UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE QUÍMICA

LUCÍLIA ALVES LINHARES

AVALIAÇÃO DA VULNERABILIDADE DE SOLOS REPRESENTATIVOS DE MINAS GERAIS À CONTAMINAÇÃO POR METAIS PESADOS BASEADA EM ESTUDOS DE ADSORÇÃO E PROCESSOS DE EXTRAÇÃO

> Belo Horizonte 2009

UFMG/ICEX. DQ. 783 T. 327

LUCÍLIA ALVES LINHARES

AVALIAÇÃO DA VULNERABILIDADE DE SOLOS REPRESENTATIVOS DE MINAS GERAIS À CONTAMINAÇÃO POR METAIS PESADOS BASEADA EM ESTUDOS DE ADSORÇÃO E PROCESSOS DE EXTRAÇÃO

Tese apresentada ao Departamento de Química do Instituto de Ciências Exatas da Universidade Federal de Minas Gerais como requisito parcial para a obtenção do grau de Doutor em Ciências - Química

BELO HORIZONTE 2009

O trabalho descrito nesta tese foi realizado sob a orientação do professor Dr. Fernando Barboza Egreja Filho.

"Muitas vezes em nossa vida,
É difícil reconhecer os problemas
É difícil sorrir...
É difícil alcançar nossas metas...
E prosseguir no mesmo caminho.
E quanto mais tentamos, mais caímos,
Enfraquecemos e acabamos por desistir.
Enquanto estamos lutando, estamos
conseguindo,
Estamos armazenando forças, coragem.
Mas, quando desistimos...
É como se esquecêssemos que fomos
feitos para lutar e vencer!!!"

"Embora ninguém possa voltar atrás e fazer um novo começo, qualquer um pode começar agora e fazer um novo fim" **Chico Chavier** Dedico este trabalho a meus pais, Antônio e Miria, aos meus queridos irmãos e ao maior amor de minha vida (minha filha Júlia), por tudo que me ensinaram e pelo apoio que sempre me deram, inclusive na realização desse curso.

Agradecimentos

Primeiramente à **Deus** pela vida concedida, por ter me sustentado com seu braço forte durante toda a minha vida e por ter me conduzido da melhor maneira possível na realização desse curso. Ele é mesmo "**a minha rocha e a minha fortaleza, guia-me e encaminha-me**".

A meus pais, **Antônio** e **Miria**, e aos meus irmãos, por desejarem sempre o melhor para mim, mesmo quando isso significasse sofrimento para eles, como as aflições e as inquietudes que sentiram junto comigo no decorrer deste curso. Sei então que realmente me amam, porque somente o amor "**tudo sofre, tudo crê, tudo espera, tudo suporta**". Agradeço também o apoio recebido dos demais membros de minha família. Estes são sem dúvida os responsáveis por tudo de bom que tem acontecido em minha vida e pela pessoa que hoje sou.

Ao Alan e ao maior amor de minha vida, minha filha **Júlia**, que apesar de todos os momentos difíceis, estiveram incondicionalmente ao meu lado, na convivência dia após dia, nas dificuldades e felicidades.

Ao professor orientador e amigo **Fernando Barboza Egreja Filho**, pelo exemplo de profissionalismo, amizade e pelos bons momentos de convívio. Ainda pela orientação do trabalho, pelo apoio nos momentos difíceis, pela paciência, pela confiança e pelo incentivo que muito contribuíram para minha formação.

Agradeço ao professor Vito Modesto de Bellis, pela amizade e pelo constante apoio para que o curso fosse concretizado. Aos professores Valmir Juliano, Luiza Marilac e Letícia Malta pelo apoio e agradável convivência no decorrer do curso.

A professora Cristiane Valéria Oliveira (IGC-UFMG), pela colaboração nesse trabalho e disponibilização do Laboratório de Geociências e ao pesquisador João Herbert Moreira Viana (EMBRAPA) pela disponibilização de parte dos solos utilizados neste trabalho.

Às secretárias Paulete Gerken, Liliam Brescia e Kátia Fajardo, por toda a disposição em me ajudar com os aspectos burocráticos do curso.

Aos professores José Domingos Fabris, Letícia Malta Costa, Ruy Carvalho, Antônio Augusto Neves, membros da banca, por terem aceito o convite e por todas as sugestões dadas no sentido de melhorar essa tese. Aos amigos do Laboratório de Absorção Atômica (Gustavo e Sandra) pela paciência nas incansáveis análises e às amigas Elisângela A. dos Santos, Débora Herrera e Renato Ianhez pela grande ajuda na realização do trabalho.

Aos amigos do Departamento de Química, Valter, Reginaldo, Renato, Amauri, Flávia, Claúdio e Patrícia por todo apoio, carinho, amizade e, sobretudo, pelos bons momentos passados juntos, momentos que ficarão para sempre em minha memória.

As amigas Hosane Taroco, Cinthia, Lilian, Daniela Séfora, Valéria Cristina, Ana Paula e Érica pelo apoio, troca de experiências, conselhos e porque estiveram sempre próximas de mim, mesmo que não fosse fisicamente, me incentivando na realização deste trabalho.

À Universidade Federal de Minas Gerais e ao Programa de Pós graduação em Química pela oportunidade de realizar o curso e a todos os professores que passaram pela minha vida.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pela concessão da bolsa de estudo.

Sumário

SUMÁRIO DE TABELAS	Х
SUMÁRIO DE FIGURAS	xii
LISTA DE SÍMBOLOS E ABREVIATURAS	xv
APRESENTAÇÃO	xvii
INTRODUÇÃO GERAL	xix
METAIS PESADOS E FONTE DESSES ELEMENTOS NO SOLO	xxi
<i>CAPÍTULO I</i> : CARACTERIZAÇÃO DOS SOLOS E ADSORÇÃO DE METAIS	1
1. RESUMO	2
2. ABSTRACT	4
3. Introdução	6
4. Fundamentos	8
4.1. Solo como componente do ecossistema	8
4.1.1. A solução do solo	9
4.1.2. A fase sólida do solo	10
4.2. Reações de adsorção	13
4.2.1. Adsorção não específica	14
4.2.2. Adsorção específica	14
4.2.3. Modelos de adsorção	16
5. Objetivos específicos	19
6. Materiais e Métodos	20
6.1. Solos estudados	20
6.2. Preparo das amostras	20
6.3. Reagentes utilizados	26
6.4. Determinação dos elementos nos extratos	26
6.5. Caracterização química e física dos solos	26
6.5.1. Análise Granulométrica	27
6.5.2. Capacidade de campo	27
6.5.3. Determinação do pH	27
6.5.4. Carbono orgânico	27
6.5.5. Capacidade de troca catiônica	28
6.5.6. Extração dos óxidos de ferro cristalino e amorfos	28
6.6. Experimento de Adsorção	29

7. Resultados e Discussão	31 31
7.2. Isotarmas da adsoraño	31
7.2. Isoterinas de adsorção.	17 17
7.5. I entre das isoternias de adsorção.	47 50
7.4. Estudo de correração entre os atributos dos solos e os parametros das isotermas	32
8. Conclusões	56
9. Referências	57
10. APÊNDICE A	63
<i>CAPÍTULO II</i> : MÉTODOS DE EXTRAÇÃO DE METAIS PESADOS EM SOLOS	97
1. RESUMO	98
2. ABSTRACT	100
3. Introdução	102
4. Fundamentos	104
4.1. Disponibilidade de elementos no solo	104
4.1.1. Extratores de metais pesados em solos	106
5. Objetivos específicos	110
6. Materiais e Métodos	111
6.1. Contaminação dos solos com os metais estudados	111
6.2. Procedimentos de extração simples (DTPA, Mehlich-1 e Mehlich-3)	111
6.2.1. Efeitos de matriz 6.3. Procedimentos de extração sequencial (EGREJA FILHO e BCR)	112 113
7 Resultados e Discussão	115
7.1 Disponibilidade de metais avaliada pelos procedimentos de extração simples	115
7.2 Disponibilidade de metais avaliada pelos procedimentos de extração sequencial	123
7.2. Disponionidade de metals dvanada peros procedimentos de extração sequenciais. 7.3. Comparação das extrações discretas com as sequenciais	135
7.4. Correlação entre as taxas de recuperação dos extratores	138
8. Conclusões	143
9. Referências	144
10. APÊNDICE B	148
<i>CAPÍTULO III</i> : VULNERABILIDADE DE SOLOS À CONTAMINAÇÃO	176
1. RESUMO	177

2. ABSTRACT	178 179
3. Resultados e discussão	175
3.1. Agrupamento dos solos em função da disponibilidade de metais e atribuição de graus de vulnerabilidade à contaminação	180
4. Conclusões	189
5. Considerações finais	190
6. Referências	191
7. APÊNDICE C	192

Sumário de Tabelas

Tabela 1. Efeito do pH sobre a especiação de Pb em solução	XXV
Tabela 2. Identificação, classificação, localização, profundidade dos solos estudados	21
Tabela 3. Parâmetros empregados na determinação dos elementos no Espectrômetro de absorção Atômica	26
Tabela 4. Soluções individuais, com concentrações crescentes dos elementos Cd^{2+} , Cu^{2+} , Pb^{2+} e Zn^{2+} , em Ca Cl_2 0,01 mol L^{-1} utilizadas no experimento de adsorção	29
Tabela 5. Características químicas e físicas dos solos usados no experimento	32
Tabela 6. Concentração adicionada, pH antes e pH após adsorção e número de íons H ⁺ liberados na adsorção de cádmio nos solos	36
Tabela 7. Concentração, pH antes e após adsorção e número de íons H ⁺ liberados na adsorção de cobre nos solos	37
Tabela 8. Concentração, pH antes e após adsorção e número de íons H ⁺ liberados na adsorção de chumbo nos solos	38
Tabela 9. Concentração adicionada, pH antes e após adsorção e número de íons H ⁺ liberados na adsorção de zinco nos solos	39
Tabela 10. Equações de regressão e coeficientes de correlação das isotermas de Langmuir e de Freundlich para cádmio e chumbo	41
Tabela 11. Equações de regressão e coeficientes de correlação das isotermas de Langmuir e de Freundlich para cobre e zinco	42
Tabela 12. Parâmetros das equações de Langmuir e de Freundlich para adsorção de cádmio, chumbo, cobre e zinco nos solos estudados	44
Tabela 13. Coeficientes de correlação entre os parâmetros dos modelos de Langmuir e de Freundlich para cádmio, cobre, chumbo e zinco e os atributos dos solos	53
Tabela 14. Quantidade de metais pesados utilizado na incubação dos solos	111
Tabela 15. Teores totais e percentuais de retenção dos metais pesados nos solos incubados	116
Tabela 16. Valores de pH, Δ pH e CTC dos solos nas amostras originais e após incubação com o coquetel de metais	117

Tabela 17. Distribuição percentual das principais espécies envolvidas na extração de Cd ²⁺ , Cu ²⁺ , Pb ²⁺ e Zn ²⁺ , pelo extrator Mehlich 3, simulado pelo programa Minteq A2, sendo força iônica (I=0,2775 mol L ⁻¹) e pH 2,60	118
Tabela 18. Coeficientes de correlação linear simples entre os teores de cádmio, cobre, chumbo e zinco extraído por Mehlich-3, Mehlich-1 e DTPA	139
Tabela 19. Coeficiente de correlação linear simples entre as características dos solos e os teores de cádmio, cobre, chumbo e zinco recuperados pelos extratores DTPA, Mehlich-1 e Mehlich-3 das amostras de solos estudados	139
Tabela 20. Coeficiente de correlação linear simples entre os teores de cádmio, cobre, chumbo e zinco pelos extratores DTPA, Mehlich-1 e Mehlich-3 e as frações desses elementos (F1: solúvel e trocável, F2: adsorvida fracamente em óxidos de ferro e de alumínio, F3: ligado à matéria orgânica, F4: adsorvido fortemente em óxidos de alumínio, F5: adsorvido fortemente em óxidos de ferro cristalino e F6: residual) das amostras de solos estudados	140
Tabela 21. Coeficiente de correlação linear simples entre os teores de cádmio, cobre, chumbo e zinco pelos extratores DTPA, Mehlich-1 e Mehlich-3 e as frações desses elementos (F1: trocável, F2: redutível, F3: oxidável, F4: residual das amostras de solos estudados	141
Tabela 22. Correlação entre as características dos solos e as seis frações do procedimento de extração sequencial para cádmio, cobre, chumbo e zinco	142

Sumário de Figuras

Figura 1. Modelo do ácido húmico mostrando os diversos grupos funcionais, estruturas aromáticas e alifáticas adaptado de Schulten e Schnitzer (1994) Fonte: Sparks (1998)	12
Figura 2. Mecanismos de adsorção específica de metais pesados em superfícies de óxidos de ferro envolvendo a formação de ligações covalentes do metal com íons do reticulo cristalino do mineral, formando complexos em um único sítio ou em dois sítios simultaneamente.	15
Figura 3. Perfis dos solos utilizados no trabalho: (1) Argissolo Vermelho-Amarelo Ditrófico Típico; (2) Latossolo Vermelho-Amarelo Ditrófico Típico; (3) Latossolo Vermelho Ditrófico Típico e (4) Latossolo Vermelho-Amarelo Distrófico húmico	22
Figura 4. Perfis dos solos utilizados no trabalho: (5) Latossolo Vermelho Perférrico húmico; (6) Nitossolo Vermelho Eutrófico típico; (7) Luvissolo Crômico Pálico abrúptico e (8) Chernossolo Argilúvico Carbonático saprolítico	23
Figura 5. Perfis dos solos utilizados no trabalho: (9) Cambissolo Háplico eutr Cambissolo Háplico Tb eutrófico latossólico ófico; (10) Cambissolo Háplico Tb distrófico típico; (11) Plintossolo Pétrico concrecionário distrófico e (12) Plintossolo Pétrico concrecionário distrófico	24
Figura 6. Perfis dos solos utilizados no trabalho: (13) Cambissolo háplico distrófico; (14) Neossolo Quartzarênico órtico latossólico; (15) Latossolo Vermelho-Amarelo distrófico	25
Figura 7. Isotermas de adsorção de cádmio referente ao horizonte B do Argissolo Vermelho Amarelo Distrófico típico e do Nitossolo Vermelho Eutrófico típico	48
Figura 8. Isotermas de adsorção de cádmio referente ao horizonte A do Chernossolo Argilúvico Carbonático saprolítico e do Cambissolo Háplico Tb eutrófico latossólico	49
Figura 9. Isotermas de adsorção de chumbo referente ao horizonte A do Chernossolo Argilúvico Carbonático saprolítico e do Cambissolo Háplico Tb eutrófico latossólico	50
Figura 10. Isotermas de adsorção de cobre referente ao horizonte A do Chernossolo Argilúvico Carbonático saprolítico e do Cambissolo Háplico Tb distrófico típico	50
Figura 11. Isotermas de adsorção de zinco referente ao horizonte A do Chernossolo Argilúvico Carbonático saprolítico e do Cambissolo Háplico Tb distrófico típico	51
Figura 12. Percentual de recuperação de cádmio pelos extratores DTPA, Mehlich-1 e Mehlich-3 nos solos estudados	119
Figura 13. Percentual de recuperação de zinco pelos extratores DTPA, Mehlich-1 e Mehlich-3 nos solos estudados	121

Figura 14. Percentual de recuperação de cobre pelos extratores DTPA, Mehlich-1 e Mehlich-3 nos solos estudados	122
Figura 15. Percentual de recuperação de chumbo pelos extratores DTPA, Mehlich-1 e Mehlich-3 nos solos estudados	123
Figura 16. Extração de cádmio pelo procedimento de extração sequencial constituído de seis frações (Egreja Filho)	124
Figura 17. Extração de cádmio pelo procedimento de extração sequencial proposto pela BCR	125
Figura 18. Extração de zinco pelo procedimento de extração sequencial constituído de seis frações (Egreja Filho)	127
Figura 19. Extração de zinco pelo procedimento de extração sequencial proposto pela BCR	127
Figura 20. Extração de cobre pelo procedimento de extração sequencial constituído de seis frações (Egreja Filho)	130
Figura 21. Extração de cobre pelo procedimento de extração sequencial proposto pela BCR	131
Figura 22. Extração de chumbo pelo procedimento de extração sequencial constituído de seis frações (Egreja Filho)	133
Figura 23. Extração de chumbo pelo procedimento de extração sequencial proposto pela BCR	134
Figura 24. Percentual de recuperação de cádmio nas amostras 1A, 12B, 8A e 14B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (EF)	136
Figura 25. Percentual de recuparação de cobre nas amostras 3A e 15B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (EF)	137
Figura 26. Percentual de recuparação de chumbo nas amostras 6A e 13A pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (EF)	137
Figura 27. Percentual de recuparação de zinco nas amostras 4A, 5A, 7A e 13A pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (EF)	138
Figura 28. Vulnerabilidade dos solos à contaminação por cádmio em relação à fração F1 do procedimento de extração sequencial em seis etapas	181

Figura 29. Vulnerabilidade dos solos à contaminação por chumbo em relação à fração F1 do procedimento de extração sequencial em seis etapas	182
Figura 30. Vulnerabilidade dos solos à contaminação por cobre em relação à fração F1 do procedimento de extração sequencial em seis etapas	184
Figura 31. Vulnerabilidade dos solos à contaminação por zinco em relação à fração F1 do procedimento de extração sequencial em seis etapas	186
Figura 32. Agrupamento dos solos em função do pH, F1 e b para cádmio (a), chumbo (b), cobre (c) e zinco (d)	187

Lista de Símbolos e Abreviaturas

SiBCS: Sistema Brasileiro de Classificação de Solos TFSA: Terra Fina Seca ao Ar MO: Matéria orgânica SNH: Substância não húmica SH: Substância húmica AF: Ácido Fúlvico AH: Ácido Húmico HU: Humina CTC: Capacidade de Troca de Cátions BCR: European Community Bureau of References DTPA: ácido dietilenotriaminopentacético M-1: Mehlich-1 M-3: Mehlich-3 b: Capacidade máxima de adsorção do modelo de Langmuir k: Energia de adsorção do modelo de Langmuir K_F: coeficiente de adsorção do modelo de Freundlich n: parâmetro adimensional que sugere uma heterogeneidade dos sítios de adsorção no modelo de Freundlich PVA: Argissolo Vermelho-Amarelo Ditrófico Típico LVA: Latossolo Vermelho-Amarelo Ditrófico Típico LVd: Latossolo Vermelho Ditrófico Típico LVAd: Latossolo Vermelho Amarelo Distrófico húmico LVj: Latossolo Vermelho Perférrico húmico NVef: Nitossolo Vermelho Eutrófico típico

TCp: Luvissolo Crômico Pálido abrúptico MTk: Chernossolo Argilúvico Carbonático saprolítico CXbe: Cambissolo Háplico Tb eutrófico latossólico CXbd: Cambissolo Háplico Tb distrófico típico FFcd₁: Plintossolo Pétrico concrecionário distrófico FFcd₂: Plintossolo Pétrico concrecionário distrófico CXd: Cambissolo Pétrico distrófico RQo: Neossolo Quartzarênico órtico latossólico LVAd: Latossolo Vermelho Amarelo distrófico

Apresentação

A presente tese descreve a pesquisa realizada nos quatro anos de Doutorado, sendo dedicada ao estudo da vulnerabilidade de solos de Minas Gerais à contaminação por metais pesados (cádmio, cobre, chumbo e zinco), tendo sido determinadas: isotermas de adsorção, extração química simples de metais (DTPA, Mehlich-1 e Mehlich-3) e extrações sequenciais (BCR - constituída de três etapas mais a residual e a desenvolvida por EGREJA FILHO - constituída de seis frações). Utilizou-se, em conjunto com essas ferramentas de diagnóstico ambiental, dados referentes às características químicas e físicas dos solos; propôs-se um agrupamento das amostras em níveis de vulnerabilidade.

A tese está dividida em três capítulos e três apêndices. Anteriormente ao primeiro capítulo, tem-se uma introdução geral sobre o trabalho e uma breve apresentação sobre os elementos aqui estudados, os "metais pesados". O capítulo I inicia com as motivações contextuais que nos levaram a realizar este trabalho e os objetivos traçados para pesquisa. É também parte do capítulo os procedimentos de amostragem, preparo das amostras, a caracterizações química e física dos solos e uma revisão bibliográfica, em que se apresentam: o sistema solo (sua fase sólida e solução), as reações de adsorção (específica e não específica) e os modelos de adsorção de Langmuir e de Freundlich. Para finalizar, são apresentados e discutidos os resultados obtidos e expostas as conclusões desta parte da tese. Os gráficos referentes ao estudo de adsorção dos metais encontram-se no apêndice A do capítulo.

Na busca de outras ferramentas de diagnóstico ambiental que pudessem complementar os primeiros resultados obtidos, verificou-se a possibilidade de empregar processos de extração química que pudessem auxiliar no diagnóstico da vulnerabilidade dos solos a contaminação por metais. No capítulo II, é descrito um estudo sobre os processos de extração química simples e de extração sequencial de metais, empregando-se como extratores o EDTA, as soluções Mehlich-1 e Mehlich-3 e procedimentos de extrações sequenciais, envolvendo três e seis frações, onde são descritas as metodologias utilizadas. Na sequência, são mostrados os objetivos, apresentados e discutidos os resultados e as conclusões. No apêndice B, são estão as tabelas referentes às quantidades, em $\mu g g^{-1}$, de cádmio, cobre, chumbo e zinco extraídas nos procedimentos de extração simples e sequencial.

Como fechamento do trabalho, no terceiro e último capítulo, com os resultados previamente obtidos, propôs-se um agrupamento dos solos em níveis de vulnerabilidade a contaminação por cádmio, cobre, chumbo e zinco. No apêndice C, encontram-se alguns gráficos de agrupamentos dos solos.

Introdução Geral

Dentre os eco-ambientes naturais, os ecossistemas tanto terrestres quanto aquáticos são particularmente sensíveis às atividades antrópicas. Solo, sedimento e água, constituem sistemas de relevância ambiental e interessantes campos de pesquisa. Tendo em vista a heterogeneidade do componente ambiental solo, devido a fatores relacionados à constituição da rocha de origem e fatores climáticos, a capacidade de retenção dos metais pesados por seus constituintes são espacial e temporalmente variáveis. Em particular, a vulnerabilidade dos solos, assim como o risco de cátions metálicos dissolvidos ultrapassarem esse filtro natural também é função do espaço e do tempo.

Atualmente, muitos dos problemas do ambiente natural solo são devidos ao acúmulo de poluentes em níveis superiores aos que o meio pode suportar. A vulnerabilidade de um solo pode ser expressa pelo conceito de *carga crítica*, que define o nível de exposição à poluição que determinado meio pode tolerar, sem danos de longa duração (Nilsson e Greenfelt, 1988).

A vulnerabilidade dos solos foi definida pelo Seminário SOVEUR (Soil Vulnerability in Europe) ocorrido em Wageningen, Holanda, em março de 1991, como a "capacidade de o solo ser danificado em uma ou mais de suas funções ecológicas, definidas como (1) produção de húmus e (2) capacidade de filtrar, armazenar, tamponar e transformar metais pesados, produtos orgânicos químicos persistentes e outros xenobióticos". Assim, a vulnerabilidade está ligada à situação onde a carga crítica do solo pode ser ultrapassada, fazendo com que o compartimento passe a disponibilizar os elementos e não mais retê-los (Batjes e Bridges, 1993).

Quando matrizes ambientais, como o solo, recebem cargas de contaminantes, seus diversos componentes (minerais e matéria orgânica) atuam no sentido de diminuir a mobilidade dessas substâncias, o que caracteriza o conceito de *barreira geoquímica*. Porém, esses contaminantes podem ser liberados nos solos quando seus teores superam a carga crítica ou quando a carga crítica do solo é reduzida, em função de mudanças das condições ambientais, como acidificação do solo, erosão, mudanças no uso da terra, entre outras, ocasionando interferência nas funções naturais dos solos como, por exemplo, perdas de produtividade ou da capacidade de retenção de poluentes.

As mudanças ambientais que ocasionam a liberação dos poluentes são normalmente denominadas de *Bombas Químicas de Tempo*. Dentro desse contexto, Stigliani (1988) apresentou o conceito de Bombas Químicas de Tempo como sendo os danos ambientais xviii causados por um contaminante que se acumulou em um depósito ambiental e, num determinado instante, foi liberado repentinamente, devido a mudanças ambientais bruscas.

Na caracterização dos diversos poluentes e dos contaminantes que atuam nos solos, pode-se observar a importância dos metais pesados, dentre os diferentes elementos existentes. Essa importância se torna ainda maior para um país com a extensão territorial do Brasil e com a grande variabilidade de solos. O problema central associado à contaminação dos solos por metais pesados deve-se à existência de formas lábeis desses elementos, sendo as formas solúveis e trocáveis aquelas que apresentam maior biodisponibilidade, e, portanto, são as formas mais preocupantes.

Alloway (1995) cita os *metais pesados* como uma das mais preocupantes espécies químicas poluentes, uma vez que podem se acumular durante anos em um determinado local, sem que seus efeitos sejam percebidos. No entanto, as lentas alterações ambientais podem provocar a liberação repentina e retardada desses elementos que foram se acumulando por longo período de tempo, causando danos, muitas vezes não esperados, às saúdes humana, animal e vegetal.

Vários trabalhos envolvendo a determinação de metais pesados em solos visam, em muitos casos, apenas determinar os teores totais desses elementos. O conhecimento dos teores totais é de fato importante, mas a avaliação do potencial de risco e da toxicidade de metais em solos requer a determinação da proporção de metal que é móvel e, possivelmente, biodisponível. Assim, a determinação isolada dos teores totais de metais no solo é um meio inexato de se quantificar o potencial de risco ao ambiente, havendo necessidade de se conhecer as formas químicas em que estes se encontram, uma vez que é a natureza delas que determina sua toxicidade, imediata ou potencial (Pickering, 1981; Sposito et al., 1982).

Sendo Minas Gerais um estado com uma grande variabilidade de solos, um dos motivos para se estudar a vulnerabilidade de solos à contaminação por metais pesados deve-se às diferentes capacidades dos solos em reter contaminantes e à relevância atribuída, quando os elementos se tornam disponíveis e, conseqüentemente, seu potencial de contaminação para os vários organismos vivos e ambientes naturais, quando esses se encontram em valores elevados, e como ferramenta auxiliar na tomada de decisões referentes ao uso, ocupação e manejo do solo. Dessa forma, dada a grande importância de se conhecer a capacidade dos solos em absorver impactos de prováveis contaminações, pretende-se, com este trabalho, conhecer a capacidade adsortiva de diferentes solos do Estado de Minas Gerais e avaliar como os metais cádmio, cobre, chumbo e zinco, introduzidos nos mesmos se distribuem quimicamente, de forma a determinar a vulnerabilidade dos solos estudados quanto à

xix

contaminação por esses elementos. Espera-se, com este estudo, contribuir para o conhecimento sobre vulnerabilidade de solos e, principalmente, fornecer orientações sobre quais tipos de solos apresentam maiores ou menores problemas, quando impactados por metais provenientes de atividades industriais ou agrícolas.

A escolha em se estudar os metais Cd, Cu, Pb e Zn, neste trabalho, deve-se às características de retenção nos solos (maior ou menor mobilidade) bem como ao grau de toxicidade dos mesmos. O cádmio tende a ser mais móvel e, portanto, mais disponível às plantas; o cobre e o chumbo são metais que se ligam mais firmemente aos solos e o zinco ocupa uma posição intermediária, ou seja, é mais adsorvido que o cádmio e menos que o cobre e o chumbo. Além disso, os elementos são contrastantes. Cobre e zinco são micronutrientes e cádmio e chumbo são elementos não essenciais. São quatro dos metais mais comuns em rejeitos e resíduos agrícolas e industriais.

Embora o termo "metal pesado" tenha conotação de toxicidade, a definição não é assim restritiva, uma vez que entre os metais pesados encontram-se também elementos essenciais aos seres vivos. De maneira geral, define-se o termo com base na densidade dos elementos químicos. O valor limite diverge entre alguns autores, variando de 4,5 (Garcia et al., 1990) a 6,0 kg dm⁻³ (Alloway, 1995). No entanto, a definição baseada na densidade acaba englobando de forma equivocada alguns ametais e semimetais, pois se são metais pesados, não basta que sejam pesados, é necessário que sejam metais (Matos et al., 1996).

Alguns metais pesados são elementos essenciais aos vegetais superiores (Co, Cu, Fe, Mn, Mo, Ni e Zn), quando em baixas concentrações. Os elementos que não possuem função bioquímica essencial são chamados de "elementos não-essenciais" ou "elementos tóxicos" (As, Cd, Pb, Hg, Sb, U). Tanto os metais essenciais como os não essenciais causam problemas no metabolismo de seres vivos se absorvidos acima de certas quantidades (Alloway, 1995). Comumente, esses elementos ocorrem naturalmente no ambiente, em baixas concentrações, devido à ação do intemperismo e de outros processos pedogenéticos no material de origem do solo.

A capacidade que esses elementos têm de acumularem-se em tecidos vivos e concentrarem-se ao longo da cadeia alimentar aumenta as chances de causarem distúrbios em ecossistemas, o que pode ocorrer mesmo após cessarem as emissões (Tavares e Carvalho, 1992).

Segundo Costa (1991), os metais pesados representam um grupo de poluentes que requer tratamento especial, pois não são facilmente degradados biológica ou quimicamente, de forma natural, principalmente, em ambientes terrestres e sedimentos aquáticos. Ao contrário, são acumulados e podem se tornar ainda mais perigosos quando interagem com alguns componentes do solo, como é o caso do Hg, pois quando depositados sofre amplo conjunto de transformações químicas e biológicas, tais como oxidação do Hg (0), redução do Hg (II), ou sua metilação, sendo a espécie Hg²⁺ a mais tóxica e móvel, dentre as espécies inorgânicas e o metilmercúrio HgCH₃⁺, mais móvel e tóxico ainda.

A preocupação com o teor de metais pesados advém da capacidade de sua retenção pelas diferentes classes de solo, da sua movimentação no perfil desses, da possibilidade de atingirem o lençol freático e, sobretudo, da sua absorção pelas plantas, podendo atingir, assim a cadeia alimentar (Fialho, 2003).

Cádmio

O cádmio é um elemento relativamente raro e não é encontrado na natureza no estado elementar. Elemento químico pertencente ao grupo IIB da tabela periódica, foi descoberto por Stromeyer em 1817 como uma impureza do ZnCO₃. A geoquímica do cádmio está intimamente relacionada com a do zinco, sendo ambos elementos sulfofílicos (com forte afinidade pelo enxofre) e com estruturas iônicas e eletronegatividades semelhantes (Alloway, 1995).

Numerosas atividades humanas resultam em lançamentos de significativa quantidade de cádmio ao meio ambiente. Sua emissão tem origem em duas grandes categorias: fontes naturais e antrópicas. As emissões ocorrem para o ar, água e solo, e o intercâmbio entre os três meios é considerado importante. A quantidade emitida no ar tem maior mobilidade do que na água que, por sua vez é maior que no solo (Azevedo e Chasin, 2003).

De maneira geral, as contribuições relativas de cádmio das principais fontes antropogênicas têm sido estimadas em 54-58%, para fertilizantes fosfatados; 39-41% para deposição atmosférica e 2-5% para lodo de esgoto. No entanto, em locais próximos de usinas metalúrgicas que emitem cádmio ou em solos onde tenha sido aplicado lodo de esgoto, as concentrações podem ser muito superiores.

Em condições naturais, a concentração de cádmio nos solos é função da composição química do material de origem. É extensivamente distribuído pela crosta terrestre e apresenta concentração média em torno de 0,1 mg kg⁻¹ (Azevedo e Chasin, 2003). A concentração média de cádmio no solo está na faixa de 0,06-1,1 mg kg⁻¹, com uma média mundial calculada ao redor de 0,53 mg kg⁻¹ (Kabata-Pendias e Pendias, 2001).

O estudo da especiação do cádmio tem mostrado que, na solução do solo, a espécie predominante é o Cd^{2+} . Dependendo do pH e de outros íons em solução, o metal também pode formar íons complexos tais como: $CdCl^+$, $CdOH^+$, $CdHCO_3^+$, $CdCl_3^-$, $CdCl_4^{2-}$, $Cd(OH)_3^-$ e $Cd(OH)_4^{2-}$. O íon Cd^{2+} é o mais provavelmente adsorvido à superfície dos sólidos, em relação às outras espécies. Deficiente em elétrons d como todo elemento de transição, o cádmio tende a combinar-se facilmente em solução com espécies doadoras de elétrons para formar compostos (complexos) estáveis (Huheey et al., 1993).

O cádmio tende a ser mais móvel nos solos e, portanto, mais disponível para plantas que muitos outros metais pesados. Segundo Alloway (1995), os processos de adsorção, preferencialmente aos de precipitação, parecem controlar a distribuição de cádmio entre as formas solúveis e as retidas pelos constituintes dos solos. No entanto, em concentrações

extremamente elevadas de cádmio, podem ser formados precipitados de fosfatos e carbonatos de cádmio.

Chumbo

O chumbo é um elemento metálico, sólido, cinza azulado, conhecido como potencialmente tóxico. Seu símbolo químico é Pb, número atômico 82, massa molar 207,21 g mol⁻¹. Apesar de apresentar dois estados de oxidação Pb(II) e Pb(IV), a forma iônica Pb²⁺ predomina no ambiente (Davies, 1990). Sob essa forma, é pouco móvel no solo, mas nas formas orgânicas como Pb-tetraetila, trietila e dietila, apresentam extrema mobilidade.

A forma Pb^{2+} predomina na solução do solo nas faixas normais de pH. Para valores de pH superiores a 7, a forma $PbOH^+$ vai assumindo importância e, para valores de pH superiores a 8, há predomínio das formas hidroxiladas sobre a forma Pb^{2+} (Pierangeli, 1999), podendo ocasionar a precipitação do $Pb(OH)_2$ (Tabela 1).

Tabela 1. Efeito do pH sobre a especiação de Pb em solução

Espécie			pН		
	4	5	6	7	8
			%		
Pb^{2+}	100	100	98	83	33
$PbOH^+$	-	-	2	17	66
Pb(OH) ₂	-	-	-	-	1

Fonte: Harter, 1983.

O chumbo ocorre naturalmente nos solos e é inerente ao material de origem ocorrendo em níveis muito baixos, não oferecendo maiores riscos quando os solos são usados sob condições naturais. É produzido a partir de minérios tais como: a cerrusita (PbCO₃), anglesita (PbSO₄) e galena (PbS), sendo este último a mais importante fonte de chumbo (Rondó et al., 2000). A concentração média de chumbo na crosta terrestre varia entre 10 e 20 mg kg⁻¹, enquanto, nos solos, os teores se encontram no intervalo de 10-70 mg kg⁻¹ (Who, 1995 In: Azevedo e Chasin, 2003).

Para o Estado de São Paulo, foram sugeridos valores orientadores para metais em solos. Com base em análises de amostras ambientais, valores de referência de qualidade foram estabelecidos para efetuar a proteção do solo e das águas subterrâneas. Para chumbo, o valor sugerido no solo foi igual a 17 mg kg⁻¹ e nas águas subterrâneas abaixo de 1 mg/L (Cetesb, 2001). A liberação de chumbo de complexos orgânicos para a forma solúvel, que está relacionada com sua disponibilidade, é altamente dependente de pH. Em solos com pH > 5 e contendo pelo menos 5% de matéria orgânica, o chumbo atmosférico é retido na camada superior (2-5 cm). Em solos que apresentam alto teor de matéria orgânica e encontram-se com um pH entre 6 e 8, o chumbo pode formar complexos orgânicos insolúveis. Em solos com menos matéria orgânica e o mesmo pH, podem ser formados complexos de óxidos de chumbo hidratados ou ainda ocorrer sua precipitação na forma de carbonatos ou fosfatos (Azevedo e Chasin, 2003).

As características geoquímicas do chumbo assemelham-se às do grupo dos metais alcalinos terrosos, o que determina a habilidade do chumbo em deslocar Ba^{2+} , $Sr^{2+} e Ca^{2+}$ em minerais e sítios de sorção. O chumbo é considerado um dos metais pesados menos móveis, apresentando-se acumulado naturalmente nos horizontes superficiais. A forma em que o chumbo encontra-se nos solos pode variar consideravelmente de um tipo de solo para outro. O chumbo associa-se principalmente a minerais de argila, óxidos de Fe, Al e de Mn, além da matéria orgânica (Kabata-Pendias e Pendias, 2001).

Em algumas amostras de solos brasileiros contaminados com resíduos industriais, cerca de 80% do teor total de chumbo foram encontrados em formas não disponíveis, isto é, na fração de baixa disponibilidade para as plantas e de pouco ou nenhum risco ambiental (Ianhez, 2003). O tempo de residência de chumbo no solo é tão longo que ele pode ser considerado como permanente nos solos (Pierangeli, 1999). Suas características de solubilidade, mobilidade e, mesmo disponibilidade, são baixas.

Cobre

O cobre, um metal marrom avermelhado, é o primeiro elemento do grupo IB da tabela periódica. Apresenta quatro estados de oxidação: metálico (Cu^0), íon cuproso (Cu^+), íon cúprico (Cu^{2+}) e o íon (Cu^{3+}), sendo a forma divalente a mais importante. A combinação única das propriedades do metal como resistência à corrosão, condutividade elétrica e térmica e maleabilidade determinam sua ampla aplicação (Malavolta, 1994).

O cobre é amplamente distribuído na natureza, no estado elementar, na forma de sulfetos, arsenitos, cloretos e carbonatos. Na crosta terrestre, apresenta abundância natural de 60 mg kg⁻¹, sendo, geralmente, encontrados nos solos valores entre 2 e 100 mg kg⁻¹, para teores totais, e de 1 a 8 mg kg⁻¹, para teores solúveis (Camargo et al., 2001).

Grande parte do cobre da litosfera está combinada com o enxofre na forma de sulfeto de cobre, que ocorre em rochas, principalmente como sulfetos complexos, facilmente xxiv

intemperizados, e liberam íons Cu²⁺, especialmente em meio ácido (Raij, 1991). É graças ao material de origem, à mineralogia e ao conteúdo de matéria orgânica que o cobre ocorre em diversas formas no solo e se distribui entre elas. O cobre ocorre nos solos adsorvidos à superfície dos minerais de argila, dos óxidos de Fe, Al e de Mn e na matéria orgânica.

Dentre os micronutrientes, o cobre é o menos móvel devido à sua forte adsorção nos colóides orgânicos e inorgânicos do solo. Na matéria orgânica, o cobre é retido principalmente pelos ácidos húmicos e fúlvicos, formando complexos estáveis (Lopes et al., 2006).

A forma física ou química do cobre determina seu comportamento no meio ambiente e sua disponibilidade à biota. Por exemplo, o cobre incorporado à estrutura da rede mineral é inerte e de pouco significado. A maioria dos métodos analíticos não distingue a forma de cobre presente, sabendo-se apenas o total do metal contido na matriz, desconhecendo-se, entretanto, a natureza dos complexos ou compostos presentes e sua labilidade ou disponibilidade (Azevedo e Chasin, 2003).

Embora a concentração de cobre total nos solos seja um indicador útil da deficiência ou da contaminação do solo, não fornece informações conclusivas sobre seu impacto ambiental. Sua disponibilidade seja como nutriente ou como um elemento tóxico, e sua mobilidade são fatores importantes a serem considerados ao avaliar seu efeito no ambiente do solo.

Zinco

O zinco ocorre no ambiente natural principalmente no estado de oxidação II. Elemento químico do grupo IIB da tabela periódica, juntamente com o Cd e o Hg. O Zn pode ser combinado com outros elementos, como cloro, oxigênio e enxofre, para formar compostos de zinco, sendo grande parte encontrada na natureza como sulfeto de zinco. Pode ser encontrado no ar, no solo, na água e está naturalmente presente nos alimentos. Grande parte do zinco entra no ambiente como resultado de atividades antropogênicas, como mineração, purificação do zinco, produção de aço, queima de carvão e de lixo (Kabata-Pendias et al., 1992).

A concentração de Zn no solo, em função do material de origem, varia de 10 a 300 mg kg⁻¹ (Davies, 1990). Segundo Melo (1998), os teores totais de Zn extraídos na TFSA de solos brasileiros variaram de 24,1 a 203,8 mg kg⁻¹. Nas rochas, o zinco ocorre principalmente como sulfetos (ZnS), mas também aparece em substituições isomórficas de silicatos, no lugar de Mg²⁺. A solubilização pelo intemperismo produz o cátion Zn²⁺, que é adsorvido aos solos pelos minerais de argila e pela matéria orgânica (Raij, 1991).

Os principais minérios de zinco são esfalerita ou blenda (ZnS), smithsonita (ZnSO₄) e hemimorfita. Segundo Alloway (1995), as interações de zinco no solo dependem de parâmetros como: concentração de Zn^{2+} e outros íons na solução do solo, espécies e quantidades de sítios de adsorção associados com a fase sólida do solo, concentração de todos os ligantes capazes de formarem complexos com zinco, pH e potencial redox do solo.

O pH tem forte influência na adsorção de zinco. Junto com o potencial redox determinam o equilíbrio entre as formas iônicas hidrolisadas dos metais. Alloway (1995) calculando a atividade das espécies de zinco como função do pH, observou que em pH<8, o Zn^{2+} é a espécie predominante, enquanto que em valores acima deste pH prevalece o ZnOH⁺. Em solução com valores de pH>9, as espécies neutras, $Zn(OH)_2^0$ predominam e as espécies $Zn(OH)_3^-$ e $Zn(OH)_4^{2-}$ nunca são as principais espécies solúveis na faixa de pH normal dos solos.

A adsorção de zinco pelos solos e seus constituintes tem sido extensivamente estudada. Argila e matéria orgânica podem adsorver zinco fortemente e, aparentemente, dois mecanismos de adsorção de zinco ocorrem: um em condições ácidas, relacionadas a sítios de troca catiônica e outro, em condições alcalinas, que é considerado quimiossorção, sendo esta amplamente afetada pelos ligantes orgânicos (Kabata-Pendias e Pendias, 2001).

CAPÍTULO I Características Químicas e Físicas dos solos e Adsorção de metais pesados

- 4 Descrição dos solos estudados e preparo das amostras
- 4 Caracterização química e física dos solos
- 📕 Estudo da adsorção de metais: modelos de Langmuir e de Freundlich

1. Resumo

Dentre os processos envolvidos no comportamento e biodisponibilidade dos metais pesados nos solos, aqueles relacionados com a adsorção são particularmente importantes. O movimento desses elementos nos solos está intimamente associado aos fatores que contribuem para sua retenção na fase sólida; dentre esses fatores, destaca-se a presença de íons adsorvidos. Tendo em vista a natureza multielementar do sistema solo-solução e a complexidade das reações envolvidas, o conhecimento dos mecanismos de adsorção permite uma boa avaliação do comportamento dos elementos no solo.

O objetivo deste estudo foi caracterizar a adsorção de cádmio, cobre, chumbo e zinco em horizontes superficiais e subsuperficiais de 30 amostras de solos de Minas Gerais, bem como avaliar a influência das propriedades dos solos sobre os parâmetros de adsorção desses elementos, a fim de verificar quais atributos dos solos estariam regulando tais fenômenos. Amostras de 1,000 g de solo foram agitadas por 16 horas, com soluções de CaCl₂ 0,01 mol L⁻¹, às quais foram adicionadas 0 a 80 μ g mL⁻¹ de cádmio, 0 a 100 μ g mL⁻¹ de cobre, 0 a 120 μ g mL⁻¹ de chumbo e 0 a 40 de zinco μ g mL⁻¹ na forma de nitrato.

A quantidade adsorvida dos elementos foi analisada no sobrenadante e ajustados aos modelos de adsorção de Langmuir e de Freundlich, no intuito de se verificar, entre os modelos, o que melhor se ajusta aos dados experimentais de adsorção e, além disso, avaliar quais os parâmetros obtidos dos modelos que melhor refletem a adsorção de metais pesados em solos intemperizados e identificar a relação entre os parâmetros selecionados e atributos químicos e físicos das amostras.

As isotermas obtidas foram do tipo C, H e L e tiveram melhor ajuste com o modelo de Freundlich. A capacidade máxima dos solos em adsorver os metais variou nos horizontes A e B de 1,16 a 16,40 mmol kg⁻¹ (solos RQo e MTk) e de 0,73 a 12,74 mmol kg⁻¹ (solos FFcd e MTk) para o cádmio, de 3,85 a 10,02 mmol kg⁻¹ (solos RQo e CXbd) e de 2,26 a 8,73 mmol kg⁻¹ (solos LVA e TCp) para o chumbo, de 4,64 a 20,75 mmol kg⁻¹ (solos T e CXbd) e de 4,97 a 28,28 mmol kg⁻¹ (Solos LVA e NVef) para cobre, de 3,88 a 16,49 mmol kg⁻¹ (Solos RQo e T) e de 2,49 a 15,57 mmol kg⁻¹ (Solos RQo e LVj) para zinco.

Os valores da constante k mostram que os elementos investigados apresentam-se retidos com diferentes energias de ligação nos diferentes solos, sendo as maiores forças de retenção obtidas para cobre e chumbo. Dos solos investigados, aqueles que adsorveram mais fortemente os metais foram o Chernossolo Argilúvico Carbonático saprolítico (8A e 8B) e o

Cambissolo Háplico Tb eutrófico latossólico (9A, 9B). Por outro lado, o Cambissolo Háplico Tb distrófico típico (10A e 10B) e o Neossolo Quartzarênico órtico latossólico (14A e 14B) com baixos teores de argila, matéria orgânica, óxidos de ferro e CTC apresentam um dos menores valores de b e k, para cádmio, cobre, chumbo e zinco. Dessa forma, os solos 8 e 9 (MTk e CXbe) são os mais propensos a reter metais, defrontados aos solos 10 e 14 (CXbd e RQo), que além de apresentar baixos valores de b e de k, apresentam os menores valores de pH, o que tornariam os elementos mais facilmente disponíveis.

2. Abstract

Among the processes involved in the behavior and bioavailability of heavy metals in soil, adsorption is of the great importance. The movement of these elements in soils is closely related to factors that contribute to their retention in the soil solid phase, including the presence of adsorbed ions. In view of the multi-elemental nature of soil solutions and the complexity of the reactions involved, knowledge of the adsorption mechanisms allows a good assessment of the behavior of elements in soil.

The aim of this study was to characterize the adsorption of cadmium, copper, lead, and zinc in surface and subsurface horizons of 30 soil samples of Minas Gerais Sate, assess the influence of soil properties on the adsorption parameters, and verify which ones determine it. Samples of 1.000 g of soil were shaken for 16 h with solutions of 0.01 mol L^{-1} CaCl₂ and added with 0 to 80 µg mL⁻¹ cadmium, 0 to 100 µg mL⁻¹ copper, 0 to 120 µg mL⁻¹ lead, or 0 to 40 µg mL⁻¹ zinc nitrates.

The quantities of adsorbed metals in the supernatant were analyzed and fitted to Langmuir's and Freundlich's adsorption models to verify which one best fitted the experimental adsorption data and to evaluate the model parameters obtained that best reflected the adsorption of heavy metals in weathered soils, as well as to correlate the parameters with selected chemical and physical sample attributes.

The isotherms obtained were at type C, H, and L and were best fitted to the Freundlich model. The maximum metal adsorption capacity of the soils in horizons A and B varied from 1.16 to 16.40 mmol kg⁻¹ (soils RQo and MTk) and 0.73 to 12.74 mmol kg⁻¹ (soils FFcd and MTk) for cadmium, 3.85 to 10.02 mmol kg⁻¹ (soils RQo and CXbd) and 2.26 to 8.73 mmol kg⁻¹ (soils LVA and TCp) for lead, 4.64 to 20.75 mmol kg⁻¹ (soils T and CXbd) and 4.97 to 28.28 mmol kg⁻¹ (soils NVef and LVA) for copper, 3.88 to 16.49 mmol kg⁻¹ (soils RQo and T) and 2.49 to 15.57 mmol kg⁻¹ (soils RQo and LVj) for zinc.

The constant k values related to the binding energy showed that the investigated elements were retained with different binding energies in the different soils; the higher retention forces were obtained for copper and lead. Of the investigated soil, the ones that adsorbed the metals more strongly were Chernosol Argiluvic Soda saprolite (8A and 8B) and Haplic Cambisol Eutric latosol Tb (9A, 9B). Moreover, the typical dystrophic Haplic Cambisol Tb (10A and 10B) and orthic Quartzarenic Neosol latosol (14A and 14B) with low amounts of clay, organic matter, iron oxides, and CTC presented the lowest bek values for

cadmium, copper, lead, and zinc. Thus, soils 8 and 9 (MTk and CXbe) were the most likely to retain metals, in contrast to soils 10 and 14 (CXbd and RQo), as they showed the lowest pH values and presented low k values, which would make the elements more easily available.

3. Introdução

Metais pesados são elementos químicos frequentemente associados à poluição, por acumularem-se e causarem problemas ao ambiente. Estudos sobre o comportamento de metais pesados no solo têm merecido considerável atenção, na medida em que auxiliam o entendimento dos fenômenos relacionados à retenção e mobilidade desses elementos nesse meio e à sua entrada na cadeia alimentar. A retenção de metais pelo solo depende de equilíbrios mantidos entre certos compartimentos, regulados, principalmente, por fenômenos de precipitação e dissolução, imobilização e mineralização, sorção e dessorção. O fenômeno de sorção tem grande importância em solos tropicais, uma vez que a adsorção de metais por superfícies minerais em geral e por óxidos de ferro em particular é, reconhecidamente, um importante processo que controla a disponibilidade, a mobilidade e, por conseqüência, o destino dos elementos nesse meio. Tais fenômenos tornam o comportamento de metais pesados em solos tropicais um objeto de estudo importante no contexto da preservação ambiental.

Para se avaliar a disponibilidade dos metais é necessário entender sob quais condições eles estão associados às superfícies sólidas. Bolland et al. (1996) consideram que as duas formas mais comuns para a efetiva avaliação da capacidade de adsorção de íons pelos solos são descritas por curvas ou isotermas de adsorção e a determinação de propriedades do solo que revelam íntima e consistente correlação com o mecanismo químico ou físico envolvido. No entanto, as correlações assim obtidas não implicam, necessariamente, em uma relação causa-efeito, mas fornecem informações valiosas e de considerável utilidade, mesmo que devam ser consideradas como simples referências ou como tendências verificadas.

Vários modelos de adsorção têm sido testados e seu uso possibilita melhor entendimento dos fenômenos que contribuem para a retenção de metais pesados em solos. Cada modelo de isoterma parte de diferente pressuposto que, nem sempre, se adequa a uma determinada situação. Dessa forma, é importante conhecer acerca da construção de diferentes modelos de isotermas e de suas limitações. Entre as equações propostas para o ajuste dos dados de adsorção, destacam-se as de Langmuir e de Freundlich, pois além de serem simples, possuem a habilidade de descrever os resultados experimentais em ampla faixa de concentração (Sposito, 1989). A equação de Langmuir costuma ser mais frequentemente preferida pelos pesquisadores, uma vez que seus parâmetros permitem a estimativa da capacidade máxima de adsorção e da afinidade do adsorvente pelo adsorvato (Dias et al., 2001; Fontes & Gomes, 2003). A equação de Freundlich é a mais antiga das isotermas utilizadas (Barrow, 1978) e caracteriza-se por ser puramente empírica (Antoniadis & Tsadilas, 2007).

Entre os que descrevem as limitações das equações, Harter (1984) questiona o procedimento de linearização normalmente adotado na maioria dos trabalhos científicos, afirmando que ajustar uma equação em que ambos os membros apresentam uma mesma variável reduz substancialmente a variabilidade dos dados, dando origem a elevados coeficientes de determinação para as equações lineares ajustadas.

Considerando-se o interesse na compreensão do fenômeno de adsorção de cádmio, cobre, chumbo e zinco em solos de Minas Gerais, o objetivo deste estudo foi determinar a capacidade máxima de adsorção e a energia de ligação desses elementos nestas amostras e verificar as principais características dos solos que possam estar controlando a retenção e a disponibilidade destes elementos, empregando-se para isso as equações das isotermas em sua forma original.

4. Fundamentos

4.1. O solo como componente do ecossistema

O solo é um componente do ecossistema que merece destaque por desempenhar papel fundamental na relação com os demais componentes da natureza como a água, o ar, e as florestas, o que o torna tão importante quanto estes. Sob o ponto de vista ambiental, o solo não é apenas uma fonte de nutrientes, mas um sistema integrador, uma vez que funciona como um filtro e reservatório de água, controlando e regulando a retenção, escoamento, filtragem e distribuição da água proveniente das chuvas, conduzindo-a para os rios, córregos e nascentes.

É, também, reserva natural de vários elementos químicos, e serve de suporte para o desenvolvimento das vidas vegetal e animal. O ciclo de muitos elementos químicos como o carbono, o nitrogênio e o oxigênio dependem de seres vivos que fazem parte da vida existente no solo (Brady, 1989). Em seu estado natural, o solo tem funções de equilíbrio com as formas de vida animal e vegetal, disponibilizando água em qualidade e quantidade suficiente, nutrientes para o desenvolvimento das plantas, de forma renovável e numa dinâmica constante.

O solo pode ser definido como o produto residual do intemperismo de rochas e minerais. Os fatores responsáveis por seu processo de formação são: clima, relevo, tempo e microorganismos que, agindo sobre a rocha matriz, dão origem ao solo. É um sistema heterogêneo complexo, constituído por quatro componentes principais: matéria mineral, matéria orgânica, água e ar. Uma definição mais apropriada seria: "o solo é uma coleção de corpos naturais, constituídos por partes sólidas, líquidas e gasosas, tridimensionais, dinâmicos, formados por materiais minerais e orgânicos, que ocupam a maior parte do manto superficial das extensões continentais do planeta, contém matéria viva e podem ser vegetados na natureza, onde ocorrem. Podem também ter sido modificados por atividades humanas" (Embrapa, 1999).

De acordo com McBride (1994), solo contaminado é aquele que apresenta concentrações de determinado elemento químico acima do esperado em condições naturais. A contaminação por metais pesados é oriunda de atividades antrópicas ou da acumulação resultante de processos biogeoquímicos ocorridos na natureza. As principais rotas antrópicas de entrada de metais pesados no solo são a deposição de rejeitos industriais, fertilizantes, pesticidas e resíduos urbanos, como compostos de lixo e lodo de esgoto. No solo, os rejeitos sofrem transformações químicas, que podem liberar metais pesados para a solução do solo e

causar toxicidade às plantas e outros organismos vivos, ou ainda, podem ser adsorvidos às argilas ou complexados à matéria orgânica, representando fonte poluidora potencial e importante via de exposição dos metais poluentes.

Os metais pesados podem ocorrer no solo sob diversas formas: na forma iônica ou complexada na solução do solo, como íons trocáveis no material orgânico ou inorgânico de troca ativa, como íons mais fortemente ligados ao sítios de troca, oclusos em óxidos, de ferro, alumínio ou outros sais insolúveis, incorporados aos microorganismos e nos seus resíduos biológicos, ou presos nas estruturas cristalinas dos minerais silicatados primários e secundários (Pickering, 1981).

O principal aspecto da poluição do solo por metais pesados está ligado a processos de acúmulo e transporte dos elementos e que são definidos, em grande parte, pelas interações com a fase sólida do mesmo, sendo que esses processos são determinados pelas características químicas, físicas e mineralógicas do solo (Gomes et al., 1997; Silva, 1999). Portanto, o estudo da interação dos metais pesados com os constituintes do solo, principalmente no que diz respeito à sua adsorção, torna-se um importante parâmetro para estimar a capacidade do solo de filtrar sua solução, podendo tornar os metais pesados indisponíveis para plantas ou impedindo que atinjam a água (Gomes et al., 1997).

4.1.1. A solução do solo

Sob uma perspectiva bastante simples, a solução do solo tem sido descrita como "*a fase líquida do solo e de seus solutos*". Por *soluto*, entende-se o componente da solução do solo formado por eletrólitos e por não-eletrólitos e que está em menor quantidade do que o *solvente*, substância na qual o soluto está dissolvido. Quanto à sua funcionalidade, a solução do solo "*fornece água e nutrientes para as plantas*", sendo a fase na qual contaminantes movem-se ao longo do perfil do solo, é o meio no qual reações químicas do solo ocorrem (Goetz et al., 1986).

Sem dúvida, a solução do solo é o centro de todos os processos químicos importantes e de onde as plantas absorvem os nutrientes. Na solução do solo, os micronutrientes e outros metais pesados podem estar na forma solúvel como íons livres ou complexados, com ligantes orgânicos e inorgânicos. De acordo com Lindsay (1979) a maioria dos metais não está na forma livre, mas complexados. Portanto o conhecimento das formas químicas dos metais pesados na solução do solo é mais importante para estimar a mobilidade e disponibilidade dos elementos às plantas do que a determinação de seus teores totais na solução do solo.
O solo é um sistema complexo, dinâmico e aberto cuja composição é conseqüência de inúmeras reações que podem ocorrer, silmultaneamente, entre as fases que o compõem. Os atributos da solução do solo que afetam a disponibilidade de metais são pH, composição e força iônica da solução, espécies e concentração dos elementos e presença de ligantes e íons competidores (Harter e Naidu, 2001). De todos os parâmetros da solução do solo, o pH é um dos mais importantes, haja vista que está positivamente correlacionado com a adsorção, precipitação e complexação de metais no solo (Harter, 1983 e Ross, 1994).

4.1.2. A fase sólida do solo

A fase sólida do solo é uma mistura heterogênea de compostos orgânicos e minerais, cujas superfícies apresentam cargas permanentes, que estão em equilíbrio com os íons de carga oposta presentes na solução do solo, formando um sistema denominado complexo de troca do solo (Sposito, 1989). A natureza dos constituintes minerais e orgânicos é o fator determinante final do acúmulo de elementos químicos na fase sólida do solo. As mais importantes interfaces envolvidas na retenção de elementos em solos são predominantemente os colóides inorgânicos, tais como os minerais de argila, óxidos, hidróxidos e oxihidróxidos metálicos, fosfatos e carbonatos, e os colóides orgânicos.

Importantes minerais secundários da fração argila dos solos são os *filossilicatos*. Em solos tropicais altamente intemperizados, a caulinita é o principal mineral slicatado em quantidade expressiva (Fontes et al., 2001). Outro componente importante da fração argila de solos intemperizados são os óxidos, termo generalizado para designar os óxidos, hidróxidos e oxihidróxidos de ferro, alumínio e de manganês. A principal ocorrência dos óxidos de ferro em solos tropicais se deve a alguns minerais cristalinos, notadamente a *goethita* e a *hematita* e a formas mal cristalizadas como a *ferridrita* (Childs, 1981). *Goethita* (α -FeOOH) é o óxido de ferro mais comum em solos, podendo também ocorrer associado a hematita (α -Fe₂O₃). Somente dois óxidos de alumínio são naturalmente formado no solo: a *gibbsita* γ Al(OH)₃ um hidróxido, e a *bohemita* (γ -AlOOH), um oxidróxido. A gibbsita é praticamente o único óxido de alumínio cristalino presente em solos da região tropical (Fontes et al., 2001). Sua ocorrência é muito comum em Latossolos e Argissolos brasileiros. Óxidos e hidróxidos de manganês, apesar de ocorrência rara em solos, são eficientes sorventes de elementos em função de suas pequenas dimensões e alta superfície específica (McKenzie, 1980).

Apesar de a mineralogia dos solos tropicais aparentemente ser bastante simples, os diferentes ambientes de formação proporcionam grande diversidade de características como o

tamanho das partículas, faces expostas, grau de substituição isomórfica e cristalinidade, que os levam a comportamentos diferenciados quanto à fenômenos que ocorrem nos solos, como os fenômenos de adsorção (Fontes et al., 2001).

Outro importante constituinte da fase sólida do solo é a matéria orgânica, que pode ser representada por resíduos animais e vegetais, em estados de decomposição diversos, sendo esses materiais continuamente degradados, por meio da ação de microorganismos (Brady, 1989). Apesar de seu teor relativamente baixo nos solos minerais típicos (30 a 50 g kg⁻¹), apresenta grande influência nas propriedades dos solos.

De forma bastante simplificada, esse material pode ser subdividido em substâncias húmicas e substâncias não-húmicas, sendo as substancias húmicas os compostos mais estáveis. Estas apresentam um número relativamente grande de grupos funcionais bastante reativos como grupos carboxila, hidroxila fenólica, quinona, grupo carbonil cetônico, amino e sulfidrila, que apresentam elevada afinidade por íons metálicos, podendo formar complexos organo-metálicos (Stevenson, 1994).

Deve-se considerar que a origem, assim como as rotas biossintéticas da formação das substâncias húmicas, ainda não são bem esclarecidas. Além disso, as estruturas das substâncias húmicas não são bem definidas e apresentam grande variabilidade. As substâncias húmicas são separadas com base em características de solubilidade sendo classificadas em: *humina* – fração insolúvel em meio ácido e alcalino; *ácidos húmicos (HA)* – constitui a fração do húmus solúvel apenas em meio alcalino; *ácidos fúlvicos (FA)* – fração solúvel em meio alcalino e ácido (Sparks, 1998). Geralmente, os complexos FA-metal são solúveis, enquanto os HA-metal são insolúveis (McBride, 1995).

A retenção de metais pela matéria orgânica do solo é considerada um dos principais mecanismos que governam a solubilidade e biodisponibilidade de metais no sistema soloplanta (Ross, 1994). A formação de complexos orgânicos com metais através da quelação é um dos mais importantes mecanismos de ligação que ocorrem nos horizontes superficiais dos solos. A quelação pode tornar o metal mais ou menos solúvel. Segundo Ellis e Knezek (1977) onde os quelatos são insolúveis, a quelação torna os metais não disponíveis para as plantas. De modo inverso espera-se maior toxicidade para as plantas e mobilidade no perfil do solo em situações onde o quelato formado seja solúvel. A matéria orgânica possui capacidade em adsorver de forma não específica, devido à sua elevada capacidade de troca catiônica (CTC), e também especificamente formando complexos e quelatos. Embora não haja uma estrutura única para os ácidos húmicos, medidas espectrométricas e modelos moleculares têm conduzido a modelos com algumas características comuns, como ilustrado pela figura 1.

Figura 1. Modelo do ácido húmico mostrando os diversos grupos funcionais, estruturas aromáticas e alifáticas adaptado de Schulten e Schnitzer (1994) Fonte: Sparks (1998).

De acordo com Schinitzer (1986), as substâncias húmicas representam a maior parte da matéria orgânica de solos minerais, constituindo entre 70 e 80%, em peso, do total, e são diferenciadas umas das outras pela cor, massa molar, presença de grupos carboxílicos e fenólicos (-COOH, Ph-OH) e grau de polimerização. Os 20% a 30% restantes são constituídos, principalmente, de material semidecomposto, ácidos graxos, alcanos, e outros, que, em boa parte não reagem com metais pesados de maneira apreciável.

A estabilidade de complexos orgânicos é fortemente influenciada pela variação do pH. Em geral, em baixos valores de pH, a maioria dos metais encontra-se na forma iônica, porém, com o aumento do pH, há tendência de se formarem complexos com HA. A influência do pH nas substancias húmicas ocorre porque a reatividade dos grupos funcionais, tais como os grupos carboxílico, fenólico e amino, é dependente de pH. Se o pH da solução muda, ocorre protonação ou desprotonação da superfície gerando cargas e influenciando na coordenação de íons metálicos (Filep, 1999).

Embora a ligação entre a matéria orgânica e os metais possa ser vista como um processo de troca iônica entre os íons H^+ e os íons metálicos nos grupos funcionais ácidos, o alto grau de seletividade apresentado pela matéria orgânica por determinados metais sugere que alguns deles são coordenados diretamente com os grupos funcionais via formação de complexos de

esfera interna (McBride, 1989). A adsorção de metais pela matéria orgânica é particularmente importante para Cu^{2+} e Pb².

4.2. Reações de adsorção

No solo, muitos constituintes são responsáveis pela adsorção de íons metálicos e é esse um dos fatores mais importantes para controlar a concentração desses elementos na solução do solo e, consequentemente, sua disponibilidade para as plantas. As reações entre os íons metálicos e as partículas do solo podem envolver fenômenos de sorção, dessorção, complexação, oxi-redução e dissolução, e são críticas ao determinar seu destino e mobilidade. Embora todas essas reações possam ocorrer simultaneamente, os fenômenos de adsorção são reconhecidamente os que detem informações sobre a capacidade e força de retenção dos metais no solo, podendo ser essas propriedades da adsorção um bom indicador da disponibilidade e da mobilidade dos elementos.

O termo sorção de metais em solos refere-se a um processo geral de retenção dos compostos na fase sólida, sem distinção entre os processos específicos de adsorção, absorção e precipitação (Koshinem e Harper, 1990). A *adsorção* refere-se à atração das moléculas à superfície das partículas do solo; a *absorção* está relacionada à penetração das moléculas nos organismos do solo, enquanto que a *precipitação* refere-se à formação de uma fase sólida do composto no solo, resultante do acúmulo em camadas do mesmo na superfície das partículas.

A adsorção pode ser definida como o acúmulo de um determinado elemento ou substância na interface entre uma superfície sólida e uma solução. Define-se como *adsorbato* o material que se acumula numa interface; *adsorvente* é a superfície sólida na qual o adsorbato se acumula; *adsorvito* é o íon ou molécula em solução que tem o potencial de ser adsorvido (Sposito, 1989).

A adsorção de íons ou moléculas nas superfícies das partículas do solo envolve a formação de complexos de supefície. Segundo Sposito (1989), um complexo de superfície acontece no caso de um grupo funcional da superfície reagir com um íon ou molécula (dissolvidas na solução) para formar uma unidade molecular estável.

Duas categorias de complexos de superfície são distinguidas, com base na estrutura (McBride, 1994): na condição de não existir molécula de água interposta entre o grupo funcional da superfície e o íon (ou molécula) a tal grupo ligado, teremos a formação de um complexo de esfera interna ("inner sphere"), havendo pelo menos uma molécula de água

interposta entre o grupo funcional e o íon haverá a formação de complexo de esfera externa ("outer sphere") (Sposito, 1989).

As forças envolvidas no processo de adsorção podem ser fracas, caracterizadas por interações físicas, envolvendo forças de van der Waals e mecanismos eletrostáticos, ou altamente estáveis, principalmente quando reações químicas de alta energia estão envolvidas (Sparks, 1998). O tipo de interação que irá predominar depende de diversos fatores, dentre eles da quantidade e do tipo de sítios associados coma fase sólida do solo, da concentração do metal e dos ligantes capazes de formar complexos, além de fatores associados com a solução do solo como o pH e a força iônica (Ford et al., 2001).

4.2.1. Adsorção não específica

A *adsorção não-específica* de metais, também conhecida como adsorção eletrostática, descreve reações rápidas e reversíveis, com ligações relativamente fracas. Nesse tipo de mecanismo, o íon é atraído eletrostaticamente pelas superfícies carregadas do solo sem que haja grande dependência da configuração eletrônica do grupo funcional da superfície do solo. Além disso, a interação envolve a adsorção do íon na sua forma hidratada, o que diminui a energia de ligação entre a superfície do solo e o elemento (Sposito, 1989). A adsorção não-específica consiste na interação eletrostática entre o íon e a superfície coloidal, a partir da formação de complexos de esfera externa. O fenômeno é regido pelas leis que determinam os processos de troca iônica, podendo o metal ser substituído por outro que esteja em maior concentração ou que apresente características mais favoráveis à adsorção, tais como maior carga líquida e menor tamanho.

4.2.2. Adsorção específica

O processo de adsorção específica é caracterizado por não seguir a tendência anterior, podendo um íon ser adsorvido preferencialmente na presença de outro de mesma carga e em concentração muito mais elevada e mesmo se a superfície adsorvente apresenta-se positivamente carregada. Neste caso a interação eletrostática é secundária e ligações mais fortes, com elevado grau de covalência são formadas, entre o metal e a superfície adsorvente (Lindsay, 1979; McBride, 1994). Nesse processo, os íons perdem sua água de hidratação, parcial ou totalmente, formando complexo de esfera interna com a superfície de óxidos de ferro, de manganês, de alumínio, aluminossilicatos não cristalinos e mesmo com arestas

quebradas de argilominerais, que apresentam um tipo similar de sítios de adsorção, ou seja, um grupo OH^- ou uma molécula de H₂O com valência insatisfeita, ligada a um íon metálico da rede cristalina.

Trata-se de fenômeno altamente dependente de pH, seletivo, pouco reversível e pouco afetado pela concentração iônica da solução. Ela pode diminuir, aumentar, neutralizar ou reverter a carga do íon a ser adsorvido, e ocorre independentemente da carga na superfície da partícula (Camargo et al., 2001).

O mecanismo aceito para a adsorção específica envolve a formação de ligações covalentes do metal ou de espécies hidrolisadas do mesmo com íons do retículo cristalino do mineral adsorvente (Barrow, 1989; Spark, 1998). Os mecanismos mais comuns envolvem a substituição de íons H^+ da superfície dos óxidos pelo íon metálico, formando complexos monodentados (1 e 3) ou bidentados (2), conforme esquematizado na Figura 2.

Figura 2. Mecanismos de adsorção específica de metais pesados em superfícies de óxidos de ferro envolvendo a formação de ligações covalentes do metal com íons do reticulo cristalino do mineral, formando complexos em um único sítio (1 e 3) ou em dois sítios simultaneamente (2). Fonte: adaptado de McBride (1994).

Uma vez que tanto o íon metálico que está sendo adsorvido, quanto a superfície dos óxidos adsorventes, estão sujeitos à hidrólise, o pH é uma variável de extrema importância na adsorção metálica nessas superfícies de carga variável. De maneira geral, a adsorção aumenta com a elevação do pH que provoca a desprotonação das superfícies hidratadas. Entretanto, em função da natureza do metal e do adsorvente o pH de adsorção varia para diferentes metais em um mesmo adsorvente e para um mesmo metal, comparando-se diferentes adsorventes. A

representação que foi feita com os óxidos de ferro também se aplica aos óxidos de manganês ou alumínio, contudo, os trabalhos com os primeiros são muito mais numerosos. Sparks (1998) argumentam que se a espécie MOH^+ é a mais adsorvida, sua afinidade com relação à superfície dos óxidos deve ser bem maior do que a afinidade das espécies não hidrolisadas $M(H_2O)_n^{2+}$ ou M^{2+} . Quirk e Posner (1975) atribuem uma suposta maior afinidade das espécies hidrolisadas pelo adsorvente à magnitude do ΔG de solvatação e ao tamanho do íon hidratado que está sendo adsorvido. Segundo os autores, uma vez que é necessária que ocorra uma dessolvatação parcial (com gasto de energia) antes da adsorção, esta se processa com maior facilidade após a redução da carga e do tamanho do raio hidratado, que ocorrem com a hidrólise do íon M^{2+} .

4.2.3. Modelos de Adsorção

Existem diferentes maneiras de se descrever o fenômeno da adsorção de elementos no solo. As reações de adsorção podem ser descritas por diversos modelos algébricos, de acordo com o mecanismo, mas a maior parte das equações algébrica é empírica, ou possui bases teóricas referentes a outros fenômenos de adsorção, embora sua aplicação e as possibilidades de uso na Ciência do Solo sejam bem esclarecidas. Várias são as equações propostas para o ajuste dos dados de adsorção iônica em sólidos, destacando-se as de Langmuir e de Freundlich (Sposito, 1989). A equação de Langmuir costuma ser mais frequentemente preferida pelos pesquisadores, uma vez que seus parâmetros permitem a estimativa da capacidade máxima de adsorção e da afinidade do adsorvente pelo adsorvato (Dias et al., 2001) . A equação de Freundlich é a mais antiga das isotermas utilizadas (Barrow, 1993) e caracteriza-se por ser puramente empírica (Antoniadis & Tsadilas, 2007).

A relação gráfica entre a concentração de metal adsorvida pela fase sólida e aquela da solução do solo é chamada de *isoterma de adsorção*. São, na verdade equações matemáticas usadas para descrever convenientemente a adsorção de solutos por sólidos em termos quantitativos.

A importância do estudo de isotermas de adsorção de metais pesados está no conhecimento que pode ser obtido sobre o comportamento adsortivo desses elementos. Cada modelo de isoterma parte de diferente presuposto que, nem sempre, se adequa a uma determinada situação. Dessa forma é importante conhecer acerca da construção de diferentes modelos de isotermas e de suas limitações. Entre os modelos utilizados para descrever a adsorção, a equação de Freundlich é a que vem sendo empregada há mais tempo, tendo sido

primeiramente utilizada por Russel e Prescott (1916). Embora utilizada há mais de oito décadas, ela tem sido criticada pela sua natureza essencialmente empírica e por não se basear em modelo físico (Barrow, 1978).

A isoterma de Langmuir é de particular utilidade, pois fornece parâmetros pelos quais as propriedades relacionadas aos fenômenos de superfície podem ser interpretadas, como à capacidade máxima de adsorção (b) do metal pelo solo e a constante relacionada com a energia de ligação (k) desse íon em tais substratos. Inicialmente utilizada para descrever a adsorção de gases por superfícies sólidas, a equação de Langmuir (1) é aplicada em estudos de adsorção de metais pesados em solos na seguinte forma:

$$q = \frac{kbC_{eq}}{1 + kC_{eq}} \quad (1)$$

em que: C_{eq} é a concentração do elemento na solução de equíbrio (µg mL⁻¹); q é a quantidade do elemento adsorvido em µg g⁻¹ de solo; k uma constante relacionada à energia de ligação do elemento à superfície do substrato (µg mL⁻¹); b a capacidade máxima de adsorção (CMA) do elemento pelo solo (µg g⁻¹).

O modelo de Freundlich considera a não uniformidade das superfícies reais. Baseia-se no pressuposto de que há decréscimo exponencial da energia de ligação com a saturação da superfície do adsorvente, ou seja, existem diferentes sítios de adsorção, com variações em energia de adsorção. A equação de Freundlich é dada por:

$$q = K_F C_{eq}^{\frac{1}{n}} \quad (2)$$

sendo: q é a quantidade do elemento retido pela fase sólida ($\mu g g^{-1}$); C_{eq} é a concentração do elemento em equilíbrio na solução ($\mu g m L^{-1}$), K_F é o coeficiente de adsorção de Freundlich, intercepto que indica a capacidade de um solo em reter um soluto ($\mu g g^{-1}$), e n é um parâmetro adimensional que sugere a heterogeneidade dos sítios de adsorção. São exemplos de bons ajustes dessa equação para solos brasileiros os trabalhos desenvolvidos por Pombo (1995), para cádmio, os de Cunha et al. (1994) e Machado & Pavan (1987), para zinco e os de Camargo et al. (1989) e Pombo et al. (1989), para níquel. Portanto, conhecer o comportamento de adsorção de metais pelos solos torna-se fundamental, para prever os impactos ambientais desses elementos, pois os efeitos desfavoráveis dos metais pesados em altas concentrações estão relacionados à capacidade de o solo adsorver esses metais.

Os dados de adsorção normamente são fornecidos sob a forma de isotermas. Segundo Sposito (1989), os tipos de isotermas mais observadas são: a) *Curva tipo S*: caracterizada por uma pequena inclinação inicial que aumenta com a concentração do adsorvato. Nesse caso,

existe maior afinidade entre o ligante solúvel e o adsorvato do que entre o adsorvente e o adsorvato; b) *Curva tipo L*: caracterizada por uma inclinação que não aumenta com a concentração do adsorvato na solução. Resulta de uma afinidade relativamente elevada entre as partículas do solo e o adsorvato, associada com a quantidade decrescente de superfície descoberta quando aumenta a concentração do adsorvato; c) *Curva tipo H*: corresponde a versão extrema da curva L, caracterizada pela alta inclinação causada pela elevadíssima afinidade relativa do solo pelo adsorvato; d) *Curva tipo C*: caracterizada por uma inclinação inicial que permanece inalterada com aumento da concentração do adsorvato pela superfície e pela solução ou, pelo aumento proporcional de superfície adsorvente com aumento da concentração de adsorvato.

- 1. Caracterizar, quanto aos atributos químicos, físicos e mineralógicos a camada superficial e subsuperficial dos solos amostrados;
- Avaliar a capacidade dos diferentes solos em reter elementos, como Cd, Cu, Pb e Zn, mediante a utilização das isotermas de adsorção;
- Verificar entre os modelos de adsorção de Langmuir e de Freundlich o que melhor se ajusta aos dados experimentais de adsorção de metais pesados;
- 4. Identificar a relação entre os parâmetros das isotermas e os atributos químicos e físicos identificando as variáveis mais importantes na retenção;
- 5. Utilizar as informações aqui produzidas como suporte à segunda parte do trabalho.

A metodologia utilizada no presente trabalho consistiu, resumidamente, dos seguintes tópicos gerais: (a) seleção e preparo dos solos; (b) caracterização química e física dos solos; (c) obtenção de isotermas de adsorção para cádmio, cobre, chumbo e zinco e ajuste ao modelo de Langmuir e de Freundlich e (d) tratamento estatístico dos dados.

6.1. Solos estudados

Foram utilizados para este trabalho perfis de diferentes classes de solos, amostrados em várias regiões do Estado de Minas Gerais, assim distribuídas de acordo com o Sistema Brasileiro de Classificação de Solos - SiBCS (Embrapa, 2006): 1 Argissolo, 5 Latossolos, 3 Cambissolos, 1 Chernossolo, 1 Luvissolo, 1 Neossolo, 1 Nitossolo e 2 Plintossolos. Todos os perfis estudados são apresentados nas Figuras 3 a 6 e maiores informações sobre os perfis são apresentados no Apênce I.

Além de representarem manchas de solos representativas no Estado, os solos foram coletados em áreas não impactadas por atividades agrícolas e industriais. Foram retiradas amostras de solos em três pontos distintos e em duas profundidades (horizontes A e B), totalizando 30 amostras, de forma a avaliar a relação poluente/solo ao longo do perfil e de se estudar o efeito da presença (horizonte A) e ausência (horizonte B) de matéria orgânica. Na Tabela 2 encontra-se a identificação dos solos, bem como a localização dos perfis amostrados, a profundidade de amostragem, o material de origem e a classificação de cada solo pelo SiBCS.

6.2. Preparo das Amostras

Conforme metodologia descrita em Embrapa (1999), as amostras coletadas foram deixadas secar ao ar à temperatura ambiente, na forma *in natura*, desagregadas manualmente e peneiradas em peneira de malha de 2,0 mm de abertura e homogeneizadas, sendo denominadas terra fina seca ao ar (TFSA). Na seqüência, as amostras foram acondicionadas em potes plásticos devidamente identificados.

Identificação	Tipo de Solo	Local de coleta	Localização	Prof. (cm)	Material de origem
1 A B	Argissolo Vermelho-Amarelo Ditrófico Típico, PVA	Viçosa	S 20° 45' 14" W 42° 52' 55"	0-24 27-86	Sedimentos aluviais estratificados
2 A B	Latossolo Vermelho-Amarelo Ditrófico Típico, LVA	Ponte Nova	S 20° 24' 59" W 42° 54' 31"	0-20 20-200	Gnaisse
3 A B	Latossolo Vermelho Ditrófico Típico, LVd	Conselheiro Lafaiete	S 20° 39' 37" W 43° 47' 10"	0-24 27-86	Calcário
4 A B	Latossolo Vermelho-Amarelo Distrófico húmico, LVAd	Barbacena	S 21° 13' 33" W 43° 46' 25"	0-21 21-200	Gnaisse
5 A B	Latossolo Vermelho Perférrico húmico, LVj	Nova Lima	S 19° 59' 08" W 43° 50' 48"	0-37 37-140	Itabiritos
6 A B	Nitossolo Vermelho Eutrófico típico, NVef	Guiricema	S 21° 00' 28" W 42° 43' 04"	0-30 30-200	Basalto
7 A B	Luvissolo Crômico Pálico abrúptico, TCp	Itaperuna	S 21° 12' 18" W 41° 53' 16"	0-25 25-200	Charnockitos/Enderbitos e Granulitos
8 A B	Chernossolo Argilúvico Carbonático saprolítico, MTk	Italva	S 21° 25' 15" W 41° 41' 27"	0-42 42-200	Migmatitos associados a rochas Charnockíticas
9 A B	Cambissolo Háplico Tb eutrófico latossólico, CXbe	Pedro Leopoldo	S 19° 37' 05" W 44° 02' 35"	0-38 38-200	Calcário
10 A B	Cambissolo Háplico Tb distrófico típico, CXbd	Mariana	S 20° 22'16" W 43° 16' 21"	0-20 20-110	Micaxisto com influência de quartzitos
11 A B	Plintossolo Pétrico concrecionário distrófico, FFcd1	Brasilândia de Minas	S 17° 04' 53" W 46° 00' 16"	0-20 20-50	Coberturas terciárias e quartenárias associadas
12 A B	Plintossolo Pétrico concrecionário distrófico, FFcd2	Brasilândia de Minas	S 17° 05' 16" W 45° 59' 12"	0-20 20-50	Bambuí com possível contribuição do Arenito
13 A B	Cambissolo Háplico distrófico, CXd	Brasilândia de Minas	S 17° 04' 59" W 46° 00' 05"	0-20 20-50	Urucuia (11- 13)
14 A B	Neossolo Quartzarênico órtico latossólico, RQo	João Pinheiro	S 17° 25' 48" W 46° 04' 36"	0-20 20-50	Coberturas terciárias e quartenárias associadas
15 A B	Latossolo Vermelho-Amarelo distrófico, LVAd	João Pinheiro	S 17° 47' 50" W 46° 08' 05"	0-20 20-50	ao arenno urucuta (amostras 14 e 15)

Tabela 2. Identificação, classificação, localização, profundidade dos solos estudados

(1)

(3)

(4)

Figura 3. Perfis dos solos utilizados no trabalho: (1) Argissolo Vermelho-Amarelo Ditrófico Típico; (2) Latossolo Vermelho-Amarelo Ditrófico Típico; (3) Latossolo Vermelho Ditrófico Típico e (4) Latossolo Vermelho-Amarelo Distrófico húmico.

