UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE QUÍMICA

CLAITON PIRES VENTURA

USO DE MICRO-ONDAS NA SÍNTESE DE NOVOS (±) PTEROCARPANOS COM ATIVIDADE SEQUESTRADORA DE RADICAIS LIVRES

Belo Horizonte

2010

UFMG/ICEx/DQ 839^a

T.358^a

CLAITON PIRES VENTURA

USO DE MICRO-ONDAS NA SÍNTESE DE NOVOS (±) PTEROCARPANOS COM ATIVIDADE SEQUESTRADORA DE RADICAIS LIVRES

Tese apresentada ao Departamento de Química do Instituto de Ciências Exatas da Universidade Federal de Minas Gerais, com requisito parcial à obtenção do título de Doutor em Ciências – Química

Belo Horizonte

2010

Ventura, Claiton Pires, Uso de micro-ondas na síntese de novos(+/-) pterocarpanos com atividade sequestradora de radicais livres / Claiton Pires Ventura. 2010. iv, 160 f. : il. Orientadora: Rosemeire Brondi Alves. Coorientadora: Rossimiriam Pereira de Freitas. Tese (doutorado) - Universidade Federal de Minas Gerais. Departamento de Química. Inclui bibliografia e apêndice.
1. Síntese orgânica - Teses 2. Pterocarpanos -Teses 3. Micro-ondas - Teses 4. Antioxidantes - Teses 5. Cicloadição - Teses I. Alves, Rosemeire Brondi,

"Uso de Micro-Ondas na Síntese de novos(+/-) Pterocarpanos com Atividade Sequestradora de Radicais Livres"

Claiton Pires Ventura

Tese aprovada pela banca examinadora constituída pelos Professores:

vere Brondi Al

Profa. Rosemeire Brondi Alves - Orientadora UFMG

Grein Druton wrom

Profa. Rossimiriam Pereira de Freitas - Co-Orientadora UFMG

Prof. Silvio do Desterro Cunha

UFBA

uno Vin

Próf. Mauro Vieira de Álmeida UFJF

its Cleboso

Profa. Dorila Piló Veloso UFMG

Prof. Ricardo José UFMG/FAFAR

Belo Horizonte, 10 de dezembro de 2010.

Este trabalho foi realizado sob a orientação da Professora Doutora Rosemeire Brondi Alves e co-orientação da Professora Doutora Rossimiriam Pereira de Freitas.

Agradeço especialmente a Deus por ter me dado forças para concluir esse trabalho, a minha querida esposa Vanessa que sempre me incentivou muito, ao meu querido filho Gustavo que chegou inundando de alegria a minha vida e a meus pais que sempre torceram muito por mim.

AGRADECIMENTOS

Agradeço a Deus por ter cuidado de mim durante esses anos de trabalho intenso. Por fazer novo cada dia em minha vida e por me permitir tantas conquistas nesse período.

Agradeço à minha querida esposa Vanessa por sua preciosidade, por teu carinho, atenção e incentivo em todos os momentos. Por lutar por mim como se fosse por ela mesma. Por me fazer desejar ansiosamente voltar para casa todos os dias.

Agradeço ao meu querido filho Gustavo por colorir e alegrar esse meu último ano de doutorado. Por teu sorriso gratuito e simplicidade que enchem o meu coração de amor.

Agradeço a meus pais Paulo e Eugênia e a meus irmãos Mônica, Emerson e Anderson que sempre torceram por mim e me incentivaram muito.

Agradeço todos os meus familiares e também à família da Vanessa que também torcem muito pelo meu sucesso.

Agradeço à professora Rosemeire pela orientação tão cuidadosa realizada durante esses anos de doutorado. Pela ajuda em todos os momentos, pelas dicas e experiência que colaboraram muito para a minha formação.

Agradeço à professora Rossimiriam pela co-orientação. Por suas correções e dicas tão valiosas que melhoraram muito a qualidade desse trabalho.

