocamento isomérico (δ), que é a medida do deslocamento do centro do espectro em relação ao valor zero da escala de velocidade da fonte. O valor de δ está associado ao estado de oxidação, estado de spin e propriedades de ligação (grau de covalencia, eletronegatividade, etc.) do núcleo absorvedor.³⁸

II - Interação Quadrupolar Elétrica

A interação quadrupolar elétrica está relacionada com o acoplamento entre o momento quadrupolar nuclear e um gradiente de campo elétrico ao redor do núcleo. Esta interação leva a um desdobramento parcial dos níveis de energia degenerados do absorvedor (no caso de ausência de campo magnético), ou de um deslocamento dos níveis desdobrados (em presença de campo magnético externo). No caso do ferro, o desdobramento aparece na forma de um dupleto centrado em δ , e a distância entre eles é denominada desdobramento quadrupolar (Δ), enquanto no caso do deslocamento quadrupolar (ϵ) é determinado pela média entre as distâncias entre as linhas de ressonância 1-2 e 5-6 do sexteto. O valor de Δ e

 ϵ está associado à simetria, estado de spin e propriedades de ligação ao redor do núcleo absorvedor.³⁸

III - Interação Dipolar Magnética

É o acoplamento do momento de dipolo magnético do núcleo absorvedor com um campo magnético. Este campo magnético pode ser originário de outros núcleos presentes na própria amostra ou aplicado externamente (por um imã, por exemplo). Esta interação provoca o desdobramento completo dos níveis degenerados do núcleo absorvedor, levando, no caso do ferro, a um espectro na forma de um sexteto. O parâmetro hiperfino associado a esta interação é denominado de Campo Hiperfino (B_{hf}), e seu valor está associado às propriedades magnéticas da amostra (ferromagnetismo, antiferrimagnetismo, etc.). O valor de B_{hf} é dado pela distância entre as linhas de ressonância 1 e 6 de um espectro (no caso do ferro).³⁸

É importante notar que a interação magnética entre os próprios átomos de uma amostra dependem de seu momento dipolar magnético e da velocidade com a qual este momento muda de direção. Assim, é comum a uma fase de determinada amostra não apresentar interação magnética a temperaturas mais elevadas (quando a energia cinética dos átomos reorienta os momentos dipolares mais rapidamente, dificultado a interação), mas apresentem tal interação a temperaturas baixas. Nestes casos, tais fases são denominadas superparamagnéticas.³⁸

Difração de Raios-X (DRX)

Na difração de raios-X a radiação proveniente da fonte é selecionada e colimada, incidindo sobre o material a ser analisado, detectando-se a intensidade do feixe difratado em função do ângulo de incidência (2 θ). A intensidade da radiação difratada será máxima quando obedecer à chamada *Lei de Bragg* (Figura 1.11 e Equação 1.9). Quando a Lei de Bragg é cumprida, há interferência construtiva entre os feixes refletidos por diferentes planos cristalinos, enquanto para outros ângulos ocorre interferência destrutiva.⁴¹⁻⁴⁴

Figura 1.11: Representação esquemática da difração de raios-X entre dois planos de átomos.

Equação de Bragg
$$n\lambda = 2dsen\theta$$
 Equação 1.9

onde, λ é o comprimento de onda da radiação, d a distância entre os planos cristalinos da amostra e θ é o ângulo de incidência ou reflexão.

A partir da Lei de Bragg é possível determinar a distância entre os planos de átomos de uma rede cristalina, bastando para isso conhecer o comprimento de onda da radiação incidente (dada pelo material utilizado na produção de raios-X, tipicamente o cobre) e o ângulo de incidência (obtida através de uma varredura dentro de uma faixa de valores de 2θ).

Para um cristal perfeito e infinito, um difratograma de raios-X apresentaria um conjunto de linhas discretas em ângulos iguais a n λ . Entretanto, diversos fatores alargam estas linhas (tamanho do cristal, imperfeições da rede cristalina, etc.), formando bandas. A largura de um pico está diretamente ligada à perfeição da rede cristalina. Para materiais cristalinos observam-se tipicamente bandas estreitas, enquanto para materiais totalmente amorfos observa-se uma única banda larga e pouco intensa.⁴¹⁻⁴⁴ É possível, portanto, calcular o tamanho médio dos cristalitos (*l*) a partir da largura da meia altura (B) do pico de maior intensidade presente. Este cálculo é feito a partir da equação de Scherrer:

$$l = \frac{0.94.\lambda}{B\cos\theta}$$
 Equação 1.10

onde λ é o comprimento de onda (em nanômetros) da radiação incidente, B é a largura a meia altura do pico de maior intensidade (em 2 θ) e θ é o ângulo referente ao ponto de maior intensidade da banda (em radianos).⁴²⁻⁴⁴

1.5. OBJETIVOS DESTE TRABALHO

O objetivo geral deste trabalho é o desenvolvimento de POAs a base de óxidos de ferro como catalisadores. Os objetivos específicos estão representados esquematicamente na Figura 1.12.

Figura 1.12: Fluxograma representativo dos objetivos deste trabalho.

Os objetivos específicos mais importantes são:

- (i) Preparar magnetitas dopadas com diferentes teores de cromo (Fe_{3-x}Cr_xO₄ onde x = 0,07; 0,26; 0,42 e 0,51). Testar a eficiência destes catalisadores para decompor H₂O₂ e degradar o corante azul de metileno através de reações do tipo Fenton heterogêneo.
- Preparar compósitos de carvão suportados em óxidos de ferro, a partir de piche de alcatrão e hematita. Testar a eficiência destes materiais para decompor H₂O₂, degradar o corante AM através de reações do tipo Fenton heterogêneo e reduzir íons de Cr(VI) para Cr(III).
- (iii) Preparar os seguintes óxidos de ferro: hematita (α -Fe₂O₃), maghemita (γ -Fe₂O₃), magnetita (Fe₃O₄) e goethita (FeOOH). Testar a atividade fotocatalítica destes óxidos para degradar corantes têxteis.
- (iv) Preparar novos fotocatalisadores baseados em óxidos de ferro altamente dispersos na superfície do TiO₂ P25 (Degussa) (α -Fe₂O₃/TiO₂ e Fe₃O₄/TiO₂) Estes fotocatalisadores serão estudados para degradar os

corantes azul de metileno (AM) e vermelho drimaren (VD) utilizando radiação ultravioleta (UV).

 (v) Caracterizar todos os materiais preparados pelas seguintes técnicas: difração de raios-X (DRX), espectroscopia Mössbauer, termogravimetria (TG), magnetização espontânea (para os materiais magnéticos), área superficial BET, espectroscopia Raman, espectroscopia fotoeletrônica de raios-X (XPS) e microscopia eletrônica de varredura (MEV).

1.6. REFERÊNCIAS

1. Andrade, L.I.S., Possibilidades de Redução da Carga Poluidora para a Indústria de Acabamento de Malhas do Estado de Minas Gerais, Dissertação de Mestrado. Escola de Engenharia da UFMG, 1999.

- 2. Ferraz, W., Oliveira, L. C. A., Dallago, R., Conceição, L. Catal. Commun. 2007, 8, 131.
- 3. Yeh, C. K. J., Hsu, C. Y., Chiu, C. H., Huang, K. L. J. Hazard. Mater. 2008, 151, 562.
- 4. Martínez, F., Calleja, G., Melero, J. A., Molina, R. Appl. Catal. B. 2005, 60, 181.
- 5. Horan, J. N., Biological Wastewater Treatment: Treatment Systen-Teory and Operation, Chichester, Willey, 1990.

6. Pophali, G. R., Khan, R., Dhodapkar, R. S., Nandy, T., Devotta, S. J. Environ. Manage. **2007**, 85, 1024.

7. Garcia, C., Molina, F., Roca, E., Lema, R. M. Ind. Eng. Chem. Res. 2007, 46, 6707.

 Costa, L. C. M., Araujo, M. H., Sapag, K., Sardella, M. F., Silva, H., Deiana, A. C., Lago, R. M. J. Braz. Chem. Soc. 2005, 16(5), 899.

9. Lemic, J., Canovic, M. T. Adamovic, M., Kovacevic, D. Microporous Mesoporous Mater. 2007, 105, 317..

- 10. ltekin, I. G., Ince, N. H., J. Environ. Manage. 2007, 85, 816.
- 11. Costa, R.C.C., Lelis, F, Oliveira, L.C.A., Fabris, J.D., Ardisson, J.D., Rios, R.R.A.,
- Silva, C.N., Lago, M.L., Catal Commun. 2003, 4 (10), 525.
- 12. Lee, H., Shoda, M., J. Hazard. Mater. 2008, 153, 1314.
- 13. Yaping, Z., Jiangyong, H. Appl. Catal. B 2008, 78, 250.
- 14. Doré M., The Chemistry of Oxidants and the Water Treatment, Lavoisier Tec & Doc, Paris, 1989.
- 15. Hapeman, C. J., Anderson, B. G., Torrents, A., Acher, A. J., J. Agric. Food Chem. **1997**, 45, 1006.
- 16. Malato, M., Blanco, J., Alarcon, D. C., Maldonado, M. I., Ibanez, P. F., Gernjak, W., Catal. Today **2007**, 122, 137..
- 17. Liao, D. L., Badour, C. A., Liao, B. Q., J. Photochem. Photobiol., A 2008, 194, 11.
- 18. Watts, M. J., Cooper, A. T., Sol. Energy 2008, 82, 206.

19. Tedder, D.W., Pollan, F.G., Emerging Technologies in Hazardous Waste Management III, American Chemical Society, Washington DC, 1993.

20. Lange, L.C., Alves, J.F., Amaral, M.C.S., Júnior W.R.M, Eng. Sanit. Ambient., 2006, 11 175.

21. Baccan, N., Andrade, J.C., Godinho, O.E.S., Barone, J.S. Química Analítica Quantitativa Elementar. São Paulo, 2001

22. SNatural Meio Ambiente, Disponível em:< <u>http://www.snatural.com.br/Ozonio.htm</u>.> Acesso em: 15 abril 2008.

23. Toledo L.C., Silva A.C. B., Augusti R., Lago R.M., Chemosphere, 2003, 50, 1049.

24. Sevimll M.F., Kinaci C., Water Sci. Technol. 2002, 45, 279.

25. United States Envir.l Protection Agency. Design Manual – Municipal Wastewater disinfection, Washington D.C, 1986.

26. Matsui M., Environmental Chemistry of Dyes and Pigments, Wiley-Interscience, New York, 1996, 43-60.

27. Andreozzi, R., Caprio, V., Insola, A., Maritta, R., Catal. Today, 1999, 53, 51.

28. Hoigné, J., The Handbook of Environ. Chemistry, vol. 5 part C, Springer, Berlin, 1998.

29. Glaze, W. H., Kang, J. W., Eng. Chem. Res, 1989, 28, 1573.

30. Galvez, J. B., Rodriguez, S. M. Tecnologia de fotocatalisis solar. Instituto de Estudios Almerienses de la Diputación de Almería. Almería, 1996.

31. Egerton, T. A., Mattinson, J. A., J. Photochem. Photobiol., A 2008, 194, 283.

32. Kabra, K., Chaudhary, R., Sawhney, R. L. Ind. Eng. Chem. Res. 2004, 42, 7683.

33. Ziolli, R. L., Jardim, W. F. Quim. Nova, 1998, 21 (3), 319.

34. Karunakaran C.; Senthilvelan S.; Electrochem. Commun. 2006, 8 (1), 95.

35. Liu, H.Y., Gao, L. J., Am. Ceram. Soc. 2006, 89 (1), 370.

36. Cornell, R. W., Schuwertmann, U. The Iron Oxides. Weinheim: VCH, 1996, 573.

37. Elsdon, R.; Miner. Sci. Eng. 1975, 48, 7.

38. Fabris, J. D., Coey, J. M. D., Espectroscopia Mössbauer do 57Fe e Medidas Magnéticas na Análise de Geomateriai, UFMG, Belo Horizonte, 2002.

39. Margulies, S., Ehrman, J.R., Nucl. Instrum. Methods Phys. Res., Sect. A, 1961, 12, 131.

40. Margulies, S., Debrunner, P., Frauenfelder, H., *Nucl. Instrum. Methods Phys. Res., Sect. A*, **1963**, *21*, 217.

41. Bleicher, L., Sasaki, J. M., *Introdução à Difração de Raios-X em Cristais*. Apostila da Universidade Federal do Ceará, 2000.

42. Azároff, L. V., *Elements of X-Ray Crystallograph*; McGraw-Hill Book Company, Inc., 1968.

43. Guinier, A., *X-Ray Diffraction In Crystals, Imperfect Crystals, and Amorphous Bodies*, W. H. Freeman and Company; 1963.

44. Cullity, B. D., *Elements of X-Ray Diffraction*, Addison-Wesley Publishing Company, Inc.

RESUMO

Nesta parte do trabalho foram preparadas magnetitas substituídas com diferentes teores de cromo (Fe_{3-x}Cr_xO₄ onde x = 0,00; 0,07; 0,26; 0,42 e 0,51). Difratogramas de raios-X e espectros Mössbauer das magnetitas Fe_{3-x}Cr_xO₄, mostraram a formação da estrutura espinélio como única fase cristalina. Os valores de parâmetros de rede e os resultados obtidos por espectroscopia Mössbauer e termogravimetria, sugerem que os íons cromo substituíram os íons Fe³⁺ e Fe²⁺ (até x = 0,26) nos sítios octaédrico e acima de x = 0,26 a substituição ocorreu com o Fe³⁺ no sítio tetraédrico. Também foi realizado um estudo do efeito do Cr na estabilidade térmica das magnetitas Fe_{3-x}Cr_xO₄. Os resultados obtidos por DTA, DRX e espectroscopia Mössbauer das amostras tratadas a 270 e 600 ⁰C em atmosfera de O₂ mostraram que a presença de íons Cr na estrutura da magnetita possui um importante efeito de estabilização térmica.

Estes materiais foram utilizados como catalisadores em dois tipos de reações: (i) reações de decomposição do peróxido de hidrogênio (H₂O₂) e (ii) reações do tipo Fenton heterogêneo para degradar dois corantes modelos, i.e. azul de metileno e vermelho drimaren. Nas reações de decomposição de H₂O₂ observou-se uma cinética de pseudoordem zero com relação ao H_2O_2 e os valores das constantes de velocidade, k_{decomp} , aumentaram com o teor de cromo na estrutura da magnetita. As reações do tipo Fenton heterogêneo realizadas para a degradação dos corantes azul de metileno e vermelho drimaren foram acompanhas pelas constantes de velocidade de descoloração, k_{descol}, e pela remoção de carbono orgânico total (COT). Observou-se que as k_{descol} obtidas diminuíram gradualmente com o aumento do teor de cromo. No entanto a magnetita com menor teor de cromo ($Fe_{2.74}Cr_{0.07}O_4$) apresentou um aumento significativo em sua atividade catalítica. Nas reações realizadas com as magnetitas tratadas a 270 °C foi observada uma grande diminuição da atividade catalítica para descolorir o corante AM, principalmente para a magnetita com menor teor de Cr (Fe_{2.74}Cr_{0.07}O₄). Estes resultados também indicaram que as espécies Fe²⁺ possuem uma importante participação no mecanismo destas reações. O efeito de pequenas quantidades de cromo no aumento da atividade para a reação de Fenton é discutido em termos de um acoplamento dos pares redox Fe^{2+}/Fe^{3+} e Cr^{3+}/Cr^{+2} .

2.1. INTRODUÇÃO

2.1.1. Sistemas Fenton

Como discutido na Introdução Geral, na reação Fenton são gerados radicais $^{\circ}$ OH através da oxidação do Fe²⁺ em solução pelo H₂O₂, como mostra a equação abaixo:

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + {}^{\bullet}OH + OH^-$$
 Equação 2.1

Os radicais livres podem então atacar os contaminantes orgânicos presentes na água, levando à oxidação e produzindo idealmente CO₂ e H₂O. Apesar de sua alta eficiência, o processo Fenton clássico homogêneo apresenta algumas desvantagens:

- O pH do meio influencia a extensão da oxidação, sendo que o pH de operação do sistema Fenton deve ser menor ou igual à 3. Nesse pH, evita-se que os íons ferro, que promovem a formação dos radicais hidroxilas, sejam precipitados na forma de hidróxidos. Assim, são necessários grandes volumes de ácido, normalmente ácido sulfúrico, para ajustar o pH;
- Antes do descarte do efluente deve-se realizar a neutralização com uma base, tal como NaOH;
- A neutralização leva à formação de grandes quantidades de resíduo (precipitado de hidróxido de ferro chamado de lodo), que também deverá ser descartado;
- São necessárias grandes quantidades de Fe²⁺.

Dentro deste contexto, a substituição do sal solúvel de Fe^{2+} por sistemas catalíticos heterogêneos à base de compostos sólidos de ferro, de baixo custo, que operam em pH neutro, que possam ser reciclados e que diminuam a geração de lodo é de grande interesse.^{1,2} Estes sistemas são chamados Fenton Heterogêneo.

2.1.2. Sistema Fenton Heterogêneo

Vários estudos recentes têm relatado diferentes compostos sólidos de ferro para substituir íons ferro solúveis na tentativa de desenvolvimento de sistemas tipo Fenton heterogêneo. Alguns exemplos são mostrados na Tabela 2.1.

Sistema	Contaminante	Observações	Ref.
Fe ₂ O ₃ /Al ₂ O ₃	Corante preto reativo 5	Reação utilizando H ₂ O ₂ + UV +	3
		catalisador (foto-Fenton)	
FeOOH/resina	17 β-estradiol	Reação utilizando H ₂ O ₂ + UV +	4
		FeOOH (foto-Fenton)	
FeOOH	Ac, fórmico, 2-cloro		5
	fenol e nitrobenzeno		
Bentonitas	Vermelho reativo	Reação utilizando H ₂ O ₂ + UV +	6
pirolisadas contendo		catalisador (foto-Fenton)	
$Fe_2O_3 e Al_2O_3$			
MFe ₂ O ₄ , M=Fe, Co,	Corantes sintéticos	Reação utilizando H_2O_2 + catalisador	7
Cu ou Mn.		(Fenton)	
Fe ₂ O ₃ /SiO ₂	Preto reativo	Decomposição do H ₂ O ₂ e reação	8
mesopororosa		Fenton em pH 4.	
α -Fe ₂ O ₃ , γ -Fe ₂ O ₃ ,	Vermelho de metila	Reação utilizando H_2O_2 + catalisador	9
FeOOH e Fe ₃ O ₄		(Fenton)	
suportados em			
quatzo			
Fe ₂ O ₃ /SiO ₂	fenol	Reação utilizando H ₂ O ₂ + UV +	10
mesoporosa		catalisador (foto-Fenton)	
Fe ₂ O ₃ /Carvão,	Diclofenac	Reação utilizando H ₂ O ₂ + catalisador	11
Fe ₂ O ₃ /alumina,		(Fenton)	
Catalisadores mistos			
de óxidos de			
Ni,Cu,Fe e Cu,Mn			
γ-FeOOH	Fenóis e ácidos	Dissolução de Fe levando a reação em	12
	aromáticos	fase homogênea	
α-FeOOH	Corante alaranjado 39	Reação utilizando H ₂ O ₂ + ultrason +	13
		catalisador em pH 2	
Fe(II)/zeólita,	fenol	Reação em fase homogênea,	14
$Fe(II)/Al_2O_3$,		utilizando H ₂ O ₂ e UV (foto-Fenton)	
Fe(II)/SiO ₂			
$Fe_2O_3 e$	Corante reativo	Reação utilizando H ₂ O ₂ e UV (foto-	15
$Fe_2Si_4O_{10}(OH)_2$	Vermelho HE-3B	Fenton)	

Tabela 2.1: Trabalhos publicados recentemente, sobre Fenton heterogêneo.

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

Fe ₂ O ₃ , γ -FeOOH, α - FeOOH, FeS ₂ , Fe ₃ O ₄ e Fe ₂ (OH) ₆	2,4,6-trinitrotolueno	Reação utilizando H ₂ O ₂ + catalisador (Fenton) em pH 2	16
γ-FeOOH	fenantreno	Contaminação em solos	17
FeOOH	Benzeno, tolueno e etilbenzeno	Reação utilizando H ₂ O ₂ + catalisador (Fenton)	18
FeOOH e Fe ₃ O ₄	Vermelho drimaren	Reação utilizando H_2O_2 + catalisador (Fenton)	19
FeOOH e Fe ₂ O ₃	Ácido fórmico	Estudo da formação de radicais	20
FeOOH	2,4,6 trinitrofenol	Reação Fenton e foto-Fenton em pH 2,8	21
FeOOH e Fe ⁺³ aq	Ácido fórmico	Espécies Fe ⁺³ dissolvidas	22

Nestes sistemas relatados na literatura foi observado que a maioria dos catalisadores é baseado em óxidos ou hidróxidos de Fe³⁺. Estes sistemas mostram atividades relativamente baixas e, freqüentemente, os baixos pH's levam à dissolução do ferro que atua de modo homogêneo, passando o sistema a atuar como reagente Fenton clássico.

2.1.3. Trabalho Realizado no Grupo de Pesquisa DQ-UFMG com Sistemas Fenton Heterogêneo

Nos últimos anos, nosso laboratório vem desenvolvendo diferentes sistemas Fenton heterogêneo, baseado em óxidos de ferro do tipo Fe_3O_4 .

A magnetita, Fe₃O₄ apresenta importantes fatores paras as reações Fenton:

- O espinélio contém Fe²⁺, o qual possui importante papel como doador de elétrons para iniciar a reação Fenton de acordo com o mecanismo Haber Weiss;
- (ii) os sítios octaédricos na estrutura da magnetita podem facilmente acomodar os íons Fe²⁺ e Fe³⁺, sendo que o Fe²⁺ pode ser reversivelmente oxidado;
- substituições isoestruturais do ferro por diferentes metais de transição podem ocasionar importantes mudanças nas propriedades físico-químicos das magnetitas, produzindo em sistema mais ativo.^{23,24}

Os sistemas investigados até o momento foram: $Fe_{3-x}M_xO_4$ (onde M= Ni, Co, Mn) e os compósitos Fe^{o}/Fe_3O_4 , que tem se mostrado muito eficientes para a oxidação de contaminantes orgânicos em efluentes aquosos utilizando H₂O₂, ou mesmo O₂.²⁵⁻²⁷

Estes sistemas Fenton heterogêneo mostram várias vantagens potenciais em relação ao sistema Fenton homogêneo clássico, tais como:

- operam em pH neutro, não necessitando das etapas de acidificação (para pH 3) e posterior neutralização, evitando a geração de lodo;
- o sistema pode ser reciclado/regenerado.

2.1.4. Magnetitas substituídas (Fe_{3-x}M_xO₄)

A substituição de Fe por elementos tais como Co e Mn (Fe_{3-x} M_xO_4 onde M= Co, Mn) causa um grande aumento na atividade da magnetita para a reação de Fenton. Este efeito foi discutido em termos de um processo de duas etapas mostradas nas Equações 2.2 e 2.3:

$$M^{2+} (Co^{2+} ou Mn^{2+}) + H_2O_2 \rightarrow M^{3+} + HO^{\bullet} + HO^{-}$$
Equação 2.2

$$M^{3+} + Fe^{2+} \rightarrow M^{2+} + Fe^{3+}$$
Equação 2.3

Espécies do tipo Co^{2+} ou Mn^{+2} podem iniciar a reação de Fenton através de um mecanismo de Haber-Weiss formando o radical hidroxila e a espécie M^{3+} . A grande atividade do sistema foi atribuída a regeneração do Co^{2+} ou Mn^{2+} por redução pelo Fe^{2+} da estrutura da magnetita. As reduções das espécies Co^{3+} (Equação 2.4) e Mn^{3+} (Equação 2.5) pelo Fe^{2+} são termodinamicamente favoráveis e são facilitadas pela alta condutividade elétrica do semicondutor magnetita.

$$Co^{3+} + Fe^{2+} → Co^{2+} + Fe^{3+}$$
 ΔE° = + 1,05 V Equação 2.4
Mn³⁺ + Fe²⁺ → Mn²⁺ + Fe³⁺ ΔE° = + 0,74 V Equação 2.5

Magnetitas substituídas por elementos tais como Mg^{2+} , Ni^{2+} ou Al^{3+} que possuem apenas um estado de oxidação estável causaram uma diminuição da atividade catalítica para a reação de Fenton.

Neste trabalho foi investigado o efeito da substituição do Fe da magnetita por Cr na reação de Fenton. O Cr apresenta vários aspectos interessantes que podem afetar significativamente a atividade da magnetita para a química de Fenton:

- (i) o Cr apresenta vários estados de oxidação que podem existir nas condições de reação, por exemplo, Cr²⁺, Cr³⁺, Cr⁴⁺, Cr⁵⁺ e Cr⁶⁺;
- (ii) estas espécies de Cr possuem raios iônicos compatíveis com o espinélio magnetita podendo formar compostos altamente estáveis;
- (iii) o Cr pode substituir tanto o Fe²⁺ quanto o Fe³⁺ nos diferentes sítios na estrutura magnetita;
- (iv) o Cr pode ativar o peróxido de hidrogênio através de diferentes mecanismos, i.e. Haber Weiss, complexos peroxo intermediários e por vacantes aniônicas na superfície do óxido.

Devido à importância de aços contendo Cr e o processo de oxidação formando óxidos mistos de Fe e Cr, vários trabalhos podem ser encontrados na literatura sobre a síntese e caracterização de magnetitas contendo Cr. Os trabalhos mais relevantes podem ser vistos na Tabela 2.2.

Compostos	Observações		
MgFe _{2-x} Cr _x O ₄	Estudo da migração atômica realizada por DRX e		
	espectroscopia Mössbauer.		
$FeAl_2O_4, FeCr_2O_4$	Estudo do gradiente campo elétrico por espectroscopia		
$Fe_{0,5}Mg_{0,5}Cr_2O_4$	Mössbauer a baixa temperatura.		
Cromitas naturais com	Estudo da composição química por DRX e	30	
ferro	espectroscopia Mössbauer. Materiais coletados em		
	regiões da Índia.		

Tabela 2.2: Trabalhos mais relevantes envolvendo magnetitas contendo cromo.

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

FeCr ₂ O ₄	Síntese e caracterização por DRX e espectroscopia	31		
	Mössbauer.			
FeCr ₂ O ₄	Caracterização por espectroscopia Mössbauer (-180 -			
	25 ^o C) e DRX.			
FeCr ₂ O ₄	Investigação do sistema FeCr2O4 por espectroscopia	33		
	Mössbauer			
CoFe _{2-x} Cr _x O ₄	Estudo das propriedades magnéticas e cristalográficas	34		
	por DRX e espectroscopia Mössbauer			
$Fe_{3-x}Cr_{x}O_{4} (0 \le x \le 2)$	Obtenção de espectros Raman	35		
$Fe_{2-x}Cr_xO_3 (0 \le x \le 2)$				
Fe _{3-x} Cr _x O ₄	Estudo da capacidade térmica $(-73 - 580 \ ^{0}C)$	36		
(x = 0.6; 0.8 e 1)				

No entanto, nenhum trabalho foi encontrado onde as propriedades catalíticas da $Fe_{3-x}Cr_xO_4$ foram investigadas.

Neste capítulo foram sintetizadas magnetitas substituídas com diferentes teores de íons cromo (Fe_{3-x}Cr_xO₄ com x = 0,07; 0,26; 0,42 e 0,51). Estes materiais foram caracterizados por difração de raios-X, espectroscopia Mössbauer, área superficial BET, termogravimetria, análise térmica diferencial, medidas de magnetização espontânea e espectroscopia fotoeletrônica de raios-X. As magnetitas substituídas com cromo foram utilizadas pela primeira vez como catalisadores em reações de decomposição de H₂O₂ e em reações do tipo Fenton heterogêneo para a degradação de dois corantes modelo: azul de metileno (AM) e vermelho drimaren (VD). Também foi investigado o efeito do íon cromo na estabilidade térmica das magnetitas Fe_{3-x}Cr_xO₄.

2.2. EXPERIMENTAL

2.2.1 Síntese dos catalisadores Fe_{3-x}Cr_xO₄

Para preparar os catalisadores $Fe_{3-x}Cr_xO_4$ com os valores de x iguais a 0,07; 0,26; 0,42 e 0,51 foi realizado o procedimento descrito a seguir. Em 85 mL de solução $Fe(NO_3)_3.6H_2O$ 1,65 mol L⁻¹, foram adicionados 40 mL de uma solução de $Cr(NO_3)_3.9H_2O$ (0,88; 0,61; 0,35 ou 0,09 mol L⁻¹). Posteriormente foram adicionados lentamente sob agitação, 100 mL de NH₄OH concentrado e 60 mL de água destilada para diminuir a viscosidade do precipitado formado. Após 15 min o precipitado foi centrifugado e o sobrenadante descartado. Em seguida o material foi lavado 6 vezes com uma solução de acetato de amônio 20 % m/V. Finalmente o precipitado foi deixado em estufa a 80 °C durante 12 horas e depois foi tratado termicamente a 400 °C em atmosfera de N₂ durante 2 horas.

2.2.2. Caracterização dos catalisadores Fe_{3-x}Cr_xO₄

Análise da Composição das Magnetitas por Espectrometria de Absorção Atômica com Chama

As medidas dos teores de ferro foram realizadas no espectrometro Varian AA-175 Series do Laboratório de Análise Foliar do Departamento de Química da Universidade Federal de Lavras. Antes das análises as amostras foram decompostas em um erlemmeyer contendo 10,0 mL de HCl concentrado e adicionados 0,1000 g de amostra. Esta mistura foi levada à ebulição em um banho de óleo de silicone até próximo a secura. Ao resíduo obtido foram adicionados 10,0 mL de HCl concentrado, e transferido para um balão volumétrico de 100,00 mL e o volume completado com água deionizada.

Espectroscopia Mössbauer

Os espectros Mössbauer foram realizados no laboratório de Espectroscopia Mössbauer do Departamento de Química da UFMG. Os espectros foram obtidos à temperatura ambiente, em um espectrofotômetro Mössbauer convencional (aceleração constante, fonte de ⁵⁷Co em matriz de Rh, utilizando α - Fe⁰ como padrão).

Neste trabalho, os espectros foram obtidos para as amostras em pó, usando geometria de transmissão, onde são detectados os fótons transmitidos através do absorvedor.