(5)

(6)

(7)

(8)

Figura 4. Perfis dos solos utilizados no trabalho: (5) Latossolo Vermelho Perférrico húmico; (6) Nitossolo Vermelho Eutrófico típico; (7) Luvissolo Crômico Pálico abrúptico e (8) Chernossolo Argilúvico Carbonático saprolítico.

(9)

(10)

(11)

(12)

Figura 5. Perfis dos solos utilizados no trabalho: (9) Cambissolo Háplico Tb eutrófico latossólico; (10) Cambissolo Háplico Tb distrófico típico; (11) Plintossolo Pétrico concrecionário distrófico e (12) Plintossolo Pétrico concrecionário distrófico.

(13)

(15)

Figura 6. Perfis dos solos utilizados no trabalho: (13) Cambissolo Háplico distrófico; (14) Neossolo Quartzarênico órtico latossólico; (15) Latossolo Vermelho-Amarelo distrófico.

6.3. Reagentes utilizados

Todos os reagentes utilizados foram de grau analítico e a água utilizada na preparação das soluções de trabalho foi obtida através de um sistema de desionização. As vidrarias e os frascos de polietileno utilizados no decorrer do trabalho foram previamente lavados, imersos em solução ácida diluída (HCl), enxaguados e colocados para secar. As soluções de referência dos elementos (Cd, Cu, Pb e Zn) usadas no experimento de adsorção foram preparadas a partir de ampolas contendo 1000 μ g mL⁻¹ de cada elemento.

6.4. Determinação dos elementos nos extratos

Os elementos em todos os extratos foram determinados em espectrômetro de absorção atômica com chama Hitachi modelo Z8200 e Perkin Elmer modelo Aanalyst 200, por aspiração direta das soluções aquosas em chama ar-acetileno. Em todas as etapas de determinação, utilizou-se o branco para a construção da curva analítica padrão. Na Tabela 3, estão apresentados os parâmetros utilizados para a determinação dos metais no aparelho de espectrometria de absorção em chama.

 Tabela 3. Parâmetros empregados na determinação dos elementos no Espectrômetro de absorção Atômica com chama

Elemento	Comprimento	Fenda (nm)	Corrente da	Tipo de chama
	de onda (nm)		Lampada (mA)	
Cd	228,8	1,30	6,0	Ar-acetileno
Cu	324,8	1,30	5,0	Ar-acetileno
Pb	283,3	1,30	7,5	Ar-acetileno
Zn	213,9	1,30	5,0	Ar-acetileno

6.5. Análises de caracterização física e química

As análises de caracterização física e química são rotineiras em análises de solos e possibilitam uma comparação entre as amostras. Os dados de todas as análises foram obtidos de três repetições. Segue-se a metodologia de todas as análises realizadas com as amostras de solo.

6.5.1. Análise Granulométrica

Os teores das frações argila (0 a 0,002 mm), silte (0,002 a 0,02 mm) e areia (0,02 a 2 mm) foram determinados por análise granulométrica de dispersão total (química e mecânica) segundo o método da pipeta (Embrapa, 1999). Esse método baseia-se na velocidade de sedimentação das partículas. Fixando-se o tempo para o deslocamento vertical da suspensão do solo com água, após adição de um dispersante químico (NaOH 1,0 mol L⁻¹), pipeta-se um volume de suspensão, para determinação da argila, que é seca em estufa e pesada. A fração areia é separada por tamisação, seca em estufa e pesada para obtenção do respectivo percentual. A fração silte corresponde ao complemento dos percentuais para 100%, e é obtido por diferença das outras duas frações em relação à amostra original. Utilizou-se a Lei de Stokes, que rege a sedimentação das partículas, para o cálculo do tempo de sedimentação.

6.5.2. Capacidade de campo

A capacidade de campo foi determinada pelo método simplificado proposto por Fernandes (1967). Foram pesados 25 g de TFSA de cada amostra e colocados em funis revestidos com papel de filtro. Com a boca do funil fechado, saturou-se o solo com 50 mL de água destilada. Em seguida, liberou-se a boca do funil e recolheu-se a água em excesso em proveta até que parasse o gotejamento. A capacidade de retenção de água é obtida dividindose o volume de água retido pela massa de solo utilizado.

6.5.3. Determinação de pH em H₂O e em KCl

Os valores de pH foram determinados potenciometricamente em suspensões de terra fina seca ao ar (TFSA) em água (pH_{H2O}) e em solução de KCl 1 mol L⁻¹ (pH_{KCl}) na proporção solo:água e solo:solução de 1:2,5 (Embrapa, 1999). Os valores de pH em KCl foram empregados para estimativa do balanço de cargas Δ pH conforme a equação: Δ pH = pH_{KCl} - pH_{H2O}.

6.5.4. Carbono Orgânico

O carbono orgânico das amostras de solo foi determinado por dicromatometria indireta, pelo método Walkley-Black, de acordo com Embrapa (1999). O Método consiste na oxidação

da matéria orgânica com solução de dicromato de potássio em presença de ácido sulfúrico e titulação do excesso de dicromato com solução de sulfato ferroso amoniacal.

Tomou-se 1,000 g de amostra em erlenmeyer de 500 mL. Adicionaram-se 10,00 mL de solução de $K_2Cr_2O_7$ 0,167 mol L⁻¹ e 20 mL de H_2SO_4 concentrado. A mistura foi agitada por 1 minuto e deixada em repouso por 30 minutos. Após esse período, adicionaram-se 200 mL de água destilada, 10 mL de H_3PO_4 concentrado e 5 gotas do indicador difenilamina. A titulação foi efetuada com solução de Fe(NH₄)₂(SO₄)₂ 0,4 mol L⁻¹ até que a cor mudasse para verde. O teor de matéria orgânica foi obtido de forma indireta, multiplicando-se o teor de carbono orgânico por 1,724, pois em média estima-se que 58% da matéria orgânica seja carbono.

6.5.5. Capacidade de Troca Catiônica (CTC)

Para determinação da CTC, inicialmente, saturou-se 2,000 g de solo com 20 mL de solução de MgCl₂ 0,5 mol L⁻¹, agitando-se a suspensão por 30 minutos. No processo, o íon Mg²⁺, por efeito de massa, desloca os cátions que estão adsorvidos na fase sólida para a solução de equilíbrio, ocupando todos os sítios de troca. Em seguida, lavou-se a amostra com água destilada, para remoção do excesso da solução de MgCl₂. Na sequência, o íon Mg²⁺ é, então, extraído da amostra com uma solução de um sal diferente, ou seja, saturou-se a amostra com 20 mL de solução de KCl 1,0 mol L⁻¹. A mistura foi agitada por 30 minutos e centrifugada. Agora, os íons K⁺ deslocam os íons Mg²⁺ para a solução. A quantidade de íons Mg²⁺ nesta solução é a medida da CTC, sendo expressa em centimol de carga por quilograma de solo (cmol_c kg⁻¹).

6.5.6. Extração dos óxidos de ferro cristalino e dos óxidos de baixa cristalinidade

Os óxidos de ferro cristalinos foram extraídos das amostras com quatro extrações sucessivas, em banho-maria a 70 °C, sob agitação, com citrato/ditionito/bicarbonato (DCB) (Coffin, 1963). O método baseia-se na ação dos três constituintes: a) o ditionito de sódio, com seu forte poder redutor, promove a dissolução dos minerais; b) o citrato de sódio acelera a dissolução dos óxidos de Fe devido ao seu efeito complexante e c) o bicarbonato de sódio, com seu poder tampão, tem a finalidade de manter o pH da suspensão durante a extração. A determinação quantitativa do ferro solubilizado foi efetuada por espectrometria de absorção atômica com chama.

A extração dos óxidos de ferro amorfos foi realizada fazendo-se apenas uma extração com um tampão oxalato de amônio/ácido oxálico 0,2 mol L⁻¹, pH ajustado em 3,0 e na ausência de luz. A suspensão foi agitada por 2 horas, centrifugada e o sobrenadante coletado para determinação dos teores de ferro por espectrometria de absorção atômica com chama.

6.6. Experimento de adsorção

Inicialmente, os valores das concentrações crescentes dos metais, para a execução do experimento de adsorção, foram escolhidos com base na literatura, em dados de experimentos semelhantes. Posteriormente, foram feitas modificações com o intuito de minimizar a formação de precipitados sem, no entanto, diminuir, demasiadamente, a amplitude da faixa de concentrações considerada adequada (Tabela 4).

Para o estudo de adsorção de cádmio, cobre, chumbo e zinco, adotou-se o seguinte procedimento: inicialmente transferiu-se 1,000 g de amostra em pH natural, em triplicata, para frascos de polipropileno de volume de 50 mL; posteriormente, adicionou-se 25 mL de solução com os metais individualmente na forma de nitrato, preparadas em CaCl₂ 0,01 mol ⁻¹ nas concentrações descritas na Tabela 4. Essas soluções-estoque dos íons metálicos são ácidas, sendo a acidez maior nas soluções mais concentradas. Como o pH da suspensão solo-solução influencia fortemente o fenômeno de retenção dos metais no solo, as suspensões tiveram seus valores de pH ajustados aos valores de pH originais dos solos. O ajuste foi feito, após a adição das soluções dos metais ao solo, antes do início do ensaio, pela adição de NaOH 1 mol L⁻¹ à suspensão, monitorando-se o pH final em potenciômetro equipado com eletrodo combinado de vidro. As suspensões solo-solução foram agitadas por 16 horas em temperatura ambiente, o pH foi novamente medido e em seguida foram centrifugadas a 3000 rpm (1600 x g - RCF) por dez minutos, filtrados e os extratos analisados por espectrometria de absorção atômica.

Tabela 4. Soluções individuais, com concentrações crescentes dos elementos Cd²⁺, Cu²⁺, Pb²⁺ e Zn²⁺, em CaCl₂ 0,01 mol L⁻¹ utilizadas no experimento de adsorção

			Solu	ções (µg n	hL^{-1})			
Metais	1	2	3	4	5	6	7	8
Pb	0	10	20	40	60	80	100	120
Cu	0	10	20	40	60	80	100	-
Cd	0	10	20	30	40	60	80	-
Zn	0	10	20	30	35	40	-	-

As quantidades de cádmio, cobre, chumbo e zinco adsorvidas pelos solos foram calculadas pela diferença entre a quantidade adicionada e a quantidade remanescente na solução de equilíbrio. Com os dados experimentais, construíram-se isotermas de adsorção, plotando-se a quantidade de metal adsorvido na ordenada e a concentração de equilíbrio na abcissa. Os dados foram ajustados aos modelos de Langmuir e de Freundlich e calculados a capacidade máxima de adsorção (*b*) dos metais e o coeficiente relacionado com a energia de ligação dos metais aos colóides do solo (*k*), a partir da isoterma de Langmuir e os coeficientes K_F e n da isoterma de Freundlich.

6. Resultados e Discussão

Visando evitar aglomerado excessivo de resultados, com conseqüente prejuízo na interpretação, os resultados deste capítulo foram divididos em três partes. Na primeira parte, são apresentados os resultados das características físicas e químicas dos solos; na sequência são mostrados os resultados referentes ao estudo das isotermas de adsorção segundo os modelos de Langmuir e de Freundlich e finalmente são apresentadas as análise de correlação entre os parâmetros estudados.

7.1. Atributos químicos, físicos e mineralógicos dos solos

Os resultados das análises químicas e físicas são apresentados na Tabela 5. Dentre os diversos constituintes analisados, o pH apresenta especial importância na retenção dos elementos, uma vez que pode influir em outras características dos solos. De acordo com os critérios adotados pela Embrapa (1999), os solos com pH variando entre 4,3 e 5,3 foram considerados fortemente ácidos (solos 1A, 2B, 3A, 3B, 4A, 5A, 10A, 10B, 11B, 12B, 13B, 14A, 14B e 15B), os que apresentaram pH variando entre 5,4 e 6,5 foram considerados de acidez moderada (solos 1B, 2A, 4B, 5B, 6A, 6B, 7A, 7B, 11A, 12A, 13A e 15A), aqueles cujos valores de pH situou-se entre 6,6 e 7,3 foram classificados como praticamente neutros (solos 8A e 9B) e finalmente os solos classificados como moderadamente alcalinos foram aqueles de pH variando de 7,4 - 8,3 (solos 8B e 9A). Dentre os solos, o Plintossolo Pétrico concrecionário distrófico (solo 12 B) apresentou o menor valor de pH (4,30) e o Cambissolo Háplico Tb eutrófico latossólico (solo 9 A), o maior valor (7,52).

Além do pH, outras importantes características dos solos foram analisadas e podem ser visualizadas na Tabela 5. A fração argila, devido a sua grande atividade, é sem dúvida outro fator importante na retenção de metais pesados. Os solos argilosos são de especial importância uma vez que apresentam maior potencial, se comparados com os de textura média e arenosa, de reter contaminantes, minimizando a lixiviação para o lençol freático.

De maneira geral, a argila é a fração granulométrica dominante na maior parte das amostras estudadas, com teores variando de 110,1 g kg⁻¹ a 604,6 g kg⁻¹ para o horizonte A e de 148,5 g kg⁻¹ a 703,5 g kg⁻¹ para o horizonte B. Do conjunto de amostras avaliadas, 56,7 % apresentam mais que 350 g kg⁻¹, limite inferior da classe textural argilosa. Os solos que apresentaram altos teores de argila foram os solos identificados como 1, 2, 3, 4, 6, 7, 8, 9 e 15.

A 1		pF	$\mathbf{I}^{(1)}$	• • • • • • • • • • • • • • • • • • •	CTC ⁽³⁾	Argila	Silte	Areia	<i>a</i> 1 <i>i</i> 4	COT ⁽⁴⁾	Fe_2O_3 ($(g kg^{-1})^{(5)}$	Al_2O_3 (g kg ¹) ⁽⁶⁾
Solo	Horiz.	H_2O	KC1	$\Delta p H^{(2)}$	cmol _c kg ⁻¹		g kg ⁻¹		Classif.	g kg ⁻¹	DCB	oxalato	DCB	oxalato
1. PVA	А	5,10(5)	4,39(4)	-0,71	4,5(2)	436,3	211,7	342,0	Argilosa	16,07(4)	116,1(2)	3,01(7)	3,24(1)	2,75(1)
	В	5,37(3)	5,16(3)	-0,21	4,9(2)	559,3	266,3	174,4	Argilosa	8,73(1)	158,1(3)	1,25(2)	18,6(2)	1,55(4)
2. LVA	А	5,50(3)	4,87(2)	-0,63	10,9(3)	604,6	157,1	238,3	Argilosa	18,8(3)	67,25(1)	1,40(5)	9,64(3)	2,69(5)
	В	5,27(2)	5,53(2)	0,26	5,2(2)	659,1	86,5	254,4	Argilosa	13,3(7)	83,6(3)	0,44(2)	15,9(5)	1,63(7)
3. LVd	А	4,98(3)	4,20(3)	-0,78	3,1(3)	454,5	127,2	418,3	Argilosa	34,4(3)	182,9(5)	2,51(2)	17,2(2)	10,4(2)
	В	5,10(6)	5,42(1)	0,32	2,4(3)	633,3	239,4	127,3	Argilosa	17,8(2)	155,8(4)	2,54(2)	31,5(4)	3,83(1)
4. LVAd	А	5,24(2)	4,55(3)	-0,69	2,2(7)	551,8	208,7	239,5	Argilosa	20,9(3)	31,6(3)	2,7(3)	6,93(1)	7,68(8)
	В	6,22(1)	5,48(2)	-0,74	4,2(1)	484,5	174,6	340,9	Argilosa	20,6(4)	33,04(1)	0,71(5)	0,00	1,62(1)
5. LVj	А	5,31(4)	4,83(3)	-0,48	4,8(2)	216,0	414,2	369,8	T.média	21,6(3)	428,8(7)	7,8(9)	102,6(3)	7,8(2)
	В	5,81(1)	5,67(2)	-0,14	6,4(7)	250,3	431,5	318,2	T.média	18,8(1)	454,9(6)	8,2(6)	123,0(6)	3,27(4)
6. LVef	А	6,17(1)	5,12(2)	-1,05	8,0(2)	413,9	217,6	368,4	Argilosa	17,9(5)	90,2(1)	2,65(2)	11,11(4)	2,76(7)
	В	5,44(2)	4,41(4)	1,03	9,6(1)	542,4	404,7	53,0	Argilosa	11,2(3)	181,1(6)	5,70(1)	19,94(8)	2,55(8)
7. TCp	А	6,13(1)	5,32(1)	-0,81	6,3(4)	418,1	244,3	337,6	Argilosa	13,6(4)	72,12(5)	1,10(1)	5,18(2)	1,34(2)
	В	6,10(2)	5,65(3)	-0,45	5,8(2)	619,5	199,2	181,3	Argilosa	10,5(3)	79,8(2)	1,14(1)	7,06(5)	1,03(4)
8. MTk	А	7,16(2)	6,05(3)	-1,11	23,7(6)	276,5	228,7	494,8	T.média	16,5(6)	35,8(4)	4,39(9)	3,30(4)	3,26(1)
	В	7,46(3)	5,97(2)	-1,49	28,2(3)	486,4	214,9	298,7	Argilosa	9,06(3)	48,4(1)	4,48(3)	6,42(1)	2,51(1)
9. CXbe	А	7,52(1)	6,85(3)	-0,67	12,2(2)	524,4	380,6	95,0	Argilosa	25,3(2)	68,6(3)	1,73(5)	13,43(3)	13,1(2)
	В	6,91(1)	6,29(3)	-0,62	5,5(2)	703,5	209,4	87,1	Argilosa	7,83(1)	64,1(7)	1,08(1)	10,11(7)	2,49(2)
10. CXbd	А	4,93(1)	4,00(1)	-0,93	2,62(4)	190,9	118,7	669,3	Arenosa	15,3(3)	12,53(1)	1,61(8)	2,77(1)	3,09(3)
	В	5,20(2)	4,36(5)	-0,84	1,58(1)	185,2	129,5	685,3	Arenosa	5,65(4)	5,56(1)	1,6(2)	5,07(1)	2,72(2)
11. $FFcd_1$	А	5,45(2)	4,32(2)	-1,13	6,6(2)	114,2	318,2	567,7	T.média	14,9(8)	23,15(6)	1,48(2)	3,73(2)	0,96(5)
	В	4,88(3)	3,85(6)	-1,03	2,4(1)	221,7	315,3	463,1	T.média	10,8(9)	23,05(1)	0,47(3)	0,00	0,91(5)
12. FFcd ₂	А	5,61(3)	4,48(2)	-1,13	3,36(2)	147,1	521,1	331,8	T.média	13,1(2)	18,1(2)	1,04(4)	3,65(3)	0,89(1)
	В	4,30(4)	3,73(1)	-0,57	2,3(3)	193,2	297,7	509,1	T.média	9,46(1)	24,6(5)	0,36(1)	0,00	0,73(1)
13. CXd	А	5,66(3)	4,47(5)	-1,19	7,2(1)	193,4	315,8	490,1	T.média	30,4(7)	55,1(1)	2,09(5)	6,20(5)	1,66(1)
	В	5,05(2)	3,91(2)	-1,14	2,9(1)	285,6	225,2	410,8	T.média	15,5(6)	36,8(6)	1,10(5)	0,00	1,38(7)
14. RQo	А	4,49(3)	3,68(4)	-0,81	1,30(8)	110,1	36,9	853,0	Arenosa	9,07(2)	2,73(2)	0,20(1)	0,92(2)	0,73(3)
	В	4,71(1)	3,91(1)	-0,80	1,1(5)	148,5	29,8	821,8	Arenosa	5,06(3)	2,17(3)	0,18(1)	0,71(1)	0,48(3)
15. LVAd	А	5,40(5)	3,97(3)	-1,43	7,6(4)	338,1	107,5	554,4	T.média	27,1(2)	48,3(3)	1,5(2)	17,07(9)	6,50(5)
	В	4,61(2)	4,10(2)	-0,51	7,7(4)	472,7	78,5	454,6	Argilosa	11,5(1)	62,3(5)	0,75(1)	18,05(7)	1,13(9)

Tabela 5. Características químicas e físicas dos solos usados no experimento

(¹⁾relação solo:solução 1:2,5; ⁽²⁾ $\Delta pH = pH_{KCI} - pH_{H2O}$; ⁽³⁾CTC: capacidade de troca catiônica; ⁽⁴⁾COT: carbono orgânico total; ⁽⁵⁾Fe₂O_{3DCB} e Fe₂O_{3ox}: ferro extraídos com citrato-ditionito-bicarbonato e com oxalato ácido de amônio; ⁽⁶⁾Al₂O_{3DCB} e Al₂O_{3ox}: alumínio extraído com citrato-ditionito-bicarbonato e com oxalato ácido de amônio; ⁽⁶⁾Al₂O_{3DCB} e Al₂O_{3ox}: alumínio extraído com citrato-ditionito-bicarbonato e com oxalato ácido de amônio; ⁽⁶⁾Al₂O_{3DCB} e Al₂O_{3ox}: alumínio extraído com citrato-ditionito-bicarbonato e com oxalato ácido de amônio; ⁽⁶⁾Al₂O_{3DCB} e Al₂O_{3ox}: alumínio extraído com citrato-ditionito-bicarbonato e com oxalato ácido de amônio; ⁽⁶⁾Al₂O_{3DCB} e Al₂O_{3ox}: alumínio extraído com citrato-ditionito-bicarbonato e com oxalato ácido de amônio; ⁽⁶⁾Al₂O_{3DCB} e Al₂O_{3ox}: alumínio extraído com citrato-ditionito-bicarbonato e com oxalato ácido de amônio; ⁽⁶⁾Al₂O_{3DCB} e Al₂O_{3ox}: alumínio extraído com citrato-ditionito-bicarbonato e com oxalato ácido de amônio; ⁽⁶⁾Al₂O_{3DCB} e Al₂O_{3ox}: alumínio extraído com citrato-ditionito-bicarbonato e com oxalato ácido de amônio; ⁽⁶⁾Al₂O_{3DCB} e Al₂O_{3ox}: alumínio extraído com citrato-ditionito-bicarbonato e com oxalato ácido de amônio; ⁽⁶⁾Al₂O_{3DCB} e Al₂O_{3ox}: alumínio extraído com citrato-ditionito-bicarbonato e com oxalato ácido de amônio; ⁽⁶⁾Al₂O_{3DCB} e Al₂O_{3ox}: alumínio extraído com citrato-ditionito-bicarbonato e com oxalato ácido de amônio; ⁽⁶⁾Al₂O_{3DCB} e Al₂O_{3ox}: alumínio extraído com citrato-ditionito-bicarbonato e com oxalato ácido de amônio; ⁽⁶⁾Al₂O_{3DCB} e Al₂O_{3ox}: alumínio extraído com citrato-ditionito-bicarbonato e com oxalato ácido de amônio; ⁽⁶⁾Al₂O_{3DCB} e Al₂O_{3ox}: alumínio extraído com citrato-ditionito-bicarbonato e com oxalato ácido de amônio; ⁽⁶⁾Al₂O_{3DCB} e Al₂O_{3ox}: alumínio extraído com citrato-ditionito-bicarbonato e com oxalato ácido de amônio; ⁽⁶⁾Al₂O_{3DCB} e Al₂O_{3ox}: alumínio extraí

Sendo a fração argila a única quimicamente ativa e, portanto, capaz de reagir e atenuar íons metálicos, pode-se inferir que, nas amostras menos argilosas, os metais pesados podem estar mais disponíveis, se não forem considerados os fatores pH e teor de matéria orgânica. Um fator importante a ser considerado também é que mesmo em solos com baixos teores de argila, a disponibilidade de metais pesados pode ser diferenciada, pois dois solos com o mesmo teor de argila e mesmo pH, podem ser muito diferentes quanto ao tipo de argila e a composição mineralógica e estes fatores podem alterar bastante a adsorção dos metais pelos colóides.

O carbono orgânico total, que permite inferir diretamente sobre a quantidade de matéria orgânica do solo, variou de 5,06 g kg⁻¹ a 34,4 g kg⁻¹, independentemente do horizonte, com os solos 9A e 13A apresentando os maiores valores. Conforme esperado, para todos os solos, as camadas mais superficiais apresentaram maiores quantidades de matéria orgânica, em relação às mais profundas, o que é comum e se explica pela deposição dos resíduos vegetais ser restrita à camada superficial e pela baixa solubilidade e mobilidade dos compostos orgânicos no solo.

A matéria orgânica embora represente, em média, cerca de 5% dos componentes sólidos, é responsável por cerca de 25% a 90% da capacidade de troca de cátions (CTC) dos solos minerais (Stevenson, 1994). Teores mais elevados de matéria orgânica podem influenciar mais fortemente na fixação dos metais nos solos, dificultando na extração dos elementos, no entanto, fatores como o tipo de matéria orgânica, a solubilidade e a quantidade de grupos funcionais também devem ser levados em consideração, uma vez que também definem a capacidade de quelação.

A matéria orgânica humificada do solo tem grande área superficial e elevada CTC, devido à natureza de seus grupos funcionais de superfície (Schnitzer, 1969). Em geral, de acordo com Jordão et al. (2000), os valores de CTC encontrados na literatura, para amostras de solos de Minas Gerais variam entre (4,6 cmol_c kg⁻¹ a 10,0 cmol_c kg⁻¹). Os valores de CTC encontrados neste trabalho variaram de 1,1 cmol_c kg⁻¹ a 28,2 cmol_c kg⁻¹, tendo o Neossolo Quartzarênico órtico latossólico (solo 14) o menor valor. O maior valor de CTC encontrado para o Chernossolo Argilúvico Carbonático saprolítico e para o Cambissolo Háplico Tb eutrófico latossólico (solos 8 e 9) pode estar relacionado ao maior teor de matéria orgânica encontrado para este solo, associado aos elevados valores de pH.

Apesar de o teor de matéria orgânica ter diminuido acentuadamente, em profundidade, o mesmo não ocorreu com a capacidade de troca de cátions (CTC). Uma vez que a matéria orgânica contribui com o aumento da CTC dos solos, o aumento do valor desta última

característica em subsuperfície nos solos 1, 4, 5, 6, 8 e 15 é um comportamento diferenciado. Tal fato pode estar relacionado ao gradiente textural dos solos, uma vez que o acréscimo do teor de argila em subsuperfície pode ter mascarado o efeito da diminuição do teor de matéria orgânica. Além disso, incrementos de argila pronunciados podem significar aumento da CTC.

Na Tabela 5 encontram-se também os teores de ferro cristalino (extraídos com DCB) e de ferro amorfo (extraídos com oxalato de amônio) das amostras estudadas. Os teores de ferro cristalino variaram no horizonte A de 2,73 g kg⁻¹, obtido para o Neossolo Quartzarênico órtico latossólico, até 428,8 g kg⁻¹, teor registrado para o Latossolo Vermelho Perférrico húmico e de 2,17 g kg⁻¹ a 454,9 g kg⁻¹ para o horizonte B dos mesmos solos. Os maiores teores estiveram vinculados a solos desenvolvidos sobre itabirito, basalto, calcário e gnaisse, sendo o solo originado sobre itabirito (Latossolo Vermelho Perférrico húmico) o que apresentou o maior teor. O valor foi praticamente duas vezes maior que o solo derivado de basalto (solo 6) e mais ou menos quatorze vezes maior que o solo originado de gnaisse (solo 4), levando-se em consideração o horizonte B desses solos, onde mais se concentrou os óxidos de ferro.

Os óxidos de ferro pouco cristalinos ou "amorfos", são os mais reativos do solo, devido ao seu pequeno tamanho e grande superfície específica. Seus teores variaram de 0,20 a 7,8 g kg⁻¹ para o horizonte A e de 0,44 g kg⁻¹ a 8,2 g kg⁻¹ para o horizonte B. O Chernossolo Argilúvico Carbonático saprolítico é um solo relativamente jovem, cujo teor de matéria orgânica na camada superficial é elevado, o que, provavelmente favoreceu a ocorrência de baixa cristalinidade. É esperado que os solos com maiores teores de óxidos de ferro amorfos sejam os menos desenvolvidos como o Cambissolo Háplico Tb distrófico típico (solo 10) e o Neossolo Quartzarênico órtico latossólico (solo 14), que apresentaram 17,63 % e 11,50 % de ferro amorfo nos horizontes A, respectivamente.

7.2. Isotermas de adsorção

É sabido que a adsorção de metais pesados em componentes da fase sólida do solo pode ser dar de forma não específica, através da atração puramente eletrostática, ou de forma específica. Uma vez que tanto o íon metálico que está sendo adsorvido, quanto a superfície adsorvente, estão sujeitos à hidrólise, o pH é uma variável de extrema importância na adsorção de metais em superfícies de carga variável. Como regra geral, sabe-se que o pH tem importância como fator chave em controlar a adsorção de metais, sendo que solos de pH mais elevado, com desprotonação acentuada de grupos superficiais tendem a aumentar a capacidade adsortiva dos mesmos. Entretanto, em função da natureza do metal e do solo, o pH de adsorção pode variar para diferentes metais em um mesmo solo e para um mesmo metal, comparando-se diferentes solos.

Nos experimentos de adsorção, após adição das soluções contendo os metais em estudo, verificou-se que o pH de cada suspensão diminuiu, comparativamente ao pH inicial de cada solo e que esta diminuição foi crescente com o aumento na concentração de metais adicionados. Este comportamento pode ser atribuído à hidrólise de cátions e também como resultado da troca de íons H⁺ pelos cátions metálicos, o que reduz o pH da solução.

Para exemplificar o exposto, as Tabela 6, 7, 8 e 9 são referentes ao processo de adsorção de cádmio nos solos 1, 2, 3, 4, 5, cobre nos solos 6, 7, 8, 9, 10, chumbo nos solos 11, 12, 13, 14 e zinco nos solos 1, 2, 3, 4 e 5. As mesmas mostram a quantidade de metal adicionado ao solo, o pH do solo antes e após o processo de adsorção, a diferença entre estes valores de pH e o número de prótons liberados em função da adsorção. Nessas tabelas pode-se verificar a diminuição do pH para as diferentes doses de metais adicionados.

Vários trabalhos afirmam que a adsorção de metais é acompanhada da liberação de uma quantidade de íons H⁺ geralmente entre 1 e 2 por cátion adsorvido, variando de acordo com o cátion adsorvido (Alloway, 1990; McBride, 1994). Em função da possibilidade de se determinar a quantidade de prótons liberada por um íon metálico adsorvido, mecanismos de adsorção podem ser propostos, inclusive em sistemas mistos envolvendo mais de um mecanismo. Sparks (1998) concluíram que a adsorção de metais da solução não é necessariamente um processo que envolve apenas um equilíbrio ou uma única espécie. Em muitos casos, constatou-se indícios de que a adsorção se processava por mais de uma estequiometria diferente. Isto sugere que mais de uma espécie pode ser adsorvida e/ou que mais de um sítio superficial pode estar envolvido no processo de adsorção.

Várias curvas de adsorção de Langmuir e Freudlich, obtidas de trabalhos de muitos autores, apontam para a ocorrência de múltiplos sítios de adsorção, fato também verificado neste trabalho, principalmente para a adsorção de cobre e chumbo.

Solo	Horiz.	Conc. ($\mu g m L^{-1}$)	pH antes adsorção	pH _m após adsorção ⁽¹⁾	Diferença ⁽²⁾	$\mu mol H^+/g$	nH ⁺ /nCd
		0	5,10	5,10	0,00	0	0
		10	5,10	5,04	-0,06	2,30E-08	0,0323
		20	5,10	4,99	-0,11	2,57E-08	0,0361
	А	30	5,10	4,95	-0,15	2,59E-08	0,0364
		40	5,10	4,91	-0,19	2,65E-08	0,03/3
1 DVA		60 80	5,10	4,88	-0,22	2,24E-08	0,0315
I. PVA		80	5,10	4,04	-0,28	2,54E-08	0,0328
		10	5,37	5,37	-0.08	1 98E-08	0 0278
	в	20	5 37	5 20	-0,03	3 28E-08	0.0461
	Б	30	5.37	5.14	-0.23	3.32E-08	0.0466
		40	5.37	5.05	-0.32	3.63E-08	0.0510
		60	5,37	5,02	-0,35	2,51E-08	0,0353
		80	5,37	4,99	-0,38	2,22E-08	0,0311
		0	5,50	5,50	0,00	0	0
		10	5,50	5,50	-0,03	2,23E-09	0,00313
		20	5,50	5,50	-0,08	3,18E-09	0,00448
	А	30	5,50	5,50	-0,10	3,27E-09	0,00460
		40	5,50	5,50	-0,14	3,61E-09	0,00507
2 1 1/4		60	5,50	5,50	-0,17	3,34E-09	0,00470
2. LVA		80	5,50	5,50	-0,20	3,23E-09	0,00455
		0	5.27	5,27	0,02	6 30E 00	0 00897
	в	20	5.27	5,27	-0,05	7.86E-09	0,00397
	Ъ	20 30	5 27	5 27	-0,00	1,00E-09	0.01617
		40	5.27	5.27	-0.15	1.32E-08	0.01853
		60	5,27	5,27	-0,25	1,67E-08	0,02348
		80	5,27	5,27	-0,30	1,78E-08	0,02499
		0	4,98	4,98	0,00	0	0
		10	4,98	4,95	-0,03	1,26E-08	0,0177
		20	4,98	4,93	-0,05	1,41E-08	0,0199
	A	30	4,98	4,87	-0,11	2,19E-08	0,0307
		40	4,98	4,83	-0,15	2,50E-08	0,0351
2 1 1 4		60	4,98	4,79	-0,19	2,41E-08	0,0339
3. LVd		80	4,98	4,//	-0,21	2,21E-08	0,0311
		0	5,10	5,10	0,00	1.03E.08	0 0272
	в	20	5,10	4 98	-0,03	2 76E-08	0,0272
	Б	30	5.10	4,93	-0.17	3.58E-08	0.0503
		40	5.10	4.89	-0.21	3.41E-08	0.0479
		60	5,10	4,85	-0,25	2,90E-08	0,0407
		80	5,10	4,81	-0,29	2,70E-08	0,0380
		0	5,24	5,24	0,00	0	0
		10	5,24	5,18	-0,06	2,50E-08	0,0351
		20	5,24	5,13	-0,11	2,48E-08	0,0349
	А	30	5,24	5,05	-0,19	3,07E-08	0,0431
		40	5,24	5,00	-0,24	3,35E-08	0,0471
4 1 1 1 4 4		80	5,24	4,90	-0,28	2,91E-08	0,0410
4. L V Au		0	6.22	6.22	-0,33	2,701-08	0,0388
		10	6.22	6.16	-0.06	1 30E-09	0.0018
	В	20	6.22	6.10	-0.12	1,76E-09	0.0025
		30	6,22	6,06	-0,16	1,93E-09	0,0027
		40	6,22	6,01	-0,21	2,12E-09	0,0030
		60	6,22	5,96	-0,26	2,16E-09	0,0030
		80	6,22	5,90	-0,32	2,34E-09	0,0033
		0	5,31	5,31	0,00	0	0
		10	5,31	5,29	-0,02	4,45E-09	0,0062
		20	5,31	5,22	-0,09	1,40E-08	0,0197
	А	30 40	5,51	5,1/	-0,14	1,80E-08	0,0262
		40 60	5,51 5,31	5,15 5,12	-0,10 _0.10	1,09E-08 1 /0E-08	0,0238
5 LVi		80	5 31	5.08	-0,19	1,40E-08	0.0213
5. 27		0	5.81	5.81	0.00	0	0
		10	5,81	5,78	-0.03	5,75E-09	0,0081
	В	20	5,81	5,74	-0,07	7,88E-09	0,0111
		30	5,81	5,70	-0,11	8,67E-09	0,0122
		40	5,81	5,64	-0,17	1,11E-08	0,0156
		60	5,81	5,60	-0,21	1,27E-08	0,0179
		80	5,81	5,54	-0,27	1,58E-08	0,0222

Tabela 6. Concentração adicionada, pH antes e após adsorção e número de íons H⁺ liberados na adsorção de cádmio nos solos

Solo	Horiz.	Conc. (µg mL ⁻¹)	pH antes adsorção	pH _m após adsorção ⁽¹⁾	Diferença ⁽²⁾	µmolH ⁺ /g	nH ⁺ /nCu
		0	6,17	6,17	0,000	0	0
		10	6,17	6,07	-0,097	1,36E-09	1,08E-03
		20	6,17	5,92	-0,247	2,10E-09	1,67E-03
	А	40	6,17	5,63	-0,543	3,64E-09	2,89E-03
		60	6,17	5,47	-0,700	4,08E-09	3,24E-03
		80	6,17	5,30	-0,867	5,14E-09	4,08E-03
6. LVef		100	6,17	5,20	-0,970	5,78E-09	4,59E-03
		0	5,44	5,44	0,000	0	0
		10	5,44	5,36	-0,077	7,63E-09	6,06E-03
	В	20	5,44	5,31	-0,127	6,88E-09	5,46E-03
		40	5,44	5,25	-0,187	5,59E-09	4,44E-03
		60	5,44	5,22	-0,217	4,70E-09	3,74E-03
		80	5,44	5,21	-0,227	3,88E-09	3,08E-03
		100	5,44	5,17	-0,267	3,98E-09	3,16E-03
		0	6,13	6,13	0,000	0	0
		10	0,13 6,12	5,41	-0,720	5,18E-08	2,55E-02
	۸	20	6.13	1.87	-1,093	6.27E.08	4,87E-02 4.98E-02
	Α	40 60	6.13	4,87	-1,257	7.00F-08	5,56E-02
		80	6.13	5.03	-1 103	6.23E-08	4 95E-02
7 TCn		100	6.13	5.03	-1.097	6.19E-08	4.92E-02
P		0	6.10	6.10	0.000	0	0
		10	6,10	5,57	-0,530	2,40E-08	1,91E-02
	В	20	6,10	5,44	-0,657	2,78E-08	2,21E-02
		40	6,10	5,27	-0,827	3,20E-08	2,54E-02
		60	6,10	5,26	-0,837	2,54E-08	2,02E-02
		80	6,10	5,52	-0,580	1,82E-08	1,45E-02
		100	6,10	5,52	-0,577	1,65E-08	1,31E-02
		0	7,16	7,16	0,000	0	0
		10	7,16	7,01	-0,153	2,35E-10	1,87E-04
		20	7,16	6,67	-0,490	5,88E-10	4,67E-04
	A	40	7,16	6,12	-1,040	1,55E-09	1,23E-03
0.0		60	7,16	5,90	-1,257	1,84E-09	1,46E-03
8. MTk		80	7,16	5,94	-1,223	3,12E-09	2,48E-03
		100	7,16	5,88	-1,277	3,30E-09	2,62E-03
		0	7,46	7,46	0,000	0 22E 11	U 7 22E 05
	D	10	7,40	6.08	-0,123	9,23E-11 2.01E-10	7,55E-05
	Б	20	7,40	6.33	-0,485	1.12E-09	2,39E-04 8 89E-04
		40 60	7,40	6.16	-1 303	1,12E-09	1.06E-03
		80	7,40	6.07	-1.393	1,55E-09	1,00E 03
		100	7.46	6.00	-1.463	1.30E-09	1.04E-03
		0	7.52	7.52	0.000	0	0
		10	7,52	7,39	-0,130	8,44E-11	6,70E-05
		20	7,52	7,33	-0,193	6,79E-11	5,40E-05
	А	40	7,52	6,95	-0,567	1,63E-10	1,30E-04
		60	7,52	6,58	-0,943	3,21E-10	2,55E-04
		80	7,52	6,41	-1,107	3,68E-10	2,92E-04
9. CXbe		100	7,52	6,28	-1,240	4,09E-10	3,25E-04
		0	6,91	6,91	0,000	0	0
	P	10	6,91	6,78	-0,127	3,43E-10	2,72E-04
	В	20	6,91	6,23	-0,680	2,33E-09	1,85E-03
		40	6.01	5,85	-1,077	4,93E-09	5,92E-05
		80	6.91	5,70	-1,207	5,95E-09	4,73E-03
		100	6.91	5,62	-1,203	5.49F-09	4,76E-03
		0	4 93	4.93	0,000	0	0
		10	4.93	4.80	-0.127	4,35E-08	3,46E-02
		20	4.93	4.70	-0.233	5,49E-08	4,36E-02
	А	40	4,93	4,65	-0,280	4,35E-08	3,45E-02
		60	4,93	4,66	-0,270	3,14E-08	2,50E-02
		80	4,93	4,61	-0,323	3,34E-08	2,66E-02
10. CXbd		100	4,93	4,59	-0,343	3,26E-08	2,59E-02
		0	5,20	5,20	0,000	0	0
		10	5,20	5,11	-0,090	1,78E-08	1,42E-02
	В	20	5,20	5,02	-0,180	1,97E-08	1,57E-02
		40	5,20	4,96	-0,243	1,61E-08	1,28E-02
		60	5,20	4,93	-0,270	1,35E-08	1,07E-02
		80	5,20	4,91	-0,293	1,19E-08	9,48E-03
		100	5,20	4,86	-0,340	1,25E-08	9,91E-03

Tabela 7. Concentração, pH antes e após adsorção e número de íons H⁺ liberados na adsorção de cobre nos solos

Solo	Horiz.	Conc. (µg mL ⁻¹)	pH antes adsorção	pH _m após adsorção ⁽¹⁾	Diferença ⁽²⁾	μ molH ⁺ /g	nH ⁺ /nPb
		0	5,45	5,45	0,00	0	0
		10	5,45	5,37	-0,08	5,50E-09	0,01423
		20	5,45	5,30	-0,15	5,76E-09	0,01491
	А	40	5,45	5,23	-0,22	4,68E-09	0,01213
		60	5,45	5,17	-0,28	4,41E-09	0,01142
		80	5,45	5,04	-0,41	5,87E-09	0,01522
11. FFcd ₁		100	5,45	4,97	-0,48	6,13E-09	0,01586
		120	5,45	4,87	-0,58	7,16E-09	0,01854
		0	4,88	4,88	0,00	0	0
	В	10	4,88	4,84	-0,04	1,21E-08	0,03140
		20	4,88	4,80	-0,08	1,39E-08	0,03603
		40	4,88	4,77	-0,11	1,11E-08	0,02885
		60	4,88	4,74	-0,14	1,06E-08	0,02735
		80	4,88	4,71	-0,17	1,07E-08	0,02765
		100	4,88	4,68	-0,20	1,14E-08	0,02954
		120	4,88	4,64	-0,24	1,32E-08	0,03430
		0	5,61	5,61	0,00	0	0
		10	5,61	5,56	-0,05	2,50E-09	0,00647
		20	5,61	5,52	-0,09	2,32E-09	0,00602
	А	40	5,61	5,49	-0,12	1,73E-09	0,00449
		60	5,61	5,43	-0,18	1,82E-09	0,00470
10 FF 1		80	5,61	5,38	-0,23	1,89E-09	0,00490
12. $FFCd_2$		100	5,61	5,32	-0,29	2,05E-09	0,00530
		120	5,61	5,27	-0,34	2,22E-09	0,00576
	р	0	4,30	4,30	0,00	U 5 49E 09	0 1 4 2 0 1
	В	10	4,30	4,20	-0,04	5,48E-08	0,14201
		20	4,30	4,22	-0,08	5,87E-08	0,15205
		40	4,50	4,19	-0,11	4,36E-08	0,11809
		80	4,50	4,10	-0,14	4,74E-08	0,12200
		80 100	4,30	4,13	-0,17	4,70E-08	0,12331
		100	4,30	4,08	-0,22	5,57E-08	0,13902
		0	4,30	4,03	-0,27	0,401-08	0,10724
		10	5,00	5,00	0,00	1 8/F 00	0.00477
		20	5,66	5 58	-0,04	1,04L-09	0,00459
	Δ	20	5,66	5 55	-0,08	1,77E-09	0,00437
	11	60	5,66	5,50	-0.16	1,22E 09	0.00330
		80	5,66	5 45	-0.21	1,27E-09	0.00348
13. CXd		100	5,66	5.42	-0.24	1.30E-09	0.00337
10. 0110		120	5,66	5.38	-0.28	1.31E-09	0.00340
		0	5.05	5.05	0.00	0	0
	В	10	5.05	5.01	-0.04	7.40E-09	0.01917
		20	5.05	4.97	-0.08	1.02E-08	0.02631
		40	5,05	4,93	-0,12	8,80E-09	0,02279
		60	5,05	4,89	-0,16	8,96E-09	0,02320
		80	5,05	4,86	-0,19	9,13E-09	0,02365
		100	5,05	4,83	-0,22	9,05E-09	0,02344
		120	5,05	4,79	-0,26	9,79E-09	0,02535
		0	4,49	4,49	0,00	0	0
		10	4,49	4,44	-0,05	4,60E-08	1,19E-01
		20	4,49	4,39	-0,10	5,17E-08	1,34E-01
	А	40	4,49	4,35	-0,14	4,42E-08	1,14E-01
		60	4,49	4,31	-0,18	4,42E-08	1,14E-01
		80	4,49	4,27	-0,22	4,88E-08	1,26E-01
14. RQo		100	4,49	4,23	-0,26	5,13E-08	1,33E-01
		120	4,49	4,19	-0,30	5,36E-08	1,39E-01
		0	4,71	4,71	0,00	0	0
	В	10	4,71	4,66	-0,05	4,33E-08	0,11210
		20	4,71	4,61	-0,10	5,00E-08	0,12952
		40	4,71	4,57	-0,14	3,94E-08	0,10199
		60	4,71	4,53	-0,18	3,91E-08	0,10127
		80	4,71	4,49	-0,22	4,18E-08	0,10837
		100	4,71	4,44	-0,27	4,60E-08	0,11903
		120	4,71	4,39	-0,32	4,83E-08	0,12506

Tabela 8. Concentração, pH antes e após adsorção e número de íons H⁺ liberados na adsorção de chumbo nos solos

⁽¹⁾Valores médio de pH após adsorção do metal; ⁽²⁾diferença: pH antes da adsorção – pH após adsorção.

Solo	Horiz.	Conc. ($\mu g m L^{-1}$)	pH antes adsorção	pH _m após adsorcão ⁽¹⁾	Diferença ⁽²⁾	µmolH ⁺ /g	nH ⁺ /nZn
		0	5,10	5,10	0,00	0	0
		10	5,10	4,99	-0,11	3,61E-08	0,0295
		20	5,10	4,95	-0,15	2,42E-08	0,0198
	А	30	5,10	4,91	-0,19	2,16E-08	0,0177
		35	5,10	4,85	-0,25	2,63E-08	0,0215
1 DVA		40	5,10	4,81	-0,29	2,84E-08	0,0232
1. F VA		0	5,37	5,37	0,00	0	0
		10	5,37	5,19	-0,18	3,65E-08	0,0298
	В	20	5,37	5,08	-0,29	3,51E-08	0,0287
		30	5,37	5,03	-0,34	2,70E-08	0,0220
		35	5,37	5,00	-0,37	2,51E-08	0,0205
		40	5,37	4,92	-0,45	2,84E-08	0,0232
		0	5,50	5,50	0,00	0	0
		10	5,50	5,41	-0,09	8,01E-09	0,0065
		20	5,50	5,36	-0,14	6,68E-09	0,0055
	A	30	5,50	5,29	-0,21	7,94E-09	0,0065
		35	5,50	5,24	-0,26	9,45E-09	0,0077
2 I VA		40	5,50	5,19	-0,31	1,09E-08	0,0089
2. L VA		0	5 27	5 27	0.00	0	0
		10	5.27	5,17	-0.10	2.60E-08	0.0212
	В	20	5.27	5.07	-0.20	3.12E-08	0.0255
	2	30	5.27	5.02	-0.25	2.76E-08	0.0226
		35	5.27	4.96	-0.31	2.73E-08	0.0223
		40	5,27	4,93	-0,34	2,95E-08	0,0241
		0	4,98	4,98	0,00	0	0
		10	4,98	4,91	-0,07	3,76E-08	0,0307
		20	4,98	4,86	-0,12	3,25E-08	0,0266
	А	30	4,98	4,83	-0,15	3,27E-08	0,0267
		35	4,98	4,79	-0,19	4,22E-08	0,0345
		40	4,98	4,75	-0,23	4,01E-08	0,0328
3. LVd			5,10	5,10	0,00		
		0				0	0
	D	10	5,10	5,01	-0,09	2,80E-08	0,0228
	В	20	5,10	4,96	-0,14	2,78E-08	0,0227
		30	5,10	4,90	-0,20	2,91E-08	0,0237
		35 40	5,10	4,85	-0,25	3,40E-08	0,0278
		40	5.24	4,03	-0,23	2,991-08	0,0244
		10	5.24	5,24	0,00	1 60F 08	0.0138
		20	5 24	5.16	-0.08	1,09E-08	0,0107
	Δ	30	5 24	5,10	-0.13	1,81E 00	0.0154
		35	5 24	5.08	-0.16	1,00E 00 1,95E-08	0.0159
		40	5.24	5.03	-0.21	1,98E-08	0.0162
4. LVAd			-,	-,	•,==	-,	-,
		0	6,22	6,22	0,00	0	0
		10	6,22	6,13	-0,09	1,59E-09	0,0013
	В	20	6,22	5,99	-0,23	2,85E-09	0,0023
		30	6,22	5,92	-0,30	2,95E-09	0,0024
		35	6,22	5,89	-0,33	3,05E-09	0,0025
		40	6,22	5,84	-0,38	3,14E-09	0,0026
		0	5,31	5,31	0,00	0	0
		10	5,31	5,25	-0,06	1,25E-08	0,01024
		20	5,31	5,19	-0,12	1,35E-08	0,01100
	А	30	5,31	5,15	-0,16	1,40E-08	0,01144
		55 40	5,31 5,21	5,12	-0,19	1,49E-08	0,01216
5 I Vi		40	3,51	5,09	-0,22	1,04E-08	0,01558
J. LVJ		0	5.81	5.81	0.00	0	0
		10	5,81	5,73	-0.08	3.17E-09	0.00259
	в	20	5.81	5.66	-0.15	3.94E-09	0.00322
	~	30	5,81	5,59	-0,22	4,32E-09	0,00353
		35	5,81	5,48	-0,33	5,84E-09	0,00477
		40	5,81	5,43	-0,38	6,81E-09	0,00557
⁽¹⁾ Valores mé	dio de pH	após adsorção do met	al; ⁽²⁾ diferença:	pH antes da ada	sorção – pH após	adsorção.	

Tabela 9. Concentração adicionada, pH antes e após adsorção e número de íons H⁺ liberados na adsorção de zinco nos solos

A determinação das isotermas de adsorção, que permite a caracterização da capacidade e da intensidade de adsorção de um soluto num determinado sistema adsorvente tem grande importância na predição do destino do elemento no solo. Neste trabalho, utilizouse o programa *Statistica 7.0* que ajusta equações não lineares aos resultados de adsorção, seguindo a metodologia dos "quadrados mínimos", cuja utilização visou minimizar os erros advindos da linearização dos dados. De acordo com Harter (1984) no que se refere à equação de Langmuir, por exemplo, o aspecto negativo proveniente do uso de sua forma linear, dá-se pelo fato de, ao plotar Ceq contra Ceq/q, reduz-se a variabilidade dos dados, já que Ceq é plotado contra si mesmo. Além disso, nem sempre a adoção de formas lineares irá proporcionar curvas mais bem ajustadas às isotermas obtidas experimentalmente. Dessa forma, efetuou-se o ajuste das curvas de adsorção com base na forma não linear das equações.

Visando ao maior detalhamento na descrição do processo de adsorção, as Tabelas 10 e 11 mostram as equações das isotermas de adsorção com seus respectivos coeficientes de correlação. Com base nos coeficientes de correlação obtidos pelas equações de Langmuir e de Freundlich verificou-se para todos os metais e, em quase todos os solos, que ambas equações descreveram adequadamente os resultados experimentais de adsorção, com elevados coeficientes de correlação. Em alguns casos, o modelo de Langmuir apresentou baixos valores para R, como por exemplo, na adsorção de cádmio no solo 4B, chumbo nos solos 4B e 9B, cobre nos solos 4B, 8B, 9B e 10B e zinco no solo 9A.

O ajuste dos dados experimentais de adsorção pela forma original das equações apresentou resultados similares aos obtidos por diversos autores (Alleoni et al., 1998; Cunha et al., 1994; Fontes et al., 2000; Jordão et al., 2000; Nascimento e Fontes, 2004), por meio da linearização dos dados, indicando que os modelos se ajustam de forma satisfatória a diversos tipos de solos e a diferentes concentrações de metais pela forma original das isotermas. Dias et al., (2001) verificaram que a adsorção de cádmio em solos ácricos do estado de São Paulo foi bem descrita pelas equações de Langmuir e de Freundlich. No entanto, Ramachandran & D'Souza (1999) estudando a adsorção de cádmio em solos da Índia, empregando os modelos de Langmuir, Freundlich e linear na adsorção, revelaram que o modelo de Freundlich descreveu melhor os dados experimentais.

Os parâmetros da equação de Langmuir para o cálculo da capacidade máxima de adsorção (b) e da energia de ligação (k) e da equação de Freundlich para determinação dos parâmetros K_F e n para retenção de cádmio, cobre, chumbo e zinco são apresentados na Tabela 12.