Agradeço à Eruzia pela colaboração. Por ter sido quem iniciou os estudos de síntese de pterocarpanos utilizando o aquecimento em micro-ondas e por toda a ajuda prestada durante o trabalho.

Agradeço aos meus colegas de laboratório Leandro, Inácio, Mara, Gustavo, Diego, Flaviane, Guilherme, Iara, Leila, Marina, Fernando, Salomão, Filipe, Luiza e a todos que passaram pelo laboratório pelas conversas, ajudas que tornaram mais agradável meu trabalho.

Agradeço aos professores Angelo de Fátima e à professora Luzia Valentina Modolo pelas colaborações e auxílios prestados durante a execução desse trabalho.

Agradeço aos meus colegas da polícia pela convivência e força que me deram durante esses anos de doutorado. A meus chefes que sempre que necessário fizeram concessões para que eu concluísse esse trabalho.

Agradeço a meus amigos Éber, Fabrícia, Rondinele, Danielle, Sandro, Cristiane, Cássia, Ronan, Wolmar, Vanessa, Quésia e Artur que em momentos distintos estiveram ao meu lado e alegraram a minha vida.

Agradeço aos professores da pós-graduação pelo auxilio e ensinamentos durante esse período de formação da minha vida.

Por fim agradeço a todos os funcionários do Departamento de Química e da pósgraduação que contribuíram para a concretização deste trabalho.

SUMÁRIO

SIGLAS	S, ABREVIATURAS E SÍMBOLOS	i
RESUN	10	iii
ABSTR	ACT	iv
1	INTRODUÇÃO	1
1.1	Considerações iniciais	1
1.2	Pterocarpanos	1
1.3	Pterocarpanos e suas atividades biológicas	3
1.3.1	Pterocarpanos com atividade contra veneno de cobra	4
1.3.2	Pterocarpanos com atividade anti-HIV	6
1.3.3	Pterocarpanos com atividade antimicrobiana	8
1.3.4	Pterocarpanos com atividade citotóxica	13
1.3.5	Pterocarpanos e outras atividades biológicas	17
1.4	Métodos de síntese de pterocarpanos	22
2	PROPOSTA DE TRABALHO	30
2.1	Obtenção de pterocarpanos e proposta de desenvolvimento de	
	metodologia de síntese sob aquecimento em micro-ondas	30
2.2	Obtenção de derivados O-alquilados dos pterocarpanos	33
2.3	Realização de testes biológicos com os produtos obtidos	34
3	RESULTADOS E DISCUSSÃO	35

3.1	Síntese de pteroca	rpanos	35
•••			

3.2	Obtenção de pterocarpanos utilizando-se um forno de micro-ondas	
	adaptado	41
3.3	Obtenção de pterocarpanos utilizando-se um reator de micro-ondas	45
3.4	Obtenção dos derivados dos pterocarpanos obtidos por O-alquilação	
	e por hidrólise	49
4	ATIVIDADE BIOLÓGICA	58
4.1	Atividade antioxidante	58
4.1.1	Fundamentos da atividade sequestradora do radical livre DPPH	59
4.1.2	Metodologia utilizada para avaliação da atividade sequestradora	
	do radical DPPH [•]	60
4.1.3	Resultados da avaliação da atividade sequestradora do radical DPPH.	61
4.1.3.1	Resultados da avaliação da atividade sequestradora do radical	
	DPPH ⁻ para os 2 <i>H</i> -cromenos	62
4.1.3.2	Resultados da avaliação da atividade sequestradora do radical	
	DPPH ⁻ para os (±) pterocarpanos	63
5	CARACTERIZAÇÃO DOS COMPOSTOS SINTETIZADOS	70
5.1	Obtenção de intermediários da síntese de pterocarpanos	70
5.1.1	3,4-Metilenodioxifenol (93)	70
5.1.2	Caracterização dos Fenóis <u>94,</u> <u>95,</u> <u>125,</u> <u>126</u> e <u>127</u>	73
5.1.3	2,2-Dimetil-6,7-metilenodioxi-2 <i>H</i> -1-benzopirano (98)	76
5.1.4	Caracterização dos 2 <i>H</i> -cromenos <u>97, 99, 129, 130, 131</u> e <u>132</u>	79
5.2	Síntese de pterocarpanos	82
5.2.1	(±) 6a,11a-Diidro-2,3,9-trimetoxi-8-hidroxi-6,6-dimetil-6 <i>H</i> -benzofuro	