Difração de Raios-X (DRX)

Os difratogramas de raios-X foram obtidos em um equipamento Rigaku Geiger-Flex 2037, (Laboratírio de Difração de Raios-X - Departamento de Química da UFMG.) CuK α = 1,54051 Å entre o intervalo (2 θ): 5 – 70° com velocidade de varredura 4 ° min⁻¹

Termogravimetria (TG)

As curvas TG foram obtidas no laboratório de Análise Térmica situado no Departamento de Química - UFMG, utilizando-se uma termobalança METTLER M3. As análises foram obtidas de acordo com as seguintes condições: massa da amostra entre 3 a 10 mg, fluxo de ar de 200 mL min⁻¹, razão de aquecimento 10 °C min⁻¹, e variação de temperatura de 25 a 750 °C.

Medidas de Magnetização Espontânea

As medidas de magnetização foram realizadas no laboratório de Espectroscopia Mössbauer do Departamento de Química da UFMG, utilizando-se um magnetômetro

portátil, com campo magnético fixo de 0,3 testa produzido por um imã permanente em configuração de "cilindro mágico", constituído de uma liga polimerizada de Nd-Fe-B. A magnetização é medida por interação digital do sinal de voltagem quando a amostra cai livremente e passa por duas bobinas coletoras do sinal, localizadas na região central do cilindro.

Área superficial BET

Os valores de área superficial foram obtidos em um equipamento Quantachrome Autosorb 1, situado no laboratório de Tecnologias Ambientais do departamento de Química – FMG. As medidas foram realizadas utilizando-se nitrogênio (gasoso) com 41 ciclos de adsorção e dessorção. As amostras (c.a. 300 mg) foram desgaseificadas a temperatura de 150 °C durante 20 h antes da análise.

Espectroscopia fotoeletrônica de raios-X (XPS)

As medidas de XPS foram realizadas no Laboratório de Física Aplicada do CDTN, onde foi utilizado o equipamento CLAM II-VG com fonte de Al K α (1486,6 eV). A linha do carbono C 1s com energia de ligação localizada em 284,6 eV, foi utilizada como referência.

2.2.3. Adsorção dos Corantes Azul de metileno e Vermelho Drimaren

A adsorção dos corantes azul de metileno (AM) e vermelho drimaren (VD) (Figura 2.1) nas magnetitas $Fe_{3-x}Cr_xO_4$, foi acompanhada pela descoloração da solução. Os experimentos foram realizados no escuro misturando-se 3,50 mL da solução do corante AM 0,05 g L⁻¹ ou VD 0,05 g L⁻¹ e 15,0 mg da magnetita substituída com Cr. Em diferentes intervalos de tempo a solução do sobrenadante foi separada do catalisador utilizando-se um imã. Posteriormente foram realizadas as medidas de absorvância no espectrofotômetro UV

– 160 A Shimadzu e 800 M – Analyser, no comprimento de onda 543 nm (para o VD) e
651 nm (para o AM), utilizando cubetas de vidro de 10 mm de caminho óptico.

Figura 2.1: Fórmula estrutural dos corantes azul de metileno (AM) e vermelho drimaren (VD).

2.2.4. Testes catalíticos

Reações de oxidação de matéria orgânica em meio aquoso

Os testes de oxidação de matéria orgânica em meio aquoso foram realizados utilizando-se os corantes azul de metileno (AM) e vermelho drimaren (VD) como moléculas modelo. Antes de se iniciar as reações a solução do corante ficou em contato com o catalisador durante 24hpara se eliminar os efeitos de adsorção.

Em um experimento típico, 15,0 mg de catalisador foram adicionados em 3,50 mL de uma solução de corante 50,0 mg L⁻¹ e 0,27 mol L⁻¹ de H_2O_2 . O desaparecimento da cor foi monitorado através de medidas espectrofotométricas no comprimento de onda de 651 (para o AM) e 523 nm (para o VD). Para a realização das medidas a reação foi interrompida em intervalos de 3 minutos, através da retirada do catalisador utilizando-se um imã e a absorvância medida em um espectrofotômetro Microprocessado 800 M Analyser. Depois de terminada as reações foram realizadas medidas da concentração de carbono orgânico total (COT) presente nas soluções do sobrenadante. As medidas de COT foram realizadas

no equipamento TOC 500A Shimadzu no Laboratório de Limnologia do Instituto de Ciências Biológicas (ICB) da Universidade Federal de Minas Gerais.

Reações de decomposição do H_2O_2

Os testes de decomposição do peróxido de hidrogênio (Equação 2.6) foram realizados em sistema simples de laboratório acompanhando o volume de O_2 (Figura 2.2). Para cada experimento utilizou-se um volume de 7,00 mL de uma solução 3,0 mol L⁻¹ de H_2O_2 e 30,0 mg de catalisador.

Figura 2.2: Esquema representativo da montagem utilizada no experimento de decomposição do H_2O_2 utilizando as magnetitas $Fe_{3-x}Cr_xO_4$.

2.2.5. Estudos Mecanísticos Preliminares por Eletrospray

Os espectros de massas com ionização por eletrospray, foram obtidos no equipamento: Electrospray Agilent 1100 Series LC/MSD Trap, no laboratório de Espectroscopia de Massas do Departamento de Química da Universidade Federal de Lavras. As análises foram realizadas para as soluções do corante AM e fenol com 0 e 1 hora de reação com a magnetita X_{Cr} 0,07. As condições de análise foram as seguintes: (i) para o fenol utilizou-se o modo negativo, com solução pH 10 e volume do injetor de 20 µL. A reação foi analisada por infusão direta e com um fluxo de 5 µLmin⁻¹ e os espectros foram obtidos pela média de 5 scans de 0,2 s cada. As condições do ESI foram: fluxo de gás de secagem (N₂) de 6 Lmin⁻¹, com temperatura de 320° C e pressão de 12 psi e a voltagem do capilar foi de +3,5kV e (ii) para o azul de metileno utilizou-se o modo positivo, solução tampão pH 5,5 (formiato de amônio) e volume do injetor de 20 µL. A reação foi analisada por infusão direta e com um fluxo de 15 µLmin⁻¹ e os espectros foram obtidos por 5 scans de 0,2 s cada. As condições do ESI foram: fluxo de 5 Lmin⁻¹, com temperatura de 320° C e pressão de secagem (N₂) de 5 Lmin⁻¹, com temperatura de 320° C e pressão de secagem (N₂) de 5 Lmin⁻¹, com temperatura de 320° C e pressão de secagem (N₂) de 5 Lmin⁻¹, com temperatura de 320° C e pressão de secagem (N₂) de 5 Lmin⁻¹, com temperatura de 320° C e pressão de secagem (N₂) de 5 Lmin⁻¹, com temperatura de 320° C e pressão de secagem (N₂) de 5 Lmin⁻¹, com temperatura de 320° C e pressão de 15 psi e a voltagem do capilar foi de -3,5kV.

2.3. RESULTADOS E DISCUSSÃO

2.3.1. Caracterização dos catalisadores Fe_{3-x}Cr_xO₄

Composição Química

A Tabela 2.3 apresenta os teores de ferro e cromo obtidos nas análises por espectrometria de absorção atômica com chama.

Tabela 2.3: Teores de ferro e cromo obtidos através da análise por espectrometria de absorção atômica com chama das magnetitas $Fe_{3-x}Cr_xO_4$.

Amostra	Análise Química / %		Fórmula calculada
	Ferro	Cromo	
Fe _{2,93} Cr _{0,07} O ₄	66,06	1,65	$Fe_{2,74}Cr_{0,07}\Box_{0,19}O_4$
Fe _{2,74} Cr _{0,26} O ₄	60,15	6,11	$Fe_{2,49}Cr_{0,26}\Box_{0,24}O_4$
Fe _{2,58} Cr _{0,42} O ₄	56,09	9,73	Fe _{2,33} Cr _{0,42} $\Box_{0,24}O_4$
Fe _{2,49} Cr _{0,51} O ₄	55,03	12,21	$Fe_{2,28}Cr_{0,51}\Box_{0,18}O_4$

 \Box = vacâncias

Através dos resultados de absorção atômica para Fe e Cr, foi possível quantificar o teor de cromo na estrutura da magnetita (x = 0,07; 0,26; 0,42 e 0,51). É interessante observar a presença de concentrações relativamente altas de vacâncias catiônicas (entre 0.19-0.24) que sugerem uma magnetita oxidada.

Espectroscopia Mössbauer

Foram obtidos espectros Mössbauer para a magnetita sem cromo (Fe₃O₄) e para a série Fe_{3-x}Cr_xO₄. O espectro Mössbauer para a magnetita (Figura 2.3), inicialmente foi ajustado com parâmetros hiperfinos para dois sextetos característicos (deslocamento isomérico δ 0,54 mm s⁻¹; deslocamento quadrupolar ε -0,02 mm s⁻¹; campo hiperfino B_{hf} 46,0 T e δ 0,17 mm s⁻¹; ε 0,01 mm s⁻¹; B_{hf} 49,0 T), com razão de área sítio B/sítio A (B/A)

de aproximadamente 1,81, sugerindo uma leve oxidação do Fe^{2+} do sítio octaédrico na estrutura espinélio da magnetita (Tabela 2.4). O ajuste final fez necessário um terceiro sexteto com área relativa de 24% atribuído à fase maghemita (γ -Fe₂O₃).

Figura 2.3: Espectro Mössbauer obtido para a magnetita a temperatura ambiente (25 ⁰C).

Os espectros Mössbauer obtidos para as magnetitas $Fe_{3-x}Cr_xO_4$ são apresentados na Figura 2.4. Observando estes espectros e seus respectivos parâmetros hiperfinos (Tabela 2.4), pôde-se notar que a fase cristalina presente é a da magnetita, isto é não houve a formação de nenhum outro óxido de ferro (α -Fe₂O₃ ou γ -Fe₂O₃).

No espectro Mössbauer da amostra $X_{Cr} = 0,07$ pode-se observar dois sextetos característicos da magnetita com $\delta 0,60$ mm s⁻¹, ε -0,02 mm s⁻¹, B_{hf} 45,2 T e $\delta 0,25$ mm s⁻¹, ε -0,02 mm s⁻¹, B_{hf} 48,6 T e razão B/A 0,70.

Para a amostra $X_{Cr} = 0,26$, nota-se uma diminuição no valor do deslocamento isomérico do sítio B ($\delta 0,35$ mm s⁻¹), sugerindo que parte dos íons Fe²⁺ sofreu oxidação durante o tratamento térmico realizado na síntese.

No espectro Mössbauer da amostra $X_{Cr} = 0,42$, pode-se observar os dois sextetos relativos à estrutura magnetita com $\delta 0,51$ mm s⁻¹, ε -0,02 mm s⁻¹, B_{hf} 44,3 T e $\delta 0,32$ mm s⁻¹, ε -0,01 mm s⁻¹, B_{hf} 47,5 T.

No espectro Mössbauer da amostra $X_{Cr}=0,51$ é observado, além dos sinais referentes à magnetita, um dupleto superparamagnético com $\delta 0,35$ mm s⁻¹ e Δ -0,86 mm s⁻¹, devido à presença de íons Fe³⁺ dispersos na superfície da magnetita ou ao tamanho muito pequeno das partículas desta amostra.

Figura 2.4: Espectros Mössbauer obtidos para as magnetitas $Fe_{3-x}Cr_xO_4$ (x = 0,07; 0,26; 0,42 e 0,51) a temperatura ambiente (25 ^{0}C).

Amostra	Atribuição	δ / mm s ⁻¹	$\varepsilon, \Delta / \text{mm s}^{-1}$	B_{hf} / T	AR/%	B/A
		(±0,05 mms ⁻¹)	$(\pm 0,05 \text{ mms}^{-1})$	(±0,5 T)	(±1%)	
	(Fe ₃ O ₄) A	0,28	0,01	49,0	27	1,81
0,00	(Fe ₃ O ₄) B	0,54	-0,02	46,0	49	
	γ-Fe ₂ O ₃	0,33	-0,02	50,5	24	
0,07	(Fe ₃ O ₄) A	0,25	-0,02	48,6	59	0,70
	(Fe ₃ O ₄) B	0,60	-0,02	45,2	41	
0.26	(Fe ₃ O ₄) A	0,33	-0,01	48,7	45	1,22
	(Fe ₃ O ₄) B	0,35	-0,02	45,7	55	
0.42	(Fe ₃ O ₄) A	0,32	-0,01	47,5	34	1,91
	(Fe ₃ O ₄) B	0,51	-0,02	44,3	66	
	(Fe ₃ O ₄) A	0,28	-0,02	47,2	22	
0,51	(Fe ₃ O ₄) B	0,52	-0,02	44,3	70	3,19
	Fe ³⁺	0.35	0.86		8	

Tabela 2.4: Parâmetros hiperfinos referentes à série de magnetitas $Fe_{3-x}Cr_xO_4$ (x = 0,07; 0,26; 0,42 e 0,51) obtidos a temperatura ambiente (25 ^{0}C).

 δ = deslocamento isomérico, ε = deslocamento quadrupolar; Δ = desdobramento quadrupolar, B_{hf} = campo hiperfino; AR = área subespectral relativa, A e B = sítio tetraédrico e octaédrico da magnetita, respectivamente, B/A = razão entre as áreas dos sítios B e A da magnetita.

Na Figura 2.5 pode-se observar o gráfico onde se tem a razão B/A em função do teor de cromo.

Figura 2.5: Razão B/A dos espectros Mössbauer das magnetitas $Fe_{3-x}Cr_xO_4$ em função do teor de cromo.

Para uma magnetita perfeita espera-se uma razão B/A=2, visto que o sítio octaédrico B deve possuir dois Fe (Fe²⁺ e Fe³⁺) enquanto o sítio tetraédrico tem um Fe³⁺. Pode-se observar que a razão B/A é menor do que a da magnetita pura para X_{Cr} 0,07 e 0,26 indicando que o cromo deve estar substituindo preferencialmente os íons Fe³⁺ e Fe²⁺ do sítio octaédrico (sítio B). E para X_{Cr} maior que 0,42 a razão B/A é maior do que da magnetita, sugerindo que o cromo pode estar substituindo tanto ferros do sítio octaédrico como os íons Fe³⁺ do sítio tetraédrico (sítio A).

Difração de Raios –X

A Figura 2.6 mostra os difratogramas obtidos para as magnetitas pura e substituída com cromo (Fe_{3-x}Cr_xO₄, x = 0,07; 0,26; 0,42 e 0,51). Observa-se picos referentes somente à fase cristalina espinélio (2 θ = 30,2; 35,4; 43,0; 53,5; 57,1; 62,6; 66,4 e 74,2° - JCPDS: 1-1111). No difratograma da magnetita pura não foi possível diferenciar claramente as fases Fe₃O₄ e γ -Fe₂O₃, visto que possuem a mesma estrutura cristalográfica. Uma análise mais cuidadosa dos difratogramas foi realizada através do pico mais intenso em 2 θ 35,4° (Figura 2.7). Nota-se que o pico da Fe₃O₄ pura apresenta uma pequena assimetria com um "ombro" em ângulos de difração maiores, que provavelmente está relacionado com a fração oxidada da magnetita observada também por Mössbauer. Observa-se também que na medida em que Cr é adicionado ao material ocorre um alargamento e um deslocamento do ângulo de difração (Figura 2.7) especialmente para X_{Cr} ≥ 0,26. Estas alterações indicam que o Cr está inserido na rede cristalina da magnetita causando modificações nos parâmetros de rede (a₀) do Fe₃O₄.

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

Figura 2.6: Difratograma obtido para a magnetita pura e as substituídas com cromo $(Fe_{3-x}Cr_xO_{4.})$.

Figura 2.7: Difratograma expandido do pico mais intenso da magnetita pura e substituída (Fe_{3-x}Cr_xO₄).

Utilizando as equações de Scherrer e Bragg foram calculados o tamanho de cristalito (l) e os parâmetros de rede, respectivamente para os materiais (Tabela 2.5).

Tabela 2.5: Valores de parâmetros de rede calculados (a₀) e medidas do tamanho médio de cristalito (l).

Amostra	d (111) / Å	a ₀ / Å	l / nm
Fe ₃ O ₄	2,5320	8,3960	24
Fe _{2,93} Cr _{0,07} O ₄	2,5288	8,3940	21
Fe _{2,74} Cr _{0,26} O ₄	2,5191	8,3549	19
Fe _{2,58} Cr _{0,42} O ₄	2,5214	8,3625	16
Fe _{2,49} Cr _{0,51} O ₄	2,5214	8,3625	17

Na Figura 2.8 é apresentado o gráfico com os valores de a_0 em função da quantidade de cromo nas magnetitas Fe_{3-x}Cr_xO₄. Observando os dados nota-se que os valores dos parâmetros de rede diminuem até x = 0,26 indicando a substituição do Fe³⁺ (raio 65 pm) e principalmente do Fe²⁺ (raio 78 pm) pelo Cr³⁺ (raio 61 pm) no sítio octaédrico da magnetita. E para teores de cromo superiores a 0,26 os valores de a_0 aumentam, sugerindo que o cromo pode estar substituindo o Fe³⁺ (raio 49 pm) no sítio tetraédrico.

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

Figura 2.8: Variação dos parâmetros de rede com a quantidade de cromo presente na estrutura da magnetita.

Medidas de Magnetização Espontânea

A Figura 2.9 apresenta as medidas de magnetização espontânea (σ) obtidas para a magnetita pura e para a série Fe_{3-x}Cr_xO₄ em função do teor de cromo. O valor encontrado para a magnetita pura neste trabalho foi de 57 J kg⁻¹ T⁻¹, diferente de uma magnetita pura e perfeitamente estequiométrica ([Fe³⁺]{Fe²⁺_{1-3x}Fe³⁺_{1-2x} \Box_x }O₄ quando x = 0) e sem imperfeições na rede cristalina, que possui valor de magnetização igual a 100 J kg⁻¹ T⁻¹. Este menor valor de magnetização obtido para a magnetita sintetizada se deve provavelmente à presença de imperfeições na rede cristalina e impurezas como a maghemita (γ -Fe₃O₄). Na Figura 2.9 pode-se observar que os valores de magnetização obtidos para as magnetitas substituídas diminuem linearmente com o teor de cromo. Este efeito é mais um indício que os íons Cr³⁺ estão sendo incorporados na estrutura da magnetita.

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

Figura 2.9: Valores de magnetização espontânea em função do teor de cromo na estrutura espinélio.

Termogravimetria (TG)

Na Figura 2.10 pode-se observar as curvas TG obtidas em atmosfera de ar para a série de magnetitas $Fe_{3-x}Cr_xO_4$. Observa-se um ganho de massa entre *c.a* 150 °C até 290 °C. O aumento de massa observado para a magnetita pura (em torno de 2,6 %) sugere que neste processo ocorreu a oxidação da magnetita para maghemita (γ -Fe₂O₃), como é apresentado na Equação 2.7.

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

Figura 2.10: Curvas TG obtidas para a magnetita pura e substituídas com cromo $(Fe_{3-x}Cr_xO_4)$ em atmosfera de ar.

$$4Fe_3O_4 + O_2 \rightarrow 6 \gamma - Fe_2O_3$$
 Equação 2.7

O ganho de massa esperado para este processo é de 3,45 % para a reação completa. O ganho de massa de 2.6% sugere que aproximadamente 25% da magnetita encontra-se oxidada, como já havia sido sugerido pelos resultados Mössbauer e DRX.

Observando a curva TG para a amostra X_{Cr} 0,07 nota-se uma pequena diminuição no ganho de massa entre 150 e 290 ⁰C. Isto indica que o cromo além de substituir os íons Fe³⁺ do sítio octaédrico, pode estar substituindo também os íons Fe²⁺. Na amostra X_{Cr} 0,26 praticamente não há ganho de massa, indicando que o teor de Fe²⁺ na amostra é muito próximo a zero. Este resultado está de acordo com aquele obtido por espectroscopia Mössbauer que mostra uma forte diminuição da área do sítio octaédrico.

Considerando os resultados obtidos por TG, DRX e espectroscopia Mössbauer, pode-se discutir que na série $Fe_{3-x}Cr_xO_4$ existem dois fatores que podem explicar o baixo teor de Fe^{2+} : (i) pode ter ocorrido a substituição do Fe^{2+} pelo Cr^{3+} ou (ii) pode ter ocorrido oxidação do Fe^{2+} durante a síntese. Nas amostras X_{Cr} 0,42 e 0,51 o teor de Fe^{2+} também é
muito baixo segundo as curvas TG, mas de acordo com os espectros Mössbauer ainda existe uma quantidade considerável de íons Fe^{2+} na estrutura destes materiais. A análise destes resultados juntamente com os parâmetros de rede, indica que nas amostras com maior teor de cromo, a substituição ocorre também com os íons Fe^{3+} do sítio tetraédrico da magnetita.

A perda de massa observada nas curvas TG após 290 °C pode ser devido a processos de desidroxilação ou queima de algum material carbonáceo resultante da síntese. Para as amostras com maior conteúdo de Cr observa-se ainda um pequeno ganho de massa a temperaturas acima de 400 °C o que poderia estar relacionado com a oxidação de Cr com a incorporação de oxigênio.

2.3.2. Estudo das Transições de Fases

Para se estudar a influência do íon cromo na estabilidade térmica das magnetitas $Fe_{3-x}Cr_xO_4$, foram realizados experimentos de análise térmica diferencial (DTA) destes materiais (Figura 2.11).

Figura 2.11: Curvas DTA obtidas para a série de magnetita Fe_{3-x}Cr_xO₄ em atmosfera de ar.

A análise DTA para a magnetita X_{Cr} 0,07 mostra um pico exotérmico centrado em 184 0 C, que está relacionado ao ganho de massa observado na curva TG, devido a oxidação do Fe²⁺. Um outro pico exotérmico em 326 0 C pode ser atribuído ao processo de desidroxilação ou à oxidação de materiais carbonáceos, também observado na curva TG como perda de massa. Em altas temperaturas, i.e. 552 0 C, pode-se observar um evento exotérmico, que corresponde à transição de fase maghemita para hematita.³⁷ É interessante observar que a temperatura da transição de fase aumenta significativamente com o teor de cromo na estrutura da magnetita. Estes resultados sugerem que o cromo possui um efeito de estabilização da estrutura da maghemita.

Para se estudar estas transições de fase as magnetitas substituídas com cromo foram tratadas termicamente a 270 e 600 ⁰C em presença de ar sintético com fluxo de 100 mL/min. Posteriormente estas amostras foram analisadas por espectroscopia Mössbauer e DRX.

A Figura 2.12 apresenta os espectros Mössbauer obtidos para as magnetitas $X_{Cr} 0,07$ e 0,51 antes e depois do tratamento térmico a 270 e 600 ⁰C. Os parâmetros hiperfinos obtidos nestes espectros são apresentados na Tabela 2.6. O espectro Mössbauer da magnetita $X_{Cr} 0,07$ tratada a 270 ⁰C apresenta dois sextetos com $\delta 0,29$ mms⁻¹, ε -0,01 mms⁻¹ , B_{hf} 48,3 T e $\delta 0,33$ mms⁻¹, $\varepsilon 0,02$ mms⁻¹, B_{hf} 46,6 T referentes aos sítios tetraédrico e octaédrico da fase magnetita, respectivamente. Também se pode observar a presença de um sexteto com $\delta 0,30$ mms⁻¹, $\varepsilon 0,01$ mms⁻¹e B_{hf} 49,9 T com área relativa de 64% referente a fase maghemita, formada devido a oxidação da fase magnetita durante o tratamento térmico.

$$Fe_{3-x}Cr_xO_4 + O_2(270^{\circ}C) \rightarrow Fe_{3-x}Cr_xO_{4+\delta}$$
 (maghemita) Equação 2.8

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

Figura 2.12: Espectros Mössbauers obtidos a temperatura ambiente para as magnetitas $X_{Cr}0,07 = 0,51$ tratadas a 270 e 600 °C.

No espectro Mössbauer da amostra X_{Cr} 0,07 tratada a 600 ^oC pode-se observar apenas um sexteto com δ 0,35 mms⁻¹, ε -0,22 mms⁻¹ e B_{hf} 51,5 T referente a fase hematita formada devido à transição de fase da maghemita.

$$Fe_{3-x}Cr_xO_{4+\delta}$$
 (maghemita)(600^oC) $\rightarrow \alpha$ -Fe₂O₃ + Cr óxido Equação 2.9

O espectro Mössbauer da magnetita X_{Cr} 0,51 tratada a 270 0 C apresenta um sexteto com δ 0,29 mms⁻¹, ε 0,03 mms⁻¹ e B_{hf} 47,3 T devido a presença da fase maghemita e um dupleto superparamagnético com δ 0,22 mms⁻¹ e Δ 0,97 mms⁻¹ provavelmente devido à presença de Fe³⁺ altamente disperso.

No espectro Mössbauer da amostra X_{Cr} 0,51 tratada a 600 ⁰C pode-se observar a presença de dois sextetos com δ 0,32 mms⁻¹, ε -0,05 mms⁻¹, B_{hf} 47,0 T e δ 0,35 mms⁻¹, ε - 0,22 mms⁻¹ e B_{hf} 50,4 T referentes às fases maghemita e hematita, respectivamente.

Amostra	Atribuição	$\partial mm s^{-1}$ (± 0,05 mms ⁻¹)	$\varepsilon_{\pm 0,05 \text{ mms}^{-1}}$	<i>B_{hf}/</i> T (± 0,5 T)	$\int \int mm s^{-1}$ (± 0,05 mms ⁻¹)	R A/% (±1%)
0.07	$(Fe_3O_4) A$	0,29	-0,01	48,3	0,34	13
0,07 270 °C	$(Fe_3O_4) B$	0,33	0,02	46,6	0,31	23
	γ-Fe ₂ O ₃	0,30	0,01	49,9	0,56	64
0,07 600 ⁰ C	α-Fe ₂ O ₃	0,35	-0,22	51,5	0,32	100
0,51	γ-Fe ₂ O ₃	0,29	0,03	47,3	0,46	85
270 °C	Fe ³⁺	0,22	0,97		0,85	15
0,51	γ-Fe ₂ O ₃	0,32	-0,05	47,0	0,31	61
600 ⁰ C	α-Fe ₂ O ₃	0,35	-0,22	50,4	0,45	39

Tabela 2.6: Parâmetros hiperfinos referentes às magnetitas X_{Cr} 0,07 e 0,51 após tratamento térmico a 270 e 600 0 C obtidos a temperatura ambiente (25 0 C).

A Figura 2.13 apresenta a área relativa obtida nos espectros Mössbauer para as magnetitas $X_{Cr} 0,07 = 0,51$ antes e após os tratamentos realizados a 270 e 600 °C. Pode-se observar que quando as magnetitas $X_{Cr} 0,07 = 0,51$ são tratadas a 270 °C, ocorre uma oxidação de 64 e 85% da fase magnetita para maghemita, respectivamente. Por outro lado, ao se fazer o tratamento térmico a 600 °C ocorreu uma oxidação de 100 e 39% da fase maghemita para hematita nas amostras $X_{Cr} 0,07 = 0,51$, respectivamente. Estes resultados indicam claramente que o íon cromo possui um efeito de estabilização térmica da fase maghemita.

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

Figura 2.13: Distribuição de fase obtida a partir dos espectros Mössbauers das magnetitas $X_{Cr} 0,07 e 0,51$ antes a após tratamento térmico realizado a 270 e 600 ⁰C.

As Figuras 2.14A e B apresentam os difratogramas obtidos para a série de magnetita $Fe_{3-x}Cr_xO_4$ após tratamentos a 270 e 600 °C, respectivamente. Nos difratogramas das magnetitas tratadas a 270 °C (Figura 2.14A), observam-se picos de difração em 2 θ iguais a 23,8; 26,2; 30,2; 35,7; 43,3; 53,9; 57,3; 62,7; 71,4 e 74,7° (JCPDS 4-755), que podem ser atribuídos à fase maghemita. Os difratogramas das magnetitas X_{Cr} 0,07 e 0,26 tratadas a 600 °C (Figura 2.14B) apresentam linhas de difração em valores de 2 θ iguais a 24,1; 33,4; 35,8; 41,0; 49,5; 54,3; 57,6; 62,3; 64,2; 69,6; 72,0 e 75,4° (JCPDS 1-1053), referentes a fase hematita. Nos difratogramas das magnetitas X_{Cr} 0,42 e 0,51 pode-se observar linhas de difração referentes as fases hematita e maghemita.

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

Figura 2.14: Difratogramas obtidos para a série de magnetita $Fe_{3-x}Cr_xO_4$ após tratamentos a 270 e 600 ^{0}C (Ht = hematita e Mh = maghemita).

Estes resultados estão de acordo com aqueles obtidos por espectroscopia Mössbauer e DTA, os quais indicam que íons cromo causam a estabilização térmica da fase maghemita.

2.3.3. Propriedades texturais

As isotermas de adsorção/dessorção de N_2 obtidas para a série de magnetitas $Fe_{3-x}Cr_xO_4$ são apresentadas na Figura 2.15.

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

Figura 2.15: Isoterma de adsorção/dessorção da série de magnetitas Fe_{3-x}Cr_xO₄.

A isoterma obtida para a magnetita pura possui um aumento acentuado na adsorção de N₂ para valores de pressão relativa superiores a 0,85 e também uma histerese, que representa uma diferença dos processos de evaporação e condensação do adsorvato. Esta isoterma é característica de materiais meso (20 - 500 Å) e macroporosos (maior que 500 Å) e apresentou área superficial igual a 31 m²g⁻¹. Nas isotermas das magnetitas Fe_{3-x}Cr_xO₄ o aumento do volume de gás adsorvido fica mais acentuado à medida que o teor de cromo aumenta no catalisador, levando estas isotermas a ficarem parecidas com isotermas do tipo IV, características de materiais mais mesoporosos. A Figura 2.16 apresenta o gráfico: área superficial BET em função do teor de cromo. Observa-se um aumento significativo nas áreas superficiais à medida que o teor de cromo aumenta.

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

Figura 2.16: Área superficial BET em função do teor de cromo na magnetita.

Observa-se um aumento significativo e quase linear (após $X_{Cr} = 0,07$) nas áreas superficiais com o teor de cromo. Outro aspecto interessante é que a presença do Cr também altera significativamente a distribuição dos poros dos materiais (Figura 2.17).