Solos	Horizonte	Equa	cões das isotermas r	para Cádmio	
		Langmuir	R	Freundlich	R
1. PVA	А	y=(0,012)*(696)*x/1+(0,012)*x	0,9988	y=(15)*x^(1/(1,37))	0,9993
	В	y=(0,0101)*(448)*x/1+(0,0101)*x	0,9955	$y=(3,8)*x^{(1/(0,96))}$	0,9959
2. LVA	А	y=(0,04)*(975)*x/1+(0,04)*x	0,9904	y=(68)*x^(1/(1,64))	0,9981
	В	y=(0,012)*(772)*x/1+(0,012)*x	0,9984	y=(15)*x^(1/(1,34))	0,9974
3. LVd	А	y=(0,010)*(1604)*x/1+(0,010)*x	0,9984	y=(28)*x^(1/(1,32))	0,9998
	В	y=(0,006)*(1032)*x/1+(0,006)*x	0,9933	y=(10)*x^(1/(1,23))	0,9958
4. LVAd	А	y=(0,005)*(800)*x/1+(0,005)*x	0,9953	y=(3,3)*x^(1/(0,94))	0,9960
	В	y=(0,019)*(291)*x/1+(0,019)*x	0,9133	y=(29)*x^(1/(1,80))	0,9983
5. LVj	A	y=(0,011)*(562)*x/1+(0,011)*x	0,9970	$y=(11)*x^{(1/(1,36))}$	0,9971
	В	y=(0,023)*(139)*x/1+(0,023)*x	0,9964	$y=(8)*x^{(1/(2))}$	0,9874
6. NVef	A	y=(0,046)*(1109)*x/1+(0,046)*x	0,9976	y=(/9)*x'(1/(1,60))	0,9987
7 50	В	y=(0,008)*(1248)*x/1+(0,008)*x	0,9963	y=(14)*x'(1/(1,12))	0,9974
7. ICp	A	y=(0,064)*(922)*X/1+(0,064)*X y=(0,041)*(762)*y/1+(0,041)*y	0,9988	$y=(94)^{*}X^{(1/(1,80))}$	0,9982
0 MTI-	В	$y=(0,041)^{*}(763)^{*}x/1+(0,041)^{*}x$ $y=(0,20)^{*}(1842)^{*}y/1+(0,20)^{*}y$	0,9971	$y = (58)^{*} X^{*} (1/(1, 1/2))$ $y = (414)^{*} y (1/(1, 52))$	0,9988
0. IVI I K	R	$y=(0,29)^{*}(1645)^{*}x/1+(0,29)^{*}x$ $y=(0,23)^{*}(1/32)^{*}y/1+(0,23)^{*}y$	0,9923	$y = (414)^{*} x^{(1/(1,52))}$ $y = (293) * x^{(1/(1,73))}$	0,9980
0 CYba		$y = (0,23)^{*}(1+32)^{*}x/1+(0,23)^{*}x$ $y = (1,2)^{*}(1+32)^{*}x/1+(1,2)^{*}x$	0,9974	$y = (293)^{+} X (1/(1,73))$ $y = (800) * x \wedge (1/(1,73))$	0,9972
9. CAUC	B	$y = (1,2)^{*}(1331)^{*}x/1+(1,2)^{*}x$ $y = (0,19)^{*}(922)^{*}x/1+(0,19)^{*}x$	0,9902	$y = (800)^{1} x (1/(1,73))$ $y = (207) * x^{(1/(2,3))}$	0,9995
10 CXbd	A	y=(0,00)*(395)*x/1+(0,008)*x	0,9921	$y=(207)^{\circ}x^{\circ}(1/(2,3))^{\circ}$ $y=(5.8)*x^{\circ}(1/(1.3))^{\circ}$	0,9927
10. 01100	В	v = (0.005)*(398)*x/1+(0.005)*x	0.9883	$v = (3) * x^{(1/(1,2))}$	0.9861
11. FFcd ₁	Ā	v = (0.013)*(822)*x/1+(0.013)*x	0.9957	$v = (19) * x^{(1/(1.39))}$	0.9984
	В	y=(0,025)*(213)*x/1+(0,025)*x	0,9975	$y=(13)*x^{(1/(1,79))}$	0,9983
12. FFcd ₂	А	y=(0,017)*(818)*x/1+(0,017)*x	0,9944	$y=(26)*x^{(1/(1,46))}$	0,9980
	В	y=(0,021)*(82)*x/1+(0,021)*x	0,9989	$y=(4,4)*x^{(1/(1,76))}$	0,9984
13. CXd	А	y=(0,037)*(1576)*x/1+(0,037)*x	0,9960	y=(79)*x^(1/(1,40))	0,9979
	В	y=(0,008)*(683)*x/1+(0,008)*x	0,9791	y=(0,8)*x^(1/(1,1))	0,9802
14. RQo	А	y=(0,025)*(131)*x/1+(0,025)*x	0,9967	y=(9)*x^(1/(1,9))	0,9958
	В	y=(0,025)*(140)*x/1+(0,025)*x	0,9985	y=(9)*x^(1/(1,8))	0,9960
15. LVAd	l A	y=(0,010)*(763)*x/1+(0,010)*x	0,9936	y=(14)*x^(1/(1,35))	0,9976
	В	v = (0.0036) * (686) * x/1 + (0.0036) * x	0.9832	$v = (3) * x^{(1/(1,1))}$	0.9807
			0,0002		- ,
Solos	Horizonte	Equa	ções das isotermas p	ara Chumbo	D
Solos	Horizonte	Equa Langmuir	ções das isotermas p R	Para Chumbo Freundlich $y = (434)*x^{(1/(2,0))}$	R 0.9865
Solos 1. PVA	Horizonte A B	Equation $E_{1} = \frac{1}{1} = \frac{1}{1}$	ções das isotermas p R 0,9925 0 9911	ara Chumbo Freundlich $y=(434)*x^{(1/(2,9))}$ $y=(239)*x^{(1/(2,23))}$	R 0,9865 0,9997
Solos 1. PVA 2. LVA	Horizonte A B A	Equation $E_{0,36}(1335)*x/1+(0,36)*x$ y=(0,11)*(1361)*x/1+(0,11)*x y=(0,15)*(1597)*x/1+(0,15)*x	ções das isotermas p R 0,9925 0,9911 0,9974	ara Chumbo Freundlich $y=(434)*x^{(1/(2,9))}$ $y=(239)*x^{(1/(2,23))}$ $y=(280)*x^{(1/(2,23))}$	R 0,9865 0,9997 0,9806
Solos 1. PVA 2. LVA	Horizonte A B A B	Equation $F(x) = F(x) + F(x) $	ções das isotermas p R 0,9925 0,9911 0,9974 0,9914	ara Chumbo Freundlich $y=(434)*x^{\wedge}(1/(2,9))$ $y=(239)*x^{\wedge}(1/(2,23))$ $y=(280)*x^{\wedge}(1/(2,0))$ $y=(139)*x^{\wedge}(1/(2,11))$	R 0,9865 0,9997 0,9806 0,9995
Solos 1. PVA 2. LVA 3. LVd	Horizonte A B A B A	$\begin{array}{r} \hline \\ \hline $	ções das isotermas p R 0,9925 0,9911 0,9974 0,9914 0,9959	ara Chumbo Freundlich $y=(434)*x^{\wedge}(1/(2,9))$ $y=(239)*x^{\wedge}(1/(2,23))$ $y=(280)*x^{\wedge}(1/(2,0))$ $y=(139)*x^{\wedge}(1/(2,11))$ $y=(354)*x^{\wedge}(1/(2,10))$	R 0,9865 0,9997 0,9806 0,9995 0,9981
Solos 1. PVA 2. LVA 3. LVd	Horizonte A B A B A B B	$\begin{array}{r} \hline \\ \hline $	ções das isotermas p R 0,9925 0,9911 0,9974 0,9914 0,9959 0,9889	ara Chumbo Freundlich $y=(434)*x^{(1/(2,9))}$ $y=(239)*x^{(1/(2,23))}$ $y=(280)*x^{(1/(2,0))}$ $y=(139)*x^{(1/(2,11))}$ $y=(354)*x^{(1/(2,10))}$ $y=(401)*x^{(1/(2,10))}$	R 0,9865 0,9997 0,9806 0,9995 0,9981 0,9426
Solos 1. PVA 2. LVA 3. LVd 4. LVAd	Horizonte A B A B A B A A	$\begin{array}{r} \hline \\ \hline $	ções das isotermas p R 0,9925 0,9911 0,9974 0,9914 0,9959 0,9889 0,9866	ara Chumbo Freundlich $y=(434)*x^{(1/(2,9))}$ $y=(239)*x^{(1/(2,23))}$ $y=(280)*x^{(1/(2,0))}$ $y=(139)*x^{(1/(2,11))}$ $y=(354)*x^{(1/(2,10))}$ $y=(401)*x^{(1/(4))}$ $y=(222)*x^{(1/(2,27))}$	R 0,9865 0,9997 0,9806 0,9995 0,9981 0,9426 0,9990
Solos 1. PVA 2. LVA 3. LVd 4. LVAd	Horizonte A B A B A B A B A B B A B	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	ções das isotermas p R 0,9925 0,9911 0,9974 0,9914 0,9959 0,9889 0,9866 0,9119	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	R 0,9865 0,9997 0,9806 0,9995 0,9981 0,9426 0,9990 0,9236
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj	Horizonte A B A B A B A B A B A	$\begin{array}{r} \hline & Equat \\ \hline & Langmuir \\ \hline & y=(0,36)^*(1335)^*x/1+(0,36)^*x \\ y=(0,11)^*(1361)^*x/1+(0,11)^*x \\ y=(0,15)^*(1597)^*x/1+(0,15)^*x \\ y=(0,06)^*(1116)^*x/1+(0,06)^*x \\ y=(0,20)^*(1640)^*x/1+(0,20)^*x \\ y=(0,50)^*(988)^*x/1+(0,50)^*x \\ y=(0,03)^*(467)^*x/1+(0,03)^*x \\ y=(0,27)^*(1432)^*x/1+(0,27)^*x \\ \end{array}$	R 0,9925 0,9911 0,9974 0,9914 0,9959 0,9889 0,9866 0,9119 0,9870	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	R 0,9865 0,9997 0,9806 0,9995 0,9981 0,9426 0,9990 0,9236 0,9991
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj	Horizonte A B A B A B A B A B A B B	$\begin{array}{r} \hline & Equat \\ \hline & Equat \\ \hline & \\ \hline \hline & \\ \hline \\ \hline$	R 0,9925 0,9911 0,9974 0,9914 0,9959 0,9889 0,9866 0,9119 0,9870 0,9779	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	R 0,9865 0,9997 0,9806 0,9995 0,9981 0,9426 0,9990 0,9236 0,9991 0,9981
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef	Horizonte A B A B A B A B A B A B A	$\begin{array}{r} \hline & Equat \\ \hline & Equat \\ \hline & \\ \hline \hline \\ \hline & \\ \hline & \\ \hline \hline & \\ \hline & \\ \hline & \\ \hline \hline & \\ \hline \hline & \\ \hline & \\ \hline \hline & \\ \hline & \\ \hline \hline \\ \hline & \\ \hline \hline \\ \hline & \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ & \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$	R 0,9925 0,9911 0,9974 0,9914 0,9959 0,9889 0,9866 0,9119 0,9870 0,9779 0,9832	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	R 0,9865 0,9997 0,9806 0,9995 0,9981 0,9426 0,9990 0,9236 0,9991 0,9981 0,9981 0,9946
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef	Horizonte A B A B A B A B A B A B A B	$\begin{array}{r} \hline & Equat \\ \hline & Equat \\ \hline & \\ \hline \hline & \\ \hline \hline & \\ \hline \hline & \\ \hline & \\ \hline \hline & \\ \hline & \\ \hline \hline & \\ \hline \hline & \\ \hline \hline \\ \hline & \\ \hline \hline \\ \hline \\$	R 0,9925 0,9911 0,9974 0,9914 0,9959 0,9866 0,9119 0,9870 0,9779 0,9832 0,9947	ara Chumbo Freundlich y=(434)*x^(1/(2,9)) y=(239)*x^(1/(2,23)) y=(280)*x^(1/(2,23)) y=(280)*x^(1/(2,1)) y=(354)*x^(1/(2,11)) y=(354)*x^(1/(2,10)) y=(42)*x^(1/(2,27)) y=(42)*x^(1/(2,51)) y=(722)*x^(1/(2,51)) y=(1094)*x^(1/(2,8)) y=(360)*x^(1/(1,95))	R 0,9865 0,9997 0,9806 0,9995 0,9981 0,9426 0,9990 0,9236 0,9991 0,9981 0,9981 0,9946 0,9995
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp	Horizonte A B A B A B A B A B A B A B A A	$\begin{array}{r} \hline \\ \hline $	ções das isotermas p R 0,9925 0,9911 0,9974 0,9914 0,9959 0,9889 0,9866 0,9119 0,9870 0,9870 0,9779 0,9832 0,9947 0,9740	ara Chumbo Freundlich y=(434)*x^(1/(2,9)) y=(239)*x^(1/(2,23)) y=(280)*x^(1/(2,23)) y=(280)*x^(1/(2,1)) y=(354)*x^(1/(2,10)) y=(42)*x^(1/(2,27)) y=(42)*x^(1/(2,51)) y=(722)*x^(1/(2,71)) y=(1094)*x^(1/(2,8)) y=(360)*x^(1/(1,95)) y=(578)*x^(1/(3))	R 0,9865 0,9997 0,9806 0,9995 0,9981 0,9426 0,9990 0,9236 0,9991 0,9981 0,9981 0,9946 0,9995 0,9995 0,9937
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 6. NVF	Horizonte A B A B A B A B A B A B A B A B A B A	$\begin{array}{r} \hline \\ \hline $	store store R 0,9925 0,9911 0,9974 0,9974 0,9914 0,9959 0,9889 0,9866 0,9119 0,9870 0,9870 0,98770 0,9779 0,9832 0,9947 0,9740 0,9740 0,9740 0,9740 0,9740 0,9740 0,9760 0,97740 0,9760 0,97740 0,9760 0,97740 0,9760 0,97740 0,9760 0,97740 0,9760 0,9760 0,97740 0,9760 0,9760 0,9760 0,97740 0,9760 0,9760 0,9760 0,97740 0,9760 0,97740 0,9760 0,97740 0,9760 0,97740 0,9760 0,9760 0,97740 0,9760 0,97740 0,9760 0,97740 0,9760 0,9760 0,9760 0,9770 0,9760 0,97740 0,9760 0,9760 0,9760 0,9770 0,9760 0,9770 0,9760 0,9770 0,9760 0,9770 0,9760 0,9770 0,9770 0,9760 0,9770 0,9770 0,9760 0,9770 0,9770 0,9	ara Chumbo Freundlich y=(434)*x^(1/(2,9)) y=(239)*x^(1/(2,23)) y=(280)*x^(1/(2,23)) y=(280)*x^(1/(2,1)) y=(354)*x^(1/(2,10)) y=(42)*x^(1/(2,27)) y=(42)*x^(1/(2,51)) y=(722)*x^(1/(2,51)) y=(1094)*x^(1/(2,8)) y=(360)*x^(1/(1,95)) y=(578)*x^(1/(3,7)) y=(423)*x^(1/(3,7))	R 0,9865 0,9997 0,9806 0,9995 0,9981 0,9426 0,9990 0,9236 0,9991 0,9236 0,9991 0,9981 0,9946 0,9995 0,9937 0,9989
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk	Horizonte A B A B A B A B A B A B A B A B A B A	$\frac{\text{Langmuir}}{\text{Equat}}$ $y=(0,36)^{*}(1335)^{*}x/1+(0,36)^{*}x$ $y=(0,11)^{*}(1361)^{*}x/1+(0,11)^{*}x$ $y=(0,15)^{*}(1597)^{*}x/1+(0,15)^{*}x$ $y=(0,20)^{*}(1640)^{*}x/1+(0,00)^{*}x$ $y=(0,20)^{*}(1640)^{*}x/1+(0,20)^{*}x$ $y=(0,20)^{*}(1640)^{*}x/1+(0,20)^{*}x$ $y=(0,10)^{*}(1302)^{*}x/1+(0,10)^{*}x$ $y=(0,03)^{*}(467)^{*}x/1+(0,03)^{*}x$ $y=(0,27)^{*}(1432)^{*}x/1+(0,27)^{*}x$ $y=(0,27)^{*}(1432)^{*}x/1+(0,27)^{*}x$ $y=(0,19)^{*}(1525)^{*}x/1+(1,0)^{*}x$ $y=(0,19)^{*}(1809)^{*}x/1+(0,19)^{*}x$ $y=(0,94)^{*}(1084)^{*}x/1+(0,94)^{*}x$ $y=(4)^{*}(1317)^{*}x/1+(4)^{*}x$	cost cost R R 0,9925 0,9911 0,9974 0,9974 0,9974 0,9974 0,9959 0,9889 0,9866 0,9119 0,9870 0,9870 0,9947 0,9947 0,9954 0,9686	Image: Colspan="2">Image: Colspan="2" Image: Colspan="2">Image: Colspan="2" Image: Colspan="2"	R 0,9865 0,9997 0,9806 0,9995 0,9981 0,9426 0,9990 0,9236 0,9991 0,9981 0,9981 0,9946 0,9995 0,9995 0,9937 0,9989 0,9915
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 0. CVb	Horizonte A B A B A B A B A B A B A B A B A B A	$\frac{\text{Langmuir}}{\text{Equat}}$ $= (0,36)^{*}(1335)^{*}x/1+(0,36)^{*}x$ $y=(0,11)^{*}(1361)^{*}x/1+(0,11)^{*}x$ $y=(0,15)^{*}(1597)^{*}x/1+(0,15)^{*}x$ $y=(0,20)^{*}(1640)^{*}x/1+(0,00)^{*}x$ $y=(0,20)^{*}(1640)^{*}x/1+(0,20)^{*}x$ $y=(0,20)^{*}(1640)^{*}x/1+(0,20)^{*}x$ $y=(0,10)^{*}(1302)^{*}x/1+(0,10)^{*}x$ $y=(0,27)^{*}(1432)^{*}x/1+(0,27)^{*}x$ $y=(1,0)^{*}(1525)^{*}x/1+(1,0)^{*}x$ $y=(0,19)^{*}(1432)^{*}x/1+(0,27)^{*}x$ $y=(0,19)^{*}(1809)^{*}x/1+(0,19)^{*}x$ $y=(0,94)^{*}(1084)^{*}x/1+(0,94)^{*}x$ $y=(2)^{*}(1131)^{*}x/1+(2)^{*}x$ $y=(2)^{*}(1131)^{*}x/1+(2)^{*}x$	sotermas p R 0,9925 0,9911 0,9974 0,9974 0,9959 0,9889 0,9866 0,9119 0,9870 0,9832 0,9947 0,99540 0,9832 0,9947 0,9686 0,9654 0,9636 0,9636	ara Chumbo Freundlich y=(434)*x^(1/(2,9)) y=(239)*x^(1/(2,23)) y=(280)*x^(1/(2,23)) y=(280)*x^(1/(2,2)) y=(139)*x^(1/(2,1)) y=(354)*x^(1/(2,1)) y=(42)*x^(1/(2,1)) y=(42)*x^(1/(2,1)) y=(393)*x^(1/(2,51)) y=(722)*x^(1/(2,7)) y=(1094)*x^(1/(2,8)) y=(360)*x^(1/(2,8)) y=(578)*x^(1/(3,7)) y=(493)*x^(1/(3,7)) y=(639)*x^(1/(4,1)) y=(639)*x^(1/(4,2))	R 0,9865 0,9997 0,9806 0,9995 0,9981 0,9426 0,9990 0,9236 0,9991 0,9981 0,9946 0,9995 0,9995 0,9995 0,9937 0,9989 0,9915 0,9922 0,9910
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXbe	Horizonte A B A B A B A B A B A B A B A B A B A	$\frac{\text{Langmuir}}{\text{Equat}}$ $= (0,36)^*(1335)^*x/1+(0,36)^*x$ $y=(0,11)^*(1361)^*x/1+(0,11)^*x$ $y=(0,15)^*(1597)^*x/1+(0,15)^*x$ $y=(0,06)^*(1116)^*x/1+(0,06)^*x$ $y=(0,20)^*(1640)^*x/1+(0,20)^*x$ $y=(0,20)^*(1640)^*x/1+(0,20)^*x$ $y=(0,10)^*(1302)^*x/1+(0,10)^*x$ $y=(0,03)^*(467)^*x/1+(0,03)^*x$ $y=(0,27)^*(1432)^*x/1+(0,27)^*x$ $y=(1,0)^*(1525)^*x/1+(1,0)^*x$ $y=(2,1)^*(1740)^*x/1+(2,1)^*x$ $y=(0,19)^*(1809)^*x/1+(0,19)^*x$ $y=(0,94)^*(1084)^*x/1+(0,94)^*x$ $y=(2)^*(1131)^*x/1+(4)^*x$ $y=(2)^*(1131)^*x/1+(2)^*x$ $y=(2)^*(1131)^*x/1+(2)^*x$ $y=(2)^*(1409)^*x/1+(2,2)^*x$ $y=(2)^*(1409)^*x/1+(2,2)^*x$	cost cost R R 0,9925 0,9911 0,9974 0,9974 0,9959 0,9889 0,9866 0,9119 0,9870 0,9870 0,9779 0,9832 0,9947 0,9740 0,9686 0,9654 0,9654 0,9636 0,9890 0.9455	ara Chumbo Freundlich y=(434)*x^(1/(2,9)) y=(239)*x^(1/(2,23)) y=(230)*x^(1/(2,23)) y=(280)*x^(1/(2,21)) y=(354)*x^(1/(2,10)) y=(42)*x^(1/(2,11)) y=(42)*x^(1/(2,21)) y=(42)*x^(1/(2,21)) y=(393)*x^(1/(2,51)) y=(722)*x^(1/(2,7)) y=(1094)*x^(1/(2,8)) y=(360)*x^(1/(2,8)) y=(578)*x^(1/(3,7)) y=(493)*x^(1/(3,7)) y=(639)*x^(1/(4,1)) y=(818)*x^(1/(4,1)) y=(44)*x^(1/(4,5))	R 0,9865 0,9997 0,9806 0,9995 0,9981 0,9426 0,9990 0,9236 0,9991 0,9981 0,9946 0,9995 0,9995 0,9937 0,9989 0,9915 0,9922 0,9910 0,9055
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXbe 10. CXbd	Horizonte A B A B A B A B A B A B A B A B A B A	$\frac{\text{Langmuir}}{\text{Equat}}$ $= (0,36)^*(1335)^*x/1+(0,36)^*x$ $y=(0,11)^*(1361)^*x/1+(0,11)^*x$ $y=(0,15)^*(1597)^*x/1+(0,15)^*x$ $y=(0,06)^*(1116)^*x/1+(0,06)^*x$ $y=(0,20)^*(1640)^*x/1+(0,20)^*x$ $y=(0,20)^*(1640)^*x/1+(0,10)^*x$ $y=(0,10)^*(1302)^*x/1+(0,10)^*x$ $y=(0,27)^*(1432)^*x/1+(0,27)^*x$ $y=(1,0)^*(1525)^*x/1+(1,0)^*x$ $y=(2,1)^*(1740)^*x/1+(2,1)^*x$ $y=(0,9)^*(1311)^*x/1+(0,9)^*x$ $y=(0,94)^*(1084)^*x/1+(0,94)^*x$ $y=(2)^*(1131)^*x/1+(4)^*x$ $y=(2)^*(1131)^*x/1+(2)^*x$ $y=(2,2)^*(1131)^*x/1+(2)^*x$ $y=(0,97)^*(121)^*x/1+(2,2)^*x$ $y=(0,67)^*(229)^*x/1+(0,6)^*x$	constraints R 0,9925 0,9911 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9959 0,9889 0,9889 0,9870 0,9779 0,9832 0,9947 0,9740 0,9686 0,9654 0,9636 0,9485 0,9943	ara Chumbo Freundlich y=(434)*x^(1/(2,9)) y=(239)*x^(1/(2,23)) y=(239)*x^(1/(2,23)) y=(280)*x^(1/(2,21)) y=(139)*x^(1/(2,11)) y=(354)*x^(1/(2,10)) y=(42)*x^(1/(2,21)) y=(42)*x^(1/(2,21)) y=(393)*x^(1/(2,51)) y=(722)*x^(1/(2,7)) y=(1094)*x^(1/(2,8)) y=(360)*x^(1/(2,8)) y=(578)*x^(1/(3,7)) y=(493)*x^(1/(3,7)) y=(639)*x^(1/(4,1)) y=(639)*x^(1/(4,4)) y=(518)*x^(1/(3,3)) y=(244)*x^(1/(2,12))	R 0,9865 0,9997 0,9806 0,9995 0,9981 0,9426 0,9990 0,9236 0,9991 0,9981 0,9946 0,9995 0,9995 0,9995 0,9937 0,9989 0,9915 0,9922 0,9915 0,9922 0,9910 0,9695 0,9695 0,9695
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXbe 10. CXbd	Horizonte A B A B A B A B A B A B A B A B A B A	$\frac{\text{Langmuir}}{\text{Equat}}$ $= (0.36)^*(1335)^*x/1+(0.36)^*x$ $y=(0,11)^*(1361)^*x/1+(0,11)^*x$ $y=(0,15)^*(1597)^*x/1+(0,15)^*x$ $y=(0,06)^*(1116)^*x/1+(0,06)^*x$ $y=(0,20)^*(1640)^*x/1+(0,20)^*x$ $y=(0,20)^*(1640)^*x/1+(0,20)^*x$ $y=(0,10)^*(1302)^*x/1+(0,10)^*x$ $y=(0,27)^*(1432)^*x/1+(0,27)^*x$ $y=(1,0)^*(1525)^*x/1+(1,0)^*x$ $y=(2,1)^*(1740)^*x/1+(2,1)^*x$ $y=(0,9)^*(1311)^*x/1+(0,9)^*x$ $y=(0,94)^*(1084)^*x/1+(0,94)^*x$ $y=(2)^*(1131)^*x/1+(4)^*x$ $y=(2)^*(1131)^*x/1+(2)^*x$ $y=(2,2)^*(1131)^*x/1+(2)^*x$ $y=(0,6)^*(529)^*x/1+(0,6)^*x$ $y=(0,05)^*(1128)^*x/1+(0,07)^*x$	constraints R 0,9925 0,9911 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9959 0,9889 0,9866 0,9119 0,9870 0,9779 0,9779 0,9740 0,9686 0,9654 0,9636 0,9880 0,9485 0,9913 0,9945	ara Chumbo Freundlich y=(434)*x^(1/(2,9)) y=(434)*x^(1/(2,9)) y=(239)*x^(1/(2,23)) y=(239)*x^(1/(2,23)) y=(239)*x^(1/(2,21)) y=(340)*x^(1/(2,11)) y=(340)*x^(1/(2,11)) y=(42)*x^(1/(2,21)) y=(42)*x^(1/(2,21)) y=(722)*x^(1/(2,71)) y=(722)*x^(1/(2,71)) y=(722)*x^(1/(2,71)) y=(722)*x^(1/(2,71)) y=(72)*x^(1/(2,71)) y=(360)*x^(1/(2,71)) y=(360)*x^(1/(2,71)) y=(360)*x^(1/(3,71)) y=(639)*x^(1/(3,71)) y=(639)*x^(1/(4,41)) y=(639)*x^(1/(4,41)) y=(244)*x^(1/(3,3)) y=(244)*x^(1/(2,71)) y=(155)*x^(1/(2,217))	R 0,9865 0,9997 0,9806 0,9995 0,9981 0,9426 0,9990 0,9236 0,9991 0,9981 0,9946 0,9995 0,9995 0,9937 0,9989 0,9915 0,9922 0,9915 0,9922 0,9910 0,9695 0,9987 0,9987 0,9943
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXbe 10. CXbd 11. FEcd.	Horizonte A B A B A B A B A B A B A B A B A B A	$\frac{\text{Langmuir}}{\text{Equat}}$ $= (0,36)^*(1335)^*x/1+(0,36)^*x$ $y=(0,11)^*(1361)^*x/1+(0,11)^*x$ $y=(0,15)^*(1597)^*x/1+(0,15)^*x$ $y=(0,06)^*(1116)^*x/1+(0,06)^*x$ $y=(0,20)^*(1640)^*x/1+(0,20)^*x$ $y=(0,20)^*(1640)^*x/1+(0,20)^*x$ $y=(0,10)^*(1302)^*x/1+(0,10)^*x$ $y=(0,27)^*(1432)^*x/1+(0,27)^*x$ $y=(1,0)^*(1525)^*x/1+(1,0)^*x$ $y=(2,1)^*(1740)^*x/1+(2,1)^*x$ $y=(0,9)^*(1311)^*x/1+(0,9)^*x$ $y=(0,94)^*(1084)^*x/1+(0,94)^*x$ $y=(2)^*(1131)^*x/1+(2)^*x$ $y=(2)^*(1131)^*x/1+(2)^*x$ $y=(2)^*(1131)^*x/1+(2)^*x$ $y=(2)^*(1131)^*x/1+(2)^*x$ $y=(0,6)^*(529)^*x/1+(0,6)^*x$ $y=(0,07)^*(1128)^*x/1+(0,07)^*x$ $y=(0,06)^*(818)^*x/1+(0,06)^*x$ $y=(0,24)^*(1654)^*x/1+(0,40)^*x$	constraints R 0,9925 0,9911 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9959 0,9889 0,9889 0,9870 0,9779 0,9832 0,9947 0,9740 0,9686 0,9654 0,9636 0,9945 0,9945 0,9945	ara Chumbo Freundlich y=(434)*x^(1/(2,9)) y=(434)*x^(1/(2,9)) y=(239)*x^(1/(2,23)) y=(239)*x^(1/(2,23)) y=(239)*x^(1/(2,21)) y=(340)*x^(1/(2,11)) y=(340)*x^(1/(2,11)) y=(42)*x^(1/(2,11)) y=(32)*x^(1/(2,21)) y=(722)*x^(1/(2,21)) y=(722)*x^(1/(2,51)) y=(722)*x^(1/(2,51)) y=(722)*x^(1/(2,51)) y=(722)*x^(1/(2,51)) y=(722)*x^(1/(2,51)) y=(722)*x^(1/(2,51)) y=(722)*x^(1/(2,51)) y=(722)*x^(1/(2,51)) y=(72)*x^(1/(2,51)) y=(72)*x^(1/(2,51)) y=(72)*x^(1/(2,51)) y=(72)*x^(1/(2,7)) y=(360)*x^(1/(3,7)) y=(639)*x^(1/(3,7)) y=(639)*x^(1/(4,4)) y=(244)*x^(1/(5,5)) y=(155)*x^(1/(2,23)) y=(156)*x^(1/(2,32)) <td>R 0,9865 0,9997 0,9806 0,9995 0,9981 0,9426 0,9990 0,9236 0,9991 0,9981 0,9946 0,9995 0,9937 0,9989 0,9915 0,9922 0,9915 0,9922 0,9910 0,9695 0,9987 0,9943 0,9943 0,9982</td>	R 0,9865 0,9997 0,9806 0,9995 0,9981 0,9426 0,9990 0,9236 0,9991 0,9981 0,9946 0,9995 0,9937 0,9989 0,9915 0,9922 0,9915 0,9922 0,9910 0,9695 0,9987 0,9943 0,9943 0,9982
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXbe 10. CXbd 11. FFcd ₁	Horizonte A B A B A B A B A B A B A B A B A B A	$\frac{\text{Langmuir}}{\text{Equat}}$ $= (0,36)^*(1335)^*x/1+(0,36)^*x$ $y=(0,11)^*(1361)^*x/1+(0,11)^*x$ $y=(0,15)^*(1597)^*x/1+(0,15)^*x$ $y=(0,06)^*(1116)^*x/1+(0,06)^*x$ $y=(0,20)^*(1640)^*x/1+(0,20)^*x$ $y=(0,20)^*(1640)^*x/1+(0,10)^*x$ $y=(0,03)^*(467)^*x/1+(0,10)^*x$ $y=(0,27)^*(1432)^*x/1+(0,27)^*x$ $y=(1,0)^*(1525)^*x/1+(1,0)^*x$ $y=(2,1)^*(1740)^*x/1+(2,1)^*x$ $y=(0,9)^*(1311)^*x/1+(0,9)^*x$ $y=(0,94)^*(1084)^*x/1+(0,94)^*x$ $y=(2)^*(1131)^*x/1+(2)^*x$ $y=(2)^*(1131)^*x/1+(2)^*x$ $y=(2)^*(1131)^*x/1+(2)^*x$ $y=(2)^*(1131)^*x/1+(2)^*x$ $y=(0,6)^*(529)^*x/1+(0,6)^*x$ $y=(0,6)^*(529)^*x/1+(0,6)^*x$ $y=(0,6)^*(1654)^*x/1+(0,69)^*x$ $y=(0,6)^*(1654)^*x/1+(0,49)^*x$ $y=(0,11)^*(77)^*x/1+(0,11)^*x$	constraints R 0,9925 0,9911 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9959 0,9889 0,9889 0,9870 0,9779 0,9832 0,9947 0,9740 0,9686 0,9654 0,9636 0,99485 0,9913 0,9926 0,9984	ara Chumbo Freundlich y=(434)*x^(1/(2,9)) y=(434)*x^(1/(2,9)) y=(434)*x^(1/(2,23)) y=(239)*x^(1/(2,23)) y=(239)*x^(1/(2,21)) y=(354)*x^(1/(2,11)) y=(354)*x^(1/(2,11)) y=(42)*x^(1/(2,11)) y=(42)*x^(1/(2,21)) y=(722)*x^(1/(2,21)) y=(722)*x^(1/(2,21)) y=(722)*x^(1/(2,21)) y=(722)*x^(1/(2,21)) y=(722)*x^(1/(2,21)) y=(722)*x^(1/(2,21)) y=(722)*x^(1/(2,21)) y=(722)*x^(1/(2,21)) y=(722)*x^(1/(2,21)) y=(72)*x^(1/(2,31)) y=(72)*x^(1/(2,31)) y=(72)*x^(1/(2,31)) y=(169)*x^(1/(2,31)) y=(249)*x^(1/(2,31)) y=(168)*x^(1/(2,31)) y=(168)*x^(1/(2,31)) y=(168)*x^(1/(2,37))) y=(168)*x^(1/(2,37)) y=(168)*x^(1/(2,37))	R 0,9865 0,9997 0,9806 0,9995 0,9981 0,9426 0,9990 0,9236 0,9991 0,9981 0,9946 0,9995 0,9937 0,9989 0,9915 0,9922 0,9915 0,9922 0,9910 0,9695 0,9987 0,9943 0,9982 0,9982 0,9952
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXbe 10. CXbd 11. FFcd ₁ 12. FFcd ₂	Horizonte A B A B A B A B A B A B A B A B A B A	$\frac{\text{Langmuir}}{\text{Equat}}$ $\frac{\text{Equat}}{(-1)^{2}} = \frac{(-1)^{2}}{(-1)^{2}} = \frac$	constraints R 0,9925 0,9911 0,9974 0,9974 0,9911 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9959 0,9889 0,9889 0,9870 0,9779 0,9832 0,9947 0,9740 0,9686 0,9654 0,9636 0,9636 0,9913 0,9945 0,9926 0,9984 0,9867	ara Chumbo Freundlich y=(434)*x^(1/(2,9)) y=(434)*x^(1/(2,9)) y=(434)*x^(1/(2,23)) y=(239)*x^(1/(2,23)) y=(239)*x^(1/(2,21)) y=(354)*x^(1/(2,11)) y=(354)*x^(1/(2,11)) y=(42)*x^(1/(2,27)) y=(42)*x^(1/(2,27)) y=(42)*x^(1/(2,27)) y=(42)*x^(1/(2,27)) y=(42)*x^(1/(2,27)) y=(1094)*x^(1/(2,27)) y=(1094)*x^(1/(2,7)) y=(1094)*x^(1/(2,7)) y=(104)*x^(1/(2,31)) y=(104)*x^(1/(2,37)) y=(104)*x^(1/(2,0)) y=(104)*x^(1/(1,80))	R 0,9865 0,9997 0,9806 0,9995 0,9981 0,9426 0,9990 0,9236 0,9991 0,9981 0,9946 0,9995 0,9937 0,9989 0,9915 0,9922 0,9915 0,9922 0,9910 0,9695 0,9987 0,9943 0,9982 0,9952 0,9952 0,9952 0,9952 0,9793
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXbe 10. CXbd 11. FFcd ₁ 12. FFcd ₂	Horizonte A B A B A B A B A B A B A B A B A B A	$\frac{\text{Langmuir}}{\text{Equat}}$ $\frac{\text{Equat}}{\text{Equat}}$ $y=(0,36)^*(1335)^*x/1+(0,36)^*x$ $y=(0,11)^*(1361)^*x/1+(0,11)^*x$ $y=(0,05)^*(1597)^*x/1+(0,15)^*x$ $y=(0,20)^*(1640)^*x/1+(0,20)^*x$ $y=(0,20)^*(1640)^*x/1+(0,20)^*x$ $y=(0,03)^*(467)^*x/1+(0,03)^*x$ $y=(0,27)^*(1432)^*x/1+(0,10)^*x$ $y=(0,27)^*(1432)^*x/1+(0,19)^*x$ $y=(0,19)^*(1309)^*x/1+(0,19)^*x$ $y=(0,94)^*(1084)^*x/1+(0,94)^*x$ $y=(2)^*(1131)^*x/1+(0,94)^*x$ $y=(2)^*(1131)^*x/1+(2)^*x$ $y=(2)^*(1131)^*x/1+(2)^*x$ $y=(2)^*(1131)^*x/1+(2)^*x$ $y=(2)^*(1131)^*x/1+(0,94)^*x$ $y=(2)^*(1131)^*x/1+(2)^*x$ $y=(2)^*(1131)^*x/1+(2)^*x$ $y=(2)^*(1131)^*x/1+(2)^*x$ $y=(0,6)^*(529)^*x/1+(0,64)^*x$ $y=(0,07)^*(1128)^*x/1+(0,07)^*x$ $y=(0,06)^*(1524)^*x/1+(0,06)^*x$ $y=(0,027)^*(1027)^*x/1+(0,065)^*x$	constraints R 0,9925 0,9911 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9974 0,9959 0,9889 0,9889 0,9870 0,9779 0,9832 0,9947 0,9740 0,9686 0,9654 0,9636 0,9636 0,9913 0,9945 0,9926 0,9984 0,9867 0,9958	ara Chumbo Freundlich y=(34)*x^(1/(2,9)) y=(239)*x^(1/(2,23)) y=(280)*x^(1/(2,1)) y=(280)*x^(1/(2,1)) y=(139)*x^(1/(2,1)) y=(36)*x^(1/(2,1)) y=(32)*x^(1/(2,27)) y=(40)*x^(1/(2,27)) y=(42)*x^(1/(2,27)) y=(360)*x^(1/(2,51)) y=(722)*x^(1/(2,7)) y=(1094)*x^(1/(2,8)) y=(578)*x^(1/(4,7)) y=(539)*x^(1/(4,1)) y=(639)*x^(1/(4,1)) y=(639)*x^(1/(2,37)) y=(104)*x^(1/(2,37)) y=(104)*x^(1/(2,0)) y=(295)*x^(1/(1,80)) y=(63)*x^(1/(1,76))	R 0,9865 0,9997 0,9806 0,9995 0,9981 0,9426 0,9990 0,9236 0,9991 0,9981 0,9946 0,9995 0,9937 0,9989 0,9915 0,9915 0,9922 0,9910 0,9695 0,9987 0,9987 0,9987 0,9987 0,9983 0,9952 0,9952 0,9793 0,9986
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXbe 10. CXbd 11. FFcd1 12. FFcd2 13. CXd	Horizonte A B A B A B A B A B A B A B A B A B A	$\frac{\text{Langmuir}}{\text{Equat}}$ $\frac{\text{Equat}}{\text{Equat}}$ $y=(0,36)^*(1335)^*x/1+(0,36)^*x$ $y=(0,11)^*(1361)^*x/1+(0,11)^*x$ $y=(0,15)^*(1597)^*x/1+(0,15)^*x$ $y=(0,20)^*(1640)^*x/1+(0,20)^*x$ $y=(0,20)^*(1640)^*x/1+(0,20)^*x$ $y=(0,20)^*(1647)^*x/1+(0,03)^*x$ $y=(0,20)^*(1432)^*x/1+(0,03)^*x$ $y=(0,27)^*(1432)^*x/1+(0,03)^*x$ $y=(0,27)^*(1432)^*x/1+(0,19)^*x$ $y=(0,19)^*(1809)^*x/1+(0,19)^*x$ $y=(0,94)^*(1084)^*x/1+(0,9)^*x$ $y=(0,94)^*(1084)^*x/1+(0,9)^*x$ $y=(2,2)^*(1409)^*x/1+(2,2)^*x$ $y=(2,2)^*(1409)^*x/1+(2,2)^*x$ $y=(0,6)^*(529)^*x/1+(0,6)^*x$ $y=(0,07)^*(1128)^*x/1+(0,07)^*x$ $y=(0,06)^*(1528)^*x/1+(0,07)^*x$ $y=(0,065)^*(1528)^*x/1+(0,065)^*x$ $y=(0,027)^*(1027)^*x/1+(0,027)^*x$ $y=(1,98)^*(2076)^*x/1+(1,98)^*x$	constraint constraint constraint R 0,9925 0,9911 0,9974 0,9974 0,9974 0,9914 0,9959 0,9889 0,9889 0,9866 0,9119 0,9870 0,9779 0,9832 0,9947 0,9740 0,9686 0,9636 0,9636 0,9636 0,9636 0,99513 0,9945 0,9945 0,9945 0,99945 0,9958 0,9950	ara Chumbo Freundlich y=(434)*x^(1/(2,9)) y=(239)*x^(1/(2,23)) y=(280)*x^(1/(2,1)) y=(280)*x^(1/(2,1)) y=(139)*x^(1/(2,1)) y=(361)*x^(1/(2,1)) y=(401)*x^(1/(2,27)) y=(42)*x^(1/(2,27)) y=(42)*x^(1/(2,27)) y=(360)*x^(1/(2,51)) y=(722)*x^(1/(2,7)) y=(360)*x^(1/(2,8)) y=(360)*x^(1/(2,8)) y=(360)*x^(1/(3,7)) y=(903)*x^(1/(4,4)) y=(639)*x^(1/(4,4)) y=(155)*x^(1/(2,7)) y=(155)*x^(1/(2,3)) y=(568)*x'(1/(2,37)) y=(104)*x^(1/(2,0)) y=(63)*x^(1/(1,76)) y=(63)*x^(1/(1,76)) y=(63)*x^(1/(1,76))	R 0,9865 0,9997 0,9806 0,9995 0,9981 0,9426 0,9990 0,9236 0,9991 0,9981 0,9946 0,9995 0,9937 0,9985 0,9915 0,9915 0,9915 0,9915 0,9915 0,9915 0,9922 0,9910 0,9695 0,9987 0,9943 0,9982 0,9952 0,9793 0,9985
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXbe 10. CXbd 11. FFcd ₁ 12. FFcd ₂ 13. CXd	Horizonte A B A B A B A B A B A B A B A B A B A	$\frac{\text{Langmuir}}{\text{Equat}}$ $\frac{\text{Equat}}{(0,36)^*(1335)^*x/1+(0,36)^*x}$ $y=(0,11)^*(1361)^*x/1+(0,11)^*x$ $y=(0,15)^*(1597)^*x/1+(0,15)^*x$ $y=(0,06)^*(1116)^*x/1+(0,06)^*x$ $y=(0,20)^*(1640)^*x/1+(0,20)^*x$ $y=(0,20)^*(1647)^*x/1+(0,03)^*x$ $y=(0,03)^*(467)^*x/1+(0,03)^*x$ $y=(0,27)^*(1432)^*x/1+(0,03)^*x$ $y=(0,27)^*(1432)^*x/1+(0,19)^*x$ $y=(0,19)^*(1311)^*x/1+(0,19)^*x$ $y=(0,94)^*(1084)^*x/1+(0,94)^*x$ $y=(2,2)^*(1409)^*x/1+(0,94)^*x$ $y=(2,2)^*(1409)^*x/1+(2,2)^*x$ $y=(2,2)^*(1409)^*x/1+(2,2)^*x$ $y=(2,2)^*(1409)^*x/1+(2,2)^*x$ $y=(2,2)^*(1409)^*x/1+(2,2)^*x$ $y=(0,6)^*(529)^*x/1+(0,66)^*x$ $y=(0,07)^*(1128)^*x/1+(0,07)^*x$ $y=(0,06)^*(1528)^*x/1+(0,065)^*x$ $y=(0,065)^*(1528)^*x/1+(0,065)^*x$ $y=(0,07)^*(1027)^*x/1+(1,98)^*x$ $y=(0,035)^*(1024)^*x/1+(0,035)^*x$	constraints R 0,9925 0,9911 0,9974 0,9974 0,9911 0,9974 0,9914 0,9959 0,9889 0,9866 0,9119 0,9870 0,9779 0,9832 0,9947 0,9686 0,9686 0,9636 0,9636 0,9636 0,9645 0,9913 0,9945 0,9945 0,9958 0,9950 0,9950 0,9950	ara Chumbo Freundlich y=(34)*x^(1/(2,9)) y=(239)*x^(1/(2,23)) y=(239)*x^(1/(2,1)) y=(239)*x^(1/(2,1)) y=(239)*x^(1/(2,1)) y=(364)*x^(1/(2,1)) y=(42)*x^(1/(2,27)) y=(42)*x^(1/(2,27)) y=(360)*x^(1/(2,7)) y=(578)*x^(1/(2,8)) y=(578)*x^(1/(2,7)) y=(563)*x^(1/(2,7)) y=(13)*x^(1/(2,3)) y=(568)*x^(1/(2,37)) y=(63)*x^(1/(1,76)) y=(63)*x^(1/(1,82)) y=(149)*x^(1/(1,82)) y=(149)*x^(1/(1,88))	R 0,9865 0,9997 0,9806 0,9995 0,9981 0,9426 0,9990 0,9236 0,9991 0,9981 0,9946 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9915 0,9922 0,9910 0,9695 0,9987 0,9943 0,9982 0,9952 0,9793 0,9986 0,9985 0,9990
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXbe 10. CXbd 11. FFcd1 12. FFcd2 13. CXd 14. RQo	Horizonte A B A B A B A B A B A B A B A B A B A	$\begin{array}{r} \hline \\ \hline $	constraints R 0,9925 0,9911 0,9974 0,9974 0,9911 0,9974 0,9914 0,9959 0,9889 0,9866 0,9779 0,9832 0,9947 0,9686 0,9685 0,9636 0,9636 0,9637 0,9947 0,9740 0,9686 0,9636 0,9686 0,9687 0,99485 0,9945 0,9945 0,9926 0,9950 0,9950 0,9950 0,9927 0,9924	ara Chumbo Freundlich y=(34)*x^(1/(2,9)) y=(239)*x^(1/(2,23)) y=(239)*x^(1/(2,23)) y=(239)*x^(1/(2,11)) y=(239)*x^(1/(2,11)) y=(354)*x^(1/(2,11)) y=(42)*x^(1/(2,27)) y=(42)*x^(1/(2,27)) y=(42)*x^(1/(2,27)) y=(1094)*x^(1/(2,27)) y=(360)*x^(1/(2,51)) y=(578)*x^(1/(2,51)) y=(578)*x^(1/(2,51)) y=(578)*x^(1/(2,51)) y=(578)*x^(1/(2,51)) y=(563)*x^(1/(2,7)) y=(63)*x^(1/(4,41)) y=(568)*x^(1/(2,31)) y=(568)*x^(1/(2,31)) y=(163)*x^(1/(1,20)) y=(63)*x^(1/(1,76)) y=(63)*x^(1/(1,76)) y=(63)*x^(1/(1,82)) y=(62)*x^(1/(1,88)) y=(62)*x^(1/(1,91))	R 0,9865 0,9997 0,9806 0,9995 0,9981 0,9426 0,9990 0,9236 0,9991 0,9993 0,9994 0,9995 0,9991 0,9993 0,9994 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,99910 0,9695 0,99910 0,9695 0,99943 0,99982 0,99984 0,9985 0,99986 0,99986 0,99978
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXbe 10. CXbd 11. FFcd1 12. FFcd2 13. CXd 14. RQo	Horizonte A B A B A B A B A B A B A B A B A B A	$\begin{array}{r} \hline & Equat \\ \hline & equat \\$	constraints R 0,9925 0,9911 0,9974 0,9974 0,9911 0,9974 0,9914 0,9959 0,9889 0,9866 0,9779 0,9832 0,9947 0,9740 0,9686 0,9654 0,9635 0,9913 0,9945 0,9945 0,9945 0,9958 0,9950 0,9950 0,9950 0,9954 0,9957	ara Chumbo Freundlich y=(34)*x^(1/(2,9)) y=(239)*x^(1/(2,23)) y=(280)*x^(1/(2,1)) y=(280)*x^(1/(2,1)) y=(139)*x^(1/(2,1)) y=(354)*x^(1/(2,10)) y=(42)*x^(1/(2,27)) y=(42)*x^(1/(2,27)) y=(42)*x^(1/(2,51)) y=(722)*x^(1/(2,51)) y=(722)*x^(1/(2,51)) y=(360)*x^(1/(2,51)) y=(578)*x^(1/(2,51)) y=(563)*x^(1/(1,7)) y=(639)*x^(1/(4,1)) y=(639)*x^(1/(2,31)) y=(155)*x^(1/(2,31)) y=(568)*x^(1/(2,37)) y=(104)*x^(1/(2,30)) y=(63)*x^(1/(1,76)) y=(63)*x^(1/(1,76)) y=(149)*x^(1/(1,82)) y=(82)*x^(1/(1,88)) y=(62)*x^(1/(1,81)) y=(62)*x^(1/(1,91)) y=(17)*x^(1/(1,37))	R 0,9865 0,9997 0,9806 0,9995 0,9981 0,9426 0,9990 0,9236 0,9991 0,9993 0,9994 0,9995 0,9991 0,9993 0,9994 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,99910 0,9987 0,99943 0,99952 0,9985 0,9985 0,9985 0,99985 0,99978 0,9993
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXbe 10. CXbd 11. FFcd1 12. FFcd2 13. CXd 14. RQo 15. LVAd	Horizonte A B A B A B A B A B A B A B A B A B A	$\begin{array}{r} \hline \\ \hline $	constraints R 0,9925 0,9911 0,9974 0,9974 0,9911 0,9974 0,9914 0,9959 0,9889 0,9870 0,9870 0,9779 0,9832 0,9947 0,9740 0,9686 0,9654 0,9635 0,9947 0,9686 0,9654 0,9685 0,9913 0,9945 0,9926 0,9958 0,9958 0,9957 0,9927 0,9924 0,9923	ara Chumbo Freundlich Freundlich y=(434)*x^(1/(2,9)) y=(239)*x^(1/(2,23)) y=(280)*x^(1/(2,1)) y=(139)*x^(1/(2,1)) y=(354)*x^(1/(2,11)) y=(32)*x^(1/(2,27)) y=(42)*x^(1/(2,27)) y=(42)*x^(1/(2,51)) y=(722)*x^(1/(2,51)) y=(722)*x^(1/(2,51)) y=(360)*x^(1/(2,51)) y=(578)*x^(1/(2,51)) y=(563)*x^(1/(1,51)) y=(639)*x^(1/(4,1)) y=(639)*x^(1/(4,3)) y=(155)*x^(1/(2,37)) y=(155)*x^(1/(2,37)) y=(164)*x^(1/(2,37)) y=(568)*x^(1/(1,76)) y=(63)*x^(1/(1,80)) y=(63)*x^(1/(1,82)) y=(82)*x^(1/(1,82)) y=(82)*x^(1/(1,81)) y=(62)*x^(1/(1,91)) y=(17)*x^(1/(1,37)) y=(321)*x^(1/(2,07))	R 0,9865 0,9997 0,9806 0,9995 0,9995 0,9981 0,9426 0,9990 0,9236 0,9991 0,9993 0,9946 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9910 0,9987 0,9982 0,99952 0,9985 0,9985 0,9985 0,99978 0,9993 0,9997

Tabela 10. Equações de regressão e coeficientes de correlação das isotermas de Langmuir e de Freundlich para cádmio e chumbo

Solos	Horizonte	Equaçõ	es das isotermas	s para cobre	
	-	Langmuir	R	Freundlich	R
1. PVA	А	y=(0,152)*(591)*x/(1+(0,152)*x)	0,9806	y=(143)*x^(1/(2,9))	0,9990
	В	y=(0,044)*(595)*x/(1+(0,044)*x)	0,9945	y=(58)*x^(1/(2))	0,9989
2. LVA	А	y=(0,4)*(969)*x/(1+(0,4)*x)	0,9793	y=(318)*x^(1/(2,93))	0,9991
	В	y=(0,106)*(541)*x/(1+(0,106)*x)	0,9867	y=(110)*x^(1/(2,70))	0,9998
3. LVd	А	y=(0,039)*(874)*x/1+(0,039)*x	0,9847	y=(166)*x^(1/(2,43))	0,9989
	В	y=(0,21)*(614)*x/(1+(0,21)*x)	0,9797	y=(172)*x^(1/(3,09))	0,9997
4. LVAd	А	y=(0,09)*(668)*x/(1+(0,09)*x)	0,9863	y=(117)*x^(1/(2,45))	0,9994
	В	y=(0,013)*(316)*x/1+(0,013)*x	0,9486	y=(19)*x^(1/(1,6))	0,9886
5. LVj	A	y=(0,15)*(708)*x/(1+(0,15)*x)	0,9765	$y=(167)*x^{(1/(2,76))}$	0,9994
	В	y=(0,5)*(746)*x/(1+(0,5)*x)	0,9749	$y=(286)*x^{(1/(3,5))}$	0,9985
6. NVef	A	y=(0,3)*(1079)*x/(1+(0,3)*x)	0,9744	$y=(344)*x^{(1/(2,95))}$	0,9992
	В	y=(0,020)*(1/97)*x/(1+(0,020)*x)	0,9998	$y=(54)*x^{(1/(1,36))}$	0,9992
7. TCp	A	y=(0,12)*(295)*x/(1+(0,12)*x) y=(0,02)*(274)*y/(1+(0,02)*y)	0,9767	$y=(76)*x^{(1/(3,3))}$	0,9956
	В	$y = (0,03)^{*}(3/4)^{*} x/(1+(0,03)^{*} x)$	0,9672	$y = (30) * x^{(1/(2,0))}$	0,9882
8. M I K	A	$y = (1,1)^{*} (702)^{*} X / (1+(1,1)^{*} X)$ $y = (0,2)^{*} (681)^{*} y / (1+(0,2)^{*} y)$	0,9614	$y = (340) * x^{(1/(4,4))}$	0,9904
0 CVha	Б	$y = (0,2)^{\circ} (081)^{\circ} x/(1+(0,2)^{\circ} x)$ $y = (2,4)^{*} (1168)^{*} x/(1+(2,4)^{*} x)$	0,9392	$y = (210)^{*} x^{*} (1/(3,2))$ $y = (712)^{*} x^{*} (1/(2,7))$	0,9829
9. CADE	R	$y = (2,4)^{\circ} (1100)^{\circ} x/(1+(2,4)^{\circ} x)$ y = (0,3)*(372)*y/(1+(0,3)*y)	0,9027	$y = (712)^{*} x^{*} (1/(2,7))$ $y = (147)^{*} x^{*} (1/(4,4))$	0,9900
10 CYbd	Д	$y = (0, 3)^{*} (372)^{*} x/(1+(0, 3)^{*} x)$ $y = (0, 0/1)^{*} (577)^{*} x/(1+(0, 0/1)^{*} x)$	0,9355	$y = (1+7)^{1} X (1/(4,+7))$ $y = (56) * x \wedge (1/(2,02))$	0,9933
10. CAbu	B	$y = (0,041)^{*}(3/7)^{*}x/(1+(0,041)^{*}x)$ $y = (0,023)^{*}(349)^{*}x/(1+(0,023)^{*}x)$	0,9951	$y = (30)^{1}x^{1}(1/(2,02))$ $y = (45)*x^{1}(1/(1,75))$	0,9997
11 FEed	Δ	$y = (0,025)^{*} (5+2)^{*} x (1+(0,025)^{*} x)$ $y = (0,26)^{*} (768)^{*} x / (1+(0,26)^{*} x)$	0,9200	$y = (225) * x^{(1/(1,75))}$	0,9978
11. ITeu	B	$y = (0,20)^{(700)} x/(1+(0,20))^{(1+(0,20))} x$	0,9857	$y = (223) \times (1/(3,0))$ $y = (26) \times (1/(1,59))$	0,9990
12 FEcda	Δ	y = (0,24)*(722)*x/(1+(0,24)*x)	0,9827	$v = (213) * x^{(1/(3,1))}$	0,9978
12.11eu ₂	B	$y=(0,24)^{(122)}x_{1}(1+(0,24)^{-1}x)^{(1+(0,24)-1)}$ $y=(0,018)^{*}(554)^{*}x_{1}(1+(0,018)^{*}x)^{(1+(0,018)-1)}$	0.9916	$y=(24)*x^{(1/(3,1))}$	0.9981
13. CXd	A	v = (0.6)*(1318)*x/(1+(0.6)*x)	0.9827	$y = (488) * x^{(1/(2))}$	0.9991
15.014	В	v = (0.013)*(753)*x/(1+(0.013)*x)	0.9963	$y = (20) * x^{(1/(2.1))}$	0.9989
14. ROo	Ā	v = (0.034)*(447)*x/(1+(0.034)*x)	0.9901	$y = (39) * x^{(1/(2,0))}$	0.9977
	В	y=(0,014)*(458)*x/(1+(0,014)*x)	0,9937	$y = (15) * x^{(1/(1,57))}$	0,9972
15. LVAd	А	v = (0.13)*(716)*x/(1+(0.13)*x)	0.9900	$v = (156) * x^{(1/(2.7))}$	0.9988
	В	v = (0.034)*(468)*x/(1+(0.034)*x)	0.9899	$y = (40) * x^{(1/(1,97))}$	0,9994
			- /	• · · · · · · · · · · · · · · · · · · ·	
Solos	Horizonte	Equa	ões das isoterm	as para zinco	
Solos	Horizonte	Equaç Langmuir	ções das isoterm R	as para zinco Freundlich	R
Solos 1. PVA	Horizonte	Equac Langmuir y=(0,0557)*(260)*x/1+(0,0557)*x x (0,0410)*(220)*=(1,00410)*=	ções das isoterm R 0,9993 0.0815	as para zinco Freundlich $y=(13)*x^{(1/(0,96))}$	R 0,9996
Solos 1. PVA	Horizonte A B	Equation Equation Equation y=(0,0557)*(260)*x/1+(0,0557)*x y=(0,0412)*(320)*x/1+(0,0412)*x y=(0,0412)*(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*x y=(0,0412)*(0,0412)*x	cões das isoterm R 0,9993 0,9815 0,0000	as para zinco Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ ((1)*x^{(1/(0,70))}	R 0,9996 0,9931
Solos 1. PVA 2. LVA	Horizonte A B A P	Equation Equation Equation Equation Equation Equation = (0,0557)*(260)*x/1+(0,0557)*x y=(0,0412)*(320)*x/1+(0,0412)*x y=(0,093)*(496)*x/(1+(0,093)*x) y=(0,042)*(200)*x/1+(0,042)*x y=(0,042)*x y=(0,042)*(200)*x/1+(0,042)*x y=(0,042)*(200)*x/1+(0,042)*x y=(0,042)*(200)*x/1+(0,042)*x y=(0,042)*(200)*x/1+(0,042)*x y=(0,042)*(200)*x/1+(0,042)*x y=(0,042)*(200)*x/1+(0,042)*x y=(0,042)*(200)*x(1+(0,042)*x) y=(0,042)*(200)*x(1+(0,042)*x) y=(0,042)*(200)*x(1+(0,042)*x) y=(0,042)*(200)*x(1+(0,042)*x) y=(0,042)*(200)*x(1+(0,042)*x) y=(0,042)*(200)*x(1+(0,042)*x) y=(0,042)*(200)*x(1+(0,042)*x) y=(0,042)*(200)*x(1+(0,042)*x) y=(0,042)*(200)*x(1+(0,042)*x) y=(0,042)*(200)*x(1+(0,042)*x) y=(0,042)*(200)*x(1+(0,042)*x) y=(0,042)*(200)*x(1+(0,042)*x) y=(0,042)*(200)*x(1+(0,042)*x) y=(0,042)*(200)*x(1+(0,042)*x) y=(0,042)*x(1+(0,042)*x)	cões das isoterm R 0,9993 0,9815 0,9998 0,9780	as para zinco Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(61)*x^{(1/(1,72))}$ $y=(6)*x^{(1/(1,72))}$	R 0,9996 0,9931 0,9989 0,0042
Solos 1. PVA 2. LVA 3. LVA	Horizonte A B A B	Equation 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	oes das isoterm R 0,9993 0,9815 0,9998 0,9780 0,9778	as para zinco Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(61)*x^{(1/(1,72))}$ $y=(6)*x^{(1/(0,89))}$ $y=(1/4)*x^{(1/(0,89))}$	R 0,9996 0,9931 0,9989 0,9942 0,0978
Solos 1. PVA 2. LVA 3. LVd	Horizonte A B A B A B	$\begin{array}{r} & & & & & & & & & & & & & & & & & & &$	cões das isoterm R 0,9993 0,9815 0,9998 0,9780 0,9778 0,9982	as para zinco Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(61)*x^{(1/(1,72))}$ $y=(6)*x^{(1/(0,89))}$ $y=(14)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,3))}$	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9972
Solos 1. PVA 2. LVA 3. LVd 4. LVAd	Horizonte A B A B A B A	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	R 0,9993 0,9815 0,9998 0,9780 0,9778 0,9982 0,9611	as para zinco Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(61)*x^{(1/(1,72))}$ $y=(6)*x^{(1/(0,89))}$ $y=(14)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,23))}$ $y=(6)*x^{(1/(1,23))}$	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9992 0,9611
Solos 1. PVA 2. LVA 3. LVd 4. LVAd	Horizonte A B A B A B A B A B A B	$\begin{array}{r} & \qquad $	R 0,9993 0,9993 0,9998 0,9780 0,9778 0,9982 0,9611 0,985	as para zinco Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(61)*x^{(1/(1,72))}$ $y=(6)*x^{(1/(1,72))}$ $y=(14)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,23))}$ $y=(6)*x^{(1/(1,23))}$ $y=(6)*x^{(1/(1,23))}$	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9992 0,9611 0,9952
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVi	Horizonte A B A B A B A B A A	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	R 0,9993 0,9815 0,9998 0,9780 0,9778 0,9982 0,9611 0,9895 0,9820	as para zinco Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(61)*x^{(1/(1,72))}$ $y=(6)*x^{(1/(0,89))}$ $y=(14)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,23))}$ $y=(6)*x^{(1/(1,23))}$ $y=(6)*x^{(1/(1,0))}$ $y=(47)*x^{(1/(1,7))}$ $y=(10)*x^{(1/(1,7))}$	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9992 0,9611 0,9952 0,9959
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj	Horizonte A B A B A B A B A B A B	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	R 0,9993 0,9993 0,9993 0,9915 0,9998 0,9778 0,9982 0,9611 0,9895 0,9820 0,9847	as para zinco Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(61)*x^{(1/(1,72))}$ $y=(6)*x^{(1/(0,89))}$ $y=(14)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,23))}$ $y=(6)*x^{(1/(1,23))}$ $y=(47)*x^{(1/(1,7))}$ $y=(10)*x^{(1/(1,7))}$ $y=(10)*x^{(1/(0,97))}$ $y=(42)*x^{(1/(1,3))}$	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9992 0,9611 0,9952 0,9959 0,9866
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef	Horizonte A B A B A B A B A A A A	$\begin{array}{r} & \qquad $	R 0,9993 0,9993 0,9993 0,9915 0,9998 0,9780 0,9778 0,9982 0,9611 0,9895 0,9820 0,9847 0,9990	as para zinco Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(61)*x^{(1/(1,72))}$ $y=(6)*x^{(1/(0,89))}$ $y=(14)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,3))}$ $y=(6)*x^{(1/(1,23))}$ $y=(47)*x^{(1/(1,7))}$ $y=(10)*x^{(1/(1,7))}$ $y=(2)*x^{(1/(1,7))}$ $y=(42)*x^{(1/(1,3))}$ $y=(59)*x^{(1/(1,3))}$	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9992 0,9611 0,9952 0,9959 0,9866 0,9996
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef	Horizonte A B A B A B A B A B A B B A B	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	R 0,9993 0,9993 0,9993 0,9815 0,9998 0,9778 0,9982 0,9611 0,9895 0,9820 0,9847 0,9990 0,9867	as para zinco Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(61)*x^{(1/(1,72))}$ $y=(6)*x^{(1/(1,72))}$ $y=(14)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,3))}$ $y=(6)*x^{(1/(1,7))}$ $y=(10)*x^{(1/(1,7))}$ $y=(10)*x^{(1/(1,7))}$ $y=(2)*x^{(1/(1,7))}$ $y=(59)*x^{(1/(1,52))}$ $y=(51)*x^{(1/(1,52))}$	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9992 0,9611 0,9952 0,9959 0,9866 0,9996 0,9989
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp	Horizonte A B A B A B A B A B A A B A A	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	R 0,9993 0,9993 0,9998 0,9780 0,9778 0,9982 0,9611 0,9820 0,9847 0,9990 0,9847 0,9981	as para zinco Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(61)*x^{(1/(1,72))}$ $y=(6)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,3))}$ $y=(6)*x^{(1/(1,23))}$ $y=(6)*x^{(1/(1,7))}$ $y=(10)*x^{(1/(1,7))}$ $y=(10)*x^{(1/(1,7))}$ $y=(59)*x^{(1/(1,3))}$ $y=(59)*x^{(1/(1,52))}$ $y=(31)*x^{(1/(1,3))}$ $y=(12)*x^{(1/(1,63))}$	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9992 0,9611 0,9952 0,9959 0,9866 0,9996 0,9989 0,9989
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp	Horizonte A B A B A B A B A B A B A B A B A B	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	R 0,9993 0,9993 0,9993 0,9998 0,9780 0,9778 0,9982 0,9611 0,9820 0,9847 0,9990 0,9867 0,9981 0,9958	as para zinco Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(6)*x^{(1/(1,72))}$ $y=(6)*x^{(1/(1,72))}$ $y=(14)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,3))}$ $y=(6)*x^{(1/(1,7))}$ $y=(10)*x^{(1/(1,7))}$ $y=(10)*x^{(1/(1,7))}$ $y=(2)*x^{(1/(1,7))}$ $y=(59)*x^{(1/(1,7))}$ $y=(59)*x^{(1/(1,52))}$ $y=(31)*x^{(1/(1,5))}$	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9992 0,9611 0,9952 0,9959 0,9866 0,9996 0,9989 0,9989 0,9995
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk	Horizonte A B A B A B A B A B A B A B A A B A A	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	R 0,9993 0,9993 0,9993 0,9998 0,9780 0,9778 0,9982 0,9611 0,9820 0,9847 0,9990 0,9867 0,9981 0,9958 0,99546	as para zinco Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(61)*x^{(1/(1,72))}$ $y=(6)*x^{(1/(1,72))}$ $y=(14)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,3))}$ $y=(6)*x^{(1/(1,23))}$ $y=(6)*x^{(1/(1,7))}$ $y=(10)*x^{(1/(1,7))}$ $y=(42)*x^{(1/(1,7))}$ $y=(59)*x^{(1/(1,7))}$ $y=(31)*x^{(1/(1,52))}$ $y=(47)*x^{(1/(1,53))}$ $y=(47)*x^{(1/(1,51))}$ $y=(450)*x^{(1/(2,2))}$	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9992 0,9611 0,9952 0,9959 0,9866 0,9996 0,9989 0,9989 0,9995 0,9989
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk	Horizonte A B A B A B A B A B A B A B A B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B A B A B A B A B A B B A B A B B A A B B A B B A B B A B B A B B A B B A B B A B B A B B B A B B A B B B A B B B A B B B A B B B A B B B A B B B B A B B B B A B B B B B B B A B	$\begin{array}{r} & \qquad $	R 0,9993 0,9993 0,9993 0,9998 0,9780 0,9778 0,9982 0,9611 0,9820 0,9847 0,9990 0,9867 0,9958 0,99546 0,9946 0,9940	as para zinco Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(6)*x^{(1/(0,70))}$ $y=(6)*x^{(1/(0,89))}$ $y=(14)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,3))}$ $y=(6)*x^{(1/(1,2))}$ $y=(6)*x^{(1/(1,7))}$ $y=(10)*x^{(1/(1,7))}$ $y=(42)*x^{(1/(1,7))}$ $y=(42)*x^{(1/(1,3))}$ $y=(59)*x^{(1/(1,5))}$ $y=(47)*x^{(1/(1,5))}$ $y=(45)*x^{(1/(1,5))}$ $y=(450)*x^{(1/(2,2))}$ $y=(378)*x^{(1/(2,4))}$	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9992 0,9611 0,9952 0,9959 0,9866 0,9996 0,9989 0,9989 0,9995 0,9969 0,9986 0,9998 0,9986 0,9948
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXde	Horizonte A B A B A B A B A B A B A B A B A A A B A A A B A A A B A A A B A A A A B A A A B A A A A B A A A B A A A B A A A A B A A A A A B A A A A A B A A A A B A A A B A A A A B A A A A A A B A	$\begin{array}{r} & \qquad $	R 0,9993 0,9993 0,9993 0,9998 0,9780 0,9778 0,9982 0,9611 0,9820 0,9847 0,9990 0,9867 0,9958 0,99546 0,9940 0,8733	as para zinco Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(6)*x^{(1/(1,72))}$ $y=(6)*x^{(1/(0,89))}$ $y=(14)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,3))}$ $y=(6)*x^{(1/(1,23))}$ $y=(6)*x^{(1/(1,7))}$ $y=(47)*x^{(1/(1,7))}$ $y=(47)*x^{(1/(1,7))}$ $y=(47)*x^{(1/(1,7))}$ $y=(47)*x^{(1/(1,7))}$ $y=(47)*x^{(1/(1,7))}$ $y=(42)*x^{(1/(1,7))}$ $y=(42)*x^{(1/(1,7))}$ $y=(41)*x^{(1/(1,7))}$ $y=(450)*x^{(1/(1,7))}$ $y=(450)*x^{(1/(2,2))}$ $y=(378)*x^{(1/(2,4))}$ $y=(1516)*x^{(1/(2,3))}$	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9992 0,9611 0,9952 0,9959 0,9866 0,9996 0,9989 0,9995 0,9989 0,9995 0,9995 0,9989 0,9995 0,9986 0,99948 0,9974
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXde	Horizonte A B A B A B A B A B A B A B A B A B A	$\begin{array}{r} & \qquad $	R 0,9993 0,9993 0,9993 0,9998 0,9780 0,9778 0,9982 0,9611 0,9820 0,9847 0,9990 0,9867 0,9958 0,99546 0,9940 0,8733 0,9884	as para zinco Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(6)*x^{(1/(0,70))}$ $y=(6)*x^{(1/(0,89))}$ $y=(14)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,3))}$ $y=(6)*x^{(1/(1,23))}$ $y=(6)*x^{(1/(1,7))}$ $y=(47)*x^{(1/(1,7))}$ y	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9992 0,9611 0,9952 0,9959 0,9866 0,9996 0,9989 0,9989 0,9995 0,9969 0,9988 0,9995 0,9969 0,9986 0,9948 0,9974 0,9979
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXde 10. CXbd	Horizonte A B A B A B A B A B A B A B A B A A A B A A A B A A A B A A A B A A A B A A A B A A A B A A A B A A A B A A A B A A A B A A A A B A A A B A A A B A A A B A A A A B A A A A A A B A A A A A A A A A A A A A A B A	$\begin{array}{r} & \qquad $	Point R 0,9993 0,9993 0,9993 0,9915 0,9998 0,9780 0,9778 0,9982 0,9611 0,9895 0,9820 0,9611 0,9847 0,9990 0,9981 0,9958 0,9958 0,9958 0,99546 0,9940 0,8733 0,9844 0,9994 0,9994	as para zinco Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(61)*x^{(1/(1,72))}$ $y=(6)*x^{(1/(0,89))}$ $y=(14)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,3))}$ $y=(6)*x^{(1/(1,23))}$ $y=(6)*x^{(1/(1,7))}$ $y=(47)*x^{(1/(1,7))}$ $y=(42)*x^{(1/(1,3))}$ $y=(59)*x^{(1/(1,3))}$ $y=(12)*x^{(1/(1,5))}$ $y=(450)*x^{(1/(1,5))}$ $y=(450)*x^{(1/(2,2))}$ $y=(378)*x^{(1/(2,3))}$ $y=(33)*x^{(1/(2,3))}$ $y=(39)*x^{(1/(2,3))}$ $y=(8,9)*x^{(1/(1,30))}$	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9992 0,9611 0,9952 0,9959 0,9866 0,9996 0,9989 0,9989 0,9995 0,9969 0,9986 0,9995 0,9969 0,9986
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXde 10. CXbd	Horizonte A B A B A B A B A B A B A B A B A B A	$\begin{array}{r} & \qquad $	codes das isoterm R 0,9993 0,9815 0,9998 0,9780 0,9778 0,9982 0,9611 0,9895 0,9820 0,9847 0,9990 0,9958 0,9958 0,9958 0,9958 0,99546 0,99546 0,9940 0,8733 0,9884 0,9994 0,9999 0,9999	as para zinco Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(61)*x^{(1/(1,72))}$ $y=(6)*x^{(1/(0,89))}$ $y=(14)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,3))}$ $y=(6)*x^{(1/(1,3))}$ $y=(6)*x^{(1/(1,7))}$ $y=(42)*x^{(1/(1,7))}$ $y=(42)*x^{(1/(1,3))}$ $y=(59)*x^{(1/(1,52))}$ $y=(31)*x^{(1/(1,5))}$ $y=(47)*x^{(1/(1,52))}$ $y=(31)*x^{(1/(1,5))}$ $y=(47)*x^{(1/(1,52))}$ $y=(31)*x^{(1/(1,52))}$ $y=(47)*x^{(1/(1,52))}$ $y=(47)*x^{(1/(1,52))}$ $y=(47)*x^{(1/(1,52))}$ $y=(47)*x^{(1/(1,52))}$ $y=(47)*x^{(1/(1,52))}$ $y=(47)*x^{(1/(1,52))}$ $y=(47)*x^{(1/(1,52))}$ $y=(47)*x^{(1/(1,52))}$ $y=(47)*x^{(1/(1,52))}$ $y=(47)*x^{(1/(1,52))}$ $y=(47)*x^{(1/(1,52))}$ $y=(47)*x^{(1/(1,22))}$ $y=(47)*x^{(1/(1,22))}$ $y=(47)*x^{(1/(1,22))}$ $y=(47)*x^{(1/(1,22))}$ $y=(47)*x^{(1/(1,22))}$ $y=(47)*x^{(1/(1,22))}$ $y=(47)*x^{(1/(1,22))}$ $y=(47)*x^{(1/(1,22))}$ $y=(47)*x^{(1/(1,22))}$ $y=(47)*x^{(1/(1,22))}$ $y=(47)*x^{(1/(1,22))}$ $y=(47)*x^{(1/(1,23))}$ $y=(47)*x^{(1/(1,23))}$ $y=(47)*x^{(1/(1,23))}$ $y=(47)*x^{(1/(1,23))}$ $y=(47)*x^{(1/(1,23))}$ $y=(47)*x^{(1/(1,23))}$ $y=(47)*x^{(1/(1,23))}$ $y=(47)*x^{(1/(1,23))}$ $y=(47)*x^{(1/(1,23))}$ $y=(47)*x^{(1/(1,23))}$ $y=(47)*x^{(1/(1,23))}$ $y=(47)*x^{(1/(1,23))}$ $y=(47)*x^{(1/(1,3))}$ $y=(47)*x^{(1/(1,3))}$ $y=(47)*x^{(1/(1,3))}$ $y=(47)*x^{(1/(1,3))}$ $y=(47)*x^{(1/(1,3))}$ $y=(47)*x^{(1/(1,3))}$ $y=(47)*x^{(1/(1,3))}$ $y=(47)*x^{(1/(1,3)})$ $y=(47)*x^{(1/(1,3)})$ $y=(47)*x^{(1/(1,3)})$ $y=(47)*x^{(1/(1,3))}$ $y=(47)*x^{(1/(1,3))}$ $y=(47)*x^{(1/(1,3))}$ $y=(47)*x^{(1/(1,3)})$ $y=(47)*x^{(1/(1,3)})$ $y=(47)*x^{(1/(1,3)})$ $y=(47)*x^{(1/(1,3)})$ $y=(47)*x^{(1/(1,3)})$ $y=(47)*x^{(1/(1,3)})$ $y=(47)*x^{(1/(1,3)})$ $y=(47)*x^{(1/(1,3)})$ $y=(47)*x^{(1/(1,3)})$ $y=(47)*x^{(1/(1,3)})$ $y=(47)*x^{(1/(1,3)})$ $y=(47)*x^{(1/(1,3)})$ $y=(47)*x^{(1/(1,3)})$ $y=(47)*x^{(1/(1,3)})$ $y=(47)*x^{(1/(1,3)})$ $y=(47)*x^{(1/(1,3)})$ $y=(47)*x^{(1/(1,3)})$ $y=(47)*x^{(1/(1,3)})$ $y=(47)*x^{(1/(1,3)})$ $y=(47)*x^{($	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9992 0,9611 0,9952 0,9959 0,9866 0,9996 0,9989 0,9995 0,9969 0,9986 0,9995 0,9969 0,9986 0,99948 0,9974 0,9979 0,9996 0,9998
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXde 10. CXbd 11. FFcd1	Horizonte A B A B A B A B A B A B A B A B A B A	$\begin{array}{c} & \qquad $	R 0,9993 0,9993 0,9993 0,9998 0,9780 0,9778 0,9982 0,9611 0,9825 0,9847 0,9996 0,9984 0,9990 0,9847 0,9993 0,9994 0,9994 0,9994 0,9999 0,9836	Freundlich Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(4)*x^{(1/(0,70))}$ $y=(6)*x^{(1/(0,70))}$ $y=(6)*x^{(1/(0,89))}$ $y=(6)*x^{(1/(0,89))}$ $y=(14)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,3))}$ $y=(6)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,7))}$ $y=(6)*x^{(1/(1,7))}$ $y=(12)*x^{(1/(1,3))}$ $y=(59)*x^{(1/(1,3))}$ $y=(47)*x^{(1/(1,3))}$ $y=(59)*x^{(1/(1,3))}$ $y=(47)*x^{(1/(1,5))}$ $y=(59)*x^{(1/(1,5))}$ $y=(47)*x^{(1/(1,5))}$ $y=(47)*x^{(1/(1,5))}$ $y=(47)*x^{(1/(1,5))}$ $y=(47)*x^{(1/(1,5))}$ $y=(47)*x^{(1/(1,5))}$ $y=(47)*x^{(1/(1,5))}$ $y=(47)*x^{(1/(1,2))}$ $y=(47)*x^{(1/(1,2))}$ $y=(516)*x^{(1/(2,2))}$ $y=(334)*x^{(1/(2,6))}$ $y=(334)*x^{(1/(2,6))}$ $y=(6,73)*x^{(1/(1,30))}$ $y=(21,98)*x^{(1/(1,32))$	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9992 0,9611 0,9959 0,9959 0,9959 0,9959 0,9959 0,9959 0,9996 0,9995 0,9996 0,99974 0,9998 0,9998 0,9998 0,9998 0,9998 0,9996
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXde 10. CXbd	Horizonte A B A B A B A B A B A B A B A B A B A	$\begin{array}{r} & \qquad $	Point R 0,9993 0,9993 0,9993 0,9915 0,9998 0,9780 0,9778 0,9982 0,9611 0,9825 0,9847 0,9990 0,99846 0,9994 0,9958 0,9958 0,99546 0,9994 0,9994 0,9994 0,9999 0,9836 0,9948 0,9948	as para zinco Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(61)*x^{(1/(1,72))}$ $y=(6)*x^{(1/(0,89))}$ $y=(14)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,23))}$ $y=(6)*x^{(1/(1,7))}$ $y=(47)*x^{(1/(1,7))}$ $y=(47)*x^{(1/(1,7))}$ $y=(47)*x^{(1/(1,7))}$ $y=(47)*x^{(1/(1,3))}$ $y=(59)*x^{(1/(1,3))}$ $y=(47)*x^{(1/(1,5))}$ $y=(47)*x^{(1/(1,5))}$ $y=(47)*x^{(1/(1,5))}$ $y=(47)*x^{(1/(1,5))}$ $y=(450)*x^{(1/(2,3))}$ $y=(516)*x^{(1/(2,3))}$ $y=(53)*x^{(1/(1,30))}$ $y=(6,73)*x^{(1/(1,32))}$ $y=(21,98)*x^{(1/(1,32))}$	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9992 0,9611 0,9952 0,9959 0,9866 0,9996 0,9989 0,9995 0,9969 0,9986 0,9995 0,9969 0,9986 0,9974 0,9974 0,9979 0,9996 0,9998 0,9998
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXde 10. CXbd 11. FFcd1 12. FFcd2	Horizonte A B A B A B A B A B A B A B A B A B A	$\begin{array}{c} & \qquad $	Point R 0,9993 0,9993 0,9993 0,9915 0,9998 0,9780 0,9778 0,9982 0,9611 0,9895 0,9820 0,9611 0,9847 0,9990 0,9984 0,9990 0,9958 0,9994 0,99946 0,9994 0,9994 0,9999 0,9836 0,9948 0,9948 0,9948	Freundlich Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(4)*x^{(1/(0,70))}$ $y=(6)*x^{(1/(0,70))}$ $y=(6)*x^{(1/(0,89))}$ $y=(6)*x^{(1/(0,89))}$ $y=(14)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,23))}$ $y=(6)*x^{(1/(1,7))}$ $y=(16)*x^{(1/(1,7))}$ $y=(6)*x^{(1/(1,3))}$ $y=(10)*x^{(1/(1,13))}$ $y=(10)*x^{(1/(1,13))}$ $y=(12)*x^{(1/(1,13))}$ $y=(12)*x^{(1/(1,13))}$ $y=(112)*x^{(1/(1,12))}$ $y=(378)*x^{(1/(1,23))}$ $y=(378)*x^{(1/(1,23))}$ $y=(1516)*x^{(1/(1,23))}$ $y=(334)*x^{(1/(1,30))}$ $y=(516)*x^{(1/(1,130))}$ $y=(21,98)*x^{(1/(1,130))}$ $y=(21,98)*x^{(1/(1,130))}$ $y=(21,98)*x^{(1/(1,14))}$	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9992 0,9611 0,9959 0,9959 0,9959 0,9959 0,9959 0,9959 0,9996 0,9995 0,9996 0,99974 0,9979 0,9998 0,9998 0,9998 0,9998 0,9988 0,9983
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXde 10. CXbd 11. FFcd1 12. FFcd2	Horizonte A B A B A B A B A B A B A B A B A B A	$\begin{array}{c} & \qquad $	Topological constraints R 0,9993 0,9993 0,9998 0,9998 0,9780 0,9778 0,9982 0,9611 0,9825 0,9847 0,9990 0,9847 0,9991 0,9958 0,99546 0,99940 0,99940 0,99940 0,99940 0,99941 0,99942 0,99943 0,999443 0,99483 0,99483 0,99483 0,99483 0,96873	Freundlich Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(4)*x^{(1/(0,70))}$ $y=(6)*x^{(1/(0,70))}$ $y=(6)*x^{(1/(0,89))}$ $y=(6)*x^{(1/(0,89))}$ $y=(14)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,3))}$ $y=(6)*x^{(1/(1,7))}$ $y=(16)*x^{(1/(1,7))}$ $y=(6)*x^{(1/(1,7))}$ $y=(10)*x^{(1/(1,7))}$ $y=(10)*x^{(1/(1,5))}$ $y=(12)*x^{(1/(1,5))}$ $y=(31)*x^{(1/(1,5))}$ $y=(12)*x^{(1/(1,5))}$ $y=(450)*x^{(1/(1,22))}$ $y=(378)*x^{(1/(1,23))}$ $y=(1516)*x^{(1/(1,23))}$ $y=(334)*x^{(1/(1,30))}$ $y=(516)*x^{(1/(1,130))}$ $y=(21,98)*x^{(1/(1,130))}$ $y=(50)*x^{(1/(1,18))}$ $y=(50)*x^{(1/(1,44))}$	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9992 0,9611 0,9952 0,9959 0,9866 0,9996 0,9989 0,9995 0,9969 0,9986 0,9995 0,9969 0,9986 0,9974 0,9974 0,9979 0,9996 0,9998 0,9998 0,9998 0,9998 0,9998 0,9983 0,9983 0,9998
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXde 10. CXbd 11. FFcd1 12. FFcd2 13. CXd	Horizonte A B A B A B A B A B A B A B A B A B A	$\begin{array}{c} & \qquad $	Topological constraints R 0,9993 0,9993 0,9998 0,9998 0,9780 0,9778 0,9982 0,9611 0,9825 0,9847 0,9990 0,9847 0,9990 0,9981 0,9958 0,99946 0,99940 0,99940 0,99940 0,99941 0,99942 0,9943 0,99443 0,9948 0,9682	Freundlich Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(4)*x^{(1/(0,70))}$ $y=(6)*x^{(1/(0,70))}$ $y=(6)*x^{(1/(0,89))}$ $y=(6)*x^{(1/(0,89))}$ $y=(14)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,23))}$ $y=(6)*x^{(1/(1,7))}$ $y=(16)*x^{(1/(1,7))}$ $y=(6)*x^{(1/(1,7))}$ $y=(10)*x^{(1/(1,7))}$ $y=(10)*x^{(1/(1,13))}$ $y=(11/)*x^{(1/(1,13))}$ $y=(31)*x^{(1/(1,13))}$ $y=(112)*x^{(1/(1,13))}$ $y=(12)*x^{(1/(1,12))}$ $y=(33)*x^{(1/(2,2))}$ $y=(378)*x^{(1/(1,23))}$ $y=(334)*x^{(1/(1,30))}$ $y=(516)*x^{(1/(1,130))}$ $y=(6,73)*x^{(1/(1,130))}$ $y=(21,98)*x^{(1/(1,130))}$ $y=(21,98)*x^{(1/(1,130))}$ $y=(50)*x^{(1/(1,14))}$ $y=(50)*x^{(1/(1,44))}$ $y=(16)*x^{(1/(1,14))}$ $y=(16)*x^{(1/(1,23))}$	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9992 0,9611 0,9959 0,9959 0,9959 0,9959 0,9959 0,9959 0,9996 0,9995 0,9996 0,99974 0,9979 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9993
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXde 10. CXbd 11. FFcd1 12. FFcd2 13. CXd	Horizonte A B A B A B A B A B A B A B A B A B A	Equation $Langmuir$ y=(0,0557)*(260)*x/1+(0,0557)*x $y=(0,0412)*(320)*x/1+(0,0412)*x$ $y=(0,093)*(496)*x/(1+(0,093)*x)$ $y=(0,048)*(200)*x/1+(0,048)*x$ $y=(0,02)*(439)*x/(1+(0,02)*x)$ $y=(0,015)*(769)*x/(1+(0,015)*x)$ $y=(0,006)*(1047)*x/1+(0,006)*x$ $y=(0,075)*(428)*x/(1+(0,075)*x)$ $y=(0,019)*(471)*x/1+(0,019)*x$ $y=(0,013)*(646)*x/(1+(0,073)*x)$ $y=(0,0183)*(871)*x/1+(0,0183)*x$ $y=(0,06)*(578)*x/(1+(0,06)*x)$ $y=(2,6)*(619)*x/(1+(2,6)*x)$ $y=(2,0)*(542)*x/(1+(2,0)*x)$ $y=(0,017)*(362)*x/(1+(0,017)*x)$ $y=(0,017)*(362)*x/(1+(0,019)*x)$ $y=(0,019)*(562)*x/1+(0,019)*x$ $y=(0,019)*(562)*x/1+(0,019)*x$ $y=(0,019)*(562)*x/1+(0,019)*x$ $y=(0,010)*(393)*x/1+(0,061)*x$ $y=(0,023)*(690)*x/1+(0,03)*x$	Point R 0,9993 0,9993 0,9993 0,9915 0,9998 0,9780 0,9778 0,9982 0,9611 0,9895 0,9820 0,9611 0,9895 0,9820 0,9847 0,9990 0,9958 0,9994 0,9958 0,9994 0,99946 0,9994 0,9994 0,9999 0,9836 0,9948 0,9948 0,9948 0,9948 0,9947	Freundlich Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(4)*x^{(1/(0,70))}$ $y=(6)*x^{(1/(0,70))}$ $y=(6)*x^{(1/(0,89))}$ $y=(6)*x^{(1/(0,89))}$ $y=(14)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,23))}$ $y=(6)*x^{(1/(1,7))}$ $y=(16)*x^{(1/(1,7))}$ $y=(6)*x^{(1/(1,3))}$ $y=(10)*x^{(1/(1,3))}$ $y=(10)*x^{(1/(1,13))}$ $y=(11)*x^{(1/(1,13))}$ $y=(31)*x^{(1/(1,13))}$ $y=(112)*x^{(1/(1,13))}$ $y=(12)*x^{(1/(1,13))}$ $y=(47)*x^{(1/(1,22))}$ $y=(378)*x^{(1/(1,22))}$ $y=(334)*x^{(1/(2,4))}$ $y=(1516)*x^{(1/(2,2))}$ $y=(334)*x^{(1/(2,6))}$ $y=(516)*x^{(1/(1,130))}$ $y=(6,73)*x^{(1/(1,130))}$ $y=(21,98)*x^{(1/(1,130))}$ $y=(21,98)*x^{(1/(1,144))}$ $y=(16)*x^{(1/(1,160))}$ $y=(63)*x^{(1/(1,02))}$ $y=(27)*x^{(1/(1,02))}$ $y=(27)*x^{(1/(1,02))}$	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9992 0,9611 0,9952 0,9959 0,9966 0,9989 0,9995 0,9969 0,9986 0,9995 0,9969 0,9986 0,9948 0,9974 0,9974 0,9979 0,9996 0,9998 0,9998 0,9998 0,9998 0,9983 0,9983 0,9983 0,9982 0,9982 0,9982
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXde 10. CXbd 11. FFcd1 12. FFcd2 13. CXd 14. RQo	Horizonte A B A B A B A B A B A B A B A B A B A	Equation $Langmuir$ y=(0,0557)*(260)*x/1+(0,0557)*x $y=(0,0412)*(320)*x/1+(0,0412)*x$ $y=(0,093)*(496)*x/(1+(0,093)*x)$ $y=(0,048)*(200)*x/1+(0,048)*x$ $y=(0,02)*(439)*x/(1+(0,015)*x)$ $y=(0,005)*(769)*x/(1+(0,015)*x)$ $y=(0,005)*(1047)*x/1+(0,006)*x$ $y=(0,073)*(428)*x/(1+(0,075)*x)$ $y=(0,019)*(711)*x/1+(0,019)*x$ $y=(0,013)*(1018)*x/(1+(0,03)*x)$ $y=(0,013)*(646)*x/(1+(0,073)*x)$ $y=(0,0183)*(871)*x/1+(0,0183)*x$ $y=(0,06)*(578)*x/(1+(0,06)*x)$ $y=(2,6)*(619)*x/(1+(2,30)*x)$ $y=(2,0)*(542)*x/(1+(2,30)*x)$ $y=(0,017)*(362)*x/(1+(0,017)*x)$ $y=(0,017)*(362)*x/(1+(0,019)*x)$ $y=(0,019)*(562)*x/1+(0,019)*x$ $y=(0,010)*(373)*x/1+(0,019)*x$ $y=(0,010)*(393)*x/1+(0,0610)*x$ $y=(0,023)*(640)*x/1+(0,02)*x$ $y=(0,023)*(244)*x/1+(0,02)*x$ $y=(0,02)*(244)*x/1+(0,02)*x$	Topological state R 0,9993 0,9993 0,9998 0,9998 0,9780 0,9780 0,9778 0,9982 0,9611 0,9825 0,9820 0,9847 0,9990 0,9981 0,9958 0,9958 0,9946 0,9940 0,8733 0,9844 0,9994 0,9994 0,9948 0,9948 0,9948 0,9948 0,9948 0,9947 0,9924 0,9924	Freundlich Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(4)*x^{(1/(0,70))}$ $y=(6)*x^{(1/(0,70))}$ $y=(6)*x^{(1/(0,89))}$ $y=(6)*x^{(1/(0,89))}$ $y=(14)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,23))}$ $y=(6)*x^{(1/(1,7))}$ $y=(16)*x^{(1/(1,7))}$ $y=(6)*x^{(1/(1,7))}$ $y=(10)*x^{(1/(1,7))}$ $y=(10)*x^{(1/(1,3))}$ $y=(47)*x^{(1/(1,3))}$ $y=(59)*x^{(1/(1,3))}$ $y=(112)*x^{(1/(1,63))}$ $y=(12)*x^{(1/(1,2))}$ $y=(378)*x^{(1/(1,2))}$ $y=(1516)*x^{(1/(2,6))}$ $y=(1516)*x^{(1/(2,6))}$ $y=(50)*x^{(1/(1,130))}$ $y=(2,198)*x^{(1/(1,130))}$ $y=(50)*x^{(1/(1,141))}$ $y=(63)*x^{(1/(1,44))}$ $y=(16)*x^{(1/(1,160))}$ $y=(63)*x^{(1/(1,30))$ $y=(17)*x^{(1/(1,2))}$ $y=(17)*x^{(1/(1,2))}$	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9992 0,9611 0,9952 0,9959 0,9966 0,9989 0,9996 0,9989 0,9995 0,9969 0,9986 0,9948 0,9974 0,9974 0,9979 0,9996 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9983 0,9983 0,9982 0,9970 0,09772
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXde 10. CXbd 11. FFcd1 12. FFcd2 13. CXd 14. RQo 15. LVAd	Horizonte A B A B A B A B A B A B A B A B A B A	$\begin{array}{c} & Equat \\ \hline Equat \\ \hline \\ $	Topological state R 0,9993 0,9993 0,9993 0,9998 0,9780 0,9780 0,9778 0,9982 0,9611 0,9825 0,9820 0,9847 0,9990 0,9981 0,9958 0,9946 0,9940 0,8733 0,9844 0,9994 0,9994 0,9948 0,9948 0,9948 0,9948 0,9948 0,9924 0,9872 0,9872 0,9872 0,9872 0,9820 0,9820	Freundlich Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(4)*x^{(1/(0,70))}$ $y=(6)*x^{(1/(0,70))}$ $y=(6)*x^{(1/(0,89))}$ $y=(6)*x^{(1/(0,89))}$ $y=(14)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,7))}$ $y=(16)*x^{(1/(1,7))}$ $y=(6)*x^{(1/(1,3))}$ $y=(47)*x^{(1/(1,3))}$ $y=(12)*x^{(1/(1,3))}$ $y=(12)*x^{(1/(1,5))}$ $y=(47)*x^{(1/(1,63))}$ $y=(17)*x^{(1/(1,30))}$ $y=(12)*x^{(1/(1,22))}$ $y=(33)*x^{(1/(2,4))}$ $y=(15)6*x^{(1/(1,23))}$ $y=(50)*x^{(1/(1,30))}$ $y=(21,98)*x^{(1/(1,130))}$ $y=(21,98)*x^{(1/(1,130))}$ $y=(16)*x^{(1/(1,14))}$ $y=(16)*x^{(1/(1,14))}$ $y=(16)*x^{(1/(1,14))}$ $y=(17)*x^{(1/(1,30))}$ $y=(17)*x^{(1/(1,30))}$ $y=(17)*x^{(1/(1,30))}$	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9992 0,9611 0,9952 0,9959 0,9959 0,9986 0,9995 0,9969 0,9986 0,9974 0,9974 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9983 0,9982 0,9973 0,9983 0,9970 0,9971 0,9973 0,9974
Solos 1. PVA 2. LVA 3. LVd 4. LVAd 5. LVj 6. NVef 7. TCp 8. MTk 9. CXde 10. CXbd 11. FFcd1 12. FFcd2 13. CXd 14. RQo 15. LVAd	Horizonte A B A B A B A B A B A B A B A B A B A	Equation $Langmuir$ y=(0,0557)*(260)*x/1+(0,0557)*x $y=(0,0412)*(320)*x/1+(0,0412)*x$ $y=(0,093)*(496)*x/(1+(0,093)*x)$ $y=(0,048)*(200)*x/1+(0,048)*x$ $y=(0,02)*(439)*x/(1+(0,015)*x)$ $y=(0,005)*(769)*x/(1+(0,015)*x)$ $y=(0,005)*(1047)*x/1+(0,006)*x$ $y=(0,075)*(428)*x/(1+(0,075)*x)$ $y=(0,019)*(471)*x/1+(0,019)*x$ $y=(0,013)*(871)*x/1+(0,0183)*x$ $y=(0,0183)*(871)*x/1+(0,0183)*x$ $y=(0,08)*(1078)*x/(1+(0,073)*x)$ $y=(0,06)*(578)*x/(1+(0,06)*x)$ $y=(2,6)*(619)*x/(1+(2,6)*x)$ $y=(2,0)*(542)*x/(1+(2,0)*x)$ $y=(0,017)*(362)*x/(1+(0,017)*x)$ $y=(0,017)*(362)*x/(1+(0,019)*x)$ $y=(0,019)*(562)*x/1+(0,019)*x$ $y=(0,023)*(690)*x/1+(0,029)*x$ $y=(0,029)*(626)*x/1+(0,02)*x$ $y=(0,020)*(326)*x/1+(0,029)*x$ $y=(0,019)*(326)*x/1+(0,029)*x$ $y=(0,020)*(326)*x/1+(0,029)*x$	Topological solution R 0,9993 0,9993 0,9998 0,9780 0,9780 0,9778 0,9982 0,9611 0,9825 0,9847 0,9990 0,9847 0,9990 0,9946 0,99946 0,99946 0,9994 0,9994 0,9994 0,9994 0,9994 0,9994 0,9948 0,9948 0,9948 0,9948 0,9947 0,9924 0,9924 0,9924 0,9924 0,9924 0,9924 0,9924 0,9924 0,9924 0,9924 0,9924	Freundlich Freundlich $y=(13)*x^{(1/(0,96))}$ $y=(4)*x^{(1/(0,70))}$ $y=(4)*x^{(1/(0,70))}$ $y=(6)*x^{(1/(0,70))}$ $y=(6)*x^{(1/(0,89))}$ $y=(6)*x^{(1/(0,89))}$ $y=(14)*x^{(1/(1,3))}$ $y=(16)*x^{(1/(1,2))}$ $y=(6)*x^{(1/(1,7))}$ $y=(16)*x^{(1/(1,7))}$ $y=(6)*x^{(1/(1,7))}$ $y=(10)*x^{(1/(1,7))}$ $y=(10)*x^{(1/(1,3))}$ $y=(1/(1,1,3))$ $y=(10)*x^{(1/(1,1,3))}$ $y=(1/(1,1,3))$ $y=(12)*x^{(1/(1,1,3))}$ $y=(1/(1,1,3))$ $y=(12)*x^{(1/(1,1,3))})$ $y=(1/(1,1,3))$ $y=(15)*x^{(1/(1,1,3))})$ $y=(2,1,98)*x^{(1/(1,1,3))})$ $y=(16)*x^{(1/(1,1,1,3))})$ $y=(16)*x^{(1/(1,1,3))})$ $y=(16)*x^{(1/(1,3))})$ $y=(17)*x^{(1/(1,3))})$ $y=(17)*x^{(1/(1,3))})$ $y=(17)*x^{(1/(1,3))})$	R 0,9996 0,9931 0,9989 0,9942 0,9778 0,9992 0,9611 0,9952 0,9959 0,9959 0,9959 0,9986 0,9996 0,9988 0,9974 0,9979 0,9998 0,9998 0,9981 0,9983 0,9983 0,9970 0,9971

Tabela 11. Equações de regressão e coeficientes de correlação das isotermas de Langmuir e de Freundlich para cobre e zinco

Uma vez que os metais têm massas molares diferentes, a comparação da capacidade de um mesmo solo em adsorver cádmio, cobre, chumbo ou zinco, só pode ser obtida quando os resultados de adsorção máxima (b) são transformados em mmol kg⁻¹, uma vez que a ocupação dos sítios se dá em relação molar (mol kg⁻¹) e não em massa.

Os resultados mostram que os solos têm capacidades de adsorção distintas, em relação aos metais investigados, quem implica diferentes capacidades de tamponamento, para esses poluentes. Os valores de adsorção máxima ou do parâmetro b, da equação de Langmuir indicam que a maioria dos solos em estudo apresentaram, em seu pН natural, boa capacidade de adsorção, com teores mínimos e máximos nos horizontes A e B, variando de 1,16 a 16,40 mmol kg⁻¹ (solos RQo e MTk) e de 0,73 a 12,74 mmol kg⁻¹ (solos FFcd e MT) para o cádmio, de 3,85 a 10,02 mmol kg⁻¹ (solos RQo e CXd) e de 2,26 a 8,73 mmol kg⁻¹ (solos LVA e NVef) para o chumbo, de 4,64 a 20,75 mmol kg⁻¹ (solos TCp e CXd) e de 4,97 a 28,28 mmol kg⁻¹ (Solos LVA e LVe) para cobre, de 3,88 a 16,49 mmol kg⁻¹ (solos RQo e TCp) e de 2,49 a 15,57 mmol kg⁻¹ (solos RQo e LVj) para zinco (Tabela 8).

Os valores da constante k, relacionada à força de retenção, mostram que os elementos investigados apresentam-se retidos com diferentes energias de ligação nos diferentes solos, sendo as maiores forças de retenção obtidas para cobre e chumbo em relação a cádmio e zinco. Dos solos investigados, aqueles que adsorveram mais fortemente os metais foram o Chernossolo Argilúvico Carbonático saprolítico (8A e 8B) e o Cambissolo Háplico Tb eutrófico latossólico (9A, 9B). Estes solos apresentam consideráveis teores em argila, óxidos de ferro amorfo, matéria orgânica e os maiores valores de pH e de CTC. No entanto, no caso da retenção de cobre observa-se que os solos 2A, 5B e 6A apresentaram valores de k maiores que o do solo 8B. Pela observação da Tabela 5 verifica-se que esses solos possuem características que certamente influem nesta maior força de retenção, como por exemplo, o alto teor de argila do solo 2A, grande teor de óxidos de ferro no solo 5B e o elevado pH do solo 6A.

Por outro lado, o Cambissolo Háplico Tb distrófico típico (10A e 10B) e o Neossolo Quartzarênico órtico latossólico (14A e 14B) com baixos teores de argila, matéria orgânica, óxidos de ferro e CTC apresentam um dos menores valores de b e k, para cádmio, cobre, chumbo e zinco. Dessa forma, os solos 8 e 9 (MTk e CXbe) são os mais resistentes a uma liberação de metais depositados, ao contrário dos solos 10 e 14 (CXbd e RQo) que, além de apresentar baixos valores de b e de k, apresentam os menores valores de pH, o que tornariam os elementos mais facilmente disponíveis.