	[3,2-c] [1]benzopirano (<u>103</u>)	82
5.2.2	Caracterização dos pterocarpanos <u>101, 102, 133, 134, 135 e</u> <u>136</u>	89
5.2.3	Caracterização dos pterocarpanos <u>151</u> , <u>152</u> , <u>155</u> , <u>156</u> , <u>157</u> , <u>158</u> ,	
	<u>159, 163, 164, 165</u> e <u>166</u>	95
6	PARTE EXPERIMENTAL	106
6.1	Materiais e métodos	106
6.1.1	Purificação e secagem de solventes e reagentes	106
6.1.2	"Elaboração usual"	107
6.1.3	Secagem da vidraria	107
6.1.4	Organolítio	108
6.1.5	Ácido meta-cloroperbenzóico	108
6.1.6	Banho e baixa temperatura	108
6.1.7	Reveladores	109
6.1.8	Adaptação do forno micro-ondas doméstico Panasonic Junior	
	Smart NNS53BH	109
6.2	Procedimentos experimentais: síntese de (±) pterocarpanos	110
6.2.1	Reação de benzilação da isovanilina <u>137</u> . Adaptação da metodologia	
	descrita por Mingzhang Gao e colaboradores	110
6.2.2	Reação de benzilação da vanilina <u>138</u> . Adaptação da metodologia	
	descrita por Mingzhang Gao e colaboradores	111

6.2.3	Obtenção dos fenóis <u>93, 94, 95, 125, 126</u> e <u>127</u> por reação de	
	oxidação de Baeyer-Villiger	112
6.2.4	Obtenção de 2 <i>H</i> -cromenos	116
6.2.5	Obtenção de (±) pterocarpanos por reação de cicloadição (3+2)	122
6.2.5.1	Método convencional	122
6.2.5.2	Método utilizando aquecimento com micro-ondas. Adaptação	
	da metodologia descrita por Subburaj e colaboradores	123
6.2.6	Procedimento geral de alquilação de pterocarpanos. Adaptação	
	da metodologia descrita por Santos e colaboradores	129
6.2.7	Obtenção do brometo de (3-piridinil)propila (<u>154</u>)	134
6.2.8	Obtenção do (±) 6a,11a-diidro-9-metoxi-8-(6-iodo-hexoxi)-2,3-	
	metilenodioxi-6,6-dimetil-6 <i>H</i> -benzofuro[3,2-c][1]benzopirano (<u>165</u>)	134
6.2.9	Obtenção do (±) 6a,11a-diidro-3,9-dimetoxi-2,8-di-hidroxi-6,6-dimetil-	
	6 <i>H</i> -benzofuro[3,2-c][1]benzopirano (<u>156</u>)	136
6.2.10	Obtenção do (±) 6a,11a-diidro-3-benziloxi-2,9-dimetoxi-8-	
	(6-mesil-hexoxi)-6,6-dimetil-6 <i>H</i> -benzofuro[3,2-c][1]benzopirano (<u>166</u>)	137
6.2.11	Obtenção do (±) 6a,11a-diidro-3-benziloxi-2,9-dimetoxi-8-[6-(5'-fenil-	
	1'H-tetrazol-1'-il)hexanoxi]-6,6-dimetil-6 <i>H</i> -benzofuro [3,2-c] [1]	
	benzopirano (158) e do (±) 6a,11a-diidro-3-benziloxi-2,9-dimetoxi-	
	8-[6-(5'-fenil-oxadiazol-2'-ilsulfanil)hexanoxi]-6,6-dimetil-6H-benzofuro	