Observando a Figura 2.17 nota-se que a magnetita possui grande quantidade de macroporos e de mesoporos acima de 100 Å. Para os catalisadores $Fe_{3-x}Cr_xO_4$ o volume de macro poros é muito menor (para x = 0,07) ou praticamente não existe (x = 0,26; 0,42 e 0,51). O volume de mesoporos inferiores aumenta consideravelmente nos catalisadores com maior quantidade de cromo, o que pode explicar o aumento de área superficial. Assim, devido à presença de poros menores (micro e meso) as áreas superficiais das magnetitas substituídas por Cr tendem a aumentar.

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

Figura 2.17: Distribuição de poros para as magnetitas pura e substituída (Fe_{3-x}Cr_xO₄).

2.3.4. Testes catalíticos

As magnetitas substituídas com cromo tiveram suas atividades catalíticas estudadas para dois tipos de reações: (i) reações de decomposição do H_2O_2 (Equação 2.10) e (ii) reações do tipo Fenton para a oxidação de corantes (Equação 2.11).

 $2H_2O_2 \rightarrow 2H_2O + O_2$ Corante + H_2O_2 \rightarrow intermediários não coloridos \rightarrow CO₂+H₂O
Equação 2.10

A decomposição do peróxido de hidrogênio é uma reação versátil para investigar a atividade de sistemas heterogêneos da química Fenton e também reações que envolvem a transferência de elétrons. Apesar de estas reações possuírem mecanismos complexos, uma reação simplificada pode ser considerada para a decomposição na presença de ferro, onde a etapa inicial é a redução do H_2O_2 pelo Fe²⁺:

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

$$\operatorname{Fe}^{2^+} + \operatorname{H}_2\operatorname{O}_{2(aq)} \rightarrow \operatorname{Fe}^{3^+} + \operatorname{HO}^{\bullet} + \operatorname{HO}^{\bullet}$$
 Equação 2.12

O radical HO[•] pode reagir com outra molécula de H₂O₂ e produzir o radical peróxido:

$$HO^{\bullet} + H_2O_{2(aq)} \rightarrow HOO^{\bullet} + H_2O \qquad \qquad \text{Equação 2.13}$$

E finalmente o radical peróxido transfere um elétron para a espécie Fe^{3+} produzindo uma molécula de O₂:

$$HOO^{\bullet} + Fe^{3+} \rightarrow Fe^{2+} + H^+ + O_{2(g)}$$
 Equação 2.14

No início da reação de oxidação do corante, ocorre a descoloração do mesmo, formando intermediários possivelmente incolores. Assim, a descoloração representa as primeiras etapas do processo oxidativo. A oxidação dos intermediários deve acontecer em várias etapas subseqüentes e deve terminar com a formação dos produtos totalmente oxidados a CO₂ e H₂O (mineralização). Uma forma de medir a mineralização é através de valores de COT (Carbono Orgânico Total) que expressa a quantidade de carbono que se encontra em solução na forma orgânica.

I - Reações de decomposição do H_2O_2

As reações de decomposição do peróxido de hidrogênio foram realizadas utilizandose 7,00 mL de solução de H_2O_2 3,00 mol L⁻¹ e 30,0 mg de catalisador. A cinética destas reações foi monitorada através do volume de O_2 formado.

Observando as curvas de decomposição do H_2O_2 utilizando a série de magnetitas $Fe_{3-x}Cr_xO_4$ (Figura 2.18), pode-se notar claramente que a atividade catalítica aumenta com o teor de cromo.

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

Figura 2.18: Reações de decomposição do H₂O₂ pela série de catalisadores Fe_{3-x}Cr_xO₄.

Observando os dados da Figura 2.18, nota-se que as reações são mais rápidas durante os cinco primeiros minutos e depois a velocidade se torna constante em praticamente até 25 min. Estes resultados sugerem que as reações de decomposição do H_2O_2 apresentam cinética de pseudo-ordem zero (após os cinco minutos de reação). Desta forma os valores da constante de velocidade de decomposição do H_2O_2 (k_{decomp}), foram calculados utilizando os coeficientes angulares das retas entre 5 e 25 min. Os valores de k_{decomp} são apresentados na Figura 2.19, onde nota-se claramente um aumento quase linear dos valores de k_{decomp} com o teor de cromo.

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

Figura 2.19: Valores da constante de velocidade de decomposição do H_2O_2 (k_{decomp}) em função do teor de cromo nas magnetitas $Fe_{3-x}Cr_xO_4$.

Foram obtidas também as constantes de velocidades específicas, $k_{decomp}(espec)$ normalizando-se os valores de k_{decomp} por unidade de área superficial BET. A Figura 2.20 mostra os valores de $k_{decomp}(espec)$ para as reações em presença das diferentes magnetitas contendo Cr. Observa-se que, mesmo após a consideração do aumento da área superficial, as $k_{decomp}(espec)$ aumentam quase linearmente com o teor de Cr na magnetita. Estes resultados sugerem claramente que o Cr não tem apenas um efeito de aumentar a área superficial, mas que deve estar diretamente envolvido no mecanismo de decomposição do H₂O₂.

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

Figura 2.20: Valores de $K_{decomp}(espec)$ em função do teor de cromo nas magnetitas $Fe_{3-x}Cr_xO_4$.

Reações catalíticas heterogêneas ocorrem na superfície do catalisador. Desta forma a composição química superficial das magnetitas substituídas com cromo, é de grande importância para se investigar o efeito deste íon na atividade catalítica.

A espectroscopia fotoeletrônica de raios-X (XPS) é uma técnica muito eficiente e bastante utilizada para se determinar a composição química superficial de materiais. Portanto, para se fazer um estudo mais detalhado do efeito do cromo na atividade catalítica das magnetitas $Fe_{3-x}Cr_xO_4$, foram realizadas análises de XPS nas amostras X_{Cr} 0,07; 0,26 e 0,51, antes e depois de 240 min de reação de decomposição do H_2O_2 (Figura 2.21).

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

Figura 2.21: XPS obtidos para as magnetitas X_{Cr} 0,07; 0,26 e 0,51 antes e depois das reações de decomposição do H₂O₂.

Os resultados obtidos por XPS sugerem a presença de Cr^{3+} na superfície das magnetitas devido à presença de picos Cr $2p_{3/2}$ com energia de ligação entre 576,6 e 576,8 eV (Figuras 2.21 A, C e E), típicos do cromo trivalente.^{38,39} Nas Figuras 2.21 B, D e F, pode-se observar a presença de picos Fe $2p_{3/2}$ com energia de ligação entre 710,8 e 711 eV, que é devido ao Fe²⁺ e Fe³⁺.^{39,40} É interessante observar que o espectro da magnetita X_{Cr}

0,51 (Figura 2.21F), possui picos satélites (717,9 eV), sugerindo a predominância de Fe³⁺, como observado na literatura.⁴¹ As razões Cr/Fe obtidas para estes materiais (Tabela 2.7) antes e após as reações de decomposição do H₂O₂ não apresentam diferenças importantes, mostrando que o peróxido de hidrogênio não afeta significativamente a superfície das magnetitas Fe_{3-x}Cr_xO₄.

Tabela 2.7: Dados de XPS obtidos para a série de magnetita $Fe_{3-x}Cr_xO_4$ antes e após as reações de decomposição do H_2O_2 .

Amostra		Cr 2p _{3/2} / eV	Fe 2p _{3/2} / eV	O 1s / eV	Cr/Fe
Fe _{2,93} Cr _{0,07} O ₄	Antes	576,6	711,0	530,1	0,08
	Depois	576,8	710,8	530,1	0,09
Fe _{2,74} Cr _{0,26} O ₄	Antes	576,7	710,9	530,3	0,24
	Depois	576,7	710,9	530,3	0,23
Fe _{2,49} Cr _{0,51} O ₄	Antes	576,7	711,0	530,4	1,11
	Depois	576,7	710,8	530,4	1,11

Cr/Fe = razão entre os teores de Cr e Fe na superfície das magnetitas.

É interessante ressaltar que as razões Cr/Fe superficiais obtidas por XPS (0,08; 0,24 e 1,11) são bem maiores do que aquelas calculadas pela composição química (0,024; 0,095 e 0,205), indicando claramente que a superfície das magnetitas estão enriquecidas em Cr^{3+} .

A Figura 2.22 apresenta um gráfico com os valores de k_{decomp} (reação de decomposição do H₂O₂) em função da razão Cr/Fe, onde pode-se observar claramente um aumento do k_{decomp} a medida que Cr/Fe superficial também aumenta. Como discutido anteriomente, estes resultados indicam que o cromo pode estar diretamente envolvido no mecanismo de decomposição do H₂O₂.

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

Figura 2.22: Valores de *k*_{decomp} em função da razão Cr/Fe superficial obtido por XPS.

II - Reações do Tipo Fenton Heterogêneo

Durante as reações o corante modelo utilizado como contaminante (azul de metileno ou vermelho drimaren) pode ser adsorvido pelo catalisador. Se este processo ocorrer juntamente com a reação de degradação, teremos um resultado errado sobre a cinética e a eficiência do catalisador utilizado, pois a diminuição da concentração do corante em solução ocorrerá devido aos processos de adsorção e oxidação catalítica. Portanto foi necessário se fazer um estudo da adsorção dos corantes vermelho drimaren (VD) e azul de metileno (AM) nas magnetitas $Fe_{3-x}Cr_xO_4$.

A Figura 2.23 apresenta as curvas das cinéticas de adsorção dos corantes AM e VD nas magnetitas substituídas com cromo. Nota-se que o corante VD adsorve mais do que o AM. Isto provavelmente está relacionado com o tipo de carga presente na superfície das magnetitas e dos corantes. O PCZ (ponto de carga zero) dos óxidos de ferro em geral sugere que as magnetitas Fe_{3-x}Cr_xO₄ possuem carga superficial positiva, no pH da reação (6,5), que é responsável pela interação eletrostática formada com o corante VD que é aniônico. Por outro lado, o corante catiônico AM adsorve menos na superfície dos óxidos, devido à presença de cargas positivas.

Na Figura 2.23A observa-se que as magnetitas demoram aproximadamente 14 horas para entrar em equilíbrio com o VD. Nota-se também que a magnetita X_{Cr} 0,26 adsorve mais o corante VD (9,8 mg g⁻¹) do que as magnetitas X_{Cr} 0,42 (8,2 mg g⁻¹) e 0,51 (7,2 mg g⁻¹). Isto pode estar relacionado com a distribuição de poros, onde a magnetita X_{Cr} 0,26 possui maior quantidade de meso e macro poros do que as magnetitas X_{Cr} 0,42 e 0,51. Sendo o corante VD uma molécula relativamente grande, ela possivelmente apresenta dificuldade para ser adsorvida em materiais que possuem poros de menor diâmetro.

Figura 2.23: Cinética de adsorção dos corantes VD (A) e AM (B) nas magnetitas substituídas com cromo.

Observa-se na Figura 2.23B que as magnetitas X_{Cr} 0,00; 0,26; 0,42 e 0,51 demoram aproximadamente 50 minutos para entrar em equilíbrio com a solução do corante AM e a magnetita X_{Cr} 0,07 demora aproximadamente 200 min. Nota-se também que a amostra X_{Cr} 0,07 adsorve mais o corante AM (4,2 mg g⁻¹) do que as demais magnetitas (X_{Cr} 0,00; 0,26; 0,42 e 0,51 adsorvem 1,2; 1,2; 0,42 e 2,1 mg g⁻¹, respectivamente). Como discutido anteriormente, isto pode estar acontecendo devido ao diâmetro cinético da molécula do AM, que deve ser melhor adsorvida em materiais com poros de maior diâmetro.

As reações do tipo Fenton foram realizadas utilizando 15,0 mg de catalisador (Fe_{3-x}Cr_xO₄) e 3,50 mL de uma solução de corante (AM ou VD) 50,0 mg L⁻¹ e 0,27 mol L⁻¹ de H₂O₂. Antes do início de todas as reações Fenton o catalisador e a solução do corante ficam em contato durante 24h para eliminar os efeitos da adsorção.

As reações foram acompanhadas de duas formas distintas: (i) pela cinética de descoloração das soluções, onde as medidas de absorvância foram realizadas em um espectrofotômetro UV a cada 3 min de reação e (ii) pela medida de remoção de COT após 60 min de reação.

As Figuras 2.24A e 2.24B apresentam os resultados das reações de degradação dos corantes azul de metileno (AM) e vermelho drimaren (VD), respectivamente. Na Figura 2.24A pode-se observar que no experimento branco (somente AM + H_2O_2 sem catalisador) não ocorre descoloração significativa do AM mesmo após 60 min de reação. Na presença do Fe₃O₄ puro observa-se um aumento significativo da atividade de descoloração. No entanto, para o catalisador X_{Cr} 0,07 observou-se um grande aumento na atividade catalítica em relação aos outros catalisadores. Para todos os catalisadores obteve-se um comportamento quase linear da descoloração sugerindo que o processo tem uma dependência de pseudo ordem zero com relação à concentração do corante.

Figura 2.24: Reações do tipo Fenton para a degradação dos corantes AM (A) e VD (B) utilizando a série de magnetitas $Fe_{3-x}Cr_xO_4$.

Nas reações com o corante VD (Figura 2.24B) nota-se também um comportamento linear da descoloração especialmente após 10 min.

Considerando que tanto a descoloração do AM e do VD apresentam cinética de pseudo-ordem zero, foram calculados os valores das constantes de velocidade de descoloração (k_{descol}) mostrados na Figura 2.25.

Figura 2.25: Valores de k_{descol} obtidos através do tratamento cinético das reações tipo fenton utilizando os corantes AM (A) e VD (B)

Nos gráficos da Figura 2.25 pode-se observar que os valores de k_{descol} obtidos para as reações realizadas com os corantes AM e VD aumentam quando a quantidade de cromo presente na magnetita é baixa (X_{Cr} = 0,07) e diminui com o aumento do teor de cromo (X_{Cr} = 0,26; 0,42 e 0,51).

A Figura 2.26 apresenta as constantes de velocidade específicas, $k_{decomp}(espec)$, calculadas para as reações de descoloração do VD e AM. Nota-se que estes gráficos continuam parecidos com os gráficos k_{descol} vs X_{Cr} apresentado na Figura 2.25. Novamente estes resultados sugerem que o cromo não tem apenas um efeito de aumentar a área

superficial, mas que pode estar diretamente envolvido no mecanismo de descoloração dos corantes AM e VD.

Figura 2.26: Constante de velocidade específica calculados para as reações do tipo Fenton utilizando as magnetitas $Fe_{3-x}Cr_xO_4$ para descolorir os corantes AM (A) e VD (B).

Com o objetivo de verificar a formação de intermediários da oxidação da molécula do corante durante as reações do tipo Fenton heterogêneo, foram obtidos os espectros UV visível (800 a 220 nm) para a degradação dos corantes AM e VD utilizando a magnetita X_{Cr} 0,07 (Figura 2.27). Observa-se nas Figuras 2.27A e 2.27B que ocorre uma diminuição gradativa de todo o espectro inicial dos corantes AM e VD. Nenhuma nova banda ou absorção foi observada. Estes resultados sugerem que nenhum intermediário que tenha absorção da região UV/Vis esteja sendo formado em altas concentrações.

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

Figura 2.27: Espectros UVvisível obtidos para reações tipo Fenton utilizando a magnetita $X_{Cr} 0,07$ para degradar os corantes AM (A) e VD (B).

Para verificar a eficiência das magnetitas ($Fe_{3-x}Cr_xO_4$) para remover a carga orgânica, foram realizadas medidas de COT após o término das reações realizadas com o corante AM (60 min de reação).

A Figura 2.28 mostra os valores de COT removido em função da quantidade de cromo nas magnetitas $Fe_{3-x}Cr_xO_4$. Nota-se que este gráfico é muito semelhante ao da Figura 2.25A. Este resultado confirma que a magnetita X_{Cr} 0,07 apresenta maior atividade catalítica para degradar o corante AM e os catalisadores com maiores teores de cromo são menos ativos.

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

Figura 2.28: COT removido em função do teor de cromo nas magnetitas $Fe_{3-x}Cr_xO_4$ após 60 min de reação para a oxidação do corante AM.

III – Efeito do tratamento térmico na atividade catalítica das magnetitas $Fe_{3-x}Cr_xO_4$

Para se investigar o efeito das espécies Fe^{2+} na atividade catalítica das magnetitas substituídas com cromo, os catalisadores tratados termicamente a 270 e 600 0 C foram utilizados em reações de decomposição do H₂O₂ e em reações do tipo Fenton heterogêneo para oxidar o corante AM.

As Figuras 2.29A e 2.29B apresentam os gráficos de decomposição do H₂O₂ utilizando as magnetitas tratadas a 270 0 C e 600 0 C, respectivamente. Pode-se observar uma grande semelhança entre estes resultados com aquele obtido para as magnetitas não tratadas termicamente (Figura 2.18), onde as reações são mais rápidas nos 5 primeiros minutos e depois tendem a linearidade, sugerindo uma cinética de pseudo-ordem zero. Desta forma os valores de k_{decomp} , foram calculados utilizando os coeficientes angulares das retas entre 5 e 25 min (Figura 2.30).

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

Figura 2.29 Reações de decomposição do H_2O_2 utilizando as magnetitas $Fe_{3-x}Cr_xO_4$ tratadas termicamente a 270 ${}^{0}C$ (A) e 600 ${}^{0}C$ (B).

Na Figura 2.30 pode-se observar uma diminuição nos valores das constantes de decomposição do H_2O_2 quando as magnetitas $Fe_{3-x}Cr_xO_4$ são tratadas a 270 ^{0}C , sugerindo que as espécies Fe^{2+} podem participar do mecanismo destas reações. Por outro lado, as amostras tratadas a 600 ^{0}C (Figura 2.30), apresentaram uma maior atividade para decompor o H_2O_2 . Este resultado pode estar relacionado com a formação de um óxido de cromo na superfície da hematita, devido à oxidação da magnetita a 600 ^{0}C .

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

Figura 2.30: Valores das k_{decomp} obtidos para as reações utilizando a série de magnetitas Fe_{3-x}Cr_xO₄ não tratadas termicamente e tratadas a 270 ^oC e 600 ^oC.

Nesta etapa do trabalho, as reações Fenton heterogêneo foram realizadas utilizando o corante AM como molécula modelo, pois este é mais reativo e adsorve em menor quantidade do que o corante VD.

A Figura 2.31 apresenta os valores da constante de descoloração do corante AM obtido nas reações Fenton com as magnetitas não tratadas e tratada a 270 0 C em atmosfera oxidante. Pode-se observar que a atividade catalítica das magnetitas diminuiu significativamente após o tratamento térmico, sendo este efeito mais pronunciado nas amostras com menor teor de como (X_{Cr} 0,07 e 0,26). Estes resultados confirmam novamente que as espécies Fe²⁺ possuem um importante papel na atividade destes materiais.

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

Figura 2.31: Valores de k_{descol} do corante AM em função do teor de cromo obtidos em reações do tipo Fenton heterogêneo utilizando as magnetitas Fe_{3-x}Cr_xO₄ antes e após tratamento térmico (270 ⁰C).

2.3.5. Estudos Preliminares dos Intermediários da Reação Fenton utilizando ionização por Eletrospray-Espectrometria de Massas.

Utilizando um espectrômetro de massas com introdução por eletrospray, foram realizados estudos sobre o mecanismo de oxidação utilizando dois contaminantes modelo: o fenol e o corante azul de metileno. A molécula de fenol foi utilizada devido à sua simplicidade, o que permite um melhor acompanhamento dos diferentes intermediários de reação.

A Figura 2.32 apresenta os espectros de massas obtidos para uma solução de fenol, e para as reações tipo Fenton realizadas utilizando a magnetita X_{Cr} 0,07, H₂O₂ e fenol. No espectro do reagente fenol, pode-se observar um sinal com intensidade maior, referente ao ânion fenolato (m/z = 93), e outros referentes às impurezas como a hidroquinona (m/z = 109). A relação das intensidades dos sinais (m/z 93)/ (m/z 109) (i.e. fenol/hidroquinona) foi de aproximadamente 10 para a solução original de fenol que diminui para 8 e depois para ca. 3 após 3 h de reação, indicando claramente que o fenol está sendo convertido em hidroquinona. São observados também vários outros picos após 3 h de reação, que estão relacionados a diferentes intermediários que ainda não foram identificados. Os altos valores do sinais m/z obtidos sugerem que pode estar havendo um processo de reação entre intermediários formando espécies de maior massa molecular. Estudos mais detalhados são necessários para esclarecer este ponto.

Figura 2.32: Espectros de massas com ionização por eletrospray obtidos para o reagente fenol e para as reações realizadas com a magnetita X_{Cr} 0,07 após 1 e 3 horas.

Na Figura 2.33 observa-se os espectros de massas obtidos para a solução do AM antes e após 1 hora de reação com a magnetita X_{Cr} 0,07 e H₂O₂. No espectro da solução do

AM observa-se dois sinais: um mais intenso em m/z 284 referente ao corante e outro em m/z 275 referente a um intermediário de decomposição. Após 1 hora de reação pode-se observar que a relação entre os sinais (m/z 284)/(m/z 275) diminui de 20 para 0,30. Esta forte diminuição indica que o AM está sendo convertido em um intermediário relativamente estável com m/z 275. A Figura 2.34 apresenta uma proposta preliminar para a degradação do AM, onde ocorre consecutivas hidroxilações formando vários intermediários de reação.

Figura 2.33: Espectros de massas com ionização por eletrospray obtidos para a solução de AM e após 1 hora de reação realizada com a magnetita X_{Cr} 0,07.

Figura 2.34: Mecanismo proposto para a degradação do corante AM.

2.3.6. Proposta Preliminar de Mecanismo das Reações de H_2O_2 na Presença de $Fe_{3-x}Cr_xO_4$

Duas reações principais envolvendo H_2O_2 são observadas em presença das magnetitas $Fe_{3-x}Cr_xO_4$: (i) a oxidação de compostos orgânicos pela reação de Fenton e (ii) a decomposição para O_2 .

Estudos anteriores em nosso grupo²⁴⁻²⁸ demonstraram que o Fe²⁺ da estrutura da magnetita são importantes para ambas as reações de H₂O₂. O mecanismo proposto foi baseado em uma ativação do H₂O₂ através do mecanismo tipo Haber Weiss formando o radical HO[•] (Figura 2.35). Este radical HO[•] pode então seguir por dois caminhos que são competitivos: a oxidação do contaminante orgânico ou a formação de O₂ via o radical HOO[•]:

Capítulo 2. Magnetitas Substituídas com Cr ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Atividade na Reação Fenton.

Figura 2.35: Proposta de mecanismo radicalar para a ativação de H_2O_2 por Fe^{2+} da magnetita.

Desta forma pode-se assumir que as espécies Fe^{2+} nas magnetitas $Fe_{3-x}Cr_xO_4$ devem ter um papel fundamental nas reações.

No trabalho realizado até o momento observou-se que a presença de Cr tem dois efeitos diferentes:

- (i) em pequenas quantidades o Cr, i.e. Fe_{2.93}Cr_{0.07}O₄, leva a um importante aumento na atividade para a reação de Fenton.
- (ii) em quantidades maiores o Cr favorece diretamente a decomposição de H_2O_2 .

Em um trabalho recente na literatura estudos utilizando EPR (ressonância paramagnética de elétrons) sugeriram que o Cr^{3+} poderia participar em um mecanismo de reação via Haber Weiss para gerar radicais hidroxilas conforme Equação 2.15:⁴¹

 $Cr^{3+} + H_2O_2 \rightarrow Cr^{4+} + HO^{\bullet} + OH^{-}$ Equação 2.15

No entanto, o potencial de oxidação de Cr^{3+} para Cr^{4+} é bastante elevado como sugere a Equação 2.16, sendo bastante desfavorável termodinamicamente:

$$Cr^{3+} + 2 H_2O \rightarrow CrO_2 + 1e^- + 4 H^+ \Delta E = -1,48 V$$
 Equação 2.16

Por outro lado, o potencial de redução de Cr^{3+} para Cr^{2+} é similar aos potenciais envolvidos no par redox Fe^{2+}/Fe^{3+} :

 $Cr^{3+} + 1e^- \rightarrow Cr^{2+} \Delta E = -0,408 V$ Equação 2.17

Um possível efeito da presença de Cr na química de Fenton com o par Fe^{2+}/Fe^{3+} seria a redução do Fe^{3+} por Cr^{2+} para regenerar a espécie Fe^{2+} ativa, que seria altamente favorável termodinamicamente:

$$Fe^{3+} + Cr^{2+} \rightarrow Fe^{2+} + Cr^{3+} \Delta E = 1.179 V$$
 Equação 2.18

 $O Cr^{3+}$ pode ser reduzido pela reação com H₂O₂ ou HO₂[•] como sugerido na Figura 2.36.

Figura 2.36: Proposta de mecanismo radicalar para a ativação de H_2O_2 por Fe²⁺ nas magnetitas substituídas com cromo.

No entanto, deve-se considerar que os dados Mössbauer sugerem que o Cr substitui especialmente o Fe^{2+} na estrutura da magnetita. Isso deve, provavelmente, ser uma das causas para a diminuição da atividade da reação de Fenton com o aumento da quantidade de Cr. Para baixas concentrações de Cr existe um equilíbrio entre a concentração de Fe^{2+} e Cr que permite um máximo na atividade Fenton.

Os resultados obtidos neste trabalho de doutorado sugerem que provavelmente o Cr^{3+} da magnetita Fe_{3-x} Cr_xO_4 não promove a química de Fenton de forma direta, já que a atividade de oxidação do corante diminui com o aumento da quantidade de Cr na magnetita e a decomposição do H₂O₂ aumenta fortemente.

O Cr catalisa a decomposição do H_2O_2 de forma eficiente. O aumento da concentração de Cr na magnetita leva a um aumento linear da decomposição do H_2O_2 para O_2 . Assim, quando a quantidade de Cr cresce na magnetita a decomposição do H_2O_2 tornase o processo predominante desfavorecendo fortemente a reação de Fenton.

2.4. CONCLUSÕES

Os resultados obtidos pelas técnicas difração de raios-X e espectroscopia Mössbauer mostraram que as magnetitas substituídas com cromo apresentaram somente a fase espinélio. Os dados obtidos sugerem que os íons Cr^{3+} substituem preferencialmente o Fe^{2+} e também Fe^{3+} do sítio octaédrico da magnetita para $X_{Cr} = 0,07$ e 0,26. Para maiores teores de cromo a substituição ocorre com o Fe^{3+} do sítio tetraédrico. A diminuição da magnetização espontânea com o aumento do teor de cromo é outro indício de que os íons Cr^{3+} estão sendo incorporados na estrutura espinélio. As medidas de área superficial BET apresentaram um efeito muito especial do Cr que causa um aumento linear da área superficial das magnetitas $Fe_{3-x}Cr_xO_4$ com o aumento do teor de cromo. Resultados de DRX, espectroscopia Mössbauer e análise térmica diferencial mostraram que o cromo possui um importante efeito de estabilização térmica nas magnetitas.

Os resultados obtidos nas reações de decomposição do peróxido de hidrogênio, utilizando as magnetitas Fe_{3-x}Cr_xO₄ apresentam cinética de pseudo-ordem zero em relação à concentração do H₂O₂ após os primeiros 5 min. Os valores das constantes de decomposição (k_{decomp}) do H₂O₂ apresentaram um aumento com o teor de cromo. Este efeito indica que o cromo deve estar diretamente envolvido no mecanismo de decomposição do H₂O₂. Os valores de k_{decomp} obtidos para as reações realizadas com as magnetitas tratadas a 270 0 C são menores do que aqueles obtidos para as magnetitas não tratadas termicamente. Estes resultados indicam que as espécies Fe²⁺ possuem uma importante participação nas reações de decomposição do H₂O₂. Por outro lado, nas reações de descoloração dos corantes azul de metileno e vermelho drimaren, a magnetita $X_{Cr} = 0,07$ apresentou maior valor da constante de descoloração (k_{descol}), enquanto as magnetitas com maiores teores de cromo apresentaram uma diminuição gradativa nos valores de k_{descol}. As medidas de carbono orgânico total (COT), realizadas após as reações com o corante AM, mostraram uma maior remoção de COT para a magnetita X_{Cr} 0,07. Resultados obtidos com as magnetitas tratadas a 270 °C mostraram uma grande diminuição nos valores de k_{descol} principalmente para a magnetita com menor teor de Cr ($X_{Cr} = 0.07$).

2.5. REFERÊNCIAS

- 1. Zelmanov, G., Semiat, R. Wat. Res. 2008, 42, 492.
- 2. Ramirez, J. H., Lampinen, M., Vicente, M. A., Costa, C. A., Madeira, L. M. Ind. Eng. Chem. Res. 2008, 47, 284.
- 3. Hsueh, C. L., Huang, Y. H., Chen, C. Y. J. Hazard. Mater. 2006, 129 (1-3), 228.
- 4. Yaping, Z., Jiangyong, H. Appl. Catal. B. 2008, 78, 250.
- 5. Kwan, W. P., Voelker, B. M. Environ. Sci. Technol. 2004, 38 (12), 3425.
- 6. Li, Y., Lu, Y., Zhu, X. J. Hazard. Mater. 2006, 132, 196.
- 7. Baldrian, P., Merhautova, V., Gabriel, J., Nerud, F., Stopka, P., Hruby, M., Benes, M. J.

Appl. Catal., B. 2006, 66, 258.

- 8. Lim, H., Lee, J., Jin, S., Kim, J., Yoon, J., Hyeon, T. Chem. Commun. 2006, 463.
- 9. Hanna, K., Kone, T., Medjahdi, G. Catal. Commun. 2008, 9, 955.
- 10. Martínez, F., Calleja, G., Melero, J. A., Molina, R. Appl. Catal. B. 2005, 60, 181.
- 11. Hofmann, J., Freier, U., Wecks, M., Hohmann, S. Appl. Catal. B. 2007, 70, 447.
- 12. Andreozzi, R., Dápuzzo, A., Marotta, R. Wat. Res. 2002, 36, 4691.
- 13. Muruganandham, M., Yang, J. S., Wu, J. J. Ind. Eng. Chem. Res. 2007, 46, 691.
- 14. He, F., Shen, X. Y., Lei, L. C. J. Environ. Sci. China, 2003, 15, 351.
- 15. Feng, J., Hu, X., Yue, P. L., Zhu, H. Y., Lu, G. Q. Wat. Res., 2003, 37, 3776.
- 16. Matta, R., Hanna, K., Chiron. S. Sci. Total Environ. 2007, 385, 242.
- 17. Kanel, S. R., Neppolian, B. Choi, H., Yang, J.W. Soil Sediment Contam., 2003, 12, 101.
- 18. Yeh, C. K. J., Hsu, C.Y., Chiu, C. H., Huang, K.L. J. Hazard. Mater. 2008, 151, 562.
- 19. Ferraz, W., Oliveira, L. C. A., Dallago, R., Conceição, L. Catal. Commun. 2007, 8, 131.
- 20. Kwan, W. P., Voelker, B. M. Environ. Sci. Tecnol. 2003, 37, 1150.
- 21. Liou, M. J., Lu, M. C. J. Hazard. Mater. 2008, 151, 540.
- 22. Kwan, W. P., Voelker, B. M. Environ. Sci. Tecnol. 2002, 36,1476.
- 23. Costa, R. C. C., Lelis, M. F. F., Oliveira, L. C. A., Fabris, J. D., Ardisson, J. D., Rios,
- R. V. A., Silva, C. N., Lago, R. M. Catal. Commun. 2003, 4(10), 525.
- 24. Costa, R. C. C., Lelis, M. F.F., Oliveira, L. C. A., Fabris, J. D., Ardisson, J. D., Rios, R.
- V. A., Silva, C. N., Lago, R. M. J. Hazard. Mater. 2006, 129 (1-3), 171.