				Lang	muir				Freundli	ch	
Solos	Horizonte	• (1)	Cádmio	. (2)	Chumb	00	. 2	Cádn	iio	Chumbo	
		b ⁽¹⁾	k	b ⁽²⁾	b'	k	b ²	K _F	n	K _F	n
1. DV/A		μgg.	μg mL ·	mmol kg	μg g ·	$\mu g m L^{\circ} m r$	nol kg ·	15(1)	1.07	404(41)	0.0(0)
I. PVA	A	696(66)	0,012(2)	6,20 2,00	1335(74)	0,36(7)	6,44	15(1)	1,37	434(41)	2,9(3)
2 1 1/4	<u>Б</u> А	446(10) 975(156)	0,0101(3)	5,99 8.68	1501(113) 1507(70)	0,11(3) 0,15(2)	0,37	5,8(0,9) 68(6)	0,90	239(0)	2,23(4) 2,0(2)
2. LVA	B	772(88)	0,04(1)	6.86	1116(89)	0,15(2) 0.06(1)	5 30	15(2)	1,04	139(5)	2,0(2) 2,11(5)
3 LVd	A	1604(199)	0,012(2) 0,010(2)	14 27	1640(97)	0.20(3)	7 91	28(1)	1 32	354(16)	2,11(3) 2 10(9)
5. E Vu	B	1032(108)	0.006(3)	9.18	988(49)	0.50(1)	4.77	10(2)	1,32	401(68)	4.0(9)
4. LVA	d Ā	800(78)	0.005(2)	4.08	1302(139)	0.10(3)	6.28	3.3(8)	0.94	222(10)	2.27(7)
	В	291(23)	0,019(2)	2,59	467(81)	0,03(2)	2,26	29(2)	1,80	42(25)	2,1(6)
5. LVj	А	562(86)	0,011(2)	5,00	1433(125)	0,27(7)	6,91	11(2)	1,36	393(11)	2,51(8)
-	В	139(11)	0,023(4)	1,23	1525(160)	1,0(4)	7,36	8(2)	2,00	722(18)	2,7(1)
6. NVef	A	1109(89)	0,046(6)	9,87	1740(175)	2,1(6)	8,40	79(5)	1,60	1094(28)	2,8(2)
	В	1248(63)	0,008(1)	30,50	1809(146)	0,19(4)	8,73	14(2)	1,12	360(9)	1,95(4)
7. TCp	А	922(39)	0,064(6)	8,20	1311(118)	0,9(4)	6,33	94(6)	1,80	578(31)	3,0(2)
0.1	В	763(56)	0,041(6)	6,79	1084(87)	0,94(4)	5,23	58(4)	1,73	493(12)	3,7(1)
8. MTk	A	1843(340)	0,29(9)	16,40	1317(113)	4(2)	6,36	415(10)	1,52	903(34)	4,1(4)
0.07/1	В	1432(92)	0,23(3)	12,74	1131(90)	2(1)	5,46	293(13)	1,73	639(34)	4,4(4)
9. CXbe	e A	1531(131)	1,2(2)	13,62	1409(78)	2,2(5)	0,80	800(7)	1,/3	818(34)	5,3(2)
10 CVb	A A	922(69)	0,19(4)	8,20	529(42)	0,6(3)	2,55	$\frac{20}{(11)}$	2,28	244(35)	5,1(1)
10.CAD	a A D	395(112)	0,008(3)	3,51	1128(90)	0,07(2)	5,44 2.05	$5,\delta(1)$	1,52	155(9)	2,17(8)
11 FEe		390(02) 822(143)	0,003(3)	5,54 7 31	010(40) 1654(76)	0,00(1)	5,95 7.00	3(1) 10(2)	1,17	113(14) 568(17)	2,3(4) 2,37(0)
11.1100	B	212(143)	0,013(4)	1 00	1034(70) 077(37)	0,49(9)	1,39	19(2) 13(1)	1,39	104(13)	2,37(9) 2,05(1)
12 FEco	d A	21314) 818(141)	0,023(3) 0,017(5)	7.28	1528(76)	0,05(9)	7 37	26(3)	1,60	295(14)	1.80(3)
12.1100	B	82(4)	0.021(2)	0.73	1027(89)	0.027(5)	4 96	44(4)	1,10	63(5)	1,00(0)
13. CXd	I A	1576(139)	0.037(5)	14.02	2076(177)	1.98(4)	10.02	79(7)	1,40	149(22)	1,70(0) 1.82(7)
	В	683(28)	0.008(3)	6.08	1024(102)	0.035(8)	4.94	0.8(2)	1.09	82(5)	1.88(6)
14. ROo	A A	131(29)	0,025(4)	1,16	798(175)	0,033(7)	3,85	8,7(1)	1,86	62(6)	1,91(9)
	В	140(7)	0,025(3)	1,24	1004(127)	0,008(2)	4,85	9(1)	1,82	17(1)	1,37(4)
15.LVA	d A	763(89)	0,010(3)	6,79	1660(149)	0,16(3)	8,01	14(2)	1,35	321(7)	2,07(4)
	В	686(61)	0.0036(8)	6.10	1024(85)	0.028(5)	4.94	3(1)	1.10	66(2)	1.78(3)
	_	000(01)	0,0000(0)	~,- ~	102.(00)	0,020(3)	.,	-(-)	-,	~~(=)	-,(.)
		000(01)	0,0000(0)	Lang	muir	0,020(3)	.,,, ,	-(-)	Freundli	ch	-,
Solos	Horizonte		Cobre	Lang	muir Zir	100	.,,, .	Cob	Freundli	ch Zinco	-,(2)
Solos	Horizonte	b ¹	Cobre k	Lang	muir Zir	$\frac{b^2}{b^2}$	1	Cob K _F	Freundli pre n	ch Zinco K _F	n
Solos	Horizonte	b ¹ μg g ⁻¹	Cobre k µg mL ⁻¹ mmo	Lang b ² t bl kg ⁻¹ µg	muir 2ir gg^{-1} µg mL	b^{1}	1	Cob K _F	Freundli pre n	ch Zinco K _F	n
Solos	Horizonte	b ¹ μg g ⁻¹ 591(46)	Cobre k $\mu g m L^{-1} mmo$ 0,152(5)	Lang b ² t bl kg ⁻¹ µg 9,30	$ \begin{array}{c} \text{muir} \\ & \text{Zir} \\ g g^{-1} & \mu g mL \\ 260(12) \\ \hline \end{array} $	$b_{k}^{(0)} = b^{2}$ $b_{k}^{(1)} = b^{2}$	1 3,97	Cob K _F	Freundli pre n 2,9(1)	ch Zinco K_F 13(1)	n 0,96(3)
Solos	Horizonte A A B	b ¹ <u>µg g⁻¹</u> 591(46) 595(34) 0(9(2))	Cobre k $\mu g mL^{-1} mmc$ 0,152(5) 0,044(9)	Lang b ² t bl kg ⁻¹ µg 9,30 9,36	$\begin{array}{c} \text{muir} \\ \text{muir} \\ \text{gg}^{1} \\ 260(12) \\ 320(13) \\ 400(14) \end{array}$	$b_{k}^{(2)} = 0,020(5)^{-1}$	1 3,97 4,90	Cot K _F 143(6) 58(4) 219(0)	Freundli pre n 2,9(1) 2,00(7) 2,02(0)	$\frac{13(1)}{4(2)}$	n 0,96(3) 0,70(8)
Solos 1. PVA 2. LVA	Horizonte A A B A A B	$\frac{b^{1}}{\mu g g^{-1}}$ 591(46) 595(34) 969(92) 541(42)	Cobre k $\mu g m L^{-1} mmo$ 0,152(5) 0,044(9) 0,4(1) 0,106(2)	Lang b ² t b ¹ kg ⁻¹ µg 9,30 9,36 15,25 8,51	$\begin{array}{c c} \text{Top} (66) \\ \text{muir} \\ \text{J} \\ \text{J}$	$\begin{array}{c} \text{co} \\ \text{k} \\ \text{b}^2 \\ \hline 0,0557(5) \\ 0,0412(2) \\ 0,093(5) \\ 0.048(2) \end{array}$	1 3,97 4,90 7,59 2.06	Cot K _F 143(6) 58(4) 318(9) 110(2)	Freundli pre n 2,9(1) 2,00(7) 2,93(9) 2,70(4)	ch Zinco K_F 13(1) 4(2) 61(4) 61(4)	n 0,96(3) 0,70(8) 1,72(8) 0,90(0)
Solos	Horizonte A A B A A B	$\frac{b^{1}}{\mu g g^{-1}}$ 591(46) 595(34) 969(92) 541(42) 874(24)	Cobre k $\mu g m L^{-1} mmo$ 0,152(5) 0,044(9) 0,4(1) 0,106(3) 0,11(3)	Lang b ² t 9,30 9,36 15,25 8,51 13,75	$\begin{array}{c c} 1021(60) \\ \hline muir \\ 2ir \\ g g^{-1} \\ 260(12) \\ 320(13) \\ 496(14) \\ 200(9) \\ 439(259) \end{array}$	$\begin{array}{c} \text{ico} \\ \text{k} \\ b^2 \\ \hline 0,0557(5) \\ 0,0412(2) \\ 0,093(5) \\ 0,048(2) \\ 0.02(2) \end{array}$	3,97 4,90 7,59 3,06 6,72	Cob K _F 143(6) 58(4) 318(9) 110(2) 166(8)	Freundli re 2,9(1) 2,00(7) 2,93(9) 2,70(4) 2,43(9)	ch Zinco K_F 13(1) 4(2) 61(4) 6(2) 14(7)	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,3(3)
Solos 1. PVA 2. LVA 3. LVd	Horizonte A A B A A B I A B	$\frac{b^{1}}{\mu g g^{-1}}$ 591(46) 595(34) 969(92) 541(42) 874(24) 614(49)	Cobre k <u>µg mL⁻¹ mmo</u> 0,152(5) 0,044(9) 0,4(1) 0,106(3) 0,11(3) 0,21(8)	Lang b ² t 9,30 9,36 15,25 8,51 13,75 9,66	$\begin{array}{c c} 1001(00) \\ \hline muir \\ 1 \\ \hline muir \\ 2 \\ gg^{-1} \\ \mu g mL \\ 260(12) \\ 320(13) \\ 496(14) \\ 200(9) \\ 439(259) \\ 769(207) \end{array}$	$\begin{array}{c} c_{1} c_{2} c_{1} c_{2} c_{2}$	3,97 4,90 7,59 3,06 6,72	Cob K _F 143(6) 58(4) 318(9) 110(2) 166(8) 172(4)	Freundli rre n 2,9(1) 2,00(7) 2,70(4) 2,43(9) 2,43(9) 2,43(9)	$ \begin{array}{c} \text{Ch} \\ \text{Zinco} \\ \text{K}_{\text{F}} \\ \hline 13(1) \\ 4(2) \\ 61(4) \\ 6(2) \\ 14(7) \\ 16(2) \\ \end{array} $	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,3(3) 1,23(5)
Solos 1. PVA 2. LVA 3. LVd 4. LVA	Horizonte A A B A A B I A B I A B d A	b^{1} $\mu g g^{-1}$ 591(46) 595(34) 969(92) 541(42) 874(24) 614(49) 668(62)	Cobre k μg mL ⁻¹ mmc 0,152(5) 0,044(9) 0,4(1) 0,106(3) 0,11(3) 0,21(8) 0,09(3)	Lang b ² t 9,30 9,36 15,25 8,51 13,75 9,66 10,51	$\begin{array}{c c} 1021(00) \\ \hline muir \\ 1 \\ 2 \\ g \\ g^{-1} \\ \mu g \\ mL \\ 260(12) \\ 320(13) \\ 496(14) \\ 200(9) \\ 439(259) \\ 769(207) \\ 1047(212) \end{array}$	$\begin{array}{c} \text{co} \\ \text{k} \\ \text{b}^2 \\ \hline \\ 0.0557(5) \\ 0.0412(2) \\ 0.093(5) \\ 0.048(2) \\ 0.02(2) \\ 0.015(5) \\ 0.006(4) \end{array}$	3,97 4,90 7,59 3,06 6,72 11,76 16,02	Cot K _F 143(6) 58(4) 318(9) 110(2) 166(8) 172(4) 117(4)	Freundli rre n 2,9(1) 2,00(7) 2,93(9) 2,70(4) 2,43(9) 3,09(6) 2,46(6)	$ \begin{array}{c} \text{Ch} \\ \text{Zinco} \\ \text{K}_{\text{F}} \\ \hline 13(1) \\ 4(2) \\ 61(4) \\ 6(2) \\ 14(7) \\ 16(2) \\ 6(3) \\ \end{array} $	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,23(5) 1,23(5) 1,0(3)
Solos 1. PVA 2. LVA 3. LVd 4. LVA	Horizonte A A B A A B I A B I A B d A B	$\frac{b^{1}}{\mu g g^{-1}}$ 591(46) 595(34) 969(92) 541(42) 874(24) 614(49) 668(62) 316(54)	Cobre k $\mu g \text{ mL}^{-1} \text{ mmc}$ 0,152(5) 0,044(9) 0,4(1) 0,106(3) 0,11(3) 0,21(8) 0,09(3) 0,013(4)	Lang b ² t 9,30 9,36 15,25 8,51 13,75 9,66 10,51 4 97	$\begin{array}{c c} 1000 \\ \hline 100$	$\begin{array}{c} \text{co} \\ \text{k} \\ \text{b}^2 \\ \hline 0.0557(5) \\ 0.0412(2) \\ 0.093(5) \\ 0.048(2) \\ 0.02(2) \\ 0.015(5) \\ 0.006(4) \\ 0.075(3) \\ \end{array}$	1 3,97 4,90 7,59 3,06 6,72 11,76 16,02 6,55	Cot K _F 143(6) 58(4) 318(9) 110(2) 166(8) 172(4) 117(4) 19(6)	Freundli rre n 2,9(1) 2,00(7) 2,93(9) 2,70(4) 2,43(9) 3,09(6) 2,46(2)	$\begin{array}{c} \text{Ch} \\ \text{Zinco} \\ \text{K}_{\text{F}} \end{array}$ $\begin{array}{c} 13(1) \\ 4(2) \\ 61(4) \\ 6(2) \\ 14(7) \\ 16(2) \\ 6(3) \\ 47(7) \end{array}$	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,3(3) 1,23(5) 1,0(3) 1,7(2)
Solos 1. PVA 2. LVA 3. LVd 4. LVA 5. LVi	Horizonte A A B A A B I A B I A B d A B d A B A	$\frac{b^{1}}{\mu g g^{-1}}$ 591(46) 595(34) 969(92) 541(42) 874(24) 614(49) 668(62) 316(54) 709(77)	Cobre k $\mu g m L^{-1} mmc$ 0,152(5) 0,044(9) 0,4(1) 0,106(3) 0,11(3) 0,21(8) 0,09(3) 0,013(4) 0,15(3)	Lang b ² t 9,30 9,36 15,25 8,51 13,75 9,66 10,51 4,97 11,15	$\begin{array}{c c} 1000 \\ \hline 100$	$\begin{array}{c} \text{co} \\ \text{k} \\ \text{b}^2 \\ \hline 0.0557(5) \\ 0.0412(2) \\ 0.093(5) \\ 0.048(2) \\ 0.02(2) \\ 0.015(5) \\ 0.006(4) \\ 0.075(3) \\ 0.0232 \end{array}$	3,97 4,90 7,59 3,06 6,72 11,76 16,02 6,55 5,81	Cot K _F 143(6) 58(4) 318(9) 110(2) 166(8) 172(4) 117(4) 19(6) 167(6)	re n 2,9(1) 2,00(7) 2,93(9) 2,70(4) 2,43(9) 3,09(6) 2,46(6) 1,6(2) 2,76(8)	$\begin{array}{c} \text{Ch} \\ \text{Zinco} \\ \text{K}_{\text{F}} \end{array}$ $\begin{array}{c} 13(1) \\ 4(2) \\ 61(4) \\ 6(2) \\ 14(7) \\ 16(2) \\ 6(3) \\ 47(7) \\ 10(3) \end{array}$	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,3(3) 1,23(5) 1,0(3) 1,7(2) 0,97(9)
Solos 1. PVA 2. LVA 3. LVd 4. LVA 5. LVj	Horizonte Horizonte B A A B A A B d A B A B B A B	b ¹ <u>µg g⁻¹</u> 591(46) 595(34) 969(92) 541(42) 874(24) 614(49) 668(62) 316(54) 709(77) 746(60)	$\begin{array}{c} \text{Cobre} \\ \text{k} \\ \mu \text{g mL}^{-1} \text{ mmc} \\ 0,152(5) \\ 0,044(9) \\ 0,4(1) \\ 0,106(3) \\ 0,11(3) \\ 0,21(8) \\ 0,09(3) \\ 0,013(4) \\ 0,15(3) \\ 0,5(2) \end{array}$	Lang b ² t 9,30 9,36 15,25 8,51 13,75 9,66 10,51 4,97 11,15 11,73	$\begin{array}{c c} 1000 \\ \hline 100$	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & &$	3,97 4,90 7,59 3,06 6,72 11,76 16,02 6,55 5,81 15,57	Cot K _F 143(6) 58(4) 318(9) 110(2) 166(8) 172(4) 117(4) 19(6) 167(6) 286(11)	re n 2,9(1) 2,00(7) 2,93(9) 2,70(4) 2,43(9) 3,09(6) 2,46(6) 1,6(2) 2,76(8) 3,5(2)	$\begin{array}{c} \text{Ch} \\ \text{Zinco} \\ \text{K}_{\text{F}} \end{array}$ $\begin{array}{c} 13(1) \\ 4(2) \\ 61(4) \\ 6(2) \\ 14(7) \\ 16(2) \\ 6(3) \\ 47(7) \\ 10(3) \\ 42(13) \end{array}$	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,3(3) 1,23(5) 1,0(3) 1,7(2) 0,97(9) 1,3(2)
Solos 1. PVA 2. LVA 3. LVd 4. LVA 5. LVj 6. NVe	Horizonte Horizonte B A A B A A B d A B d A B f A	b ¹ <u>µg g⁻¹</u> 591(46) 595(34) 969(92) 541(42) 874(24) 614(49) 668(62) 316(54) 709(77) 746(60) 1079(136)	$\begin{array}{c} \text{Cobre} \\ \text{k} \\ \mu \text{g mL}^{-1} \text{ mmc} \\ 0,152(5) \\ 0,044(9) \\ 0,4(1) \\ 0,106(3) \\ 0,11(3) \\ 0,21(8) \\ 0,09(3) \\ 0,013(4) \\ 0,15(3) \\ 0,5(2) \\ 0,3(1) \end{array}$	Lang b ² t 9,30 9,36 15,25 8,51 13,75 9,66 10,51 4,97 11,15 11,73 16,99	$\begin{array}{c c} 1000 \\ \hline 100$	$\begin{array}{c c} c_{0}c_{0}c_{0}c_{0}c_{0}c_{0}c_{0}c_{0}$	3,97 4,90 7,59 3,06 6,72 11,76 16,02 6,55 5,81 15,57 9,89	Cot K _F 143(6) 58(4) 318(9) 110(2) 166(8) 172(4) 117(4) 19(6) 167(6) 286(11) 344(10)	re n 2,9(1) 2,00(7) 2,93(9) 2,70(4) 2,43(9) 3,09(6) 2,46(6) 1,6(2) 2,76(8) 3,5(2) 2,95(9)	$\begin{array}{c} \text{Ch} \\ \text{Zinco} \\ \text{K}_{\text{F}} \end{array}$ $\begin{array}{c} 13(1) \\ 4(2) \\ 61(4) \\ 6(2) \\ 14(7) \\ 16(2) \\ 6(3) \\ 47(7) \\ 10(3) \\ 42(13) \\ 59(2) \end{array}$	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,3(3) 1,23(5) 1,0(3) 1,7(2) 0,97(9) 1,3(2) 1,52(4)
Solos 1. PVA 2. LVA 3. LVd 4. LVA 5. LVj 6. NVe	Horizonte Horizonte B A A B A A B A A B A B A B f A B A B A	b ¹ <u>µg g⁻¹</u> 591(46) 595(34) 969(92) 541(42) 874(24) 614(49) 668(62) 316(54) 709(77) 746(60) 1079(136) 1797(71)	$\begin{array}{c} \text{Cobre} \\ \text{k} \\ \mu \text{g mL}^{-1} \text{ mmc} \\ 0,152(5) \\ 0,044(9) \\ 0,4(1) \\ 0,106(3) \\ 0,11(3) \\ 0,21(8) \\ 0,09(3) \\ 0,013(4) \\ 0,15(3) \\ 0,5(2) \\ 0,3(1) \\ 0,020(1) \end{array}$	Lang b ² t 9,30 9,36 15,25 8,51 13,75 9,66 10,51 4,97 11,15 11,73 16,99 28,28	$\begin{array}{c c} 1000 \\ \hline 100$	$\begin{array}{c c} c_{0}c_{0}c_{0}c_{0}c_{0}c_{0}c_{0}c_{0}$	1 3,97 4,90 7,59 3,06 6,72 11,76 16,02 6,55 5,81 15,57 9,89 13,32	$\begin{array}{c} \text{Cot} \\ K_{\text{F}} \end{array} \\ \hline 143(6) \\ 58(4) \\ 318(9) \\ 110(2) \\ 166(8) \\ 172(4) \\ 117(4) \\ 19(6) \\ 167(6) \\ 286(11) \\ 344(10) \\ 54(4) \end{array}$	re n 2,9(1) 2,00(7) 2,93(9) 2,70(4) 2,43(9) 3,09(6) 2,46(6) 1,6(2) 2,76(8) 3,5(2) 2,95(9) 1,36(4)	$\begin{array}{c} \text{Ch} \\ \text{Zinco} \\ \text{K}_{\text{F}} \end{array}$ $\begin{array}{c} 13(1) \\ 4(2) \\ 61(4) \\ 6(2) \\ 14(7) \\ 16(2) \\ 6(3) \\ 47(7) \\ 10(3) \\ 42(13) \\ 59(2) \\ 31 \end{array}$	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,3(3) 1,23(5) 1,0(3) 1,7(2) 0,97(9) 1,3(2) 1,52(4) 1,3(3)
Solos 1. PVA 2. LVA 3. LVd 4. LVA 5. LVj 6. NVe 7. TCp	Horizonte Horizonte B A A B A A B A A B A B f A B A A	b ¹ <u>µg g⁻¹</u> 591(46) 595(34) 969(92) 541(42) 874(24) 614(49) 668(62) 316(54) 709(77) 746(60) 1079(136) 1797(71) 295(24)	$\begin{array}{c} \text{Cobre} \\ \text{k} \\ \mu \text{g mL}^{-1} \text{ mmc} \\ 0,152(5) \\ 0,044(9) \\ 0,4(1) \\ 0,106(3) \\ 0,11(3) \\ 0,21(8) \\ 0,09(3) \\ 0,013(4) \\ 0,15(3) \\ 0,5(2) \\ 0,3(1) \\ 0,020(1) \\ 0,12(4) \end{array}$	Lang b ² t 9,30 9,36 15,25 8,51 13,75 9,66 10,51 4,97 11,15 11,73 16,99 28,28 4,64	$\begin{array}{c c} 1000 \\ \hline 100$	$\begin{array}{c c} c_{0}c_{0}c_{0}c_{0}c_{0}c_{0}c_{0}c_{0}$	1 3,97 4,90 7,59 3,06 6,72 11,76 16,02 6,55 5,81 15,57 9,89 13,32 16,49	$\begin{array}{c} \text{Cot} \\ K_{\text{F}} \end{array} \\ \hline 143(6) \\ 58(4) \\ 318(9) \\ 110(2) \\ 166(8) \\ 172(4) \\ 117(4) \\ 19(6) \\ 167(6) \\ 286(11) \\ 344(10) \\ 54(4) \\ 76(7) \end{array}$	re n 2,9(1) 2,00(7) 2,93(9) 2,70(4) 2,43(9) 3,09(6) 2,46(6) 1,6(2) 2,76(8) 3,5(2) 2,95(9) 1,36(4) 3,3(3)	$\begin{array}{c} \text{Ch} \\ \text{Zinco} \\ \text{K}_{\text{F}} \end{array}$ $\begin{array}{c} 13(1) \\ 4(2) \\ 61(4) \\ 6(2) \\ 14(7) \\ 16(2) \\ 6(3) \\ 47(7) \\ 10(3) \\ 42(13) \\ 59(2) \\ 31 \\ 112(6) \end{array}$	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,3(3) 1,23(5) 1,0(3) 1,7(2) 0,97(9) 1,3(2) 1,52(4) 1,3(3) 1,63(5)
Solos 1. PVA 2. LVA 3. LVd 4. LVA 5. LVj 6. NVe 7. TCp	Horizonte Horizonte B A A B A A B A A B A B f A B A B A B A	b ¹ <u>µg g⁻¹</u> 591(46) 595(34) 969(92) 541(42) 874(24) 614(49) 668(62) 316(54) 709(77) 746(60) 1079(136) 1797(71) 295(24) 374(84)	$\begin{array}{c} \text{Cobre} \\ \text{k} \\ \mu \text{g mL}^{-1} \text{ mmc} \\ 0,152(5) \\ 0,044(9) \\ 0,4(1) \\ 0,106(3) \\ 0,11(3) \\ 0,21(8) \\ 0,09(3) \\ 0,013(4) \\ 0,15(3) \\ 0,5(2) \\ 0,3(1) \\ 0,020(1) \\ 0,12(4) \\ 0,03(1) \end{array}$	Lang b ² t 9,30 9,36 15,25 8,51 13,75 9,66 10,51 4,97 11,15 11,73 16,99 28,28 4,64 5,88	$\begin{array}{c c} 1000 \\ \hline 100$	$\begin{array}{c} & & & & & \\ & & & & & & \\ \hline & & & & & \\ \hline & & & &$	1 3,97 4,90 7,59 3,06 6,72 11,76 16,02 6,55 5,81 15,57 9,89 13,32 16,49 8,85	$\begin{array}{c} \text{Cot}\\ K_{\text{F}} \end{array} \\ \hline 143(6) \\ 58(4) \\ 318(9) \\ 110(2) \\ 166(8) \\ 172(4) \\ 117(4) \\ 19(6) \\ 167(6) \\ 286(11) \\ 344(10) \\ 54(4) \\ 76(7) \\ 30(7) \end{array}$	re n 2,9(1) 2,00(7) 2,93(9) 2,70(4) 2,43(9) 3,09(6) 2,46(6) 1,6(2) 2,76(8) 3,5(2) 2,95(9) 1,36(4) 3,3(3) 2,0(2)	$\begin{array}{c} \text{Ch} \\ \text{Zinco} \\ \text{K}_{\text{F}} \end{array} \\ \hline 13(1) \\ 4(2) \\ 61(4) \\ 6(2) \\ 14(7) \\ 16(2) \\ 6(3) \\ 47(7) \\ 10(3) \\ 42(13) \\ 59(2) \\ 31 \\ 112(6) \\ 47(6) \end{array}$	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,3(3) 1,23(5) 1,0(3) 1,7(2) 0,97(9) 1,3(2) 1,52(4) 1,52(4) 1,5(1)
Solos 1. PVA 2. LVA 3. LVd 4. LVA 5. LVj 6. NVe 7. TCp 8. MTk	Horizonte Horizonte B A A B A A B A A B A B A B A B A B A	b ¹ <u>µg g⁻¹</u> 591(46) 595(34) 969(92) 541(42) 874(24) 614(49) 668(62) 316(54) 709(77) 746(60) 1079(136) 1797(71) 295(24) 374(84) 702(62)	$\begin{array}{c} \text{Cobre} \\ \textbf{k} \\ \mu \textbf{g} \textbf{m} L^{-1} \textbf{mmc} \\ 0,152(5) \\ 0,044(9) \\ 0,4(1) \\ 0,106(3) \\ 0,11(3) \\ 0,21(8) \\ 0,09(3) \\ 0,09(3) \\ 0,013(4) \\ 0,15(3) \\ 0,5(2) \\ 0,3(1) \\ 0,020(1) \\ 0,12(4) \\ 0,03(1) \\ 1,1(7) \end{array}$	Lang b² t 9,30 9,36 15,25 8,51 13,75 9,66 10,51 4,97 11,15 11,73 16,99 28,28 4,64 5,88 11,05	$\begin{array}{c c} 1021(00) \\ \hline muir \\ & Zir \\ 0 \\ \hline muir \\ & Zir \\ 260(12) \\ 320(13) \\ 496(14) \\ 200(9) \\ 439(259) \\ 769(207) \\ 1047(212) \\ 428(86) \\ 471 \\ 1018(689) \\ 646(48) \\ 871(29) \\ 1078(101) \\ 578(98) \\ 619(51) \end{array}$	$\begin{array}{c} & & & & & & \\ & & & & & & & \\ \hline & & & &$	1 3,97 4,90 7,59 3,06 6,72 11,76 16,02 6,55 5,81 15,57 9,89 13,32 16,49 8,85 9,47	$\begin{array}{c} \text{Cot} \\ K_{\text{F}} \end{array} \\ \hline 143(6) \\ 58(4) \\ 318(9) \\ 110(2) \\ 166(8) \\ 172(4) \\ 117(4) \\ 19(6) \\ 167(6) \\ 286(11) \\ 344(10) \\ 54(4) \\ 76(7) \\ 30(7) \\ 340(26) \end{array}$	re n 2,9(1) 2,00(7) 2,93(9) 2,70(4) 2,43(9) 3,09(6) 2,46(6) 1,6(2) 2,76(8) 3,5(2) 2,76(8) 3,5(2) 2,95(9) 1,36(4) 3,3(3) 2,0(2) 4,4(5)	$\begin{array}{c} \text{Ch} \\ \text{Zinco} \\ \text{K}_{\text{F}} \end{array} \\ \hline 13(1) \\ 4(2) \\ 61(4) \\ 6(2) \\ 14(7) \\ 16(2) \\ 6(3) \\ 47(7) \\ 10(3) \\ 42(13) \\ 59(2) \\ 31 \\ 112(6) \\ 47(6) \\ 450(7) \end{array}$	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,3(3) 1,23(5) 1,0(3) 1,7(2) 0,97(9) 1,3(2) 1,52(4) 1,52(4) 1,5(1) 2,2(1)
Solos 1. PVA 2. LVA 3. LVd 4. LVA 5. LVj 6. NVe 7. TCp 8. MTk	Horizonte Horizonte B A A B A A B A A B A B A B A B A B A	b ¹ <u>µg g⁻¹</u> 591(46) 595(34) 969(92) 541(42) 874(24) 614(49) 668(62) 316(54) 709(77) 746(60) 1079(136) 1797(71) 295(24) 374(84) 702(62) 681(104)	$\begin{array}{c} \text{Cobre} \\ \text{k} \\ \mu \text{g mL}^{-1} \text{ mmc} \\ 0,152(5) \\ 0,044(9) \\ 0,4(1) \\ 0,106(3) \\ 0,11(3) \\ 0,21(8) \\ 0,09(3) \\ 0,013(4) \\ 0,15(3) \\ 0,5(2) \\ 0,3(1) \\ 0,020(1) \\ 0,12(4) \\ 0,03(1) \\ 1,1(7) \\ 0,24(2) \\ 0,03(1) \\ 0,12(4) \\ 0,12(4) \\ 0,12($	Lang b² t 9,30 9,36 15,25 8,51 13,75 9,66 10,51 4,97 11,15 11,73 16,99 28,28 4,64 5,88 11,05 10,71	$\begin{array}{c c} 1000 \\ \hline 100$	$\begin{array}{c} 0.020(8) \\ \hline 0.052(8) \\ \hline 0.0557(5) \\ 0.0412(2) \\ 0.093(5) \\ 0.048(2) \\ 0.02(2) \\ 0.015(5) \\ 0.006(4) \\ 0.075(3) \\ 0.075(3) \\ 0.073(2) \\ 0.03(3) \\ 0.073(9) \\ 0.0183(8) \\ 0.08(1) \\ 0.06(2) \\ 2.6(6) \\ 2.3(5) \\ \hline 0.012(10) \\ 0.012$	1 3,97 4,90 7,59 3,06 6,72 11,76 16,02 6,55 5,81 15,57 9,89 13,32 16,49 8,85 9,47 8,76	$\begin{array}{c} \text{Cot}\\ K_{\text{F}} \end{array} \\ \hline 143(6) \\ 58(4) \\ 318(9) \\ 110(2) \\ 166(8) \\ 172(4) \\ 117(4) \\ 19(6) \\ 167(6) \\ 286(11) \\ 344(10) \\ 54(4) \\ 76(7) \\ 30(7) \\ 340(26) \\ 210(35) \end{array}$	re n 2,9(1) 2,00(7) 2,93(9) 2,70(4) 2,43(9) 3,09(6) 2,46(6) 1,6(2) 2,76(8) 3,5(2) 2,76(8) 3,5(2) 2,95(9) 1,36(4) 3,3(3) 2,0(2) 4,4(5) 3,2(5)	$\begin{array}{c} \text{Ch} \\ \text{Zinco} \\ \text{K}_{\text{F}} \end{array} \\ \hline 13(1) \\ 4(2) \\ 61(4) \\ 6(2) \\ 14(7) \\ 16(2) \\ 6(3) \\ 47(7) \\ 10(3) \\ 42(13) \\ 59(2) \\ 31 \\ 112(6) \\ 47(6) \\ 450(7) \\ 378(10) \\ \end{array}$	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,3(3) 1,23(5) 1,0(3) 1,7(2) 0,97(9) 1,3(2) 1,52(4) 1,52(4) 1,5(1) 2,2(1) 2,4(2)
Solos 1. PVA 2. LVA 3. LVd 4. LVA 5. LVj 6. NVe 7. TCp 8. MTk 9. CXb	Horizonte Horizonte A A B A A B A A B d A B d A B f A B A A B A A B A A B A A B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B B A A B B A A B B B A A B B A A B B A A B B B A A B B B A A B B B A A B B B B A A B B B B A A B	b ¹ <u>µg g⁻¹</u> 591(46) 595(34) 969(92) 541(42) 874(24) 614(49) 668(62) 316(54) 709(77) 746(60) 1079(136) 1797(71) 295(24) 374(84) 702(62) 681(104) 1168(152)	$\begin{array}{c} \text{Cobre} \\ \text{k} \\ \mu g \text{ mL}^{-1} \text{ mmo} \\ 0,152(5) \\ 0,044(9) \\ 0,4(1) \\ 0,106(3) \\ 0,11(3) \\ 0,21(8) \\ 0,09(3) \\ 0,013(4) \\ 0,15(3) \\ 0,5(2) \\ 0,3(1) \\ 0,12(4) \\ 0,020(1) \\ 0,12(4) \\ 0,03(1) \\ 1,1(7) \\ 0,24(2) \\ 2,4(1) \end{array}$	b ² t 9,30 9,36 15,25 8,51 13,75 9,66 10,51 4,97 11,15 11,73 16,99 28,28 4,64 5,88 11,05 10,71 18,39	Image: Non-State Image: Non-State 1 Image: Non-State Image: Non-State 2 2 Image: Non-State Image: Non-State 2 2 1 Image: Non-State Image: Non-State 2 3 2 1 Image: Non-State	$\begin{array}{c} 0.020(8) \\ \hline 0.0527(5) \\ 0.0412(2) \\ 0.093(5) \\ 0.048(2) \\ 0.02(2) \\ 0.015(5) \\ 0.006(4) \\ 0.075(3) \\ 0.075(3) \\ 0.075(3) \\ 0.073(9) \\ 0.0183(8) \\ 0.081(1) \\ 0.06(2) \\ 2.6(6) \\ 2.3(5) \\ 4.5(4) \\ \hline \end{array}$	1 3,97 4,90 7,59 3,06 6,72 11,76 16,02 6,55 5,81 15,57 9,89 13,32 16,49 8,85 9,47 8,76 9,59	$\begin{array}{c} \text{Cot}\\ K_{\text{F}} \end{array} \\ \hline \\ 143(6) \\ 58(4) \\ 318(9) \\ 110(2) \\ 166(8) \\ 172(4) \\ 117(4) \\ 19(6) \\ 167(6) \\ 286(11) \\ 344(10) \\ 54(4) \\ 76(7) \\ 30(7) \\ 340(26) \\ 210(35) \\ 712(36) \\ \end{array}$	re n 2,9(1) 2,00(7) 2,93(9) 2,70(4) 2,43(9) 3,09(6) 2,46(6) 1,6(2) 2,76(8) 3,5(2) 2,76(8) 3,5(2) 2,95(9) 1,36(4) 3,3(3) 2,0(2) 4,4(5) 3,2(5) 2,7(3)	$\begin{array}{c} 13(1)\\ 4(2)\\ 61(4)\\ 6(2)\\ 14(7)\\ 16(2)\\ 6(3)\\ 47(7)\\ 10(3)\\ 42(13)\\ 59(2)\\ 31\\ 112(6)\\ 47(6)\\ 450(7)\\ 378(10)\\ 1516(43)\\ \end{array}$	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,3(3) 1,23(5) 1,0(3) 1,7(2) 0,97(9) 1,3(2) 1,52(4) 1,3(3) 1,63(5) 1,5(1) 2,2(1) 2,4(2) 2,2(1)
Solos 1. PVA 2. LVA 3. LVd 4. LVA 5. LVj 6. NVe 7. TCp 8. MTk 9. CXb	Horizonte Horizonte A A B A A B A A B d A B d A B f A B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B B A A B B A A B B B A A B B A A B B B A A B B A A B B B B A A B B B B A A B B B B A A B B B B B A A B B B B A A B B B B B A A B B B B A A B B B B A A B B B B A A B B B B A A B B B B B A B B B B B A B	b ¹ <u>µg g⁻¹</u> 591(46) 595(34) 969(92) 541(42) 874(24) 614(49) 668(62) 316(54) 709(77) 746(60) 1079(136) 1797(71) 295(24) 374(84) 702(62) 681(104) 1168(152) 372(41) 572(55)	Cobre k $\mu g \text{ mL}^{-1} \text{ mmo}$ 0,152(5) 0,044(9) 0,4(1) 0,106(3) 0,11(3) 0,21(8) 0,09(3) 0,013(4) 0,15(3) 0,5(2) 0,3(1) 0,12(4) 0,020(1) 0,12(4) 0,03(1) 1,1(7) 0,24(2) 2,4(1) 0,3(2) 0,012(4)	b ² t 9,30 9,36 15,25 8,51 13,75 9,66 10,51 4,97 11,15 11,73 16,99 28,28 4,64 5,88 11,05 10,71 18,39 5,85	$\begin{array}{c c} 1021(00) \\ \hline muir \\ 2 g^{-1} \mu g mL \\ 260(12) \\ 320(13) \\ 496(14) \\ 200(9) \\ 439(259) \\ 769(207) \\ 1047(212) \\ 428(86) \\ 471 \\ 1018(689) \\ 646(48) \\ 871(29) \\ 1078(101) \\ 578(98) \\ 619(51) \\ 573(41) \\ 627(76) \\ 542(53) \\ 242(53$	$\begin{array}{c} 0.020(8) \\ \hline 0.052(8) \\ \hline 0.0557(5) \\ 0.0412(2) \\ 0.093(5) \\ 0.048(2) \\ 0.02(2) \\ 0.015(5) \\ 0.006(4) \\ 0.075(3) \\ 0.075(3) \\ 0.075(3) \\ 0.073(9) \\ 0.0183(8) \\ 0.08(1) \\ 0.06(2) \\ 2.6(6) \\ 2.3(5) \\ 4.5(4) \\ 2.0(7) \\ 0.012(2) \\ \hline \end{array}$	1 3,97 4,90 7,59 3,06 6,72 11,76 16,02 6,55 5,81 15,57 9,89 13,32 16,49 8,85 9,47 8,76 9,59 8,30 5,52	$\begin{array}{c} \text{Cot}\\ K_{\text{F}} \end{array} \\ \hline \\ 143(6) \\ 58(4) \\ 318(9) \\ 110(2) \\ 166(8) \\ 172(4) \\ 117(4) \\ 19(6) \\ 167(6) \\ 286(11) \\ 344(10) \\ 54(4) \\ 76(7) \\ 30(7) \\ 340(26) \\ 210(35) \\ 712(36) \\ 147(12) \\ 55(2) \\ 147(12) \\ 55(2) \\ 147(12) \\ 55(2) \\ 147(12) \\ 55(2) \\ 147(12) \\ 55(2) \\ 147(12) \\ 55(2) \\ 147(12) \\ 55(2) \\ 147(12) \\ 55(2) \\ 147(12) \\ 55(2) \\ 147(12) \\ 55(2) \\ 147(12) \\ 55(2) \\ 147(12) \\ 147$	re n 2,9(1) 2,00(7) 2,93(9) 2,70(4) 2,43(9) 3,09(6) 2,46(6) 1,6(2) 2,76(8) 3,5(2) 2,76(8) 3,5(2) 2,95(9) 1,36(4) 3,3(3) 2,0(2) 4,4(5) 3,2(5) 2,7(3) 4,4(4) 2,2(6)	$\begin{array}{c} 13(1)\\ 4(2)\\ 61(4)\\ 6(2)\\ 14(7)\\ 16(2)\\ 6(3)\\ 47(7)\\ 10(3)\\ 42(13)\\ 59(2)\\ 31\\ 112(6)\\ 47(6)\\ 450(7)\\ 378(10)\\ 1516(43)\\ 334(6)\\ 9.0(6)\end{array}$	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,3(3) 1,23(5) 1,0(3) 1,7(2) 0,97(9) 1,3(2) 1,52(4) 1,3(3) 1,63(5) 1,5(1) 2,2(1) 2,2(1) 2,2(2) 2,5(2) 2,5(2)
Solos 1. PVA 2. LVA 3. LVd 4. LVA 5. LVj 6. NVe 7. TCp 8. MTk 9. CXb 10.CXb	Horizonte Horizonte B A A B A A B d A B d A B f A B d A B B d A B B B d A B B B A B B A B B B A A B B B A B B B B A B B B B B A B	b ¹ <u>µg g⁻¹</u> 591(46) 595(34) 969(92) 541(42) 874(24) 614(49) 668(62) 316(54) 709(77) 746(60) 1079(136) 1797(71) 295(24) 374(84) 702(62) 681(104) 1168(152) 372(41) 577(52) 240(12)	Cobre k $\mu g \text{ mL}^{-1} \text{ mmo}$ 0,152(5) 0,044(9) 0,4(1) 0,106(3) 0,11(3) 0,21(8) 0,09(3) 0,013(4) 0,15(3) 0,5(2) 0,3(1) 0,12(4) 0,020(1) 0,12(4) 0,03(1) 1,1(7) 0,24(2) 2,4(1) 0,3(2) 0,041(9) 0,024(2)	b² kg² 9,30 9,36 15,25 8,51 13,75 9,66 10,51 4,97 11,15 11,73 16,99 28,28 4,64 5,88 11,05 10,71 18,39 5,85 9,08 5,49	$\begin{array}{c c} 1021(00) \\ \hline \\ muir \\ 2in \\ muir \\ 2in $	column b2 nmol kg 0,0557(5) 0,0412(2) 0,093(5) 0,048(2) 0,02(2) 0,015(5) 0,006(4) 0,075(3) 0,0232 0,03(3) 0,073(9) 0,0183(8) 0,08(1) 0,06(2) 2,6(6) 2,3(5) 4,5(4) 2,0(7) 0,017(3)	3,97 4,90 7,59 3,06 6,72 11,76 16,02 6,55 5,81 15,57 9,89 13,32 16,49 8,85 9,47 8,76 9,59 8,30 5,53 7,26	$\begin{array}{c} \text{Cot}\\ K_{\text{F}} \end{array} \\ \hline \\ 143(6) \\ 58(4) \\ 318(9) \\ 110(2) \\ 166(8) \\ 172(4) \\ 172(4) \\ 19(6) \\ 167(6) \\ 286(11) \\ 344(10) \\ 54(4) \\ 76(7) \\ 30(7) \\ 340(26) \\ 210(35) \\ 712(36) \\ 147(12) \\ 56(2) \\ 45(4) \\ 75(4) \\ 147(12) \\ 56(2) \\ 45(4) \\ 147(12) \\ 56(2) \\ 45(4) \\ 147(12) \\ 56(2) \\ 147(12) \\ 56(2) \\ 147(12) \\ 56(2) \\ 147(12) \\ 56(2) \\ 147(12) \\ 147$	re n 2,9(1) 2,00(7) 2,93(9) 2,70(4) 2,43(9) 2,43(9) 2,46(6) 1,6(2) 2,76(8) 3,5(2) 2,95(9) 1,36(4) 3,3(3) 2,0(2) 4,4(5) 3,2(5) 2,7(3) 4,4(4) 2,03(4) 2,75(5)	$\begin{array}{c} 13(1)\\ 4(2)\\ 61(4)\\ 6(2)\\ 14(7)\\ 16(2)\\ 6(3)\\ 47(7)\\ 10(3)\\ 42(13)\\ 59(2)\\ 31\\ 112(6)\\ 47(6)\\ 450(7)\\ 378(10)\\ 1516(43)\\ 334(6)\\ 8.9(6)\\ (72)(4) \end{array}$	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,3(3) 1,23(5) 1,0(3) 1,7(2) 0,97(9) 1,3(2) 1,52(4) 1,52(4) 1,63(5) 1,5(1) 2,2(1) 2,2(1) 2,2(2) 1,30(4)
Solos 1. PVA 2. LVA 3. LVd 4. LVA 5. LVj 6. NVe 7. TCp 8. MTk 9. CXb 10.CXb	Horizonte Horizonte A A B A A B d A B d A B f A B d A B B d A B B A B B A B B A B B A B B A B B A B B B A B B B B A B B B B B A B	b ¹ <u>µg g⁻¹</u> 591(46) 595(34) 969(92) 541(42) 874(24) 614(49) 668(62) 316(54) 709(77) 746(60) 1079(136) 1797(71) 295(24) 374(84) 702(62) 681(104) 1168(152) 372(41) 577(52) 349(43) 769(52)	Cobre k $\mu g \text{ mL}^{-1} \text{ mmo}$ 0,152(5) 0,044(9) 0,4(1) 0,106(3) 0,11(3) 0,21(8) 0,09(3) 0,013(4) 0,15(3) 0,5(2) 0,3(1) 0,5(2) 0,3(1) 0,12(4) 0,020(1) 0,12(4) 0,03(1) 1,1(7) 0,24(2) 2,4(1) 0,3(2) 0,041(9) 0,024(3) 0,024(3)	b² kg² 9,30 9,36 15,25 8,51 13,75 9,66 10,51 4,97 11,15 11,73 16,99 28,28 4,64 5,88 11,05 10,71 18,39 5,85 9,08 5,49	$\begin{array}{c c} 1021(00) \\ \hline \\ muir \\ 2in \\ muir \\ 2in $	column b2 nmol kg 0,0557(5) 0,0412(2) 0,093(5) 0,048(2) 0,02(2) 0,015(5) 0,006(4) 0,075(3) 0,0232 0,03(3) 0,073(9) 0,0183(8) 0,08(1) 0,06(2) 2,6(6) 2,3(5) 4,5(4) 2,0(7) 0,017(3) 0,0107(9) 0,017(3)	3,97 4,90 7,59 3,06 6,72 11,76 16,02 6,55 5,81 15,57 9,89 13,32 16,49 8,85 9,47 8,76 9,59 8,30 5,53 7,26 8,60	$\begin{array}{c} \text{Cot}\\ K_{\text{F}} \end{array} \\ \hline \\ 143(6) \\ 58(4) \\ 318(9) \\ 110(2) \\ 166(8) \\ 172(4) \\ 172(4) \\ 19(6) \\ 167(6) \\ 286(11) \\ 344(10) \\ 54(4) \\ 76(7) \\ 30(7) \\ 340(26) \\ 210(35) \\ 712(36) \\ 147(12) \\ 56(2) \\ 45(4) \\ 225(12) \\ \end{array}$	re n 2,9(1) 2,00(7) 2,93(9) 2,70(4) 2,43(9) 2,43(9) 2,46(6) 1,6(2) 2,76(8) 3,5(2) 2,95(9) 1,36(4) 3,3(3) 2,0(2) 4,4(5) 3,2(5) 2,7(3) 4,4(4) 2,03(4) 1,75(5) 2,0(2)	$\begin{array}{c} \text{Ch} \\ \text{Zinco} \\ \text{K}_{\text{F}} \end{array} \\ \hline 13(1) \\ 4(2) \\ 61(4) \\ 6(2) \\ 14(7) \\ 16(2) \\ 6(3) \\ 47(7) \\ 10(3) \\ 42(13) \\ 59(2) \\ 31 \\ 112(6) \\ 47(6) \\ 450(7) \\ 378(10) \\ 1516(43) \\ 334(6) \\ 8,9(6) \\ 6,73(4) \\ 21.0^{\circ} \end{array}$	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,3(3) 1,23(5) 1,0(3) 1,7(2) 0,97(9) 1,3(2) 1,52(4) 1,52(4) 1,63(5) 1,5(1) 2,2(1) 2,2(1) 2,2(1) 2,5(2) 1,30(4) 1,19(2) 1,22(2)
Solos 1. PVA 2. LVA 3. LVd 4. LVA 5. LVj 6. NVe 7. TCp 8. MTk 9. CXb 10.CXb 11. FFc	Horizonte Horizonte A A B A A B d A B d A B f A B B f A B B f A B B f A B B B B f A B B B B B B B B B B B B B B B B B B B	b ¹ <u>µg g⁻¹</u> 591(46) 595(34) 969(92) 541(42) 874(24) 614(49) 668(62) 316(54) 709(77) 746(60) 1079(136) 1797(71) 295(24) 374(84) 702(62) 681(104) 1168(152) 372(41) 577(52) 349(43) 768(53) 664(82)	Cobre k $\mu g m L^{-1} mm c$ 0,152(5) 0,044(9) 0,4(1) 0,106(3) 0,11(3) 0,21(8) 0,09(3) 0,013(4) 0,15(3) 0,5(2) 0,3(1) 0,5(2) 0,3(1) 0,12(4) 0,020(1) 0,12(4) 0,03(1) 1,1(7) 0,24(2) 2,4(1) 0,3(2) 0,041(9) 0,024(3) 0,024(3) 0,024(4)	b² kg² 9,30 9,36 15,25 8,51 13,75 9,66 10,51 4,97 11,15 11,73 16,99 28,28 4,64 5,88 11,05 10,71 18,39 5,85 9,08 5,49 10,45 10,45	$\begin{array}{c c} 1021(00) \\ \hline \\ muir \\ \\ muir \\ \\ 2 muir \\ 2 muir$	column b2 nmol kg 0.0557(5) 0.0412(2) 0.093(5) 0.048(2) 0.02(2) 0.015(5) 0.006(4) 0.075(3) 0.0232 0.03(3) 0.073(9) 0.0183(8) 0.08(1) 0.06(2) 2.6(6) 2.3(5) 4.5(4) 0.017(3) 0.0107(9) 0.019(3) 0.0085(2)	¹ 3,97 4,90 7,59 3,06 6,72 11,76 16,02 6,55 5,81 15,57 9,89 13,32 16,49 8,85 9,47 8,76 9,59 8,30 5,53 7,26 8,60 9,23	$\begin{array}{c} \text{Cot}\\ K_{\text{F}} \end{array} \\ \hline \\ 143(6) \\ 58(4) \\ 318(9) \\ 110(2) \\ 166(8) \\ 172(4) \\ 117(4) \\ 19(6) \\ 167(6) \\ 286(11) \\ 344(10) \\ 54(4) \\ 76(7) \\ 30(7) \\ 340(26) \\ 210(35) \\ 712(36) \\ 147(12) \\ 56(2) \\ 45(4) \\ 225(12) \\ 26(2) \\ 26(2) \\ \end{array}$	Image: regeneration of the system 2,9(1) 2,00(7) 2,93(9) 2,70(4) 2,43(9) 3,09(6) 2,46(6) 1,6(2) 2,76(8) 3,5(2) 2,95(9) 1,36(4) 3,2(5) 2,7(3) 4,4(4) 2,03(4) 1,75(5) 3,0(2)	$\begin{array}{c} 13(1)\\ 4(2)\\ 61(4)\\ 6(2)\\ 14(7)\\ 16(2)\\ 6(3)\\ 47(7)\\ 10(3)\\ 42(13)\\ 59(2)\\ 31\\ 112(6)\\ 47(6)\\ 450(7)\\ 378(10)\\ 1516(43)\\ 334(6)\\ 8,9(6)\\ 6,73(4)\\ 21,98\\ 8,3(5)\\ \end{array}$	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,3(3) 1,23(5) 1,0(3) 1,7(2) 0,97(9) 1,3(2) 1,52(4) 1,3(3) 1,63(5) 1,5(1) 2,2(1) 2,4(2) 2,2(1) 2,5(2) 1,30(4) 1,19(2) 1,32(2) 1,28(5) 1,19(2) 1,28(5) 1,58(5) 1,58(5) 1,58(5) 1,58(5) 1,28(5) 1
Solos 1. PVA 2. LVA 3. LVd 4. LVA 5. LVj 6. NVe 7. TCp 8. MTk 9. CXb 10.CXb 11. FFc 12. FFc	Horizonte Horizonte A A B A A B d A B d A B f A B f A B f A B f A B f A B f A B f A B f A B d A B f A B A B A B A B A B A B A B A B A B A B	b ¹ <u>µg g⁻¹</u> 591(46) 595(34) 969(92) 541(42) 874(24) 614(49) 668(62) 316(54) 709(77) 746(60) 1079(136) 1797(71) 295(24) 374(84) 702(62) 681(104) 1168(152) 372(41) 577(52) 349(43) 768(53) 664(82) 722(56)	Cobre k $\mu g m L^{-1} mmo$ 0,152(5) 0,044(9) 0,4(1) 0,106(3) 0,11(3) 0,21(8) 0,09(3) 0,013(4) 0,15(3) 0,5(2) 0,3(1) 0,5(2) 0,3(1) 0,12(4) 0,020(1) 0,12(4) 0,03(1) 1,1(7) 0,24(2) 2,4(1) 0,3(2) 0,041(9) 0,024(3) 0,26(8) 0,018(4) 0,24(2)	b² tang b² t 9,30 9,36 15,25 8,51 13,75 9,66 10,51 4,97 11,15 11,73 16,99 28,28 4,64 5,88 11,05 10,71 18,39 5,85 9,08 5,49 12,09 10,45 11,36 11,36	$\begin{array}{c c} 1021(00) \\ \hline \\ muir \\ \\ muir \\ 2 g g^{-1} \mu g mL \\ 260(12) \\ 320(13) \\ 496(14) \\ 200(9) \\ 439(259) \\ 769(207) \\ 1047(212) \\ 428(86) \\ 471 \\ 1018(689) \\ 646(48) \\ 871(29) \\ 1078(101) \\ 578(98) \\ 619(51) \\ 573(41) \\ 627(76) \\ 542(53) \\ 362(41) \\ 475(30) \\ 562(34) \\ 603(27) \\ 393(17) \\ \end{array}$	column b2 mol kg 0.0557(5) 0.0412(2) 0.093(5) 0.048(2) 0.02(2) 0.015(5) 0.0048(2) 0.022(2) 0.015(5) 0.005(3) 0.0232 0.03(3) 0.075(3) 0.048(1) 0.06(2) 2.5(6) 2.3(5) 4.5(4) 2.0(7) 0.017(3) 0.019(3) 0.0085(2) 0.015(3)	1 3,97 4,90 7,59 3,06 6,72 11,76 16,02 6,55 5,81 15,57 9,89 13,32 16,49 8,85 9,47 8,76 9,59 8,30 5,53 7,26 8,60 9,23 6,00	$\begin{array}{c} \text{Cot}\\ K_{\text{F}} \end{array} \\ \hline \\ 143(6) \\ 58(4) \\ 318(9) \\ 110(2) \\ 166(8) \\ 172(4) \\ 177(4) \\ 19(6) \\ 167(6) \\ 286(11) \\ 344(10) \\ 54(4) \\ 76(7) \\ 30(7) \\ 340(26) \\ 210(35) \\ 712(36) \\ 147(12) \\ 56(2) \\ 45(4) \\ 225(12) \\ 26(2) \\ 45(4) \\ 225(12) \\ 26(2) \\ 213(12) \\ \end{array}$	re n 2,9(1) 2,00(7) 2,93(9) 2,70(4) 2,43(9) 3,09(6) 2,46(6) 1,6(2) 2,76(8) 3,5(2) 2,95(9) 1,36(4) 3,3(3) 2,0(2) 4,4(5) 3,2(5) 2,7(3) 4,4(4) 2,03(4) 1,75(5) 3,0(2) 1,59(5) 3,1(2)	$\begin{array}{c} 13(1)\\ 4(2)\\ 61(4)\\ 6(2)\\ 14(7)\\ 16(2)\\ 6(3)\\ 47(7)\\ 10(3)\\ 42(13)\\ 59(2)\\ 31\\ 112(6)\\ 47(6)\\ 450(7)\\ 378(10)\\ 1516(43)\\ 334(6)\\ 8.9(6)\\ 6.73(4)\\ 21.98\\ 8.3(5)\\ 50.3(5)\\ 50.3(5)\\ \end{array}$	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,3(3) 1,23(5) 1,0(3) 1,7(2) 0,97(9) 1,3(2) 1,52(4) 1,3(3) 1,63(5) 1,5(1) 2,2(1) 2,4(2) 2,2(1) 2,4(2) 2,2(1) 2,5(2) 1,30(4) 1,19(2) 1,32(2) 1,32(2) 1,44(8)
Solos 1. PVA 2. LVA 3. LVd 4. LVA 5. LVj 6. NVe 7. TCp 8. MTk 9. CXb 10.CXb 11. FFc 12. FFc	Horizonte Horizonte A A B A A B A A B d A B d A B a A B B a A B a A B a A B a A B a A B a A B a A B a A B a A B a A B a A B a A B a A B a A B B B a A B B a A B B a A B B a A B B B a A B B B A B B B B	b ¹ <u>µg g⁻¹</u> 591(46) 595(34) 969(92) 541(42) 874(24) 614(49) 668(62) 316(54) 709(77) 746(60) 1079(136) 1797(71) 295(24) 374(84) 702(62) 681(104) 1168(152) 372(41) 577(52) 349(43) 768(53) 664(82) 722(56) 554(89)	Cobre k $\mu g \text{ mL}^{-1} \text{ mmo}$ 0,152(5) 0,044(9) 0,4(1) 0,106(3) 0,11(3) 0,21(8) 0,09(3) 0,013(4) 0,15(3) 0,5(2) 0,3(1) 0,020(1) 0,12(4) 0,03(1) 1,1(7) 0,24(2) 2,4(1) 0,3(2) 0,041(9) 0,024(3) 0,26(8) 0,018(4) 0,018(6)	b² tang b² t 9,30 9,36 15,25 8,51 13,75 9,66 10,51 4,97 11,15 11,73 16,99 28,28 4,64 5,88 11,05 10,71 18,39 5,85 9,08 5,49 12,09 10,45 11,36 8,72	$\begin{array}{c c} 1021(00) \\ \hline muir \\ muir \\ 2 g g^{-1} \mu g mI \\ 260(12) \\ 320(13) \\ 496(14) \\ 200(9) \\ 439(259) \\ 769(207) \\ 1047(212) \\ 428(86) \\ 471 \\ 1018(689) \\ 646(48) \\ 871(29) \\ 1078(101) \\ 578(98) \\ 619(51) \\ 573(41) \\ 627(76) \\ 542(53) \\ 362(41) \\ 475(30) \\ 562(34) \\ 603(27) \\ 393(17) \\ 204(18) \\ \end{array}$	$\begin{array}{c} 0.020(5) \\ \hline 0.000000000000000000000000000000000$	1 3,97 4,90 7,59 3,06 6,72 11,76 16,02 6,55 5,81 15,57 9,89 13,32 16,49 8,85 9,47 8,76 9,59 8,30 5,53 7,26 8,60 9,23 6,00 3,11	$\begin{array}{c} \text{Cot}\\ K_{\text{F}} \\ \hline \\ 143(6) \\ 58(4) \\ 318(9) \\ 110(2) \\ 166(8) \\ 172(4) \\ 117(4) \\ 19(6) \\ 167(6) \\ 286(11) \\ 344(10) \\ 54(4) \\ 76(7) \\ 30(7) \\ 340(26) \\ 210(35) \\ 712(36) \\ 147(12) \\ 56(2) \\ 45(4) \\ 225(12) \\ 26(2) \\ 45(4) \\ 225(12) \\ 26(2) \\ 213(12) \\ 24(3) \\ \end{array}$	re n 2,9(1) 2,00(7) 2,93(9) 2,70(4) 2,43(9) 2,46(6) 1,6(2) 2,76(8) 3,5(2) 2,95(9) 1,36(4) 3,3(3) 2,0(2) 4,4(5) 3,2(5) 2,7(3) 4,4(4) 2,03(4) 1,75(5) 3,0(2) 1,59(5) 3,1(2) 1,6(8)	$\begin{array}{c} 13(1)\\ 4(2)\\ 61(4)\\ 6(2)\\ 14(7)\\ 16(2)\\ 6(3)\\ 47(7)\\ 10(3)\\ 42(13)\\ 59(2)\\ 31\\ 112(6)\\ 47(6)\\ 450(7)\\ 378(10)\\ 1516(43)\\ 334(6)\\ 8.9(6)\\ 6.73(4)\\ 21.98\\ 8.3(5)\\ 50.3(5)\\ 16.2(6)\\ \end{array}$	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,3(3) 1,23(5) 1,0(3) 1,7(2) 0,97(9) 1,3(2) 1,52(4) 1,3(3) 1,63(5) 1,5(1) 2,2(1) 2,4(2) 2,2(1) 2,5(2) 1,30(4) 1,19(2) 1,32(2) 1,18(6) 1,44(8) 1,60(3)
Solos 1. PVA 2. LVA 3. LVd 4. LVA 5. LVj 6. NVe 7. TCp 8. MTk 9. CXb 10.CXb 11. FFc 12. FFc 13. CX-	Horizonte Horizonte B A A B B A A B B A B B B A B B B A B B B A B B B A B	b ¹ <u>µg g⁻¹</u> 591(46) 595(34) 969(92) 541(42) 874(24) 614(49) 668(62) 316(54) 709(77) 746(60) 1079(136) 1797(71) 295(24) 374(84) 702(62) 681(104) 1168(152) 372(41) 577(52) 349(43) 768(53) 664(82) 722(56) 554(89) 1318(157)	Cobre k $\mu g \text{ mL}^{-1} \text{ mmo}$ 0,152(5) 0,044(9) 0,4(1) 0,106(3) 0,11(3) 0,21(8) 0,09(3) 0,013(4) 0,15(3) 0,5(2) 0,3(1) 0,020(1) 0,12(4) 0,03(1) 1,1(7) 0,24(2) 2,4(1) 0,3(2) 0,041(9) 0,024(3) 0,26(8) 0,018(4) 0,24(8) 0,018(6) 0,06(2)	b² tang b² t 9,30 9,36 15,25 8,51 13,75 9,66 10,51 4,97 11,15 11,73 16,99 28,28 4,64 5,88 11,05 10,71 18,39 5,85 9,08 5,49 12,09 10,45 11,36 8,72 20,75 75	$\begin{array}{c c} 1021(00) \\ \hline muir \\ muir \\ 2 g g^{-1} \mu g mI \\ 260(12) \\ 320(13) \\ 496(14) \\ 200(9) \\ 439(259) \\ 769(207) \\ 1047(212) \\ 428(86) \\ 471 \\ 1018(689) \\ 646(48) \\ 871(29) \\ 1078(101) \\ 578(98) \\ 619(51) \\ 573(41) \\ 627(76) \\ 542(53) \\ 362(41) \\ 475(30) \\ 562(34) \\ 603(27) \\ 393(17) \\ 204(18) \\ 690(22) \\ \end{array}$	$\begin{array}{c} 0.020(8) \\ \hline 0.000000000000000000000000000000000$	3,97 4,90 7,59 3,06 6,72 11,76 16,02 6,55 5,81 15,57 9,89 13,32 16,49 8,85 9,47 8,76 9,59 8,30 5,53 7,26 8,60 9,23 6,00 3,11 10,56	$\begin{array}{c} \text{Cot}\\ K_{\text{F}} \\ \hline \\ 143(6) \\ 58(4) \\ 318(9) \\ 110(2) \\ 166(8) \\ 172(4) \\ 117(4) \\ 19(6) \\ 167(6) \\ 286(11) \\ 344(10) \\ 54(4) \\ 76(7) \\ 30(7) \\ 340(26) \\ 210(35) \\ 712(36) \\ 147(12) \\ 56(2) \\ 45(4) \\ 225(12) \\ 26(2) \\ 45(4) \\ 225(12) \\ 26(2) \\ 213(12) \\ 24(3) \\ 488(20) \\ \end{array}$	re n 2,9(1) 2,00(7) 2,93(9) 2,70(4) 2,43(9) 2,70(4) 2,44(6) 1,6(2) 2,76(8) 3,5(2) 2,95(9) 1,36(4) 3,3(3) 2,0(2) 4,4(5) 3,2(5) 2,7(3) 4,4(4) 2,03(4) 1,75(5) 3,0(2) 1,59(5) 3,1(2) 1,66(8) 2(1)	$\begin{array}{c} \text{Ch} \\ \text{Zinco} \\ \text{K}_{\text{F}} \\ \hline \\ 13(1) \\ 4(2) \\ 61(4) \\ 6(2) \\ 14(7) \\ 16(2) \\ 6(3) \\ 47(7) \\ 10(3) \\ 42(13) \\ 59(2) \\ 31 \\ 112(6) \\ 47(6) \\ 450(7) \\ 378(10) \\ 1516(43) \\ 334(6) \\ 8,9(6) \\ 6,73(4) \\ 21,98 \\ 8,3(5) \\ 50,3(5) \\ 16,2(6) \\ 63(4) \\ \end{array}$	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,3(3) 1,23(5) 1,0(3) 1,7(2) 0,97(9) 1,3(2) 1,52(4) 1,3(3) 1,63(5) 1,5(1) 2,4(2) 2,2(1) 2,4(2) 2,2(1) 2,5(2) 1,30(4) 1,19(2) 1,32(2) 1,18(6) 1,44(8) 1,60(3) 0,93(1)
Solos 1. PVA 2. LVA 3. LVd 4. LVA 5. LVj 6. NVe 7. TCp 8. MTk 9. CXb 10.CXb 11. FFc 12. FFc 13. CXc	Horizonte Horizonte B A A B A A B A A B d A B A B A B A B A	b ¹ <u>µg g⁻¹</u> 591(46) 595(34) 969(92) 541(42) 874(24) 614(49) 668(62) 316(54) 709(77) 746(60) 1079(136) 1797(71) 295(24) 374(84) 702(62) 681(104) 1168(152) 372(41) 577(52) 349(43) 768(53) 664(82) 722(56) 554(89) 1318(157) 753(110)	Cobre k $\mu g \text{ mL}^{-1} \text{ mmo}$ 0,152(5) 0,044(9) 0,4(1) 0,106(3) 0,11(3) 0,21(8) 0,09(3) 0,013(4) 0,15(3) 0,5(2) 0,3(1) 0,020(1) 0,12(4) 0,03(1) 1,1(7) 0,24(2) 2,4(1) 0,3(2) 0,041(9) 0,024(3) 0,26(8) 0,018(4) 0,24(8) 0,018(6) 0,06(2) 0,013(3)	b² tang b² t 9,30 9,36 15,25 8,51 13,75 9,66 10,51 4,97 11,15 11,73 16,99 28,28 4,64 5,88 11,05 10,71 18,39 5,85 9,08 5,49 12,09 10,45 11,36 8,72 20,75 11,84	$\begin{array}{c c} 1021(60) \\ \hline muir \\ muir \\ 2 g r^{1} \mu g mI \\ 260(12) \\ 320(13) \\ 496(14) \\ 200(9) \\ 439(259) \\ 769(207) \\ 1047(212) \\ 428(86) \\ 471 \\ 1018(689) \\ 646(48) \\ 871(29) \\ 1078(101) \\ 578(98) \\ 619(51) \\ 573(41) \\ 627(76) \\ 542(53) \\ 362(41) \\ 475(30) \\ 562(34) \\ 603(27) \\ 393(17) \\ 204(18) \\ 690(22) \\ 248(18) \\ \end{array}$	co k b ² mmol kg 0.0557(5) 0.0412(2) 0.093(5) 0.048(2) 0.02(2) 0.015(5) 0.006(4) 0.075(3) 0.0232 0.03(3) 0.073(9) 0.0183(8) 0.08(1) 0.06(62) 2.3(5) 4.5(4) 2.0(7) 0.017(3) 0.0085(2) 0.0085(2) 0.024(1) 0.099(7) 0.03(3)	1 3,97 4,90 7,59 3,06 6,72 11,76 16,02 6,55 5,81 15,57 9,89 13,32 16,49 8,85 9,47 8,76 9,59 8,30 5,53 7,26 8,60 9,23 6,00 3,11 10,56 3,79	$\begin{array}{c} \text{Cot}\\ K_{\text{F}} \\ \hline \\ 143(6) \\ 58(4) \\ 318(9) \\ 110(2) \\ 166(8) \\ 172(4) \\ 117(4) \\ 19(6) \\ 167(6) \\ 286(11) \\ 344(10) \\ 54(4) \\ 76(7) \\ 340(26) \\ 210(35) \\ 712(36) \\ 147(12) \\ 56(2) \\ 45(4) \\ 225(12) \\ 26(2) \\ 45(4) \\ 225(12) \\ 26(2) \\ 213(12) \\ 24(3) \\ 488(20) \\ 20(2) \end{array}$	re n 2,9(1) 2,00(7) 2,93(9) 2,70(4) 2,43(9) 2,43(9) 2,46(6) 1,6(2) 2,76(8) 3,5(2) 2,95(9) 1,36(4) 3,3(3) 2,0(2) 4,4(5) 3,2(5) 2,7(3) 4,4(4) 2,03(4) 1,75(5) 3,0(2) 1,59(5) 3,1(2) 1,66(8) 2(1) 1,47(5)	$\begin{array}{c} \text{Ch} \\ \text{Zinco} \\ \text{K}_{\text{F}} \\ \hline \\ 13(1) \\ 4(2) \\ 61(4) \\ 6(2) \\ 14(7) \\ 16(2) \\ 6(3) \\ 47(7) \\ 10(3) \\ 42(13) \\ 59(2) \\ 31 \\ 112(6) \\ 47(6) \\ 450(7) \\ 378(10) \\ 1516(43) \\ 334(6) \\ 8,9(6) \\ 6,73(4) \\ 21,98 \\ 8,3(5) \\ 50,3(5) \\ 16,2(6) \\ 63(4) \\ 17,4(3) \\ \end{array}$	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,3(3) 1,23(5) 1,0(3) 1,7(2) 0,97(9) 1,3(2) 1,52(4) 1,3(3) 1,63(5) 1,5(1) 2,2(1) 2,4(2) 2,2(1) 2,2(2) 1,30(4) 1,19(2) 1,32(2) 1,18(6) 1,44(8) 1,60(3) 0,93(1) 1,33(4)
Solos 1. PVA 2. LVA 3. LVd 4. LVA 5. LVj 6. NVe 7. TCp 8. MTk 9. CXb 10.CXb 11. FFc 12. FFc 13. CXc 14. ROC	Horizonte Horizonte B A A B A A B A A B d A B A B A B A B A	b ¹ <u>µg g⁻¹</u> 591(46) 595(34) 969(92) 541(42) 874(24) 614(49) 668(62) 316(54) 709(77) 746(60) 1079(136) 1797(71) 295(24) 374(84) 702(62) 681(104) 1168(152) 372(41) 577(52) 349(43) 768(53) 664(82) 722(56) 554(89) 1318(157) 753(110) 447(50)	Cobre k $\mu g \text{ mL}^{-1} \text{ mmo}$ 0,152(5) 0,044(9) 0,4(1) 0,106(3) 0,11(3) 0,21(8) 0,09(3) 0,013(4) 0,15(3) 0,5(2) 0,3(1) 0,020(1) 0,12(4) 0,03(1) 1,1(7) 0,24(2) 2,4(1) 0,3(2) 0,041(9) 0,024(3) 0,26(8) 0,018(4) 0,24(8) 0,018(6) 0,013(3) 0,034(9)	b² tang 9,30 9,36 15,25 8,51 13,75 9,66 10,51 4,97 11,15 11,73 16,99 28,28 4,64 5,88 11,05 10,71 18,39 5,85 9,08 5,49 12,09 10,45 11,36 8,72 20,75 11,84 7,04 7,04	$\begin{array}{c c} 1021(00) \\ \hline muir \\ muir \\ 2 g r^{1} \mu g mI \\ 260(12) \\ 320(13) \\ 496(14) \\ 200(9) \\ 439(259) \\ 769(207) \\ 1047(212) \\ 428(86) \\ 471 \\ 1018(689) \\ 646(48) \\ 871(29) \\ 1078(101) \\ 578(98) \\ 619(51) \\ 573(41) \\ 627(76) \\ 542(53) \\ 362(41) \\ 475(30) \\ 562(34) \\ 603(27) \\ 393(17) \\ 204(18) \\ 690(22) \\ 248(18) \\ 254(14) \\ \end{array}$	$\begin{array}{c} 0.020(5) \\ \hline 0.000000000000000000000000000000000$	3,97 4,90 7,59 3,06 6,72 11,76 16,02 6,55 5,81 15,57 9,89 13,32 16,49 8,85 9,47 8,76 9,59 8,30 5,53 7,26 8,60 9,23 6,00 3,11 10,56 3,79 3,88	$\begin{array}{c} \text{Cot}\\ K_{\text{F}} \\ \hline \\ 143(6) \\ 58(4) \\ 318(9) \\ 110(2) \\ 166(8) \\ 172(4) \\ 117(4) \\ 19(6) \\ 167(6) \\ 286(11) \\ 344(10) \\ 54(4) \\ 76(7) \\ 340(26) \\ 210(35) \\ 712(36) \\ 147(12) \\ 56(2) \\ 45(4) \\ 225(12) \\ 26(2) \\ 45(4) \\ 225(12) \\ 26(2) \\ 213(12) \\ 24(3) \\ 488(20) \\ 20(2) \\ 39(4) \\ \end{array}$	re n 2,9(1) 2,00(7) 2,93(9) 2,70(4) 2,43(9) 3,09(6) 2,443(9) 3,09(6) 2,46(6) 1,6(2) 2,76(8) 3,5(2) 2,95(9) 1,36(4) 3,3(3) 2,0(2) 4,4(5) 3,2(5) 2,7(3) 4,4(4) 2,03(4) 1,75(5) 3,0(2) 1,59(5) 3,1(2) 1,66(8) 2(1) 1,47(5) 2,0(1)	$\begin{array}{c} \text{Ch} \\ \text{Zinco} \\ \text{K}_{\text{F}} \\ \hline \\ 13(1) \\ 4(2) \\ 61(4) \\ 6(2) \\ 14(7) \\ 16(2) \\ 6(3) \\ 47(7) \\ 10(3) \\ 42(13) \\ 59(2) \\ 31 \\ 112(6) \\ 47(6) \\ 450(7) \\ 378(10) \\ 1516(43) \\ 334(6) \\ 8,9(6) \\ 6,73(4) \\ 21,98 \\ 8,3(5) \\ 50,3(5) \\ 16,2(6) \\ 63(4) \\ 17,4(3) \\ 2,72(7) \\ \end{array}$	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,3(3) 1,23(5) 1,0(3) 1,7(2) 0,97(9) 1,3(2) 1,52(4) 1,3(3) 1,63(5) 1,5(1) 2,2(1) 2,2(1) 2,2(2) 1,30(4) 1,19(2) 1,32(2) 1,18(6) 1,44(8) 1,60(3) 0,93(1) 1,33(4) 0,97(7)
Solos 1. PVA 2. LVA 3. LVd 4. LVA 5. LVj 6. NVe 7. TCp 8. MTk 9. CXb 10.CXb 11. FFc 12. FFc 13. CXc 14. RQc	Horizonte Horizonte B A A B A A B A A B d A B A B A B A B A	b ¹ <u>µg g⁻¹</u> 591(46) 595(34) 969(92) 541(42) 874(24) 614(49) 668(62) 316(54) 709(77) 746(60) 1079(136) 1797(71) 295(24) 374(84) 702(62) 681(104) 1168(152) 372(41) 577(52) 349(43) 768(53) 664(82) 722(56) 554(89) 1318(157) 753(110) 447(50) 458(72)	Cobre k $\mu g \text{ mL}^{-1} \text{ mmo}$ 0,152(5) 0,044(9) 0,4(1) 0,106(3) 0,11(3) 0,21(8) 0,09(3) 0,013(4) 0,05(2) 0,3(1) 0,5(2) 0,3(1) 0,020(1) 0,12(4) 0,03(1) 1,1(7) 0,24(2) 2,4(1) 0,32(2) 0,041(9) 0,024(3) 0,26(8) 0,018(4) 0,24(8) 0,018(6) 0,013(3) 0,034(9) 0,014(4)	b² tang b² te 9,30 9,36 15,25 8,51 13,75 9,66 10,51 4,97 11,15 11,73 16,99 28,28 4,64 5,88 11,05 10,71 18,39 5,85 9,08 5,49 12,09 10,45 11,36 8,72 20,75 11,84 7,04 7,20	$\begin{array}{c c} 1021(20) \\ \hline \\ muir \\ muir \\ 2 g ^{-1} \mu g mI \\ 260(12) \\ 320(13) \\ 496(14) \\ 200(9) \\ 439(259) \\ 769(207) \\ 1047(212) \\ 428(86) \\ 471 \\ 1018(689) \\ 646(48) \\ 871(29) \\ 1078(101) \\ 578(98) \\ 619(51) \\ 573(41) \\ 627(76) \\ 542(53) \\ 362(41) \\ 475(30) \\ 562(34) \\ 603(27) \\ 393(17) \\ 204(18) \\ 690(22) \\ 248(18) \\ 254(14) \\ 163(88) \\ \end{array}$	$\begin{array}{c} 0.020(5) \\ \hline 0.000000000000000000000000000000000$	1 3,97 4,90 7,59 3,06 6,72 11,76 16,02 6,55 5,81 15,57 9,89 13,32 16,49 8,85 9,47 8,76 9,59 8,30 5,53 7,26 8,60 9,23 6,00 3,11 10,56 3,79 3,88 2,49	$\begin{array}{c} \text{Cot}\\ K_{\text{F}} \\ \hline \\ 143(6) \\ 58(4) \\ 318(9) \\ 110(2) \\ 166(8) \\ 172(4) \\ 117(4) \\ 19(6) \\ 167(6) \\ 286(11) \\ 344(10) \\ 54(4) \\ 76(7) \\ 340(26) \\ 210(35) \\ 712(36) \\ 147(12) \\ 56(2) \\ 45(4) \\ 225(12) \\ 26(2) \\ 45(4) \\ 225(12) \\ 26(2) \\ 213(12) \\ 24(3) \\ 488(20) \\ 20(2) \\ 39(4) \\ 15(2) \\ \end{array}$	reundli Freundli rre n 2,9(1) 2,00(7) 2,93(9) 2,70(4) 2,43(9) 3,09(6) 2,46(6) 1,6(2) 2,76(8) 3,5(2) 2,95(9) 1,36(4) 3,3(3) 2,0(2) 4,4(5) 3,2(5) 2,7(3) 4,4(4) 2,03(4) 1,75(5) 3,0(2) 1,59(5) 3,1(2) 1,66(8) 2(1) 1,47(5) 2,0(1) 1,57(9)	$\begin{array}{c} \text{Ch} \\ \text{Zinco} \\ \text{K}_{\text{F}} \\ \hline \\ 13(1) \\ 4(2) \\ 61(4) \\ 6(2) \\ 14(7) \\ 16(2) \\ 6(3) \\ 47(7) \\ 10(3) \\ 42(13) \\ 59(2) \\ 31 \\ 112(6) \\ 47(6) \\ 450(7) \\ 378(10) \\ 1516(43) \\ 334(6) \\ 8,9(6) \\ 6,73(4) \\ 21,98 \\ 8,3(5) \\ 50,3(5) \\ 16,2(6) \\ 63(4) \\ 17,4(3) \\ 2,72(7) \\ 4(2) \\ \end{array}$	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,3(3) 1,23(5) 1,0(3) 1,7(2) 0,97(9) 1,3(2) 1,52(4) 1,52(4) 1,3(3) 1,63(5) 1,5(1) 2,2(1) 2,2(1) 2,2(2) 1,30(4) 1,19(2) 1,32(2) 1,18(6) 1,44(8) 1,60(3) 0,93(1) 1,33(4) 0,97(7) 1,3(8)
Solos 1. PVA 2. LVA 3. LVd 4. LVA 5. LVj 6. NVe 7. TCp 8. MTk 9. CXb 10.CXb 11. FFc 12. FFc 13. CXc 14. RQc 15.LVA	Horizonte Horizonte B A A B B A A B A A B B A B B A A B B B A B B B B A B B B A B	b ¹ <u>µg g⁻¹</u> 591(46) 595(34) 969(92) 541(42) 874(24) 614(49) 668(62) 316(54) 709(77) 746(60) 1079(136) 1797(71) 295(24) 374(84) 702(62) 681(104) 1168(152) 372(41) 577(52) 349(43) 768(53) 664(82) 722(56) 554(89) 1318(157) 753(110) 447(50) 458(72) 716(50)	Cobre k $\mu g \text{ mL}^{-1} \text{ mmo}$ 0,152(5) 0,044(9) 0,4(1) 0,106(3) 0,11(3) 0,21(8) 0,09(3) 0,013(4) 0,05(2) 0,3(1) 0,5(2) 0,3(1) 0,12(4) 0,020(1) 0,12(4) 0,03(1) 1,1(7) 0,24(2) 2,4(1) 0,3(2) 0,041(9) 0,024(3) 0,26(8) 0,018(4) 0,24(8) 0,018(6) 0,018(6) 0,034(9) 0,014(4) 0,13(3)	b² tang 9,30 9,36 15,25 8,51 13,75 9,66 10,51 4,97 11,15 11,73 16,99 28,28 4,64 5,88 11,05 10,71 18,39 5,85 9,08 5,49 12,09 10,45 11,36 8,72 20,75 11,84 7,04 7,20 11,27 11,27	$\begin{array}{c c} 1021(00) \\ \hline muir \\ muir \\ 2 g ^{-1} \mu g mI \\ 260(12) \\ 320(13) \\ 496(14) \\ 200(9) \\ 439(259) \\ 769(207) \\ 1047(212) \\ 428(86) \\ 471 \\ 1018(689) \\ 646(48) \\ 871(29) \\ 1078(101) \\ 578(98) \\ 619(51) \\ 573(41) \\ 627(76) \\ 542(53) \\ 362(41) \\ 475(30) \\ 562(34) \\ 603(27) \\ 393(17) \\ 204(18) \\ 690(22) \\ 248(18) \\ 254(14) \\ 163(88) \\ 366(19) \\ \end{array}$	$\begin{array}{c} 0.020(8) \\ \hline 0.000000000000000000000000000000000$	1 3,97 4,90 7,59 3,06 6,72 11,76 16,02 6,55 5,81 15,57 9,89 13,32 16,49 8,85 9,47 8,76 9,59 8,30 5,53 7,26 8,60 9,23 6,00 3,11 10,56 3,79 3,88 2,49 5,59	$\begin{array}{c} \text{Cot}\\ K_{\text{F}} \\ \hline \\ 143(6) \\ 58(4) \\ 318(9) \\ 110(2) \\ 166(8) \\ 172(4) \\ 117(4) \\ 19(6) \\ 167(6) \\ 286(11) \\ 344(10) \\ 54(4) \\ 76(7) \\ 340(26) \\ 210(35) \\ 712(36) \\ 147(12) \\ 56(2) \\ 45(4) \\ 225(12) \\ 26(2) \\ 213(12) \\ 24(3) \\ 488(20) \\ 20(2) \\ 39(4) \\ 15(2) \\ 156(8) \\ \end{array}$	reundli Freundli rre n 2,9(1) 2,00(7) 2,93(9) 2,70(4) 2,43(9) 3,09(6) 2,46(6) 1,6(2) 2,76(8) 3,5(2) 2,95(9) 1,36(4) 3,3(3) 2,0(2) 4,4(5) 3,2(5) 2,7(3) 4,4(4) 2,03(4) 1,75(5) 3,0(2) 1,59(5) 3,1(2) 1,66(8) 2(1) 1,47(5) 2,0(1) 1,57(9) 2,7(1)	$\begin{array}{c} \text{Ch} \\ \text{Zinco} \\ \text{K}_{\text{F}} \end{array} \\ \hline 13(1) \\ 4(2) \\ 61(4) \\ 6(2) \\ 14(7) \\ 16(2) \\ 6(3) \\ 47(7) \\ 10(3) \\ 42(13) \\ 59(2) \\ 31 \\ 112(6) \\ 47(6) \\ 450(7) \\ 378(10) \\ 1516(43) \\ 334(6) \\ 8,9(6) \\ 6,73(4) \\ 21,98 \\ 8,3(5) \\ 50,3(5) \\ 16,2(6) \\ 63(4) \\ 17,4(3) \\ 2,72(7) \\ 4(2) \\ 17(2) \end{array}$	n 0,96(3) 0,70(8) 1,72(8) 0,89(9) 1,3(3) 1,23(5) 1,0(3) 1,7(2) 0,97(9) 1,3(2) 1,52(4) 1,52(4) 1,3(3) 1,63(5) 1,5(1) 2,4(2) 2,2(1) 2,4(2) 2,2(1) 2,5(2) 1,30(4) 1,19(2) 1,32(2) 1,18(6) 1,44(8) 1,60(3) 0,93(1) 1,3(8) 1,44(8)

Tabela 12. Parâmetros das equações de Langmuir e de Freundlich para adsorção de cádmio, chumbo, cobre e zinco nos solos estudados

 b^{-1} é dado em µg g⁻¹; k em µg mL⁻¹; K_F em µg g⁻¹; n é adimensional e b² é dado em mmol kg⁻¹para que uma comparação entre a adsorção dos dois metais possa ser realizada. *Os números entre parênteses correspondem ao desvio padrão com um algarismo significativo, com exceção dos casos em que a incereteza se encontra na dezena ou centena, onde são apresentadas incertezas com 2 ou 3 algarismos significativos.

De modo geral, as energias de adsorção (k) de todos os metais foram maiores nos horizontes A, em comparação com os horizontes B. O cobre e o chumbo apresentaram exceções, nos solos 3 e 5, com a inversão dessa tendência. O zinco apresentou duas exceções nos solos 4 e 5 e o cádmio foi o que seguiu menos essa tendência, apresentando inversões nos solos 4, 5, 11 e 12 e uma igualdade de k entre os horizontes A e B, no solo 14. A maior energia de adsorção no horizonte A certamente guarda grande influência da matéria orgânica, que possibilita a complexação de metais e aumenta a CTC dos solos. Nos casos dos elementos que formam complexos mais estáveis com a matéria orgânica, cobre e chumbo, as diferenças de k entre os horizontes A e B são mais expressivas que as observadas para os dois outros metas. Dessa forma, os solos 8 e 9 (MTk e CXbe) são os mais resistentes à liberação de metais depositados, ao contrário dos solos 10 e 14 (CXbd e RQo), que além de apresentar baixos valores de b e de k, apresentam os menores valores de pH, o que tornariam os elementos mais facilmente disponíveis.

Observa-se pela Tabela 12, que as quantidades molares de cobre retidas são maiores que as dos demais metais, em quase todas as amostras, o que denota a enorme afinidade dos solos por este metal com elevados valores de b (em mmol kg⁻¹) e k. Algumas excessões foram observadas, como nos solos 3 e 6B em que o cádmio apresentou valores de b maiores que os do cobre. O cádmio e o zinco, apesar de apresentarem as menores forças de retenção, em muitos casos, apresentaram maiores quantidades máximas adsorvidas que o chumbo e em alguns casos que o próprio cobre. Essas diferenças nas quantidades adsorvidas para um mesmo solo, associadas às variações expressivas das energias de ligação sugerem que os diferentes metais, muitas vezes, possuem sítios diferentes preferenciais de ligação nos solos.

O fato de o chumbo apresentar as maiores energias de adsorção, sem apresentar os maiores valores de b, pode estar relacionado com a preferência por sítios específicos ou pela formação de complexos polidentados (o que poderia conferir mais de um sítio por metal) e pela reversão de carga superfial, o que prejudicaria a retenção eletrostática. Multiplicando-se os valores de b (em mmol kg⁻¹) por 0,2, pode-se calcular as quantidades equivalentes em cmol_c kg⁻¹. Estes valores mostram que, em todos os casos, as quantidades máximas adsorvida estão muito aquém da CTC.

Quanto aos coeficientes fornecidos pela equação de Freundlich, considerados bons parâmetros descritivos, a utilização do K_F que permite identificar a capacidade de um solo reter determinado soluto identificou os solos 8A, 8B, 9A e 9B como sendo as amostras com os maiores valores de K_F para cádmio, os solos 2A, 6A, 8A, 9A e 13A tiveram os maiores valores de K_F para cobre, os solos 5B, 6A, 8A e 9A com os maiores valores para chumbo e
8A, 8B, 9A e 9B com os maiores valores de K_F para zinco. O parâmetro de Freundlich, n, indicativo da heterogeneidade dos sítios de adsorção (Mustafa et al., 2004) variou de 0,94 a 1,86 e de 0,96 a 2,28 para cádmio, de 1,80 a 4,12 e 1,38 a 5,10 para chumbo, de 2,01 a 4,41 e de 1,36 a 4,39 para cobre e de 0,96 a 2,29 e de 0,70 a 2,58 para zinco nos horizontes A e B, respectivamente. A Tabela 12 mostra que os dados obtidos do modelo de Freundlich para K_F e n são sempre maiores para cobre e chumbo. Com exceção de alguns solos, como por exemplo, os solos 8 e 9 em que os valores de K_F para cádmio e zinco foram superiores ao do cobre, tem-se no restante das amostras maiores valores de K_F e de n para o cobre.

Apesar de a energia de adsorção (k) ser de extrema importância na fixação dos metais ao solo, reduzindo sua movimentação e redisponibilização ao ambiente, a quantidade máxima de adsorção (b) em muitos casos, não guarda relação direta com a energia de adsorção, ou seja, os valores de k mostraram-se independentes dos valores de capacidade máxima de adsorção (b), o que denota que uma elevada quantidade adsorvida de um metal não significa "proteção total" uma vez que, se retido com baixa energia, este metal, pode ser redisponibilizado sem muita dificuldade (Tabela 12).

Para o cádmio, por exemplo, os solos 3A, 3B, 6B e 13A são uns dos que adsorvem maiores quantidades do metal, a despeito das baixas energias de retenção. O mesmo ocorrendo nos solos 6B para cobre, 2B e 11B para chumbo e 4A e 11B para zinco. Isso significa que, apesar de adsorver muito os elementos, estes solos facilmente podem redisponibilizar o metal e que a maior parte dos sítios de adsorção é de baixa afinidade pelos elementos. Em virtude de os valores de b sofrerem contribuição de diversos fatores, observouse, para cádmio e zinco, correlações significativas com o pH e com a CTC dos solos e dentre os parâmetros relacionados com quantidades adsorvidas, com relação ao chumbo e cobre observou-se influência significativa do COT e dos óxidos de ferro amorfo.

A afinidade de um solo em adsorver elementos como os metais em estudo é resultante de vários processos que interagem e que são influenciados pelas propriedades dos solos como, por exemplo, pH, teores de matéria orgânica, teor e tipo de argila, CTC, entre outras. No caso específico do presente trabalho, os solos com maior afinidade pelos elementos, apesar de diferirem entre si quanto à maioria dessas propriedades, têm em comum, valores de pH e de CTC maiores que aqueles correspondentes aos solos como menor afinidade pelos elementos.

O chumbo e o cobre têm sido listados em vários trabalhos, em comparação ao cádmio e ao zinco, como os cátions mais adsorvidos (Fontes et al., 2000; Morera et al., 2001). Segundo McBride (1994), a retenção de cádmio e zinco ocorre, na sua maior parte, por meio das forças eletrostáticas das partículas negativamente carregadas, o que a torna altamente dependente da CTC dos solos. Por sua vez, as interações de chumbo e cobre (Pierangeli et al., 2001) com os colóides dos solos são predominantemente mais específicas e menos dependentes das cargas superficiais.

A preferência exibida pelos solos pela adsorção de chumbo e cobre (mais fortemente adsorvidos) sobre o cádmio e o zinco (fracamente retidos), dando aos primeiros menor mobilidade e disponibilidade, tem sido relatado por outros autores (Gao et al. 1997; Phillips, 1999). Esse comportamento é dependente da tendência maior ou menor de formar complexos de esfera interna. A tendência dependerá da configuração eletrônica mais externa (McBride, 1989), da eletronegatividade dos metais (Hsu, 1989) e dos valores de pK da primeira hidrólise. Segundo Alloway (1990) os valores de pK da primeira hidrólise da reação $M^{2+} +$ $H_2O \rightarrow MOH^+ + H^+$ determina a intensidade de adsorção, isto é, quanto menor for o pK da primeira hidrólise, mais forte é a adsorção.

7.3. Perfis das isotermas de adsorção

Os dados obtidos pela construção das isotermas estão apresentados em gráficos relacionando a concentração final de cádmio, cobre, chumbo e zinco na fase aquosa (μ g mL⁻¹), considerada como concentração de equilíbrio, e a quantidade desses elementos adsorvido pelo solo (expresso μ g de metal por g de solo). As isotermas de adsorção para solos tropicais em pH natural e força iônica 0,01 mol L⁻¹ mostram que o formato das isotermas, principalmente sua inclinação inicial, é conveniente para descrever o comportamento dos sítios de superfície (Soares et. al., 2006).

A inclinação das curvas de adsorção indica que, nas menores concentrações iniciais de Cd, Cu, Pb e Zn adicionado ao solo, a maior parte foi adsorvida, caracterizando forte afinidade dos constituintes dos solos para com os elementos, principalmente quando estes se encontram em baixas concentrações no meio. Entretanto, à medida que a concentração inicial aumentou menores quantidades dos elementos foram adsorvidas, indicando possível saturação pelos sítios de adsorção.

As curvas de adsorção obtidas neste trabalho, baseado na classificação de Giles et al. (1974) mostram a existência de isotermas tipo C, L, H e S para os diferentes metais nos diferentes solos. Pela análise das figuras, verifica-se que as isotermas apresentam diferenças em suas concentrações na solução de equilíbrio (note a diferença entre as escalas) indicando grandes diferenças na capacidade de adsorção dos elementos pelos diferentes solos. Em

alguns casos, verifica-se maior aproximação dos dados experimentais ao ajuste feito pelo modelo de Freundlich.

A relação entre os teores de cádmio na solução de equilíbrio e os adsorvidos nos solos mostra que a forma das isotermas de adsorção de cádmio pelos solos se aproxima em alguns casos (solos 1B, 6B e 13B) às curvas tipo-C, isto é, de inclinação constante, que sugerem que o número de sítios disponíveis permanece constante ao longo de toda a amplitude de concentração do soluto, Giles et al. (1974) (Figura 7). Nas isotermas tipo-C, há afinidade constante do adsorvato pelo adsorvente, e os íons distribuem-se na interface sólido-solução sem nenhuma ligação específica (Meurer, 2000). Isoterma tipo-C também foram obtidas por Ramachandran & D'Souza (1999) na adsorção de cádmio em solos com diferentes composições química e mineralógica.

Cádmio em equilíbrio (µg mL⁻¹)

Figura 7. Isotermas de adsorção de cádmio referente ao horizonte B do Argissolo Vermelho Amarelo Distrófico típico e do Nitossolo Vermelho Eutrófico típico.

Para a maioria dos solos, a adsorção de cádmio foi descrita por isotermas tipo-L (Figura 8), caracterizadas por um decréscimo na inclinação da curva, à medida que os sítios disponíveis para adsorção vão diminuindo, devido ao recobrimento da superfície adsorvedora, e indica que em baixas concentrações, a superfície tem alta afinidade pela substância adsorvida, sendo que esta afinidade diminui em maiores concentrações (Dias et al., 2001; Alleoni et al., 2005; Antoniadis & Tsadilas 2007). As isotermas do tipo C e L são frequentemente muito próximas, podendo ser, em muitos casos, consideradas do mesmo tipo.

Quanto à forma, as isotermas para cádmio apresentam-se semelhantes em sua maioria, mas as concentrações do elemento obtidas na solução de equilíbrio indicam maior afinidade do cádmio pelos solos 8 e 9 (MTk e CXbe), como pode ser observado pelos maiores valores das estimativas de adsorção, mostrados na Tabela 12. A ausência de um patamar nas isotermas indica que, dentro do intervalo de concentrações estudado, o equilíbrio de adsorção não foi atingido. Curvas tipo-L para adsorção de cádmio também foram obtidas por Dias et al., (2001). Pombo (1995) obteve curvas tipo-L quando descreveram a adsorção de cádmio por solos do Rio Grande do Sul, fazendo uso da isoterma de Freundlich. O autor notou que a isoterma tipo-L poderia ser subdividida em duas porções lineares, que identificariam mais de um sítio ou mecanismos envolvidos na adsorção de cádmio.

Figura 8. Isotermas de adsorção de cádmio referente ao horizonte A do Chernossolo Argilúvico Carbonático saprolítico e do Cambissolo Háplico Tb eutrófico latossólico.

As formas das isotermas para o chumbo mostraram que, em muitos casos, isotermas tipo-L (Langmuir) e principalmente tipo-H (alta afinidade) foram observadas. Os solos que adsorveram mais fortemente o metal (solos 7, 8 e 9) obtiveram isotermas tipo-H, indicando alta afinidade de adsorção, conforme citado por Giles et al. (1974) (Figura 9). Este tipo de isoterma é frequentemente o resultado de uma segunda camada de íons sendo retida pela superfície em alta concentração na solução. Pode-se sugerir que o processo de adsorção de chumbo nos solos 8 e 9, provavelmente ocorreu em dois estágios, com a saturação de diferentes sítios de adsorção. Com o aumento na concentração do metal mais sítios são preenchidos e a retenção do chumbo torna-se mais difícil. Resultados similares foram obtidos por Jordão (2000) que demonstrou a ocorrência de duas fases na curva de adsorção. A fase inicial da curva de adsorção corresponde a alta energia de ligação apesar do solo ter baixa capacidade de adsorção. Em uma segunda fase, altas quantidades de cobre foram retidas, apesar de a energia de retenção ser menor. Cada porção linear da curva de adsorção sugere diferentes tipos de sítios de adsorção responsáveis pela retenção de chumbo no solo.

Chumbo em equilíbrio (µg mL⁻¹)

Figura 9. Isotermas de adsorção de chumbo referente ao horizonte A do Chernossolo Argilúvico Carbonático saprolítico e do Cambissolo Háplico Tb eutrófico latossólico.

As curvas de adsorção obtidas para cobre e zinco mostraram a existência de isotermas tipo-L (Langmuir) e tipo-H (alta afinidade) para o cobre e tipo-C (constante) e tipo-L para o zinco, dentre os diversos solos analisados. Essas características das isotermas C, L e H são, provavelmente, funções das diferentes propriedades químicas e físicas das diferentes amostras. As Figuras 10 e 11 mostram as curvas de adsorção de cobre e zinco, respectivamente, referentes aos solos que apresentaram as maiores capacidades adsortivas e as maiores forças de retenção do metal e as que mostraram um dos menores valores de b, k, K_F e n para cobre e zinco, respectivamente

Figura 10. Isotermas de adsorção de cobre referente ao horizonte A do Chernossolo Argilúvico Carbonático saprolítico e do Cambissolo Háplico Tb distrófico típico.

Zinco em equilíbrio (µg mL⁻¹)

Figura 11. Isotermas de adsorção de zinco referente ao horizonte A do Chernossolo Argilúvico Carbonático saprolítico e do Cambissolo Háplico Tb distrófico típico.

Assim como na adsorção do chumbo, na retenção do cobre, os perfis diferenciados dos solos que mais adsorveram o metal sugerem que o processo de adsorção possa ter ocorrido em mais de uma etapa. Esta divisão é baseada na hipótese de que cada porção da curva surge de diferentes tipos de sítios de adsorção. Tal comportamento foi observado por Sodré et al. (2001) que, estudando a adsorção de cobre em solos argilosos, relataram que o cobre estaria ligado aos sítios energéticos dos colóides dos solos sob duas ou mais formas distintas. A primeira região apresentando elevados valores de k e baixa capacidade máxima de adsorção (b). Acredita-se que, nessa região, o solo adsorve uma quantidade relativamente baixa de cobre, mas a energia que o mantém adsorvido pode ser caracterizado pela formação de complexos altamente estáveis.

Em se tratando de retenção de metais pesados por solos, é preciso ressaltar que existem outros mecanismos envolvidos, além da adsorção/complexação na superfície dos colóides, polimerização e fixação, por exemplo, são alguns desses mecanismos (Sparks, 2003; Bradl, 2004). Na retenção de cádmio, Echeverría et al. (1998) relatam provável participação do mecanismo de complexação de superfície e considerou também que não somente a adsorção, mas também a precipitação pode vir a constituir uma forma de redução dos elementos na concentração de equilíbrio.

7.4. Estudo de correlação entre os atributos dos solos e os parâmetros das isotermas

Métodos estatísticos, como análise de correlação de Pearson, foram aplicados neste trabalho, a fim de se avaliar a influência dos atributos dos solos sob os parâmetros de adsorção, no intuito de se avaliar o comportamento dos metais (Tabela 13).

A capacidade máxima de adsorção de cádmio representada por b e a energia de ligação, dada por k, foram influenciadas pelo pH, como mostra o coeficiente de correlação linear simples entre essas variáveis (0,42* e 0,65*). A capacidade de troca catiônica também afetou a adsorção máxima e a energia de ligação de cádmio apresentando coeficiente de correlação significativo a 5% do nível de significância (0,52* e 0,42*). Também houve correlação significativa entre os valore de K_F e de n e os valores de pH (0,78* e 0,39*) e de CTC (0,62* e 0,64*). A tendência de variação concomitante dos valores de capacidade de adsorção máxima (b) e de K_F e os valores de pH podem indicar reações de adsorção não específica, uma vez que houve efeito da CTC no aumento da capacidade máxima de adsorção de cádmio. Atributos dos solos como teores de argila e óxidos de ferro não afetaram significativamente a capacidade dos solos em adsorver cádmio, possivelmente devido a maior influência da CTC e do pH na adsorção, tendo em vista ser um fenômeno eletrostático a adsorção deste elemento em grande parte dos solos. Houve correlação significativa entre os parâmetros k e K_F e os teores de óxidos de alumínio.

A correlação entre os parâmetros de adsorção do cobre e as propriedades dos solos, mostra uma correlação significativa entre k, K_F e n e os valores de pH (0,54*, 0,59* e 0,61*) e de CTC (0,44*, 0,46* e 0,49*). Os teores de matéria orgânica se correlacionaram significativamente com os parâmetros b e K_F (0,37* e 0,58*) para cobre, mostrando que a matéria orgânica, provavelmente, é um dos sítios mais ativos de adsorção deste metal. O cobre também mostrou correlação significativa entre o parâmetro b e os teores de óxidos de ferro amorfo e entre k e K_F e os teores de óxidos de alumínio.

Atributos	_	Cádmio				Cobre				Chumbo				Zinco			
	b	k	K _F	n	b	k	K _F	n	b	k	K _F	n	b	k	K _F	n	
pН	0,42*	0,65*	0,78*	0,39*	0,14 ^{ns}	0,64*	0,59*	0,61*	0,05 ^{ns}	0,76*	0,57*	0,73*	0,40*	0,80*	0,71*	0,79*	
dpH	$-0,26^{ns}$	-0,06 ^{ns}	$-0,15^{ns}$	$-0,08^{ns}$	$-0,27^{ns}$	$-0,03^{ns}$	$-0,11^{ns}$	0,05 ^{ns}	-0,27 ^{ns}	-0,26 ^{ns}	$-0,23^{ns}$	0,10 ^{ns}	-0,00 ^{ns}	-0,16 ^{ns}	-0,09 ^{ns}	-0,35 ^{ns}	
argila	0,32 ^{ns}	0,18 ^{ns}	$0,20^{ns}$	$-0,06^{ns}$	0,04 ^{ns}	0,08 ^{ns}	0,04 ^{ns}	0,18 ^{ns}	-0,13 ^{ns}	0,02 ^{ns}	-0,03 ^{ns}	0,46*	0,20 ^{ns}	0,22 ^{ns}	0,19 ^{ns}	0,23 ^{ns}	
silte	0,28*	0,22 ^{ns}	$0,20^{ns}$	-0,01 ^{ns}	0,46*	0,33 ^{ns}	0,39*	0,21 ^{ns}	0,42*	0,20 ^{ns}	0,39*	0,09 ^{ns}	0,43*	0,17 ^{ns}	0,24 ^{ns}	0,10 ^{ns}	
areia	-0,45*	-0,29 ^{ns}	$-0,29^{ns}$	0,06 ^{ns}	-0,31 ^{ns}	$-0,27^{ns}$	$-0,27^{ns}$	$-0,29^{ns}$	-0,13 ^{ns}	-0,14 ^{ns}	$-0,20^{ns}$	-0,47*	-0,43*	-0,29 ^{ns}	-0,32 ^{ns}	-0,26 ^{ns}	
CTC	0,52*	0,42*	0,62*	0,64*	0,27 ^{ns}	0,44*	0,46*	0,49*	$0,22^{ns}$	0,48*	0,50*	0,52*	0,51*	0,65*	0,48*	0,65*	
COT	$0,15^{ns}$	0,13 ^{ns}	0,14 ^{ns}	$-0,17^{ns}$	0,37*	0,35 ^{ns}	0,58*	0,36 ^{ns}	0,66*	0,25 ^{ns}	0,52*	-0,06 ^{ns}	0,18 ^{ns}	0,10 ^{ns}	$0,14^{ns}$	-0,01 ^{ns}	
Fed	$0,08^{ns}$	-0,08 ^{ns}	$-0,11^{ns}$	$-0,10^{ns}$	$0,22^{ns}$	$0,05^{ns}$	$0,14^{ns}$	$0,22^{ns}$	0,31 ^{ns}	0,01 ^{ns}	0,21 ^{ns}	0,10 ^{ns}	0,28 ^{ns}	-0,11 ^{ns}	-0,08 ^{ns}	-0,23 ^{ns}	
Feo	0,35 ^{ns}	0,02 ^{ns}	0,08 ^{ns}	$-0,14^{ns}$	0,40*	$0,17^{ns}$	0,27 ^{ns}	0,34 ^{ns}	0,40*	0,33 ^{ns}	0,41*	0,25 ^{ns}	0,45*	0,11 ^{ns}	0,05 ^{ns}	0,02 ^{ns}	
Ald	$-0,08^{ns}$	-0,06 ^{ns}	$-0,10^{ns}$	$-0,04^{ns}$	0,11 ^{ns}	0,09 ^{ns}	$0,16^{ns}$	0,25 ^{ns}	0,23 ^{ns}	0,01 ^{ns}	0,17 ^{ns}	0,07 ^{ns}	0,27 ^{ns}	-0,09 ^{ns}	-0,06 ^{ns}	$-0,20^{ns}$	
Alo	0,26 ^{ns}	0,58*	0,50*	-0,17 ^{ns}	0,31 ^{ns}	0,57*	0,52*	0,17 ^{ns}	0,28 ^{ns}	0,19 ^{ns}	0,21 ^{ns}	0,16 ^{ns}	0,21 ^{ns}	0,46*	0,56*	0,15 ^{ns}	

Tabela 13. Coeficientes de correlação entre os parâmetros dos modelos de Langmuir e de Freundlich para cádmio, cobre, chumbo e zinco e os atributos dos solos

*Significativo a 5% de probabilidade, ^{ns} não significativo.

Em relação ao chumbo, verificou-se correlação significativa entre os parâmetros k, K_F e n e os valores de pH (0,76*, 0,57* e 0,73*) e de CTC (0,78*, 0,50* e 0,52*) dos solos. Os teores de matéria orgânica se correlacionaram significativamente com os parâmetros b e K_F (0,66* e 0,52*) para o chumbo, bem como os parâmetros b e K_F e os teores de óxidos de ferro amorfo (0,40* e 0,41*), mostrando que a matéria orgânica e os óxidos, provavelmente, são sítios importantes na retenção deste metal.

Na retenção do zinco, os parâmetros de adsorção de Langmuir (b e k) e de Freundlich (K_F e n) foram influenciados pelo pH (0,40*, 0,80*, 0,71* e 0,79*), como mostra os valores significativos de relação dessas variáveis. Entre estes parâmetros de adsorção, apenas k, K_F e n foram influenciadas pela CTC (0,65*, 0,48* e 0,65*). Os óxidos de ferro e de alumínio pouco cristalinos infuenciaram b (0,45*) e k e K_F (0,46* e 0,56*), respectivamente.

A tendência de que ocorra maior adsorção de metais, em solos com maiores teores de argila, também não foi constatada, neste trabalho. Embora as correlações dos parâmetros das isotermas de adsorção com os teores de argila não tenham sido significativas, as correlações negativas desses parâmetros com os teores de areia demonstram que as reações que promovem a retenção de metais pesados ocorrem sempre nas frações mais finas e que solo de textura mais grosseira, deve favorecer a mobilidade desses metais.

Apesar de serem inúmeros os fatores que afetam a adsorção de elementos nos solos, o pH tem grande influência nos processos de adsorção e tem sido relatado em vários trabalhos (Garcia-Miragaya, 1977 e Gomes et al., 2001). Segundo, McBride e Blasiak (1979); Harter (1983); Machado e Pavan (1987) e Casagrande et al., 2004, o pH é o principal fator que rege os processos de adsorção e a disponibilidade de metais pesados, devido à modificação na espécie metálica em solução e para definição da carga líquida na superfície de adsorção. O aumento da capacidade de adsorção em solos com valores de pH mais elevados pode ser atribuído à desprotonação da superfície de troca e conseqüente geração de cargas negativas, as quais ocorrem em valores de pH mais elevados. Por outro lado, solos mais ácidos tendem a liberar mais íons H⁺ para a solução, o qual compete com o íon metálico pelo sítio de adsorção na superfície adsorvente do solo, bem como a concomitante diminuição de cargas negativas de algumas superfícies (Garcia-Miragaya, 1977). A diminuição da concentração de cádmio, cobre, chumbo e zinco na solução de equilíbrio nos solos de pH mais elevados pode ser devida à maior adsorção do metal em função da menor competição com o íon H⁺ e maior afinidade dos sítios de troca pelas formas hidrolisadas com menor valência (como por exemplo, CdOH⁺ e PbOH⁺).

A correlação significativa entre a CTC e os parâmetros de adsorção para cádmio e zinco sugerem que a adsorção não específica, através da formação de complexos de esfera externa, de menor estabilidade, exerce papel importante na retenção desse elemento nos solos estudados. Segundo McBride (1994), a retenção de cádmio ocorre, na sua maior parte, por meio das forças eletrostáticas das partículas negativamente carregadas, o que a torna altamente dependente da CTC dos solos. O comportamento diferenciado da adsorção de cádmio em relação a adsorção de metais como o chumbo pode, em parte, ser explicado pela configuração eletrônica desse elemento [Pb²⁺: (Xe) 4f¹⁴ 5d¹⁰ 6s²], em cuja camada externa, o chumbo possui elétrons desemparelhados, facilitando as ligações e o compartilhamento de elétrons. Além do mais, os espaços vazios no orbital desse elemento permite a formação de complexos, o que não é verificado no cádmio.

Esperava-se maior correlação entre a adsorção de chumbo e cobre com o pH, haja vista que esses elementos apresentam os menores valores para a primeira constante de hidrólise e que a uma proporção razoável de espécies hidrolisadas poderiam ser adsorvidas com mais facilidade e intensidade do que suas correspondentes espécies livres. A sequência Pb > Cu > Zn > Cd representa a ordem de adsorção, inversamente relacionada com o pH na qual a hidrólise destes metais tem início (Benjamin e Leckie, 1981). A correlação entre pH e a adsorção de Cd, Cu, Pb e Zn produziu coeficientes de correlação significativos nos solos estudados. Jordão et al., (2000) não observaram variação da quantidade de cobre adsorvida em relação a variações de pH em Latossolo Amarelo húmico.

7. Conclusões

1. Os modelos de Langmuir e de Freundlich adequaram-se bem aos resultados experimentais da adsorção de cádmio, cobre, chumbo e zinco pelos solos, em toda a faixa de concentração estudada, tendo o modelo de Freundlich apresentado em alguns casos maior aproximação aos dados obtidos experimentalmente.

2. Os resultados obtidos das isotermas de adsorção mostraram que de, maneira geral, os dados experimentais, apresentaram elevados coeficientes de determinação para a maioria dos solos estudados. Os fatores que mais influenciaram a capacidade máxima de adsorção (*b*) foram o pH (Cd, Cu, Pb e Zn), a CTC (Cd e Zn), e os teores de matéria orgânica e de óxidos de ferro (Cu, Pb e Zn), indicando uma tendência para reações de adsorção não específica para o cádmio, exceto nas amostra 8 e 9 e de adsorção específica para Cu, Pb e Zn na maior parte das amostras de solo estudadas;

3. Os solos apresentaram em sua maioria isotermas do tipo-L, apesar de também serem observadas isotermas do tipo-C e do tipo-H.

4. Entre os solos investigados o Chernossolo Argilúvico Carbonático saprolítico e o Cambissolo Háplico Tb eutrófico latossólico (solos 8 e 9) apresentaram maior capacidade de adsorção de metais.

5. A adsorção de cádmio e zinco, nos solos estudados, foi caracterizada em sua maioria por mecanismos predominantemente eletrostáticos, com adsorção não específica, sendo o pH e a CTC os atributos dos solos mais influentes.

6. A adsorção do chumbo e cobre caracterizou-se como predominantemente específica, com participação importante da matéria orgânica e dos óxidos de ferro e alumínio.

7. Enfim, o conhecimento da adsorção de Cd^{+2} , Cu^{+2} , Zn^{+2} e Pb^{+2} nos solos constitui importante parâmetro para avaliar a vulnerabilidade desses solos à poluição, visto que revela a capacidade máxima de metais pesados que um solo pode suportar.

8. Referências

ALLEONI, L.R.F.; IGLESIAS, C.S.M.; MELLO, S.C.; CAMARGO, O.A.; CASAGRANDE, J.C.; LAVORENTI, N.A. Atributos do solo relacionados à adsorção de cádmio e cobre em solos tropicais. *Acta Science Agronomy*, v.27, n.4, p.729-737, 2005.

ALLEONI, L.R.F.; CAMARGO, O.A.; CASAGRANDE, J.C.; *Sci. Agric.* Piracicaba, n.3, v.55, 1998.

ALLOWAY, B.J. Heavy metals in soils. New York: J. Wiley. 1990, p. 29-39.

ALLOWAY, B.J. Heavy metals in soils. London: Blackie Academic, 1995, 368p.

ANTONIADIS, V.; TSADILAS, C.D. Sorption of cadmium, nickel and zinc in mono and multimetal systems. *Applied Geochemistry*. v. 22, p. 2375-2380, 2007.

AZEVEDO, F.A.; CHASIN, A.A.M. *Metais: gerenciamento da toxicidade*. ed. Ateneu, 2003, 554p.

BARROW, N.J. The description of phosphorus adsorption curves. *Soil Science*, London, v.29, p.447-462, 1978.

BARROW, N.J. Australian Journal of Soil Research, v. 27, p.475-492, 1989.

BARROW, N.J. Mechanisms of reaction of zinc with soil and soil components. In: ROBSON, A.D. *Zinc in soils and plants*. Dordrecht, Kluwer Academic Publishers, 1993, p.15-31.

BATJES, N. H.; BRIDGES, E. M. Soil vulnerability to pollution in Europe. Soil Use and Management, v. 9, p. 25-29, 1993.

BENJAMIN, M.M.; LECKIE, J.O. Multiple site adsorption of Cd, Cu, Zn and Pb on amorphous iron oxyhidroxide. Journal of colloid and Interface Science. v.79, p.209-221, 1981.

BOLLAND, M.D.A.; POSNER, A.M.; QUIRK, J.P. Zinc adsorption by goethite in the absense and presence of phosphate. *Australian Journal of Soil Research*, Melbourne, v. 15, n.3, p. 279-286, 1996.

BRADL, H.B. Adsorption of heavy metal ions on soils and soil constituents. *Journal of Colloid and Interface Science*, San Diego, v.277, n.1, p.1-18, 2004.

BRADY, N.C. Natureza e propriedades dos solos. 7a. ed. Rio de Janeiro, Freitas Bastos, 1989.

CAMARGO, O.A.; ROVERS, H.; VALADARES, J.M.A.S. Adsroção de níquel em latossolo paulista. *Revista Brasileira de Ciência do Solo*, Campinas, v.13, n.2, p. 125-129, 1989.

CAMARGO, O.A.; ALLEONI, L.R.F.; CASAGRANDE, J.C. *Reações dos micronutrientes e elementos tóxicos no solo*. In: Ferreira, M.E.; Cruz, M.C.P; Raij, B. van; Abreu, C.A. Micronutrientes e elementos tóxicos na agricultura. Jaboticabal: CNPq/FAPESP/POTAFOS, p.89-124, 2001.

CASAGRANDE, J.C.; ALLEONI, L.R.F.; DE CAMARGO, O.A.; ARNONE, A.D. Effects of pH and ionic strength on zinc sorption by a variable charge soil. *Communications in Soil Science and Plant Analysis*, v. 35, n. 15-16, p. 2087-2095, 2004.

CHILDS, C.W. Field tests for ferrous iron and ferric-organic complexes in soils. Australian Journal of Soil Research. v.19, p.175-180. 1981.

COFFIN. D.E. A method for the determination of free iron in soil and clays. Canadian J. of Soil Science. 43: 7-17, 1963.

COMPANHIA DE TECNOLOGIA DE SANEAMENTO AMBIENTAL. Relatório de estabelecimento de valores orientadores para solos e águas subterrâneas no Estado de São Paulo. São Paulo: CETESB, 2001. 247p.

COSTA, E.D. Adsorção e competição de alguns metais pesados por ácidos húmicos extraídos de Latossolo humico da região de Araponga, Minas Gerais. Dissertação de Metrado. 1991, Universidade Federal de Viçosa. Viçosa, 70p.

CUNHA, R.C. de A.; CAMARGO, O.A.; KINJO, T. Aplicação de três isotermas na adsorção de zinco em oxissolos, alfissolos e ultissolos. *Revista brasileira de Ciência do Solo*. Campinas, v.18, n.1, p.15-20, 1994.

DAVIES, B.E. LEAD. IN: ALLOWAY, B.J. *Heavy metals in soils*. New York, John Wiley, 1990, p.177-193.

DIAS, N.M. P., ALLEONI, L.R.F., CASAGRANDE, J.C., CAMARGO, O.A. Adsorção de cádmio em dois Latossolos ácricos e um Nitossolo. *Revista Brasileira de Ciência do Solo*, v. 25, p. 297-304, 2001.

ECHEVERRIA, J.C., MORERA, M.T., MAZKIARAN, C., GARRIDO, J.J., Competitive sorption of heavy metal by soils. Isotherms and fractional factorial experiments. *Environmental Pollution*, v. 101, n. 2, p. 275-284, 1998.

ELLIS, B.G. & KNEZEK, B.D. Adsorption reactions of micronutrients in soils. In: DINAUER, R.C. (Ed.) Micronutriens in Agriculture, SSA, Madison, 1977. 556p.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Manual de análises químicas de solos, plantas e fertilizantes. 1.ed. Brasília, DF, 1999, 370p.

EMBRAPA. Centro Nacional e Pesquisa em Solos. Sistema Brasileiro de Classificação de Solos. Brasília: Embrapa - SPI; Rio de Janeiro: Embrapa - Solos, 2006, 306 p.

FERNANDES, B. Retenção e movimento de água no solo. Viçosa: UFV, 1967. 49p. Dissertação (Mestrado em Solos e Nutrição de Plantas) - Universidade Federal de Viçosa, 1967.

FIALHO, L. L. Avaliação de vermicomposto contaminado com metais pesados, utilizado na purificação de efluentes de galvanoplastia, em culturas vegetais, e avaliação das concentrações metálicas nestes materiais por Espectrofotometria de absorção atômica. Dissertação de Mestrado. Universidade Federal de Viçosa. Viçosa. 2003. 77p.

FILEP, G. Soil chemistry: processes and constituents. Budapeste: Akademiai Kiadó, 1999. 330p.

FONTES, M.P.F.; CAMARGO, O.A.; SPOSITO, G. Scientia Agrícola, v.58, n.3, p.627-646, jul./set., 2001.

FONTES, M.P.F.; GOMES, P.C. Simultaneous competitive adsorption of heavy metals by the mineral matrix of tropical soils. *Applied Geochemistry*. v. 18, p. 795-804, 2003.

FONTES, M.P. F., MATOS, A.T., COSTA, L.M., NEVES, J.C. L. Competitive adsorption of Zn, Cd, Cu and Pb in three highly weathered Brazilian soils. *Commun. Soil Sci. Plant Anal.* v. 31, p. 2939–2958, 2000.

FORD, R.G.; SCHEINOST, A.C.; SPARKS, D.L. Advanced in Agronomy. v. 74, p.41-62, 2001.

GAO, S. WALKER, W.J.; DAHLGREN, R.A.; BOLD, J., Simultaneous sorption of Cd, Cu, Ni, Zn, Pb and Cr on soil treated with sewage sludge supernatant. Water Air Soil Pollut. 93, 331-345, 1997.

GARCIA, C.; HERNANDEZ, T., COSTA, F. Biol. Wastes, v.31, p.291-301, 1990.

GILES, C.H.; SMITH, D.; HUITSON, A. A general treatment and classification of solute adsorption isotherm. I. Theoretical. *Journal of colloid Interface Science*, v.47, p,755-765, 1974.

GOMES, P.C.; FONTES, M.P.F.; SILVA, A.G.; MENDONÇA, E.S.; NETTO, A.R. Selectivity sequence and competitive adsorption of heavy metals by Brazilian soils. *Soil Science Society of America Journal*, v.65, p.1115-1121, 2001.

GOMES, P. C.; FONTES, M. P. F.; COSTA, L. M.; MENDONÇA, E. S. Extração fracionada de metais pesados em latossolo vermelho-amarelo. Revista Brasileirade Ciência do Solo, Campinas, v. 21, p. 543-551, 1997.

HARTER, R.D. Curve-fit errors in Langmuir adsorption maxima. *Soil Science Society American Journal*, v. 48, p. 749-752, 1984.

HARTER R.D. Soil Science Society of America Journal. 47:47-51, 1983.

HSU, P.H. Aluminium oxides and oxydroxides. In: Dixon, J.B. & Weed, S.B. Soil Science Society of America Journal, p.331-378, 1989.

HUHEEY, J.E.; KEITER, E.A.; KEITE, R.L. Inorganic chemistry, principles of structure and reactivity. 4.ed. Harper Collins College Publisher, 1993, 964p.

IANHEZ, R. Fracionamento químico de metais pesados em solos contaminados por resíduos industriais e otimização quimiométrica de misturas para a descontaminação por lixiviação química. Dissertação de Mestrado. UFMG. 143p. 2003. Belo Horizonte.

JORDÃO, C.P., ALVES, N.M., PEREIRA, J.L. BELLATO, C.R. Adsorção de íons Cu²⁺ em Latossolo Vermelho-Amarelo Húmico. *Química Nova*. v. 23, n. 1, p. 5-11, 2000.

KABATA-PENDIAS, A.; DUDKAS, S.;CHIPECKA, A.; GAWINSOWSKA, T. In Biogeochemistry of Trace Metals, cap.3, 1992.

KABATA-PENDIAS, A.; PENDIAS, H. *Trace elements in soil and plants*. 3. ed. Boca Raton: CRC Press, 2001, 331 p.

KUO, S.; BAKER, A.S. Sorption of copper, zinc and cadmium by some acid soils. Soil Sceince Soc. Am. J., Madison, v.44, n.5, p.969-974, 1980.

LINDSAY, W.L. Chemical equilibria in soils. New York, John Wiley Sons, 1979, p.328-342.

LOPES, A.S.; ABREU, C.A.; SANTOS, G.C.G. Micronutrientes. In: NEVES, J.C.L.; DIAS, L.E.; BARROS, N.F.; CANTARUTTI, R.B.; NOVAIS, R.F.; ALVAREZ, V.H. *Tópicos em Ciência do solo*. Viçosa: Sociedade Brasileira de Ciência do solo, 2006.

MACHADO, P.L.O. DE A.; PAVAN, M.A. *Revista brasileira de Ciência do Solo*, 11:253-256, v.11, n.3, set./dez, 1987.

MALAVOLTA, E. Fertilizantes e seu impacto ambiental: micronutrientes e metais pesados, mitos, mistificação e fatos. Produquímica. São Paulo. 1994. 153p.

MATTHEWS, P.J. CRC Crit. rev. environ. control, v. 14, p. 199-250, 1984.

MATTOS, A.T.; FONTES, M.P.F.; JORDÃO, C.P.; COSTA, L.M. Revista Brasileira de Ciência do Solo, v.20, p.379-386, 1996.

McBRIDE, M.B.; BLASIAK, J.J. Zinc and copper solubility as a function of pH in an acid soil. *Soil Science Society of America Journal*, v.43, p.866-870, 1979.

MCBRIDE, M.B. Soil Science Society of America, p. 35-84, 1989.

MCBRIDE, M.B. *Environmental chemistry of soils*. New York, Oxford University Press, 1994. 406p.

MCBRIDE, M.B. Journal of Environmental Quality, v.24, p.5-18, 1995.

MCBRIDE, M.B.; RICHARDS, B.K.; STEENHUIS, T.; RUSSO, J.J. SAUVE, S. *Soil Science*, v.162, n.7, p.487-500, 1997.

MCKENZIE, R.M. Australian Journal of Soil Research, v.18, p.61-73, 1980.

MELO, V. F. Potássio e magnésio em minerais de solos e relação entre propriedades da caulinita com formas não trocáveis destes nutrientes. Viçosa, 1998. 205 f. Tese (Doutorado em Solos e Nutrição de Plantas) – Universidade Federal de Viçosa.

MEURER, J.E. Fundamentos de química do solo. Porto Alegre, Gênesis, 2000. 174p.

MORERA, M.T.; ECHEVERRIA, J.C.; MAZKIARAN, C.; GARRIDO, J.J. Isotherms and sequential extraction procedures for evaluating sorption and distribution of heavy metals in soils. *Environmental Pollution*. v.113, p.135-144, 2001.

MUSTAFA, G.; SINGH, B.; KOOKANA, R.S. Cadmium adsorption and desorption behaviour on goethite at low equilibrium concentrations: effects of pH and index cations. *Chemosphere*, v. 57, p. 1325–1333, 2004.

NASCENTES, R. Estudo da mobilidade de metais pesados em um solo residual compactado de viçosa. Tese (Doutorado em Solos e Nutrição de Plantas) Universidade Federal de Viçosa, 2006

NASCIMENTO, C.W.A.; FONTES, R.L.F. Revista brasileira de Ciência do Solo, 28:965-971p., 2004.

NILSSON, J.; GRENNFELT, P. (Ed.). *Critical loads for sulphur and nitrogen*. Milijorapport, v.15, Nordic Council of Ministers, Copenhangen, 1988.

PICKERING, W.F. CRC-Critical Reviews in Analytical Chemistry, v. Nov., p. 233-266, 1981.

PIERANGELI, M. A. P. *Chumbo em latossolos brasileiros: adsorção e dessorção sob efeito de pH e força iônica*. Lavras, 1999. 108 f. Dissertação (Mestrado em Solos e Nutrição de Plantas) - Universidade Federal de Lavras.

PIERANGELI, M.A.P.; GUILHERME, L.R.G.; CURI, N.; SILVA, M.L.N.; OLIVEIRA, L.R. LIMA, J.M. Teor total e capacidade máxima de adsorção de chumbo em Latossolos brasileiros. *Revista Brasileira de Ciência do Solo*, v. 25, p. 279-288, 2001.

PIERANGELI, M.A.P.; GUILHERME, L.R.G.; CURI, N.; ANDERSON, S.J.; LIMA, J.M. Adsorção e dessorção de cádmio, cobre e chumbo por amostras de Latossolos pré-tratadas com fósforo. *Revista Brasileira de Ciência do Solo*, v. 28, p. 377-384, 2004.

POMBO, L. C. A. Revista Brasileira de Ciência do Solo, 19:19-24, 1995.

POMBO, L.C.A.; SALGADO, V.; VOLKWEISS, S.; KLAMT, E. Pesquisa Agropecuária Brasileira, v.24, n.5, p.593-598, 1989.

QUIRK, J.P.; POSNER, A.M. Trace element adsorption by soils minerals. In: Nicholas, D.J.D.; Edgan, A.R. *Trace elements in soil-plant-animals systems*. New York: A cademic Press, 1975, 95-107.

RAIJ, B. van. Manejo da fertilidade do solo. Piracicaba: Patafós, 1991. 343p.

RAMACHANDRAN, V., SOUZA, T.J.D. Adsorption of cadmium by indians soils. *Water, air and soil pollution*, v. 111, p. 225-234, 1999.

RONDÓ, P. H. C. et al. O impacto da suplementação com ferro nos níveis sanqüíneos de chumbo, em crianças expostas s diferentes níveis de chumbo. Faculdade de Saúde Pública da Universidade de São Paulo/USP, 2000.

ROSS, S. M. Toxic metals in soil-plant-systems. Manchester: John Wiley & Sons, 1994. 469p.

SCHNITZER, M.; Soil Sci. Soc. Am. J., 33, 75, 1969.

SCHNITZER, M.; Binding of humic substances by soil mineral colloids. p. 77-102. In: Huang P.M.; Schnitzer, M. Interactions of soil minerals with natural organics and microbes. Madison, *Soil Science Society of America*. 1986, 606p.

SILVA, F.A.M. Fracionamento e biodisponibilidade de metais para o feijoeiro (Phaseolus vulgaris L.) em solos tratados com pó de forno de aciaria elétrica. Lavras, UFLA, 1999. 75p. (Tese de Mestrado).

SOARES, R.S.; CASAGRANDE, J.C.; ALLEONI, L.R. F. Modelos descritivos de adsorção de íons em solos. Boletim Informativo, *Sociedade Brasileira de Ciência do Solo*, v.31, n.2 p.46-50, maio/agosto 2006.

SODRE, F.F.; LENZI, E.; COSTA, A.C.S. Química Nova, vol. 24, n. 3, p. 324-330, 2001.

SPARKS, D. L. Environmental Soil Chemistry, second ed. Academic Press, New York. 2003.

SPARKS, D.L. *Soil physical chemistry*. Department o Plant and Soil Science, University of Delaware, New York, 1998. 409p.

SPOSITO, G. The chemistry of soils. New York: Oxford University Press, 1989. 234p.

SPOSITO, G.; BINGHAM, F.T.; YADAV, S. S.; INOUYE, C. A. Soil Science Society of America Journal, v.46, p.51-56, 1982.

STEVENSON, F.J. Húmus chemistry: gênesis, composition, reactions. 1994. 496p.

STIGLIANI, W.M. Changes in valued "capacities" of soils and sediments as indicators of nonlinear and time -delayed environmental effects. *Environ. Monit. Assess.*, v.10, n.3, p.245-307, 1988.

TAVARES, T.M.; CARVALHO, F.M. *Química Nova*, São Paulo, v. 5, n. 2, p. 147-153, 1992.

ZHANG, M.; LI, W.; YANG,Y.; CHEN, B.; SONG, F. Effect of readily dispersible colloid on adsorption and transport of Zn, Cu and Pb in soils. Environmental Pollution. v.31, p.840-844, 2005.

APÊNDICE

APÊNDICE A Isotermas de adsorção - Cádmio

Concentração de cádmio na solução de equilíbrio (µg mL⁻¹)

Figura 1A. Isotermas de adsorção de cádmio referentes ao Argissolo Vermelho-Amarelo Distrófico típico (1A e 1B), Latossolo Vermelho-Amarelo Distrófico típico (2A e 2B) e Latossolo Vermelho Distrófico típico (3A e 3B).

Concentração de cádmio na solução de equilíbrio (µg mL⁻¹)

Figura 2A. Isotermas de adsorção de cádmio referentes ao Latossolo Vermelho Amarelo Distrófico húmico (4A e 4B), Latossolo Vermelho Perférrico húmico (5A e 5B) e Nitossolo Vermelho Eutroférrico típico (6A e 6B).

Concentração de cádmio na solução de equilíbrio (µg mL⁻¹)

Figura 3A. Isotermas de adsorção de cádmio referentes ao Luvissolo Crômico Pálico abrúptico (7A e 7B), Chernossolo Argilúvico Carbonático saprolítico (8A e 8B) e Cambissolo Háplico Tb eutrófico latossólico (9A e 9B).

Concentração de cádmio na solução de equilíbrio (µg mL⁻¹)

Figura 4A. Isotermas de adsorção de cádmio referentes ao Cambissolo Háplico Tb distrófico típico (10A e 10B), Plintossolo Pétrico concrecionário distrófico (11A e 11B) e Plintossolo Pétrico concrecionário distrófico (12A e 12B).

Concentração de cádmio na solução de equilíbrio (µg mL⁻¹)

Figura 5A. Isotermas de adsorção de cádmio referentes ao Cambissolo Háplico distrófico (13A e 13B), Neossolo Quartzarênico órtico latossólico (14A e 14B) e Latossolo Vermelho-Amarelo Distrófico típico (15A e 15B).

Isotermas de Adsorção - Cobre

Concentração de cobre na solução de equilíbrio (µg mL⁻¹)

Figura 6A. Isotermas de adsorção de cobre referentes ao Argissolo Vermelho-Amarelo Distrófico típico (1A e 1B), Latossolo Vermelho-Amarelo Distrófico típico (2A e 2B) e Latossolo Vermelho Distrófico típico (3A e 3B).

Concentração de cobre na solução de equilíbrio (µg mL⁻¹)

Figura 7A. Isotermas de adsorção de cobre referentes ao Latossolo Vermelho Amarelo Distrófico húmico (4A e 4B), Latossolo Vermelho Perférrico húmico (5A e 5B) e Nitossolo Vermelho Eutroférrico típico (6A e 6B).

Concentração de cobre na solução de equilíbrio (µg mL⁻¹)

Figura 8A. Isotermas de adsorção de cobre referentes ao Luvissolo Crômico Pálico abrúptico (7A e 7B), Chernossolo Argilúvico Carbonático saprolítico (8A e 8B) e Cambissolo Háplico Tb eutrófico latossólico (9A e 9B).

Concentração de cobre na solução de equilíbrio (µg mL⁻¹)

Figura 9A. Isotermas de adsorção de cobre referentes ao Cambissolo Háplico Tb distrófico típico (10A e 10B), Plintossolo Pétrico concrecionário distrófico (11A e 11B) e Plintossolo Pétrico concrecionário distrófico (12A e 12B).

Concentração de cobre na solução de equilíbrio (µg mL⁻¹)

Figura 10A. Isotermas de adsorção de cobre referentes ao Cambissolo Háplico distrófico (13A e 13B), Neossolo Quartzarênico órtico latossólico (14A e 14B) e Latossolo Vermelho-Amarelo Distrófico típico (15A e 15B).

Isotermas de Adsorção - Chumbo

Concentração de chumbo na solução de equilíbrio (µg mL⁻¹)

Figura 11A. Isotermas de adsorção de chumbo referentes ao Argissolo Vermelho-Amarelo Distrófico típico (1A e 1B), Latossolo Vermelho-Amarelo Distrófico típico (2A e 2B) e Latossolo Vermelho Distrófico típico (3A e 3B)

Concentração de chumbo na solução de equilíbrio (µg mL⁻¹)

Figura 12A. Isotermas de adsorção de chumbo referentes ao Latossolo Vermelho Amarelo Distrófico húmico (4A e 4B), Latossolo Vermelho Perférrico húmico (5A e 5B) e Nitossolo Vermelho Eutroférrico típico (6A e 6B).

Concentração de chumbo na solução de equilíbrio (µg mL⁻¹)

Figura 13A. Isotermas de adsorção de chumbo referentes ao Luvissolo Crômico Pálico abrúptico (7A e 7B), Chernossolo Argilúvico Carbonático saprolítico (8A e 8B) e Cambissolo Háplico Tb eutrófico latossólico (9A e 9B).

Concentração de chumbo na solução de equilíbrio (µg mL⁻¹)

Figura 14A. Isotermas de adsorção de chumbo referentes ao Cambissolo Háplico Tb distrófico típico (10A e 10B), Plintossolo Pétrico concrecionário distrófico (11A e 11B) e Plintossolo Pétrico concrecionário distrófico (12A e 12B).

Concentração de chumbo na solução de equilíbrio ($\mu g m L^{-1}$)

Figura 15A. Isotermas de adsorção de chumbo referentes ao Cambissolo Háplico distrófico (13A e 13B), Neossolo Quartzarênico órtico latossólico (14A e 14B) e Latossolo Vermelho-Amarelo Distrófico típico (15A e 15B).

Isotermas de Adsorção - Zinco

Concentração de zinco na solução de equilíbrio (µg mL⁻¹)

Figura 16A. Isotermas de adsorção de zinco referentes ao Argissolo Vermelho-Amarelo Distrófico típico (1A e 1B), Latossolo Vermelho-Amarelo Distrófico típico (2A e 2B) e Latossolo Vermelho Distrófico típico (3A e 3B).

Concentração de zinco na solução de equilíbrio (µg mL⁻¹)

Figura 17A. Isotermas de adsorção de zinco referentes ao Latossolo Vermelho Amarelo Distrófico húmico (4A e 4B), Latossolo Vermelho Perférrico húmico (5A e 5B) e Nitossolo Vermelho Eutroférrico típico (6A e 6B).

Concentração de zinco na solução de equilíbrio (µg mL⁻¹)

Figura 18A. Isotermas de adsorção de zinco referentes ao Luvissolo Crômico Pálico abrúptico (7A e 7B), Chernossolo Argilúvico Carbonático saprolítico (8A e 8B) e Cambissolo Háplico Tb eutrófico latossólico (9A e 9B).

Concentração de zinco na solução de equilíbrio (µg mL⁻¹)

Figura 19A. Isotermas de adsorção de zinco referentes ao Cambissolo Háplico Tb distrófico típico (10A e 10B), Plintossolo Pétrico concrecionário distrófico (11A e 11B) e Plintossolo Pétrico concrecionário distrófico (12A e 12B).

Concentração de zinco na solução de equilíbrio (µg mL⁻¹)

Figura 20A. Isotermas de adsorção de zinco referentes ao Cambissolo Háplico distrófico (13A e 13B), Neossolo Quartzarênico órtico latossólico (14A e 14B) e Latossolo Vermelho-Amarelo Distrófico típico (15A e 15B).

Solo	Horiz.	Conc. ($\mu g m L^{-1}$)	pH antes adsorção	pH_m após adsorção ⁽¹⁾	Diferença ⁽²⁾	$\mu mol H^{\!+}\!/g$	nH^+/nCd
		0	5,10	5,10	0,00	0	0
		10	5,10	5,04	-0,06	2,30E-08	0,0323
	•	20	5,10	4,99	-0,11	2,57E-08	0,0361
	A	30 40	5,10	4,95	-0,13	2,39E-08	0,0304
		40 60	5.10	4,91	-0,19	2,05E-08	0,0315
1. PVA		80	5,10	4,84	-0.26	2,24E-08	0.0328
		0	5,37	5,37	0,00	0	0
		10	5,37	5,29	-0,08	1,98E-08	0,0278
	В	20	5,37	5,20	-0,17	3,28E-08	0,0461
		30	5,37	5,14	-0,23	3,32E-08	0,0466
		40	5,37	5,05	-0,32	3,63E-08	0,0510
		60	5,37	5,02	-0,35	2,51E-08	0,0353
		80	5,37	4,99	-0,38	2,22E-08	0,0311
		0	5,50	5,50	0,00	0 2 22E 00	0 00212
		10 20	5,50	5,50	-0,03	2,23E-09 3 18E-09	0,00313
	А	30	5,50	5,50	-0.10	3.27E-09	0,00440
		40	5,50	5,50	-0,14	3,61E-09	0,00507
		60	5,50	5,50	-0,17	3,34E-09	0,00470
2. LVA		80	5,50	5,50	-0,20	3,23E-09	0,00453
		0	5,27	5,27	0,02	0	0
		10	5,27	5,27	-0,03	6,39E-09	0,00897
	В	20	5,27	5,27	-0,06	7,86E-09	0,01104
		30	5,27	5,27	-0,11	1,15E-08	0,01617
		40 60	5,27	5,27	-0,15	1,32E-08	0,01853
		80	5.27	5,27	-0,23	1,07E-08	0,02348
		0	4 98	4 98	0.00	0	0
		10	4,98	4.95	-0.03	1.26E-08	0.0177
		20	4,98	4,93	-0,05	1,41E-08	0,0199
	А	30	4,98	4,87	-0,11	2,19E-08	0,0307
		40	4,98	4,83	-0,15	2,50E-08	0,0351
		60	4,98	4,79	-0,19	2,41E-08	0,0339
3. LVd		80	4,98	4,77	-0,21	2,21E-08	0,0311
		0	5,10	5,10	0,00	0	0
	р	10	5,10	5,05	-0,05	1,93E-08	0,0272
	D	20	5,10	4,98	-0,12	2,70E-08	0,0588
		40	5.10	4 89	-0.21	3,41E-08	0,0479
		60	5.10	4.85	-0.25	2.90E-08	0.0407
		80	5,10	4,81	-0,29	2,70E-08	0,0380
		0	5,24	5,24	0,00	0	0
		10	5,24	5,18	-0,06	2,50E-08	0,0351
		20	5,24	5,13	-0,11	2,48E-08	0,0349
	А	30	5,24	5,05	-0,19	3,07E-08	0,0431
		40	5,24	5,00	-0,24	3,35E-08	0,0471
4 1 1 1 4 4		60 80	5,24	4,96	-0,28	2,91E-08	0,0410
4. L V Au		0	6.22	6.22	-0,33	2,7012-08	0,0388
		10	6.22	6.16	-0.06	1.30E-09	0.0018
	В	20	6,22	6,10	-0,12	1,76E-09	0,0025
		30	6,22	6,06	-0,16	1,93E-09	0,0027
		40	6,22	6,01	-0,21	2,12E-09	0,0030
		60	6,22	5,96	-0,26	2,16E-09	0,0030
		80	6,22	5,90	-0,32	2,34E-09	0,0033
		0	5,31	5,31	0,00	0	0
		10	5,51	5,29	-0,02	4,45E-09	0,0062
	Δ	20	5 31	5,22	-0,09	1,40E-08	0,0197
	п	40	5.31	5.15	-0.16	1.69E-08	0.0238
		60	5,31	5,12	-0,19	1,40E-08	0.0196
5. LVj		80	5,31	5,08	-0,23	1,51E-08	0,0213
		0	5,81	5,81	0,00	0	0
		10	5,81	5,78	-0,03	5,75E-09	0,0081
	В	20	5,81	5,74	-0,07	7,88E-09	0,0111
		30	5,81	5,70	-0,11	8,67E-09	0,0122
		40	5,81	5,64	-0,17	1,11E-08	0,0156
		00	5,81	5,60	-0,21	1,2/E-08	0,0179
		80	3,81	5,54	-0,27	1,38E-08	0,0222

Tabela 1. Concentração adicionada, pH antes e após adsorção e número de íons H⁺ liberados na adsorção de cádmio nos solos

Solo	Horiz.	Conc. (µg mL ⁻¹)	pH antes adsorção	pH _m após adsorcão ⁽¹⁾	Diferença ⁽²⁾	$\mu molH^+/g$	nH ⁺ /nCd
		0	6,17	6,17	0	0	0
		10	6,17	5,85	-0,32	7,04E-09	0,0099
		20	6,17	5,82	-0,35	4,35E-09	0,0061
	А	30	6,17	5,79	-0,38	3,42E-09	0,0048
		40	6,17	5,77	-0,40	2,76E-09	0,0039
6 I Vof		60 80	6,1 / 6 17	5,70	-0,47	2,58E-09	0,0036
6. Lvei		80	0,17 5.44	5,08	-0,49	2,23E-09	0,0031
		10	5,44	5 39	-0.70	6 19E-09	0 0087
	в	20	5 44	5 35	-0.74	6.60E-09	0,0007
	Б	30	5.44	5.32	-0.77	6.62E-09	0.0093
		40	5.44	5.29	-0.80	6.75E-09	0.0095
		60	5,44	5,25	-0,84	5,97E-09	0,0084
		80	5,44	5,22	-0,87	5,51E-09	0,0077
		0	6,13	6,13	0,00	0	0
		10	6,13	6,06	-0,07	1,16E-09	0,00164
		20	6,13	6,01	-0,12	1,23E-09	0,00173
	А	30	6,13	5,94	-0,19	1,43E-09	0,00201
		40	6,13	5,92	-0,21	1,28E-09	0,00180
7 70		60	6,13	5,89	-0,24	1,08E-09	0,00152
7. TCp		80	6,13	5,85	-0,28	1,07E-09	0,00151
		0	6,02	6,10	0,00	0 8 26E 10	0 00117
	р	10	6,02	6,00	-0,04	8,30E-10 8,32E 10	0,00117
	D	20	6,02	5.00	-0,07	0,52E-10 0,46E 10	0,00117
		30 40	6.02	5,99	-0,11	1.05E-09	0.00133
		40 60	6.02	5,92	-0.18	1,05E-09	0.00148
		80	6.02	5.88	-0.22	1.08E-09	0.00152
		0	7,16	7,16	0.00	0	0
		10	7,16	7,13	-0,03	4,47E-11	6,28E-05
		20	7,16	7,09	-0,07	4,94E-11	6,94E-05
	А	30	7,16	7,04	-0,12	6,23E-11	8,75E-05
		40	7,16	6,99	-0,17	6,86E-11	9,64E-05
8. MTk		60	7,16	6,95	-0,21	5,98E-11	8,40E-05
		80	7,16	6,91	-0,25	5,53E-11	7,77E-05
		0	7,46	7,46	0,00	0	0
	P	10	7,46	7,42	-0,04	2,51E-11	3,52E-05
	В	20	7,46	7,38	-0,08	2,79E-11	3,92E-05
		30 40	7,40	7,54	-0,12	2,99E-11 2.26E-11	4,21E-05
		40 60	7,40	7,30	-0,10	3,00E-11	4,72E-05
		80	7,46	7,23	-0.25	3.02E-11	4,55E-05
-		0	7.52	7.52	0.00	0	0
		10	7,52	7,45	-0,07	4,24E-11	5,96E-05
		20	7,52	7,36	-0,16	5,42E-11	7,61E-05
	А	30	7,52	7,28	-0,24	6,00E-11	8,43E-05
		40	7,52	7,21	-0,31	6,27E-11	8,80E-05
		60	7,52	7,15	-0,37	5,49E-11	7,71E-05
9. CXbe		80	7,52	7,10	-0,42	4,95E-11	6,96E-05
		0	6,91	6,91	0,00	0	0
	P	10	6,91	6,87	-0,04	9,87E-11	0,00014
	В	20	6,91	6,82	-0,09	1,22E-10	0,00017
		30	6,91	0,77	-0,14	1,44E-10	0,00020
		40 60	6.91	6.67	-0,18	1,43E-10 1.47E-10	0,00020
		80	6.91	6,67	-0,24	1, 47E-10 1.56E-10	0,00021
		0	4.93	4.93	0.00	0	0
		10	4,93	4,86	-0,07	6,61E-08	9,29E-02
		20	4.93	4,81	-0,12	8,64E-08	1,21E-01
	А	30	4,93	4,76	-0,17	9,69E-08	1,36E-01
		40	4,93	4,71	-0,22	9,34E-08	1,31E-01
		60	4,93	4,63	-0,30	9,72E-08	1,37E-01
10. CXbd		80	4,93	4,56	-0,37	1,13E-07	1,59E-01
		0	5,20	5,20	0,00	0	0
		10	5,20	5,15	-0,05	4,57E-08	0,0642
	В	20	5,20	5,09	-0,11	7,50E-08	0,1054
		30	5,20	5,05	-0,15	6,41E-08	0,0901
		40	5,20	5,00	-0,20	5,42E-08	0,0751
		6U 80	5,20	4,96	-0,24	5,35E-U8	0,0751
		80	5,20	4,91	-0,29	J,93E-08	0,0834

Tabela 2. Concentração, pH antes e após adsorção e número de íons H⁺ liberados na adsorção de cádmio nos solos

Solo	Horiz.	Conc. (µg mL ⁻¹)	pH antes adsorção	pH _m após adsorção ⁽¹⁾	Diferença ⁽²⁾	$\mu molH^+/g$	nH^+/nCd
		0	5,45	5,45	0,00	0	0
		10	5,45	5,42	-0,03	3,94E-09	0,0055
		20	5,45	5,38	-0,07	5,58E-09	0,0078
	А	30	5,45	5,32	-0,13	7,88E-09	0,0111
		40	5,45	5,28	-0,17	8,98E-09	0,0126
		60	5,45	5,26	-0,19	7,17E-09	0,0101
11. FFcd ₁		80	5.45	5.23	-0.22	6.69E-09	0.0094
		0	4.88	4.88	0.00	0	0
		10	4.88	4.83	-0.05	4.11E-08	0.0578
	В	20	4.88	4.80	-0.08	4.19E-08	0.0589
		30	4.88	4.74	-0.14	6.34E-08	0.0891
		40	4.88	4.72	-0.16	6.65E-08	0.0934
		60	4 88	4 66	-0.22	7 31E-08	0.1027
		80	4.88	4.62	-0.26	8.12E-08	0.1140
		0	5.61	5.61	0.00	0	0
		10	5,61	5 57	-0.04	3 13E-09	0.0044
		20	5 61	5,57	-0.11	5.62E-09	0,0079
	Δ	20	5,61	5,50	-0.15	6.17E-09	0,0075
	A	30 40	5,61	5.40	-0,15	6.12E.09	0,0087
		40 60	5,61	5 30	-0,17	5 20E 00	0,0000
12 FEed		80	5,61	5 31	-0,22	5,20E-09	0,0073
12. FFCU_2		80	4.20	3,31	-0,30	0,431-09	0,0090
		0	4,50	4,50	0,00	4 00E 07	0 5745
	р	10	4,50	4,23	-0,03	4,09E-07	0,5745
	В	20	4,30	4,19	-0,11	0,00E-07	0,8515
		30	4,30	4,15	-0,15	6,85E-07	0,9630
		40	4,30	4,11	-0,19	8,1/E-0/	1,14/8
		60	4,30	4,08	-0,22	7,48E-07	1,0513
		80	4,30	4,04	-0,26	8,25E-07	1,1591
		0	5,66	5,66	0,00	0	0
		10	5,66	5,62	-0,04	2,19E-09	0,00307
		20	5,66	5,56	-0,10	2,90E-09	0,00408
	A	30	5,66	5,51	-0,15	3,12E-09	0,00438
		40	5,66	5,47	-0,19	3,01E-09	0,00423
		60	5,66	5,42	-0,24	2,90E-09	0,00407
13. CXd		80	5,66	5,36	-0,30	2,94E-09	0,00414
		0	5,05	5,05	0,00	0	0
		10	5,05	4,96	-0,09	1,90E-07	0,26665
	В	20	5,05	4,89	-0,16	3,45E-07	0,48548
		30	5,05	4,83	-0,22	4,36E-07	0,61260
		40	5,05	4,78	-0,27	4,04E-07	0,56777
		60	5,05	4,74	-0,31	2,84E-07	0,39854
		80	5,05	4,70	-0,35	2,74E-07	0,38503
		0	4,49	4,49	0,00	0	0
		10	4,49	4,46	-0,03	1,03E-07	1,45E-01
		20	4,49	4,41	-0,08	1,74E-07	2,45E-01
	А	30	4,49	4,36	-0,13	2,29E-07	3,22E-01
		40	4,49	4,33	-0,16	2,35E-07	3,31E-01
		60	4,49	4,29	-0,20	2,34E-07	3,29E-01
14. RQo		80	4,49	4,26	-0,23	2,75E-07	3,87E-01
		0	4,71	4,71	0,00	0	0
		10	4,71	4,67	-0,04	9,10E-08	0,12785
	В	20	4,71	4,60	-0,11	1,23E-07	0,17319
		30	4,71	4,52	-0,19	1,97E-07	0,27741
		40	4,71	4,49	-0,22	2,04E-07	0,28693
		60	4,71	4,44	-0,27	2,10E-07	0,29559
		80	4,71	4,41	-0,30	2,15E-07	0,30168
		0	5,40	5,40	0,00	0	0
		10	5,40	5,34	-0,06	9,57E-09	0,0134
		20	5,40	5,27	-0,13	1,44E-08	0,0202
	А	30	5.40	5,20	-0,20	1,85E-08	0.0260
		40	5.40	5.16	-0.24	1,79E-08	0.0252
		60	5.40	5.12	-0.28	1.61E-08	0.0226
15. LVd		80	5.40	5.09	-0.31	1.42E-08	0,0200
10.1.10		0	4 61	4 61	0.00	0	0
		10	4 61	4 57	-0.04	1 36F-07	0 1907
	R	20	4 61	4 53	_0.08	1,50L-07	0,2263
	D	20	4,01	4,55	-0,00 _0.11	1.34E-07	0,2303
		50 40	4.61	4,50	-0,11	1,0+D-07	0.1547
		40 60	4,01	4,47	-0,14	1.025-07	0,1347
		80 80	4.61	7,77	-0,17	1,02L-07	0 1727
		00	ч,01	т,37	-0,22	1,231-07	0,1/2/

Tabela 3. Concentração, pH antes e após adsorção e número de íons H⁺ liberados na adsorção de cádmio nos solos

Solo	Horiz.	Conc. ($\mu g m L^{-1}$)	pH antes adsorção	pH _m após adsorção ⁽¹⁾	Diferença ⁽²⁾	μ molH ⁺ /g	nH ⁺ /nCu
		0	5,10	5,10	0,000	0	0
		10	5,10	4,89	-0,210	4,23E-08	3,36E-02
		20	5,10	4,76	-0,337	4,41E-08	3,50E-02
	А	40	5,10	4,00	-0,505	5,04E-08	4,01E-02 3.07E-02
		80	5,10	4,55	-0,507	4.69E-08	3,97E-02
1 PVA		100	5,10	4.42	-0.677	5.30E-08	4.21E-02
		0	5,37	5,37	0,000	0	0
		10	5,37	5,30	-0,070	8,43E-09	6,69E-03
	В	20	5,37	5,21	-0,160	1,20E-08	9,52E-03
		40	5,37	5,17	-0,200	9,47E-09	7,52E-03
		60	5,37	5,14	-0,227	8,77E-09	6,96E-03
		80	5,37	5,10	-0,270	9,37E-09	7,44E-03
		100	5,57	5,04	-0,327	1,03E-08	8,22E-03
		10	5,50	5,30	-0.133	9 18E-09	7 29E-03
		20	5,50	5.13	-0.367	1.72E-08	1.36E-02
	А	40	5,50	4,94	-0,557	1,77E-08	1,41E-02
		60	5,50	4,75	-0,747	2,25E-08	1,78E-02
		80	5,50	4,65	-0,850	2,36E-08	1,87E-02
2. LVA		100	5,50	4,58	-0,917	2,45E-08	1,94E-02
		0	5,27	5,27	0,000	0	0
	р	10	5,27	5,02	-0,253	3,82E-08	3,04E-02
	В	20	5,27	4,80	-0,467	5,41E-08	4,30E-02
		40 60	5,27	4,05	-0,623	5,01E-08	4,43E-02 3,98E-02
		80	5 27	4 53	-0,005	5 35E-08	4 25E-02
		100	5,27	4,51	-0,763	5,19E-08	4,12E-02
		0	5,10	4,98	0,000	0	0
		10	5,10	4,85	-0,130	3,06E-08	2,43E-02
		20	5,10	4,78	-0,200	2,74E-08	2,17E-02
	А	40	5,10	4,70	-0,280	2,40E-08	1,91E-02
		60	5,10	4,63	-0,347	2,42E-08	1,92E-02
2 1 1 4		80	5,10	4,57	-0,407	2,43E-08	1,93E-02
3. LVd		100	5,10	4,55	-0,427	2,54E-08	1,80E-02
		10	5 37	3,10 4 87	-0.230	4 63E-08	3 68F-02
	В	20	5.37	4.69	-0.410	5.60E-08	4.45E-02
		40	5,37	4,50	-0,603	6,41E-08	5,09E-02
		60	5,37	4,42	-0,683	6,49E-08	5,15E-02
		80	5,37	4,37	-0,733	6,42E-08	5,10E-02
		100	5,37	4,33	-0,773	6,37E-08	5,06E-02
		0	5,24	5,24	0,000	0	0
		10	5,24	5,10	-0,137	1,88E-08	1,49E-02
	^	20	5,24	3,00	-0,245	2,13E-08	1,71E-02 1.58E-02
	A	40 60	5 24	4,90	-0.380	2,00E-08	1,50E-02
		80	5.24	4.81	-0.433	1.88E-08	1,49E-02
4. LVAd		100	5,24	4,77	-0,470	1,92E-08	1,52E-02
		0	6,22	6,22	0,000	0	0
		10	6,22	6,09	-0,133	3,46E-09	2,75E-03
	В	20	6,22	5,66	-0,560	1,85E-08	1,47E-02
		40	6,22	5,38	-0,843	1,70E-08	1,35E-02
		80	6.22	3,07 4 95	-1,155	2,11E-08 1.82E-08	1,07E-02 1 45E-02
		100	6.22	4,71	-1,513	2.41E-08	1.91E-02
-		0	5.31	5.31	0.000	0	0
		10	5,31	5,12	-0,193	2,29E-08	1,82E-02
		20	5,31	4,96	-0,350	2,71E-08	2,15E-02
	А	40	5,31	4,86	-0,450	2,36E-08	1,87E-02
		60	5,31	4,70	-0,607	3,06E-08	2,43E-02
6 1 37		80	5,31	4,66	-0,650	2,85E-08	2,26E-02
5. LVJ		100	5,51 5 0 1	4,59	-0,/1/	3,06E-08	2,43E-02
		10	5,81 5,81	5,81 5,77	-0.040	0 1.21F-09	0 9.63E-04
	R	20	5.81	5,59	-0.217	4.12E-09	3.27E-03
	5	40	5.81	5.23	-0.577	9,63E-09	7,65E-03
		60	5,81	5,00	-0,810	1,42E-08	1,13E-02
		80	5,81	4,93	-0,883	1,48E-08	1,17E-02
		100	5,81	4,84	-0,973	1,66E-08	1,32E-02

Tabela 4. Concentração adicionada, pH antes e após adsorção e número de íons H⁺ liberados na adsorção de cobre nos solos

Solo	Horiz.	Conc. (µg mL ⁻¹)	pH antes adsorção	pH _m após adsorção ⁽¹⁾	Diferença ⁽²⁾	µmolH ⁺ /g	nH^{+}/nCu
		0	6,17	6,17	0,000	0	0
		10	6,17	6,07	-0,097	1,36E-09	1,08E-03
		20	6,17	5,92	-0,247	2,10E-09	1,67E-03
	А	40	6,17	5,63	-0,543	3,64E-09	2,89E-03
		60 80	0,17	5,47	-0,700	4,08E-09	5,24E-05
6 I Vef		80 100	6,17	5,50	-0,807	5,14E-09	4,08E-03
0. LVCI		0	5 44	5 44	0,000	0	4,5912-05
		10	5.44	5.36	-0.077	7.63E-09	6.06E-03
	В	20	5.44	5.31	-0.127	6.88E-09	5.46E-03
		40	5,44	5,25	-0,187	5,59E-09	4,44E-03
		60	5,44	5,22	-0,217	4,70E-09	3,74E-03
		80	5,44	5,21	-0,227	3,88E-09	3,08E-03
		100	5,44	5,17	-0,267	3,98E-09	3,16E-03
		0	6,13	6,13	0,000	0	0
		10	6,13	5,41	-0,720	3,18E-08	2,53E-02
		20	6,13	5,04	-1,093	6,12E-08	4,87E-02
	А	40	6,13	4,87	-1,257	6,27E-08	4,98E-02
		60	6,13	4,77	-1,360	7,00E-08	5,56E-02
7 TC=		80	6,13	5,03	-1,103	6,23E-08	4,95E-02
7. ICp		100	6,15	5,05	-1,097	0,19E-08	4,92E-02
		0 10	6,10	5,10	0,000	2 40E 08	1 01E 02
	в	10	6.10	5,57	-0,550	2,40E-08	1,91E-02 2.21E-02
	Б	20	6.10	5.27	-0,037	2,78E-08	2,21E-02 2.54E-02
		40 60	6.10	5,26	-0.837	2.54E-08	2,02E-02
		80	6.10	5.52	-0.580	1.82E-08	1.45E-02
		100	6.10	5,52	-0.577	1.65E-08	1.31E-02
		0	7,16	7,16	0,000	0	0
		10	7,16	7,01	-0,153	2,35E-10	1,87E-04
		20	7,16	6,67	-0,490	5,88E-10	4,67E-04
	А	40	7,16	6,12	-1,040	1,55E-09	1,23E-03
		60	7,16	5,90	-1,257	1,84E-09	1,46E-03
8. MTk		80	7,16	5,94	-1,223	3,12E-09	2,48E-03
		100	7,16	5,88	-1,277	3,30E-09	2,62E-03
		0	7,46	7,46	0,000	0	0
	D	10	7,46	7,34	-0,123	9,23E-11	7,33E-05
	В	20	7,46	6,98	-0,483	3,01E-10	2,39E-04
		40	7,40	0,55	-1,155	1,12E-09	0,09E-04
		80	7,40	6.07	-1,303	1,55E-09	1,00E-03
		100	7,40	6.00	-1.463	1.30E-09	1.04E-03
		0	7.52	7.52	0.000	0	0
		10	7,52	7,39	-0,130	8,44E-11	6,70E-05
		20	7,52	7,33	-0,193	6,79E-11	5,40E-05
	А	40	7,52	6,95	-0,567	1,63E-10	1,30E-04
		60	7,52	6,58	-0,943	3,21E-10	2,55E-04
		80	7,52	6,41	-1,107	3,68E-10	2,92E-04
9. CXbe		100	7,52	6,28	-1,240	4,09E-10	3,25E-04
		0	6,91	6,91	0,000	0	0
		10	6,91	6,78	-0,127	3,43E-10	2,72E-04
	В	20	6,91	6,23	-0,680	2,33E-09	1,85E-03
		40	6,91	5,85	-1,077	4,93E-09	3,92E-03
		80	6.91	5,70	-1,207	5,95E-09	4,73E-03
		100	6.91	5,62	-1,205	5.49E-09	4,76E-03
		0	4 93	4.93	0.000	0	0
		10	4,93	4.80	-0.127	4.35E-08	3.46E-02
		20	4,93	4,70	-0,233	5,49E-08	4,36E-02
	А	40	4,93	4,65	-0,280	4,35E-08	3,45E-02
		60	4,93	4,66	-0,270	3,14E-08	2,50E-02
		80	4,93	4,61	-0,323	3,34E-08	2,66E-02
10. CXbd		100	4,93	4,59	-0,343	3,26E-08	2,59E-02
		0	5,20	5,20	0,000	0	0
		10	5,20	5,11	-0,090	1,78E-08	1,42E-02
	В	20	5,20	5,02	-0,180	1,97E-08	1,57E-02
		40	5,20	4,96	-0,243	1,61E-08	1,28E-02
		60	5,20	4,93	-0,270	1,35E-08	1,07E-02
		80	5,20	4,91	-0,293	1,19E-08	9,48E-03
		100	5,20	4,86	-0,340	1,25E-08	9,91E-03