25. Moura, F. C.C., Araújo, M. H., Costa, C.C., Fabris, J. D., Ardisson, J. D., Macedo, W. A.A., Lago, R. M. *Chemosphere*, **2005**, *60*, (8), 1118.

26. Oliveira, L. C. A., Fabris, J. D., Rios, R. R. V. A., Mussel, W. N., Lago, R. M. Appl. *Catal.*, *A.* **2004**, *259* (*2*), 253.

- 27. Lago, R. M., Moura, F. C. C., Ardisson, J. D., Macedo, W. A., Araujo, M. H., Silva C.
 N. *Chem. Letters.* 2005, *34*, 23.
- 28. Lee, S. W., Na, S. Y., Ahn, G. Y., Kim, C. S. J. Appl. Phys. 2000, 87 (2), 6238.
- 29. Dézsi, I., Szues, I., Sváb, E. J. Radioanal. Nucl. Chem. 2000, 246 (1), 15.
- 30. Verma, H., C., Mohanty, J., K., Tripathi, R., P. J. Alloys Compd. 2001, 326, 132.
- 31. Eggert, A., Rieldel, E. J. Chem. Sci. 1991, 46 (5), 653.
- 32. Schmidbauer, E. Phys. Chem. Miner. 1987, 15 (2), 201.
- 33. Bukin, A. S., Gapeev, A. K., Kuzmin, R. N., Novakov, A. A. *Kristallografiya*, **1972**, *17* (4), 799.

34. Lee, S. W., An, S. Y., Kim, S. B., Ahn, G. Y., Kim, C. S. J. Korean Phys. Soc. 2000, 37 (4), 443.

- 35. McCarty, k. F., Boehme, D. R. J. Solid State Chem. 1989, 79 (1), 19.
- 36. Inaba, H., Nakashima, S., Naito, K. J. Solid State Chem., 1982, 41 (2), 213.
- 37. Thickett, D., Odlyha, M., Therm, J. Anal. Calorimet. 2005, 80, 565.
- 38. Li, X., Cao, J., Zhang, W. Ind. Eng. Chem. Res. 2008, 47, 2131.
- 39. Jung, Y., Choi, J., Lee, W. Chemosphere, 2007, 68, 1968.
- 40. Yamashita, T., Hayes, P. Appl. Surf. Sci. 2008, 254, 2441.
- 41. Tsou, T. C., Yang, J. L. Chem.-Biol. Interact. 1996, 102, 133.

Capítulo 3. Sistemas Altamente Reativos e Regeneráveis Baseados em Compósitos Carvão/Óxidos de Ferro para Aplicações Ambientais.

RESUMO

Neste capítulo foram preparados compósitos magnéticos de carvão suportados em óxidos de ferro a partir de diferentes proporcões da fração piche de alcatrão e hematita (1:1; 2:1 e 4:1) obtidos a 400, 600 e 800 °C sob fluxo de N₂. Os resultados obtidos por espectroscopia Mössbauer e difração de raios-X mostraram a formação de magnetita como principal fase nos compósitos tratados a 400 e 600 °C. Por outro lado, os compósitos tratados a 800 °C observou-se uma mistura de óxidos de ferro reduzidos, sendo o Fe⁰ a principal fase formada. Medidas de área superficial BET mostraram um aumento na área superficial dos compósitos com o aumento da temperatura de obtenção, sendo este aumento mais pronunciado nos compósitos tratados a 800 ºC. Este resultado sugere uma ativação do carvão pelo óxido de ferro durante o tratamento térmico a altas temperaturas. Imagens obtidas por microscopia eletrônica de varredura, mostraram a formação de camadas de carvão nos compósitos obtidos com maior teor de alcatrão e partículas de óxidos de ferro aderidas ou recobertas por carvão. Estes compósitos foram utilizados em três tipos de reações: (i) reação para a redução do Cr(VI) para Cr(III), (ii) reação para decomposição do H₂O₂ para O₂ e (iii) reação de oxidação do corante modelo azul de metileno em presença de H₂O₂. Os compósitos tratados a 800 ⁰C apresentaram alta atividade nas reações de redução do Cr(VI). Resultados obtidos por espectroscopia Mössbauer mostraram que estes compósitos sofrem desativação devido à oxidação do Fe⁰ superficial e podem ser regenerados por um simples tratamento térmico a 800 °C/N₂. Nas reações de decomposição do H₂O₂ o compósito com menor teor de carvão tratado a 400 e 600 ⁰C apresentaram melhores atividades, provavelmente devido à presença da magnetita como única fase de óxido de ferro. Os compósitos com maior teor de carvão não apresentaram atividade significativa provavelmente devido ao recobrimento dos óxidos de ferro pelo carvão. Nas reações de oxidação do corante azul de metileno em presença de H2O2 novamente os compósitos com menor teor de carvão tratados a 400 e 600 °C apresentaram melhor atividade.

Capítulo 3. Sistemas Altamente Reativos e Regeneráveis Baseados em Compósitos Carvão/Óxidos de Ferro para Aplicações Ambientais.

3.1. INTRODUÇÃO

3.1.1 Compostos de ferro em aplicações ambientais

Compostos de ferro, principalmente óxidos são materiais de baixo custo, não tóxicos e possuem uma química redox muito interessante, devido à variedade de compostos com diferentes estados de oxidação e estruturas que podem ser formadas, como: Fe⁰, FeO, Fe₃O₄, γ -Fe₂O₃, α -Fe₂O₃ e FeOOH.¹ Por estas razões, estes materiais têm sido utilizados em diferentes reações para a remediação ambiental como, por exemplo: (i) reação de oxiredução para redução de contaminantes tais como, organoclorados,²⁻⁴ aromáticos,^{5,6} corantes,^{7,8} pesticidas,⁹ Cr (VI)¹⁰ e Hg(II),¹¹ (ii) reações do tipo Fenton heterogêneo¹² e (iii) reações fotocatalíticas,¹³ utilizadas para a degradação de contaminantes orgânicos. No entanto, óxidos de ferro reduzidos (Fe⁰, FeO e Fe₃O₄) apresentam pouca estabilidade e normalmente sofrem oxidação durante as reações, o que promove sua desativação. Na literatura pode-se encontrar vários trabalhos que estudam diferentes formas de produzir sistemas mais ativos e estáveis baseados em Fe⁰ para a redução de contaminantes ambientais como: utilização de voltagem externa para evitar a desativação da superfície do Fe⁰, ¹⁴ utilização de metais como o Ni ou Pd para promover reações na superfície do Fe⁰, ¹⁵⁻ ¹⁸ utilização de nanopartículas de Fe⁰ ^{19,20} e mistura de partículas finamente trituradas de Fe⁰ e Fe₃O₄.²¹⁻²⁵

3.1.2 Contaminação ambiental por Cr (VI)

Compostos de cromo têm sido largamente utilizados em diferentes indústrias como metalúrgica, galvanoplastia, produção de tintas, pigmentos, papel, preservação de madeiras e principalmente em curtumes e etc.²⁶⁻²⁹ Os efluentes provenientes destas indústrias possuem teores de cromo (Cr^{3+} e Cr^{6+}) que variam entre 10 a 100 mg L⁻¹.²⁷ Estes valores são muito superiores aos estabelecidos pelo Conselho Nacional do Meio Ambiente (CONAMA), que estabelece limites de 1,0 e 0,1 mg L⁻¹ (Resolução N⁰ 397) de cromo trivalente e hexavalente nos efluentes, respectivamente.³⁰ Muitas vezes estes efluentes são
descartados na natureza sem nenhum tratamento adequado, levando à contaminação de solos e águas naturais.

A mobilidade do cromo em solos e águas depende essencialmente do pH e do potencial redox do meio. A hidrólise do Cr (III) produz espécies catiônicas, aniônicas ou neutras, dependendo dessas duas variáveis.³¹ Por outro lado, a hidrólise do Cr (VI) produz apenas espécies neutras ou aniônicas, predominantemente H₂CrO₄, HCrO₄⁻, CrO₄^{2-,32} Em condições de pH muito baixo e concentrações elevadas de cromo, predomina a espécie Cr₂O₇²⁻.^{26,33} Desta forma, uma vez presente no solo, o Cr(VI) pode ser facilmente lixiviado, contaminando lençóis freáticos e corpos d'água. O monitoramento de sua presença na natureza tem sido rigorosamente controlado, devido à sua alta toxicidade. O Cr(VI) é um elemento com efeitos tóxicos para organismos vivos, devido às suas características oxidantes. Em pH fisiológico, o Cr(VI) apresenta-se como cromato, CrO42-, um oxiânion que atravessa as membranas celulares assim como o fosfato ou sulfato. A toxicidade do cromo hexavalente para as células é devido ao seu poder oxidante, ou seja, seus compostos são facilmente convertidos em produtos contendo Cr(III), via intermediários contendo Cr(V) e Cr(IV), além de espécies radicalares. Dentro da célula, o Cr(III) forma compostos de coordenação muito estáveis com proteínas e com o DNA, causando efeitos tóxicos.³¹ O Cr(VI) é mais perigoso quando inalado (na forma de pó) porque não é reduzido no caminho até os pulmões. Há, porém, algumas evidências de que a ingestão de compostos de Cr(VI) é uma via que conduz a efeitos tóxicos para o ser humano.^{26,27,34} Por outro lado, o íon Cr (III) é estável e tem sido considerado como um elemento essencial para a nutrição de alguns organismos.^{27,33,35} Ele é insolúvel em pH neutro e básico e pode ser encontrado na forma de óxidos e hidróxidos insolúveis.

3.1.3 Processos para a remediação ambiental do Cr (VI)

Devido à alta toxicidade do Cr (VI) e aos limites estabelecidos sobre a concentração de cromo hexavalente $(0,1 \text{ mg } \text{L}^{-1})$ em efluentes, pesquisadores tem investigado incessantemente novos métodos e processos para remover contaminantes que contenham Cr(VI) de rejeitos industriais. Os processos de descontaminação mais conhecidos são: (i)

redução do Cr(VI) para o Cr(III)^{28,36,37} e (ii) utilização de materiais adsorventes como biomassa²⁷, carvão ativado, óxidos, argilominerais, etc.²⁹

I – Processo de adsorção do Cr (VI)

O Cr(VI) por apresentar-se na forma de ânion, tem o processo de adsorção favorecido em baixos valores de pH. Sua adsorção sobre óxidos e argilominerais é preferencial a de outros ânions como cloreto, nitrato e sulfato, porém, a presença de fosfatos favorece a dessorção dos cromatos por competição pelos mesmos sítios de adsorção.²⁹ Outros materiais utilizados para adsorção de Cr(VI) são: o carvão ativado e os biomateriais. O Cr(III) é adsorvido de 30-300 vezes mais em argilominerais que o Cr(VI). Tal processo é favorecido pelo aumento do pH, devido a reações de troca catiônica de espécies de Cr(III) hidrolisadas.^{29,38}

II – Processos de redução do Cr (VI)

Na década de 80 pesquisadores mostraram que a cinética da redução do Cr (VI) depende do pH do meio (normalmente ácido), da área superficial, da natureza do agente redutor (Fe^0 , Fe^{2+} , compostos orgânicos - ácido ascórbico, hidroxiamina, ácido húmico, formaldeído, etc) e da presença de outros constituintes químicos que podem promover reações secundárias indesejadas.^{28,39,40}

Os agentes redutores mais utilizados são compostos de Fe^{2+} e principalmente o Fe^{0} , o qual apresenta boa eficiência, baixo custo e além de não ser tóxico. A redução de espécies de Cr(VI) por ferro pode ser representada da seguinte forma simplificada:

$$3Fe^{0} + 2CrO_{4}^{2-} + 10H^{+} \rightarrow 3Fe^{2+} + 2Cr(OH)_{3} + 2H_{2}O$$
Equação 3.1
$$3Fe^{2+} + CrO_{4}^{2-} + 5H^{+} \rightarrow 3Fe^{3+} + Cr(OH)_{3} + H_{2}O$$
Equação 3.2

Durante a reação o pH do meio deve ser cuidadosamente controlado, uma vez que a cinética depende de pH ácido, pois o consumo de espécies H^+ eleva o pH e a velocidade da reação diminuiu.

Na prática, o processo mais amplamente utilizado na remediação de águas subterrâneas contendo Cr(VI) é chamado "bombeamento e tratamento", baseado na retirada da água do aqüífero e tratamento convencional com agente redutor e posterior precipitação do Cr(III) na forma de hidróxido, sulfeto, carbonato ou fosfato. Um típico agente redutor neste tipo de processo é o bissulfito de sódio.⁴¹

$$3HSO_3^{-} + 2CrO_4^{-2} + 10H^+ \rightarrow 2Cr^{3+} + 3HSO_4^{-} + 5H_2O$$
 Equação 3.3

Apesar deste processo ser o mais utilizado, ele envolve um alto custo e é menos eficiente, pois requer a retirada do material contaminado para um posterior tratamento. Portanto o tratamento de águas subterrâneas e solos *in situ*, seria mais vantajoso.⁴¹

Barreiras Permeáveis reativas

As barreiras permeáveis reativas são uma tecnologia emergente para o tratamento de águas subterrâneas contaminadas com metais, compostos organoclorados, entre outros.⁴² O conceito de barreira permeável reativa é relativamente simples. O material reativo é usado para interceptar e remediar o fluxo contaminado. A água passa através da barreira de material reativo e os contaminantes são transformados por meio de processos químicos, físicos ou biológicos. A grande vantagem dessa tecnologia é sua característica passiva, ou seja, o processo de remediação não depende de energia externa. Uma vez instalada, a barreira utiliza o fluxo natural da água subterrânea para conduzir os contaminantes até a zona permeável de material reativo.⁴³ Os custos de manutenção de uma barreira reativa são muito baixos se comparados aos custos dos tratamentos convencionais, nos quais a água contaminada é bombeada para a superfície para ser tratada.⁴⁴

Várias barreiras reativas utilizam o Fe^0 como material reativo para o tratamento de águas subterrâneas contaminadas com compostos organoclorados, hidrocarbonetos, alguns pesticidas, Cr(VI) e outros metais tóxicos, nitrato, fosfato e sulfato. Nesse tipo de barreira

reativa, o ferro metálico ou os óxidos de ferro atuam como agentes redutores nos processos de remediação.⁴⁵ A redução do Cr(VI) pelo Fe⁰ em meio ácido pode ser escrita pela seguinte equação química simplificada.

$$Fe^0 + Cr^{6+} \rightarrow Fe^{3+} + Cr^{3+}$$
 Equação 3.4

Como os íons Cr^{3+} e Fe³⁺ apresentam a mesma carga e raio iônico muito próximo (0,61 e 0,65 Å, respectivamente), pesquisadores comprovaram a precipitação de hidróxidos mistos insolúveis (pH 6,0-10,5) do tipo ($Cr_{0.25}Fe_{0.75}$)(OH)₃.⁴⁶⁻⁴⁸

Normalmente os compostos de ferro utilizados nestes processos são desativados durante a reação devido à oxidação das espécies $Fe^0 e Fe^{2+} a Fe^{3+}$. Quando isso ocorre a reação se torna muito lenta ou deixa de acontecer e se faz necessário a troca ou regeneração do agente redutor.

Uma alternativa para se obter ou regenerar Fe^0 e magnetita é pela redução de óxidos de ferro oxidados utilizando-se uma fonte redutora como por exemplo, o carvão. O carvão quando aquecido em atmosfera inerte e em presença de um óxido de ferro, ele pode reagir produzindo fases reduzidas do óxido, Fe^0 , CO e CO₂ (Equações 3.5 – 3.7).

$3Fe_2O_3 + nC \rightarrow 2Fe_3O_4 + nCO_x$	Equação 3.5
$Fe_3O_4 + nC \rightarrow 3FeO + nCO_x$	Equação 3.6
$FeO + nC \rightarrow Fe^{0} + nCO_{x}$	Equação 3.7

Uma pesquisa realizada recentemente na literatura, não apresentou nenhum trabalho sobre a regeneração de óxidos de ferro com posterior aplicação ambiental.

Neste trabalho foram sintetizados compósitos de carvão suportado em óxidos de ferro utilizando-se hematita e piche de alcatrão, um rejeito industrial, como fonte de carvão. Estes compósitos apresentam alguns aspectos inovadores, tais como: (i) utilização de hematita, um óxido de ferro natural e abundante, e alcatrão, um rejeito industrial, para a produção de compósitos com fases reduzidas de ferro para aplicações ambientais, (ii)

87

obtenção de fases reduzidas de óxidos de ferro, ativas para a redução do Cr(VI), a partir de um tratamento térmico controlado em atmosfera de N₂, (iii) depois da desativação dos compósitos, o ferro oxidado pode ser facilmente regenerado por um simples tratamento térmico. Neste tratamento as espécies Fe^{3+} reagem com o carvão para produzir as espécies ativas Fe^0 e Fe_3O_4 .

3.1.4 Alcatrão

A madeira é uma importante fonte renovável de energia e insumos químicos. O carvão vegetal, produzido a partir de sua queima possui grande importância em diversos seguimentos industriais, como por exemplo, na siderurgia que utiliza o carvão não só como fonte enérgica, mas também como termo-redutor na produção de aço, ferro gusa, ligas de ferro, etc.

A carbonização da madeira produz carvão vegetal e gera dois tipos de resíduos: os gases não condensáveis como monóxido de carbono, dióxido de carbono, hidrogênio e os gases condensáveis como vapor d'água e uma complexa mistura de compostos orgânicos (alcatrão).⁴⁹

A produção do carvão vegetal é um processo que possui baixo rendimento. Quando a madeira seca é carbonizada, apenas 30% de sua massa é convertida a carvão, o restante é convertido em fumaça.⁴⁸ Desta forma, a recuperação dos subprodutos lançados na atmosfera além de reduzir os impactos ambientais torna o processo mais eficiente.

Durante a crise energética, nos anos 70 e 80, o alcatrão foi intensamente utilizado como substituto do óleo combustível. Porém com o fim da crise o preço do petróleo caiu e a utilização do alcatrão como insumo energético se tornou inviável.⁵⁰ Vários produtos nobres e de elevado valor comercial são encontrados no alcatrão. Dentre eles pode-se citar o cresoto vegetal que é utilizado na preservação da madeira, antiséptico e como fármaco.

Grandes empresas possuem recuperadores de alcatrão acoplados aos seus fornos. No processo, a fumaça gerada pela carbonização é conduzida até um ciclone onde as partículas se chocam contra a parede do equipamento provocando a condensação de um liquido denominado licor pirolenhoso. Este líquido é constituído de 80% de água, metanol, acetona, acido acético, alcatrão solúvel e insolúvel. Na parte insolúvel encontram-se centenas de

compostos químicos diferentes sendo que a maioria apresenta caráter aromático.⁴⁹ Diversas técnicas como extração liquido-liquido e destilação são aplicadas na separação dos componentes do alcatrão. Na destilação obtêm-se três frações: uma aquosa, uma oleosa e por fim o piche vegetal, que constitui o resíduo do processo. A porcentagem de cada fase pode variar de acordo com a origem do alcatrão e o processo de obtenção. O fluxograma abaixo mostra as etapas e os produtos obtidos na produção do carvão:

Figura 3.1: Produtos e rendimentos médios obtidos na carbonização da madeira e na separação de seus subprodutos.

Neste trabalho utilizou-se a fração piche como fonte de carvão para a síntese dos compósitos carvão suportado em óxidos de ferro.

3.2. OBJETIVOS ESPECÍFICOS

Os objetivos deste capítulo foram:

- Sintetizar e caracterizar compósitos magnéticos de carvão suportado em óxidos de ferro (piche/óxidos de ferro) com diferentes teores de carvão preparados em diferentes temperaturas, como mostra o esquema abaixo.

Figura 3.2: Esquema representativo dos compósitos piche/óxidos de ferro sintetizados.

- Testar a atividade destes compósitos em três reações: (i) redução do Cr(VI) para Cr(III), (ii) decomposição do H₂O₂ para O₂ e (iii) reação Fenton para a oxidação do corante azul de metileno.

- Testar a reutilização destes compósitos em reações de redução do Cr(VI) até sua total desativação.

- Regenerar o compósito desativado e reutilizá-lo em reação de redução do Cr(VI).

- Estudar os fatores que provocaram a desativação do compósito utilizando a espectroscopia Mössbauer.

3.3. EXPERIMENTAL

3.3.1 Síntese dos compósitos piche/óxidos de ferro

A obtenção dos compósitos carvão suportado em óxidos de ferro (piche/óxidos de ferro) foi realizada a partir do reagente hematita sintética e da fração piche do rejeito alcatrão. A hematita foi obtida pela decomposição térmica do $Fe(NO_3)_39H_2O$ (Synth) em atmosfera oxidante a 400 ^{0}C durante 3 horas.

$$2Fe(NO_3)_3.9H_2O + yO_2 \rightarrow Fe_2O_3 + 6NO_x + 18H_2O$$
 Equação 3.8

O alcatrão utilizado como fonte de carbono foi doado pelo Instituto Veterinário Uruguayo Sociedade Anônima (IVUSA) e foi obtido a partir da pirólise de madeira de pino.

Os compósitos piche/óxidos de ferro foram obtidos com diferentes teores de carvão. Antes da impregnação o alcatrão foi tratado termicamente a 100 e 200 0 C por 1 e 24h respectivamente, para eliminação das frações voláteis e obtenção da fração piche. A impregnação da fração piche na hematita foi realizada com proporções de 1:1; 2:1 e 4:1 m/m (piche:hematita) utilizando acetona como solvente. Após evaporar o solvente (60 0 C), o material obtido foi pirolisado em atmosfera inerte (fluxo de 60 mL min⁻¹ de N₂) em diferentes temperaturas (400, 600 e 800 0 C) durante 1h.

3.3.2 Caracterização dos compósitos piche/óxidos de ferro

Os compósitos piche/óxidos de ferro foram caracterizados pelas técnicas: espectroscopia Mössbauer, difração de raios-X, termogravimetria, medidas de magnetização espontânea (como descrito no item 2.2.2 do Capítulo 2), microscopia eletrônica de varredura e espectroscopia Raman.

Microscopia Eletrônica de Varredura (MEV)

As análises por microscopia eletrônica de varredura foram realizadas em um equipamento da marca JEOL-JKA-8900RL. As amostras em pó, depositadas sobre uma fita condutora, foram recobertas com uma camada de ouro, para a realização da análise morfológica. Estas análises foram realizadas no Laboratório de Microanálises pertencente ao consórcio Química, Física, Geologia e CDTN.

Espectroscopia Raman

As medidas de espalhamento Raman foram realizadas em um espectrômetro micro-Raman Renishaw InVia usando a linha do laser para excitação de 633 nm. Todas as medidas foram realizadas na geometria backscattering, utilizando-se lentes objetivas de 50X com abertura numérica de 0,75, provendo áreas de espalhamento de ca. 1 mm² e o espectro foi registrado no intervalo de freqüências 100-1800 cm⁻¹. As análises foram realizadas no laboratório Surface and Science Materials Group, Department of Chemistry and Biochemistry, University of Windsor no Canadá.

3.3.3. Reações

Reações de redução do Cr (VI)

Os testes de redução do Cr (VI) em solução aquosa foram realizados utilizando-se 5,00 mL de uma solução de ($K_2Cr_2O_7$) com uma concentração de Cr (VI) igual a 50 mg L⁻¹ e 60 mg de compósito alcatrão/óxido de ferro. A cinética das reações foi acompanhada pela descoloração da solução, onde se utilizou o reagente 1,5-difenilcarbazida como agente complexante e um espectrofotômetro UVvisível. Durante os experimentos foram coletadas alíquotas de 0,1 mL da solução de Cr (VI) em diferentes tempos de reação (0, 10, 20, 30, 60, 120 e 180 min). Para se fazer a coleta, os compósitos magnéticos foram separados da solução utilizando-se um imã. Posteriormente as alíquotas foram transferidas para um balão

volumétrico de 50,00 mL onde foram adicionados 0,5 mL do reagente 1,5-difenilcarbazida (5 g L^{-1} em acetona) e depois o volume do balão volumétrico foi completado com uma solução pH 1 de H₂SO₄. Em seguida mediu-se o valor da absorvância da solução em um comprimento de onda de 540 nm utilizando-se um espectrofotômetro Microprocessado 800 M Analyser.

Testes de dessorção do Cr (III)

Após as reações de redução do Cr (VI) foram realizados testes de dessorção de Cr (III) dos compósitos piche/óxidos de ferro. Depois de separar o compósito da solução de $K_2Cr_2O_7$ (utilizando-se um imã) o compósito foi lavado três vezes com água destilada. Em seguida adicionou-se 2,0 mL de solução de K_2HPO_4 0,10 mol L⁻¹ e a mistura permaneceu em contato durante 2 horas sob agitação magnética. Posteriormente realizou-se medidas de absorvância utilizando-se o mesmo procedimento descrito no final do item *reações de redução do Cr (VI)*.

Reações de oxidação de matéria orgânica em meio aquoso

Os testes de oxidação de matéria orgânica em meio aquoso foram realizados conforme descrito no item 2.2.4 do capítulo 2, onde 15,0 mg de catalisador foram adicionados em 3,50 mL de uma solução do corante azul de metileno 50,0 mg L^{-1} e 0,27 mol L^{-1} de H_2O_2 . O desaparecimento da cor foi monitorado através de medidas espectrofotométricas no comprimento de onda de 651 nm.

Reações de decomposição do H₂O₂

Os testes de decomposição do peróxido de hidrogênio foram realizados acompanhando o volume de O_2 formado durante a reação. Para cada experimento utilizouse um volume de 7,00 mL de uma solução 3,0 mol L⁻¹ de H₂O₂ e 30,0 mg de catalisador.

3.4. RESULTADOS E DISCUSSÃO

Os compósitos carvão suportado em óxidos de ferro foram preparados a partir da impregnação da fração piche de alcatrão em hematita. As etapas envolvidas na obtenção destes materiais são apresentadas na Figura 3.3.

Figura 3.3: Esquema representativo da síntese dos compósitos de carbono impregnado em óxidos de ferro.

Após a evaporação do solvente a mistura piche/hematita foi tratada termicamente em diferentes temperaturas sob fluxo de N_2 durante 1h.

3.4.1 Caracterização dos compósitos piche/óxidos de ferro

Termogravimetria

Durante a pirólise dos compósitos piche/óxidos de ferro, o carvão pode reduzir as espécies Fe^{3+} e Fe^{2+} produzindo diferentes espécies de ferro, conforme apresentado pelas Equações 3.5 a 3.7.

Com o objetivo de selecionar as condições experimentais, foram obtidas curvas TG em atmosfera de N₂ para o piche de alcatrão puro e para a mistura piche/Fe₂O₃ (Figura 3.4).

Figura 3.4: Curvas TG obtidas em atmosfera de N_2 para a fração piche pura e para a mistura piche impregnado em hematita (piche/Fe₂O₃ com proporção de 2:1 m/m).

Observando as curvas TG, pode-se notar a decomposição térmica com perda de massa de *c.a.* 94% para a fração piche do alcatrão. Nesta decomposição o piche perde moléculas voláteis tais como CO_x , H₂O e moléculas orgânicas menores restando basicamente carbono como mostra a Equação 3.9:

 $C_nH_mO_p \rightarrow C+ \text{ voláteis (CO}_x, H_2O, \text{ orgânicos)}$ Equação 3.9

Na curva TG da mistura piche/Fe₂O₃ observa-se a decomposição do piche que se inicia a 200°C. Pode-se observar também a presença de dois novos eventos (A e B) em torno de 360 e 740 0 C, que devem estar relacionados às reações de redução da hematita pelo carvão (Equações 3.5 a 3.7). Com base nesta curva TG foram selecionadas as temperaturas onde diferentes eventos ocorrem, *i.e* 400, 600 e 800 0 C.

Assim, três diferentes compósitos com diferentes teores de carbono foram preparados e tratados a 400, 600 e 800°C.

A Figura 3.5 apresenta as curvas TG obtidas para os compósitos piche/óxidos de ferro em atmosfera oxidante.

Figura 3.5: Curvas TG obtidas em atmosfera de ar para os compósitos 1:1; 2:1 e 4:1 piche/óxidos de ferro produzidos a 400°, 600° e 800°C.

Observando as curvas TG obtidas para os compósitos 1:1; 2:1 e 4:1 piche/óxidos de ferro tratados a 400 e 600 0 C, nota-se pequenos ganhos de massa de 0,5 a 1,3% entre *ca*. 190 e 360 0 C que provavelmente, estão relacionados à oxidação da magnetita para maghemita,⁵¹ conforme a Equação 3.10:

$$4Fe_3O_4 + O_2 \rightarrow 6\gamma - Fe_2O_3$$
 Equação 3.10

Observa-se também uma perda de massa que se inicia em *ca.* 290 °C e termina em *c.a.* 570 °C. Esta perda de massa está relacionada com a oxidação do carvão depositado na superfície do óxido de ferro (Equação 3.11).

$$C_{depositado} + O_2 \rightarrow CO_2$$
 Equação 3.11

Nas curvas TG obtidas para os compósitos 1:1 e 2:1 piche/óxidos de ferro tratados a 800 °C, observa-se sucessivos ganhos de massa a partir de 200°C, os quais devem estar

relacionados à oxidação de espécies reduzidas de ferro, *e.g.* FeO e Fe^0 (Equações 3.12 e 3.13), formadas durante o tratamento térmico.

$$4Fe^{0} + 3O_{2} \rightarrow 2Fe_{2}O_{3}$$
Equação 3.12
$$6FeO + O_{2} \rightarrow 2Fe_{3}O_{4}$$
Equação 3.13

As perdas de massa observadas entre 465-680 0 C, para os compósitos 1:1 e 2:1 piche/óxidos de ferro tratados a 800 0 C, podem ser atribuídas à oxidação do carvão.