Tabela 5. Concentração, pH antes e após adsorção e número de íons H⁺ liberados na adsorção de cobre nos solos

0 5.45 5.45 0.007 0 0 20 5.45 5.10 -0.347 2.91E-07 1.147E-02 40 5.45 4.84 0.607 2.71E-07 2.01E-07 90 5.45 4.95 -0.903 3.254E-07 3.07E-02 10 4.88 4.89 -0.903 3.254E-07 3.07E-02 0 4.88 4.89 -0.907 2.44E-08 3.37E-02 0 4.88 4.73 -0.150 3.47E-08 3.37E-08 10 4.88 4.051 -0.233 3.07E-08 2.38E-02 10 5.61 5.61 -0.00 5.28E-02 3.62E-08 2.8E-02 10 5.61 5.61 -0.00 5.28E-02 3.06E-08 2.8E-02 10 5.61 5.61 -0.00 5.28E-03 3.02E-08 2.02E-01 10 5.61 5.62 -0.000 5.62 3.02E-08 3.02E-08 12.Fedal 100	Solo	Horiz.	Conc. (µg mL ⁻¹)	pH antes adsorção	pH _m após adsorção ⁽¹⁾	Diferença ⁽²⁾	μ molH ⁺ /g	nH ⁺ /nCu
10 5.45 5.27 -0.177 1.078-07 1.478-02 A 40 5.45 4.484 -0.067 2.278-07 2.018-02 11. FFed. 00 4.55 4.455 4.0030 2.248-07 2.2076-02 10 4.488 4.493 4.0030 2.248-07 2.076-02 10 4.88 4.73 4.0150 4.771-088 3.379-02 10 4.88 4.73 4.0150 4.771-088 3.379-02 100 4.88 4.405 4.0233 3.708-08 2.961-02 100 4.88 4.65 4.0233 3.614-08 2.888-02 100 5.61 5.51 4.0030 0 0 0 12. Ffed; 100 5.61 5.73 4.0277 6.382-09 5.048-03 12. Ffed; 100 5.61 5.15 4.406 7.091-09 5.078-03 12. Ffed; 100 5.61 5.33 4.0257 4.096-07 2.286-01			0	5,45	5,45	0,000	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			10	5,45	5,27	-0,177	1,67E-07	1,16E-02
A 40 5,45 4,84 40,607 2,778-67 2,078-67 2,078-62 11. FFed; 100 5,45 4,455 4,003 2,248-67 2,098-62 11. FFed; 0 4,88 4,479 0,0063 2,226-77 3,098-62 0 4,88 4,473 40,150 4,776-68 3,796-62 40 4,88 4,65 -0,233 3,786-68 2,766-62 80 4,88 4,66 -0,233 3,766-68 2,886-62 10 5,61 5,61 0,000 0 0 2,766-62 10 5,61 5,61 0,000 0 0 2,886-62 20 5,61 5,61 5,61 0,000 0 0 2,886-62 12. Fred; 10 5,61 5,61 0,003 1,00 5,61 5,62 0,0133 2,616-07 1,335-01 12. Fred; 10 5,61 5,15 1,00 5,61 5,02 0,07<			20	5,45	5,10	-0,347	2,91E-07	1,47E-02
60 5,45 4,65 -0.080 2,24E.07 2,07E.02 11. FEd. 100 5,45 4,455 -0.093 2,24E.07 2,07E.02 10 4,88 4,79 -0.087 4,24E.08 3,27E.02 0 0 0 10 4,88 4,779 -0.087 4,24E.08 3,27E.02 0 5,61 5,6		А	40	5,45	4,84	-0,607	2,77E-07	2,01E-02
80 5,45 4,45 4,90 2,24E-07 2,91E-02 10 4,88 4,49 4,063 3,22E-07 3,09E-02 B 20 4,88 4,73 -0,157 4,24E-08 3,37E-02 B 20 4,88 4,73 -0,150 4,77E-08 3,37E-02 B 20 4,88 4,77 -0,150 4,37E-03 3,37E-02 B 20 5,61 5,51 0,010 5,52E-09 4,15E-03 D 5,61 5,51 0,010 5,22E-09 4,15E-03 A 40 5,61 5,23 -0,277 4,09E-09 3,22E-03 B 20 5,61 5,15 -0,460 7,09E-09 5,63E-03 B 20 5,61 5,15 -0,460 7,09E-09 5,63E-03 B 20 5,66 5,07 -0,388 2,27E-07 2,20E-01 B 20 5,66 5,09 -0,07 2 2,2			60	5,45	4,65	-0,800	2,64E-07	2,67E-02
11. Fred, 0 100 5,45 4,49 40,963 3,22E-07 3,09E-02 B 10 4,88 4,73 40,150 4,77E-48 3,37E-02 40 4,88 4,73 40,150 4,77E-48 3,37E-02 40 4,88 4,73 40,150 4,77E-48 3,37E-02 80 4,88 4,60 4,333 3,48E-08 2,37E-02 3,33E-02 100 4,88 4,60 4,333 3,48E-08 2,38E-07 9,92E-09 4,97E-04 10 5,61 5,515 4,070 0 3,22E-07 9,7EE-04 10 5,61 5,515 4,040 7,09E-09 3,22E-03 9,024E-03 12. FFed_ 100 5,61 5,15 4,040 3,022 2,02E-09 9,024E-03 1,33E-01 12. FFed_ 100 5,61 5,15 4,040 3,07 2,31E-01 2,31E-01 2,31E-01 2,31E-01 2,31E-01 2,31E-01 2,31E-01 2,32E-03 <t< td=""><td></td><td></td><td>80</td><td>5,45</td><td>4,55</td><td>-0,903</td><td>2,54E-07</td><td>2,91E-02</td></t<>			80	5,45	4,55	-0,903	2,54E-07	2,91E-02
0 4.88 4.89 0.0067 4.24E-08 3.37E-02 B 20 4.88 4.73 -0.150 4.77E-08 3.37E-02 60 4.88 4.63 -0.233 3.7BE-08 2.77E-02 60 4.88 4.65 -0.233 3.7BE-08 2.27E-03 100 4.88 4.65 -0.233 3.7BE-08 2.88E-02 100 5.61 5.61 0.000 0 9 0 10 5.61 5.61 0.003 1.22E-03 3.33E-02 12. Fred. 100 5.61 5.73 -0.477 6.34E-09 5.34E-03 12. Fred. 100 5.61 5.73 -0.477 6.34E-09 5.34E-03 12. Fred. 100 5.61 5.73 -0.400 7.9E-09 5.74E-03 13. CXd 100 5.66 5.52 -0.403 1.07E-07 2.21E-01 14.0 4.30 4.02 -0.203 2.74E-07 2.21E-01	11. FFcd ₁		100	5,45	4,49	-0,963	3,22E-07	3,09E-02
B 10 4.88 4.79 -0.050 4.471-08 3.378-02 40 4.88 4.70 -0.150 3.34E-08 2.76E-02 80 4.88 4.60 -0.233 3.34E-08 2.238E-02 100 4.88 4.63 -0.353 4.4E-08 3.35E-02 100 5.61 5.61 -0.000 0 0 20 5.61 5.66 -0.053 4.4E-08 3.35E-02 40 5.61 5.66 -0.053 4.4E-08 3.35E-02 20 5.61 5.66 -0.053 4.4E-08 3.35E-02 100 5.61 5.33 -0.427 4.499E-40 9.35E-03 100 5.61 5.33 -0.273 4.99E-40 9.35E-03 101 4.30 4.30 -0.00 0 0 7.35E-01 100 5.61 5.37 -0.033 1.67E-07 1.33E-01 100 5.66 5.32 -0.037 2.32E-			0	4,88	4,88	0,000	0	0
B 20 4.88 4.73 -0.180 3.78E-08 2.776+02 60 4.88 4.65 -0.233 3.70E-02 2.94E-02 100 4.88 4.65 -0.233 3.70E-02 2.94E-02 100 5.61 5.51 -0.100 5.22E-09 9.70E-04 20 5.61 5.56 -0.053 -1.22E-09 9.70E-04 20 5.61 5.13 -0.400 7.90E-04 3.22E-09 9.70E-04 20 5.61 5.13 -0.400 7.90E-04 3.22E-09 9.70E-04 10 5.61 5.13 -0.400 7.90E-06 5.32E-03 9.70E-04 10 5.61 5.07 -0.543 8.77E-09 5.97E-07 2.20E-01 10 4.30 4.10 -0.203 2.21E-07 1.23E-04 100 4.30 3.91 -0.387 2.32E-07 2.20E-01 100 5.66 5.23 -0.137 3.74E-09 2.32E-03			10	4,88	4,79	-0,087	4,24E-08	3,37E-02
40 4.88 4.70 -0.123 3.376-08 2.276E-02 80 4.88 4.60 -0.230 3.370E-08 2.288E-02 100 5.61 5.61 0.033 4.44E-08 3.33E-02 0 5.61 5.61 0.000 0 0 10 5.61 5.66 0.053 -1.22E-09 9.415E-03 20 5.61 5.23 -0.377 7.34E-09 5.97E-03 60 5.61 5.23 -0.377 7.34E-09 5.56E-03 10 4.30 4.32 -0.403 8.77E-07 2.37E-10 10 4.30 4.32 -0.203 2.77E-07 2.37E-10 10 4.30 4.32 -0.203 2.77E-07 2.37E-10 10 4.30 4.33 4.03 2.37E-107 2.37E-107 2.37E-107 10 5.66 5.54 -0.203 2.74E-07 2.37E-107 2.37E-107 12.FFod, 100 5.66 5.5		В	20	4.88	4.73	-0.150	4.77E-08	3.79E-02
60 4.88 4.65 -0.230 3.30E-08 2.28E-02 100 4.88 4.53 -0.233 4.44E-08 3.53E-02 0 5.61 5.51 -0.000 0 0 10 5.61 5.51 -0.005 5.12E-09 -9.70E-04 20 5.61 5.33 -0.277 4.09E-09 5.61E-05 60 5.61 5.15 -0.400 7.09E-09 5.63E-03 10 4.30 4.30 0.000 0 0 10 4.30 4.30 0.000 0 0 80 5.61 5.157 -0.400 2.91E-07 1.31E-01 10 4.30 4.30 -0.033 2.45E-07 2.13E-01 10 4.30 3.91 -0.337 2.45E-07 2.23E-03 100 4.30 3.91 -0.337 2.45E-07 2.23E-03 10 5.66 5.52 -0.067 2.92E-09 2.32E-03 <			40	4,88	4,70	-0,180	3,48E-08	2,76E-02
80 4.88 4.60 -0.230 4.358 2.88E-02 0 5.61 5.61 0.000 0 0 10 5.61 5.61 0.000 0 0 20 5.61 5.66 0.053 4.4E-08 5.22E-09 4.15E-03 60 5.61 5.23 -0.377 6.34E-09 5.32E-03 60 5.61 5.23 -0.377 6.34E-09 5.32E-03 60 5.61 5.73 -0.477 6.34E-09 5.32E-03 10 4.30 4.32 -0.043 8.77E-09 6.37E-03 10 4.30 4.22 -0.083 1.67E-07 2.31E-01 10 4.30 4.32 -0.203 2.77E-07 2.20E-01 100 4.30 3.21 -0.333 2.54E-07 2.26E-01 100 5.66 5.52 -0.057 2.92E-03 2.32E-07 2.26E-01 100 5.66 5.23 -0.133 3.27E-09			60	4.88	4.65	-0.233	3.70E-08	2.94E-02
100 4.88 4.53 -0.333 4.44E-08 5.351.02 0 5.61 5.61 0.000 0 0 10 5.61 5.66 0.003 -1.22E-09 4.15E-03 0 5.61 5.38 -0.27 4.09E-09 3.25E-03 0 5.01 5.15 -0.466 7.09E-09 5.38E-03 10 4.30 4.30 0.000 0 0 0 4.30 4.10 -0.202 2.91E-07 2.31E-01 0 4.30 3.97 -0.333 2.64E-07 2.20E-01 0 4.30 3.97 -0.333 2.64E-07 2.20E-01 0 5.66 5.56 -0.007 2.22E-01 2.22E-01 2.22E-01 10 5.66 5.55 -0.067 2.22E-01 2.22E-01 2.22E-01 10 5.66 5.52 -0.137 3.27E-09 2.22E-03 2.23E-03 113.CXd 00 5.66 5.04 <td></td> <td></td> <td>80</td> <td>4.88</td> <td>4.60</td> <td>-0.280</td> <td>3.63E-08</td> <td>2.88E-02</td>			80	4.88	4.60	-0.280	3.63E-08	2.88E-02
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			100	4.88	4.53	-0.353	4.44E-08	3.53E-02
i0 561 551 -0.00 522:09 4,151:03 A 40 5,61 5,38 -0.227 4096:09 3,251:03 12. FFcd2 100 5,61 5,15 -0.460 7,096:09 5,321:03 12. FFcd2 100 4,30 4,30 0.000 0 0 0 4,30 4,20 -0.083 1,676:071:02 2,311:01 0 4,30 4,10 -0.200 2,291:07 2,216:01 0 4,30 3,97 -0.330 2,648:07 2,107:01 100 4,30 3,97 -0.330 2,264:07 2,208:01 100 4,30 3,91 -0.487 3,228:07 2,258:07 100 5,66 5,52 -0.137 3,278:09 2,328:03 100 5,66 5,52 -0.137 3,278:09 2,388:03 100 5,66 5,21 -0.447 5,499:09 4,368:03 101 5,05 5,05			0	5.61	5.61	0.000	0	0
A 40 5,61 5,66 0.0033 -1,22:Pe09 -9,70:Fe44 40 5,61 5,33 -0,271 6,34:P0 5,04:Fe403 12. FFed2 100 5,61 5,15 -0,460 7,09E-09 5,64:Fe403 12. FFed2 100 4,30 4,22 -0,0083 1,67E-07 1,33:Fe101 10 4,30 4,02 -0,2383 2,7EE-07 2,21:Fe01 2,21:Fe01 10 4,30 4,02 -0,2383 2,7EE-07 2,20:Fe01 10 4,30 3,91 -0,387 2,52:Fe07 2,20:Fe01 10 5,66 5,59 -0,067 2,92:Fe03 2,25:Fe03 2,25:Fe03 2,25:Fe03 2,25:Fe03 2,28:Fe03 2,			10	5.61	5 51	-0.100	5 22E-09	4 15E-03
A +0 5.61 5.38 -0.227 4.09E.09 5.32E.03 12. FFcd2 100 5.61 5.15 -0.460 7.09E.09 5.63E.03 10 4.30 4.30 0.003 7 -6.34E.09 6.07F.03 10 4.30 4.30 0.000 0 0 0 10 4.30 4.30 0.000 0 0 0 10 4.30 4.10 -0.200 2.27FE.07 2.20Fe.01 0 4.30 3.97 -0.330 2.24FE.07 2.20Fe.01 100 4.30 3.81 -0.487 3.22E.07 2.32FE.03 100 5.66 5.59 -0.067 2.29E.01 2.05FE.01 100 5.66 5.52 -0.137 3.23FE.09 2.32FE.03 101 5.66 5.52 -0.137 3.23FE.01 2.32FE.03 101 5.66 5.54 -0.137 3.23FE.04 2.32FE.03 101 5.66			20	5.61	5,66	0.053	-1 22E-09	-9 70E-04
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Δ	40	5,61	5 38	-0.227	4.09E-09	3 25E-03
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		11	60	5.61	5 23	-0.377	634E-09	5.04E-03
12. FFed ₂ 100 5.61 5.07 -0.543 8.77E-09 6.97E-03 0 4.30 4.30 -0.000 0.0 0 B 20 4.30 4.22 -0.083 1.07E-07 1.33E-01 0 4.30 4.22 -0.083 1.07E-07 1.33E-01 0 4.30 3.07 -0.330 2.24E-07 2.25E-01 60 4.30 3.97 -0.330 2.24E-07 2.25E-01 100 4.30 3.97 -0.330 2.24E-07 2.25E-01 100 4.30 3.81 -0.487 3.22E-07 2.25E-01 100 5.66 5.50 -0.000 0 0 0 100 5.66 5.50 -0.000 0 0 0 5.66 5.50 -0.000 0 0 100 5.66 5.50 -0.000 0 0 100 5.66 5.50 -0.000 0 0 0 5.66 5.238 -0.283 4.13E-09 2.59E-03 100 5.66 5.50 -0.000 0 100 5.66 5.50 -0.000 0 100 5.66 5.50 -0.000 0 100 5.66 5.50 -0.000 0 0 0 13.CXd 100 5.66 5.50 -0.000 0 100 5.66 4.90 -0.760 9.05E-09 4.36E-03 13.CXd 100 5.66 4.90 -0.760 9.05E-09 7.19E-03 10 5.05 5.05 0.000 0 0 0 0 0 13.CXd 100 5.66 4.90 -0.760 9.05E-09 7.19E-03 10 5.05 4.88 -0.13 3.38E-02 3.38E-02 3.38E-08 2.24E-02 10 5.05 4.88 -0.141 1.16E-07 9.21E-02 60 5.05 4.88 -0.141 1.16E-07 9.21E-02 60 5.05 4.88 -0.141 1.16E-07 9.21E-02 100 5.05 4.88 -0.114 1.14E-07 9.21E-02 100 5.05 4.463 -0.420 3.39E-08 2.24E-02 100 5.05 4.463 -0.420 3.39E-08 2.24E-02 100 5.05 4.88 -0.114 1.14E-07 9.21E-02 100 4.49 4.49 -0.00 0 0 100 4.49 4.43 -0.118 1.14E-07 9.21E-02 100 5.05 4.88 -0.118 1.14E-07 9.21E-02 100 4.49 4.43 -0.118 1.14E-07 9.21E-02 100 5.05 4.80 -0.237 1.32E-07 9.08E-02 100 4.49 4.43 -0.118 1.14E-07 9.21E-07 100 5.05 4.80 -0.237 1.32E-07 9.08E-02 100 4.49 4.43 -0.118 1.14E-07 9.21E-07 100 5.05 4.80 -0.23 1.19E-07 1.05E-01 0 4.49 4.41 -0.03 1.32E-07 1.05E-01 100 4.49 4.16 -0.33 1.22E-07 9.08E-02 100 4.49 4.16 -0.33 1.32E-07 1.05E-01 100 4.71 4.21 -0.50 1.73E-07 1.05E-01 100 4.61 4.22 -0.073 1.32E-07 1.05E-01 100 4.61 4.22 -0.073 1.32E-07 1.05E-01 100 4.61 4.22 -0.073 1.32E-07 1.05E-01			80	5,61	5.15	-0.460	7.09E-09	5,64E 05
L. Freig 1.00 4.30 4.30 4.00 0.01 0.01 0.01 0.01 B 10 4.30 4.22 4.00 2.01 2.315-01 40 4.30 4.02 -0.283 2.77E-07 2.315-01 60 4.30 3.91 -0.387 3.254E-07 2.108-01 80 4.30 3.91 -0.387 3.22E-07 2.566-01 100 5.66 5.52 -0.137 3.22E-09 2.32E-03 10 5.66 5.52 -0.137 3.27E-09 2.32E-03 10 5.66 5.21 -0.447 5.49E-09 4.36E-03 10 5.05 5.000 0 0 0 10 5.05 4.99 -0.00 0 0 10 5.05 4.97 -0.083 3.08E-08 2.45E-03 10 5.05 4.97 -0.083 3.08E-08 2.45E-02 10 5.05 4.86 -0.193<	12 FEed		100	5,61	5.07	-0,400	877E-09	6.97E-03
10 4.30 4.22 -0.083 1.6 ^{TE} .07 1.33E-01 B 20 4.30 4.10 -0.200 2.91E-07 2.20E-01 60 4.30 3.97 -0.330 2.04E-07 2.20E-01 100 4.30 3.97 -0.330 2.64E-07 2.20E-01 100 4.30 3.81 -0.487 3.22E-07 2.256-01 100 5.66 5.59 -0.067 2.92E-09 2.32E-03 20 5.66 5.52 -0.137 3.27E-09 2.59E-03 20 5.66 5.91 -0.076 9.92E-09 3.28E-03 60 5.66 5.04 -0.633 3.08E-08 2.45E-02 100 5.05 5.05 0.000 0 0 0 13.CXd 100 5.05 4.89 -0.100 3.08E-08 2.45E-02 13.CXd 100 5.05 4.63 -0.013 3.08E-08 2.45E-02 14.00 5.05	12. 11 cu ₂		100	4 30	4 30	0,000	0,7712-07	0,771-03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			10	4,30	4,50	0,000	1 67E 07	1 33E 01
B 2.0 4.00 4.00 4.00 4.02 4.02.83 2.71F-07 2.20F-01 60 4.30 3.97 -0.330 2.64E-07 2.20F-01 100 4.30 3.81 -0.437 2.54E-07 2.20F-01 100 4.30 3.81 -0.447 3.22E-07 2.56E-01 10 5.66 5.59 -0.067 2.92E-09 2.32F-03 20 5.66 5.52 -0.177 3.27E-09 2.59F-03 20 5.66 5.04 -0.623 7.44E-09 4.36E-03 60 5.05 5.05 0.000 0 0 10 5.05 5.05 0.000 0 0 10 5.05 4.89 -0.160 3.69E-08 2.19E-02 10 5.05 4.89 -0.160 3.69E-08 2.19E-02 10 5.05 4.80 -0.247 2.82E-02 2.19E-02 10 5.05 4.60 0.023		р	10	4,30	4,22	-0,085	1,07E-07	2.21E.01
40 4,30 4,02 -0,233 2,7/14.07 2,205-01 80 4,30 3,91 -0,330 2,54E-07 2,02E-01 100 4,30 3,91 -0,387 2,54E-07 2,02E-01 0 5,56 5,66 0,000 0 0 10 5,56 5,59 -0,067 2,92E-09 2,32E-03 20 5,66 5,52 -0,137 3,27E-09 2,59E-03 60 5,66 5,21 -0,447 5,49E-09 4,38E-03 80 5,66 5,04 -0,623 7,44E-09 5,9E-03 10 5,05 5,05 0,000 0 0 0 5,05 5,05 0,000 0 0 10 5,05 4,80 -0,247 2,82E-08 2,48E-02 10 5,05 4,80 -0,247 2,82E-08 2,18E-02 10 5,05 4,63 -0,429 3,99E-08 3,17E-02 10		Б	20	4,30	4,10	-0,200	2,91E-07	2,31E-01
00 4,30 3,97 -0,387 2,24E-07 2,02E-01 100 4,30 3,81 -0,487 3,22E-07 2,56E-01 0 5,56 5,66 0,000 0 0 0 10 5,66 5,59 -0,067 2,92E-09 2,32E-03 2,32E-03 20 5,66 5,52 -0,137 3,27E-09 2,32E-03 2,32E-03 60 5,66 5,21 -0,447 5,49E-09 4,36E-03 3,04E-08 2,19E-03 0 5,05 5,010 -0,623 7,44E-09 5,91E-03 0 5,05 5,010 -0,603 7,44E-09 5,91E-03 0 5,05 5,05 0,000 0 0 0 2,93E-02 2,94E-02 2,93E-02 2,94E-02 2,94E-02 2,94E-02 2,93E-02 <td></td> <td></td> <td>40</td> <td>4,50</td> <td>4,02</td> <td>-0,285</td> <td>2,77E-07</td> <td>2,20E-01</td>			40	4,50	4,02	-0,285	2,77E-07	2,20E-01
80 4,30 3,31 -0,487 3,22E,07 2,26E,01 0 5,66 5,66 0,000 0 0 20 5,66 5,59 -0,067 2,92E,09 2,32E,03 20 5,66 5,52 -0,137 3,27E,09 2,59E,03 60 5,66 5,21 -0,447 5,49E,09 4,36E,03 60 5,66 5,04 -0,623 7,44E,09 5,91E,03 10 5,05 5,05 0,000 0 0 0 5,05 5,05 0,000 0 0 10 5,05 4,89 -0,160 3,69E,09 2,93E,02 60 5,05 4,89 -0,160 3,69E,08 2,93E,02 60 5,05 4,80 -0,247 2,28E,08 2,24E,02 10 5,05 4,80 -0,247 2,28E,08 2,24E,02 10 5,05 4,80 -0,247 2,28E,08 2,24E,02 10<			80	4,50	5,97	-0,550	2,04E-07	2,10E-01
100 4,30 3,81 -0.047 3,22E407 2,30E-01 0 5,66 5,56 0.000 0 0 0 10 5,66 5,59 -0.007 2,92E-09 2,32E-03 20 5,66 5,52 -0.137 3,27E-09 2,39E-03 60 5,66 5,21 -0.447 5,49E-09 5,91E-03 10 5,66 5,04 -0.623 7,44E-09 5,91E-03 13.CXd 100 5,66 5,05 0.000 0 0 0 13.CXd 100 5,05 4,97 -0.083 3,08E-08 2,48E-02 10 5,05 4,89 -0.160 3,69E-08 2,19E-02 60 5,05 4,80 -0.247 2,28E-08 2,18E-02 100 5,05 4,63 -0.420 3,99E-08 3,17E-02 100 5,05 4,63 -0.233 1,22E-07 9,68E-02 100 4,49 4,31			80	4,30	3,91	-0,387	2,54E-07	2,02E-01
10 5,66 5,59 -0,067 2,92E-09 2,32E-03 20 5,66 5,52 -0,137 3,27E-09 2,59E-03 4 40 5,66 5,52 -0,137 3,27E-09 2,59E-03 60 5,66 5,21 -0,447 5,49E-09 4,36E-03 60 5,66 5,04 -0,623 7,44E-09 5,91E-03 13. CXd 100 5,66 4,90 -0,760 9,05E-09 7,19E-03 0 5,05 0,000 0 0 0 0 0 10 5,05 4,89 -0,160 3,69E-08 2,93E-02 2,05 4,89 -0,160 3,69E-08 2,94E-02 2,05 4,80 -0,247 2,82E-08 2,19E-02 2,05 4,80 -0,247 2,82E-08 2,19E-02 2,05 4,63 -0,247 2,82E-08 2,18E-02 3,9E-08 2,18E-02 3,9E-08 2,18E-02 4,61 4,43 -0,11 1,16E-07 1,14E-01 1,14E			100	4,30	5,81	-0,487	3,22E-07	2,56E-01
10 5.00 5.39 -0.00 2.924-09 2.524-03 A 40 5.66 5.52 -0.137 3.27E-09 3.28E-03 60 5.66 5.21 -0.447 5.49E-09 4.36E-03 80 5.66 5.04 -0.623 7.44E-09 5.91E-03 13. CXd 100 5.05 5.05 0.000 0 0 10 5.05 4.97 -0.083 3.08E-08 2.92E-02 60 5.05 4.89 -0.160 3.69E-08 2.93E-02 60 5.05 4.86 -0.193 2.75E-08 2.24E-02 80 5.05 4.75 -0.297 2.74E-08 2.18E-02 100 5.05 4.63 -0.420 3.99E-08 3.17E-02 100 4.49 4.31 -0.18 1.44E-07 1.14E-01 14.RQo 100 4.49 4.21 -0.23 1.21E-07 9.65E-02 14.RQo 100 4.71			0	5,66	5,66	0,000	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			10	5,66	5,59	-0,067	2,92E-09	2,32E-03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			20	5,66	5,52	-0,137	3,27E-09	2,59E-03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		А	40	5,66	5,38	-0,283	4,13E-09	3,28E-03
80 5.66 5.04 -0.623 77,44E-49 5.91E-03 13.CXd 00 5.05 5.05 0.000 0 0 0 5.05 5.05 0.000 0 0 0 B 20 5.05 4.89 -0.160 3.09E-08 2.93E-02 60 5.05 4.86 -0.193 2.75E-08 2.19E-02 60 5.05 4.75 -0.297 2.74E-08 2.18E-02 100 5.05 4.63 -0.420 3.99E-08 3.17E-02 100 5.05 4.63 -0.420 3.99E-08 3.17E-02 100 4.49 4.31 -0.18 1.44E-07 1.14E-01 10 4.49 4.21 -0.23 1.21E-07 9.66E-02 20 4.49 4.16 -0.33 1.22E-07 9.68E-02 14.RQo 100 4.71 4.71 -0.07 1.32E-07 1.05E-01 14.RQo 100 4.71			60	5,66	5,21	-0,447	5,49E-09	4,36E-03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			80	5,66	5,04	-0,623	7,44E-09	5,91E-03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13. CXd		100	5,66	4,90	-0,760	9,05E-09	7,19E-03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0	5,05	5,05	0,000	0	0
B 20 5.05 4.89 -0.160 3.69E-08 2.93E-02 40 5.05 4.80 -0.247 2.82E-08 2.19E-02 80 5.05 4.80 -0.247 2.82E-08 2.24E-02 80 5.05 4.63 -0.247 2.82E-08 2.24E-02 100 5.05 4.63 -0.240 3.99E-08 3.17E-02 0 4.49 4.49 0.00 0 0 0 10 4.49 4.38 -0.11 1.16E-07 9.21E-02 60 4.49 4.26 -0.23 1.21E-07 9.65E-02 60 4.49 4.16 -0.33 1.22E-07 9.68E-02 14.RQo 100 4.71 4.71 0.00 0 0 0 14.RQo 100 4.71 4.52 -0.12 1.27E-07 1.015E-01 B 20 4.71 4.52 -0.13 1.22E-01 1.03E-01 1.05E-01 1.03E-01			10	5,05	4,97	-0,083	3,08E-08	2,45E-02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		В	20	5,05	4,89	-0,160	3,69E-08	2,93E-02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			40	5,05	4,86	-0,193	2,75E-08	2,19E-02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			60	5,05	4,80	-0,247	2,82E-08	2,24E-02
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			80	5,05	4,75	-0,297	2,74E-08	2,18E-02
0 4,49 4,49 0,00 0 0 10 4,49 4,38 -0,11 1,16E-07 9,21E-02 20 4,49 4,31 -0,18 1,44E-07 1,14E-01 A 40 4,49 4,26 -0,23 1,21E-07 9,65E-02 60 4,49 4,16 -0,33 1,22E-07 9,68E-02 10 4,49 4,12 -0,37 1,32E-07 1,05E-01 0 4,71 4,71 0,00 0 0 10 4,71 4,59 -0,12 1,27E-07 1,05E-01 B 20 4,71 4,59 -0,12 1,27E-07 1,05E-01 60 4,71 4,43 -0,30 1,54E-07 1,22E-01 60 1,54E-07 1,22E-01 1,05E-01 100 4,71 4,31 -0,40 1,34E-07 1,05E-01 1,05E-01 20 5,40 5,27 -0,133 1,32E-08 9,71E-03			100	5,05	4,63	-0,420	3,99E-08	3,17E-02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	4,49	4,49	0,00	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			10	4,49	4,38	-0,11	1,16E-07	9,21E-02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			20	4,49	4,31	-0,18	1,44E-07	1,14E-01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		А	40	4,49	4,26	-0,23	1,21E-07	9,65E-02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			60	4,49	4,21	-0,28	1,19E-07	9,46E-02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			80	4,49	4,16	-0,33	1,22E-07	9,68E-02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14. RQo		100	4,49	4,12	-0,37	1,32E-07	1,05E-01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	4,71	4,71	0,00	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			10	4,71	4,59	-0,12	1,27E-07	1,01E-01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		В	20	4,71	4,52	-0,19	1,33E-07	1,05E-01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			40	4,71	4,41	-0,30	1,54E-07	1,22E-01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			60	4,71	4,38	-0,33	1,29E-07	1,03E-01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			80	4,71	4,31	-0,40	1,34E-07	1,06E-01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			100	4,71	4,21	-0,50	1,73E-07	1,38E-01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	5,40	5,40	0,000	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			10	5,40	5,27	-0,133	1,22E-08	9,71E-03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			20	5,40	5,17	-0,233	1,32E-08	1,05E-02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		А	40	5,40	5,07	-0,327	1,18E-08	9,41E-03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			60	5,40	5,02	-0,383	1,14E-08	9,04E-03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			80	5,40	4,97	-0,430	1,16E-08	9,21E-03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15. LVAd		100	5,4	4,93	-0,467	1,18E-08	9,39E-03
10 4,61 4,32 0,037 3,02E-07 2,40E-01 B 20 4,61 4,23 -0,010 2,64E-07 2,10E-01 40 4,61 4,20 -0,023 1,99E-07 1,58E-01 60 4,61 4,15 -0,023 1,85E-07 1,47E-01 80 4,61 4,09 -0,037 1,86E-07 1,48E-01 100 4,61 4,04 -0,060 1,89E-07 1,50E-01			0	4,61	4,42	0,000	0	0
B 20 4,61 4,23 -0,010 2,64E-07 2,10E-01 40 4,61 4,20 -0,023 1,99E-07 1,58E-01 60 4,61 4,15 -0,023 1,85E-07 1,47E-01 80 4,61 4,09 -0,037 1,86E-07 1,48E-01 100 4,61 4,04 -0,060 1,89E-07 1,50E-01			10	4,61	4,32	0,037	3,02E-07	2,40E-01
404,614,20-0,0231,99E-071,58E-01604,614,15-0,0231,85E-071,47E-01804,614,09-0,0371,86E-071,48E-011004,614,04-0,0601,89E-071,50E-01		В	20	4,61	4,23	-0,010	2,64E-07	2,10E-01
604,614,15-0,0231,85E-071,47E-01804,614,09-0,0371,86E-071,48E-011004,614,04-0,0601,89E-071,50E-01			40	4,61	4,20	-0,023	1,99E-07	1,58E-01
80 4,61 4,09 -0,037 1,86E-07 1,48E-01 100 4,61 4,04 -0,060 1,89E-07 1,50E-01			60	4,61	4,15	-0,023	1,85E-07	1,47E-01
100 4,61 4,04 -0,060 1,89E-07 1,50E-01			80	4,61	4,09	-0,037	1,86E-07	1,48E-01
			100	4,61	4,04	-0,060	1,89E-07	1,50E-01

Tabela 6. Concentração, pH antes e após adsorção e número de íons H⁺ liberados na adsorção de cobre nos solos

Solo	Horiz.	Conc. (µg mL ⁻¹)	pH antes adsorção	pH _m após adsorção ⁽¹⁾	Diferença ⁽²⁾	μ molH ⁺ /g	nH^{+}/nPb
		0	5,10	5,10	0,00	0	0
		10	5,10	5,00	-0,10	1,73E-08	0,0448
		20	5,10	4,90	-0,20	1,93E-08	0,0499
	А	40	5,10	4,78	-0,32	1,77E-08	0,0460
		60	5,10	4,70	-0,40	1,68E-08	0,0436
		80	5,10	4,65	-0,45	1,56E-08	0,0404
1. PVA		100	5,10	4,61	-0,49	1,51E-08	0,0391
		120	5,10	4,57	-0,53	1,60E-08	0,0413
		0	5,37	5,37	0,00	0	0
	В	10	5,37	5,27	-0,10	9,06E-09	0,0235
		20	5,37	5,19	-0,18	9,46E-09	0,0245
		40	5,37	5,07	-0,30	9,63E-09	0,0250
		60	5,37	4,99	-0,38	9,18E-09	0,0238
		80	5,37	4,94	-0,43	8,73E-09	0,0226
		100	5,37	4,90	-0,47	8,62E-09	0,0223
		120	5,37	4,82	-0,55	9,78E-09	0,0253
		0	5,50	5,50	0,00	0	0
		10	5,50	5,36	-0,14	1,02E-08	0,0264
	•	20	5,50	5,23	-0,27	1,1/E-08	0,0302
	А	40	5,50	5,12	-0,38	9,04E-09	0,0250
		80	5,50	3,04	-0,40	0,49E-09	0,0220
2 1 1/4		80 100	5,50	4,92	-0,38	9,03E-09	0,0255
2. LVA		120	5,50	4,03	-0,05	1,02E-08	0,0205
		0	5,50	5 27	-0,70	1,221-08	0,0315
	в	10	5,27	5.13	0,00	181E08	0.0468
	D	20	5,27	5.05	-0,14	1,61E-08	0,0408
		40	5,27	4 95	-0.32	1,57E 00	0.0397
		40 60	5 27	4 84	-0.43	1,55E-08	0.0433
		80	5,27	4 75	-0.52	1,87E-08	0.0486
		100	5.27	4.68	-0.59	2.05E-08	0.0531
		120	5.27	4.59	-0.68	2.31E-08	0.0597
		0	5.10	4.98	0.00	0	0
		10	5,10	4,86	-0,12	2,71E-08	0,0702
		20	5.10	4.80	-0.18	2.22E-08	0.0574
	А	40	5,10	4,74	-0,24	1,59E-08	0,0413
		60	5,10	4,68	-0,30	1,49E-08	0,0385
		80	5,10	4,64	-0,34	1,34E-08	0,0346
3. LVd		100	5,10	4,61	-0,37	1,28E-08	0,0333
		120	5,10	4,56	-0,42	1,31E-08	0,0341
		0	5,37	5,10	0,00	0	0
	В	10	5,37	5,06	-0,04	6,78E-09	0,0176
		20	5,37	4,98	-0,12	1,04E-08	0,0269
		40	5,37	4,88	-0,22	1,09E-08	0,0282
		60	5,37	4,79	-0,31	1,21E-08	0,0314
		80	5,37	4,71	-0,39	1,31E-08	0,0338
		100	5,37	4,64	-0,46	1,52E-08	0,0393
		120	5,37	4,57	-0,53	2,17E-08	0,0563
		0	5,24	5,24	0,00	0	0
		10	5,24	5,19	-0,05	5,83E-09	0,0151
		20	5,24	5,15	-0,11	0,70E-09	0,01/4
	А	40 60	5,24 5,24	5,05	-0,19	1,37E-09	0,0191
		80	5,24 5,24	3,01	-0,25	0,30E-09 5 80E 00	0,0105
4 1 1 1 4 4		100	5.24	4,20	-0,20	672E-09	0.0155
т. сула		120	5.24	4,92	-0,32	7 42E-09	0.0174
		0	5,24	4,07	-0,37	0	0,0192
	R	10	6.22	5 92	-0.30	7 56F-09	0.0196
	Б	20	6.22	5,52	-0,50	1 12F-08	0.0289
		40	6.22	5 54	-0.68	1.04F-08	0,0269
		60	6.22	5.42	-0.80	1.45E-08	0.0375
		80	6 22	5 40	-0.82	1.10E-08	0.0284
		100	6.22	5,35	-0.87	1.52E-08	0 0394
		120	6.22	5.29	-0.93	9.84E-09	0.0255
		120	0,22	5,47	0,75	7,012.07	0,0200

Tabela 7. Concentração adicionada, pH antes e após adsorção e número de íons H⁺ liberados na adsorção de chumbo nos solos

Solo	Horiz.	Conc. (µg mL ⁻¹)	pH antes adsorção	pH _m após adsorção ⁽¹⁾	Diferença ⁽²⁾	$\mu molH^+/g$	nH^{+}/nPb
		0	5,31	5,31	0,00	0	0
		10	5,31	5,27	-0,04	3,81E-09	0,00986
		20	5,31	5,21	-0,10	5,16E-09	0,01337
		40	5,31	5,13	-0,18	5,36E-09	0,01389
	А	60	5,31	5,00	-0,31	7,23E-09	0,01872
		80	5,31	4,96	-0,35	6,76E-09	0,01751
6 T.Y.		100	5,31	4,92	-0,39	6,65E-09	0,01721
5. LVj		120	5,51	4,83	-0,48	7,75E-09	0,02007
		0	5,81	5,81	0,00	0 1 20E 00	0 00227
	D	10	5,81	5,11	-0,04	1,50E-09	0,00537
	Б	20	5.81	5,07	-0,14	2,30E-09	0,00595
		40	5.81	5,50	-0,21	1,96E-09	0,00514
		80	5.81	5 40	-0.41	2.48F-09	0,00507
		100	5.81	5 28	-0.53	3,06E-09	0,00041
		120	5,81	5,20	-0.60	3.19E-09	0.00827
		0	6.17	6.17	0.00	0	0
		10	6.17	6.09	-0.08	1.04E-09	0.0027
		20	6,17	6,00	-0,17	1,33E-09	0,0034
	А	40	6,17	5,86	-0,31	1,39E-09	0,0036
		60	6,17	5,69	-0,48	1,83E-09	0,0047
		80	6,17	5,28	-0,89	4,61E-09	0,0119
6. LVef		100	6,17	5,09	-1,08	6,09E-09	0,0158
		120	6,17	4,85	-1,32	9,22E-09	0,0239
		0	5,44	5,44	0,00	0	0
	В	10	5,44	5,35	-0,09	6,79E-09	0,0176
		20	5,44	5,23	-0,21	9,09E-09	0,0235
		40	5,44	5,12	-0,32	8,27E-09	0,0214
		60	5,44	5,01	-0,43	8,62E-09	0,0223
		80	5,44	4,90	-0,54	9,78E-09	0,0253
		100	5,44	4,70	-0,74	1,45E-08	0,0376
		120	5,44	4,52	-0,92	1,97E-08	0,0511
		0	0,13 6 12	0,15	0,00	0 9 8 E 10	0 0026
		10	6.13	0,00 5.96	-0,07	9,00E-10 1 30E 00	0,0020
	Δ	20 40	6.13	5.85	-0.28	1,39E-09	0,0035
	А	4 0 60	6.13	5,67	-0,28	1,90F-09	0,0033
		80	6.13	5.61	-0.52	1.83E-09	0.0047
7. TCp		100	6.13	5.49	-0.64	2.23E-09	0.0058
·····P		120	6,13	5,41	-0,72	2,30E-09	0,0059
		0	6,02	6,10	0,00	0	0
	В	10	6,02	5,95	-0,15	2,56E-09	0,0066
		20	6,02	5,85	-0,25	2,49E-09	0,0064
		40	6,02	5,74	-0,36	2,12E-09	0,0055
		60	6,02	5,66	-0,44	1,98E-09	0,0051
		80	6,02	5,58	-0,52	2,07E-09	0,0053
		100	6,02	5,51	-0,59	2,22E-09	0,0057
		120	6,02	5,44	-0,66	2,43E-09	0,0063
		0	7,16	7,16	0,00	#DIV/0!	#DIV/0!
		10	7,16	7,05	-0,11	1,54E-10	0,000399
	•	20	7,16	6,96	-0,20	1,62E-10	0,000419
	A	40	7,10	6,80	-0,50	1,36E-10	0,000338
8 MT ^L		80	7,10 7,16	0,77	-0,39	1,55E-10 1/1E 10	0,000345
0. WIIK		100	7,10	6 50	-0,40	1,410-10 1 55E-10	0,000303
		120	7,10	6 52	-0,57	1,55E-10	0.000402
		0	7.46	7.46	0.00	#DIV/01	#DIV/0!
	В	10	7,46	7.33	-0.13	9.39E-11	0.000243
	2	20	7.46	7,17	-0.29	1.34E-10	0.000347
		40	7,46	7,09	-0,37	9,26E-11	0,000240
		60	7,46	7,00	-0,46	8,80E-11	0,000228
		80	7,46	6,90	-0,56	9,79E-11	0,000254
		100	7,46	6,81	-0,65	1,08E-10	0,000280
		120	7,46	6,68	-0,78	1,37E-10	0,000355

Tabela 8. Concentração adicionada, pH antes e após adsorção e número de íons H⁺ liberados na adsorção de chumbo nos solos

Solo	Horiz.	Conc. (µg mL ⁻¹)	pH antes adsorção	pH _m após adsorção ⁽¹⁾	Diferença ⁽²⁾	μ mol H^+/g	nH^{+}/nPb
		0	7,52	7,52	0,00	0	0
		10	7,52	7,49	-0,03	1,93E-11	5,00E-05
		20	7,52	7,44	-0,08	2,56E-11	6,63E-05
	А	40	7,52	7,38	-0,14	2,25E-11	5,82E-05
		60	7,52	7,33	-0,19	2,23E-11	5,78E-05
0 CVh		80	7,52	7,28	-0,24	2,30E-11	5,97E-05
9. CXbe		100	7,52	7,24	-0,28	2,2/E-11	5,87E-05
		120	7,52	7,22	-0,50	2,10E-11	5,00E-05
	в	10	6.91	6.88	0,00	6 27E 11	1.62E.04
	Б	10	6.91	6.86	-0,03	6.40E.11	1,02E-04
		20	6.91	6.82	-0,03	6.78E-11	1,00E-04
		40	6.91	6.73	-0,09	$1.30E_{-10}$	1,70E-04
		80	6.91	6.64	-0.27	2 53E-10	5,50E-04
		100	6.91	6.58	-0.33	2,55E-10 2.64E-10	6.84E-04
		120	6.91	6 51	-0,55	2,04E-10 3.09E-10	8.00F-04
		0	4 93	4.93	0,40	0	0,00£ 04
		10	4 93	4,99	-0.13	3 42E-08	8 85E-02
		20	4 93	4 72	-0.21	3 35E-08	8,69E-02
	А	40 40	4.93	4.66	-0.27	2.52E-08	6.53E-02
		60	4.93	4.56	-0.37	2,87E-08	7.43E-02
		80	4.93	4.50	-0.43	2,82E-08	7.31E-02
10. CXbd		100	4.93	4.40	-0.53	3.57E-08	9.24E-02
		120	4.93	4.30	-0.27	2.43E-08	6.30E-02
		0	5.20	5.20	0.00	0	0
	В	10	5.20	4.99	-0.21	3.53E-08	0.0915
		20	5,20	4,89	-0,31	3,45E-08	0,0894
		40	5,20	4,84	-0,36	2,35E-08	0,0609
		60	5,20	4,79	-0,41	2,17E-08	0,0562
		80	5,20	4,70	-0,50	2,51E-08	0,0651
		100	5,20	4,60	-0,60	2,92E-08	0,0757
		120	5,20	4,51	-0,69	3,76E-08	0,0975
		0	5,45	5,45	0,00	0	0
		10	5,45	5,37	-0,08	5,50E-09	0,01423
		20	5,45	5,30	-0,15	5,76E-09	0,01491
	А	40	5,45	5,23	-0,22	4,68E-09	0,01213
		60	5,45	5,17	-0,28	4,41E-09	0,01142
		80	5,45	5,04	-0,41	5,87E-09	0,01522
11. $FFcd_1$		100	5,45	4,97	-0,48	6,13E-09	0,01586
		120	5,45	4,87	-0,58	7,16E-09	0,01854
		0	4,88	4,88	0,00	0	0
	В	10	4,88	4,84	-0,04	1,21E-08	0,03140
		20	4,88	4,80	-0,08	1,39E-08	0,03603
		40	4,88	4,77	-0,11	1,11E-08	0,02885
		60	4,88	4,74	-0,14	1,06E-08	0,02735
		80	4,88	4,71	-0,17	1,0/E-08	0,02765
		100	4,88	4,68	-0,20	1,14E-08	0,02954
		120	4,88	4,64	-0,24	1,32E-08	0,03430
		0	5,61 5,61	5,61	0,00	U 2 50E 00	0.00647
		10	5,01	5,50	-0,05	2,50E-09	0,00647
	٨	20	3,01 5 6 1	3,32 5.40	-0,09	2,32E-09	0,00002
	А	40	2,01 5,61	5,49	-0,12	1,/3E-09 1,82E-00	0,00449
		00	5,01	5,45	-0,10	1,02E-09	0,00470
12 FEed		00 100	5,01	5,30	-0,25	1,07E-09 2 05E 00	0,00490
12. 11°Cu ₂		100	5,01	5,52	-0,29	2,00E-09 2,22E-09	0.00576
		120	4 30	4 30	0,04	0	0,00570
	R	10	4 30	4.26	-0.04	5 48F-08	0 14201
	D	20	4 30	4 22	-0,04	5.87F-08	0 15205
		20 40	4 30	4 19	-0 11	4 58F-08	0.11869
		60	4 30	4 16	-0.14	4 74F-08	0 12266
		80	4.30	4,13	-0.17	4.76E-08	0.12331
		100	4.30	4.08	-0.22	5.37E-08	0.13902
		120	4,30	4,03	-0,27	6,46E-08	0,16724

Tabela 9. Concentração, pH antes e após adsorção e número de íons H⁺ liberados na adsorção de chumbo nos solos

Solo	Horiz.	Conc. (µg mL ⁻¹)	pH antes adsorção	pH _m após adsorção ⁽¹⁾	Diferença ⁽²⁾	μ molH ⁺ /g	nH^+/nPb
		0	5,66	5,66	0,00	0	0
		10	5,66	5,62	-0,04	1,84E-09	0,00477
		20	5,66	5,58	-0,08	1,77E-09	0,00459
	А	40	5,66	5,55	-0,11	1,22E-09	0,00317
		60	5,66	5,50	-0,16	1,27E-09	0,00330
		80	5,66	5,45	-0,21	1,34E-09	0,00348
13. CXd		100	5,66	5,42	-0,24	1,30E-09	0,00337
		120	5,66	5,38	-0,28	1,31E-09	0,00340
		0	5,05	5,05	0,00	0	0
	В	10	5,05	5,01	-0,04	7,40E-09	0,01917
		20	5,05	4,97	-0,08	1,02E-08	0,02631
		40	5,05	4,93	-0,12	8,80E-09	0,02279
		60	5,05	4,89	-0,16	8,96E-09	0,02320
		80	5,05	4,86	-0,19	9,13E-09	0,02365
		100	5,05	4,83	-0,22	9,05E-09	0,02344
		120	5,05	4,79	-0,26	9,79E-09	0,02535
		0	4,49	4,49	0,00	0	0
		10	4,49	4,44	-0,05	4,60E-08	1,19E-01
		20	4,49	4,39	-0,10	5,17E-08	1,34E-01
	А	40	4,49	4,35	-0,14	4,42E-08	1,14E-01
		60	4,49	4,31	-0,18	4,42E-08	1,14E-01
		80	4,49	4,27	-0,22	4,88E-08	1,26E-01
14. RQo		100	4,49	4,23	-0,26	5,13E-08	1,33E-01
		120	4,49	4,19	-0,30	5,36E-08	1,39E-01
		0	4,71	4,71	0,00	0	0
	В	10	4,71	4,66	-0,05	4,33E-08	0,11210
		20	4,71	4,61	-0,10	5,00E-08	0,12952
		40	4,71	4,57	-0,14	3,94E-08	0,10199
		60	4,71	4,53	-0,18	3,91E-08	0,10127
		80	4,71	4,49	-0,22	4,18E-08	0,10837
		100	4,71	4,44	-0,27	4,60E-08	0,11903
		120	4,71	4,39	-0,32	4,83E-08	0,12506
		0	5,40	5,40	0,00	0	0
		10	5,40	5,29	-0,11	9,32E-09	0,0242
		20	5,40	5,23	-0,17	7,85E-09	0,0203
	А	40	5,40	5,16	-0,24	6,36E-09	0,0165
		60	5,40	5,10	-0,30	5,81E-09	0,0150
15. RQo		80	5,40	5,05	-0,35	5,50E-09	0,0143
		100	5,40	5,00	-0,40	5,43E-09	0,0141
		120	5,40	4,95	-0,45	5,59E-09	0,0145
		0	4,61	4,61	0,00	0	0
	В	10	4,61	4,55	-0,06	3,71E-08	0,0961
		20	4,61	4,51	-0,10	3,75E-08	0,0971
		40	4,61	4,46	-0,15	3,23E-08	0,0836
		60	4,61	4,44	-0,17	2,86E-08	0,0740
		80	4,61	4,41	-0,20	2,85E-08	0,0739
		100	4,61	4,37	-0,24	2,97E-08	0,0769
		120	4,61	4,32	-0,29	3,42E-08	0,0886

Tabela 10. Concentração, pH antes e após adsorção e número de íons H^+ liberados na adsorção de chumbo nos solos

Solo	Horiz.	Conc. (µg mL ⁻¹)	pH antes adsorção	pH _m após adsorção ⁽¹⁾	Diferença ⁽²⁾	μ molH ⁺ /g	nH ⁺ /nZn
		0	5,10	5,10	0,00	0	0
		10	5,10	4,99	-0,11	3,61E-08	0,0295
		20	5,10	4,95	-0,15	2,42E-08	0,0198
	А	30	5,10	4,91	-0,19	2,16E-08	0,0177
		35	5,10	4,85	-0,25	2,63E-08	0,0215
1 PVA		40	5,10	4,81	-0,29	2,84E-08	0,0232
1.1 171		0	5.37	5.37	0.00	0	0
		10	5.37	5,19	-0.18	3.65E-08	0.0298
	В	20	5.37	5.08	-0.29	3.51E-08	0.0287
	_	30	5.37	5.03	-0.34	2.70E-08	0.0220
		35	5.37	5.00	-0.37	2.51E-08	0.0205
		40	5.37	4.92	-0.45	2.84E-08	0.0232
		0	5.50	5,50	0.00	0	0
		10	5,50	5.41	-0.09	8.01E-09	0.0065
		20	5,50	5.36	-0.14	6.68E-09	0.0055
	А	30	5,50	5,29	-0,21	7,94E-09	0,0065
		35	5,50	5,24	-0,26	9,45E-09	0,0077
		40	5,50	5,19	-0,31	1,09E-08	0,0089
2. LVA							
		0	5,27	5,27	0,00	0	0
		10	5,27	5,17	-0,10	2,60E-08	0,0212
	В	20	5,27	5,07	-0,20	3,12E-08	0,0255
		30	5,27	5,02	-0,25	2,76E-08	0,0226
		35	5,27	4,96	-0,31	2,73E-08	0,0223
		40	5,27	4,93	-0,34	2,95E-08	0,0241
		0	4,98	4,98	0,00	0	0
		10	4,98	4,91	-0,07	3,76E-08	0,0307
		20	4,98	4,86	-0,12	3,25E-08	0,0266
	А	30	4,98	4,83	-0,15	3,27E-08	0,0267
		35	4,98	4,79	-0,19	4,22E-08	0,0345
		40	4,98	4,75	-0,23	4,01E-08	0,0328
3. LVd			5,10	5,10	0,00		
		0				0	0
		10	5,10	5,01	-0,09	2,80E-08	0,0228
	В	20	5,10	4,96	-0,14	2,78E-08	0,0227
		30	5,10	4,90	-0,20	2,91E-08	0,0237
		35	5,10	4,85	-0,25	3,40E-08	0,0278
		40	5,10	4,85	-0,25	2,99E-08	0,0244
		0	5,24	5,24	0,00	0	0
		10	5,24	5,19	-0,05	1,69E-08	0,0138
		20	5,24	5,16	-0,08	1,31E-08	0,0107
	А	30	5,24	5,11	-0,13	1,88E-08	0,0154
		35	5,24	5,08	-0,16	1,95E-08	0,0159
4. LVAd		40	5,24	5,03	-0,21	1,98E-08	0,0162
		0	6,22	6,22	0,00	0	0
		10	6,22	6,13	-0,09	1,59E-09	0,0013
	В	20	6,22	5,99	-0,23	2,85E-09	0,0023
		30	6,22	5,92	-0,30	2,95E-09	0,0024
		35	6,22	5,89	-0,33	3,05E-09	0,0025
		40	6,22	5,84	-0,38	3,14E-09	0,0026
		0	5,31	5,31	0,00	0	0
		10	5,31	5,25	-0,06	1,25E-08	0,01024
		20	5,31	5,19	-0,12	1,35E-08	0,01100
	А	30	5,31	5,15	-0,16	1,40E-08	0,01144
		35	5,31	5,12	-0,19	1,49E-08	0,01216
		40	5,31	5,09	-0,22	1,64E-08	0,01338
5. LVj							
		0	5,81	5,81	0,00	0	0
		10	5,81	5,73	-0,08	3,17E-09	0,00259
	В	20	5,81	5,66	-0,15	3,94E-09	0,00322
		30	5,81	5,59	-0,22	4,32E-09	0,00353
		35	5,81	5,48	-0,33	5,84E-09	0,00477
		40	5,81	5,43	-0,38	6,81E-09	0,00557

Tabela 11. Concentração adicionada, pH antes e após adsorção e número de íons H⁺ liberados na adsorção de zinco nos solos

Solo	Horiz.	Conc. (µg mL ⁻¹)	pH antes adsorção	pH _m após adsorção ⁽¹⁾	Diferença ⁽²⁾	µmolH ⁺ /g	nH^+/nZn
		0	6,17	6,17	0,00	0	0
		10	6,17	6,06	-0,11	2,08E-09	0,00170
		20	6,17	5,99	-0,18	1,87E-09	0,00153
	А	30	6,17	5,96	-0,21	1,62E-09	0,00133
		35	6,17	5,91	-0,26	1,87E-09	0,00153
(I V-f		40	6,17	5,83	-0,34	2,44E-09	0,00199
0. Lvei		0	5,44	5,44	0,00	0	0
		10	5,44	5,38	-0,06	7,35E-09	0,00601
	В	20	5,44	5,31	-0,13	8,40E-09	0,00687
		30	5,44	5,24	-0,20	9,83E-09	0,00804
		35	5,44	5,17	-0,27	1,28E-08	0,01050
		40	5,44	5,08	-0,36	1,70E-08	0,01392
		0	6,13	6,13	0,00	0	0
		10	6,13	6,04	-0,09	1,79E-09	0,0015
		20	6,13	6,00	-0,13	1,49E-09	0,0012
	А	30	6,13	5,94	-0,19	1,71E-09	0,0014
		35	6,13	5,90	-0,23	1,87E-09	0,0015
		40	6,13	5,80	-0,33	2,78E-09	0,0023
7. TCp							
		0	6,02	6,02	0,00	0	0
		10	6,02	5,80	-0,22	7,01E-09	0,0057
	В	20	6,02	5,72	-0,30	6,03E-09	0,0049
		30	6,02	5,67	-0,35	5,13E-09	0,0042
		35	6,02	5,60	-0,42	5,97E-09	0,0049
		40	6,02	5,54	-0,48	6,81E-09	0,0056
		0	7,16	7,16	0,00	0	0
		10	7,16	7,08	-0,08	1,18E-10	9,63E-05
		20	7,16	7,01	-0,15	1,16E-10	9,46E-05
	А	30	7,16	6,95	-0,21	1,19E-10	9,75E-05
		35	7.16	6.89	-0.27	1.42E-10	1.16E-04
8. MTk		40	7,16	6,82	-0,34	1,72E-10	1,41E-04
		0	7,46	7,46	0,00	0	0
		10	7,46	7,45	-0,01	8,72E-12	7,13E-06
	В	20	7,46	7,36	-0,10	3,80E-11	3,10E-05
		30	7,46	7,27	-0,19	5,20E-11	4,25E-05
		35	7,46	7,25	-0,21	5,24E-11	4,28E-05
		40	7,46	7,18	-0,28	6,68E-11	5,46E-05
		0	7,52	7,52	0,00	0	0
		10	7,52	7,43	-0,09	5,79E-11	4,74E-05
		20	7,52	7,39	-0,13	4,34E-11	3,55E-05
	А	30	7.52	7.31	-0.21	5.01E-11	4.10E-05
		35	7,52	7,26	-0,26	5,57E-11	4,55E-05
		40	7,52	7,22	-0,30	5,93E-11	4,85E-05
9. CXbe				,	,	·	
		0	6,91	6,91	0,00	0	0
		10	6,91	6,87	-0,04	8,74E-11	7,14E-05
	В	20	6,91	6,76	-0,15	2,02E-10	1,65E-04
		30	6,91	6,60	-0,31	3,62E-10	2,96E-04
		35	6,91	6,56	-0,35	3,64E-10	2,98E-04
		40	6,91	6,49	-0,42	4,23E-10	3,46E-04
		0	4,93	4,93	0,00	0	0
		10	4,93	4,85	-0,08	6,30E-08	5,15E-02
		20	4,93	4,81	-0,12	5,67E-08	4,63E-02
	А	30	4,93	4,77	-0,16	5,21E-08	4,26E-02
		35	4,93	4,74	-0,19	5,71E-08	4,67E-02
		40	4,93	4,62	-0,31	1,01E-07	8,25E-02
10. CXbd			-				
		0	5,20	5,20	0,00	0	0
		10	5,20	5,14	-0,06	2,58E-08	0,0211
	В	20	5,20	5,11	-0,09	2,21E-08	0,0181
		30	5,20	5,07	-0,13	2,33E-08	0,0190
		35	5,20	5,04	-0,16	2,74E-08	0.0224
		40	5,20	5,01	-0,19	2,95E-08	0,0241

Tabela 12. Concentração, pH antes e após adsorção e número de íons H⁺ liberados na adsorção de zinco nos solos

Solo	Horiz.	Conc. (µg mL ⁻¹)	pH antes adsorção	pH _m após adsorção ⁽¹⁾	Diferença ⁽²⁾	μ molH ⁺ /g	nH^+/nZn
		0	5,45	5,45	0,00	0	0
		10	5,45	5,40	-0,05	7,12E-09	0,0058
		20	5,45	5,33	-0,12	8,82E-09	0,0072
	А	30	5,45	5,29	-0,16	8,41E-09	0,0069
11. FFcd ₁		35	5,45	5,25	-0,20	9,89E-09	0,0081
		40	5,45	5,21	-0,24	1,1/E-08	0,0096
		0	1 00	1 99	0.00	0	0
		10	4,00	4,00	0,00	4.62E.08	0 0377
	в	20	4,88	4,82	-0,00	4,02E-08	0,0577
	Б	30	4,88	4.63	-0.25	9.26E-08	0,0055
		35	4 88	4,03	-0.30	1,00E-07	0.0819
		40	4.88	4.49	-0.39	1.35E-07	0.1104
		0	5.61	5.61	0.00	0	0
		10	5.61	5,55	-0.06	3.73E-09	0.0031
		20	5.61	5.52	-0.09	3.45E-09	0.0028
	А	30	5,61	5,47	-0,14	3,84E-09	0,0031
		35	5,61	5,43	-0,18	4,50E-09	0,0037
		40	5,61	5,38	-0,23	5,32E-09	0,0044
12. FFcd ₂							
		0	4,30	4,30	0,00	0	0
		10	4,30	4,25	-0,05	1,30E-07	0,1061
	В	20	4,30	4,19	-0,11	1,73E-07	0,1415
		30	4,30	4,14	-0,16	2,01E-07	0,1641
		35	4,30	4,10	-0,20	2,41E-07	0,1967
		40	4,30	4,01	-0,29	3,52E-07	0,2879
		0	5,66	5,66	0,00	0	0
		10	5,66	5,63	-0,03	1,25E-09	0,0010
		20	5,66	5,58	-0,08	1,95E-09	0,0016
	А	30	5,66	5,53	-0,13	2,27E-09	0,0019
		35	5,66	5,50	-0,16	2,73E-09	0,0022
12 011		40	5,66	5,40	-0,26	4,30E-09	0,0035
13. CXd		0	5.05	5.05	0.00	0	0
		0	5,05	5,05	0,00	U 1.01E.09	0 0082
	р	10	5,05	5,02	-0,05	1,01E-08	0,0085
	D	20	5,05	4,98	-0,07	1,36E-06	0,0129
		30	5,05	4,94	-0,11	2 88E 08	0,0141
		40	5,05	4,30	-0.31	2,00E-00 4 71E-08	0,0235
		0	4 49	4 49	0.00	0	0,0505
		10	4 49	4 4 5	-0.04	9 89E-08	8 08E-02
		20	4.49	4.42	-0.07	1.08E-07	8.82E-02
	А	30	4.49	4.37	-0.12	1.29E-07	1.06E-01
		35	4,49	4,33	-0,16	1,70E-07	1,39E-01
		40	4,49	4,29	-0,20	2,07E-07	1,69E-01
14. RQo							
	В	0	4,71	4,71	0,00	0	0
		10	4,71	4,67	-0,04	1,05E-07	0,0861
		20	4,71	4,64	-0,07	9,61E-08	0,0786
		30	4,71	4,60	-0,11	1,01E-07	0,0829
		35	4,71	4,56	-0,15	1,34E-07	0,1099
		40	4,71	4,47	-0,24	2,60E-07	0,2125
15 1 1/4 4		0	5,40	5,40	0,00	0	0
		10	5,40	5,33	-0,07	1,26E-08	0,0103
		20	5,40	5,30	-0,10	1,03E-08	0,0084
	А	30	5,40	5,26	-0,14	1,10E-08	0,0090
		35	5,40	5,24	-0,16	1,20E-08	0,0098
		40	5,40	5,19	-0,21	1,48E-08	0,0121
13. LVA0		0	1.61	1.61	0.00	0	0
	В	U 10	4,01	4,01	0,00	5 26E 09	0.0420
		20	4,01	4,50	-0,05	5,2012-08	0.0450
		30	4.61	4 52	-0.09	7 14F-08	0.0583
		35	4.61	4.48	-0.13	9.21E-08	0.0753
		40	4,61	4,43	-0,18	1,33E-07	0,1084

Tabela 13. Concentração, pH antes e após adsorção e número de íons H⁺ liberados na adsorção de zinco nos solos

CAPÍTULO II Extração Química simples e Extração sequencial de metais pesados

4 Extratores simples de metais pesados em solos

1. DTPA

2. Mehlich-1

3. Mehlich-3

4 Extração seqüencial de metais pesados em solos

- 4. Procedimento proposto por BCR (1993) Fracionamento em três etapas
- 5. Procedimento proposto por Egreja Filho (2000) Fracionamento em seis etapas

1. Resumo

O estudo de metais pesados adicionados ao solo é importante no sentido de se poder avaliar as formas mais ou menos disponíveis e, com isso, inferir sobre a vulnerabilidade dos solos à contaminação por esses elementos. Cada metal apresenta uma característica específica de ligação com os mais variados constituintes dos solos. Essas ligações dependem, entre outros fatores, da quantidade e da natureza dos metais, da mineralogia e morfologia das argilas silicatadas e dos óxidos e hidróxidos de Fe e Al, bem como o tipo e teor de matéria orgânica presentes no solo. Com o objetivo de verificar como os metais cádmio, cobre, chumbo e zinco se comportam frente aos diferentes métodos de extração esta parte do trabalho objetivou determinar as taxas de recuperação desses metais pelos extratores DTPA, Mehlich-1 e Mehlich-3, avaliar a distribuição desses elementos nas diferentes frações dos procedimentos de extrações sequenciais e comparar os teores extraído com os diferentes extratores. Para isso, incubou-se as amostras de solos com soluções contendo os metais em estudo, recebendo os horizontes superficias o dobro da quantidade de metais dos horizontes subsuperficiais. Após o período de incubação de 70 dias, foram aplicados os métodos de extração propostos procedendo-se as leituras dos extratos, por espectrometria de absorção atômica por chama.

A capacidade de extração de cádmio, cobre e zinco pelos extratores simples, na maioria das amostras estudadas, seguiu na média dos solos, a seguinte ordem: Mehlich-3 > Mehlich-1 > DTPA. O chumbo seguiu um padrão diferenciado apresentando maior eficiência pelo extrator Mehlich-3 seguido do DTPA e por fim o Mehlich-1. Apesar do teores diferentes de metais disponíveis, os extratores Mehlich-3, Mehlich-1 e DTPA são altamente correlacionados uns com os outros, sendo as maiores correlações obtidas entre Mehlich-1 e Mehlich-3, entre DTPA e Mehlich-3 para chumbo e zinco e entre DTPA e Mehlich-1 para cádmio e cobre.

Os procedimentos sequenciais aplicados mostraram diferentes distribuições dos metais, para os solos. A retenção de cádmio e zinco foi preferencialmente descrita de forma não específica na maior parte dos casos, e a retenção de cobre e chumbo foi mais estável devido a ligação com a matéria orgânica e os óxidos de Fe e Al (adsorção específica).

Comparando-se o fracionamento por três etapas com o fracionamento sequencial em seis etapas, verifica-se a que quantidade de metal extraída com ácido acético é correspondente a F1 nas amostras 11B e 12B para cádmio, 6B, 10A e 15B para chumbo,

10A, 11A, 11B, 12A, 12B, 13B, 14A e 14B para chumbo e nas amostras 1B, 3A, 5A, 11B, 12A, 12B, 13B, 14A, 14B, 15A e 15B para zinco. Nas demais amostras os teores extraídos superou a fração F1.

Quanto aos extratores simples, para o DTPA, equivalência com a fração F1 somente foi observada na recuperação de cádmio nas amostras 1A, 1B, 10A 10B e 12B. Para os demais metais e amostras, a extração com DTPA ultrapassou a fração solúvel e trocável (F1). Para os metais cobre, chumbo e zinco, na maior parte dos casos, os extratores Mehlich-1 e Mehlich-3 extraíram quantidades correspondentes à soma das frações F1 e F2, chegando em alguns casos até a ultrapassar essas frações. Somente o cádmio, nas amostras 1A, 1B, 11B e 12B com o extrator Mehlich-1 e nas amostras 4B e 12B com o extrator Mehlich-3 é que mostrou extração compatível com a fração solúvel e trocável (F1).

Neste trabalho, apesar de as importantes informações geradas do procedimento em três etapas, com o fracionamento em seis etapas pôde-se conhecer de forma mais minuciosa a distribuição dos metais quando estes entram no compartimento solo e definir mais precisamente a fração considerada mais disponível.

2. Abstract

The study of heavy metals added to soil samples is important for the assessment of the forms more or less available and thereby to infer about the vulnerability of soils to contamination by these elements. Each metal displays a characteristic binding to the several soil constituents. Among other factors, binding depends on the quantity and nature of the metals, the mineralogy and morphology of silicate clays and Fe and Al oxides and hydroxides, and the organic matter type and content in soil. In order to verify how cadmium, copper, lead, and zinc behave under different extraction methods, this part of the study aimed to determine the metal recovery rates by DTPA, Mehlich-1, and Mehlich-3. The distribution of these elements in the different sequential extraction fractions by three and six steps were evaluated and the extracted contents obtained with the different extractors were compared. For this, the soil samples were incubated for 70 days with solutions of the metals under study. The surface horizons were added with two times the amount of metal contents found in the subsurface horizons. Next, the extraction methods were applied and the extracts were analyzed by flame atomic absorption spectrometry.

The capacity of extraction of cadmium, copper, and zinc with simple extractant followed the order Mehlich-3> Mehlich-1> DTPA on average. Lead followed a different pattern, presenting a higher efficiency for the Mehlich-3 extractant, followed by DTPA, and Mehlich-1. Despite of the different levels of metals available, the Mehlich-3, Mehlich-1, and DTPA extractants were highly correlated with each other; the highest correlations occurred between Mehlich-1 and Mehlich-3, and DTPA and Mehlich-3 for lead and zinc, and between DTPA and Mehlich-1, for cadmium and copper.

The procedures used revealed different sequential metal distributions the in different soils. Cadmium and zinc retention was preferably described in a non-specific way in most cases, and copper and lead retention was more stable due to binding to organic matter and Fe and Al oxides (specific adsorption).

Comparing the results of fractionation by sequential fractionation in three and six steps, the amount of metal extracted with acetic acid was equal to those of F1 in samples 11B and 12B for cadmium, 6B, 10A, and 15B to lead, 10A, 11A, 11B, 12A, 12B, 13B, 14A, and 14B for lead, and 1B, 3A, 5A, 11B, 12A, 12B, 13B, 14A, 14B, 15A, and 15B for zinc. The levels of the other samples were higher than of fraction F1.

For the simple DTPA extractors, equivalence with the F1 fraction was observed only for the recovery of cadmium from samples 1A, 1B, 10A, 10B, and 12B. For the other metals and samples, the DTPA extraction results were larger than the soluble and exchangeable fraction (F1) values. For copper, lead, and zinc, in most cases, the Mehlich-1 and Mehlich-3 extractors gave the sum of fractions F1 and F2, even exceeding these values in some cases. Only the extraction results for cadmium from samples 1A, 1B, 11B, and 12B with the Mehlich-1 extractant and samples 4B and 12B with the Mehlich-3 extractant were compatible with the soluble and exchangeable fraction values (F1). Although the three-step procedure used in this work provided valuable information, the six-stage extraction method provided more details on the metal distribution when they enter the soil compartment and defined the fraction considered more available more precisely.

3. Introdução

Estudos sobre a retenção de metais pesados no solo, como os modelos de adsorção, apesar de importantes, apresentam informações limitadas, uma vez que a interação dos elementos com a fase sólida do solo não é determinada e nem tão pouco identificada a distribuição do metal nas várias fases químicas do sistema. Entretanto, os mesmos podem ser utilizados como indicadores de vulnerabilidade. Devido à complexidade dos processos de retenção de metais pesados nos solos e às limitações associadas às isotermas no entendimento dos mecanismos de sorção, é útil combinar os resultados fornecidos pelos parâmetros das isotermas com dados referentes aos processos de extração de metais, para uma maior compreensão sobre o comportamento dos elementos nesse meio.

A disponibilidade de um elemento no solo frequentemente é associada a valores fornecidos por métodos de extração química, que, em geral, extraem dos solos formas que podem ser disponíveis ou mesmo não-disponíveis para as plantas. Pode-se considerar como disponível o elemento que se encontra na solução do solo e/ou fracamente adsorvidos nas superfícies carregadas, mas outras fases podem tornar-se disponíveis quando ocorrem alterações no potencial redox, pH e outras propriedades do solo.

Para avaliar a disponibilidade de elementos como cádmio, cobre, chumbo e zinco, têm sido utilizados métodos de extrações simples, tais como: sais neutros, ácidos, bases e agentes quelantes ou complexantes. No entanto, como a quantidade do elemento extraído varia com o extrator empregado, essas extrações têm apresentado graus variados de eficiência. Por sua vez, as extrações químicas sequenciais são úteis para se inferir a biodisponibilidade de metais pesados nas diferentes frações do solo e podem ser extremamente úteis no entendimento das alterações decorrentes das mudanças de formas químicas e das variações temporais na biodisponibilidade de metais em solos contaminados.

Esta pesquisa fundamenta-se na observação de que muitos estudos realizados visando determinar a disponibilidade de elementos no solo são feitos na maioria das vezes empregando-se apenas um método de determinação, o que pode muitas vezes ser insuficiente para se predizer a dinâmica das reações destes metais nos solos, na medida em que um sistema dinâmico e aberto está sujeito a constantes interações, ao longo do tempo. Dessa forma, esta parte do trabalho tem como objetivo avaliar o comportamento dos metais nos diferentes solos quando avaliados pelos procedimentos DTPA, Mehlich-1, Mehlich-3 e BCR,

em comparação ao procedimento constituído de seis frações, considerado mais adequado para um diagnóstico mais exato da disponibilidade dos elementos nos solos.

4. Fundamentos

4.1. Disponibilidade de elementos no solo

Nas últimas décadas, consideráveis esforços têm sido dedicados ao desenvolvimento de soluções extratoras adequadas à determinação de elementos nos solos. Componentes inorgânicos bem como orgânicos têm sido propostos como constituintes de soluções extratoras para diferentes elementos. A complexa natureza dos processos que ocorrem no solo e das relações solo-planta é provavelmente uma das maiores razões para a existência de um grande número de métodos para se avaliar a fração de metais considerada disponíveis para a planta.

Muitos são os métodos de extração existentes. Entretanto, a seleção adequada de um determinado método, requer estudos para se avaliar qual aquele que melhor se adapta às condições dos solos e que se correlacione com a resposta das plantas. As técnicas de extração até entaão são específicas para várias combinações de metais, tipos de solos, espécies de plantas e ambientes, que muitas vezes são de proveitosas aplicações.

Para a obtenção de adequado entendimento da dinâmica dos metais pesados nos solos, nas várias formas químicas e de suas fontes, é de fundamental importância o conhecimento da natureza e da reatividade dos constituintes dos solos, do modo de ação dos agentes mobilizantes e da forma na qual o material mobilizado é individualmente transportado, complexado ou associado a outros constituintes do solo, e, também, a estabilidade das formas móveis e imóveis, decorrentes de processos de oxidação, redução, variações de pH, adsorção e coprecipitação.

A disponibilidade de um elemento no solo é frequentemente associada com valores fornecidos por métodos de extração química que, em geral, extraem dos solos formas disponíveis ou não disponíveis para as plantas (Raij, 1991). Segundo esse autor, pode-se considerar como disponível o elemento que juntamente com as formas lábeis, estão em equilíbrio com a solução do solo. Acrescenta-se ainda que a disponibilidade depende, além da forma em que o elemento de encontra no solo, da capacidade de absorção da planta, do desenvolvimento do sistema radicular, das condições climáticas e da disponibilidade de outros elementos. Brady (1989) sugere que o extrator ideal seria aquele que extraísse as formas disponíveis para as plantas em solos com diferentes propriedades, apresentasse adequação aos

laboratórios de rotina e correlacionasse bem com a resposta das plantas à aplicação dos elementos em várias condições.

Os metais pesados nos solos podem encontrar-se associados a diversas formas geoquímicas: (i) solúvel: como íons livres, complexos solúveis com ânions inorgânicos ou ligantes orgânicos (nessa forma, os metais são absorvidos pelas plantas e/ou lixiviados no solo); (ii) trocável: adsorvidos em mecanismos governados por forças eletrostáticas, em sítios carregados negativamente da matéria orgânica, ou em minerais. Geralmente, a energia de ligação envolvida é baixa, possibilitando troca rápida com a fração na solução do solo. A capacidade de troca de cátions (CTC) é um indicativo do potencial do solo em apresentar metais pesados na forma trocável. Entretanto, devem ser considerados fatores como seletividade do metal, pH, atividade iônica da solução e concentração de outros cátions; (iii) adsorvidos especificamente (quimiossorvidos): adsorvidos covalentemente (complexos de esfera interna) na superfície de partículas de óxidos e matéria orgânica onde a reação envolve relativamente alta energia de ligação, sendo que os metais são liberados de forma muito mais lenta do que na trocável; (iv) ligado à matéria orgânica: metais complexados por materiais orgânicos resistentes à degradação microbiana ou presentes em células recentemente mortas; (v) precipitados, na forma de carbonatos, sulfetos, fosfatos, hidróxidos, entre outros (Shuman, 1979).

O estudo da contaminação dos solos por metais pesados utiliza métodos que incluem procedimentos de *extração simples* e de *extração seqüencial*. O método de extração simples consiste em um reagente ou um conjunto de reagentes para extrair de uma só vez os metais ligados a uma ou mais formas existentes no solo. Em outro método denominado de extração seqüencial, uma amostra é sucessivamente tratada com diferentes reagentes, quantificando-se, a concentração dos metais em formas geoquímicas afins. Segundo Tessier et al. (1979), os métodos de extração simples são bastante rápidos e econômicos, porém, é muito difícil identificar-se um reagente simples e efetivo na separação quantitativa das formas. Por outro lado, as análises de extração sequencial são trabalhosas e demoradas, mas informam mais claramente sobre a distribuição dos elementos em solos, sedimentos e outras matrizes ambientais e permitem fazer inferências sobre a disponibilidade dos mesmos (Sposito, 1982). Além disso, podem auxiliar, por comparação de resultados, na seleção de métodos para extração simples de metais.

4.1.1 Extratores de metais pesados

A retenção, mobilidade e a distribuição química de espécies metálicas no solo são dependentes de inúmeras propriedades do meio e a elucidação mais precisa dessa distribuição é de difícil determinação, dada a complexidade do sistema (Amaral Sobrinho et al., 1997). Diversos extratores químicos têm sido usados para a avaliação da fitodisponibilidade dos metais pesados. A escolha, comumente, se dá em função das quantidades extraídas, dos crescimentos de plantas ou das quantidades adsorvidas. Os numerosos extratores utilizados podem ser agrupados em vários tipos, de acordo com as propriedades químicas e o modo de ação. Geralmente, os *extratores químicos simples* podem ser agrupados em extratores guímicos simples podem ser agrupados em extratores de secondo com as propriedades químicas e o modo de ação. Geralmente, os *extratores químicos simples* podem ser agrupados em extratores salinos, extratores ácidos e agentes complexantes.

Os extratores salinos têm a capacidade de extrair formas que ocorrem na solução do solo e formas fracamente adsorvidas. Presume-se que estes reagentes atuem como fontes de cátions deslocadores de metais adsorvidos em sítios orgânicos e/ou inorgânicos, predominantemente por forças eletrostáticas.

Os extratores ácidos extraem os elementos, principalmente, pela dissolução dos minerais da fração argila, sendo a quantidade extraída dependente da concentração do ácido, do tempo de extração e da relação quantitativa solo/solução. Em geral, os extratores ácidos extraem teores próximos ao total. As soluções ácidas mais testadas para extração de formas disponíveis de metais são o HCl 0,1 mol L⁻¹ e as soluções de Mehlich-1 e Mehlich-3.