Na curva TG do compósito 4:1 piche/óxidos de ferro tratado a 800 ⁰C, não foi possível observar nenhum ganho de massa após 360 ⁰C, provavelmente devido ao alto teor de carvão presente na amostra, o que pode ter mascarado o ganho de massa esperado, uma vez que é provável a presença de espécies reduzidas neste material.

Espectroscopia Mössbauer

A espectroscopia Mössbauer foi utilizada para se obter informações mais detalhadas sobre as fases de óxidos de ferro formadas nos compósitos piche/óxidos de ferro tratados a 400, 600 e 800 °C. A Figura 3.6 e a Tabela 3.1 apresentam os espectros Mössbauer e os parâmetros hiperfinos, respectivamente, obtidos para a série de compósitos piche/óxidos de ferro.

Nos espectros Mössbauer dos compósitos 1:1 piche/óxidos de ferro tratados a 400 e 600°C pode-se observar duas linhas de ressonância referentes aos sítios tetraédrico (sítio A) e octaédrico (sítio B) da fase magnetita, formada devido à redução parcial das espécies Fe³⁺ presentes na hematita. Os parâmetros hiperfinos apresentados na Tabela 3.1 confirmam a formação da fase espinélio nestes compósitos. As razões entre as áreas relativas dos sítios B e A (B/A) iguais a 0,88 e 0,82 obtidas para os compósitos tratados a 400 e 600 0 C, respectivamente, indicam que a magnetita presente no compósito obtido a 400°C está ligeiramente mais reduzida que aquela formada a 600°C. O espectro Mössbauer do compósito 1:1 piche/óxidos de ferro tratado a 800°C apresenta dois sextetos referentes aos sítios A e B da magnetita com áreas relativas (AR) de 8 e 10 %, respectivamente. O terceiro sexteto com AR de 56% pode ser atribuído ao α -Fe e os outros dois dupletos

superparamagnético são devido a presença da wüstita (FeO) formada com diferentes estequiometrias. O dupleto com AR de 22% pode ser atribuído ao Fe²⁺ e outro com 4% ao Fe³⁺ formado pela oxidação do Fe²⁺ na estrutura da wüstita. Estes resultados indicam que a wüstita e o α -Fe foram formados a partir da redução de Fe₃O₄ e FeO, respectivamente. Os parâmetros hiperfinos apresentados na Tabela 3.1 confirmam a presença destes óxidos de ferro nos compósitos estudados.

Capítulo 3. Sistemas Altamente Reativos e Regeneráveis Baseados em Compósitos Carvão/Óxidos de Ferro para Aplicações Ambientais.

Figura 3.6: Espectros Mössbauer obtido para os compósitos piche/óxidos de ferro tratados a 400, 600 e 800 0 C.

Amostra	Atribuição	8/mm s ⁻¹ (±0,05mms ⁻¹)	\mathcal{E} Δ /mm s ⁻¹ (±0,05mms ⁻¹)	<i>B_{hf}/</i> T (± 0,5 T)	17mm s⁻¹ (±0,05mms ⁻¹)	AR/% (±1%)
1:1 piche/óx.	$(Fe_3O_4) A$	0,29	-0,01	49,0	0,42	53
ferro 400 ^o C	$(Fe_3O_4) B$	0,66	0,03	45,8	0,35	47
1:1 piche/óx.	$(Fe_3O_4) A$	0,30	-0,03	49,0	0,55	55
ferro 600 ⁰ C	$(Fe_3O_4) B$	0,66	-0,01	45,8	0,37	45
	Fer O	1,12	0,29		0,57	22
1:1 piche/óx.	r c _{1-x} O	0,37	0,41		0,45	4
ferro 800 °C	$(Fe_3O_4) A$	0,25	-0,01	48,7	0,48	8
	$(Fe_3O_4) B$	0,70	-0,03	45,9	0,50	10
	α-Fe	0,00	0,00	33,1	0,37	56
2:1 piche/óx.	$(Fe_3O_4) A$	0,29	-0,02	49,1	0,44	51
ferro 400 °C	$(Fe_3O_4) B$	0,66	-0,06	45,9	0,36	49
2:1 piche/óx.	$(Fe_3O_4) A$	0,26	-0,04	48,7	0,40	41
ferro 600 °C	$(Fe_3O_4) B$	0,68	0,04	45,9	0,34	51
	Fe _{1-x} O	1,10	0,32		0,42	8
2:1 piche/óx.	α-Fe	0,00	0,00	33,1	0,39	95
ferro 800 °C	γ-Fe	-0,14			0,65	5
4:1 piche/óx.	$(Fe_3O_4) A$	0,29	-0,02	49,0	0,40	52
ferro 400 °C	$(Fe_3O_4) B$	0,66	-0,01	45,8	0,35	48
4:1 piche/óx.	$(Fe_3O_4) A$	0,28	-0,02	49,0	0,38	40
ferro 600 °C	$(Fe_3O_4) B$	0,66	-0,01	45,9	0,43	56
	Fe _{1-x} O	1,04	0,33		0,38	4
4:1 piche/óx.	Fe _{1-x} O	1,10	0,34		0,38	17
ferro 800 °C		0,91	0,68		0,57	33
	$(Fe_3O_4) \overline{A}$	0,26	0,02	48,7	0,35	3
	$(\overline{Fe_3O_4}) B$	0,59	-0,07	45,7	0,38	4
	α-Fe	0,00	0,00	33,0	0,33	43

Tabela 3.1: Parâmetros hiperfinos referentes à série de compósitos piche/óxidos de ferro tratados a 400, 600 e 800 0 C em atmosfera de N₂:

 δ = deslocamento isomérico, ε = deslocamento quadrupolar; Δ = desdobramento quadrupolar, B_{hf} = campo hiperfino; Γ = *l*argura de linha; AR = área subespectral relativa, A e B = sítio tetraédrico e octaédrico da magnetita, respectivamente.

No espectro Mössbauer obtido para o compósito 2:1 piche/óxidos de ferro tratado a 400°C pode-se observar somente as linhas de ressonância características dos sítios A e B da magnetita, confirmando a formação da fase espinélio, com uma relação B/A de 0,96. No espectro Mössbauer do compósito tratado a 600°C, além da magnetita, observa-se a

formação da fase wüstita com AR de 92 e 8%, respectivamente. As razões B/A obtidas para estes compósitos foram 0,96 (comp. tratado a 400 0 C) e 1,24 (comp. tratado a 600 0 C) indicando que a magnetita formada a 600 0 C está mais reduzida do que aquela formada a 400 0 C. O espectro do compósito tratado a 800°C apresenta um sexteto com AR 95% referente à formação do α -Fe e a presença de um singleto com deslocamento isomérico (δ) igual à 4,7 mms⁻¹ devido à formação do γ -Fe em pequenas quantidades (AR 5%). Na Tabela 3.1 pode-se observar os parâmetros hiperfinos obtidos para estes compósitos.

O espectro Mössbauer do compósito 4:1 piche/óxidos de ferro tratado a 400°C está muito semelhante aos dos compósitos 1:1 e 2:1 piche/óxidos de ferro tratados a 400°C, onde pode-se observar a formação da magnetita como único óxido de ferro. No espectro Mössbauer da amostra tratada a 600°C observa-se dois sextetos com parâmetros hiperfinos (Tabela 3.1) característicos da magnetita e um dupleto superparamagnético com AR de 4% confirmando a formação de wüstita. Observando as razões B/A dos compósitos tratados a 400 (0,92) e 600 °C (1,40), nota-se que a magnetita formada a 600 °C está mais reduzida do que aquela formada a 400 °C. No espectro Mössbauer do compósito tratado a 800 °C pode-se observar três sextetos com AR 3; 4 e 43% referentes aos sítios A e B da fase espinélio e ao α -Fe. Os dois dupletos superparamagnéticos com AR 17 e 33%, podem ser atribuídos à formação da fase wüstita, ajustada com dois dupletos de Fe²⁺ devido a defeitos na estrutura. Na Tabela 3.1 pode-se observar os parâmetros hiperfinos obtidos para estes compósitos, o que confirma a formação das fases de óxidos de ferro.

A Figura 3.7 apresenta as áreas subespectrais relativas obtidas para cada fase presente nos compósitos piche/óxidos de ferro tratados a 400, 600 e 800 0 C.

Figura 3.7: Área subespectral relativa obtida para as fases de óxidos de ferro presente nos compósitos piche/óxidos de ferro.

Estes resultados mostram que nos compósitos tratados a 400 0 C a única fase de óxido de ferro formada foi magnetita, devido à redução de espécies Fe³⁺ presentes na hematita. Nos compósitos tratados a 600 0 C observa-se que a principal fase formada foi magnetita, sendo que nos compósitos 2:1 e 4:1 piche/óxidos de ferro formou-se uma pequena quantidade de FeO. Por outro lado, no compósito 2:1 piche/óxidos de ferro tratado a 800 0 C a única fase formada foi o Fe⁰. Nos compósitos 1:1 e 4:1 piche/óxidos de ferro tratado tratados a 800 0 C formou-se uma mistura das fases Fe⁰, Fe₃O₄ e FeO.

A partir dos resultados obtidos por espectroscopia Mössbauer e termogravimetria calculou-se os teores aproximados de carvão presente nos compósitos piche/óxidos de ferro (Tabela 3.2).

Tabela 3.2: Teores de carvão na série de compósitos piche/óxidos de ferro tratados a 400, $600 e 800 {}^{0}C$.

Amostra	Temperatura / ⁰ C	Teor de carvão / %	
		(±1 %)	
1:1 piche/óx.ferro	400	17	
	600	17	
	800	19	
2:1 piche/óx.ferro	400	24	
	600	24	
	800	25	
4:1 piche/óx.ferro	400	31	
	600	31	
	800	33	

Difração de raios-X (DRX)

A Figura 3.8 apresenta os difratogramas obtidos para a série de compósitos piche/óxidos de ferro.

Figura 3.8: Difratogramas obtidos para hematita pura e compósitos piche/óxidos de ferro tratados a 400, 600 e 800°C (Ht = hematita, Mt = magnetita, W = wüstita, Fe = ferro metálico).

A Figura 3.8 apresenta o difratograma da hematita utilizada na síntese dos compósitos, onde pode-se observar picos de difração com valores de 2θ em 24,3; 33,5;

35,8; 40,90; 49,70; 54,30; 57,7; 62,6; 64,1; 72,08; 75,50⁰ (JCPDS: 1-1053), indicando a presença do α -Fe₂O₃

Nos difratogramas dos compósitos 1:1; 2:1 e 4:1 piche/óxidos de ferro tratados a 400°C (Figura 3.8) pode-se observar picos de difração com os seguintes valores de 20: 18,3; 30,3; 35,4; 37,1; 42,9; 53,6; 56,9; 62,7; 71,3; 74,1; 79,1⁰ (JCPDS: 1-1111), os quais confirmam a presença da magnetita, formada pela redução da hematita pelo carvão.

Os difratogramas dos compósitos 1:1; 2:1 e 4:1 piche/óxidos de ferro tratados a 600 0 C são semelhantes aos das amostras tratadas a 400 0 C, o que sugere a presença da fase magnetita. Observando com mais cuidado os difratogramas dos compósitos 2:1 e 4:1 tratados a 600°C pode-se observar pequenos picos de difração com valores de 20 em 42,2 e 61,2⁰ (JCPDS: 46-863), referente à presença da fase wüstita, formada pela redução da magnetita. Nos difratogramas dos compósitos 1:1 e 4:1 piche/óxidos de ferro tratados a 800 0 C pode-se observar uma diminuição na intensidade dos picos referentes à magnetita devido à sua redução a Fe⁰ (20 em 44,7 e 65,0⁰ - JCPDS: 6-696) e FeO (20 em 36,3; 42,2; 61,2 e 73,0⁰ - JCPDS: 46-1312) com o aumento da temperatura.

No difratograma obtido para o compósito 2:1 piche/óxidos de ferro tratado a 800 °C pode-se observar claramente o desaparecimento dos picos de difração das fases magnetita e wüstita. Por outro lado, observa-se o aumento dos picos com valores de 2 θ em 44,7 e 65,0⁰ confirmando a presença do Fe⁰.

Comparando os difratogramas e os espectros Mössbauer obtidos para os compósitos 1:1 e 2:1 piche/óxidos de ferro percebe-se que o aumento da temperatura e do teor de carvão, aumenta a eficiência na redução da hematita. O mesmo não ocorre com os compósitos 4:1 piche/óxidos de ferro que possuem formas menos reduzidas do que os compósitos 2:1 piche/óxidos de ferro. Isto ocorreu provavelmente devido a grande quantidade de alcatrão utilizado na impregnação, que pode ter recoberto grande parte da superfície do óxido, provocando uma diminuição na eficiência da reação de redução do óxido de ferro.

Utilizando a equação de Scherrer, calculou-se o tamanho de partícula (l) para os compósitos estudados (Tabela 3.3). Observando os valores de l calculados, nota-se uma

diminuição com o aumento da temperatura de pirólise. Uma possível explicação para este efeito é que pode estar ocorrendo um maior consumo de carvão nos compósitos tratados a 600 e 800 °C, devido à reação de redução dos óxidos de ferro. É interessante observar que o tamanho de partícula dos compósitos 1:1 piche/óxidos de ferro tratados a 400 e 600 °C são muito próximos, isto pode ser explicado devido à semelhança da composição química destes compósitos, como pode ser observado pelo resultado obtido por espectroscopia Mössbauer e DRX.

Tabela 3.3: Tamanho de cristalito (l) obtido utilizando-se as linhas de difração mais intensa e valores de magnetização espontânea (σ).

Amostra	Temperatura	l /nm	$\sigma / J k^{-1} T^{-1}$
	/°C		
	400	28	65
1:1 piche/óx.	600	29	59
ferro	800	26	69
	400	36	70
2:1 piche/óx.	600	27	55
ferro	800	25	139
	400	39	59
4:1 piche/óx.	600	29	54
ferro	800	30	31

Medidas de magnetização espontânea

As medidas de magnetização espontânea (σ) obtidas para a série de compósitos piche/óxidos de ferro estão apresentadas na Tabela 3.3. Pode-se observar que o valor de σ obtido para o compósito 2:1 piche/óxidos de ferro tratado a 800 ⁰C (139 J k⁻¹ T⁻¹) é muito maior do que o dos outros compósitos. Isto se deve ao alto teor de ferro metálico em sua composição. Por outro lado, os demais compósitos apresentam valores de σ menores do que o esperado para uma magnetita pura e estequiométrica (100 J kg⁻¹ T⁻¹). Isto se deve a presença de imperfeições na estrutura espinélio e também à diferente constituição química dos compósitos.

Medidas de área superficial BET

A Figura 3.9 apresenta isotermas de adsorção/dessorção obtidas para a série de compósitos piche/óxidos de ferro. Estas isotermas se assemelham à isotermas do tipo II, de materiais não porosos ou com macroporos. É interessante observar que as isotermas dos compósitos 1:1 e 2:1 piche/óxidos de ferro tratados a 800 ^oC adsorvem um maior volume em pressões relativas próximas a 1,0. Isto ocorreu devido a maior área superficial apresentada por estes compósitos.

Figura 3.9: Isotermas de adsorção/dessorção obtidas para a série de compósitos piche/óxidos de ferro.

A Figura 3.10 apresenta os valores de área superficial BET para os compósitos estudados em função da temperatura de obtenção.

Figura 3.10: Área superficial BET obtidas para a série de compósitos em função da temperatura de obtenção.

Na Figura 3.10 pode-se observar um aumento na área superficial dos compósitos com o aumento da temperatura de obtenção, sendo este efeito mais pronunciado nos compósitos tratados a 800 ⁰C. Nota-se também que os compósitos preparados com menor teor de alcatrão apresentam maior área superficial. Estes resultados sugerem que durante o tratamento térmico a 800 ⁰C os óxidos de ferro podem estar ativando o carvão.

A Figura 3.11 apresenta os gráficos da distribuição de poros, onde pode-se observar claramente a formação de macroporos nos compósitos tratados a 800 ^oC. Este resultado é mais uma confirmação de que os óxidos de ferro podem estar ativando o carvão na superfície dos compósitos piche/óxidos de ferro.

Capítulo 3. Sistemas Altamente Reativos e Regeneráveis Baseados em Compósitos Carvão/Óxidos de Ferro para Aplicações Ambientais.

Figura 3.11: Distribuição de poros obtida para a série de compósitos piche/óxidos de ferro tratados a 400, 600 e 800 ⁰C.

Espectroscopia Raman

A Figura 3.12 apresenta os espectros Raman obtidos para a hematita pura e para a série de compósitos piche/óxidos de ferro tratados a 400, 600 e 800 0 C. Observando o espectro Raman obtido para a hematita, observa-se fonos em número de onda em aproximadamente 223, 293, 406, 499, 604 e 1312 cm⁻¹, o que corresponde a fase Fe₂O₃.^{52,53}

Os espectros Raman dos compósitos piche/óxidos de ferro apresentam fonos em aproximadamente 1600 (banda G) e 1364 cm⁻¹ (banda D). A presença da banda G sugere a formação de um carbono mais organizado, como o grafite e a banda D sugere a presença de carbono amorfo nestes compósitos.

Capítulo 3. Sistemas Altamente Reativos e Regeneráveis Baseados em Compósitos Carvão/Óxidos de Ferro para Aplicações Ambientais.

Figura 3.12: Espectros Raman obtidos para a série de compósitos piche/óxidos de ferro tratados a 400, 600 e 800 ⁰C.

A Tabela 3.4 apresenta a razão entre as intensidades das bandas G e D (I_G/I_D) obtidas a partir dos espectros Raman.

Tabela 3.4: Razões entre as intensidades das bandas G e D (I_G/I_D) obtidas dos espectros Raman da série de compósitos piche/óxidos de ferro tratados a 400, 600 e 800 0 C.

Amostra	Temperatura / ⁰ C	I_G/I_D
1:1 piche/óx.ferro	400	1,5
	600	1,4
	800	1,1
2:1 piche/óx.ferro	400	1,3
	600	1,3
	800	1,2
4:1 piche/óx.ferro	400	1,4
	600	1,4
	800	1,2

Estes resultados mostram uma tendência em diminuir o valor de I_G/I_D com o aumento da temperatura de obtenção dos compósitos. Esta diminuição sugere que a quantidade relativa de carbono mais organizado (grafite) diminui com o aumento da temperatura. Embora a razão deste efeito não seja clara, pode-se considerar uma reação preferencial do grafite com o óxido de ferro.

$$C_{grafite} + Fe_2O_3 \rightarrow CO_2 + Fe_{reduzido}$$
 Equação 3.14

Microscopia Eletrônica de Varredura (MEV)

A Figura 3.13 apresenta as microscopias obtidas para a hematita pura e para os compósitos 1:1; 2:1 e 4:1 piche/óxidos de ferro tratados a 400 ⁰C.

Figura 3.13: Imagens de Microscopia eletrônica de varredura obtida para a hematita pura e para os compósitos 1:1; 2:1 e 4:1 piche/óxidos de ferro tratados a 400 ⁰C.

Na Figura 3.13A pode-se observar partículas aglomeradas da hematita utilizada na síntese dos compósitos. Nas Figuras 3.13B, 3.13C e 3.13D pode-se observar claramente uma diferença na morfologia destes materiais. As imagens MEV obtidas para o compósito com

maior teor de carvão (Figura 3.13D) apresentam uma superfície menos rugosa e mais organizada. Também pode-se observar camadas sobrepostas de carvão no compósito 4:1 piche/óxido de ferro. Observando com mais cuidado a Figura 3.13D pode-se notar a presença de camadas de carvão mais organizada e também alguns pontos mais claros que provavelmente podem ser partículas de óxidos de ferro recobertas pelo carvão.

3.4.2 Reações utilizando os compósitos piche/óxidos de ferro

I - Reações de redução do Cr (VI)

As reações de redução do Cr (VI) foram realizadas utilizando-se solução de $Cr_2O_7^{2-}$ em pH *c.a.* 5 e a cinética foi acompanhada por medidas espectrofotométricas.

A Figura 3.14 apresenta os resultados obtidos com o Fe^0 comercial e com os compósitos piche/óxidos de ferro em reações de redução do Cr (VI).

Figura 3.14: Redução do Cr (VI) em solução utilizando Fe^0 comercial e os compósitos piche/óxidos de ferro tratados a 400, 600 e 800 $^{\circ}C$.

Observando estes resultados nota-se claramente que todos os compósitos tratados a 800 0 C apresentaram boa atividade para remover íons Cr (VI) de soluções aquosas. Isto se deve à presença do Fe⁰ capaz de promover a redução do Cr (VI) para Cr (III). Por outro lado, os compósitos tratados a 400 e 600 0 C não apresentaram atividade significativa. Isto deve estar relacionado com a baixa área superfícial e à ausência da espécie ativa Fe⁰. É interessante observar que o Fe⁰ comercial apresentou baixa atividade na reação de redução do Cr (VI). Isto provavelmente se deve à presença de pouco ativas como, FeO e Fe₃O₄, na superfície do Fe⁰. Estas espécies parcialmente oxidadas são formadas pela reação entre o Fe⁰ superfícial e o O₂ atmosférico.

Observando a região do gráfico onde a reação é mais rápida, nota-se uma linearidade entre os pontos até *c.a.* 40 min. Desta forma, considerando uma cinética de pseudo-ordem zero, foram calculadas as constantes de velocidade de redução do Cr (VI) (k_{red}) utilizando os coeficientes angulares das retas até 40 min de reação (Figura 3.15A). Observando os valores de k_{red} $(k_{1:1}=3,4x10^{-2}; k_{2:1}=2,2x10^{-2} e k_{4:1}=0,9x10^{-2} min^{-1})$ nota-se que as atividades dos compósitos diminuem significativamente com o aumento do teor de carvão (Figura 3.15A).

Figura 3.15: Constantes de velocidade (A) e específica (B) para a redução do Cr (VI) em função da relação alcatrão:óxidos de ferro nos compósitos tratados a 800 ⁰C.

Para verificar o efeito da área superficial na atividade destes compósitos foram calculadas as constantes de velocidade específica $(k_{red(esp)})$, normalizando-se os valores de k_{red} por unidade de área superficial BET (Figura 3.15B). Observando os valores de $k_{red(esp)}$ nota-se que estes continuam diminuindo com o aumento do teor de alcatrão. Este resultado mostra que a diminuição de atividade com o aumento do teor de carvão não está relacionado com a área superficial.

Durante as reações de redução do Cr (VI) pode estar ocorrendo também um processo de adsorção. Desta forma a diminuição da concentração do Cr (VI) em solução será devido à dois processos: (i) redução do Cr (VI) para Cr (III) e (ii) adsorção do Cr (VI) na superfície dos compósitos piche/óxidos de ferro. Uma forma de se verificar se as espécies Cr (VI) foram adsorvidas é promover sua dessorção utilizando-se uma solução de K₂HPO₄, como mostrado na Figura 3.16

Figura 3.16: Representação esquemática do processo de dessorção do íon CrO_4^{2-} e adsorção do PO_4^{3-} na superfície do compósito piche/óxidos de ferro.

Portando para verificar se as espécies Cr (VI) foram adsorvidas pelos compósitos, foram realizados testes de dessorção após as reações de redução utilizando-se uma solução de K₂HPO₄. A Tabela 3.5 apresenta os valores calculados do teor de Cr (VI) adsorvido após os testes de dessorção.

Tabela 3.5: Teor de Cr (VI) adsorvido nos compósitos 1:1; 2:1 e 4:1 piche/óxidos de ferro tratados a 800 0 C.

Compósito tratado a 800 ⁰ C	Teor de Cr (VI) adsorvido / %
1:1 piche/óxidos de ferro	0,02
2:1 piche/óxidos de ferro	0,01
4:1 piche/óxidos de ferro	0,01

Estes resultados mostram que a quantidade de Cr (VI) adsorvida nos compósitos piche/óxidos de ferro tratados a 800 ⁰C, são muito baixas e podem ser desconsideradas. Desta forma, pode-se concluir que a diminuição da concentração de Cr (VI) observada na Figura 3.14 é devido à redução do Cr (VI) para Cr (III).

Para se investigar o efeito do pH na atividade destes materiais, foi realizada uma reação utilizando o compósito 4:1 piche/óxidos de ferro tratado a 800 0 C (Figura 3.17). Durante a reação o pH foi monitorado e corrigido para 5 utilizando-se uma solução de HCl 0,1 mol L⁻¹.

Na Figura 3.17 pode-se observar claramente que a atividade do compósito 4:1 piche/óxidos de ferro tratado a 800 0 C diminui com o aumento do pH e praticamente não apresenta atividade quando o pH se aproxima de 7. Isto se deve ao consumo de espécies H⁺ (Equação 3.15) durante a reação. Isso provoca o aumento do pH do meio reacional e consequentemente a diminuição da velocidade da reação.

$$3Fe^{0} + 2CrO_{4}^{2^{-}} + 10H^{+} \rightarrow 3Fe^{2^{+}} + 2Cr(OH)_{3} + 2H_{2}O$$
 Equação 3.15

Após corrigir o pH para 5,5 nota-se que a velocidade da reação aumenta novamente. Desta forma, estes resultados mostram que a redução do Cr (VI) depende da presença das espécies H^+ e Fe⁰, sendo o pH da solução um fator importante para a eficiência de redução.

Figura 3.17: Variação do pH durante a reação de redução do Cr (VI) utilizando o compósito 4:1 piche/óxidos de ferro tratado a 800 ⁰C.

Para se investigar a desativação e regeneração dos compósitos, foram realizadas várias reações consecutivas utilizando-se o compósito 4:1 piche/óxidos de ferro tratado a 800 0 C. Neste experimento, depois da primeira reação de 70 min a solução resultante foi separada do compósito e descartada adequadamente. Em seguida uma nova solução de Cr (VI) 50 mg L⁻¹ foi adicionada ao mesmo compósito utilizado na reação anterior. É importante ressaltar que durante toda a reação o pH foi controlado e mantido em *c.a.* 5 utilizando-se uma solução de HCl 0,1 mol L⁻¹.

A Figura 3.18A apresenta os resultados obtidos nas reações de reutilização do compósito 4:1 piche/óxidos de ferro tratado a 800 ^oC para reduzir o Cr (VI). Nas reações 1 e 2 ocorre a redução total do Cr (VI) com 70 min. Na reação 3 observa-se uma desativação do compósito com uma redução de Cr (VI) de apenas 60%. Esta desativação aumenta até a quinta reação, que não apresentou qualquer atividade para a redução do Cr (VI). Pode-se observar que estas reações apresentam uma cinética de pseudo-ordem zero em relação à concentração de Cr (VI). Utilizando os coeficientes angulares das retas foram calculados os

valores das constantes de velocidade para a redução (k_{red}) do Cr (VI) (Figura 3.18B). Observando os valores de k_{red} nota-se que a segunda reação apresenta uma pequena diminuição de atividade e depois os valores de k_{red} continuam diminuindo linearmente com o número da reação de reutilização do compósito 4:1 piche/óxidos de ferro até aproximadamente sua desativação (Reação 5). Isto provavelmente ocorre devido à oxidação de espécies Fe⁰ superficial, conforme a seguinte equação química simplificada.

 $Fe^0 + Cr^{6+} \rightarrow Fe^{3+} + Cr^{3+}$

Para verificar a possibilidade de regeneração destes materiais, o compósito 4:1 piche/óxidos de ferro desativado foi tratado termicamente em atmosfera de N_2 a 800 0 C durante 1h. Posteriormente a atividade do compósito regenerado foi testada em reação de redução do Cr (VI) (Figura 3.19A).

Equação 3.16

Capítulo 3. Sistemas Altamente Reativos e Regeneráveis Baseados em Compósitos Carvão/Óxidos de Ferro para Aplicações Ambientais.

Figura 3.19: Reação realizada com o compósito 4:1 piche/óxidos de ferro desativado e regenerado (A) e valores de k_{red} em função do número de reação (B).

Este resultado mostra que após a regeneração o compósito apresentou excelente atividade para a reação de redução do Cr (VI) (Figura 3.19A). É interessante observar que o valor de k_{red} obtido para o compósito regenerado (3,1x10⁻² mol L⁻¹ min⁻¹) é aproximadamente duas vezes maior do que aquele obtido na reação 1 (1,4x10⁻² mol L⁻¹ min⁻¹), quando o material ainda estava "novo". Isto provavelmente se deve à maior quantidade de espécies Fe⁰ na superfície do material regenerado.

Para se estudar com mais detalhes os motivos da desativação e regeneração do compósito, este foi analisado por espectroscopia Mössbauer antes e depois de sua regeneração a 800 0 C em N₂. A Figura 3.20 apresenta os seguintes espectros Mössbauer do compósito 4:1 piche/óxidos de ferro tratado a 800 0 C: (A) novo, antes se ser utilizado na reação 1, (B) usado, depois de ser reutilizado em cinco reações e (C) regenerado, depois de ser tratado termicamente a 800 0 C em N₂ por 1h.

Figura 3.20: Espectros Mössbauer obtidos para o compósito 4:1 piche/óxidos de ferro tratado a 800 ⁰C, antes e depois de ser utilizando em reação de redução do Cr (VI) e depois de ser regenerado.

Conforme discutido anteriormente o espectro Mössbauer do compósito 4:1 piche/óxidos de ferro tratado a 800 0 C, apresenta basicamente três fases de óxidos de ferro: magnetita (7%), wüstita (50%) e α -Fe (43%). Observando o espectro Mössbauer do compósito 4:1 piche/óxidos de ferro realizado após cinco reações (Figura 3.20B), pode-se observar a presença de três sextetos referentes aos sítios A e B da magnetita e ao α -Fe. Também pode-se observar dois dupletos superparamagnéticos referentes a wüstita, com AR total de 48%. Os parâmetros hiperfinos apresentados na Tabela 3.6 confirmam a presença destas fases no compósito.

Tabela 3.6: Parâmetros hiperfinos dos espectros Mössbauer do compósito 4:1 piche/óxidos de ferro tratado a 800 ⁰C, antes e depois de ser utilizando em uma reação de redução do Cr (VI) e depois de regenerado.

Amostra	Atribuição	<i>δ</i> /mm s ⁻¹	$\varepsilon, \Delta/\text{mm s}^{-1}$	B _{hf} /T	Π mm s ⁻¹	AR/%
1 moști u	minuiçuo	(±0,05mms ⁻¹)	(±0,05mms ⁻¹)	(±0,5 T)	(±0,05mms ⁻¹)	(±1%)
	Fe _{1-x} O	1,10	0,34		0,38	17
		0,91	0,68		0,57	33
Novo	(Fe ₃ O ₄) A	0,26	0,02	48,7	0,35	3
	$(Fe_3O_4) B$	0,59	-0,07	45,7	0,38	4
	α-Fe	0,00	0,00	33,0	0,33	43
	Fe _{1-x} O	0,97	0,51		0,57	41
Usado		0,66	1,19		0,39	7
	$(Fe_3O_4) A$	0,27	0,00	48,2	0,56	11
	(Fe ₃ O ₄) B	0,61	-0,04	45,2	0,31	16
	α-Fe	0,00	0,00	33,0	0,31	25
	α-Fe _{disperso}	-0,13			0,32	13
Regenerado	αFe	0,00	0,00	33,0	0,28	84
	FeO	1,10	0,31		0,28	3

O espectro Mössbauer do compósito 4:1 piche/óxidos de ferro regenerado (Figura 5.20C), apresenta um sexteto referente ao α -Fe com AR de 84% e dois dupletos superparamagnéticos devido a presença de FeO e α -Fe disperso, com AR de 3 e 13%, respectivamente.

Na Figura 3.21 pode-se comparar os teores de magnetita e α -Fe no compósito antes e depois da reação. Nota-se que após a reação cinco, ocorreu uma diminuição de 43 para 25% na AR do α -Fe e um aumento de 7 para 27% na AR da fase espinélio. Isto indica que durante as reações, houve uma oxidação do α -Fe para Fe₃O₄, devido à transferência de elétrons do Fe⁰ para o Cr (VI). Após a regeneração pode-se observar um aumento para 97% da fase α -Fe e uma diminuição para 3 e 0% das fases FeO e Fe₃O₄, respectivamente. Estes dados mostram que o compósito regenerado apresenta um maior teor de fases reduzidas de ferro do que inicialmente, confirmando que os compósitos piche/óxidos de ferro podem ser regenerados por um simples tratamento térmico em atmosfera inerte.

Figura 3.21: Áreas subespectrais relativas obtidas para o compósito 4:1 piche/óxidos de ferro tratados a 800 ⁰C novo (antes da reação 1), usado (depois da quinta reação) e regenerado.

II - Reações de decomposição do H₂O₂

As reações de decomposição do H_2O_2 (Equação 3.17) foram monitoradas através do volume de O_2 formado durante as reações.

$$2H_2O_2 \rightarrow 2H_2O + O_2$$
 Equação 3.17

Os resultados obtidos nas reações de decomposição do H_2O_2 são apresentados na Figura 3.22, onde pode-se observar que a hematita não apresenta atividade catalítica significativa (Figura 3.22A). Por outro lado, os compósitos 1:1 piche/óxidos de ferro

tratados a 400 e 600 ⁰C apresentam atividade catalítica para decomposição do peróxido de hidrogênio. Isto deve estar relacionado com a presença de magnetita e com o menor teor de carvão, conforme os resultados obtidos por termogravimetria e espectroscopia Mössbauer. Os compósitos 2:1 e 4:1 piche/óxidos de ferro tratados a 400 e 600 ⁰C apesar de conterem magnetita, apresentaram baixa atividade catalítica. Isto pode estar relacionado com o recobrimento da superfície do óxido de ferro pelo carvão impregnado.

Figura 3.22: Reações de decomposição do H_2O_2 utilizando hematita pura e série de compósitos piche/óxidos de ferro tratados a 400, 600 e 800 0 C.

A baixa atividade apresentada pelos compósitos tratados a 800 0 C pode ser devido à presença de fases mais reduzidas (FeO e Fe⁰) e menos ativas, formadas durante o tratamento térmico.

Observando as curvas de decomposição obtidas nestas reações, nota-se que as reações são mais rápidas durante os primeiros minutos e depois ficam lentas. No entanto, para se calcular as constantes de velocidade de decomposição do H_2O_2 (k_{dec}), considerou-se uma cinética de pseudo-ordem zero após dez minutos de reação. Desta forma, os valores de k_{dec} foram obtidos a partir do coeficiente angular das retas (entre 10 e 25 min). Estes valores são apresentados no gráfico k_{dec} em função da temperatura de obtenção dos compósitos (Figura 3.23).

Figura 3.23: Valores da constante de decomposição do H_2O_2 (k_{dec}) em função da temperatura de obtenção (400, 600 e 800 0 C).

Apesar dos compósitos 1:1 piche/óxidos de ferro tratados a 400 e 600 0 C apresentaram uma composição química muito semelhante, nota-se claramente que o compósito 1:1 piche/óxidos de ferro tratado a 400 0 C apresenta maior atividade catalítica. Observa-se também um aumento nos valores de k_{dec} dos compósitos tratados a 400 0 C e depois uma diminuição com o aumento a temperatura de pirólise. Estes resultados sugerem que a fase mais ativa para estas reações é a magnetita.

III – Testes de adsorção do corante azul de metileno

Os testes de adsorção foram realizados utilizando-se 15 mg do compósito e 3,5 mL de solução do corante azul de metileno (AM) 50 mg L⁻¹. A adsorção foi acompanhada por medidas espectrofotométricas realizadas no comprimento de onda igual a 621 nm.

A Figura 3.24 apresenta os resultados de cinética de adsorção obtidos para a série de compósitos piche/óxidos de ferro tratados a 400, 600 e 800 ⁰C.

Figura 3.24: Cinética de adsorção do corante azul de metileno nos compósitos piche/óxidos de ferro tratados a 400, 600 e 800 ⁰C.

Estes resultados mostram que todos os compósitos adsorvem o corante AM e que demoram aproximadamente 9 horas para atingir a concentração de equilíbrio. Nota-se também que a adsorção é mais rápida nas primeiras horas e depois ficam lentas. Isto sugere uma cinética de adsorção de primeira ordem em relação à concentração do corante.

A Figura 3.25 apresenta a quantidade em termos de porcentagem do corante AM adsorvido na série de compósitos piche/óxidos de ferro.

Figura 3.25: Porcentagem de corante azul de metileno adsorvido na série de compósitos piche/óxidos de ferro.

A Figura 3.25 mostra que a adsorção do corante AM possui uma tendência em aumentar com a temperatura de obtenção dos compósitos. Observa-se também que os compósitos obtidos a 800 ⁰C adsorvem maior quantidade de corante AM do que os outros compósitos. Isto certamente está relacionado com a maior área superficial destes materiais. Estes resultados também sugerem que o tratamento térmico a 800 ⁰C pode estar promovendo a ativação do carvão pela reação com os óxidos de ferro do compósito.

IV - Reações do tipo Fenton heterogêneo

As reações do tipo Fenton heterogêneo foram realizadas utilizando o corante azul de metileno (AM) como molécula modelo e a cinética de oxidação foi acompanhada pela descoloração da solução. Antes do início das reações os compósitos ficaram em contato com o corante AM durante 24 h para se eliminar os efeitos de adsorção durante as reações Fenton.

A Figura 3.26 apresenta o gráfico das reações de descoloração do AM em função do tempo. Pode-se observar que o compósito 1:1 piche/óxidos de ferro tratado a 400 ^oC apresenta melhor atividade catalítica, seguido pelo compósito tratado a 600 ^oC. É interessante observar que a atividade catalítica dos compósitos diminuiu com o aumento da temperatura de obtenção e com o teor de carvão impregnado. Observando estes resultados, nota-se que as reações são mais rápidas nos primeiros 25 minutos, sugerindo que os compósitos podem estar sendo desativados devido à oxidação das espécies Fe²⁺ presentes na superfície da fase magnetita que constitui estes compósitos.

Estes resultados estão de acordo com aqueles obtidos nas reações de decomposição do H_2O_2 , sugerindo que a atividade catalítica depende da temperatura de obtenção e do teor de carvão formado sobre o óxido de ferro.

Figura 3.26: Reações do tipo Fenton heterogêneo realizada para oxidação do corante AM utilizando os compósitos piche/óxidos de ferro tratados a 400 e 600 ⁰C.

3.5. CONCLUSÕES

Os resultados obtidos por espectroscopia Mössbauer e difração de raios-X mostraram que o carvão formado pela decomposição do alcatrão pode reagir com a hematita formando óxidos de ferro reduzidos, como Fe₃O₄, Fe⁰ e FeO. As medidas de área superficial BET e distribuição de poros sugerem que os óxidos de ferro podem estar ativando o carvão e formando macroporos durante o tratamento térmico realizado a 800 °C. Os compósitos tratados a 800 °C mostraram alta eficiência para reduzir íons Cr (VI), indicando que a fase mais ativa para estas reações é o Fe⁰. Por outro lado, os compósitos 1:1 piche/óxidos de ferro tratados a 400 e 600 °C apresentaram melhor atividade em reações do tipo Fenton para oxidar o corante azul de metileno e também nas reações de decomposição do H₂O₂. Os compósitos piche/óxidos de ferro, principalmente aqueles tratados a 800 ⁰C, apresentaram alta capacidade de adsorção do corante azul de metileno. Estes resultados mostraram que os compósitos também podem ser utilizados para a remediação de contaminantes orgânicos presentes em efluentes. Além destas aplicações estes compósitos possuem as seguintes vantagens em relação a outros materiais encontrados na literatura: (i) são produzidos a partir de um rejeito industrial e hematita, (ii) apresentam boa atividade para reduzir íons Cr (VI), (iii) podem ser regenerados por um simples tratamento térmico a 800 °C/N₂ (iv) são magnéticos, o que facilita sua remoção do ambiente após utilização.

3.6. REFERÊNCIAS

- 1. Cornell, R. W., Schuwertmann, U. The Iron Oxides. Weinheim: VCH, 1996, 573.
- Diels, L., Dries, J., Bastiaens, L., Springael, D., Agathod, S. N. Environ. Sci. Technol.
 2004, 38, 2879.

3. Huang, C. I., Liao, C. H., Wantawin, C., Lu, M. C. Environ. Sci. Pollut. Res. 2004, 11, 245.

4. Jahng, D., Lee, D., Rho, S., Kor. J. Chem. Eng. 2004, 21, 621.

- 5. Tratnyek, P. G., Scherer, M. M., Johnson, K. M., Westall, J. C. *Environ. Sci. Technol.* **2001**, *35*, 2804.
- 6. Chiu, P. C., Oh, S. Y., Cha, D. K., Kim, B. J. Environ. Sci. Technol. 2004, 38, 3723.
- 7. Tratnyek, P. G., Mam, S., Wat. Res. 2000, 34, 1837.
- 8. Liu, J., Ma, L. M., Ding, Z. G., Gao, T. Y., Zhou, R. F., Xu, W. Y. *Environ. Sci. Technol.* **2004**, *38*, 2879.
- 9. Roy, G., Donato, P., Gorner, T., Barres, O. Water Res. 2003, 37, 4954.
- 10. Park, J., Lee, T., Lim, H., Lee, Y. Chemosphere 2003, 53, 479.
- 11. Oloughlin, E. J., Kelly, S. D., Kemner, K. M., Csencsits, R., Cook, R. E. *Chemosphere* **2003**, *53*, 437.
- 12. Hanna, K., Kone, T., Medjahdi, G. Catal. Commun. 2008, 9, 955.
- 13. Du, W., Xu, Y., Wang, Y. Langmuir 2008, 24, 175.
- 14. Cheng, S. F., Wu, S. C. *Physical, Chemical, and Thermal Technologies*, Battelle Press, USA, **1998**, 299.
- 15. Appleton, E. L. Environ. Sci. Technol. 1996, 30, 536.
- 16. Siantar, D. P., Schreier, C. G., Chou, C. S., Reinhard, M. Water Res. 1996, 30, 2315.
- 17. Muftikian, R., Fernando, Q., Korte, N. Water Res. 1995, 29, 2434.
- 18. Wang, C. B., Zhang, W. X. Environ. Sci. Technol. 1997, 31, 2154.
- 19. Cheng, S. F., Wu, S. C. Chemosphere 2000, 41, 1263.

^{20.} Nurmi, J. T., Tratnyek, P. G., Sarathy, V., Baer, D. R., Amonette, J. E., Pecher, K., Wang, C., Linehan, J. C., Matson, D. W., Penn, R. L., Driessen, M. *Environ. Sci. Technol.* **2005**, *39*, 1221.

Moura, F. C. C., Araujo, M. H., Dalmazio, I., Alves, T. M. A., Santos, L. S., Eberlin,
 M. N., Augusti, R., Lago, R. M. *Rapid Comm. Mass Spectr.* 2006, 20, 1859.

22. Costa, R. C. C., Lelis, M. F. F., Oliveira, L. C. A., Fabris, J. D., Ardisson, J. D., Rios,

R. R. V. A., Silva, C. N., Lago, R. M. J. Haz. Mat. 2006, 129, 171.

- 23. Moura, F. C. C., Oliveira, G. C., Araujo, M. H., Ardisson, J. D., Macedo, W. A. A., Lago, R. M. *Appl. Catal. A-Gen.* **2006**, *307*, 195.
- 24. Moura, F. C. C., Araujo, M. H., Ardisson, J. D., Macedo, W. A. A., Albuquerque, A. S., Lago, R. M. J. Braz. Chem. Soc. 2007, 18, 322.
- 25. Coelho, F. S., Ardisson, J. D., Moura, F. C. C., Lago, R. M., Murad, E., Fabris, J. D. *Chemosphere* **2007**, *71*(*1*), 90.
- 26. Yu, P. F., Juang, K. W., Lee, D. Y. Plant and Soil 2004, 258, 333.
- 27. Park, D., Yun, Y. S., Park, J. M. J. Colloid Interf. Sci. 2008, 317, 54.
- 28. Qing, L. Y., Xiang, Y. J., Deng, B. Pedosphere 2006, 16(5), 572.
- 29. Zayed, A. M., Terry, N. Plant and Soil 2003, 249, 139.
- 30. Silva, M. *Resolução CONAMA Nº 397/2008*. Disponível em <<u>http://www.mma.gov.br/conama/></u>. Acesso em: 05/06/2008.
- 31. Kotas, J., Stasicka, Z. Environ. Pollut. 2000, 107, 263.
- 32. Mohan, D., Pittman, C. U. J. Haz. Mat. 2006,137, 762.
- 33. Doyle, C. S., Kendelewicz, T., Brown, G. E. Appl. Surf. Sci. 2004, 230, 260.
- 34. Costa, M. Toxicol. Appl. Pharmacol. 2003, 188, 1.
- 35. Yang, J. E., Kim, J. S., Ok, Y. S., Yoo, K. R. Water Sci. Technol. 2007, 55, 197.
- 36. Mullet, M., Demoisson, F., Humbert, B., Michot, L. J., Vantelon, D. Geochim. *Cosmochim. Ac.* 2007, *71*, 3257.
- 37. Fiol, N., Escudero, C., Villaescusa, I. Environ. Chem. Lett. 2006, 4(4), 239.
- 38. Bradl, H. B. J. Colloid Interface Sci. 2004, 277, 1.
- 39. Gould, J. P. Water Res. 1982, 16 (6), 871.

40. Bilyeu, B., Hernandez, P. B., Roa-Morales, G., Barrera D. C., Preprints of Extended Abstracts presented at the ACS National Meeting, American Chemical Society, Division of Environmental Chemistry **2007**, *47*, 981.

41. Oppelt, E. T., USEPA (2000) In Situ Treatment of Soil and Groundwater Contaminated with Chromium (EPA/625/R-00/005) Disponível em: <u>http://www.epa.gov/</u>. Acesso em 05 abril 2008.

42. Phillips, D. H., Gu, B., Watson, D. B., Roh, Y. Ground Water Quality 2003, 32, 1299.

43. Gavaskar, A. R. J. Haz. Mat. 2003, 68, 41.

44. Blowes, D. Science, 2002, 295, 2024.

45. Dries, J., Bastiaens, L., Springael, D., Agathos, S. N., Diels, L. Environ. Sci. Technol. 2004, 38, 2879.

46. Astrup, T., Stipp, S. L. S., Christensen, T. H. Environ. Sci. Technol. 2000, 34, 4163.

47. Blowes, D. W., Ptacek, C. J., Jambor, J. L. Environ. Sci. Technol. 1997, 31 (12), 3348.

48. Wilkin, R. T., Su, C., Ford, R. G., Paul, C. J. Environ. Sci. Technol. 2005, 39 (12), 4599.

49. Machado, A. M. R. *Análise por CGAR-EM/C de Misturas de Derivados de Contaminantes Fenólicos de Alcatrão Vegetal*, 1992. Dissertação de Mestrado, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte.

50. Paes, J.B., Vidal, B. R., Lucia, R. M. D., Lucia, T. M. C. D. Revista Árvore, 2002, 26.

51. Moura, F. C. C. Preparação e Caracterização de Catalisadores Baseados em

Compósitos Ferro Metálico/Óxidos para Aplicações Ambientais e Tecnológicas, 2006.

Tese de Doutorado, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte.

52. Chernyshova, I. V., Hochella, M. F., Maddenc, A. S. Phys. Chem. Chem. Phys. 2007, 9, 1736.

53. Faria, D. L. A., Lopes, F.N. Vib. Spectrosc. 2007, 45, 117.

RESUMO

Neste capítulo foi realizada a síntese dos óxidos de ferro: hematita (α -Fe₂O₃), goethita (FeOOH), maghemita (γ -Fe₂O₃) e magnetita (Fe₃O₄) e a caracterização por difração de raios-X, espectroscopia Mössbauer, medidas de magnetização espontânea e área superficial BET.

Estes óxidos de ferro foram utilizados como catalisadores em reações fotocatalíticas para a degradação do corante têxtil vermelho drimaren na presença de radiação UV. As reações foram realizadas variando dois parâmetros: (i) a massa dos fotocatalisadores óxidos de ferro e (ii) o pH da solução do corante vermelho drimaren. Dentre os quatro óxidos de ferro a goethita foi o óxido que apresentou maior atividade fotocatalítica para degradar o corante vermelho drimaren. Estas reações apresentaram cinética de pseudo-ordem zero em relação à concentração do corante.

Nas reações realizadas variando a massa dos fotocatalisadores foi observado que a atividade fotocatalítica diminuiu com o aumento da massa de catalisador, sendo que a goethita e a hematita apresentaram maior atividade quando foram utilizados 30 mg.

Nas reações realizadas variando o pH da solução observou-se que a hematita, a magnetita e a maghemita apresentaram maior atividade fotocatalítica em pH 2 e a goethita em pH 4.

Estes resultados mostraram que os óxidos de ferro estudados, especialmente a goethita, possuem um bom potencial para utilização como catalisador para a degradação de contaminantes por processos fotocatalíticos.

Um mecanismo do tipo foto-Fenton com grupos superficiais Fe^{3+} –OH da goethita formado de Fe^{2+} e [•]OH foi proposto para explicar sua maior atividade.

4.1. INTRODUÇÃO

4.1.1. Reações fotocatalíticas utilizando óxidos de ferro

Os óxidos de ferro são materiais que estão espalhados na natureza e são encontrados em diferentes partes do sistema global: atmosfera, hidrosfera, litosfera, pedosfera e biosfera.^{1,2} Alguns destes óxidos possuem diversas aplicações tecnológicas tais como: utilização na fabricação de cabeça para leitura/escrita de superfícies magnéticas, transmissão de microondas, dispositivos de mudança de fase.³⁻⁵

Os óxidos de ferro também são utilizados em diversas aplicações catalíticas⁶ por exemplo: na produção da amônia, na reação de gás de água (conversão de monóxido de carbono a dióxido de carbono para a produção de hidrogênio), na síntese de Fischer-Tropsch, na desidrogenação do etilbenzeno para estireno, na oxidação de álcoois para aldeídos e cetonas e para a produção em grande escala de butadieno.⁷

Os óxidos de ferro semicondutores também podem ser utilizados em reações fotocatalíticas para a degradação de contaminantes orgânicos presentes em meio aquoso.⁸ Estes óxidos geralmente possuem valores de "bandgap" relativamente baixo, como é o caso da hematita (α -Fe₂O₃) (2,2 eV).⁹ Este valor é menor do que o do TiO₂ (3,2 eV),¹⁰ portanto estes materiais podem absorver energias em comprimentos de onda menores (próximo à luz visível) do que o TiO₂ (absorve em $\lambda < 387$ nm) para excitar um elétron da banda de valência para a banda de condução, promovendo a formação do par e⁻/h⁺. Além desta vantagem, os óxidos de ferro são materiais que apresentam baixo custo, são abundantes e não são tóxicos. Sendo assim estes óxidos são materiais interessantes para serem utilizados em reações fotocatalíticas. A Tabela 4.1 mostra alguns trabalhos encontrados na literatura que estudam a atividade fotocatalítica de alguns óxidos de ferro.

Catalisador	Contaminante	Observações	Ref.
Fe ₂ O ₃	Anilina	Reações fotocatalíticas utilizando luz solar e UV	11
Fe ₂ O ₃	Azul de	Reações fotocatalíticas utilizando luz solar e UV	12
suportada em	metileno		
lâmina de			
TiO ₂			
Fe ₂ O ₃	2-naftol	Reações fotocatalíticas utilizando luz solar e UV	13
Fe ₂ O ₃ /SiO ₂	Fenol	Estudo da atividade catalítica em reações do tipo	14
		foto-fenton monitorada pela remoção de COT	
TiO_2 , Fe_2O_3	Heptano	Estudo da atividade fotocatalítica	15
FeOOH	2-aminofenol	Estudo da atividade fotocatalítica em diferentes	16
		valores de pH e concentrações de FeOOH	
Fe_2O_3 ,	Fenol	Estudo da atividade fotocatalítica utilizando luz	17
ZnFe ₂ O ₄		UV	
FeOOH	Azo-corantes	Reações foto-fenton na presença de H ₂ O ₂ e luz	18
		UV	
FeOOH,	Mono, di e	Estudo cinético da atividade fotocatalítica em	19
Fe ₂ O ₃	triclorofenol	presença de luz visível	
Fe ₂ O ₃	Ac. salicílico	Reações fotocatalíticas utilizando luz solar e UV	20
Fe ₂ O ₃	2-aminofenol	Estudo da atividade fotocatalítica variando as	21
		concentrações de: Fe ₂ O ₃ , 2-aminofenol e O ₂	
FeOOH,	Azo-corantes	Reações fotocatalíticas na presença de luz UV	22
Fe ₂ O ₃			

Tabela 4.1: Trabalhos encontrados na literatura que estudam a atividade fotocatalítica de óxidos de ferro.

De acordo com o resultado da pesquisa bibliográfica, foram encontrados poucos trabalhos que estudam reações fotocatalíticas envolvendo óxidos de ferro. Além disso, não foi encontrado qualquer estudo sistemático comparando atividade catalítica de diferentes óxidos tais como: hematita (α -Fe₂O₃), goethita (FeOOH), magnetita (Fe₃O₄) e maghemita (γ -Fe₂O₃). Como apresentado na introdução geral estes óxidos possuem características interessantes nas suas propriedades magnéticas, elétricas, físico-químicas e morfológicas.

4.2. EXPERIMENTAL

4.2.1. - Síntese dos óxidos de ferro

Obtenção da goethita - FeOOH

Em 20 mL de solução de FeCl₃.6H₂O 1 mol L⁻¹ foram adicionados lentamente e sob forte agitação 36 mL de solução de KOH 5 mol L⁻¹. A mistura foi transferida para um béquer de 1000 mL e em seguida foram adicionados 400 mL de água destilada. A mistura foi deixada em estufa a 70 °C durante 60 horas.²³ Posteriormente a goethita foi filtrada e lavada com água destilada até a neutralização do pH. Este processo de obtenção da goethita pode ser representado pela seguinte equação:

$$\operatorname{Fe}^{3+}_{(aq)} + \operatorname{OH} \rightarrow \operatorname{Fe}(\operatorname{OH})_3 \rightarrow \operatorname{FeOOH}_{(s)} + \operatorname{H}_2\operatorname{O}$$
 Equação 4.1

Obtenção da hematita – α -Fe₂O₃

Para obter a hematita, a goethita foi aquecida a 400 °C em ar durante 3 horas. A reação de obtenção da hematita pode ser escrita da seguinte forma:

 $2FeOOH \rightarrow \alpha - Fe_2O_3 + H_2O$ Equação 4.2

Obtenção da magnetita – Fe_3O_4

A magnetita foi preparada através do método de precipitação do precursor hidroxiacetato de ferro (HAF).⁸

Produção do precipitado HAF: em 85 mL de uma solução de FeCl₃.6H₂O (1,65 mol L⁻¹) foram adicionados lentamente sob agitação, 100 mL de NH₄OH concentrado e 60 mL de H₂O, para diminuir a viscosidade do precipitado. Após 15 minutos, a mistura foi centrifugada (1800 rpm) durante 5 minutos. O sobrenadante foi descartado e o precipitado lavado 6 vezes com 100 mL de uma solução de acetato de amônio a 20% m/v. As reações envolvidas no processo são as seguintes:

$$\begin{aligned} & \operatorname{FeCl}_{3(aq)} + 3 \operatorname{NH}_{4}\operatorname{OH}_{(\operatorname{conc})} \to \operatorname{Fe}(\operatorname{OH})_{3(s)} + 3 \operatorname{NH}_{4}\operatorname{Cl}_{(aq)} & \text{Equação 4.3} \\ & \operatorname{Fe}(\operatorname{OH})_{3(s)} + x \operatorname{CH}_{3}\operatorname{COO}_{(aq)} \to \operatorname{Fe}(\operatorname{CH}_{3}\operatorname{COO}_{)x}(\operatorname{OH})_{3-x(s)} + 3\operatorname{H}_{2}\operatorname{O}_{(l)} & \text{Equação 4.4} \end{aligned}$$

O precipitado foi secado em estufa por 12 horas a 80 0 C e posteriormente triturado. A magnetita foi obtida através de tratamento térmico do precursor hidroxiacetato de ferro [Fe(CH₃COO⁻)_x(OH)_{3-x}] amorfo, sob aquecimento a 400 $^{\circ}$ C em fluxo de N₂ (30 mL min⁻¹) por um período de 2 horas, utilizando um forno BLUE M. Lindberg. Com o aquecimento a 400 $^{\circ}$ C, ocorre a decomposição do hidroxiacetato de ferro, levando à formação de CO₂ e H₂O e pequenas quantidades de acetona e ácido acético, promovendo a redução de parte do Fe³⁺ para Fe²⁺. Este processo pode ser representado simplificadamente pela equação:

$$3Fe(OH)_{3(s)} + (CH_3COOH)_{x(aq)} \rightarrow Fe_3O_{4(s)} + 2CO_{2(g)} + H_2O_{(g)}$$
 Equação 4.5

Obtenção da maghemita- γ -Fe₂O₃

Para obter a maghemita, a magnetita foi tratada termicamente em atmosfera de ar sintético a 240 °C durante 4 horas.

$$2Fe_{3}O_{4} + 0,5O_{2} \rightarrow 3\gamma - Fe_{2}O_{3}$$
 Equação 4.6

4.2.2. Caracterização dos óxidos de ferro

Os óxidos de ferro foram caracterizados por difração de raios-X, espectroscopia Mössbauer, termogravimetria, medidas de área superficial BET e magnetização espontânea conforme o item 2.2.2 do capítulo 2.

4.2.3. Adsorção do Corante Têxtil Vermelho Drimaren

A adsorção do corante vermelho drimaren (VD) nos óxidos de ferro, foi acompanhada pela descoloração da solução. Os experimentos foram realizados no escuro misturando-se 100,0 mL da solução do corante VD 50,0 mg L⁻¹ e 80,0 mg do óxido. Em diferentes intervalos de tempo a mistura foi centrifugada (4000 rpm) durante 15 min para separar o catalisador do sobrenadante para se fazer às medidas espectrofométricas. As absorções dos sobrenadantes foram medidas no espectrofotômetro UV – 160 A Shimadzu e 800 M – Analyser, no comprimento de onda 542 nm, utilizando cubetas de vidro de 10 mm de caminho óptico.

4.2.4. Reações Fotocatalíticas

Antes de iniciar as reações fotocatalíticas as soluções do corante VD foram deixadas no escuro em contato com o catalisador durante 24 horas, para adsorção. As reações fotocatalíticas foram realizadas no reator UV (Figura 4.1), com 100,0 mL de solução de corante VD 50,0 mg L⁻¹ e 30,0 mg de catalisador a temperatura ambiente (33 °C). As reações fotocatalíticas foram realizadas no reator UV sob agitação magnética. Alíquotas foram coletadas em diferentes tempos de reação e centrifugadas durante 20 min. As absorções dos sobrenadantes foram medidas no espectrofotômetro UV – 160 A Shimadzu e 800 M – Analyser, no comprimento de onda 542 nm, utilizando cubetas de vidro de 10 mm de caminho óptico. Foi utilizada uma lâmpada de Hg de 15 W (160 μ W cm⁻² – medida realizada utilizando-se um potenciômetro Laser Power Meter Metrologic – Departamento de Física - UFMG) de baixa pressão (10⁻³ a 100 torr) como fonte de radiação UV. Esta

lâmpada emite principalmente em dois comprimentos de onda: (i) em 254 nm (80 %) e (ii) em 190 nm^{24} (20 %).

Figura 4.1: Esquema representativo do reator UV.

4.2.5. Análise por espectrometria de absorção atômica com chama de ferro lixiviado após as reações

As análises de ferro lixiviado foram realizadas utilizando o espectrômetro de Absorção Atômica com Chama - Varian AA-175 Series do Laboratório de Análise Foliar do Departamento de Química da Universidade Federal de Lavras.

4.3. RESULTADOS E DISCUSSÃO

4.3.1. Caracterização dos óxidos de ferro

Espectroscopia Mössbauer

Os óxidos de ferro goethita, hematita, magnetita e maghemita foram analisados por espectroscopia Mössbauer de transmissão a temperatura ambiente. Os parâmetros hiperfinos obtidos para estes materiais são apresentados na Tabela 4.2.