O extrator Mehlich-1 tem sido utilizado para determinação de P, K, Fe, Zn, Mn e Cu no solo. Esse extrator consiste em uma mistura bi-ácida (HCl 0,05 mol $L^{-1} + H_2SO_4$ 0,0125 mol L^{-1}) e a extração baseia-se na solubilização pelo efeito da acidez, pH na faixa de 2,0, sendo o papel do SO_4^{2-} de restringir o processo de readsorção dos ânions recém extraídos.

Apesar de ser uma mistura de ácidos, sais e quelantes, o extrator Mehlich-3 encontra-se incluído entre os extratores ácidos e tem sido desenvolvido para extração de vários nutrientes do solo em diferentes condições, com o propósito de ser um "extrator universal" (Mehlich, 1984). A mistura extratora consiste de (CH₃COOH 0,2 mol L⁻¹, NH₄NO₃ 0,25 mol L⁻¹, NH₄F 0,015 mol L⁻¹, HNO₃ 0,013 mol L⁻¹, EDTA 0,001 mol L⁻¹) e sua ação é baseada no pH na faixa de 2,5, com a presença dos ânions fluoreto e nitrato e EDTA, que tem a função de complexar íons em solução. Atualmente, este método tem também sido muito empregado para se avaliar a disponibilidadede Pb e Cd (Xiu et al., 1991), além de outros metais.

Dentre os extratores que agem por complexação, os mais comumente utilizados são as soluções de EDTA e DTPA. As soluções quelantes, em geral, combinam-se com o íon

metálico em solução formando complexos solúveis, diminuindo a sua atividade iônica na solução do solo. São comumente usados para se extrair metais que estão associados a formas orgânicas e carbonatos (Sposito et al., 1982; Levy et al., 1992).

A extração com DTPA-TEA (trietanolamina) pH 7,3 é baseada na habilidade de formar complexos estáveis com muitos metais pesados. Com isso, os íons dessorvem da superfície do solo ou dissolvem da fase sólida reestabelecendo o equilíbrio da solução. Este extrator foi proposto por Lindsay & Norvell (1978) consistindo de DTPA 0,005 mol L^{-1} (ácido dietilenotriaminopentacético), trietanolamina 0,1 mol L^{-1} e CaCl₂ 0,01 mol L^{-1} . A adição de CaCl₂ 0,01 mol L^{-1} e de trietanolamina 0,1 mol L^{-1} foi proposta por esses autores para manter a concentração de cálcio próxima à encontrada em solos neutros a alcalinos, e o pH relativamente constante (tamponar o pH da solução extratora em 7,3 para garantir a estabilidade dos complexos).

O agente complexante DTPA-TEA pH 7,3 tem sido extensivamente usado para se predizer o conteúdo de metais pesados nas plantas, baseado nas concentrações dos metais nos extratos do solo, e tem muitas vezes apresentado sucesso. No entanto, a extração baseada na quelação acaba por tender a extrair significativas quantidades de metais e desse modo, não reflete necessariamente o conteúdo disponível para as plantas em solos.

As *extrações químicas seqüenciais*, um dos métodos mais frequentemente utilizados, consistem em extrações sucessivas realizadas em uma única amostra, com extratores cada vez mais agressivos. Os extratores atuam modificando as propriedades de cada constituinte do solo, responsável pela interação do íon à fase sólida, solubilizando-o de forma que a composição elementar possa ser determinada por métodos analíticos adequados. A vantagem desse tipo de extração é a de fornecer informações mais precisas sobre a distribuição dos elementos em cada fração de interesse e, conseqüentemente, sobre a sua disponibilidade.

Apesar de existirem críticas aos métodos de extração sequencial de íons metálicos, sobretudo relacionados à baixa seletividade dos extratores e à possibilidade de readsorção e redistribuição de metais durante a extração, esses métodos possibilitam a comparação entre íons ligados a frações quimicamente afins (Ross, 1994; Candelaria e Chang, 1997; Sauve et al., 1998). Além dos problemas citados, a seqüência de aplicação dos tratamentos químicos e a falta de padronização das condições experimentais dificultam ainda mais uma possível comparação entre diferentes resultados de pesquisa. Um mesmo procedimento de extração sequencial aplicado em condições experimentais diferentes pode levar a diferentes distribuições dos metais nas várias frações extraídas (Morabito, 1995; Lã, 1998).

Diferentes métodos de extração sequencial têm sido propostos (Tessier et al., 1979; Shuman, 1985; Miller et al., 1986; Ure et al., (1993) (BCR); Keller e Vedy, 1994 e Ahnstrom e Parker, 1999), na tentativa de se identificar as formas químicas em que os metais pesados ocorrem em solos. As condições de extração não são padronizadas e várias modificações são introduzidas para se adequar a metodologia às condições particulares. Um esquema largamente utilizado por vários pesquisadores, é o método desenvolvido por Tessier et al. (1979). Foi criado para a determinação de metais pesados em sedimentos, mas teve seu uso estendido para solos contaminados. Na seqüência de tratamentos extrativos utilizados no método de Tessier determinam-se as seguintes frações: a trocável, a ligada a carbonatos, a ligada a oxi-hidróxidos de ferro e manganês, a ligada à matéria orgânica e a residual.

Outro esquema foi proposto por Shuman (1985) para se estudar elementos traço em solos ácidos. Nesse esquema, são comtempladas as frações: trocável, ligada a matéria orgânica e a de óxidos de ferro e manganês (cristalinos e amorfos) (Mattiazzo et al., 2001). O método de Miller et al. (1986), que foi desenvolvido para solos contaminados com metais pesados, apresenta as seguintes frações: solúvel, trocável (com sal neutro), adsorvido especificamente, solúvel em ácido, ocluso em óxido de manganês, matéria orgânica, óxido de ferro amorfo, óxido de ferro cristalino e residual. Os reagentes foram selecionados entre aqueles citados na literatura, de acordo com a seletividade para as formas mais ou menos específicas de metais pesados do solo (Miller et al., 1986; McLaren & Crawford, 1979).

Dentre os métodos de extração, o proposto por "Community Bureau of Reference" (BCR), agora "Standards, Measurements and Testing Programme", é o que apresenta o menor número de etapas. Nesse procedimento, as frações são operacionalmente definidas como: solúvel em ácido, redutível e oxidável.

Em função de problemas como baixa seletividade de extratores, que atacam mais de uma fase a cada fração e de fenômenos de readsorção dos metais extraídos, em outras fases, foi recentemente desenvolvida um protocolo de extração seqüencial para metais pesados em solos intemperizados, bem detalhada e apropriada para solos brasileiros (Egreja Filho, 2000). A seletividade e a eficiência dos extratores foram otimizadas, com o uso de componentes modelo dos constituintes minerais do solo, e de métodos quimiométricos de otimização de misturas extratoras.

Entre os vários métodos encontrados na literatura, foram escolhidos, para avaliação neste trabalho, o método BCR e o proposto por Egreja Filho, principalmente pela diversidade dos reagentes empregados e pela especificidade de alguns reagentes, com relação a algumas

frações e também pelo intenso uso do método BCR em inúmeros trabalhos de extração de metais pesados do solo.

Esta parte do trabalho tem como objetivo ampliar o nível de conhecimento sobre a vulnerabilidade de solos de Minas Gerais à contaminação por cádmio, cobre, chumbo e zinco por meio de:

- 1. Avaliar a eficiência dos extratores simples, DTPA, Mehlich-1 e Mehlich-3 quanto à capacidade de extração de cádmio, cobre, chumbo e zinco de materiais dos diferentes solos.
- 2. Determinar a distribuição dos elementos nos solos estudados, considerando as características químicas e físicas dos mesmos.
- 3. Comparar os dados de extração química simples com os de extração sequencial relacionando os teores de metais nas diferentes frações dos solos com suas quantidades extraídas pelas soluções de DTPA, Mehlich-1 e Mehlich-3.
- 4. Correlacionar as informações obtidas para gerar informações sobre disponibilidade e vulnerabilidade de solos a contaminação por metais.

6.1. Contaminação dos solos com cádmio, cobre, chumbo e zinco

Para simular a contaminação dos solos com os metais, os solos selecionados (Tabela 2) foram incubados com coquetéis contendo os metais na forma de nitrato. A concentração dos elementos metálicos foi definida a partir dos resultados de Egreja Filho (2000) e está sumarizada na Tabela 14. Os horizontes superficiais receberam o dobro da quantidade de metal dos horizontes subsuperficiais, dada a elevada capacidade de retenção pela matéria orgânica. A incubação foi feita por 70 dias, à temperatura ambiente, com umidade mantida em 80% da capacidade de campo, controlada diariamente, por meio de pesagens e adição de água deionizada, quando necessário. A condição de maior umidade tem por objetivo favorecer o processo de difusão iônica nos solos. Foram incubados 200 g material de solo em potes plásticos, e as soluções contendo os metais foram preparadas no pH de cada solo, de modo a favorecer o máximo de adsorção, com o mínimo de precipitação dos hidróxidos e sais básicos. Cinco diferentes processos de extração foram empregados para se avaliar a disponibilidade dos elementos nos solos, sendo três processos de extração simples e dois processos de extração seqüencial. Cada procedimento de extração foi realizado em triplicata.

Horizonte	Cd	Cu	Pb	Zn
		µg g⁻¹		
Α	20	250	300	100
В	10	125	150	50

Tabela 14. Quantidade de metais pesados utilizado na incubação dos solos

6.2. Procedimentos de Extração Simples

Os extratores DTPA-TEA pH 7,3, Mehlich-1 e Mehlich-3 foram os escolhidos para o estudo neste trabalho, e são chamados aqui de convencionais. Todas as extrações foram feitas em triplicata e os valores aqui apresentados correspondem às médias obtidas.

i) DTPA-TEA pH 7,3

O princípio do método utilizando a solução de DTPA-TEA pH 7,3 (ácido dietilenotriaminopentacético-DTPA 0,005 mol L^{-1} + trietanolamina-TEA 0,1 mol L^{-1} + cloreto de cálcio 0,01 mol L^{-1}) pH 7,3, é a complexação dos metais (Lindsay e Norvell, 1978). O agente extrator reage com os íons livres formando complexos solúveis, o que resulta em

redução da atividade dos metais livre em solução. Em resposta, íons desses metais, desprendem da superfície da partícula do solo ou dissolvem da fase sólida para restabelecer o equilíbrio na solução. O procedimento consistiu em extração de 5,0 g de solo com 20 mL de solução extratora, sob agitação constante durante duas horas. As suspensões foram centrifugadas a 3000 rpm (1600g) por dez minutos, filtradas e os sobrenadantes recolhidos para determinação de cádmio, cobre, chumbo e zinco em espectrômetro de absorção atômica com chama (marca Perkin Elmer, modelo Aanalyst 200), por aspiração direta das soluções aquosas em chama ar-acetileno.

ii) Mehlich-1

Extração de 5,0 g de solo com 40 mL de solução extratora HCl 0,05 N + H_2SO_4 0,025 N, sob agitação constante durante 15 minutos (Wear e Evans, 1968). As suspensões foram centrifugadas a 3000 rpm (1600g) por dez minutos, filtradas e os sobrenadantes recolhidos para determinação de cádmio, cobre, chumbo e zinco em espectrômetro de absorção atômica com chama (marca Perkin Elmer, modelo Aanalyst 200), por aspiração direta das soluções aquosas em chama ar-acetileno.

iii) Mehlich-3

Esse método de extração, baseando-se na solução de Mehlich-3 (CH₃COOH 0,2 mol L⁻¹ + NH₄NO₃ 0,25 mol L⁻¹ + NH₄F 0,015 mol L⁻¹ + HNO₃ 0,013 mol L⁻¹ + EDTA 0,001 mol L⁻¹) tem por princípio a solubilização e quelação dos elementos. A extração foi feita agitando-se 5,0 g de solo com 20 mL de solução (Mehlich-3) durante cinco minutos (Mehlich, 1984).

As suspensões foram centrifugadas a 3000 rpm (1600g) por dez minutos, filtradas e os sobrenadantes recolhidos para determinação de cádmio, cobre, chumbo e zinco em espectrômetro de absorção atômica com chama (marca Perkin Elmer, modelo Aanalyst 200), por aspiração direta das soluções aquosas em chama ar-acetileno.

6.2.1. Efeito de matriz

Para se evitar interferências de matriz, as curvas de calibração dos metais extraídos em cada extrator foram preparadas no próprio extrator.

6.3. Procedimentos de Extração seqüencial

A extração seqüencial nos solos incubados foi realizada utilizando-se exatamente cerca de 1,000 g de solo previamente triturado. Adotaram-se os métodos de extração constituídos de três e seis frações, respectivamente, operacionalmente definido como se segue:

i) BCR (1993)

Fração solúvel em ácido (F1): extração dos metais com 20 mL de solução de ácido acético 0,11 mol L^{-1} sob agitação por 16 horas ("overnight") à temperatura ambiente.

Fração redutível (F2): ao resíduo da primeira fração adicionou-se 20 mL de solução de cloridrato de hidroxilamina 0,1 mol L^{-1} acidificado a pH 2,0 com HNO₃ e mantido sob agitação por 16 horas ("overnight") a temperatura ambiente.

Fração oxidável (F3): nesta etapa, o resíduo de F2 foi inicialmente mantido sob agitação por 1 hora a temperatura ambiente com 10 mL H_2O_2 8,8 mol L^{-1} e em seguida submetido à agitação pelo mesmo período de tempo a 85 °C. Após, nova alíquota de 10 mL de H_2O_2 8,8 mol L^{-1} foi adicionada, mantendo-se a agitação por mais 1 hora a 85 °C. Ao final, adicionou-se 20 mL de solução de acetato de amônio 1 mol L^{-1} e manteve-se sob agitação por 16 horas ("overnight") a temperatura ambiente.

Fração residual (F4): a fração residual foi obtida em forno de microondas (Questron, modelo Qwave 3000) em tubos herméticos de teflon como descrito abaixo.

Em relação ao processo descrito, deve-se considerar que a seqüência de extrações (F1 a F3) foi realizada na mesma amostra, em tubos de centrífuga de polipropileno; após cada extração, as amostras foram lavadas com água deionizada para remover a solução extratora anterior e limitar a readsorção do metal; todas as suspensões foram centrifugadas a 3000 rpm (1600g) por dez minutos, filtrada e os sobrenadantes recolhidos para determinação de cádmio, cobre, chumbo e zinco; a extração da fração total consistiu na determinação dos metais em outra subamostra, em digestor de microondas e posterior subtração dos teores totais da soma das demais frações.

ii) EGREJA FILHO (2000)

Fração solúvel e trocável (F1): extração dos metais dos solos com 30 mL de solução de KNO₃ 1,0 mol L⁻¹ por agitação contínua durante 30 minutos a temperatura ambiente.

Fração adsorvida fortemente em óxidos de ferro e de alumínio (F2): o resíduo de F1 foi mantido sob agitação com 25 mL de uma mistura contendo NaH_2PO_4 0,167 mol L⁻¹,

NaF 0,03 mol L^{-1} e EDTA 0,0083 mol L^{-1} , ajustada a pH 3,65 por 30 minutos em banhomaria a 70°C.

Fração adsorvida à matéria orgânica (F3): nesta etapa, o resíduo de F2 foi submetido a duas extrações com 10 mL de NaClO 0,7 mol L^{-1} pH 8,5 e a mistura foi agitada por 20 minutos em banho-maria a 70 °C. Em seguida, fez-se uma extração com 10 mL de EDTA 0,01 mol L^{-1} agitando-se a frio, por cinco minutos.

Fração adsorvida muito fortemente ou ocluído em óxidos de alumínio (F4): o resíduo de F3 foi extraído com 25 mL de uma solução contendo NaOH 1,0 mol L^{-1} , NaF 0,05 mol L^{-1} e EDTA 0,025 mol L^{-1} . A suspensão foi agitada por 20 minutos em banho-maria a 80 °C.

Fração adsorvida muito fortemente ou ocluído em óxidos de ferro cristalino (F5): foram adicionados 25 mL de uma solução contendo HCl 4,2 mol L⁻¹, ácido ascórbico 0,0375 mol L⁻¹ e citrato de sódio 0,03 mol L⁻¹ ao resíduo de F4. A suspensão foi agitada por 30 minutos em banho-maria a 70 °C.

Fração Total (F6): a fração total foi obtida por digestão em forno de microondas (Questron, modelo Qwave 3000) em tubos herméticos de teflon com uma mistura de HCl/HNO₃/HF e posterior eliminação do fluoreto com ácido bórico. Após digestão, as amostras foram avolumadas em balões volumétricos para determinação dos elementos.

Em relação ao processo descrito, deve-se considerar que foram feitas curvas de calibração para cada fração a fim de eliminar o efeito de matriz; a seqüência de extrações (F1 a F5) foi realizada na mesma amostra, em tubos de centrífuga de polipropileno; após cada extração, as amostras foram lavadas com água deionizada para remover a solução extratora anterior e limitar a readsorção do metal; todas as suspensões foram centrifugadas a 3000 rpm (1600g) por dez minutos, filtrada em papel de filtro e os sobrenadantes recolhidos para determinação de cobre e de zinco; a extração da fração total consistiu na determinação dos metais em outra subamostra, em digestor de microondas e posterior subtração dos teores totais da soma das demais frações.

Os teores totais (μ g g⁻¹) dos metais pesados adicionados aos solos, bem como a porcentagem de retenção de cada um estão apresentados na Tabela 15. No cálculo do percentual retido, levou-se em consideração a massa total adicionada via solução. Valores superiores a 100% podem significar que o metal já exitia no solo antes da incubação, em qualquer uma das fases existentes.

Decorrido o tempo de incubação dos solos com o coquetel contendo os metais em estudo, verificou-se que o pH em água de todos os solos diminuiu entre 0,24 e 1,38 unidade e os valores de Δ pH tenderam para valores mais positivos (Tabela 16). Mesmo os solos que não chegaram a ficar positivos, reduziram a quantidade de carga negativa. Esse fato está de acordo com a ocorrência de adsorção específica dos metais na superfície de óxidos e ácidos orgânicos, que segundo muitos autores, ocorre com a retirada de íons H⁺ da superfície sólida, reduzindo o pH.

Os valores negativos de $\Delta pH (pH_{KCl} - pH_{H2O})$ diminuíram com a incubação, chegando a atingir valores positivos. Este resultado também é consistente com o modelo de adsorção específica, que acrescenta carga positiva do metal (MOH⁺) à superfície. Dessa forma, a superfície vai se tornando menos negativa, podendo haver reversão de carga.

A análise das figuras permite verificar como os metais se distribuem nas diferentes frações dos solos em proporções bastante variadas. Como os valores de concentração usados para cada elemento são diferentes, os resultados das extrações apresentados, são dados na forma de porcentagem de metal recuperado de cada fração, permitindo, assim, uma comparação entre os solos.

7.1. Disponibilidade de metais avaliada por processos de extração simples

Sabe-se que a quantidade de metais disponíveis nos solos é regulada, em parte, pelas trocas iônicas. Diversos pesquisadores admitem que a troca catiônica e a formação de quelatos com a matéria orgânica (quando solúveis) são os principais processos que facilitam a disponibilidade dos metais e o grau de impacto ambiental causado pelos mesmos.

Ident	Identificação		Cádmio		Cobre		Chumbo		Zinco	
	-	µg g⁻¹	% retida	µg g⁻¹	% retida	$\mu g g^{-1}$	% retida	$\mu g g^{-1}$	% retida	
	А	$20,72 \pm 2,57$	103,60	$233,15 \pm 0,77$	93,26	$291,58 \pm 16,85$	97,19	$107,63 \pm 3,08$	107,63	
1	В	$13,18 \pm 0,61$	131,80	$117,28 \pm 2,97$	93,82	$151,21 \pm 18,66$	100,81	$67,99 \pm 9,87$	135,98	
	А	$18,11 \pm 6,95$	90,55	$223,61 \pm 3,28$	89,44	$297,34 \pm 17,78$	99,11	$121,91 \pm 2,79$	121,91	
2	В	$10,38 \pm 0,93$	103,80	$120,85 \pm 3,63$	96,68	$172,93 \pm 14,84$	115,29	$50,49 \pm 3,35$	100,98	
	А	$21,27 \pm 6,47$	106,35	$253,61 \pm 1,40$	101,4	$286,84 \pm 14,32$	95,61	$117,66 \pm 14,05$	117,66	
3	В	$12,04 \pm 0,47$	120,40	$157,41 \pm 2,06$	125,93	$156,14 \pm 27,97$	104,09	$63,62 \pm 2,72$	127,24	
	А	$20,16 \pm 1,72$	100,80	$248,75 \pm 3,76$	99,50	$315,10 \pm 39,83$	105,03	$124,95 \pm 12,0$	124,95	
4	В	$11,16 \pm 1,12$	111,60	$136,83 \pm 6,78$	109,46	$136,21 \pm 0,92$	90,81	$58,82 \pm 7,76$	117,64	
	А	$17,95 \pm 2,07$	89,75	$266,21 \pm 17,79$	106,48	$295,28 \pm 7,80$	98,43	$121,06 \pm 23,7$	121,06	
5	В	$9,72 \pm 1,14$	97,20	$130,15 \pm 19,16$	104,12	$164,92 \pm 26,97$	109,95	$68,30 \pm 10,38$	136,60	
	А	$22,25 \pm 0,90$	111,25	$233,15 \pm 0,77$	93,26	$310,94 \pm 12,23$	103,65	$128,17 \pm 9,17$	128,17	
6	В	$12,18 \pm 1,26$	121,80	$132,47 \pm 12,97$	105,98	$172,\!42 \pm 19,\!78$	114,95	$66,86 \pm 3,41$	133,72	
	А	$20,03 \pm 0,52$	100,15	$231,33 \pm 10,76$	92,53	$318,23 \pm 19,63$	106,08	$126,66 \pm 8,40$	126,66	
7	В	$10,67 \pm 1,19$	106,70	$115,23 \pm 2,72$	92,18	$157,\!88 \pm 16,\!06$	105,25	$63,61 \pm 4,44$	127,22	
	А	$18,40 \pm 5,02$	92,00	$222,18 \pm 4,09$	88,87	$290,85 \pm 13,35$	96,95	$105,59 \pm 9,05$	105,59	
8	В	$9,36 \pm 1,52$	93,60	$116,71 \pm 1,71$	93,37	$155,32 \pm 19,39$	103,55	$58,10 \pm 8,22$	116,20	
	А	$23,\!80 \pm 1,\!15$	119,00	$228,26 \pm 2,72$	91,30	$295,03 \pm 15,40$	98,34	$134,60 \pm 23,8$	134,60	
9	В	$10,99 \pm 1,42$	109,90	$121,15 \pm 0,66$	96,92	$142,66 \pm 5,22$	95,11	$57,83 \pm 8,64$	115,66	
	А	$19,19 \pm 1,81$	95,95	$228,77 \pm 14,08$	91,51	$293,\!60 \pm 16,\!69$	97,87	$132,98 \pm 4,06$	132,98	
10	В	$11,36 \pm 0,61$	113,60	$110,93 \pm 8,57$	88,74	$155,97 \pm 23,39$	103,98	$49,54 \pm 0,29$	99,08	
	А	$18,20 \pm 2,74$	91,00	$267,19 \pm 5,35$	106,88	$276,14 \pm 27,39$	92,05	$134,15 \pm 8,82$	134,15	
11	В	$16,06 \pm 0,67$	160,60	$117,23 \pm 8,06$	93,78	$164,92 \pm 26,97$	109,95	$66,31 \pm 15,5$	132,62	
	А	$18,\!89 \pm 3,\!14$	94,45	$258,33 \pm 31,02$	103,33	$273,50 \pm 28,78$	91,17	$132,36 \pm 20,40$	132,36	
12	В	$14,12 \pm 1,57$	141,20	$122,28 \pm 21,49$	97,82	$164,11 \pm 8,01$	109,41	$66,65 \pm 3,31$	133,30	
	А	$24,55 \pm 155$	122,75	$265,51 \pm 3,99$	106,20	$285,80 \pm 13,02$	95,27	$115,62 \pm 34,6$	115,62	
13	В	$14,30 \pm 2,17$	143,00	$129,63 \pm 9,37$	103,70	$153,72 \pm 8,85$	102,48	69,69 ± 13,33	139,38	
	А	$22,73 \pm 0,91$	113,65	$266,56 \pm 8,86$	106,62	$278,42 \pm 9,66$	92,81	$101,99 \pm 9,55$	101,99	
14	В	$12,44 \pm 1,56$	124,40	$139,81 \pm 2,35$	111,85	$153,72 \pm 6,78$	102,48	$65,\!46 \pm 10,\!79$	130,92	
	А	$22,\!46 \pm 8,\!08$	112,30	$226,77 \pm 10,80$	90,71	$301,\!43 \pm 13,\!34$	100,48	$149,87 \pm 19,9$	149,87	
15	В	$14,97 \pm 1,83$	149,70	$136,\!14\pm 6,\!54$	108,91	$170,25 \pm 16,98$	113,50	$73,\!32\pm5,\!98$	146,64	

Tabela 15. Teores totais e percentuais de retenção dos metais pesados nos solos incubados

G 1		An	tes da Incubaçã	io	1	Após Incubação		CTC
5010	Horiz.	pH água	pH KCl	ΔpH^*	pH água	pH KCl	∆pH*	cmol _c kg ⁻¹
1. PVA	А	5,10	4,39	-0,71	4,86	4,58	-0,28	4,50
	В	5,37	5,16	-0,21	4,64	4,86	+0,22	4,96
2. LVA	А	5,50	4,87	-0,63	5,38	4,99	-0,39	10,95
	В	5,27	5,53	0,26	4,58	5,20	+0,62	5,18
3. LVd	А	4,98	4,20	-0,78	4,05	4,00	-0,05	3,09
	В	5,10	5,42	0,32	4,29	5,12	+0,83	2,35
4. LVAd	А	5,24	4,55	-0,69	3,91	4,31	+0,40	2,16
	В	6,22	5,48	-0,74	5,03	5,20	+0,17	4,17
5. LVj	А	5,31	4,83	-0,48	4,18	4,70	+0,52	4,78
	В	5,81	5,67	-0,14	4,65	5,70	+1,05	6,45
6. LVef	А	6,17	5,12	-1,05	5,56	5,18	-0,38	7,98
	В	5,44	4,41	1,03	4,44	4,03	-0,41	9,56
7. TCp	А	6,13	5,32	-0,81	5,63	5,26	-0,37	6,29
	В	6,10	5,65	-0,45	5,37	5,18	-0,19	5,81
8. MTk	Α	7,16	6,05	-1,11	6,52	5,78	-0,74	23,69
	В	7,46	5,97	-1,49	6,79	5,66	-1,13	28,17
9. CXbe	А	7,52	6,85	-0,67	7,37	6,91	-0,46	12,19
	В	6,91	6,29	-0,62	6,42	6,01	-0,41	5,52
10. CXbd	Α	4,93	4,00	-0,93	3,84	3,83	-0,01	2,62
	В	5,20	4,36	-0,84	3,92	4,06	+0,14	1,58
11. FFcd ₁	А	5,45	4,32	-1,13	4,85	4,31	-0,54	6,56
	В	4,88	3,85	-1,03	4,11	3,70	-0,41	2,42
12. FFcd ₂	А	5,61	4,48	-1,13	5,38	4,88	-0,50	3,36
	В	4,30	3,73	-0,57	3,99	3,66	-0,33	2,32
13. CXd	А	5,66	4,47	-1,19	5,12	4,51	-0,61	7,13
	В	5,05	3,91	-1,14	4,00	3,67	-0,33	2,94
14. RQo	А	4,49	3,68	-0,81	3,67	3,80	+0,13	1,30
	В	4,71	3,91	-0,80	3,95	3,98	+0,03	1,12
15. LVAd	А	5,40	3,97	-1,43	4,29	4,10	-0,19	7,59
	В	4,61	4,10	-0,51	4,02	4,14	+0,12	7,71

Tabela 16. Valores de pH, ΔpH e CTC dos solos nas amostras originais e após incubação com o coquetel de metais

 $\Delta pH = pH\kappa c_1 - pH_2o.$

A eficiência dos processos de extração simples (DTPA, Mehlich-1 e Mehlich-3) e a recuperação dos elementos determinado pelos multi passos dos processos de extração sequencial, que fraciona os metais em três e seis frações, visaram principalmente estabelecer a fração biodisponível ou facilmente trocável em função de variáveis químicas e físicas do sistema.

De maneira geral, o uso dos diferentes extratores nos diversos tipos de solos e horizontes resultou em grande variabilidade dos resultados, refletindo as diferentes capacidades de extração. Dos três métodos empregados nas extrações simples, o Mehlich-3 foi o extrator mais efetivo para todos os metais. Das 30 amostras avaliadas, o extrator Mehlich-3 extraiu mais cádmio em 63,3 % delas, cobre em 76,7 %, chumbo em 73,3 % e zinco em 90,0 % das amostras estudadas. De acordo com Mehlich (1984) a maior capacidade de extração pelo Mehlich-3 pode ser atribuída à sua capacidade ácida e à complexação do elemento com o EDTA. Segundo o autor, este componente do extrator favorece maior extração de elementos, provavelmente, por mantê-los quelatados em solução, à medida que se procede a extração por troca/dissolução/complexação, além da presença do íon fluoreto que
provavelmente deve atacar os óxidos de alumínio e competir com os metais nos óxidos de ferro. A extração de metais por quelação (EDTA) relatado pelo autor, em nosso trabalho somente foi verificada para cobre e parcialmente para o chumbo (Tabela 17). Para os outros metais, a extração se processa mais facilmente, em razão da maior parte das espécies encontrarem-se na forma de M^{2+} .

Tabela 17. Distribuição percentual das principais espécies envolvidas na extração de Cd^{2+} , Cu^{2+} , Pb^{2+} e Zn^{2+} , pelo extrator Mehlich 3, simulado pelo programa Minteq A2, sendo força iônica (I = 0,2775 mol L⁻¹), pH 2,60.

Elemento	M^{2+}	EDTA	Fluoreto	Acetato	NO ₃ ⁻
		% de cao	la espécie		
Cádmio	73,93	1,44	1,36	3,57	19,69
Cobre	11,12	84,35	0,65	1,06	2,82
Chumbo	30,79	12,83	5,06	6,95	44,24
Zinco	79,01	1,38	1,84	1,70	16,07

Para os elementos cádmio, cobre e zinco em grande parte das amostras, a seguinte ordem decrescente de extração foi verificada: Mehlich-3 > Mehlich-1 > DTPA. A extração do chumbo seguiu um padrão diferenciado, apresentando maior recuperação com o extrator Mehlich-3, seguido do DTPA e do Mehlich-1, na maior parte das amostras. Embora o Mehlich-1 tenha apresentado ligeira superioridade sobre o DTPA em várias amostras, deve-se considerar que o Mehlich-1 é um extrator capaz de acessar formas de elementos não-disponíveis ligados a sítios de adsorção específica.

O emprego dos extratores DTPA, Mehlich-1 e Mehlich-3 no diagnóstico da disponibilidade de metais têm apresentado diferentes resultados dentre os variados estudos abordando extração de elementos no solo. Abreu et al., (1998) avaliando a distribuição de chumbo no perfil de um solo próximo a uma fonte geradora (pólo industrial) do elemento no Estado de São Paulo, empregando-se os extratores DTPA e Mehlich-3, verificaram que ambas as soluções foram eficientes para avaliar a contaminação do solo por chumbo, podendo estes extratores ser utilizados no monitoramento do impacto ambiental causado por esse elemento. Borges (2002) verificou que a extratabilidade de cádmio em amostras de solos do estado de São Paulo foi melhor avaliada pelo extrator Mehlich-3 quando comparado ao DTPA.

De acordo com Abreu e Raij (1997), a capacidade de extração de zinco no solo pelas soluções de DTPA e Mehlich-1, mostrou que o extrator DTPA apresentou melhores resultados com valores altos e positivos de correlação entre os teores de zinco na planta e no solo que o extrator Mehlich-1, concluindo que a mudança na disponibilidade de zinco, foi

mais bem avaliada pela solução de DTPA. Entretanto, Ribeiro-Filho et al. (2001), verificaram que o extrator Mehlich-1 extraiu sempre maiores teores de Zn, Cd, Cu e Pb que o DTPA, indicando serem esses metais fracamente adsorvidos aos constituintes do solo e sua extração bastante dependente do pH da solução extratora.

Consolini e Coutinho (2004) avaliando o efeito da aplicação de zinco e do pH do solo na disponibilidade do micronutriente, verificaram que os extratores ácidos (Mehlich-3, Mehlich-1 e HCl) apresentaram maior capacidade de extração, retirando maiores quantidades de zinco que o complexante DTPA. A maior capacidade de extração das soluções ácidas, em relação aos complexantes, também foi relatada por Ritchey et al. (1986), Bataglia e Raij (1989) e Galrão (1995). Diversos trabalhos, citados por Galrão, relatam a busca de extratores confiáveis para diversas culturas, defrontando-se com a influência do próprio extrator no pH do solo.

No presente trabalho, a recuperação (% do total) de cádmio extraído pelo extrator Mehlich-3 variou de 60,9 a 88,5 % no horizonte A e de 47,9 a 89,1 % no horizonte B. A quantidade máxima de cádmio extraída pelos extratores Mehlich-1 e DTPA foram de 82,1 e 80,8 % no horizonte A e de 81,2 e 77,8 % no horizonte B, respectivamente (Figura 12).

Figura 12. Percentual de recuperação de cádmio pelos extratores DTPA, Mehlich-1 e Mehlich-3 nos solos estudados.

Esta considerável recuperação de cádmio evidencia o alto potencial de mobilidade desse elemento, que pode ter sido potencializada pelo fato de sua adsorção ser reduzida pelos outros metais (Pb, Cu e Zn) que apresentam maior afinidade pelos sítios de adsorção no solo. Em geral, nos solos mais ácidos o cádmio tende a ser encontrado preferencialmente nas frações trocáveis e adsorvidas em óxidos de ferro e de alumínio e nas frações mais estáveis as quantidades extraídas tendem a ser menores, indicando a baixa afinidade do elemento com ligações mais estáveis do solo. Entretanto, mais adiante neste trabalho, por meio do fracionamento químico do elemento foi encontrado cádmio também associado às frações menos disponíveis (residual).

Resultados semelhantes foram relatados por Costa et al., (2007) em estudo sobre fracionamento de cádmio e de chumbo em solos. Estes autores encontraram cádmio nas frações solúvel e trocável e também bastante retido nas frações orgânica e residual, indicando que em baixa competição com outros cátions, ele também tem tendência de permanecer sob formas menos disponíveis, permanecendo adsorvidos especificamente a matéria orgânica, a minerais silicatados e a óxidos.

Da mesma forma, Silva (2006) avaliando o comportamento de elementos essenciais e não essenciais em solo contaminado (Latossolo Vermelho distroférrico típico) verificou que a distribuição de cádmio nas diversas formas químicas mostrou menor distribuição nas frações solúvel e trocável e ligada a matéria orgânica e que quantidades consideráveis foram extraídas das frações ligadas a óxidos de ferro e de alumínio e residual.

Os teores de zinco obtidos pelos extratores DTPA, Mehlich-1 e Mehlich-3 foram em grande parte das amostras superiores aos teores extraídos de cádmio, cobre e chumbo. Dentre os extratores, o Mehlich-3 apresentou maior capacidade de recuperação em 90 % das amostras e o Mehlich-1 foi mais efetivo que o DTPA em 76,7 % delas, como mostra os percentuais extraídos. Os teores recuperados pelo Mehlich-3 variaram de 60,41 a 90,83 % e de 57,38 a 91,50% nos horizontes A e B respectivamente (Figura 13).

É conhecido que os extratores ácidos deslocam cátions adsorvidos, dissolvem carbonatos e hidróxidos não perfeitamente cristalizados e provocam dissolução parcial de minerais de argila silicatados (Pickering, 1981), enquanto que os agentes quelantes atuam no deslocamento dos elementos dos sítios de troca mediante a formação de complexos solúveis que reduzem a atividade dos íons em solução.

Figura 13. Percentual de recuperação de zinco pelos extratores DTPA, Mehlich-1 e Mehlich-3 nos solos estudados.

Zhu e Alva (1993), avaliando as correlações existentes entre as formas de zinco no solo e os teores obtidos pelos extratores Mehlich-1 e Mehlich-3, verificaram que esses extratores extraem não somente as formas realmente solúveis, como também as formas ligadas à matéria orgânica e precipitadas, bem como a forma residual; verificaram ainda que o Mehlich-1 apresentou maior capacidade de extração de todas essas formas de zinco que o Mehlich-3.

Assim como os outros metais, o cobre no solo também é retido e sua labilidade é dependente do ligante, com destaque para matéria orgânica e óxidos, e da condição geoquímica, especialmente o pH. Sua retenção no solo ocorre primeiro nos sítios mais ávidos e, em seguida, o cobre remanescente é redistribuído nas demais frações. A menor mobilidade desse elemento é normalmente atribuída à formação de complexos organo-metálicos estáveis e de baixa solubilidade. Os teores máximos e mínimos de cobre obtidos pelas soluções DTPA, Mehlich-1 e Mehlich-3 na camada superficial foram respectivamente de 73,3, 77,0 e 81,68 % e de 36,9, 56,1 e 58,8 %. Em subsuperfície os teores máximos variaram de 72,4, 76,9 e 79,9 % e os mínimos de 44,2, 53,4 e 46,6 %, sendo maior a quantidade extraída na camada superficial na maior parte dos casos (Figura 14). A superioridade da solução Mehlich-3 na capacidade de extrair metais também foi comprovado por Santos Neto (2003), em estudo comparativo entre diversas soluções extratoras em diferentes amostras de solos da Bahia e de Minas Gerais.

Figura 14. Percentual de recuperação de cobre pelos extratores DTPA, Mehlich-1 e Mehlich-3 nos solos estudados.

Os resultados obtidos para o chumbo mostram que o DTPA foi o segundo extrator mais eficiente em extrair o elemento em várias amostras de solos. O DTPA atua como agente quelante podendo deslocar o elemento dos sítios de troca mediante a formação de complexos solúveis que reduzem a atividade dos íons em solução, os quais são dessorvidos dos sítios de troca ou dissolvidos de fases sólidas para manter a atividade em solução (Norvell, 1984). A quantidade de chumbo extraída pelos extratores DTPA, Mehlich-1 e Mehlich-3 foram de 41,5 a 77,8%, 48,1 a 73,0 % e de 42,3 a 86,45 % na camada superficial e de 40,7 a 72,5 %, 43,8 a 68,9 % e de 48,5 a 86,6 % na camada subsuperficial, respectivamente (Figura 15). Segundo Kabata-Pendias e Pendias (2001), o chumbo é um elemento que apresenta no solo afinidade por constituintes, como os compostos orgânicos. O DTPA, por atuar como agente complexante pode competir pelo chumbo com os compostos orgânicos do solo, extraindo, em razão desse comportamento, maiores teores desse elemento do solo, em relação à solução ácida de Mehlich-1.

Figura 15. Percentual de recuperação de chumbo pelos extratores DTPA, Mehlich-1 e Mehlich-3 nos solos estudados.

7.2. Disponibilidade de metais avaliada pelos procedimentos de extração sequencial

No fracionamento químico dos metais, a fração denominada lábil, atribuída à fração F1, que inclui os metais dissolvidos na solução do solo e/ou eletrostaticamente associados aos solos (fracamente adsorvidos), podem ser retirados por outros íons que estejam em maior concentração, maior carga, trocados mais lentamente por íons semelhantes do próprio solo ou exudados de plantas. Os metais pesados extraídos nesta fração são os mais importantes, uma vez que são considerados os mais potencialmente disponíveis (a curto prazo). É importante enfatizar que, dependendo do tipo de matéria orgânica, a fração lábil também pode incluir os metais na forma de complexos orgânicos solúveis que dependendo do extrator empregado podem em parte ser extraídos em F1.

A recuperação de cádmio, cobre, chumbo e zinco extraído dos diferentes solos pelos dois procedimento de extração podem ser verificados a seguir. Em termos percentuais, de acordo com o procedimento de extração proposto por Egreja Filho (2000) a distribuição de cádmio em cada fração, em relação ao total obtido pela digestão das amostras foi de: 0 a 76,57% na fração solúvel e trocável; 0 a 75,23% na fração associada aos óxidos de ferro e de alumínio; 0 a 18,46% adsorvidos à matéria orgânica; 0 a 6,41% ocluídos aos óxidos de alumínio; 0 a

11,06% ocluídos aos óxidos de ferro cristalinos e 1,07 a 39,22% na fração residual (Figura 16).

No fracionamento proposto pela BCR (1993) a extração de cádmio apresentou um comportamento similar, sendo a fração solúvel em ácido a mais significativa e a fração oxidável a menos expressiva (Figura 17). O percentual de cádmio extraído com ácido acético foi na maioria dos casos superiores aos extraídos de F1 com solução de KNO₃.

De acordo com Alloway (1995), o ácido acético tem capacidade de extrair metais correspondentes às frações solúvel em água e trocável. No caso deste estudo, pela quantidade extraída com ácido acético, é bem provável que este extrator tenha sido capaz de dissolver também frações solúveis da matéria orgânica e/ou fases amorfas e fracamente cristalinas de óxidos de Fe e de Al deslocando cádmio ligado a estes compostos. Analisando os teores médios de cádmio extraído com ácido acético, verifica-se que as porcentagens extraídas em relação ao total variaram de 49,38 a 84,69% e de 44,21 a 77,41% nos horizontes A e B, respectivamente.

Figura 16. Extração de cádmio pelo procedimento proposto por Egreja Filho (2000).

Figura 17. Extração de cádmio pelo procedimento proposto por BCR.

A contribuição da fração de maior interesse ambiental, mais lábil, em ambos os procedimentos de extração, apresentou o Cambissolo Háplico Tb distrófico típico e o Neossolo Quartzarênico órtico latossólico (10 e 14) como os de mais fácil disponibilização do metal. Em contrapartida, o Chernossolo Argilúvico Carbonático saprolítico e o Cambissolo Háplico Tb eutrófico latossólico (8 e 9) foram os solos que menos disponibilizaram o elemento, destacando-se o procedimento em que se emprega KNO₃ como extrator de F1.

Dentre as frações estudadas, verifica-se no procedimento com seis etapas, que o maior percentual de recuperação de cádmio deu-se nas frações solúvel/trocável e adsorvido em óxidos de ferro e de alumínio (F1 e F2), enquanto que no procedimento BCR as frações que possibilitam uma maior disponibilidade do elemento foram a extraída em ácido acético e posteriormente a redutível. A grande associação do metal com a fração F1 (extraído com KNO₃) indica possivelmente, a maior participação de ligações menos energéticas (eletrostáticas) e, conseqüentemente, possibilita uma maior redisponibilização do elemento nos solos.

No procedimento constituído de seis frações, o cádmio apresentou-se também retido nas frações orgânica e residual (F3 e F6) em praticamente todos os solos, e em menor extensão nas frações ocluídas aos óxidos de alumínio e aos óxidos de ferro cristalinos (F4 e F5). A grande quantidade de cádmio em F6 é um fator inesperado, pois sendo este um fracionamento constituído de um número considerável de frações, era esperado que as quantidades de

cádmio nesta fração fossem menores que as obtidas pela BCR. Este útlimo, mostraram as frações oxidável e residual como menos importantes na extração do elemento.

Resultados semelhantes aos aqui obtidos foram relatados por Ahnstrom e Parker (1999) que verificaram até 80% de recuperação do cádmio até a fração orgânica, que era a segunda fração do processo utilizado. Benitez e Dubois (1998), utilizando três diferentes processos de extração seqüencial para extração de cádmio, verificaram que o metal era principalmente extraído nas frações mais disponíveis, com muito pouco na fração residual quando esta existia. Diferentemente do observado por Benitez e Dubois (1998), Egreja Filho (2000) e Nascentes (2006), no presente trabalho, foram extraídas quantidades consideráveis de cádmio retido na fração residual, comportamento similar ao observado por Ma e Rao (1997) que relataram que mais do que 91% de cádmio total dos solos foram associados à fração residual.

O percentual de zinco recuperado pelo fracionamento nos dois procedimentos de extração pode ser verificada nas Figuras 18 e 19. O zinco apresentou-se distribuído em quase todas as frações do solo e sua distribuição também tem grande dependência do pH. Sua distribuição em cada fração, em relação ao total obtido da digestão das amostras é de: 0 a 63,40 % na fração solúvel e trocável; 7,70 a 62,29 % associados aos óxidos de ferro e de alumínio; 0 a 18,50 % ligados à matéria orgânica; 0 a 11,77 % ligados aos óxidos de alumínio; 0,36 a 20,20% ligados aos óxidos de ferro cristalino e de 0,75 a 49,09% na fração residual. Os dados obtidos do fracionamento apontam na maior parte dos casos para a seguinte ordem de distribuição: F2 > F1 > F6 > F5 > F3 > F4, sendo encontrado principalmente nas formas solúvel/trocável, óxidos de ferro e de alumínio e residual. Essa distribuição assemelha-se em parte a encontrada por André et al., (2003) que encontraram grande quantidade de zinco associado às frações residual, ligado a óxidos de ferro e zinco trocável em solos do Estado de São Paulo.

No procedimento BCR, considerando-se o número total de amostras verificou-se que a capacidade dos extratores em extrair zinco nas diferentes frações, deu-se na seguinte ordem: $F1 \approx F4 > F3 > F2$. A fração F1 neste procedimento de extração foi para vários solos uma das frações que mais extraiu o metal. Por exemplo, nas amostras 4A, 4B, 5A, 5B, 8A, 8B, 9A, 9B, 11A e 12A o teor de zinco extraído na fração F1 foi muito baixo em relação às amostras 1A, 1B, 6A, 6B, 7A, 7B, 10A, 10B, 14A e 14B que extraíram mais do que 40 % de zinco.

Araújo e Nascimento (2005) avaliando a disponibilidade zinco por diferentes extratores em solos incubados com lodo de esgoto verificaram que os maiores teores de zinco foram encontrados nas frações: residual > matéria orgânica > trocável > óxidos de ferro cristalino > óxido de ferro amorfo e que a maior recuperação de zinco das amostras foi obtida pelos extratores ácidos Mehlich-1 e Mehlich-3; no entanto todos foram eficientes na predição da disponibilidade do elemento.

Figura 18. Extração de zinco pelo procedimento proposto por Egreja Filho (2000).

Figura 19. Extração de zinco pelo procedimento proposto por BCR.

Em ambos os procedimentos de extração, é notável o diferente comportamento dos solos 8A, 8B, 9A e 9B em relação aos demais, destacando-se a Figura 18. Nestes solos a porcentagem de metal extraída na fração de maior disponibilidade foi praticamente nula. A maior retenção de zinco em sítios específicos da matriz, nos solos apresentados se deve a variadas características dos mesmos, sobretudo ao maior pH desses solos bem como às elevadas energias de adsorção (k) por eles apresentadas. Conforme descrito por Silveira et al., (2002) a diferença na distribuição de zinco em função do pH pode ser devida à forma na qual o metal é retido no solo. Em valores de pH mais baixos o zinco pode ser retido no solo por reações de troca, enquanto em valores de pH mais elevados, mecanismos de adsorção específica passam a ser mais importantes. Esta disponibilização em pH mais baixo está ecidente na fração F1 do procedimento BCR.

O zinco mostrou extração não desprezível na fração associada com a matéria orgânica (procedimento de seis etapas) no horizonte A dos solos 3, 5, 7, 9, 11, 13 e 15, obtendo teores máximo extraído de 16,15% e 18,50% para os solos Latossolo Vermelho Perférrico húmico e Cambissolo Háplico distrófico (5 e 13). No procedimento de extração em três etapas verifica-se também a importância da fração oxidável para esse metal.

Verificou-se pequena recuperação de zinco na fração ligada aos óxidos de alumínio (fração F4) para algumas amostras. A maior percentagem de recuperação foi obtida no horizonte A dos solos 8, 9, 10 e 15, sendo que o teor máximo extraído não ultrapassou 12%. O zinco adsorvido aos óxidos de ferro cristalinos (F5) teve importância para algumas amostras principalmente nas mais intemperizadas. O percentual extraído entre os diferentes solos e horizontes foi de 0,36 e 20,20% de zinco, sendo o horizonte A dos solos 1, 4, 5 e 9 e o horizonte B dos solos 1, 5 e 6 os que mais recuperaram o metal. A fração ligada aos óxidos de ferro foi, entre as formas de adsorção específica, uma das que reteve o zinco em quantidades consideráveis.

As formas de zinco que resistiram a todas as extrações prévias foram determinadas por digestão total das amostras na fração residual. A ocorrência de zinco nesta fração do solo já poderia existir nessa forma por um processo de longa data, podendo sua ocorrência ser devido à presença de zinco herdado do material de origem, encontrado na estrutura de minerais silicatados e de óxidos de ferro e de alumínio, bem como a presença de zinco retido fortemente na superfície dos componentes da fração húmica e dos óxidos de ferro e de alumínio cristalinos. Para os solos estudados, a mínima e máxima percentagem de zinco extraído na fração residual nos processos contendo seis e três frações foi de 3,52 e 49,09% e de 13,07 e 76,02%, respectivamente.

Ma e Rao (1997) fracionando zinco de solos contaminados relataram que o elemento se concentrou em maiores proporções na fração residual apesar de também estar presente em outras frações. A percentagem total de zinco na fração residual variou de 55,8% a 97,6%, refletindo a grande tendência do metal de se encontrar em formas não disponíveis. Contudo, nossos resultados comprovam que a escolha do procedimento de extração afeta os resultados obtidos pela fração residual. Portanto, deve-se ter cuidado quanto à interpretação dos resultados, principalmente desta fração. A percentagem de zinco presente na fração não residual foi de 2,4% a 44,20% de zinco, sendo grande parte desta percentagem obtida da fração associada aos óxidos de ferro e de manganês e parte extraída da fração trocável e ligada a carbonatos.

A distribuição de cobre obtida pelos dois procedimentos de extração mostrou que o elemento apresenta-se menos móvel no perfil do solo em relação a cádmio e zinco e predominou em formas pouco disponíveis em um número considerável de amostras. Entretanto, é notável a maior recuperação do metal quando o extrator de F1 utilizado é o ácido acético (BCR) em relação ao KNO₃ (Egreja Filho, 2000).

Dos solos investigados, alguns apresentaram pequenas quantidades de cobre na fração solúvel/trocável, sendo as maiores quantidade extraídas do metal na fração F1 obtidas pelos solos 6B, 10A, 10B, 11A, 11B, 12B, 13B, 14A, 14B e 15B. Em contrapartida, nos solos 1A, 1B, 2A, 2B, 3B, 5A, 7A, 7B, 12A e 15A a recuperação foi inferior a 4% e nos solos 5B, 8A, 8B, 9A e 9B não houve recuperação de cobre na fração F1 (Figura 20). Estes resultados concordam com Sposito et al., (1982), que obtiveram valores de cobre associado à fração solúvel e trocável inferior a 4% do cobre total. Segundo muitos autores (Pickering, 1981 e Das et al., 1995), esse é o perfil típico de recuperação do metal na maioria dos solos submetidos a extrações seqüenciais.

O cobre extraído empregando-se o procedimeno BCR apresentou um padrão de recuperação na seguinte ordem: F4 > F1 > F3 > F2 (Figura 21). Verifica-se que o cobre e mais adiante também o chumbo, apresentam uma distribuição mais homogênea entre as frações quando comparado com o cádmio e o zinco. O percentual de cobre recuperado em F1 foi superior ao extraído pelo fracionamento em seis etapas e sua participação na fração residual é percentualmente maior (24,21 a 64,96%) quando comparado às frações F2 e F3.

O cobre extraído na fração F2, onde o metal se encontra adsorvido fortemente em óxidos de ferro e de alumínio foi fração predominante no procedimento em seis etapas. Segundo McBride (1994), o cobre é dentre os íons metálicos um dos mais adsorvidos por óxidos de ferro. O mesmo autor comenta que apesar da alta afinidade do cobre por óxidos de

alumínio, esta interação é menor do que a afinidade do metal pelos óxidos de ferro. Em contrapartida, no procedimento BCR a fração redutível mostou-se menos expressiva na extração de cobre, comportamento este que provavelmente ocorreu em função da baixa capacidade do extrator para os óxidos de ferro cristalino.

Figura 20. Extração de cobre pelo procedimento proposto por Egreja Filho (2000).

Figura 21. Extração de cobre pelo procedimento proposto por BCR.

Em todos os solos estudados, a presença de matéria orgânica em maior quantidade no horizonte superficial explica a maior parcela de cobre extraída na fração F3 em ambos procedimentos de extração. A Figura 20 mostra que dos quinze horizontes superficiais, os das amostras 3, 5, 8, 9, 11 e 13 foram os que extraíram o metal associado à fração orgânica em maiores proporções. Comportamento similar foi obtido para as amostras 2, 3, 8, 9, 13 e 15 segundo o procedimento BCR. Embora a importância da matéria orgânica na retenção de cobre em solos seja relatada em diversas publicações, a porcentagem máxima do metal associado a essa fração foi de 11,8 % e 55,9 % nos procedimentos em três e seis etapas, respectivamente. Variação de 1,2 % a 3,9 % de cobre total associado à matéria orgânica em amostras de solo com teor de matéria orgânica entre 0,4 e 10,6% foram obtidas por Kuo et al., (1983). Estes autores não encontraram correlação entre teor total de matéria orgânica do solo e cobre retido nessa fração. Segundo McBride et al., (1997) dependendo do complexo formado entre compostos orgânicos e cobre, a solubilidade do metal pode aumentar e favorecer a migração do mesmo no perfil do solo. McLaren e Crawford (1973), estudando 24 diferentes solos, concluíram que, em média, 50% do cobre estavam associados à fração residual, 30% a fração orgânica e 15% aos óxidos de ferro cristalinos, sendo estas três fases a de maior estabilidade para o metal.

A fração associada com a retenção de cobre aos óxidos de ferro e de alumínio (F2) e a oclusão do metal a estes constituintes (F5) foi fração importante para várias amostras de solos. Os solos 1, 2, 3, 5 e 6 com os maiores teores de óxidos de ferro cristalino extraídos (Tabela 5) foram os que apresentaram os maiores teores de cobre recuperado na fração F5. Nos solos estudados, o cobre foi encontrado relacionado principalmente às frações ligadas a óxidos de ferro e de alumínio (F2) e residual (F6), com teores extraídos variando entre 32,62 e 83,05% e de 0,04 e 31,86% do total. O alto índice de retenção de cobre na fração residual é indicativo de forte ligação do metal à matriz do solo. Kaasalainen & Yli-Halla (2003) avaliando a partição de metais em solos da Finlândia relataram que a proporção média de cobre e de zinco na fração residual é de 70% e 84%, sendo, entretanto, esta elevada percentagem reflexo da concentração de metal nativo nos solos estudados.

A imobilidade do cobre normalmente é atribuída à formação de complexos organometálicos estáveis e de baixa solubilidade. Além da complexação com substâncias orgânicas, Matos et al., (1996) salientaram que a imobilização do cobre pode ser devida também a sua ligação a frações não trocáveis do solo o que foi comprovado por Amaral Sobrinho et al., (1997) os quais verificaram em um Argissolo vermelho amarelo com baixos teores de matéria orgânica, que o cobre estava quase que totalmente ligado à fração residual e a óxidos de Fe e de Mn. Ma e Rao (1997) estudando o fracionamento de cobre em nove solos contaminados relataram que em média o percentual de cobre associado com as frações seguiu a ordem: residual > orgânico > óxidos de Fe-Mn > carbonato > trocável > solúvel em água. Agbenin e Atin (2003) investigando as características de sorção de cobre em solos ácidos da Nigéria relataram que o fracionamento do cobre adsorvido mostrou que entre 51 e 62% do cobre adsorvido estava na fração residual, enquanto que a forma ligada à matéria organica representou em média, menos do que 20% do cobre adsorvido.

O fracionamento de chumbo nos solos revelou que este é um dos metais pesados menos móveis, estando muitas vezes ligado fortemente a matriz do solo, indisponível às plantas e aos extratores químicos. A contribuição da fração de maior interesse ambiental, mais lábil (F1), não foi expressiva para o chumbo em nove dos quinze solos estudados. A mínima e máxima quantidade extraída nos procedimentos com três e seis etapas variou de 0,00 a 66,72% e de 12,31 a 43,69%, respectivamente (Figuras 22 e 23) sendo mais expressiva no procedimento BCR.

A Figura 22 mostra a predominância de chumbo nas frações associadas aos óxidos de ferro e de alumínio e residual (F2 e F6) na grande maioria dos solos, concentrando-se principalmente na fração F2. Essa distribuição confirma o comportamento típico deste elemento em solos contaminados, ou seja, apresenta alta retenção, baixa mobilidade e biodisponibilidade (Allloway, 1995). Por esse motivo, o chumbo é considerado um dos metais menos móveis no solo, podendo ser complexado pela matéria orgânica, ser adsorvido de forma específica (quimiossorção) em óxidos e minerais silicatados e precipitado como carbonato, hidróxido ou fosfato em condições de alto pH (McBride, 1994).

As pequenas (ou nulas) porcentagens de chumbo extraídas nas frações solúvel e trocável em solos como 8 e 9, indicam a pequena contribuição da adsorção não-específica (eletrostática) para este elemento. Entre os solos que mais disponibilizaram o metal, pode-se citar o Cambissolo Háplico Tb distrófico típico, Plintossolo Pétrico concrecionário distrófico, Plintossolo Pétrico concrecionário distrófico (solos 10, 11, 12) e principalmente o Neossolo Quartzarênico órtico latossólico (solo 14). Esses solos apresentam características que contribuem para a disponibilização do elemento como menor teor de argila, são solos mais ácidos, apresentam baixos teores de matéria orgânica e de CTC.

Figura 22. Extração de chumbo pelo procedimento proposto por Egreja Filho.

Figura 23. Extração de chumbo pelo procedimento proposto por BCR.

As demais frações de chumbo extraídas representam as formas mais estáveis do metal, indicando menor possibilidade de passagem para a solução do solo, devido à interação mais forte com a superfície dos minerais e da matéria orgânica. A fração orgânica das camadas

superficiais de alguns solos assumiu também posição de realce, pois foram observados índices de recuperação em torno de 13,42% e 48,15% de chumbo. Esses índices de recuperação confirmam a conhecida capacidade deste cátion de participar da formação de complexos orgânicos. A extração de chumbo na fração F4, na qual o metal estaria ocluído em óxidos de alumínio foi desprezível para grande parte dos solos, sendo extraídas de 0 a 5,52% de chumbo nesta fração. Resultados semelhantes foram observados nos solos estudados por Egreja Filho (2000) que considerou a extração de chumbo nesta fração como não detectável.

Os resultados obtidos da fração F5 na qual o chumbo estaria ocluído em óxidos de ferro cristalino foram importantes para algumas amostras, com destaque para o Latossolo Vermelho Perférrico húmico (LVj) que mais reteve o metal nesta fração. Foram extraídas de 0 a 13,67% de chumbo nesta fração. A baixa recuperação deste elemento em muitos dos solos pode ser atribuída a impossibilidade de inclusão do chumbo no interior dos óxidos, em função de seu elevado raio iônico.

Semelhantemente ao observado por vários autores, uma quantidade considerável de chumbo permaneceu retida nas estruturas cristalinas de silicatos (fração residual) perfazendo índices percentuais variando de 0,81% a 40,74% do total retido. O predomínio dessa forma de retenção é indicativo de forte ligação e/ou forte complexação do chumbo à matriz do solo. Os percentuais recuperados pelo procedimento BCR variaram de 0,92 a 13,83% de chumbo.

No estudo realizado por Barona e Romero (1996) a distribuição de chumbo nos solos foi mais importante na fração residual (40 a 70% do conteúdo de Pb total) e na fração associada com os óxidos de ferro e de manganês (22 a 38%).

Em geral, dentre as diferentes amostras de solos estudadas, nota-se que um dos maiores percentuais de recuperação, para todos os extratores, ocorreu nos solos mais arenosos (Cambissolo Háplico Tb distrófico típico e Neossolo Quartzarênico órtico latossólico) e de mais baixos valores de pH. Já os menores teores extraídos refere-se aos solos 8 e 9 (Chernossolo Argilúvico Carbonático saprolítico e Cambissolo Háplico Tb eutrófico latossólico) que possivelmente ocorreram devido aos maiores valores de pH dessas amostras.

A menor disponibilidade de elementos como cobre e chumbo nos solos ocorrem provavelmente devido a sua ligação aos colóides do solo ser preferencial em relação a íons como cádmio e zinco, de menor afinidade. Metais mais eletronegativos formam as mais fortes ligações covalentes com os átomos de oxigênio dos minerais e são preferencialmente adsorvidos. Daí entender-se a maior seletividade dos minerais do solo à adsorção de cobre e de chumbo, cuja eletronegatividade é 1,90 e 1,80 respectivamente, comparativamente ao cádmio (1,70) e ao zinco (1,65). Embora quantidade substancial de cobre e de chumbo tenha

sido detectada, a maior parte do cobre e principalmente do chumbo encontram-se em formas menos disponíveis. Anderson (1988) pesquisou a distribuição de cádmio, chumbo, cobalto, cobre, manganês e zinco ao longo de perfis de solos e na camada superficial e mostrou que os processos formadores de solos trazem como conseqüência uma separação desses elementos entre os vários componentes, o que provoca diferenças no padrão de distribuição. Concluiu que os raios iônicos têm um papel importante nessa separação com correlação positiva entre a quantidade de metal extraída e o teor de argila das amostras em função da diminuição dos raios iônicos dos elementos.

7.3. Comparação das extrações discretas com as sequenciais

Sendo o procedimento de extração sequencial (seis frações) o mais adequado para se fazer um diagnóstico mais exato da distribuição dos elementos nos solos e se inferir sobre sua disponibilidade, o mesmo foi utilizado para comparação dos resultados obtidos pela BCR e pelos extratores DTPA, Mehlich-1 e Mehlich-3 para definir que fases esses extratores retiram, ou seja, o procedimento foi utilizado como fonte de calibração para os demais.

Na extração de cádmio, verificou-se para a grande maioria das amostras que o acesso dos extratores DTPA, Mehlich-1 e principalmente Mehlich-3 às frações, vão além da fração F1 (solúvel e trocável). Somente as amostras 1A, 1B, 10A, 10B e 12B extraídas com DTPA, 1A 1B, 11B e 12B extraídas com Mehlich-1 e 4B, 12B extraídas com Mehlich-3 é que extraíram o metal apenas de F1. Para representar a extração do cádmio foram escolhidas as amostras mostradas na Figura 24.

Ao se comparar o procedimento BCR com o proposto por Egreja Filho (constituído de seis frações), verificou-se para quase todos os solos (1A, 1B, 2 A, 3A, 4 A, 5 A, 5B, 6 A, 6B, 7 A, 8 A, 8B, 9A, 9B, 10 A, 11 A, 12 A, 13 A, 15A e 15B) que a fração F1 da BCR extrai não somente as formas realmente solúvel e trocável, como também as formas de metais adsorvidos fortemente em óxidos de ferro e de alumínio. No caso das amostras 2B, 3B, 4B, 7B, 13B, 14A, 14B as formas extraídas atingiu a fração residual (F6). Em contrapartida, nos solos 11B e 12B a recuperação de cádmio pela fração F1 da BCR não ultrapassou F1 extraído com KNO₃.

Figura 24. Percentual de recuperação de cádmio nas amostras 1A, 12B, 8A e 14B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

Os dados obtidos para a extração do cobre revelam que para os três extratores simples (DTPA, Mehlich-1 e Mehlich-3) o teor de cobre extraído esteve além da fração solúvel e trocável (F1). Comportamento semelhante foi verificado para a maior parte das amostras, no fracionamento BCR, quando se compara a extração de cobre pelo extrator ácido com o teor extraído de F1 com a solução de (KNO₃). Quanto a recuperação de chumbo, o acesso dos extratores simples, DTPA, Mehlich-1 e Mehlich-3, ultrapassou a fração F1, equivalendo-se na maior parte das amostras à soma de F1 e F2. Entretanto, no fracionamento BCR verifica-se para as amostras 10A, 11A, 11B, 12A, 12B, 13A, 14A e 14B equivalência com a recuperação de cobre nas amostras 3A e 15B e de chumbo nas amostras 6A e 13A nas Figuras 25 e 26, respectivamente.

Figura 25. Percentual de recuparação de cobre nas amostras 3A e 15B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

Figura 26. Percentual de recuparação de chumbo nas amostras 6A e 13A pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

A extração do zinco pelos diferentes extratores, evidenciaram que o DTPA conseguiu retirar o metal além de F1+F2. As amostram que retratam esse comportamento foram, 2A, 4A, 4B, 6A, 6B, 7A, 7B, 9A, 10A, 10B, 12A, 12B, 13B, 14A, 14B. Comportamento similar foi observado para quase todas as amostras empregando-se os extratores Mehlich-1 e Mehlich-3, exceto em 5A, 5B, 11A, 11B, 13A, 15A e 15B que extraíram zinco até a fração F2 (adsorvido fortemente em óxidos de ferro e de alumínio). Na Figura 27 são apresentados os percentuais de recuperação de zinco para as amostras 4A, 5A, 7A e 13A.

Pelos resultados pode-se verificar que mesmo em amostras em que um determinado metal não esteja tão disponível, uma redução do pH pode disponibilizar grandes quantidades do elemento. Esta disponibilização em pH mais baixo está evidente na fração F1 do procedimento BCR.

Figura 27. Percentual de recuparação de zinco nas amostras 4A, 5A, 7A e 13A pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

7.4. Correlação entre as taxas de recuperação dos extratores

Embora os extratores Mehlich-3, Mehlich-1 e DTPA tenham diferido na capacidade de extração dos metais, apresentando na maior parte dos casos maior quantidade extraída pelo extrator Mehlich-3, houve correlação significativa entre os métodos para Cd, Cu, Pb e Zn, (Tabela 18). Para o cádmio, a taxa de recuperação por DTPA se correlacionou com a taxa de

recuperação pelos extratores Mehlich-1 (0,96*) e Mehlich-3 (0,95*) e a taxa de recuperação pelo Mehlich-1 se correlacionou com a do Mehlich-3 (0,97*). As correlações foram sempre significativas e maiores entre Mehlich-1 e Mehlich-3 possivelmente pelo caráter ácido de ambas e semelhança quanto à solubilização das formas dos elementos nos solos. Os maiores valores dessas correlações foram verificados para cobre e zinco, seguido do cádmio e posteriormente do chumbo. Para os elementos cobre e zinco a correlação entre os extratores DTPA e Mehlich-1 e entre Mehlich-1 e Mehlich-3 foram similares. Os valores dos coeficientes de correlação foram menores ao se comparar o DTPA com os dois extratores ácidos para todos os metais.

Tabela 18. Coeficientes de correlação linear simples entre os teores de cádmio, cobre, chumbo e zinco extraído por Mehlich-3, Mehlich-1 e DTPA

Metais	DTPA x Mehlich-1	DTPA x Mehlich-3	Mehlich-1x Mehlich-3
Cádmio	0,96*	0,95*	0,97*
Cobre	0,91*	0,90*	0,98*
Chumbo	0,87*	0,91*	0,94*
Zinco	0,91*	0,93*	0,98*

*Significativo a 5%; ns: não significativo.

A análise de correlação dos extratores DTPA, Mehlich-1 e Mehlich-3 e os atributos dos solos revelou que para os elementos estudados foi possível identificar o cádmio como o elemento que apresentou maior correlação com o pH (-0,73*, -0,78* e -0,66*) e com a CTC dos solos (-0,60*, -0,55* e -0,46*). A correlação negativa entre essas variáveis indica que quanto mais elevado for o pH dos solos menor será a recuperação do elemento (Tabela 19).

Tabela 19. Coeficiente de correlação linear simples entre as características dos solos e os teores de cádmio, cobre, chumbo e zinco recuperados pelos extratores DTPA, Mehlich-1 e Mehlich-3 das amostras de solos estudados

		DTP.	A			Mehlic	h-1			Mehlich	n-3	
	Cd	Cu	Pb	Zn	Cd	Cu	Pb	Zn	Cd	Cu	Pb	Zn
pН	-0,73*	-0,55*	-0,67*	-0,58*	-0,78*	-0,53*	-0,45*	-0,50*	-0,66*	-0,39*	-0,57*	-0,45*
Argila	-0,52*	0,55*	-0,50*	-0,43*	-0,52*	-0,26 ^{ns}	$-0,12^{ns}$	-0,03 ^{ns}	-0,65*	-0,24 ^{ns}	-0,46*	-0,17 ^{ns}
Silte	$-0,16^{ns}$	$0,06^{ns}$	-0,05 ^{ns}	-0,24 ^{ns}	-0,28 ^{ns}	$-0,20^{ns}$	-0,50*	-0,56*	-0,23 ^{ns}	-0,36*	-0,50*	-0,47*
Areia	0,56*	0,46*	0,47*	0,53*	0,63*	0,34 ^{ns}	0,45*	0,35 ^{ns}	0,72*	0,43*	0,71*	0,43*
CTC	-0,60*	-0,40*	-0,58*	-0,46*	-0,55*	-0,36 ^{ns}	-0,33 ^{ns}	-0,32 ^{ns}	-0,46*	-0,30 ^{ns}	-0,39*	$-0,20^{ns}$
COT	-0,29 ^{ns}	-0,15 ^{ns}	-0,28 ^{ns}	-0,09 ^{ns}	0,17 ^{ns}	0,11 ^{ns}	-0,12 ^{ns}	-0,27 ^{ns}	0,01 ^{ns}	-0,12 ^{ns}	-0,24 ^{ns}	-0,26 ^{ns}
Fed	-0,34 ^{ns}	-0,13 ^{ns}	-0,27 ^{ns}	-0,46*	-0,13 ^{ns}	-0,08 ^{ns}	-0,21 ^{ns}	-0,34 ^{ns}	-0,23 ^{ns}	-0,60*	-0,61*	-0,65*
Feo	-0,39*	-0,05 ^{ns}	-0,44*	-0,52 *	-0,24 ^{ns}	-0,05 ^{ns}	-0,33 ^{ns}	-0,38*	-0,35 ^{ns}	-0,54*	-0,66*	-0,51*
Ald	-0,34*	-0,06 ^{ns}	-0,24 ^{ns}	-0,44*	-0,12 ^{ns}	-0,08 ^{ns}	-0,14 ^{ns}	-0,42*	-0,16 ^{ns}	-0,61*	-0,53*	-0,67*
Alo	-0,41*	$-0,22^{ns}$	-0,40*	-0,30 ^{ns}	-0,15 ^{ns}	-0,08 ^{ns}	$-0,07^{ns}$	-0,21 ^{ns}	-0,30 ^{ns}	-0,22 ^{ns}	-0,36 ^{ns}	-0,30 ^{ns}

*Significativo a 5%; ns não significativo.

O pH também teve influência sobre a recuperação de cobre, chumbo e zinco pelos extratores Mehlich-3, Mehlich-1 e DTPA apresentando negativos coeficientes de correlação. Também houve correlação significativa entre a CTC e o extrator DTPA para cobre, chumbo e

zinco, entre CTC e Mehlich-1 para cádmio e entre CTC e Mehlich-3 para cádmio e chumbo. A tendência de que ocorra menor extração de cádmio, cobre, chumbo e zinco em solos com maiores teores de argila, foi constatada neste trabalho, no entanto, é sabido que as reações que promovem a retenção de metais pesados ocorrem sempre nas frações mais finas e que solo de textura mais grosseira, deve favorecer a mobilidade desses metais.

É conhecida a importante relação entre as superfícies dos óxidos de ferro e de alumínio para com os metais. No estudo de correlação os extratores que assumiram importância perante esses constituintes dos solos são: o DTPA se correlacionou com os óxidos de ferro cristalino para zinco e o Mehlich-3 para cobre, chumbo e zinco, enquanto que para os óxidos de ferro amorfos houve correlação com o DTPA para o cádmio, chumbo e zinco, com o Mehlich-1 para zinco e com o Mehlich-3 para cobre, chumbo e zinco. Para os óxidos de alumínio cristalino houve influência do DTPA na extração de Cd e Zn e os extratores Mehlich-1 e Mehlich-3 influiram na extração de zinco e de cobre, chumbo e zinco, respectivamente.

A partir da análise de correlação entre as taxas de recuperação dos extratores Mehlich-3, Mehlich-1 e DTPA e a taxa de recuperação de F1 (considerada de maior labilidade), fez-se uma previsão da disponibilidade dos elementos nos solos (Tabelas 20 e 21).

Tabela 20. Coeficiente de correlação linear simples entre os teores de cádmio, cobre, chumbo e zinco pelos extratores DTPA, Mehlich-1 e Mehlich-3 e as frações desses elementos (F1: solúvel e trocável, F2: adsorvida fracamente em óxidos de ferro e de alumínio, F3: ligado à matéria orgânica, F4: adsorvido fortemente em óxidos de alumínio, F5: adsorvido fortemente em óxidos de ferro cristalino e F6: residual) das amostras de solos estudados

	F1	F2	F3	F4	F5	F6
			Cádmio			
DTPA	0,62*	0,25*	0,45*	0,11 ^{ns}	$-0,12^{ns}$	$-0,08^{ns}$
Mehlich -1	0,56*	0,33*	0,49*	0,16 ^{ns}	-0,14 ^{ns}	-0,08 ^{ns}
Mehlich-3	0,54*	0,36 ^{ns}	0,44*	0,18 ^{ns}	$-0,26^{ns}$	$-0,05^{ns}$
			Cobre			
DTPA	0,39*	0,73*	0,57*	0,05 ^{ns}	0,07 ^{ns}	0,16 ^{ns}
Mehlich -1	0,23 ^{ns}	0,82*	0,59*	0,14 ^{ns}	0,17 ^{ns}	0,13 ^{ns}
Mehlich -3	0,27 ^{ns}	0,77*	0,54*	0,12 ^{ns}	0,14 ^{ns}	0,18 ^{ns}
			Chumbo			
DTPA	0,52*	0,53*	0,41*	0,14 ^{ns}	0,19 ^{ns}	0,01 ^{ns}
Mehlich -1	0,50*	0,65*	0,55*	0,28 ^{ns}	0,21 ^{ns}	0,26 ^{ns}
Mehlich -3	0,46*	0,56*	0,46*	0,23 ^{ns}	0,05 ^{ns}	0,18 ^{ns}
			Zinco			
DTPA	0,52*	0,42*	0,67*	0,46*	0,05 ^{ns}	0,32 ^{ns}
Mehlich -1	0,53*	0,35	0,56*	0,43*	0,10 ^{ns}	0,31 ^{ns}
Mehlich -3	0,44*	0,41*	0,56*	0,42*	0,12 ^{ns}	0,39*

*Significativo a 5%; ns: não significativo.

Tabela 21. Coeficiente de correlação linear simples entre os teores de cádmio, cobre, chumbo e zinco pelos extratores DTPA, Mehlich-1 e Mehlich-3 e as frações desses elementos (F1: trocável, F2: redutível, F3: oxidável, F4: residual das amostras de solos estudados

Extratores	F1	F2	F3	F4
		Cádmio		
DTPA	0,96*	0,37*	0,08 ^{ns}	-0,01 ^{ns}
Mehlich -1	0,95*	0,44*	0,18 ^{ns}	-0,05 ^{ns}
Mehlich-3	0,92*	0,45*	0,16 ^{ns}	-0,03 ^{ns}
		Cobre		
DTPA	0,59*	0,46*	0,51*	0,68*
Mehlich -1	0,43*	0,58*	0,65*	0,67*
Mehlich-3	0,41*	0,59*	0,66*	0,62*
		Chumbo		
DTPA	0,70*	0,72*	0,47*	0,54*
Mehlich -1	0,73*	0,76*	0,62*	0,45*
Mehlich-3	0,70*	0,79*	0,58*	0,43*
		Zinco		
DTPA	0,52*	0,29 ^{ns}	0,21 ^{ns}	0,52*
Mehlich -1	0,64*	0,27 ^{ns}	0,23 ^{ns}	0,37*
Mehlich-3	0,56*	0,30 ^{ns}	0,25 ^{ns}	0,43*

*Significativo a 5%; ns: não significativo.

Em geral, no procedimento constituído de seis etapas, as menores correlações foram obtidas para as frações consideradas mais estáveis para todos os extratores, sendo as frações F1, F2 e F3 as de maior significado. Isto indica que os extratores removem, preferencialmente, os metais localizados nos sítios mais disponíveis, não conseguindo acessar os metais localizados nas frações de maior estabilidade, como por exemplo, o acesso à fração residual. Todos os extratores testados apresentaram correlação positiva e significativa com a fração solúvel e trocável, consideradas mais biodisponível. No procedimento BCR, verifica-se a participação das quatro frações na recuperação de cobre e chumbo e maior importância das frações F1 e F2 na extração de cádmio e de F1 e F4 na extração de zinco.

Para o cádmio disponível, os resultados mostraram que o DTPA apresentou a maior correlação com a fração F1 o que sugere ser um importante extrator em estimar a disponibilidade do elemento nos solos. Para o zinco o Mehlich-1 apresentou a maior correlação e para o cobre e o chumbo a estimativa da disponibilidade foi melhor avaliada pelo DTPA seguido do extrator Mehlich-1.

A análise de correlação das frações e os atributos dos solos revelou que para os elementos estudados foi possível identificar o cádmio como o elemento que apresentou maior correlação com o pH (-0,81*) e com a CTC dos solos (-0,61*). A correlação negativa entre essas variáveis indica que quanto mais elevado for o pH dos solos menor será a recuperação do elemento (Tabela 22). O pH e a CTC também teve influência sobre a recuperação de cobre, chumbo e zinco na fração F1 apresentando negativos coeficientes de correlação.

Para os metais estudados houve correlação significativa entre os extratores e os teores de areia, porém correlação significativa e negativa entre os extratores e os teores de argila. É sabido que as reações que promovem a mais fácil dessorção de metais pesados ocorrem sempre nos solos de textura mais grosseira e que as frações mais finas (solos argilosos), devem favorecer a retenção desses elementos. Infere-se, portanto, que a recuperação do elemento foi inversamente proporcional ao pH e aos teores de argila dos solos em estudo.

As variações encontradas na recuperação dos elementos dentre os diferentes solos e frações são em geral reflexo da influência de atributos do solo como pH, teores de matéria orgânica, óxidos e argila. É conhecida a importante relação entre a matéria orgânica do solo e metais. Entre os elementos estudados, verifica-se a forte relação entre o conteúdo de matéria orgânica e a fração F3 para cobre. A superfície dos óxidos de ferro e de alumínio também teve influência na extração dos metais, com destaque para as frações F5 e F6.