No espectro Mössbauer da goethita (Figura 4.2A) foi necessário fazer uma distribuição de campo para se obter um melhor ajuste do espectro (Figura 4.2B). O espectro mostra um sexteto com parâmetros hiperfinos: deslocamento isomérico (δ) 0,37 mms⁻¹, deslocamento quadrupolar (ε) -0,26 mms⁻¹ e B_{hf} 37,0 T, confirmando a presença da fase α -FeOOH (Tabela 4.2).

Figura 4.2: Espectro Mössbauer obtido para a goethita a temperatura ambiente (A) e distribuição de campo obtido para goethita (B).

Os espectros Mössbauer obtidos para a hematia, magnetita e maghemita são apresentados na Figura 4.3.

O espectro obtido para a hematita (Figura 4.3A) mostra um sexteto com parâmetros hiperfinos $\delta 0,36 \text{ mms}^{-1}$, ε -0,21 mms⁻¹ e B_{hf} 50,6 T, confirmando a formação da α -Fe₂O₃ (Tabela 4.2).

Figura 4.3: Espectro Mössbauer obtido para a hematita (A), magnetita (B) e maghemita (C) a temperatura ambiente.

No espectro da magnetita (Figura 4.3B) pode-se observar a presença de dois sextetos com $\delta 0,27 \text{ e } 0,66 \text{ mms}^{-1}$, $\varepsilon 0,01 \text{ e } 0,01 \text{ mms}^{-1} \text{ e } B_{hf}$ 48,9 e 45,9 T referentes aos sítios tetraédrico (sítio A) e octaédrico (sítio B) da magnetita. O valor da razão entre a área relativa dos sítios B e A (B/A) é igual a 1,86; sugerindo que aproximadamente 7% dos íons Fe²⁺ presente no sítio octaédrico estão oxidados, o que pode causar defeitos (vacantes) na estrutura espinélio.

No espectro obtido para a maghemita (Figura 4.3C) pode-se observar três sextetos. O primeiro com maior campo hiperfino (B_{hf} 50,3 T), δ 0,33 mms⁻¹ e ε -0,02 mms⁻¹ refere-se à fase maghemita com área relativa (AR) de 68%. Os outros dois sextetos com δ 0,28 e 0,48 mms⁻¹, ε -0,01 e 0,00 mms⁻¹ e B_{hf} 48,5 e 45,4 T são referentes aos sítios A e B da fase magnetita, os quais possuem AR total de 32%.

Tabela 4.2: Parâmetros hiperfinos para as amostras sintéticas de goethita, hematita maghemita e magnetita.

Amostra	Sítio/Fase	$\delta/\mathrm{mm~s}^{-1}$	$\varepsilon/\mathrm{mm~s}^{-1}$	B_{hf} / T	Área / %
		(±0,05 mms ⁻¹)	(±0,05 mms ⁻¹)	(±0,5 T)	(±1%)
Goethita	FeOOH	0,37	-0,26	37,0	100
Hematita	α -Fe ₂ O ₃	0,36	-0,21	50,6	100
Magnetita	$(Fe_3O_4) A$	0,27	0,01	48,9	35
	$(Fe_3O_4) B$	0,66	0,00	45,9	65
Maghemita	γ-Fe ₂ O ₃	0,33	-0,02	50,3	68
	$(Fe_3O_4) A$	0,28	-0,01	48,5	16
	$(Fe_3O_4) B$	0,48	0,00	45,4	16

Difração de raios-X (DRX)

A série de óxidos de ferro estudada neste capítulo foi analisada por difração de raios-X e seus difratogramas são apresentados na Figura 4.4. As linhas de difração obtidas nos difratogramas da hematita (2 θ em 28,2; 38,8; 41,8; 48,0; 58,3; 63,9; 74,0; 76,2°) e goethita (2 θ em 20,5; 24,3; 30,2; 38,9; 40,5; 42,8; 46,7; 47,7; 62,6; 69,9; 72,7; 76,2°) confirmam a formação destes óxidos sem a presença de impurezas. O difratograma obtido para a maghemita apresenta linhas de difração com valores de 2 θ em 27,4; 35,1; 37,7; 41,4; 47,4; 50,3; 57,7; 63,4; 67,5; 74,3° o que confirma a formação da estrutura espinélio. No difratograma da magnetita pode-se observar linhas de difração em 2 θ igual a 20,8; 35,3; 40,9; 42,7; 50,03; 62,4; 66,4; 73,3°, que são características da fase Fe₃O₄. Comparando os difratogramas obtidos para estes óxidos pode-se dizer que a magnetita e a maghemita apresentam maior cristalinidade do que a goethita e a hematita.

Figura 4.4: Difratograma de raios-X das amostras de goethita, hematita, magnetita e maghemita.

Utilizando a equação de Scherrer e os valores de largura meia altura dos picos mais intensos em 2 θ , foi possível calcular o tamanho de cristalito para estes óxidos (Tabela 4.3) considerando $\lambda = 1,788$ Å.

Tabela 4.3.	Tamanho	de cristalito	e identificação	dos picos	obtidos nos	difratogramas	dos
óxidos de fe	erro goethi	ta, hematita,	magnetita e ma	ghemita.			

Óxido de	Tamanho do	Identificação dos picos	JCPDS
ferro	cristalito /		
	nm		
Goethita		20,5; 24,3; 30,2; 38,9; 40,5; 42,8; 46,7; 47,7;	3-249
	12	62,6; 69,9; 72,7; 76,2	
Hematita	25	28,2; 38,8; 41,8; 48,0; 58,3; 63,9; 74,0; 76,2;	1-1053
Maghemita		27,4; 35,1; 37,7; 41,4; 47,4; 50,3; 57,7; 63,4;	4-755
	25	67,5; 74,3	
Magnetita		20,8; 35,3; 40,9; 42,7; 50,03; 62,4; 66,4;	1-1111
	28	73,3	

Como a hematita foi obtida pelo tratamento térmico da goethita (400 ⁰C), esperava-se que estes óxidos apresentassem tamanho de cristalito semelhantes. Porém o tamanho de 143

cristalito obtido para a hematita (25 nm) é bem maior do que o obtido para a goethita (12 nm), isto provavelmente se deve à sinterização das partículas durante o tratamento térmico. Por outro lado a magnetita e a maghemita apresentam tamanhos de cristalito muito semelhante.

Medidas de Magnetização Espontânea

A magnetita e a maghemita foram caracterizadas por medidas de magnetização espontânea realizadas a temperatura ambiente. Os valores obtidos foram 56 e 29 J T⁻¹kg⁻¹, para a magnetita e maghemita, respectivamente. Estes valores estão menores do que os valores teóricos¹¹ (100 e 60 J T⁻¹kg⁻¹) devido à menor cristalinidade dos materiais e à presença de impurezas.

Medidas de área superficial BET

A Figura 4.5A apresenta as isotermas obtidas para a hematita, goethita, magnetita e maghemita. A hematita (α -Fe₂O₃) apresentou menor área superficial que a goethita (FeOOH) provavelmente devido ao seu menor tamanho de cristalito. As áreas superficiais obtidas para a magnetita (Fe₃O₄) e maghemita (γ -Fe₂O₃) são iguais (20 m²g⁻¹), isto provavelmente se deve ao fato da maghemita ter sido obtida a partir da magnetita e estes óxidos possuírem tamanho de cristalitos semelhantes. Observando a distribuição de poros obtida para estes materiais (Figura 4.5B), nota-se a presença de macroporos na maghemita, o que não pode ser observado para a magnetita. Este resultado indica que quando a magnetita é oxidada formando maghemita ocorre a formação de vacancias e macroporos na estrutura espinélio.

Figura 4.5: Isoterma de adsorção/dessorção (A) e distribuição de poros (B) obtida para a goethita, hematita, magnetita e maghemita.

Termogravimetria (TG)

Foram realizadas análises termogravimétricas dos óxidos de ferro magnetita, hematita e goethita em fluxo de ar (200 mL min⁻¹) e razão de aquecimento 10 °C min⁻¹.

A análise TG obtida para a magnetita (Figura 4.6), apresenta um ganho de massa de 2,5 %, iniciando-se em 150 0 C e terminado em 290 0 C. Este ganho de massa sugere a oxidação da magnetita para maghemita, conforme a Equação 4.7.

Figura 4.6: Curva TG obtida para a magnetita em atmosfera de ar sintético.

$$2Fe_3O_4 + 1/2O_2 \rightarrow 3\gamma - Fe_2O_3$$
 Equação 4.7

No entanto, este ganho de massa é menor que o esperado para este processo que deveria ser 3,45 %. Este resultado é devido à fração já oxidada da magnetita.

A perda de massa que ocorre entre 290 0 C e 390 0 C pode ser devido à perda de grupos hidroxila superficiais.

A Figura 4.7 apresenta a curva TG para a goethita.

Figura 4.7: Curva TG obtida para a goethita em atmosfera de ar sintético

A curva TG obtida para a goethita apresenta uma perda de massa de 9,8 % entre 170 e 290 °C devido a desidroxilação da goethita (FeOOH) formando hematita (α -Fe₂O₃), conforme a Equação 4.8.

$$2FeOOH \rightarrow \alpha - Fe_2O_3 + H_2O$$
 Equação 4.8

A perda de massa teórica esperada para este processo é de 10,1 %.

As perdas de massa observadas entre 50 °C e 170 °C podem ser devido à dessorção de água.

A Figura 4.8 apresenta as curvas TG/DTA obtida para a hematita.

Figura 4.8: Análise TG/DTA da hematita obtida em atmosfera de ar sintético.

Observa-se na Figura 4.8 um evento endotérmico que possivelmente é devido à dessorção de água. Próximo a 180 °C, inicia-se uma perda de massa gradual e pequena que continua até o final da análise. Esta perda está provavelmente relacionada à desidroxilação de grupos Fe-OH localizados na superfície da hematita.

4.3.2. Adsorção do Corante Têxtil Vermelho Drimaren

Conforme discutido no capítulo 2, antes de se iniciar a reação é importante fazer um estudo de adsorção do corante no catalisador, pois durante a reação fotocatalítica podemos ter dois processos ocorrendo simultaneamente: adsorção e oxidação do corante. Portanto foi necessário se fazer um estudo da adsorção do corante vermelho drimaren (VD) nos óxidos de ferro estudados.

A adsorção foi acompanhada pela descoloração da solução do corante VD. Após 24 h de adsorção a mistura foi centrifugada (4000 rpm) durante 10 min para separar o catalisador do sobrenadante para se fazer às medidas espectrofométricas no comprimento de onda 523 nm.

Figura 4.9: Fórmula estrutural do corante vermelho drimaren.

A Figura 4.10 apresenta a quantidade de corante adsorvida nos óxidos de ferro estudados.

Na Figura 4.10 pode-se observar que a goethita é o óxido que adsorve maior quantidade do corante VD (12 mg g⁻¹ – 19 %) seguido pela hematita (6 mg g⁻¹ – 10 %), maghemita (4 mg g⁻¹ – 6 %) e magnetita (3 mg g⁻¹ – 5 %). A maior adsorção da goethita pode estar relacionada com a maior concentração de grupos OH superficiais que devem interagir fortemente com a molécula do corante através de ligações de hidrogênio.

Figura 4.10: Quantidade de corante adsorvido pela goethita, hematita, magnetita e maghemita.

Efeito do pH na adsorção do corante vermelho drimaren

Também foi realizado um estudo do efeito do pH na adsorção do corante VD na superfície dos óxidos de ferro (Figura 4.11). Observa-se que tanto a hematita, magnetita e maghemita mostram resultados similares, sendo a adsorção nestes óxidos pouco afetada pelo pH do meio. Por outro lado, a adsorção do VD na goethita sofre um importante feito do pH, sendo fortemente adsorvido em pHs baixos.

Figura 4.11: Quantidade de corante adsorvida nos catalisadores em função do pH da solução (100,0 mL solução de VD 50,0 mg L⁻¹ e 30,0 mg de catalisador).

Este comportamento está provavelmente relacionado à adsorção que é maior em meio ácido devido à atração eletrostática entre o corante VD (aniônico) e as espécies superficiais ⁺OH₂ formadas pela protonação dos grupos OH da goethita (Figura 4.12). A goethita adsorve mais VD do que os outros óxidos estudados devido à maior concentração de grupos OH superficiais. A magnetita e maghemita apesar de possuir área superficial maior que a da goethita, elas adsorves pouco o VD devido à baixa concentração de grupos OH superficiais.

Figura 4.12: Esquema representativo da adsorção do corante VD na superfície de óxido de ferro.

4.3.3. Reações Fotocatalíticas

As reações fotocatalíticas foram realizadas utilizando a goethita, hematita, magnetita e maghemita para a oxidação do VD, usado como molécula modelo. A oxidação do corante pode ser dividida simplificadamente em duas etapas: etapa 1 – descoloração e etapa 2 – mineralização.

No início da reação de oxidação do VD, os intermediários oxidados formados devem ser incolores. Assim, a descoloração representa as primeiras etapas do processo oxidativo. A oxidação dos intermediários deve acontecer em várias etapas subseqüentes e terminando com a formação dos produtos totalmente oxidados a CO₂, H₂O, NO₂ e SO₂. Este processo chama-se mineralização. Neste capítulo as reações foram realizadas variando os seguintes parâmetros: (i) quantidade de catalisador e (ii) pH da solução do corante.

A cinética das reações fotocatalíticas foi acompanha por medidas de descoloração das soluções do corante VD. Portanto, para eliminar o efeito de adsorção durante a realização das reações, foi necessário fazer uma pré-adsorção do corante VD no óxido de ferro utilizado na reação. A pré-adsorção foi realizada em local escuro, onde o corante e o óxido ficaram em contato durante 24 horas antes do início das reações fotocatalíticas.

I – Reações realizadas variando a massa dos catalisadores

Foram realizadas reações fotocatalíticas utilizando uma lâmpada de UV (15 W) e diferentes quantidades (10,0; 30,0; 60,0; 120,0 e 240,0 mg) de goethita, hematita, magnetita e maghemita para oxidar 100,0 mL de solução do corante vermelho drimaren 50,0 mg L^{-1} (pH 5).

As Figuras 4.13 – 4.16 mostram os gráficos das reações de degradação do VD utilizando goethita, hematita, maghemita e magnetita, respectivamente.

Figura 4.13: Reações de oxidação do corante VD utilizando diferentes quantidades de goethita.

Figura 4.14: Reações de oxidação do corante VD utilizando diferentes quantidades de hematita.

Figura 4.15: Reações de oxidação do corante VD utilizando diferentes quantidades de magnetita.

Figura 4.16: Reações de oxidação do corante VD utilizando diferentes quantidades de maghemita.

Observando os gráficos acima pode-se notar uma boa linearidade entre os pontos obtidos. Isto indica que as reações com os óxidos de ferro apresentam cinéticas de pseudoordem zero em relação à concentração do corante. Sendo assim a velocidade da reação é igual a constante de descoloração (V = k_{descol}) e pode ser calculada pelo coeficiente angular da reta.

A Figura 4.17 apresenta os valores de k_{descol} em função da massa de catalisador utilizado nas reações.

Figura 4.17: Valores de *k*_{descol} em função da massa de catalisador.

Como se pode observar a reação branco (somente corante + radiação UV) possui um valor de k_{descol} igual a 4,8 10⁻⁵ g L⁻¹ min⁻¹, indicando que o corante VD sofre uma lenta reação de fotólise provocada pela luz UV.

É interessante observar que com a adição de magnetita, maghemita e hematita, ocorre uma significativa diminuição dos valores de k_{descol} . Estes resultados indicam que os óxidos de ferro Fe₃O₄, α -Fe₂O₃ e γ -Fe₂O₃ estão tendo um efeito negativo na atividade do sistema. Este resultado pode estar relacionado com a absorção de fótons pelas partículas de óxidos, o que diminui a reação direta da radiação UV com o corante em solução. Observase também que com o aumento da concentração do catalisador Fe₃O₄ e α -Fe₂O₃ os k_{descol} tendem a aumentar. Embora as razões para este aumento não estejam claras, supõe-se que pode estar relacionado a um efeito fotocatalítico observado somente para maiores quantidades de catalisador. Por outro lado, os valores de k_{descol} obtidos para as reações com goethita apresentam um máximo em 30,0 mg de catalisador e depois diminuem gradualmente com o aumento da massa de FeOOH.
Análise de ferro lixiviado por espectrometria de absorção atômica de chama após as reações fotocatalíticas.

Durante as reações fotocatalíticas realizadas com os óxidos de ferro, pode ocorrer lixiviação de pequenas concentrações de ferro para a solução, e possivelmente desencadear outras reações (foto-Fenton por exemplo) que podem interferir nos resultados. Portanto após as reações fotocatalíticas, foram realizadas medidas de absorção atômica por chama (AA) da solução do corante, com o objetivo de verificar o teor de ferro lixiviado. Os teores obtidos foram muito baixos, menores do que o limite de detecção (0,08 mg L⁻¹) do equipamento. Então com objetivo de verificar interferências nos resultados das reações fotocatalíticas causadas pelo ferro lixiviado durante as reações, foram realizadas reações utilizando soluções de Fe³⁺ 1,0; 5,0 e 10,0 mg L⁻¹ para degradar o corante vermelho drimaren 50,0 mg L⁻¹ em presença de luz UV (Figura 4.18).

Figura 4.18: Reações de degradação do corante VD utilizando soluções com Fe^{3+} 1, 5 e 10 mg L⁻¹ ou 30mg de goethita.

Na Figura 4.16 pode-se observar que para uma concentração de Fe³⁺ igual 1,0 mg L⁻¹, um resultado muito semelhante ao branco é obtido. Este resultado sugere que o ferro lixiviado dos óxidos (menor que 0,08 mg L⁻¹) não deve ter qualquer efeito significativo na descoloração do corante. Por outro lado observa-se um aumento significativo nos valores de k_{descol} quando a concentração de Fe³⁺ é de 5,0 e 10,0 mg L⁻¹.

II - Reações realizadas variando o pH da solução

As reações fotocatalíticas foram realizadas utilizando 30,0 mg de catalisador (hematita, goethita, magnetita e maghemita) para degradar 100,0 mL de soluções de VD 50,0 mg L⁻¹ nos seguintes valores de pH: 1, 2, 4, 7, 10 e 12.

A Figura 4.19 apresenta as retas obtidas nas reações branco, onde foi utilizado apenas luz UV na ausência de catalisador para degradar o corante VD em diferentes valores de pH. Pode-se observar que a cinética destas reações é de pseudo-ordem zero em relação à concentração do corante. Comparando os valores de k_{descol} , pode-se dizer que as variações do pH nestas soluções, não modificam significativamente a estabilidade do corante VD quando exposto a luz UV.

Figura 4.19: Reações branco (solução do corante e luz UV) em diferentes valores de pH.

As Figuras 4.20 a 4.23 mostram os gráficos de descoloração obtidos em diferentes valores de pH utilizando 30,0 mg de goethita, hematita, maghemita e magnetita como fotocatalisadores para degradar soluções do corante VD 50,0 mg L⁻¹. Estas reações também apresentam cinética de pseudo-ordem zero e pelo tratamento cinético foi possível obter os valores das constantes de descoloração (k_{descol}), e estudar a eficiência fotocatalítica dos catalisadores em diferentes valores de pH.

Figura 4.20: Reações de degradação do VD utilizando 30,0 mg de goethita em soluções de pH 2, 4, 7, 10 e 12.

Figura 4.21: Reações de degradação do VD utilizando 30,0 mg de magnetita em soluções de pH 2, 4, 7 e 10.

Figura 4.22: Reações de degradação do VD utilizando 30,0 mg de maghemita em soluções de pH 2, 4, 7 e 10.

Figura 4.23: Reações de degradação do VD utilizando 30,0 mg de hematita em soluções de pH 2, 4, 7 e 10.

Na Figura 4.24 pode-se observar a diminuição dos valores de k_{descol} da goethita, magnetita e maghemita quando o pH da solução aumenta. Isto mostra que as reações realizadas em meio ácido são mais rápidas. Por outro lado, para a reação com hematita o valor de k_{descol} aumenta a partir de pH 4. Para as reações branco a variação de pH não altera significativamente os valore de k_{descol} .

Figura 4.24: Constante de velocidade de descoloração em função do pH das soluções.

Proposta Preliminar de Mecanismo de Reação

A maior atividade apresentada pela goethita pode estar relacionada com a formação dos radicais [•]OH através do mecanismo Foto-Fenton heterogêneo (Figura 4.25). No mecanismo Foto-Fenton a espécie (Fe – OH)²⁺_{aq} (com Fe³⁺) inativa para a reação sofre uma fotólise para produzir Fe²⁺ (ativa para reação de Fenton) e o radical [•]OH (Equação 4.9):

Figura 4.25: Representação esquemática da formação dos radicais [•]OH na goethita pelo processo de Foto-Fenton.

De acordo com os resultados das reações fotocatalíticas e dos testes de adsorção a goethita é o óxido de ferro que apresenta maior atividade catalítica e maior capacidade de adsorção do VD.

4.4. CONCLUSÕES

Analisando os resultados obtidos nesta parte do trabalho foi possível fazer as seguintes conclusões:

Os resultados obtidos por DRX e espectroscopia Mössbauer mostraram a formação das fases Fe₃O₄, α -Fe₂O₃, γ -Fe₂O₃ e FeOOH. As medidas de área superficial BET apresentaram áreas de 14, 4, 20 e 20 m² g⁻¹ para a goethita, hematita, magnetita e maghemita, respectivamente.

Os testes de adsorção do corante vermelho drimaren em pH neutro mostraram que a goethita, hematita, maghemita e magnetita adsorvem aproximadamente 12; 6; 4 e 3 mg g⁻¹, respectivamente. A maior adsorção do corante pela goethita deve estar relacionada com a maior concentração de grupos OH superficiais. E os testes realizados em deferentes valores de pH mostraram uma diminuição da capacidade adsorvente dos óxidos com o aumento de pH da solução.

As reações de fotocatálise mostraram que os óxidos α -Fe₂O₃, Fe₃O₄ e γ -Fe₂O₃ possuem um efeito negativo na atividade catalítica, apresentando uma considerável diminuição nos valores das constantes de velocidade de descoloração (k_{descol}) com o aumento da massa de catalisador. Por outro lado a goethita apresentou um aumento de aproximadamente 2 vezes em relação à reação branco (luz UV e corante) quando utilizada em pequenas quantidades (30,0 mg). O aumento da concentração de goethita também provocou uma diminuição nos valores de k_{descol} .

As reações realizadas com FeOOH, Fe_3O_4 e γ -Fe₂O₃ variando o pH (2 a 10) da solução mostraram uma diminuição da atividade catalítica com o aumento do pH.

4.5. REFERÊNCIAS

- 1. Elsdon, R. Miner. Sci. Eng. 1975, 48, 7.
- 2. Turnock, A. C., Eugster, H. P. J. Petrol. 1962, 3, 533.
- 3. Abraham, T. Am. Ceram. Soc. Bull. 1996, 75, 47.
- 4. Zenger, M. J. Magn Mater. 1992, 112, 372.
- 5. Chien, C. L. Annu. Ver. Mater. Sci. 1995, 25, 129.

6. Oliveira L. C. A. *Síntese, Caracterização e Propriedades Catalíticas de Magnetita Dopada com Manganês e Magnésio*, 2000. Dissertação de Mestrado, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte.

 Moura, F. C. C. Preparação e Caracterização de Catalisadores Baseados em Compósitos Ferro Metálico/Óxidos para Aplicações Ambientais e Tecnológicas, 2006.
Tese de Doutorado, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte.

8. Bandara, J., Klehm, U., Kiwi, J. Appl. Catal. B 2007, 76, 73.

9. Li, F. B., Li, X. Z., Liu, C. S., Liu, T. X. J. Hazard. Mater. 2007, 149, 199.

10. Malato, S., Blanco, J., Alarco, D. C., Maldonado, M. I., Ibanez, P. F., Gernjak, W. Catal. Today 2007, 122, 137.

- 11. Karunakaran, C., Senthilvelan, S. Electrochem. Commun. 2006, 8 (1), 95.
- 12. Liu, H. Y., Gao, L. J. Am. Ceram. Soc. 2006, 89 (1), 370.
- 13. Kawahara, T., Yamada, K., Tada, H. J. Colloid Interface Sci. 2006, 294 (2), 504.
- 14. Martinez, F., Calleja, G., Melero, J. A., Molina, R. Appl. Catal., B. 2005, 60 (3-4), 181.

15. Shang, J., Zhu, Y. F., Xu, Z. L., Jing, L. Q., Du, Y. G. Chin. J. Catal. 2003. 24 (5), 369.

16. Andreozzi, R., Caprio, V., Marotta, R. Water Res. 2003, 37 (15), 3682.

17. Valenzuela, M. A., Bosch, P., Jimenez-Becerrill, J., Quiroz, O., Paez, A. I. J. Photochem. Photobiol., A. 2002, 148 (1-3), 177.

- 18. He, J., Ma, J., He, J., Zhao, J., Yu, J. C. Appl. Catal., B, 2002, 39, 211.
- 19. Bandara, J., Mielczarski, J. A., Lopez, A., Kiwi, J. Appl. Catal., B. 2001, 34 (4), 321.
- 20. Pal, B., Sharon, M. J. Chem. Technol. Biotechnol. 1998, 73 (3), 269.
- 21. Pulgarin, C., Kiwi, J. Langmuir, 1995, 11 (2), 519.

- 22. Hustert, K., Moza, P. N. Fresenius Environ. Bull. 1994, 3 (12), 762.
- 23. Coey, J. M. D., Cugat, O., MaCauley, J., Fabris, J. D. Revista de Física Aplicada e Instrumental, 1992, 7, 25.
- 24. Cavicchioli, A., Gutz, I. G. R. Quim. Nova, 2003, 6, 913.
- 25. Vandenberghe, R. E., Barrero, C. A., Costa, G. M., Van San, E., De Grave, E. *Hyperfine Interact.* **2000**, *126*, 247.

RESUMO

Neste capítulo foram preparados compósitos a base de Fe_2O_3/TiO_2 com teores de ferro, variando de 1, 5, 10, 20 e 30 %. Foram preparados também Fe_3O_4/TiO_2 , $Fe^0/Fe_3O_4/TiO_2$ Fe^0/TiO_2 através da redução controlada do Fe_2O_3/TiO_2 com H_2 em temperaturas de 300, 400 e 500°C. Estes compósitos foram caracterizados por espectroscopia Mössbauer, difração de raios-X e área superficial BET. As caracterizações por DRX e espectroscopia Mössbauer confirmaram a formação de hematita na superfície do TiO₂ nos compósitos Fe_2O_3/TiO_2 e a presença de impurezas como ilmenita (FeTiO₃) e hematita na composição dos compósitos reduzidos a 300, 400 e 500 °C. As medidas de área superfícial BET obtidas para a série de compósitos Fe_2O_3/TiO_2 , mostraram uma diminuição da área com o aumento do teor de Fe_2O_3 .

Foram realizadas reações fotocatalíticas utilizando os compósitos como catalisadores para degradar o corante vermelho drimaren em presença de luz UV. Os resultados mostraram que a presença de apenas 1 % de Fe₂O₃ suportada em TiO₂, diminui cerca de sete vezes a atividade catalítica do TiO₂. E as reações realizadas com os compósitos obtidos a partir da redução com H₂ do 10 % Fe₂O₃/TiO₂, apresentaram uma diminuição na atividade fotocatalítica com o aumento da temperatura de redução.

5.1. INTRODUÇÃO

5.1.1. Estratégias para aumentar a eficiência do TiO₂

O dióxido de titânio (TiO₂) possui um valor de "bandgap" igual a 3,2 eV¹ e absorve radiações com comprimentos de onda inferiores a 387 nm. Devido a este grande "bandgap" a fração do espectro da luz solar que o TiO₂ absorve é entre 10 - 20 %.

Uma forma de melhorar a eficiência do TiO₂ no processo fotocatalítico é pela combinação deste óxido com semicondutores que possuem valores de "bandgap" menores que 3,2 eV. Neste tipo de compósito o elétron promovido para a banda de condução (BC) do TiO₂ pode ser o elétron da banda de valência (BV) do segundo semicondutor, por exemplo, Fe₂O₃ que necessita de menos energia para se excitar (Figura 5.1). Compósitos de TiO₂ com diversos semicondutores tais como CdS, ZnS, ZnO, SnS e SnO₂ têm sido estudados como fotocatalisadores.² Embora seja observado um aumento na eficiência destes fotocatalisadores, a presença de metais pesados tóxicos (Zn, Cd, Sn) e a baixa resistência química impedem a utilização destes compósitos em fotocatálise.

Os óxidos de ferro, por exemplo, Fe_2O_3 e Fe_3O_4 , são semicondutores de pequeno "bandgap" (2,2 eV), baixo custo, baixa toxicidade e por estas razões um excelente material para a formação de compósitos com o TiO₂.

Figura 5.1: Esquema representativo da promoção do elétron da BV do Fe_2O_3 para a BC do TiO_2 no compósito Fe_2O_3/TiO_2 .

Compósitos de TiO_2 com óxidos de ferro têm sido relatados em pouquíssimos trabalhos na literatura (Tabela 5.1).

Tabela 5.1: Trabalhos encontrados na literatura que estudam a atividade fotocatalítica decompósitos óxidos de ferro/TiO2.

Catalisador	Contaminante	Observações	Ref
$Fe^{2+}/Fe^{3+}/TiO_2$	Ac. carboxílico	Preparação pelos métodos de impregnação via	3
(0,5 a 5 %)		úmida. Reações de degradação fotocatalítica	
		utilizando luz UV.	
Filmes de	Alaranjado de	Síntese, caracterização e testes fotocatalíticos	4
TiO ₂ dopado	metila	utilizando luz UV.	
com Ferro			
TiO ₂ dopado		Síntese (Sol Gel) e caracterização.	5
com ferro			
Fe-TiO ₂	Ac. maleico	Reação fotocatalítica utilizando luz UV e estudo	6
		do mecanismo de degradação.	
Fe _x O _y -TiO ₂		Síntese e caracterização	7
TiO ₂ dopado	Ac. fórmico	Estudo da atividade catalítica utilizando	8
com ferro		catalisadores calcinados a 773 e 1073 K e luz	
		UV.	
TiO ₂ dopado	Ac.	Síntese, caracterização e estudos fotocatalíticos	9
$\operatorname{com}\operatorname{Fe}^{3+}$.	dicloroacético	utilizando luz UV.	
TiO ₂ dopado	Cr (VI)	Redução fotocatalítica do cromo VI utilizando	10
com ferro		luz UV.	
TiO ₂ dopado	Ácidos	Reações fotocatalíticas utilizando luz UV.	11
com ferro	orgânicos		

O semicondutor que tem sido mais estudado é a hematita (α -Fe₂O₃), que é a forma mais estável do óxido de ferro. O valor de seu bandgap (2,2 eV) permite que ela absorva maior porcentagem da luz visível do que o TiO₂.¹² Desta forma, neste capítulo foram preparados compósitos com diferentes teores (1, 5, 10, 20 e 30%) de Fe₂O₃ altamente dispersos na superfície do TiO₂ P25 Degussa (Fe₂O₃/TiO₂). Após a caracterização, foram estudadas as atividades fotocatalíticas para a degradação do corante VD utilizando como fonte de radiação UV uma lâmpada de Hg (15 W) de baixa pressão.