Tabela 22. Correlação entre as características dos solos e as seis frações do procedimento de extração sequencial para cádmio, cobre, chumbo e zinco

Atributos	F1	F2	F3	F4	F5	F6	F1	F2	F3	F4	F5	F6
			Cádmio						Zinco			
pH	-0,81*	0,74*	0,14 ^{ns}	-0,01 ^{ns}	0,29 ^{ns}	0,13 ^{ns}	-0,67*	0,53*	-0,03 ^{ns}	0,39*	0,21 ^{ns}	0,20 ^{ns}
argila	-0,49*	0,0 ^{ns}	0,16 ^{ns}	0,08 ^{ns}	0,24 ^{ns}	0,29 ^{ns}	-0,50*	-0,04 ^{ns}	-0,34 ^{ns}	-0,03 ^{ns}	0,32 ^{ns}	0,13 ^{ns}
silte	$-0,20^{ns}$	0,39*	0,14 ^{ns}	$0,00^{ns}$	0,07 ^{ns}	0,43*	-0,34 ^{ns}	0,36	0,18 ^{ns}	0,01 ^{ns}	0,50*	0,09 ^{ns}
areia	0,55*	-0,30 ^{ns}	0,07 ^{ns}	-0,07 ^{ns}	$-0,26^{ns}$	0,00 ^{ns}	0,64*	-0,17 ^{ns}	0,20 ^{ns}	0,01 ^{ns}	-0,58*	-0,17 ^{ns}
CTC	-0,61*	0,60*	0,08 ^{ns}	0,02 ^{ns}	0,47*	$-0,09^{ns}$	-0,42*	0,46*	$-0,07^{ns}$	0,29 ^{ns}	0,11 ^{ns}	-0,01 ^{ns}
COT	0,13 ^{ns}	0,51*	0,82*	-0,00 ^{ns}	0,02 ^{ns}	-0,37*	0,21 ^{ns}	0,64*	0,81*	0,43*	0,27 ^{ns}	-0,08*
Fed	-0,21 ^{ns}	0,18 ^{ns}	0,01 ^{ns}	0,16 ^{ns}	0,07 ^{ns}	-0,42*	-0,13 ^{ns}	$0,12^{ns}$	$0,26^{ns}$	$-0,20^{ns}$	0,53*	$-0,29^{ns}$
Feo	-0,29 ^{ns}	0,35 ^{ns}	0,09 ^{ns}	0,09 ^{ns}	0,40*	-0,55*	-0,22 ^{ns}	0,28 ^{ns}	0,18 ^{ns}	$-0,08^{ns}$	0,57*	-0,17 ^{ns}
Ald	-0,23 ^{ns}	0,16 ^{ns}	0,05 ^{ns}	0,01 ^{ns}	0,04 ^{ns}	-0,40*	-0,12 ^{ns}	0,14 ^{ns}	0,26 ^{ns}	-0,13 ^{ns}	0,42*	-0,28 ^{ns}
Alo	-0,17 ^{ns}	0,48*	0,56*	-0,02 ^{ns}	0,05 ^{ns}	0,09 ^{ns}	-0,12 ^{ns}	0,43*	0,46*	0,54*	0,46*	0,11 ^{ns}
Atributos	F1	F2	F3	F4	F5	F6	F1	F2	F3	F4	F5	F6
			Cobre						Chu	mbo		
pН	-0,54*	0,26 ^{ns}	0,11 ^{ns}	-0,06 ^{ns}	0,22 ^{ns}	0,30 ^{ns}	-0,61*	0,40*	0,09 ^{ns}	-0,02 ^{ns}	0,29 ^{ns}	0,21 ^{ns}
argila	-0,54*	0,04 ^{ns}	-0,31 ^{ns}	0,10 ^{ns}	0,46*	0,41*	-0,68*	0,14 ^{ns}	0,11 ^{ns}	0,35 ^{ns}	0,13 ^{ns}	-0,02
silte	-0,34 ^{ns}	0,24 ^{ns}	0,27 ^{ns}	0,13 ^{ns}	0,25 ^{ns}	0,11 ^{ns}	-0,23 ^{ns}	0,20 ^{ns}	0,06 ^{ns}	-0,21 ^{ns}	0,53*	0,08 ^{ns}
areia	0,68*	$-0,10^{ns}$	0,12 ^{ns}	$-0,16^{ns}$	-0,57*	0,44*	0,75*	$-0,25^{ns}$	$-0,14^{ns}$	-0,19 ^{ns}	-0,42*	0,06 ^{ns}
CTC	-0,38*	0,19 ^{ns}	0,12 ^{ns}	$-0,02^{ns}$	0,25 ^{ns}	0,33 ^{ns}	-0,46*	0,31 ^{ns}	0,05 ^{ns}	0,04 ^{ns}	0,24	0,20 ^{ns}
COT	-0,14 ^{ns}	0,76*	0,85*	0,34 ^{ns}	$0,06^{ns}$	0,23 ^{ns}	$-0,09^{ns}$	-0,62*	0,41*	0,15 ^{ns}	0,54*	0,26 ^{ns}
Fed	-0,34 ^{ns}	0,19 ^{ns}	0,23 ^{ns}	0,23 ^{ns}	0,18 ^{ns}	-0,36*	-0,43*	0,21 ^{ns}	0,08 ^{ns}	-0,03 ^{ns}	0,59*	-0,09 ^{ns}
Feo	$-0,28^{ns}$	0,29 ^{ns}	0,30 ^{ns}	0,18 ^{ns}	0,24 ^{ns}	-0,46*	-0,43*	0,35 ^{ns}	$0,20^{ns}$	-0,13 ^{ns}	0,70*	-0,11 ^{ns}
Ald	-0,29 ^{ns}	0,15 ^{ns}	0,21 ^{ns}	0,20 ^{ns}	0,06 ^{ns}	-0,27 ^{ns}	-0,32 ^{ns}	0,13 ^{ns}	-0,01 ^{ns}	-0,12 ^{ns}	0,48*	-0,02 ^{ns}
Alo	-0,26 ^{ns}	0,52*	0,59*	-0,38*	0,11 ^{ns}	-0,30 ^{ns}	-0,33 ^{ns}	-0,61 ^{ns}	0,48*	-0,05 ^{ns}	0,44*	-0,05 ^{ns}

*Significativo a 5%; ns: não significativo.

6. Conclusões

1. Os extratores simples DTPA, Mehlich-1 e Mehlich-3 foram eficientes na recuperação de Cd, Cu, Pb e Zn, sendo os percentuais de recuperação variável em função das diferentes características das amostras. A capacidade de extração de cádmio, cobre e zinco seguiu, na média dos solos, a seguinte ordem: Mehlich-3 > Mehlich-1 > DTPA. O chumbo apresentou maior eficiência pelo extrator Mehlich-3 seguido do DTPA e por fim o Mehlich-1. Apesar do teores diferentes de metais disponíveis, os extratores Mehlich-3, Mehlich-1 e DTPA são altamente correlacionados uns com os outros, sendo as maiores correlações obtidas entre Mehlich-1 e Mehlich-3, entre DTPA e Mehlich-3 para chumbo e zinco e entre DTPA e Mehlich-1 para cádmio e cobre.

2. Os procedimentos sequenciais aplicados mostraram diferentes distribuições dos metais nos diferentes solos. Em grande parte das amostras a maior parte do cádmio e zinco extraído ficaram entre as formas menos estáveis, demonstrando a tendência dos elementos em apresentar-se nas formas mais reativas no solo. Em contrapartida, a retenção de cobre e chumbo foi mais estável devido a ligação com a matéria orgânica e os óxidos de Fe e Al (adsorção específica).

3. Observou-se que o pH foi fator diferencial na retenção e consequente extração dos metais, sendo observado principalmente para o Chernossolo Argiluvico Carbonático saprolítico e Cambissolo Háplico Tb eutrofico latossólico (solos 8 e 9) maior capacidade de adsorção de Cd, Cu, Pb e Zn e para o Cambissolo Háplico Tb distrófico típico e Neossolo Quartzarênico órtico latossólico (solos 10 e 14) as menores adsorções. Estes resultados são confirmados pelo processo de extração seqüencial que mostra que para os solos 10 e 14 a extração de todos os metais se deu em maior proporção na fração de maior labilidade (F1) e que para os solos 8 e 9 praticamente nada foi extraído desta fração.

4. Em condições nas quais o Zn, Cu, Pb e Cd podem competir pelos sítios de adsorção dos colóides no solo, esse último metal tem menor habilidade em ser adsorvido pelos solos. Esses resultados apontam para os riscos e contaminação por esse elemento, sobretudo em meios ácidos, uma vez que a maior parte do metal se encontra na solução e é passível de ser absorvido pelas plantas.

7. Referências

ABREU, C.A.; ABREU, M.F.; ANDRADE, J.C. Distribuição de chumbo no perfil de solo avaliada pelas soluções de DTPA e Mehlich 3. *Bragantia*, v.57, p.185-192, 1998.

AGBENIN, J.O.; ATIN, A.M. Water, Air, and Soil Pollution 150: 43–58, 2003.

AHNSTROM, Z.S., PARKER, D.R. Development and assessment of a sequential extraction procedure for the fractionation of soil cadmium. *Soil Science Society of America Journal.*, 63, 1650-1658, 1999.

ALLOWAY, B.J. Heavy metals in soils. London: Blackie Academic, 1995, 368.

AMARAL SOBRINHO, N.M.B et al. Solubilidade de metais pesados em solo tratado com resíduo siderúrgico. *Revista Brasileira de Ciência do Solo*, v.21, p.9-16, 1997.

ANDERSON, P.R.; CHRISTENSEN, T.H. Distribution in coefficients of Cd, Co, Ni and Zn in sois. *Journal os Soil Science*. V. 39, p.15-22, 1998.

ANDRÉ, E.M.; CRUZ, M.C.P.; FERREIRA, M.E.; PALMA, L.A.S. *Revista Brasileira de Ciência do Solo*, Viçosa, v.27, n.3, 2003.

ARAÚJO, J. C. T.; NASCIMENTO, C. W. A. Redistribuição entre as frações e teores disponíveis de zinco em solos incubados com lodo de esgoto. *Revista Brasileira de Ciências do Solo*, Campinas, v. 27, p. 451-459, 2005.

BARONA, A. & ROMERO, F. Distribution of metals in soils and relationships among fractions by principal component analysis. *Soil Technology*, 03-319, 1996.

BATAGLIA, O.C. & RAIJ, B. van. Eficiência de extratores de micronutrientes na análise de solo. *R. Bras. Ci. Solo*, 13:205-212, 1989.

BENITEZ, L.N.; DUBOIS, J.P. Evaluation on the selectivy of sequential extraction procedures applied to the speciation of cadmium in soils. *Intern. J. Environ. Anal. Chem.*, v.74, p.289-303, 1998.

BORGES, M. Estabilidade de cádmio: influencia de atributos de solos muito intemperizados em extratores convencionais e potencialidades de ácidos orgânicos de baixo peso molecular. Piracicaba. Escola Superior de Agricultura Luiz de Queiroz, 2002. 76p. (Dissertação de Mestrado).

BRADY, N.C. Natureza e propriedades dos solos. 7a. ed. Rio de Janeiro, Freitas Bastos, 1989.

CANDELARIA, L. M.; CHANG, A. C. Soil Science, Baltimore, v.162, n.10, p.722-732, 1997.

CONSOLINE, F. & COUTINHO, E.L.M. Efeito da aplicação de zinco e do pH do solo na disponibilidade do micronutriente. *Acta Scientiarum Agronomy*, Maringá, v. 26, no. 1, p. 7-12, 2004.

COSTA, C.N.; MEURER, E.J.; BISSANI, C.A.; TEDESCO, M.J. Fracionamento sequencial de cádmio e chumbo em solos. 13-23, *Ciência Rural*, v.37, n.5, set-out, 2007.

DAS, A. K.; CHAKRABORTY, R.; CERVERA, M.L. GUARDIA, M. Metal speciation in soil matrices. *Talanta*, v.42, p. 1007-1030, 1995.

EGREJA FILHO, F. B. *Extração seqüencial de metais pesados em solos altamente intemperizados: utilização de componentes-modelo e planejamentos com misturas ternárias na otimização do método.* Viçosa, 2000. 287 f. Tese (Doutorado em Solos e Nutrição de Plantas) – Universidade Federal de Viçosa.

GALRÃO, E.Z. Níveis críticos de zinco para o milho cultivado em latossolo vermelhoamarelo, fase cerrado. *Revista brasileira de Ciência do Solo*, Campinas, 19:255-260, 1995.

KAASALAINEN, M. & YLI-HALLA, M. Use of sequential extraction to assess metal partitioning in soils. *Environmental Pollution*, 126, 225–233, 2003.

KABATA-PENDIAS, A.; PENDIAS, H. *Trace elements in soil and plants*. 3. ed. Boca Raton: CRC Press, 2001, 331 p.

KELLER, C.; VEDY, J.C.; Heavy metals in environment. *Journal Environmental Quality*. 23, 987-999., 1994.

KUO, S.; HEILMAN, P.E.; BAKER, A.S. Distribution and forms of copper, zinc, cadmium iron and manganese in soils near a copper smelter. *Soil Science*, v.135, p.101-109, 1983.

LÂ, O.R. Extração sequencial de metais pesados em solos. Tese (Universidade Federal Rural do RJ), 1998, 159p.

LINDSAY, W.L. & NORVELL, W.A. Development of a DTPA soil test for zinc, iron, manganese and copper. *Soil Science Society American Proceedings*, Madison, 42: 421-428, 1978.

LEVY, B.D.; BARBARICK, K.A.; SIEMER, E.G.; SOMMERS, L.E. Distribution and partitioning of trace metals in contaminated soils near Leadville, Colorado. Journal of Environmental Quality, v.22, n.4, p.731-737, 1992.

MA, L.Q. & RAO, G.N. Chemical Fractionation of Cadmium, Copper, Nickel, and Zinc in Contaminated Soils. *J. Environ. Qual.* 26:259-264, 1997.

MATTIAZZO, M. E.; BERTON, R.S.; CRUZ, M.C.P. Disponibilidade e avaliação de metais pesados potencialmente tóxicos. In: FERREIRA, M.E. Micronutrientes e elementos tóxicos na agricultura. Jaboticabal: CNPq, p.213-234, 2001.

MATOS, A.T., FONTES, M.P.F., COSTA, L.M., MARTINEZ, M.A. Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils. *Environ. Pollut.*, 111, 429-435, 2001.

McBRIDE, M.B. *Environmental chemistry of soils*. New York, Oxford University Press, 1994. 406p.

McBRIDE, M.B.; RICHARDS, B.K.; Steenhuis, T.; Russo, J.J. Sauve, S. Soil Science, v.162, n.7, p.487-500, 1997.

McLAREN, R.G.; CRAWFORD, D.V. Journal Soil Science, 24, 172, 1979.

McLAREN, R. G. & CRAWFORD, D.V. Studies on soil copper. I. The fractionation of copper in soils. *Journal of Soil Science*, v.24, n.2, p.172-181, 1973.

MEHLICH, A. Mehlich-3 soil test extractant: a modification of Melich-2 extractant. *Communications in Soil Science and Plant Analysis*, New York, v. 15, n. 12, p. 1409-1416, 1984.

MILLER, W. P.; MARTENS, D. C.; ZELAZNY, L. W. Soil Science Society of America Journal, v. 50, p. 589-601,1986.

MORABITO, R.; Journal Analytical Chemistry, 351, 378, 1995.

NASCENTES, R. Estudo da mobilidade de metais pesados em um solo residual compactado de viçosa. Tese (Doutorado em Solos e Nutrição de Plantas) Universidade Federal de Viçosa, 2006.

NASCIMENTO, C.W.A & XING, B. Phytoextraction: A review on enhanced metal availability and plant accumulation. *Sci. Agric.*, 63:299-311, 2006.

NASCIMENTO, C.W.A; AMARASIRIWARDENA, D. & XING, B. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multimetal contaminated soil. *Environ. Pollut.*, 140:114-123, 2006.

NORVELL, W.A. Comparison of chelating agents as extractants for metals in diverse soil materials. *Soil Science Society of America Journal*, Madison, v.48, p.1285-1292, 1984.

PICKERING, W.F. Selective chemical extraction of soil components and bound metal species. *CRC-Critical Reviews in Analytical Chemistry*, v. Nov., p. 233-266, 1981.

RAIJ, B. VAN. Manejo da fertilidade do solo. Piracicaba: Patafós, 1991.343p.

RAO, G.N. Chemical fractionation of cadmium, copper, nickel and zinc in contaminated soils. *Journal of Environmental Quality*, v.26, p.259-264, 1997.

RIBEIRO FILHO, M.R.; SIQUEIRA, J.O.; CURI, N.; SIMÃO, J.B.P. Fracionamento i biodisponibilidade de metais em solo contaminado incubado com materiais orgânicos e inorgânicos. *Revista Brasileira de Ciência do Solo*, Viçosa, v.25, p.495-507, 2001.

ROSS, S.M. Retention, transformation and mobility of toxic metals in soil. In: *Toxic metals in soil-plant systems*. Bristol: John Wiley e Sons, cap. 3, p. 63-151, 1994.

SANTOS NETO, J.A. Taxas de recuperação de zinco, cobre e boro por diferentes extratores em solos da Bahia e de Minas Gerais. Tese (UFV), Viçosa, 2003. 51p.

SAUVE, S., DUMESTRE, A., MCBRIDE, M. E HENDERSHOT, W. 1998. Derivation of soil quality criteria using predicted chemical speciation of Pb^{2+} and Cu^{2+} . *Environmental Toxicology and Chemistry*, Oxford, v.17, n.8, p.1481–1489.

SILVA, M.L.S. Avaliação do comportamento de elementos traço essências e não essenciais em solos contaminado sob cultivo de plantas. Tese (Solos e Nutrição de Pantas) Piracicaba 2006. USP.112p.

SILVEIRA, M.L., ALLEONI, L.R.F., CAMARGO, O.A., CASAGRANDE, J.C. Copper adsorption in oxidic soils after removal of organic matter and iron oxides. *Commun. Soil Sci. Plant Anal.* 33, 3581–3592, 2002.

SHUMAN, L.M. Fractionation method for soil microelements. Soil Sci., 140:11-22, 1985.

SHUMAN, L.M. Zinc, manganese and copper in soil fraction. Soil Science. v.127, p.10-17, 1979.

SPOSITO, G.; BINGHAM, F.T.; YADAV, S. S.; INOUYE, C. A. Soil Science Society of America Journal, v.46, p.51-56, 1982.

SPOSITO, G., LUND, L.J., CHANG, A.C. Soil Sci. Soc. Am. J., v. 46, p. 260-264, 1982.

TESSIER, A.; CAMPBELL, P. G. C.; BISSON, M. Analytical Chemistry, 1979, v. 51, p. 844-851, 1979.

URE, A.M.; QUEVAUVILLER, P.; MUNTAU, H.; GRIEPINK, B. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European Communities. *Int. J. Environ. Anal. Chem.*, 51 (1-4), 135-151, 1993.

XIU, H.; TAYLOR, R.W.; SHUFORD, J.W.; TADESSE, W.; ADRIANO, D.C. Comparison of extractants for available sludge-borne metals – a residual study. *Water Air and Soil Pollution*. v.57/8, p. 913-922, 1991.

WEAR, J. I.; EVANS, C. E. Relationship of zinc uptake by corn and sorghum to soil zinc measured by three extractants. *Soil Sci. Soc. Am. Proc.*, Madison, v.32, p.543-546, 1968.

APÊNDICE

Apêndice B

Tabela 1F	3. (Concentração	o de	Cd.	Cu.	Pb e	e Zn	extraída	por I	DTPA.	Mehlich-1	e Mehlich	-3
1 40 0 14 11		0011001101000		~~,	~~,			• • • • • • • • • • • • • • • •	P • • •	,		•	

		Cádmio ⁽¹⁾			Cobre ⁽²⁾	1		Chumbo ⁽³⁾	1		Zinco ⁽⁴⁾	
Solos	DTPA	M-1	M-3	DTPA	M-1	M-3	DTPA	M-1	M-3	DTPA	M-1	M-3
						.mg kg ⁻¹						
1A	13,7(6)	15,3(4)	15,8(3)	127(2)	187(4)	183(5)	161(3)	152(3)	188(13)	59(3)	82(2)	86(9)
1B	6,08(7)	6,6(5)	7,3(2)	57,5(2)	79(2)	85(4)	86,4(2)	77(2)	96(5)	32(2)	39(1)	41(1)
2A	11,60(3)	12,9(4)	13,6(6)	134(6)	179(5)	187(8)	153(3)	179(2)	208(15)	61(3)	71(3)	83(4)
2B	5,6(3)	6,2(3)	5,7(3)	57,7(7)	83(3)	83(3)	81(2)	99(2)	103(5)	32(8)	44(1)	43(3)
3A	11,8(3)	15,2(7)	13,1(8)	132(5)	174(5)	183(5)	170(4)	172(7)	213(9)	59(4)	86(4)	88(5)
3B	5,18(4)	6,1(9)	6,9(3)	73,6(8)	82(8)	73,3(7)	81(2)	74(9)	86(8)	22(1)	39(3)	30(3)
4A	14,1(4)	13,4(5)	11,2(6)	184(2)	185(7)	193(5)	191(1)	153(6)	205(2)	66(2)	70(2)	80(9)
4B	6,1(6)	5,4(3)	4,8(2)	70(2)	67(2)	65(7)	86(6)	67(3)	74(4)	28(1)	31(8)	39(1)
5A	11,7(2)	13,0(1)	14,4(2)	165(4)	171(5)	147(5)	160(4)	149(1)	127(6)	58,9(3)	58,7(6)	60(3)
5B	5,4(5)	6,5(2)	6,1(2)	68(8)	76(2)	59(2)	80(4)	79(2)	80(4)	21,6(1)	28,2(3)	29(1)
6A	11,3(4)	12,82(1)	13,7(4)	129(2)	176(1)	188(9)	151(6)	153(1)	198(17)	57,9(2)	73(2)	74(4)
6B	6,9(2)	6,9(2)	5,5(3)	78(3)	94,7(4)	89(2)	80(2)	90(3)	73(3)	37,9(1)	41(4)	43(2)
7A	12,9(2)	14,4(7)	14,9(8)	148(2)	188(8)	199,3(7)	158(8)	156(2)	192(19)	72(5)	70(2)	77(6)
7B	6,88(6)	6,07(5)	6,1(6)	55(1)	77(4)	92,7(2)	89(1)	89(1)	104(5)	30,7(9)	36(2)	39(2)
8A	10,9(9)	11,5(2)	12,2(3)	130(8)	153(9)	160(3)	124(8)	144(2)	175(10)	55,3(3)	68(3)	76(9)
8B	4,2(2)	4,9(3)	5,4(1)	64,6(7)	67(3)	77(1)	61,0(7)	66(4)	88(4)	21(1)	35(2)	39(2)
9A	10,0(1)	11,2(4)	12,0(4)	117,1(2)	140(1)	156(4)	148(1)	173(3)	170(1)	60,9(7)	61,1(2)	69(2)
9B	4,8(1)	5,52(3)	5,7(5)	60(1)	75(1)	86(6)	72(2)	78,8(7)	78(7)	28,5(1)	33(1)	36(3)
10A	14,8(6)	16,1(8)	16,5(2)	170(6)	192(6)	204(5)	183(8)	219(7)	246(7)	73(2)	94(6)	90(4)
10B	6,7(2)	7,1(1)	8,2(5)	74(1)	96(2)	99,9(2)	91(1)	94(1)	125(9)	33,2(8)	43(2)	46(2)
11A	13,6(1)	14,0(1)	14,9(7)	157(2)	189(5)	193(7)	198(9)	160(2)	221(13)	70(1)	60,7(6)	73(3)
11B	7,78(1)	6,0(1)	7,3(1)	86(4)	74,4(9)	89(4)	101(3)	73(2)	116(3)	39(4)	38,6(1)	40(9)
12A	12,8(3)	13,9(2)	15,2(1)	150(7)	178(4)	191(5)	206(4)	159(6)	219(12)	63(3)	70,2(9)	81(2)
12B	7,6(3)	8,1(2)	8,2(4)	90(1)	80(3)	89(1)	106(2)	77(1)	119(8)	38(1)	33,7(3)	41(2)
13A	13,3(3)	14,5(2)	14,6(8)	148,0(5)	163(5)	171(9)	186(6)	165(3)	185(8)	77(1)	77,7(5)	86(6)
13B	7,32(2)	6,9(2)	7,3(9)	79,1(7)	69(3)	83,5(8)	102(2)	83(5)	103(3)	38,5(9)	37,6(3)	42(5)
14A	16,2(5)	16,4(9)	17,7(1)	183(11)	189(8)	204(9)	233(9)	194(6)	259(7)	82(5)	85,7(1)	91(3)
14B	7,7(2)	7,8(60	8,9(6)	87(2)	85(7)	98(5)	109(7)	101(7)	129(9)	41(1)	44,3(1)	45(2)
15A	11,1(4)	14,9(6)	14,5(7)	92,3(3)	169(5)	174(8)	111(3)	169(0)	200(5)	69(2)	68,4(6)	70(8)
15B	6,47(3)	7,77(3)	7,8(6)	73,6(5)	94(40	89(6)	89(4)	103(2)	106(2)	36(1)	36,7(5)	38(6)
Quantida	de de metal	em ug g ⁻¹ a	dicionada	nos horizont	tes A e B r	espectivame	ente: ⁽¹⁾ cádi	mio(20 e 1	()): $^{(2)}$ cobre	(250 ± 125)). ⁽³⁾ chumb	o (300 e

Quantidade de metal em μ g g⁻¹ adicionada nos horizontes A e B, respectivamente: ⁽¹⁾cádmio (20 e 10); ⁽²⁾cobre (250 e 125); ⁽³⁾chumbo (300 e 150) e ⁽⁴⁾zinco (100 e 50).

Tabela 2B. Percentual de Cd, Cu, Pb e Zn extraídos por DTPA, Mehlich-1 e Mehlich-3

		Cádmio ⁽¹⁾			Cobre ⁽²⁾			Chumbo ⁽³⁾			Zinco ⁽⁴	
Solos	DTPA	M-1	M-3	DTPA	M-1	M-3	DTPA	M-1	M-3	DTPA	M-1	M-3
1A	68,5	76,4	79,3	50,7	74,9	73,4	53,7	50,8	62,6	59,0	82,4	85,8
1B	60,8	65,7	73,4	45,9	63,4	67,7	57,6	51,1	64,2	64,6	78,9	81,8
2A	58,0	64,4	68,5	53,5	71,5	74,9	50,9	59,7	69,5	60,7	70,9	83,2
2B	56,5	62,4	56,6	46,1	66,6	66,7	54,2	66,1	68,9	64,9	88,8	86,9
3A	58,9	75,9	65,3	52,9	69,6	73,4	56,9	57,5	70,9	59,1	86,3	88,6
3B	51,8	60,9	69,8	58,9	66,0	58,7	54,3	49,6	57,5	43,6	79,0	59,4
4A	70,5	66,9	55,9	73,6	74,0	77,1	63,5	51,1	68,2	66,1	70,2	80,9
4B	61,2	54,3	47,9	56,2	53,4	51,8	57,3	44,7	49,7	55,4	62,9	78,2
5A	58,6	65,1	71,8	65,9	68,5	58,8	53,4	49,7	42,3	58,9	58,7	60,4
5B	53,6	65,0	61,1	54,9	60,5	46,6	53,2	52,5	53,1	43,3	56,5	57,4
6A	56,6	64,1	68,4	51,4	70,2	75,1	50,3	50,9	66,2	57,9	72,6	74,2
6B	69,2	69,7	55,4	62,1	75,8	71,8	53,6	59,9	48,5	75,9	81,4	86,8
7A	64,4	71,9	74,3	59,1	75,3	79,7	52,7	52,1	64,1	72,5	70,2	77,2
7B	68,8	60,7	61,0	44,2	61,7	74,2	59,2	59,4	69,3	61,5	72,4	77,7
8A	54,6	57,8	60,9	52,1	61,3	64,2	41,5	48,1	58,4	55,3	68,3	76,3
8B	42,3	48,7	53,9	51,7	53,7	61,7	40,7	43,8	58,9	41,7	69,4	78,0
9A	50,2	56,1	60,2	46,9	56,1	62,3	49,2	57,7	56,8	60,9	61,1	68,9
9B	47,8	55,2	57,3	47,8	59,7	68,7	47,9	52,5	52,1	56,9	65,4	71,5
10A	74,2	80,6	82,6	67,8	77,0	81,7	61,1	73,0	82,2	73,4	93,6	90,4
10B	66,6	71,4	81,9	58,9	76,9	79,9	60,8	62,8	83,2	66,5	85,3	91,5
11A	68,3	70,1	74,3	62,8	75,9	77,4	65,9	53,4	73,7	69,9	60,7	72,9
11B	77,8	60,0	73,4	69,2	59,6	71,9	67,0	49,0	77,5	77,8	77,2	79,9
12A	63,8	69,9	75,9	60,2	71,3	76,6	68,5	53,1	73,3	63,0	70,2	80,9
12B	76,5	81,2	82,3	72,3	63,8	71,4	70,9	51,1	79,9	76,0	67,4	82,5
13A	68,4	72,4	73,1	59,2	65,1	68,3	62,2	54,9	61,6	76,9	77,7	85,7
13B	73,2	68,9	72,7	63,3	55,8	66,8	68,2	55,3	68,7	77,1	75,2	83,8
14A	80,8	82,1	88,5	73,3	75,9	81,5	77,8	64,7	86,4	82,5	85,7	90,8
14B	76,6	77,9	89,1	69,5	68,4	78,1	72,9	67,2	86,6	82,6	88,6	90,7
15A	55,5	74,5	72,6	36,9	67,4	69,7	37,1	56,6	66,8	69,1	68,4	70,4
15B	64,7	77,7	78,5	58,9	75,2	71,9	59,3	68,9	70,9	72,9	73,5	75,2

 $\frac{102}{\text{Quantidade de metal em mmol kg}^{-1} \text{ adicionada nos horizontes A e B, respectivamente: } (1) cádmio (20 e 10); (2) cobre (250 e 125); (3) chumbo (300 e 150) e (4) zinco (100 e 50).}$

3	,	3		3 /
Solo	F1: ácida	F2: redutível	F3: oxidável	F4: total - soma
1A	15,6(2)	2,8(3)	0,85(2)	1,47
1B	8,43(7)	2,1(1)	0,84(3)	1,79
2A	13,3(2)	3,8(3)	0,89(2)	0,08
2B	7,6(1)	1,69(4)	0,49(2)	0,64
3A	16(2)	3,2(1)	0,77(4)	1,36
3B	8,3(2)	1,99(4)	0,71(2)	1,05
4A	14,6(3)	2,7(1)	1,08(5)	1,80
4B	8,0(2)	2,3(1)	0,47(2)	0,37
5A	12,5(3)	3,7(4)	1,45(5)	0,32
5B	5,5(1)	2,8(2)	0,95(3)	0,50
6A	14,3(3)	5,0(1)	1,04(1)	2,18
6B	8,6(1)	2,47(6)	0,55(1)	0,61
7A	12,5(6)	5,29(8)	0,88(7)	1,39
7B	7,1(2)	2,90(7)	0,73(1)	0,03
8A	9,1(2)	7,8(3)	1,26(4)	0,32
8B	4,58(3)	4,5(1)	1,12(5)	0,17
9A	11,9(2)	5,5(1)	1,37(1)	5,00
9B	6,2(5)	2,16(7)	0,81(5)	1,85
10A	16,1(2)	1,81(3)	0,49(2)	0,80
10B	8,3(4)	1,55(5)	0,36(2)	1,18
11A	14,1(5)	3,2(3)	0,32(4)	0,74
11B	8,7(4)	2,5(1)	0,40(2)	4,45
12A	14,1(7)	4,07(9)	0,34(2)	0,35
12B	9,4(4)	2,56(7)	0,25(1)	1,92
13A	14,47(8)	6,30(9)	0,60(6)	3,18
13B	8,96(3)	2,56(4)	0,30(3)	2,47
14A	19,3(8)	3,1(3)	0,24(3)	0,17
14B	9,6(5)	2,24(6)	0,21(2)	0,36
15A	14,1(3)	6,64(7)	1,22(2)	0,55
15B	94(2)	2 91(6)	0 39(4)	2.26

Tabela 3B. Teores de cádmio extraído nas diversas frações do processo de extração seqüencial BCR, em que F1 = fração ácida, F2 = fração redutível, F3 = fração oxidável, F4 = fração residual (teor total – soma das demais frações)

Tabela 4B. Teores de cobre extraído nas diversas frações do processo de extração seqüencial BCR, em que F1 = fração ácida, F2 = fração redutível, F3 = fração oxidável, F4 = fração residual (teor total – soma das demais frações)

Solo	F1: ácida	F2: redutível	F3: oxidável	F4: total - soma
1A	79(6)	31,6(2)	65,9(8)	56,44
1B	43(6)	7,3(3)	22,3(2)	44,46
2A	34(5)	28,3(1)	85(4)	76,53
2B	29(4)	17,3(1)	27,6(9)	46,82
3A	58(1)	7,7(9)	98(3)	90,17
3B	59(2)	3,6(2)	21,7(3)	73,52
4A	96(6)	23,4(0)	48(1)	81,24
4B	56(5)	5,6(3)	11,6(3)	63,44
5A	56(4)	10,7(1)	59(3)	140,62
5B	39(1)	nd	23(1)	68,16
6A	51(12)	18,27	55(11)	108,34
6B	33(2)	19,67	16(1)	64,27
7A	49(9)	33,74	51(6)	97,19
7B	20(4)	22,64	17,2(4)	55,45
8A	6,9(1)	38,85	118(9)	58,06
8B	1,70(8)	14(6)	61(5)	39,87
9A	7,8(9)	1,12(9)	127(19)	91,49
9B	11(3)	6,5(1)	29,4(9)	75,01
10A	58(2)	29,3(6)	64(2)	77,91
10B	44(1)	11,8(5)	21(7)	33,80
11A	61(4)	15,1(1)	66(6)	125,22
11B	53(2)	2,1(1)	20,4(7)	41,34
12A	78(5)	20,3(1)	58(1)	102,02
12B	57(3)	2,4(2)	21(1)	41,80
13A	45(2)	nd	107(3)	113,38
13B	58(1)	0,46(9)	18,6(4)	52,96
14A	112(7)	21,9(1)	31(1)	100,62
14B	45(3)	4,7(3)	9,2(1)	80,91
15A	20(1)	13,3(2)	109(3)	84,35
15B	29,5(9)	6,7(4)	11,5(8)	88,43

Solo	F1:ácida	F2: redutível	F3: oxidável	F4: total - soma
1A	94(11)	105(4)	76,6(2)	15,71
1B	44(2)	65,7(4)	35,6(4)	6,02
2A	85,1(5)	120(4)	76(3)	15,81
2B	51(2)	77(1)	32,6(9)	2,84
3A	77(4)	108(3)	103(1)	8,67
3B	43(3)	63(2)	40(4)	9,23
4A	91(3)	137(7)	78(1)	8,99
4B	53(5)	61(1)	31(3)	1,34
5A	106(8)	91(9)	60(4)	38,05
5B	62(7)	61(8)	39(3)	3,16
6A	55(3)	164,6(9)	70(6)	12,42
6B	54,9(1)	84(1)	28(2)	5,48
7A	53(6)	177(8)	65(6)	13,26
7B	40(2)	79,2(9)	33(1)	1,87
8A	36(2)	107(6)	140(7)	7,90
8B	23(2)	63(8)	64(4)	5,03
9A	41(3)	94,7(8)	118(13)	40,81
9B	24(1)	67(3)	49,9(4)	5,30
10A	103(1)	116(3)	61(2)	14,31
10B	68(4)	53(1)	32,4(6)	2,56
11A	90(5)	111(8)	77(3)	18,11
11B	44(2)	72(2)	44(2)	4,90
12A	79(5)	152(3)	66,4(4)	2,18
12B	32,1(6)	75,9(3)	47(1)	8,78
13A	67(3)	109.8(7)	108(3)	1,19
13B	32(1)	73(3)	45,4(8)	2,89
14A	104(8)	113(7)	42(4)	39,17
14B	65(1)	56,4(5)	56.4(5) 32(2)	
15A	108(5)	130(4)	130(4) 99(5)	
15B	41.1(7)	76(4)	32(6)	3.72

Tabela 5B. Teores de chumbo extraído nas diversas frações do processo de extração seqüencial BCR, em que F1 = fração ácida, F2 = fração redutível, F3 = fração oxidável, F4 = fração residual (teor total – soma das demais frações)

Tabela 6B. Teores de zinco extraído nas diversas frações do processo de extração seqüencial BCR, em que F1 = fração ácida, F2 = fração redutível, F3 = fração oxidável, F4 = fração residual (teor total – soma das demais frações)

Solo	F1: ácida	F2: redutível	F3: oxidável	F4: residual
1A	73(7)	6,8(3)	10(1)	18,19
1B	30,3(5)	nd	7,9(5)	29,83
2A	61(2)	17,5 (9)	36(1)	6,78
2B	21(2)	8,6(2)	18(1)	3,48
3A	35,37(6)	3,3(8)	10,5(3)	68,54
3B	28(8)	1,1(7)	6,1(1)	27,83
4A	19,6(4)	0,4(3)	9,3(1)	95,64
4B	16,8(3)	1,5(2)	6,4(2)	34,05
5A	15,4(5)	2,1(5)	17(1)	86,49
5B	18(2)	nd	7,9(1)	42,43
6A	68(1)	24,4(6)	12(2)	23,81
6B	41(7)	12,2(2)	4,5(2)	8,74
7A	69(1)	15,9(9)	8,8(9)	38,51
7B	34(2)	3,15(5)	5,9(6)	20,00
8A	31(2)	22(4)	18,2(8)	34,36
8B	16,9(6)	10,2(6)	11,7(6)	19,29
9A	12(1)	17,9(7)	14,1(5)	90,37
9B	15(3)	10,0(2)	10(1)	23,19
10A	82(2)	0,9(4)	8,6(1)	41,02
10B	31(2)	nd	4,5(6)	14,43
11A	19,6(7)	4(1)	5,3(5)	104,98
11B	22(3)	1,3(7)	4,4(1)	38,51
12A	19(3)	5,6(6)	8,9(7)	99,28
12B	31(2)	nd	4,8(8)	31,14
13A	49(1)	11(2)	9,2(4)	45,57
13B	15,9(4)	5,9(3)	14,1(4)	33,60
14A	61(1)	nd	2,9(2)	38,18
14B	40,9(4)	nd	4,2(1)	20,32
15A	41(2)	23,7(8)	28,2(8)	56,80
15B	40,2(8)	10(1)	14(1)	8,91

Tabela 7B. Teores de cádmio extraído nas diversas frações do processo de extração seqüencial, em que F1 = fração solúvel e trocável, F2 = fração adsorvida fortemente em óxidos de ferro e de alumínio, F3 = fração orgânica, F4 = fração ocluída em óxidos de alumínio, F5 = fração ocluída em óxidos de ferro cristalino, F6 = residual (teor total – soma das demais frações)

Solo	F1	F2	F3	F4	F5	F6
1A	13,9(3)	4,2(1)	1,25(6)	1,01(5)	0,09(2)	0,24
1B	8,1(4)	2,38(5)	0,19(4)	0,84(2)	0,13(1)	1,57
2A	5,7(2)	9,00(9)	0,3(1)	nd	0,06(1)	3,08
2B	5,5(2)	1,23(1)	0,14(1)	nd	0,10(3)	3,46
3A	10,4(9)	5,4(4)	1,6(2)	0,32(6)	0,08(2)	3,41
3B	4,0(2)	3,3(2)	0,26(4)	nd	0,12(3)	4,35
4A	12(1)	2,58(2)	2,0(2)	nd	1,24(6)	1,97
4B	4,4(2)	2,1(2)	0,69(9)	nd	0,66(1)	3,36
5A	8(1)	8,1(6)	1,8(3)	nd	0,23(9)	0,20
5B	2,5(1)	5,9(1)	0,42(8)	0,24(3)	0,4(1)	0,22
6A	5,85	9,7(7)	0,12(1)	1,21(5)	0,21(4)	5,48
6B	7,64	2,19(8)	nd	nd	1,3(1)	1,00
7A	6,50	8,98(6)	0,09(1)	nd	0,67(1)	3,79
7B	4,06	2,00(7)	nd	nd	0,42(9)	4,19
8A	nd	14(1)	1,14(3)	0,12(2)	0,9(2)	2,46
8B	0,06(1)	6,60(7)	nd	0,09(1)	1,02(2)	1,59
9A	nd	15,0(8)	3,6(2)	nd	nd	5,19
9B	nd	7,1(3)	0,29(4)	nd	nd	3,59
10A	14,7(3)	2,13(1)	0,86(7)	nd	nd	1,51
10B	7,62(1)	1,12(1)	0,13(4)	nd	0,23(3)	2,26
11A	8,6(3)	5,6(5)	2,1(1)	0,26(5)	nd	1,62
11B	10,2(5)	2,56(9)	0,14(8)	0,21(4)	nd	2,93
12A	10,8(5)	6,2(3)	0,21(3)	nd	nd	1,68
12B	116,8(4)	0,38(1)	0,10(1)	nd	nd	1,83
13A	10,7(6)	7,9(6)	4,52(5)	nd	0,59(1)	0,90
13B	7,7(5)	0,44(9)	0,82(6)	nd	0,21(6)	5,10
14A	17,3(7)	0,27(3)	0,32(7)	nd	nd	4,87
14B	8,7(2)	nd	0,17(2)	nd	nd	3,54
15A	9,2(4)	5,48(5)	3,2(2)	0,16(1)	0,5(1)	3,91
15B	8,5(5)	1,84(2)	1,0(1)	0,18(2)	0,8(2)	2,68

Tabela 8B. Teores de cobre extraído nas diversas frações do processo de extração seqüencial, em que F1 = fração solúvel e trocável, F2 = fração adsorvida fortemente em óxidos de ferro e de alumínio, F3 = fração orgânica, F4 = fração ocluída em óxidos de alumínio, F5 = fração ocluída em óxidos de ferro cristalino, F6 = residual (teor total – soma das demais frações)

Solo	F1	F2	F3	F4	F5	F6
1A	9,8(3)	166(5)	18,3(3)	7,5(8)	19,2(8)	12,34
1B	4,3(2)	47(2)	7,5(3)	3,1(6)	25(2)	29,58
2A	1,3(1)	180(19)	12,5(9)	2,3(9)	26(3)	1,61
2B	1,4(3)	98(5)	4,44(7)	1,7(6)	6,4(8)	8,76
3A	18,9(8)	186(3)	25,4(5)	5(1)	6(1)	11,57
3B	nd	106(4)	7,6(6)	3,8(6)	20(1)	20,08
4A	20,7(5)	181(3)	10,1(4)	5,4(6)	20,3(2)	4,73
4B	1,0(2)	78(3)	1,7(2)	3,2(5)	9,3(6)	13,56
5A	3,7(3)	200(11)	31(1)	6(1)	10(1)	14,72
5B	nd	108(3)	8,1(8)	5,1(2)	8,8(4)	0,12
6A	21,03(5)	169(11)	4,3(8)	5(1)	16,4(7)	17,6
6B	39,5(2)	72(3)	nd	1,38(4)	13(2)	6,37
7A	2,2(6)	186(7)	3,6(9)	3,9(9)	11,0(7)	25,07
7B	2,99(3)	80,9(8)	2,0(3)	3,5(6)	8(2)	17,56
8A	nd	170(9)	20,6(7)	2,6(1)	17,9(7)	12,89
8B	nd	89(5)	4,8(3)	5,24(5)	11(2)	6,7
9A	nd	170(5)	26,8(7)	5,5(7)	8,7(7)	16,76
9B	nd	82(4)	2,8(3)	3(1)	6,5(7)	26,28
10A	68(4)	117(3)	18(2)	1,73(8)	3,3(1)	21,03
10B	21,1(5)	43(1)	7,8(4)	1,1(1)	2,85(7)	35,34
11A	47,7(2)	161(4)	22(1)	3,9(4)	6,8(6)	25,64
11B	36,9(2)	54(3)	9,8(4)	4,4(2)	6,4(7)	5,31
12A	3,6(4)	158(5)	10(2)	3,2(7)	14(3)	68,4
12B	20,4(6)	57(2)	2,9(8)	1,5(9)	5,1(4)	34,94
13A	19(2)	204(7)	30,8(5)	3,5(4)	4,7(2)	3,04
13B	33(2)	57(4)	5,7(5)	9(2)	7,71(4)	16,77
14A	63(1)	130(3)	6,2(4)	2,3(4)	2,35(4)	63,2
14B	49(3)	48(4)	1,8(4)	1,6(3)	1,9(2)	36,81
15A	9,4(4)	159(7)	16(1)	9(1)	8(1)	25,16
15B	21(1)	68(1)	2,4(4)	3,3(3)	3(1)	38,22
Tabela 9B. Teores de chumbo extraído nas diversas frações do processo de extração seqüencial, em que F1 = fração solúvel e trocável, F2 = fração adsorvida fortemente em óxidos de ferro e de alumínio, F3 = fração orgânica, F4 = fração ocluída em óxidos de alumínio, F5 = fração ocluída em óxidos de ferro cristalino, F6 = residual (teor total – soma das demais frações)

Solo	F1	F2	F3	F4	F5	F6
1A	15,6(9)	192(41)	18,0(9)	10(5)	33(9)	22,42
1B	7(1)	104(5)	11,9(2)	0,21(9)	8(1)	19,98
2A	9,2(7)	195(14)	26,3(6)	10,5(1)	14(3)	42,65
2B	19,3(8)	99(14)	10,04(8)	9,5(6)	3(1)	32,77
3A	32(1)	203(17)	33(2)	2,6(1)	14,9(5)	1,44
3B	15,35(5)	86(6)	21(1)	nd	14(1)	19,41
4A	37,2(9)	217(6)	28(1)	1,2(1)	19(2)	13,33
4B	5,1(9)	88(4)	nd	nd	10,0(9)	32,31
5A	9,3(6)	206(13)	11,2(9)	nd	40(9)	28,29
5B	nd	98(2)	8,4(5)	nd	19,2(6)	38,33
6A	4,07(1)	182(5)	43(2)	nd	23(4)	58,61
6B	22,2(8)	97(7)	18,7(4)	nd	22(3)	12,56
7A	2,8(10)	191(8)	6(2)	2,8(7)	16(2)	98,84
7B	6,6(2)	97(1)	nd	nd	7(2)	47,95
8A	nd	210(9)	16(1)	0,61(1)	18(3)	45,98
8B	nd	110(2)	3,6(1)	nd	13(4)	28,39
9A	nd	196(7)	29,0(1)	2,02(2)	18(2)	50,07
9B	nd	104(2)	5,0(1)	2,36(1)	12(2)	19,18
10A	98(19)	110(6)	38(5)	nd	nd	46,74
10B	59(1)	76(2)	9,6(9)	nd	nd	11,28
11A	2,23(7)	238(9)	18(2)	2,13(1)	13(2)	2,92
11B	78(2)	42(2)	8,2(6)	nd	6(2)	29,06
12A	95(1)	140(11)	0,61(2)	0,20(1)	13(6)	24,45
12B	73(3)	40(1)	nd	nd	1,80(5)	48,86
13A	66(2)	132(27)	29,3(4)	2,11(1)	21,6(6)	35,32
13B	80(4)	37(3)	7,1(3)	nd	11,4(6)	18,2
14A	186(3)	85(2)	1,86(6)	0,49(3)	nd	5,52
14B	103(2)	35(3)	0,43(5)	nd	nd	36,25
15A	23(5)	157(4)	3,6(5)	2,15(3)	16(1)	99,24
15B	36,2(9)	59(2)	0,24(9)	nd	5,7(3)	69,37

Tabela 10B. Teores de zinco extraído nas diversas frações do processo de extração seqüencial, em que F1 = fração solúvel e trocável, F2 = fração adsorvida fortemente em óxidos de ferro e de alumínio, F3 = fração orgânica, F4 = fração ocluída em óxidos de alumínio, F5 = fração ocluída em óxidos de ferro cristalino, F6 = residual (teor total – soma das demais frações)

Solo	F1	F2	F3	F4	F5	F6
1A	37(1)	43(8)	6,0(3)	2,1(5)	17(1)	3,72
1B	30,9(8)	20(3)	2,6(1)	1,6(5)	12,7(5)	0,44
2A	22,2(2)	32,(9)	6,8(2)	1,0(3)	11,6(3)	46,01
2B	11,1(1)	21(4)	2,6(2)	0,05(1)	4,67(8)	10,94
3A	41(2)	33(4)	16,1(7)	1,9(3)	6,7(6)	19,28
3B	18,7(7	21(2)	2,01(1)	0,03(2)	8(1)	14,05
4A	3,8(2)	36(2)	2,9(6)	1,2(9)	19,9(8)	61,26
4B	5,1(6)	20(1)	0,7(2)	0,5(2)	4,4(3)	27,51
5A	34(2)	43(3)	19,6(2)	1,1(1)	16(1)	7,33
5B	5,7(2)	37(1)	5,8(6)	nd	13,8(3)	6,43
6A	12,9(4)	46(4)	1,9(4)	2,6(1)	11,6(1)	53,6
6B	24,0(9)	14,2(3)	nd	1,09(2)	12(3)	15,23
7A	25(2)	42(4)	12,2(4)	2,5(6)	7,5(1)	42,2
7B	9(3)	16,1(9)	1,29(7)	1,9(2)	4,7(4)	30,5
8A	2,4(2)	65,9(7)	2,0(4)	6,8(2)	8,2(6)	20,51
8B	1,88(6)	33(3)	0,6(3)	1,4(2)	6(1)	14,92
9A	nd	65(7)	13,2(4)	15,9(2)	12,2(9)	28,52
9B	nd	32,6(9)	0,8(3)	2,6(2)	5,9(3)	15,9
10A	80,5(9)	10(1)	6,1(1)	9,6(1)	1,6(1)	24,95
10B	25,1(9)	6,3(7)	2,4(3)	0,8(2)	1,4(2)	13,55
11A	17,8(3)	73(3)	14,7(6)	1,4(1)	5,9(2)	21,13
11B	23(2)	29(1)	3,7(1)	nd	7(1)	3,51
12A	27(1)	38(6)	5,0(4)	4,12(3)	8,3(2)	49,41
12B	30,2(7)	7,8(5)	0,5(1)	nd	2,6(2)	25,52
13A	46(4)	39,7(8)	21,4(2)	2,9(4)	1,7(4)	4,09
13B	28(1)	9,1(7)	2,5(2)	0,08(3)	8,2(6)	21,74
14A	65(1)	9(2)	7,9(2)	2,65(4)	0,37(5)	16,82
14B	41(2)	6(3)	2,7(2)	nd	1,15(8)	14,57
15A	49(4)	62,0(1)	16,9(7)	11(1)	7,1(3)	6,24
15B	40(2)	22(1)	2,4(1)	4,2(4)	0,75(1)	3,59

Figura 1. Percentual de recuperação de cádmio nas amostras 1A, 1B, 2A, 2B, 3A e 3B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

Figura 2. Percentual de recuperação de cádmio nas amostras 4A, 4B, 5A, 5B, 6A e 6B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

Figura 3. Percentual de recuperação de cádmio nas amostras 7A, 7B, 8A, 8B, 9A e 9B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

Recuperação de Cádmio (%)

Recuperação de Cádmio (%)

Figura 4. Percentual de recuperação de cádmio nas amostras 10A, 10B, 11A, 11B, 12A e 12B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

Figura 5. Percentual de recuperação de cádmio nas amostras 13A, 13B, 14A, 14B, 15A e 15B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

Figura 6. Percentual de recuperação de cobre nas amostras 1A, 1B, 2A, 2B, 3A e 3B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

Figura 7. Percentual de recuperação de cobre nas amostras 4A, 4B, 5A, 5B, 6A e 6B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

Figura 8. Percentual de recuperação de cobre nas amostras 7A, 7B, 8A, 8B, 9A e 9B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

Figura 9. Percentual de recuperação de cobre nas amostras 10A, 10B, 11A, 11B, 12A e 12B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

Figura 10. Percentual de recuperação de cobre nas amostras 13A, 13B, 14A, 14B, 15A e 15B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

Figura 11. Percentual de recuperação de chumbo nas amostras 1A, 1B, 2A, 2B, 3A e 3B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

Figura 12. Percentual de recuperação de chumbo nas amostras 4A, 4B, 5A, 5B, 6A e 6B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

Figura 13. Percentual de recuperação de chumbo nas amostras 7A, 7B, 8A, 8B, 9A e 9B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

Figura 14. Percentual de recuperação de chumbo nas amostras 10A, 10B, 11A, 11B, 12A e 12B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

Figura 15. Percentual de recuperação de chumbo nas amostras 13A, 13B, 14A, 14B, 15A e 15B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

Figura 16. Percentual de recuperação de zinco nas amostras 1A, 1B, 2A, 2B, 3A e 3B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

M-3 M-1 DTPA BCR EF 0 10 20 30 40 50 60 70 80 90 100 Recuperação de Zinco (%) M-3 M-1 DTPA BCR 0 10 20 30 40 50 60 70 80 90 100 Recuperação de Zinco (%)

Figura 17. Percentual de recuperação de zinco nas amostras 4A, 4B, 5A, 5B, 6A e 6B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

Figura 18. Percentual de recuperação de zinco nas amostras 7A, 7B, 8A, 8B, 9A e 9B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

Figura 19. Percentual de recuperação de zinco nas amostras 10A, 10B, 11A, 11B, 12A e 12B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

Figura 20. Percentual de recuperação de zinco nas amostras 13A, 13B, 14A, 14B, 15A e 15B pelos extratores DTPA, Mehlich-1 e Mehlich-3 e pelos procedimentos de extração sequencial constituído de três (BCR) e seis frações (Egreja Filho).

Vulnerabilidade de solos de Minas Gerais à contaminação por metais pesados

Atribuição de graus de vulnerabilidade aos solos estudados: tentativa de agrupamento das amostras

1. Resumo

Dentre os processos envolvidos na avaliação da disponibilidade para conseqüente determinação da vulnerabilidade de solos à contaminação por metais pesados, aqueles relacionados com a adsorção e recuperação de elementos são de grande importância.

Nesta última parte do trabalho, propôs-se um método simplificado de avaliação da vulnerabilidade do solo à contaminação por metais, agrupando os mesmos em níveis de vulnerabilidade. Para tanto, considerou-se a relação entre capacidade máxima de adsorção, energia de ligação, pH e distribuição do elementos em F1, para a obtenção de quatro classes gerais de vulnerabilidade, denominadas de muito baixa, baixa, média e alta.

Em geral, solos classificados com vulnerabilidade alta têm grande possibilidade de serem inaptos ao uso de atividades que possam incorporar metais pesados ao solo, uma vez que estes facilmente se disponibilizariam. Esses solos para serem classificados como de vulnerabilidade alta apresentaram variáveis que contribuem para esse diagnóstico, como maior acidez, baixos teores de matéria orgânica e óxidos, textura arenosa, entre outros. No presente trabalho, os solos que se enquadraram nesse tipo de classificação foram principalmente os solos desenvolvidos sobre micaxisto com influência de quartzitos e aqueles com material de origem advindos de coberturas terciárias e quartenárias associadas ao arenito urucuia (Cambissolo Háplico Tb distrófico típico e Neossolo Quartzarênico órtico latossólico).

Solos classificados como de vulnerabilidade muito baixa são aqueles situados na região de Italva e Pedro Leopoldo, desenvolvidos sobre calcário e os com material de origem constituído de migmatitos associados a rochas charnockíticas (Chernossolo Argilúvico Carbonático saprolítico e Cambissolo Háplico Tb eutrófico latossólico). Os principais diferenciais desses solos foram os teores elevados de argila, maiores valores de pH e os altos valores de adsorção máxima (b) e de força de retenção (k). Outro nível de vulnerabilidade atribuído foi dado aos solos intemperizados (Argissolo e Latossolos) que em sua maior parte apresentaram variações de graus de vulnerabilidade média.

2. Abstract

Among the processes used in the assessment of soil vulnerability to contamination by heavy metals, those related to metal adsorption and recovery are of great importance.

In the last part of the work, it was proposed a simplified method for the assessment of soil vulnerability to metal contamination and classification according to vulnerability levels. The relationships between maximum adsorption capacity, binding energy, pH, and element distribution in fraction F1 resulted in four classes of vulnerability, namely, very low, low, medium and high.

In general, soils classified as highly vulnerable are most probably unsuitable for activities that can incorporate heavy metals into soil, since the metals would be readily available. These soils were classified as highly vulnerable because of their high acidity, low organic matter and oxides, sandy texture, and other properties. In this study, this type of soil was mostly micaschist, presenting soils developed on quartzites and influenced by soils with source material from tertiary and quaternary roofs associated with Urucuia sandstone (Haplic Cambisol Tb typical dystrophic and Neossol orthic latosol).

The soils classified as little vulnerable are located in the regions of Italva and Pedro Leopoldo and developed on limestone, consisting of migmatites associated with charnockitic rocks (Chernosol Argiluvic carbonate saprolite and Haplic Cambisol Eutric latosol Tb). The main distinctive characteristics of these soils were their high clay contents, and high values of pH and maximum adsorption (b) and strength retention (k). Another level of vulnerability was attributed to weathered soils (Oxisols and Ultisol) in which mostly showed variations in average levels of vulnerability.

3.1. Agrupamento de solos em função da disponibilidade de metais e atribuição de graus de vulnerabilidade à contaminação

Em geral, as variáveis utilizadas para agrupamento de solos em níveis de vulnerabilidade à contaminação são aquelas que refletem a carga crítica do compartimento ambiental ou possíveis alterações nas mesmas. Lima et al., (2004) definiram que o termo vulnerabilidade está relacionado à possibilidade de dano ou à baixa resistência de um sistema a um contaminante. Assim, para a determinação da vulnerabilidade de um solo ou de outro compartimento ambiental é necessário se conhecer as variáveis deste compartimento que contribuem com a retenção dos poluentes. A seguir encontram-se alguns trabalhos referentes ao assunto, mostrando as variáveis empregadas para o agrupamento dos mesmos.

Em estudo da vulnerabilidade de solos da Holanda à contaminação por metais pesados Klijn (1991) cita que as variáveis mais importantes são teores de matéria orgânica, textura (teores de argila, silte e areia), pH, dentre outras. Dessaules (1991) no mapeamento de vulnerabilidade de solos da Suíça, cita a capacidade de sorção dos solos com relação a metais pesados como sendo dependente de propriedades dos solos como pH, matéria orgânica, quantidade e tipo de argila, óxidos de ferro e potencial redox.

Gomes et al., (2002) em seu trabalho sobre avaliação da vulnerabilidade natural do solo em áreas agrícolas: subsídio à avaliação do risco de contaminação do lençol freático por agroquímicos preconiza a influência de determinadas propriedades física dos solos nos potenciais de infiltração e escoamento superficial da água. Propriedades como textura, estrutura, estabilidade de agregados e profundidade do solo em conjunto, permitem estimar a condutividade hidráulica classificadas como alta, média e baixa.

No modelo de vulnerabilidade de solos à contaminação por metais pesados, Moraes (2007) utilizou como variáveis a capacidade de troca catiônica, teores de óxidos de ferro e de alumínio e teor de matéria orgânica. Empregou os dados referentes ao fracionamento químico, como geradores de pesos para as variáveis. Assim, a variável capacidade de troca catiônica teve como peso o percentual de metal adsorvido eletrostaticamente aos constituintes da fração argila, a variável teor de óxidos teve como peso o percentual de metal ocluido nas estruturas dos óxidos e a variável matéria orgânica teve como peso o percentual de metal complexado à matéria orgânica.

De La Rosa (2007) entende que a vulnerabilidade dos solos à contaminação por químicos é dependente da capacidade de sorção e tamponamento desse compartimento ambiental. Segundo esse autor, para o estudo da vulnerabilidade dos solos seriam importantes variáveis como profundidade dos solos, textura, pH, CTC e drenagem.

No presente trabalho, se uma relação pode ser encontrada entre propriedades do solo, como por exemplo, pH, CTC, capacidade máxima de adsorção (b), entre outras e os parâmetros que permitem inferir sobre a disponibilidade do elemento no sistema (fração F1 da extração sequencial), é possível então fazer-se um agrupamento dos solos em níveis de vulnerabilidade a contaminação por metais.

O estudo conjunto dos processos de adsorção e de distribuição de metais no solo, para avaliação da vulnerabilidade desse sistema à contaminação, apresenta-se hoje como importantes ferramentas de investigação ambiental. Com as informações obtidas sobre a caracterização química e física das amostras e dos processos citados, é possível fazer um agrupamento dos solos quanto à contaminação por cádmio, cobre, chumbo e zinco, relacionando-se as quantidades extraídas do metal na fração mais lábil (F1) com índices de vulnerabilidade.

Considerando os resultados referentes aos atributos químicos e físicos das amostras, os parâmetros das isotermas de adsorção e os teores de metais recuperados na fração F1 (mais lábil) do procedimento de extração sequencial em seis etapas, propôs-se índices de vulnerabilidade para os solos em função da maior ou menor disponibilização de elementos. Relacionando-se a quantidade de cádmio extraído na fração F1 com índices de vulnerabilidade, os solos foram agrupados com relação à disponibilização desse elemento de acordo com as seguintes classes: vulnerabilidade muito baixa, com teores extraídos de cádmio variando de 0 a 20%; vulnerabilidade baixa, com teores entre 20 a 40%; vulnerabilidade média, com teores variando de 40 a 60% e vulnerabilidade alta, com teores de cádmio extraídos acima de 60%.

A Figura 28 (a) permite visualizar como os solos se agrupam em função de F1, b e k e em (b) tem-se o agrupamento em função de F1, K_F e n, ambos para cádmio. Em relação à fração que determina a maior ou menor vulnerabilidade de um solo, verifica-se a formação de quatro grupos de vulnerabilidade. Os solos 8A, 8B, 9A e 9B foram agrupados como sendo de vulnerabilidade muito baixa, os solos 2A, 3B, 4B, 5B, 6A, 7A e 7B foram classificados como de vulnerabilidade baixa, os solos 2B, 3A, 5A, 11A, 12A, 13A, 13B, 15A e 15B como de vulnerabilidade média e os solos 1A, 1B, 4A, 6B, 10A, 10B, 11B, 12B, 14A e 14B foram classificados como de vulnerabilidade alta. A mobilidade de cádmio nos solos estudados é

maior para as amostras com o maior índice de vulnerabilidade (acima de 60%). Para a maior parte dos solos desse grupo é evidente a existência de uma relação entre menores valores de pH e maiores teores de areia com os maiores teores de F1 extraídos. Os menores valores de b e de k em conjunto com os maiores valores de F1 confirmam que a atração eletrostática é a principal forma de retenção de cádmio por estes solos. O mesmo não é observado para os solos de menor vulnerabilidade. Os solos desse grupo com valores de pH mais elevados, com consideráveis teores de argila e apresentando teores de F1 extraídos praticamente nulos são considerados os mais resistentes à disponibilização de metais como o cádmio (Figura 16). Os maiores valores de b e principalmente de k desses solos, obtidos das isotermas de adsorção reforçam sua maior estabilidade. Os solos considerados de média e de baixa vulnerabilidade apresentam valores de b e de k que são por vezes intermediários aos valores citados.

Figura 28. Vulnerabilidade dos solos à contaminação por cádmio em relação à fração F1 do procedimento de extração sequencial em seis etapas.

Com relação aos parâmetros de adsorção percebe-se que eles não fornecem um padrão regular de agrupamento dos solos como foi verificado com os dados de F1. Para os valores de k, por exemplo, nota-se que a maior parte das amostras possui praticamente a mesma energia de adsorção, ficando separado apenas o grupo classificado em relação a F1 como de menor vulnerabilidade. Dessa forma, para os solos investigados, os dados de adsorção não são por si só, parâmetros eficientes para se determinar a vulnerabilidade de solos.

Considerando-se a distribuição de chumbo e relacionando-se as percentagens extraídas do metal na fração F1 com índices de vulnerabilidade, os solos podem ser agrupados de acordo com as seguintes classes: vulnerabilidade muito baixa, com teores extraídos de chumbo variando de 0 a 5%; vulnerabilidade baixa, com teores entre 5 a 20%; vulnerabilidade média, com teores variando de 20 a 40% e vulnerabilidade alta, com teores de chumbo extraídos acima de 40%.

Com relação ao chumbo, verifica-se que os solos agrupam-se de forma bastante diferente ao agrupamento obtido para cádmio e isto ocorre devido às diferentes interações que ocorrem entre estes dois metais e os constituintes dos solos. O gráfico 29 (c) que permite visualizar como os solos se agrupam em função de F1, b e k, mostra a separação dos grupos 8A, 8B, 9A, 9B, 5B, 7A, 5A, 1A, 1B, 6A, 4B, 2A, 7B, referentes a solos de vulnerabilidade muito baixa, os solos 3A, 13A, 4A, 6B, 2B, 15A e 3B referentes a solos de vulnerabilidade baixa, os solos 15B, 13B, 11A, 10A, 10B e 12A foram classificados como de vulnerabilidade média e os solos 11B, 12B, 14A e 14B classificados como de vulnerabilidade alta. Cabe ressaltar a baixa mobilidade do chumbo em um número maior de solos em comparação ao cádmio. Verifica-se que para o cádmio, solos que foram classificados como de vulnerabilidade alta, como os solos 1A, 1B, 4A e 6B são para o chumbo classificados como de vulnerabilidade muito baixa.

Figura 29. Vulnerabilidade dos solos à contaminação por chumbo em relação à fração F1 do procedimento de extração sequencial em seis etapas.

Os valores de b e de k para o chumbo também não mostraram um padrão que possa agrupar os solos com relação à vulnerabilidade. Caso isso fosse possível, ao analisarmos os solos em função de b era de se esperar que os solos classificados como de vulnerabilidade muito baixa apresentassem os maiores valores de b e que os solos mais vulneráveis tivessem os menores valores. Tal comportamento não foi observado, pois solos como, por exemplo, o solo 9B que de acordo com F1 é um solo de vulnerabilidade muito baixa apresenta uma baixa capacidade retenção do metal, solos como 10A, 10B e 11A que são agrupados com índice de vulnerabilidade média, mostram valores para b completamente diferentes. O mesmo comportamento é observado para a energia de ligação (k). Solos que deveriam apresentar os maiores valores de k, como por exemplo, o solo 9B, classificado como de vulnerabilidade muito baixa, apresenta uma energia bem inferior à energia dos outros solos de seu grupo. Solo como o 4B também classificado com a mesma vulnerabilidade, apresenta uma das menores energias de ligação dentre os solos estudados.

Constata-se que dentre os diferentes parâmetros investigados para a determinação da vulnerabilidade dos solos, os resultados do fracionamento dos metais com ênfase na fração F1, é o mais viável para se estabelecer critérios de vulnerabilidade para solos. Há pouca informação disponível a respeito da vulnerabilidade de solos levando-se em consideração o estudo de adsorção e de fracionamento de metais em conjunto, como realizado aqui. Vários autores têm investigado o assunto trabalhando-se somente com parâmetros de adsorção e atribuído aos solos maiores ou menores vulnerabilidades, o que pode em muitos casos ser uma informação equivocada. Em função disso, e do que foi proposto neste trabalho, a necessidade de aprofundar mais os conhecimentos sobre as formas de se determinar a vulnerabilidade dos solos a contaminação por metais é de grande importância uma vez que o fator vulnerabilidade é uma ferramenta útil para tomada de decisão no que se refere a proteção da qualidade dos solos, dadas as limitações técnicas e principalmente econômicas para remediar a contaminação existente.

Considerando os dados obtidos e propondo-se índices de vulnerabilidade a partir das quantidades extraídas dos elementos na fração solúvel e trocável (F1), os solos podem ser identificados quanto à disponibilização de cobre nos solos de acordo com quatro classes de vulnerabilidade: (1) Vulnerabilidade muito baixa: solos com teores extraídos de cobre variando de 0 a 2,5%; (2) Vulnerabilidade baixa: solos com teores entre 2,5 a 10%; (3) Vulnerabilidade média: solos com teores variando de 10 a 20% e (4) Vulnerabilidade alta: solos com teores de cobre extraídos acima de 20%.

Plotando-se o gráfico de F1, b e k para o cobre é possível visualizar o agrupamento dos solos em função desses parâmetros. A Figura 30 (e) ilustra a distribuição espacial das amostras em relação à fração F1, determinante de vulnerabilidade, indicando a presença de quatro grupos distintos. Os solos 2A, 2B, 3B, 5A, 5B, 7A, 7B, 8A, 8B, 9A, 9B e 12A são agrupados como sendo de vulnerabilidade muito baixa, os solos 1A, 1B, 3A, 4A, 4B, 6A, 13A e 15A são classificados como de vulnerabilidade baixa, os solos 10B, 11A, 12B e 15B como de vulnerabilidade média e os solos 6B, 10A, 11B, 13B, 14A e 14B são classificados como de vulnerabilidade alta.

Figura 30. Vulnerabilidade dos solos à contaminação por cobre em relação à fração F1 do procedimento de extração sequencial em seis etapas.

A mobilidade de cobre nos solos estudados é maior para as amostras com o maior índice de vulnerabilidade (acima de 20%). Os solos agrupados com o maior índice de vulnerabilidade, na maior parte dos casos mostram a existência de uma forte relação entre menores valores de pH e maiores teores de areia com os maiores teores de F1 extraídos. Os baixos valores de b e principalmente de k em conjunto com as maiores extrações na fração F1 revelam que a natureza eletrostática da ligação é a principal forma de retenção de cobre por estes solos. Os solos moderadamente estáveis apresentam características que se opõem as estas. A maior parte dos solos deste grupo, com os mais elevados valores de PH, como gradiente textural variando de médio a argiloso e apresentando teores de F1 extraídos praticamente nulos são os solos considerados de maior estabilidade para deposição de elementos como o cobre. Os elevados valores de b e principalmente de k obtidos para grande parte dessas amostras reforçam essa maior estabilidade. Os solos agrupados como de vulnerabilidade baixa e vulnerabilidade média apresentam valores de F1, b e k que são por vezes intermediários aos valores citados.

Colocando-se os valores de b e de k em evidência no gráfico, não é possível observar a formação dos mesmos grupos de amostras e nem mesmo agrupá-las nas classes de vulnerabilidade estabelecidos. Com relação aos parâmetros de adsorção percebe-se que eles não fornecem um padrão regular de agrupamento dos solos como foi verificado com os dados de F1. Para os valores de k, por exemplo, nota-se que várias amostras apresentam energia de ligação semelhante, havendo separação de apenas um pequeno grupo de solos, o mesmo ocorrendo com os valores de b. Dessa forma, para os solos investigados, como os dados de adsorção por si só não são bons indicadores de vulnerabilidade, o agrupamento dos solos feito em função deste parâmetro não será considerado.

Relacionando-se as percentagens extraídas de zinco na fração F1 com índices de vulnerabilidade, os solos podem ser agrupados de acordo com as seguintes classes: (1) Vulnerabilidade muito baixa: solos com teores extraídos de zinco variando de 0 a 5%; (2) Vulnerabilidade baixa: solos com teores entre 5 a 20%; (3) Vulnerabilidade média: solos com teores variando de 20 a 40% e (4) Vulnerabilidade Alta: solos com teores de cobre extraídos acima de 40%.

Pela observação dos índices de vulnerabilidade atribuídos para o cobre e para zinco, verifica-se que estes metais se distribuem e consequentemente se agrupam de forma bastante diferenciada nos diferentes solos, e isto provavelmente ocorre em função das diferentes interações que ocorrem entre estes dois elementos e os constituintes dos solos. A Figura 31 (g) que permite visualizar como os solos se agrupam em função de F1, mostra a separação dos grupos 4A, 8A, 8B, 9A e 9B referentes a solos de vulnerabilidade muito baixa, os solos 2A, 4B, 5B, 6A, 7A, 7B e 11A referentes a solos de baixa vulnerabilidade, os solos 1A, 2B, 3A, 3B, 5A, 6B, 11B, 12A, 13A, 13B e 15A foram classificados como de média vulnerabilidade alta. Cabe ressaltar a baixa mobilidade do cobre em um número maior de solos em comparação ao zinco. Verifica-se que para o cobre, solos que foram classificados como de estabilidade moderada, como os solos 2B, 3B, 5A e 12A são para o zinco classificados como de moderada vulnerabilidade.

Os valores de b e de k para o zinco também não mostraram um padrão que possa agrupar os solos com relação à vulnerabilidade. Caso isso fosse possível, ao analisarmos os solos em função de b era de se esperar que os solos classificados como de moderada estabilidade apresentassem os maiores valores de b e que os solos mais vulneráveis tivessem os menores valores e esse comportamento não foi observado. Colocando-se k em evidência no gráfico, verifica-se que a maior parte dos solos se junta num só grupo indicando que os solos possuem quase que a mesma energia de retenção para zinco. Separado deste grupo encontram-se somente as amostras 8A, 8B, 9A e 9B que apresentam as maiores energias de ligação de zinco.

Figura 31. Vulnerabilidade dos solos à contaminação por zinco em relação à fração F1 do procedimento de extração sequencial em seis etapas.

Atribuindo-se níveis de vulnerabilidade aos solos quanto à contaminação por metais, levando-se em consideração o pH das amostras, pode-se estabelecer os seguintes níveis: solos com pH variando de 4,0 a 5,0 considerados como de vulnerabilidade alta, aqueles com pH variando de 5,1 a 6,0 considerados de vulnerabilidade média, os solos de pH compreendido entre 6,1 e 7,0 são considerados como de vulnerabilidade baixa e por fim, aqueles com pH superior a 7,1 são classificados como de vulnerabilidade muito baixa (Figura 32).

Figura 32. Agrupamento dos solos em função do pH, F1 e b para cádmio (i), chumbo (j), cobre (k) e zinco (l).

Verificou-se para os quatro metais a formação dos seguinte grupos: solos 10A, 11B, 12B, 14A, 14B e 15B foram considerados como de vulnerabilidade alta; solos 1A, 1B, 2A, 2B, 3A, 3B, 4A, 5A, 5B, 6B, 10B, 11A, 12A, 13A, 13B e 15A são considerados como de vulnerabilidade média, os solos 4B, 6A, 7A e 7B são considerados como de vulnerabilidade baixa e os solos 8A, 8B, 9A e 9B classificados como de vulnerabilidade baixa (Figura 27).

A análise das Figuras mostra que os solos classificados como de vulnerabilidade muito baixa são solos que exibem os menores valores de F1 e consideráveis valores de b. Isto significa que este solos quando expostos a determinada carga de contaminante como metais pesados, por exemplo, oferecem menor risco de contaminação para o aqüífero ou para o lençol freático, uma vez que sua redisponibilização se daria mais dificilmente. Entretanto, solos considerados como de alta vulnerabilidade, que apresentam elevados percentuais de recuperação em F1, baixos valores de b associados aos menores valores de pH, oferecem maior risco de contaminação podendo comprometer o sistema solo-àgua. A maior parte dos solos intemperizados (Argissolo e Latossolos) foram classificados como de vulnerabilidade média considerando-se os valores de pH.

O estudo da vulnerabilidade abordada neste trabalho referente ao risco de contaminação do solo por metais como cádmio, cobre, chumbo e zinco é de fundamental importância para tomada de decisão no que se refere a proteção da qualidade dos solos, dadas as limitações técnicas e principalmente econômicas para remediar a contaminação existente. A determinação da vulnerabilidade dos solos com ênfase na fração F1, mas considerando-se os dados de adsorção e as características dos solos mostraram ser ferramentas viáveis de investigação ambiental.

4. Conclusões

1. Para os solos estudados, de maneira geral, a distribuição dos metais nas diferentes frações acompanhou as suas afinidades de adsorção, ou seja, as menores porcentagens de metal nas frações mais disponíveis (solúvel e trocável) ocorreram, provavelmente, devido à formação de ligações de mais alta energia (complexos de esfera interna) com a fase sólida do solo (fração orgânica e mineral).

2. A maioria dos solos estudados apresentou para cádmio e zinco vulnerabilidade dos solos a contaminação por metais pesados média, seguidos de vulnerabilidade alta e baixa e muito baixa, enquanto que para cobre e chumbo a seguinte ordem foi observada para a maioria dos solos: vulnerabilidade muito baixa, vulnerabilidade baixa, vulnerabilidade média e vulnerabilidade alta.

3. Os solos com material de origem formados a partir de micaxisto com influência de quartzitos (Cambissolo Háplico Tb distrófico típico) e os oriundos de coberturas terciárias e quartenárias associadas ao Arenito Urucuia (Neossolo Quartzarênico órtico latossólico) foram os que apresentaram maior vulnerabilidade, fato esse esperado uma vez que esses sistemas são formados por materiais extremamente susceptíveis à contaminação, por serem muito permeáveis como arenitos e sedimentos inconsolidados sobre relevo plano e levemente ondulado. As áreas de vulnerabilidade muito baixa foram aquelas sob calcário (Chernossolo Argilúvico Carbonático saprolítico) e oriundas de Migmatitos associados a rochas Charnockíticas (Cambissolo Háplico Tb eutrófico latossólico). Já as áreas sob rochas pelíticas (argilitos e siltitos) representados pelos solos 11, 12 e 13, bem como grande parte dos solos intemperizados (Argissolo e Latossolos) apresentaram vulnerabilidade variando de média a baixa.

4. Concluiu-se portanto, que a distribuição dos metais em F1 nos solos classificados como alto, indica condição ambiental de vulnerabilidade alta frente a carga contaminante, o que pode ser compreendido como condição favorável, a priori, à contaminação do lençol freático. Para pequeno percentual extraído em F1 (vulnerabilidade muito baixa) o contaminante tende a se manter mais adsorvido, tornando o solo menos exposto à condição de contaminação.
5. Considerações finais

O presente trabalho confirma que o emprego de isotermas de adsorção em conjunto com procedimentos de extração e com as características químicas e físicas das amostras podem ser utilizados como ferramentas de diagnótico ambiental para se inferir sobre a vulnerabilidade de solos a contaminação por metais.

Este trabalho fornece uma indicação de áreas que devem merecer especial atenção por serem mais vulneráveis aos processos de contaminação, na expectativa de subsidiar/orientar ações de conservação no Estado de Minas Gerais.

Um perfeito agrupamento de solos em relação a maior ou menor vulnerabilidade à contaminação por metais seria obtida pelo emprego da quimiometria, ferramenta estatística a ser aplicada neste trabalho.

Outros estudos de adsorção e extração de metais pesados em solos podem ser enriquecidos introduzindo o fator planta, qual seja, o extrator biológico, o mais eficiente de todos os extratores, em trabalhos de correlação e calibração. Sabe-se, por exemplo, que o pH, o parâmetro físico-quimico mais importante na adsorção e muito bem controlado em condições laboratoriais, altera-se facilmente pelo efeito rizosférico das plantas cultivadas em quaisquer tipos de solos.

6. Referências

DE LA ROSA, D.; MAYOL, F.; MORENO, J. A. Modelo Arenal: Evaluacion de los riesgos de contaminacion agrícola de los suelos. [21 fev. 2007].(HTTP://leu.irnase.csis.es/microlei/manual1/pdfs/arenal-esp.pdf).

DESAULES, A. The soil vulnerability mapping project for Europe (SOVEUR): Methodological considerations with reference to conditions in Switzerland. In: MAPING OF SOIL AND TERRAIN VULNERABILITY TO SPECIFIED CHEMICAL COMPOUNDS IN EUROPE AT SCALE OF 1:5 M, 1991, Wageningen, Holanda: 1991. p.23-29.

GOMES, M. A. F.; SPADOTTO, C. A.; PESSOA, A. C. P. Y. Avaliação da vulnerabilidade natural do solo em áreas agrícolas: subsídio à avaliação do risco de contaminação do lençol freático por agroquímicos. Pesticidas: R. Ecotoxicol. e Meio Ambiente, Curitiba, v. 12, p. 169-179, 2002.

KLIJN, F. Environmental to Chemicals from Process to Patterns with Special Reference to Mapping and Spacial Scales. In: MAPPING OF SOIL AND TERRAIN VULNERABILITY TO SPECIFIED CHEMICAL COMPOUNDS IN EUROPE AT SCALE OF 1:5 M, 1991, Wageningen, Holanda: 1991. p.9-23.

LIMA, C. E. P.; DE MORAES, A. F. Confecção de um mapa de vulnerabilidade natural dos solos de Minas Gerais à contaminação por metais pesados. Viçosa, MG: ufv, 2004. 55p. Projeto Final de Curso (Graduação em Engenharia Ambiental) – Universidade Federal de Viçosa.

MORAES, A. F. Abordagem da vulnerabilidade quimica e riscos de contaminação dos solos por metais pesados em área dos Municipios de Pais, Arcos e Córrego Fundo, baseados nos constituintes dos solos retentores dos metais pesados. Dissertação (Instituto de Geociencias), 2007, 101 p.

APÊNDICE

<u>APÊNDICE C</u>

Figura 1C. Vulnerabilidade dos solos à contaminação por cádmio em relação aos parâmetros b, k, K_F, n e F1 (fração mais lábil do procedimento BCR).

Figura 2C. Vulnerabilidade dos solos à contaminação por chumbo em relação aos parâmetros b, k, K_F, n e F1 (fração mais lábil do procedimento de BCR).

Figura 3C. Vulnerabilidade dos solos à contaminação por cobre em relação aos parâmetros b, k, K_F, n e F1 (fração mais lábil do procedimento de BCR).

Figura 4C. Vulnerabilidade dos solos à contaminação por zinco em relação aos parâmetros b, k, K_F, n e F1 (fração mais lábil do procedimento de BCR).

Figura 5C. Agrupamento dos solos em função de F1, b, e os processos de extração simples (DTPA, Mehlich-1 e Mehlich-3) para cádmio.

Figura 6C. Agrupamento dos solos em função de F1, b, e os processos de extração simples (DTPA, Mehlich-1 e Mehlich-3) para chumbo.

Figura 7C. Agrupamento dos solos em função de F1, b, e os processos de extração simples (DTPA, Mehlich-1 e Mehlich-3) para cobre.

Figura 8C. Agrupamento dos solos em função de F1, b, e os processos de extração simples (DTPA, Mehlich-1 e Mehlich-3) para zinco.

Figura 9C. Agrupamento dos solos em função de F1, b, k e pH para cádmio.

Figura 10C. Agrupamento dos solos em função de F1, b, k e pH para chumbo.

Figura 11C. Agrupamento dos solos em função de F1, b, k e pH para cobre.

Figura 12C. Agrupamento dos solos em função de F1, b, k e pH para zinco.