5.2. EXPERIMENTAL

5.2.1. Síntese dos compósitos Fe₂O₃/TiO₂

A síntese dos compósitos Fe_2O_3/TiO_2 foi realizada em duas etapas, as quais estão descritas a seguir:

A impregnação foi realizada a partir de 5 g de TiO₂ P25 adicionados a uma solução de Fe(NO₃)₃9H₂O (0,27; 0,16; 0,07; 0,03 e 6,3 10^{-3} mol L⁻¹) sob agitação constante e aquecida a 90 °C até a evaporação do solvente (Equação 5.1).

Impregnação: $TiO_2(s) + Fe(NO_3)_3(aq) \rightarrow Fe(NO_3)_3/TiO_2(s)$ Equação 5.1

Após a evaporação do solvente o material foi calcinado em um forno tubular a 400 °C durante 3 horas em atmosfera de ar.

 $2Fe(NO_3)_3/TiO_2(s) + yO_2 \rightarrow Fe_2O_3/TiO_2 + 6NO_x$ Equação 5.2

5.2.2. Redução dos compósitos Fe₂O₃/TiO₂

Os compósitos Fe_2O_3/TiO_2 foram reduzidos utilizando um forno tubular em fluxo de H₂ (50 mL min⁻¹) durante 1 hora nas seguintes temperaturas: 300, 400 e 500 ⁰C.

5.2.3. Caracterização dos compósitos Fe₂O₃/TiO₂

Para caracterizar os compósitos Fe₂O₃/TiO₂ foram utilizadas as seguintes técnicas: difração de raios-X (DRX), espectroscopia Mössbauer, termogravimetria (TG), medidas de magnetização espontânea e área superficial BET.

As caracterizações foram realizadas como descrito no item 2.2.2 do Capítulo 2.

5.2.4. Testes catalíticos

Reações fotocatalíticas

As reações fotocatalíticas foram realizadas como descrito no item 4.2.4 no Capítulo 4, utilizando-se 30,0 mg do compósito e 100,0 mL da solução do corante VD 0,05 g L^{-1} (pH 5). Antes do início das reações as soluções do corante VD foram deixadas no escuro em contato com o catalisador durante 24 horas, para adsorção.

5.3. RESULTADOS E DISCUSSÃO

5.3.1. Caracterização dos compósitos Fe₂O₃/TiO₂

Difração de Raios – X

Foram obtidos difratogramas para o TiO₂ P25 e para os compósitos 5, 10, 20 e 30 % Fe₂O₃/TiO₂. No difratograma de raios-X do TiO₂ P25 (Figura 5.2) foi possível identificar picos referentes às fases anatásio (A) (20 em 25,4; 37,8; 48,0; 54,0; 55,5; 62,6; 68,8; 70,2 e 75,1° - JCPDS: 1-562) e rutilo (R) (20 em 27,5; 36,0 e 41,1° - JCPDS: 1-1292), sendo a primeira fase mais abundante. Os difratogramas dos compósitos Fe₂O₃/TiO₂, apresentados na Figura 5.2, são bastante parecidos com o do TiO₂, diferenciando apenas na presença de picos referentes à hematita (20 em 24,3; 33,1; 35,8; 41,1; 49,7 e 55,2° - JCPDS: 13-534).

Na Tabela 5.2 são apresentados os valores obtidos para o tamanho de cristalito de hematita suportadas no TiO₂. O tamanho de cristalito de Fe_2O_3 aumenta nas amostras 10, 20 e 30 % Fe_2O_3/TiO_2 , devido à maior concentração de ferro, o que favorece a formação de cristais maiores na superfície do suporte.

Figura 5.2: Difratograma de raios-X obtido para o TiO₂ P25 e para os compósitos 5, 10, 20 e 30 % Fe₂O₃/TiO₂.

Amostra	Rel áreas	Rel áreas Tamanho de cristalit	
	A/R	A/H	hematita/ nm
TiO ₂	5,6		
1 % Fe ₂ O ₃ / TiO ₂	5,8		
5 % Fe ₂ O ₃ / TiO ₂	4,8		
10 % Fe ₂ O ₃ / TiO ₂	5,2	12,6	12
20 % Fe ₂ O ₃ / TiO ₂	5,8	6,5	13
30 % Fe ₂ O ₃ / TiO ₂	6,0	3,0	19

Tabela 5.2: Relações de áreas entre A (anatásio), R (rutilo), H (hematita) e tamanho das partículas de Fe_2O_3 suportada em Ti O_2 .

Nota-se que o tratamento térmico não altera significativamente a relação entre as fases A e R. Observa-se também uma diminuição da razão A/H (A = área do pico 25,4° da fase anatásio e H = área do pico 33,1° da fase hematita) com o aumento do teor de Fe₂O₃, sugerindo que a hematita está sendo formada na superfície do TiO₂ (Tabela 5.2).

Espectroscopia Mössbauer

Os espectros Mössbauer e os parâmetros hiperfinos dos compósitos 10 e 30 % Fe₂O₃/TiO₂, são mostrados na Figura 5.3 e na Tabela 5.3, respectivamente. No espectro do compósito 10 % Fe₂O₃/TiO₂ pode ser observado um sexteto com campo hiperfino (B_{hf}) igual a 51,5 T, desdobramento quadrupolar (ε) -0,17 mms⁻¹ e deslocamento isomérico (δ) 0,39 mms⁻¹ referente à hematita e um dupleto superparamagnético com deslocamento quadrupolar (Δ) 0,80 mms⁻¹ e δ 0,42 mms⁻¹ que pode ser atribuído a íons Fe³⁺ adsorvidos pelo TiO₂ ou partículas muito pequenas de hematita altamente dispersas. O espectro Mössbauer do compósito 30 % Fe₂O₃/TiO₂ apresenta um sexteto característico da hematita, o qual possui B_{hf} igual a 51,3 T, ε -0,21 mms⁻¹ e δ 0,35 mms⁻¹, confirmando a formação de α -Fe₂O₃ mais cristalino e menos disperso sobre o TiO₂.

Figura 5.3: Espectros Mössbauer obtidos para os compósitos 10 e 30 % Ht-TiO₂.

A Tabela 5.3 apresenta os parâmetros hiperfinos dos espectros Mössbauer obtidos para os catalisadores Fe_2O_3/TiO_2 .

Tabela 5.3: Parâmetros hiperfinos obtidos para o espectro Mössbauer de transmissão dos compósitos 10 e 30 % Fe₂O₃/TiO₂.

% Fe ₂ O ₃ /TiO ₂	Atribuição	δ / mm s ⁻¹	$\varepsilon, \cdot / \text{mm s}^{-1}$	B_{hf} / T	AR / %
	Fe ³⁺ disperso	0,42	0,80		15
10	α-Fe ₂ O ₃	0,39	-0,17	51,50	84
	α-Fe ₂ O ₃	0,35	-0,21	51,30	100
30					

AR = área relativa.

Medidas de área superficial BET

Foram realizadas medidas de área superficial BET para o TiO₂ P25 e para os catalisadores 1, 5, 10, 20 e 30 % Fe₂O₃/TiO₂ (Figura 5.4).

As isotermas obtidas para o TiO₂ P25 e para os compósitos Fe_2O_3/TiO_2 são muito semelhantes. Estas isotermas são típicas de materiais não porosos ou constituídos com poros com diâmetros na região de meso (200 - 500 Å) e macro poros (maior que 500 Å).

Figura 5.4: Isotermas de adsorção obtidas para o TiO₂ P25 comercial e para os compósitos 1, 5, 10, 20 e 30 % Fe₂O₃/TiO₂.

Os valores de área superficial obtidos para os compósitos 1, 5, 10, 20 e 30 % Fe_2O_3/TiO_2 são mostrados no gráfico onde se tem a área superficial BET em função do teor de Fe_2O_3 (Figura 5.5).

Figura 5.5: Gráfico da área superficial BET dos compósitos Fe_2O_3/TiO_2 em função do teor de Fe_2O_3 .

Pode-se observar uma diminuição linear da área superficial BET com o aumento do teor de hematita nos compósitos Fe_2O_3/TiO_2 . Isto possivelmente se deve à formação de Fe_2O_3 no interior da estrutura porosa do TiO_2 , o que pode levar a uma diminuição do volume de poros.

5.3.2. Testes catalíticos

Reações fotocatalíticas

As reações fotocatalíticas foram realizadas em um reator provido de uma lâmpada UV de Hg de 30 W, onde foram testadas as atividades dos compósitos Fe_2O_3/TiO_2 para degradar soluções do corante VD 50 mg L⁻¹.

Na Figura 5.6 pode-se observar que as reações de degradação do corante VD utilizando compósitos 1, 5, 10 e 30 % Fe_2O_3/TiO_2 e o TiO₂ puro apresentam um comportamento linear. Isto sugere que a cinética destas reações sejam de pseudo-ordem

zero em relação à concentração do corante. A partir do tratamento cinético foram obtidos os valores da constante de velocidade de descoloração (k_{descol}), apresentados na Figura 5.7.

Figura 5.6: Reação de degradação do VD utilizando TiO₂ e compósitos Fe₂O₃/TiO₂.

Figura 5.7: Valores de k_{descol} em função do teor de Fe₂O₃ suportado em TiO₂.

Observando a Figura 5.7 nota-se que o valor de k_{descol} diminui fortemente com apenas 1 % de Fe₂O₃ e continua diminuindo com o aumento do teor de hematita suportada no TiO₂. Embora a razão deste forte efeito negativo do Fe₂O₃ na atividade fotocatalítica não esteja clara algumas considerações podem ser feitas: (i) a redução da área superficial BET poderia reduzir a atividade, (ii) o Fe₂O₃ na superfície do TiO₂ poderia absorver parte da luz UV, impedindo que esta ative o TiO₂ na formação do par e⁻/h⁺, (iii) pode estar ocorrendo uma interação entre os semicondutores Fe₂O₃/TiO₂ que perturbe o processo de formação do par e⁻/h⁺ ou (iv) o elétron excitado para a banda de condução poderia estar reduzindo os íons Fe³⁺ superficiais para Fe²⁺.

Para se entender o efeito da área superficial na atividade fotocatalítica foram obtidas as constantes de velocidades específicas, k_{espec} normalizando-se os valores de k_{decomp} por unidade de área superficial BET. A Figura 5.8 mostra os valores de k_{espec} para as reações em presença de diferentes compósitos Fe₂O₃/TiO₂. Observa-se que, mesmo após a consideração da diminuição da área superficial, as k_{espec} diminuem acentuadamente com o teor de hematita no TiO₂. Estes resultados mostram que a diminuição da atividade catalítica do TiO₂ não está relacionada diretamente com a redução da área superficial.

Figura 5.8: Valores de k_{espec} em função do teor de Fe₂O₃ suportado no TiO₂.

5.3.3. Caracterização do 10 % Fe₂O₃/TiO₂ após tratamento com H₂ a 300, 400 e 500 °C

Com o objetivo de estudar a atividade catalítica do compósito do tipo Fe_3O_4/TiO_2 e $Fe^0/Fe_3O_4/TiO_2$ os compósitos 10 % Fe_2O_3/TiO_2 foram reduzidos em atmosfera de H₂ sob diferentes temperaturas (300, 400 e 500 °C – Figura 5.9).

Figura 5.9: Esquema representativo da redução da hematita suportada em TiO_2 em atmosfera de H₂ a diferentes temperaturas (300, 400 e 500 °C).

Estas reduções podem ser representadas pelas seguintes reações químicas:

Redução a 300 °C: $3Fe_2O_3 + H_2 \rightarrow 2Fe_3O_4 + H_2O$	Equação 5.3
Redução a 400 °C: $2Fe_2O_3 + 2H_2 \rightarrow Fe_3O_4/Fe^0 + 2H_2O$	Equação 5.4
Redução a 500 °C: $Fe_3O_4 + 4H_2 \rightarrow 3Fe^0 + 4H_2O$	Equação 5.5

Espectroscopia Mössbauer

Os espectros Mössbauer e os parâmetros hiperfino obtidos para o compósito 10 % Fe₂O₃/TiO₂ reduzido a 300, 400 e 500 °C são apresentados na Figura 5.10 e Tabela 5.4, respectivamente. Nota-se que no espectro Mössbauer da amostra 10 % Fe₂O₃/TiO₂ reduzida a 300 °C apresenta três sextetos e um dupleto. O sexteto com maior B_{hf} (50,5 T) δ 0,38 mms⁻¹ e ε -0,21 mms⁻¹ pode ser atribuído à fase hematita não reduzida. Os outros dois sextetos com B_{hf} 48,6 e 45,9 T, δ 0,32 e 0,64 mms⁻¹ são referentes aos sítios tetraédrico e octaédrico da magnetita, respectivamente. O dupleto com δ 0,37 mms⁻¹ Δ 0,78 mms⁻¹ referente ao Fe³⁺ superparamagnético, sugerindo a presença de partícula de hematita altamente dispersa ou muito pequena. No espectro Mössbauer do compósito 10 % Fe₂O₃/TiO₂ reduzido a 400 °C pode-se observar três sextetos e três dupletos superparamagnéticos, que podem ser interpretados da seguinte forma: (i) os dois sextetos com maiores valores de B_{hf} (48,2 e 45,6 T) podem ser atribuídos aos sítios tetraédrico e octaédrico da estrutura espinélio, respectivamente, (ii) o sexteto de baixa área relativa (3 %) com B_{hf} 33 T e com $\delta e \varepsilon$ iguais a 0,0 mms⁻¹ confirma a presença de ferro metálico na amostra, (iii) o dupleto superparamagnético com área relativa 21 % e δ 1,04 mms⁻¹ e Δ -0,70 mms⁻¹ sugere a presença de ilmenita (FeTiO₃) formada a partir da redução do Fe³⁺ por H₂ e reação com TiO₂ devido ao tratamento térmico (Equação 5.6 e 5.7).

$$Fe_2O_3 \xrightarrow{H_2} Fe^{2+}$$
óxido "FeO"Equação 5.6 $TiO_2 + "FeO" \rightarrow FeTiO_3$ Equação 5.7

(iv) os outros dois dupletos superparamagnéticos com $\delta 0,37 \text{ e } 0,98 \text{ mms}^{-1} \text{ e com } \Delta 0,74 \text{ e}$ 1,09 mms⁻¹ são referentes ao Fe³⁺ e Fe²⁺, sugerindo a presença de partículas de magnetita altamente dispersa ou muito pequena na superfície do TiO₂.

No espectro Mössbauer do compósito 10 % Fe₂O₃/TiO₂ reduzido a 500 °C pode-se observar a presença de um sexteto com B_{hf} 32,9 T e com δ e ε iguais a 0,0 mms⁻¹ confirmando a presença de ferro metálico na amostra. Também são observados três dupletos superparamagnéticos, sendo que o de maior área relativa (54 %) pode ser atribuído a ilmenita (FeTiO₃), a qual apresenta δ 1,10 mms⁻¹ e Δ 0,71 mms⁻¹. Os outros dois dupletos com δ 0,37 e 0,89 mms⁻¹ e com Δ 0,66 e 0,97 mms⁻¹ podem ser atribuídos aos Fe³⁺ e Fe²⁺ respectivamente. Estes últimos dupletos sugerem a presença de partículas de magnetita muito dispersa e pequena na superfície do TiO₂.

Figura 5.10: Espectros Mössbauer obtidos a temperatura ambiente para o compósito 10 % Fe_2O_3/TiO_2 tratado com H₂ a 300, 400 e 500 °C.

Tabela 5.4: Parâmetros hiperfinos obtidos para o compósito	$10 \% Fe_2O_3/TiO_2$ tratado com
H ₂ a 300, 400 e 500 °C.	

Amostra	Atribuição	δ / mm s ⁻¹	$\varepsilon, \Delta / \text{mm s}^{-1}$	B_{hf}/T	AR / %
	Fe ³⁺	0,37	0,78		35
Fe ₂ O ₃ /TiO ₂	α-Fe ₂ O ₃	0,38	-0,21	50,5	42
300 °C	(Fe ₃ O ₄) A	0,32	0	48,6	15
	$(Fe_3O_4) B$	0,64	0	45,9	8
	Fe ³⁺	0,37	0,74		39
	Fe ²⁺	0,98	1,09		19
Fe ₂ O ₃ /TiO ₂	FeTiO ₃	1,04	0,70		21
400 °C	Fe ⁰	0	0	33,0	3
	(Fe ₃ O ₄) A	0,32	0	48,2	10
	$(Fe_3O_4) B$	0,64	0	45,6	8(5)

	Fe ³⁺	0,37	0,66		32
Fe ₂ O ₃ /TiO ₂	Fe ²⁺	0,89	0,97		7
500 °C	FeTiO ₃	1,10	0,71		54
	Fe ⁰	0	0	32,9	7

Difração de Raios-X

Foram obtidos difratogramas usando fonte de cobalto, para o compósito 10 % Fe_2O_3/TiO_2 tratado termicamente com H₂ a 300, 400 e 500 °C (Figura 5.11). A Tabela 5.5 apresenta a identificação das linhas de difração das fases presentes nos compósitos.

No difratograma do compósito H₂/300 °C pode-se observar linhas de difração referentes às fases rutilo (2 θ em 32,0; 42,3; 48,2; 63,8; 67,1°) e anatásio (2 θ em 29,5; 43,0; 44,3; 45,1; 56,0; 63,1; 64,6°) do TiO₂, sendo o anatásio a fase mais abundante. As fases hematita e magnetita observadas nos espectros Mössbauer não podem ser observadas claramente no difratograma, possivelmente devido a baixa concentração.

No difratograma da amostra $H_2/400$ °C, além das fases anatásio e rutilo, pode-se observar o aparecimento de linhas de difração referentes à ilmenita – FeTiO₃ (20 em 27,9; 38,2; 41,5; 47,2; 52,4; 57,3; 62,6). As fases ferro metálico e magnetita observadas no espectro Mössbauer não foram observadas no difratograma devida a baixa concentração.

No difratograma da amostra $H_2/500$ °C pode-se observar claramente as linhas de difração das duas fases do TiO₂ (anatásio e rutilo). Nota-se também linhas de difração referentes à ilmenita, que aumentam de intensidade devido a sua maior concentração em relação à amostra anterior. Pode-se observar também um sinal muito pouco intenso em 20 igual a 51,4° indicando a presença de ferro metálico em baixa concentração.

Figura 5.11: Difratogramas obtidos com fonte de cobalto para o compósito 10 % F_2O_3/TiO_2 tratado com H₂ a 300, 400 e 500 °C.

Tabela 5.5: Identificação dos picos do TiO₂ anatásio, rutilo e da hematita (α -Fe₂O₃), magnetita (Fe₃O₄), ilmenita (FeTiO₃) e ferro metálico (Fe⁰).

Fase cristalina	Identificação dos picos / $^\circ$	JCPDS
TiO ₂ anatásio	29,5; 43,0; 44,3; 45,1; 56,0; 63,1; 64,6	2-387
TiO ₂ rutilo	32,0; 42,3; 48,2; 63,8; 67,1	3-1122
α -F ₂ O ₃	41,8; 48,0	1-1053
Fe ₃ O ₄	41,4; 47	1-1111
FeTiO ₃	27,9; 38,2; 41,5; 47,2; 52,4; 57,3; 62,6	2-880
Fe ⁰	51,4	1-1252

Observando com mais cuidado, nota-se um aumento na intensidade relativa das linhas de difração da fase rutilo (20 em 32,0; 42,3; 48,2; 63,8 e 67,1°) especialmente nos difratogramas H₂/400 °C e H₂/500 °C. A razão I_A/I_R (I_A = intensidade da linha de difração 29,5° da fase anatásio e I_R = intensidade da linha de difração 32,0° da fase rutilo) das linhas de difração das fases anatásio e rutilo para os compósitos H₂/300 °C, H₂/400 °C e H₂/500 °C diminuem de 4,5 para 4,2 e 3,3 respectivamente. Estas diminuições confirmam a transição da fase anatásio para a fase rutilo nestes compósitos. Este aumento de intensidade

pode estar relacionado com a transição da fase anatásio para a fase rutilo com o aumento da temperatura de obtenção dos compósitos.

Reações fotocatalíticas realizadas com o compósito 10 % Fe_2O_3/TiO_2 tratado com H_2 a 300, 400 e 500 °C.

As reações fotocatalíticas foram realizadas utilizando uma lâmpada de Hg de 30 W para degradar uma solução 50 mgL⁻¹ de corante VD e 30,0 mg de catalisador.

A Figura 5.12 mostra as curvas obtidas para as reações fotocatalíticas, onde pode se observar uma diminuição da atividade catalítica com o aumento da temperatura em que os compósitos foram obtidos. A linearidade dos pontos obtidos sugerem que estas reações apresentam cinética de pseudo-ordem zero em relação à concentração do corante. Fazendo o tratamento cinético dos dados foi possível obter os valores das constantes de velocidade de descoloração (k_{descol}) pelos coeficientes angulares das retas. (Figura 5.13).

Figura 5.12: Reações de degradação do corante VD 50 mg L⁻¹ utilizando 30,0 mg do compósito 10 % Fe₂O₃/TiO₂ tratado com H₂ a 300, 400 e 500 °C em presença de luz UV.

Figura 5.13: Valores de k_{descol} em função do compósito 10 % Fe₂O₃/TiO₂, tratado com H₂ a 300, 400 e 500 °C.

Observando os valores de k_{descol} na Figura 5.13 pode-se notar claramente uma diminuição gradativa da atividade catalítica do compósito 10 % Fe₂O₃/TiO₂ após redução a 300, 400 e 500 °C com H₂. Esta diminuição nos valores de k_{descol} com o aumento da temperatura de redução pode estar relacionada com a formação de espécies reduzidas tais como, Fe²⁺ e Fe⁰ superficiais. Os radicais [•]OH formados durante a fotocatálise ou Foto-Fenton podem estar reagindo preferencialmente com as espécies reduzidas formando Fe³⁺ e OH⁻ (Equação 5.8) em vez de oxidar o corante.

$$Fe^{2+}$$
 superficie + $^{\bullet}OH \rightarrow Fe^{3+} + OH^{-}$ Equação 5.8

5.4. CONCLUSÕES

Os resultados obtidos pelas técnicas de caracterização mostraram que o método utilizado para a obtenção dos compósitos Fe_2O_3/TiO_2 permitiu obter materiais com nanopartículas de hematita dispersas na superfície do TiO₂. Por outro lado, as técnicas de DRX e espectroscopia Mössbauer mostraram que os compósitos Fe_3O_4/TiO_2 , $Fe^0/Fe_2O_3/TiO_2$ e Fe^0/TiO_2 obtidos pelo tratamento térmico do compósito 10 % Fe_2O_3/TiO_2 , apresentam impurezas como hematita, ilmenita. As medidas de área superficial BET obtidas para a série de compósitos Fe_2O_3/TiO_2 , mostraram que área superficial do TiO₂ diminuiu com o aumento do teor de Fe_2O_3 .

As reações fotocatalíticas realizadas com a série de compósitos 1, 5, 10, 20 e 30 % Fe_2O_3/TiO_2 , mostraram que com apenas 1 % de Fe_2O_3 ocorre uma diminuição acentuada nos valores de k_{descol} (cerca de 7 vezes). Isto pode estar relacionado com o recobrimento da superfície do TiO₂ pela hematita, que absorve parte da radiação, impedindo que ela chegue ao TiO₂, ou pode estar ocorrendo uma interação entre os semicondutores Fe_2O_3/TiO_2 que perturbe o processo de formação do par e^-/h^+ .

As reações também realizadas com o compósito $10 \% \text{Fe}_3\text{O}_4/\text{TiO}_2$ tratado com H₂ a 300, 400 e 500 °C apresentaram cinética de ordem zero em relação à concentração do corante. A atividade destes compósitos diminuiu com o aumento da temperatura de redução.

5.5.REFERÊNCIAS

- 1. Galvez, J. B., Rodriguez, S. M. *Tecnologia de fotocatalisis solar*. Instituto de Estudios Almerienses de la Diputación de Almería. 1996, 210.
- 2. Linsebigle, A. L., Lu, G., Yates J. T. Chem. Rev. 1995, 95, 735.
- 3. Arana, J., González, O. D., Rodríguez, D. J. M., Mélián, H. J. A., Garriga, C. C., Pena, P.
- J., Hidalgo, M. C., Santos, J. A. N. J. Mol. Catal. A: Chem. 2003, 197, 157.
- 4. Zhang, W., Li, Y., Zhu, S., Wang, F. J. Vac. Technol. A. 2003, 21 (6), 1877.
- 5. Zhang, Y., Ebbinghaus, S. G., Weidenkaff, A., Nidda, H. A. K., Klar, P. J. *Chem. Mater.*, **2003**, *15*, 4028.
- 6. Arana, J., González, O. D., Rodríguez, D. J. M., Mélián, H. J. A., Pena, P. J., Caracho,
- M. M. Appl. Cata. B. 2002, 26, 113.
- 7. Huang, W., Tang, X., Felner, I., Koltypin, Y., Gedanken, A. *Mater. Res. Bull.* **2002**, *37*, 1721.
- Arana, J., González, O. D., Rodríguez, D. J. M., Mélián, H. J. A., Pena, P. J., Caracho, M. M. Appl. Catal. B., 2001, 32, 49.
- 9. Smirnova, N., Eremenko, A., Rusina, O. J. Sol-Gel Sci. Technol. 2001, 21, 109.
- 10. Navío, J. A., Colón, G., Trillas, M., Peral, J., Doménech, X., Testa, J. J., Padrón, J., Rodríguez, D., Litter, M. I. *Appl. Catal. B.* **1998**, *16*, 187.
- 11. Ranjit, K. T., Willner, I., Bossmann, S., Braun, A. J. Phys. Chem. B. 1998, 102, 9397.
- 12. Penpolcharoen, M., Amal, R., Brungs, M., J. Nanopart. Res. 2001, 3, 289.

1. Trabalhos publicados em periódicos

Artigos

1. Magalhães, F., Pereira, M.C., Botrel, S.E.C., Fabris, J.D., Macedo, W.A., Mendonça, R. Lago, R.M., Oliveira, L.C.A. Cr-containing magnetites $Fe_{3-x}Cr_xO_4$: The role of Cr^{3+} and Fe^{2+} on the stability and reactivity towards H_2O_2 reactions. *Applied Catalysis A: General* **2007**, *332*, 115.

2. Magalhães, F., Pereira, M.C., Fabris, J.D., Bottrel, S.E.C., Amaya, A., Tancredi, N., Lago, R.M. Novel Highly Reactive and Regenerable Carbon/Iron Composites Prepared from Tar and Hematite: Use on the Reduction of Cr (VI) Contaminant. Journal of Hazardous Materials (submitted).

2. Trabalhos apresentados em congressos

Trabalhos Completos

1. Compósitos carvão/óxidos de ferro produzidos a partir de Fe_2O_3 e alcatrão para a oxidação catalítica de contaminantes orgânicos com H_2O_2 . In: 14º Congresso Brasileiro de Catálise, 2007, Porto de Galinhas. Anais do Congresso Brasileiro de Catálise, 2007.

2. Magnetitas substituídas com Cr $Fe_{3-x}Cr_xO_4$: estudo de transição térmica e efeito catalítico em reações Fenton. In: XV Congreso Argentino de Catalisis e 4 Congreso De Catálisis Del Mercosul, 2007, La Plata, Argentina. Anais del Congreso Argentino de Catalisis, 2007.

3. Magnetitas substituídas com íons Cr ($Fe_{3-x}Cr_xO_4$): síntese, caracterização e estudos de suas propriedades catalíticas. In: XX Simpósio Ibero-Americano de Catálise, 2006, Gramado. Anais do XX Simpósio Ibero-Americano de Catálise, 2006.

Resumos

1. *Highly Reactive Carbon/Iron Composites Prepared from Tarto Reduction of Cr (VI) Contaminant in Water Solution.* In XI Latin American Conference on the Applications of the Mössbauer Effect (XI LACAME), 2008, La Plata, Argentina. Anais do XI Latin American Conference on the Applications of the Mössbauer Effect, 2008.

2. Compósitos de semicondutores Fe_2O_3/TiO_2 : Reações em Estado Sólido em Atmosfera Redutora (H_2) e Propriedades Fotocatalíticas. In: 30° Reunião Anual da Sociedade Brsileira de Química, 2007, Águas de Lindóia. Anais da 30° Reunião Anual da Sociedade Brsileira de Química, 2007.

3. Estudo de Reações em Estado Sólido entre as Fases TiO_2 e Óxidos de Ferro em Atmosfera Redutora (H_2). In: 2º Simpósio Mineiro de Ciência dos Materiais, 2007, Ouro Preto. Anais do 2º Simpósio Mineiro de Ciência dos Materiais, 2007.

4. Magnetitas Contendo Cromo ($Fe_{3-x}Cr_xO_4$): Síntese, Caracterização e Estudos Catalíticos para a Reação Tipo Fenton. In: 29° Reunião Anual da Sociedade Brasileira de Química, 2006, Águas de Lindóia. Anais da 29° Reunião Anual da Sociedade Brasileira de Química, 2006.

5. *Síntese, Caracterização e Atividade de FeOOH em Reações do Tipo Foto-Fenton Heterogênea.* In: XX Encontro Regional da Sociedade Brasileira de Química, 2006, São João Del Rei. Anais do XX Encontro Regional da Sociedade Brasileira de Química, 2006.

6. Síntese e Caracterização de Compósitos Fe_2O_3/TiO_2 para Aplicação e Fotocatálise, In: XLX Encontro Regional da Sociedade Brasileira de Química, 2005, Ouro Preto. Anais do XLX Encontro Regional da Sociedade Brasileira de Química, 2005.