	[3,2-c] [1]benzopirano (<u>159</u>)	138
7	CONCLUSÕES	141
8	REFERÊNCIAS BIBLIOGRÁFICAS	144

ANEXOS

ANEXO 1: Espectros

ANEXO 2: Produção Científica

SIGLAS, ABREVIATURAS E SÍMBOLOS

AMCPB	ácido meta-cloroperbenzóico
Ar	arila
Bn	benzila
O°	graus Celsius
CCDS	Cromatografia em Camada Delgada de Sílica
CCS	Cromatografia em Coluna de Sílica
CE ₅₀	Concentração capaz de suprimir em 50% a replicação de vírus
CI ₅₀	Concentração inibitória ou tóxica de 50%
СК	Creatina quinase
COSY	COrrelation SpectroscopY
COX-1	ciclooxigenase 1
COX-2	ciclooxigenase 2
d	dupleto
DEAD	azodicarboxilato de dietila
DEPT	Distortionless Enhancement by Polarization Transfer
DME	dimetoxietano
DPPH	2,2-difenil-1-picrilidrazil
ed	excesso diastereoisomérico
ee	excesso enantiomérico
EMAR	espectro de massas de alta resolução
Et	etila
FM	fórmula molecular
HIV	vírus da Aids
HMBC	Heteronuclear Multiple Bond Correlation
HMQC	Heteronuclear Multiple Quantum Coherence
Hz	Hertz
IV	infravermelho
J	constante de acoplamento
LDA	diisopropilamideto de lítio
m	multipleto
Μ	molar
μΜ	micromolar
Ме	metila
μg	micrograma

mg	miligrama
MHz	megahertz
mL	mililitro(s)
min.	minuto(s)
MM	massa molecular
mmol	milimol
M.O.	micro-ondas
MOM	metilmetoxi
Ms	mesila
m/v	massa/volume
Naph	nafitila
р.	página
Ph	fenila
PTSA	ácido para-toluenossulfônico
Rdt	rendimento
RMN de ¹³ C	Ressonância Magnética Nuclear de carbono treze
RMN de ¹ H	Ressonância Magnética Nuclear de hidrogênio
ROS	espécies reativas de oxigênio
ROS s	espécies reativas de oxigênio simpleto
ROS s sl	espécies reativas de oxigênio simpleto sinal largo
ROS s sl t	espécies reativas de oxigênio simpleto sinal largo tripleto
ROS s sl t t.a.	espécies reativas de oxigênio simpleto sinal largo tripleto temperatura ambiente
ROS s sl t t.a. TBAF	espécies reativas de oxigênio simpleto sinal largo tripleto temperatura ambiente fluoreto de tetrabutilamônio
ROS s sl t t.a. TBAF TBDMS	espécies reativas de oxigênio simpleto sinal largo tripleto temperatura ambiente fluoreto de tetrabutilamônio <i>ter</i> -butildimetilsilila
ROS s sl t t.a. TBAF TBDMS Tf	espécies reativas de oxigênio simpleto sinal largo tripleto temperatura ambiente fluoreto de tetrabutilamônio <i>ter</i> -butildimetilsilila trifluormetanossulfonila
ROS s sl t t.a. TBAF TBDMS Tf THF	espécies reativas de oxigênio simpleto sinal largo tripleto temperatura ambiente fluoreto de tetrabutilamônio <i>ter</i> -butildimetilsilila trifluormetanossulfonila tetra-hidrofurano
ROS s sl t t.a. TBAF TBDMS Tf THF TMOF	espécies reativas de oxigênio simpleto sinal largo tripleto temperatura ambiente fluoreto de tetrabutilamônio <i>ter</i> -butildimetilsilila trifluormetanossulfonila tetra-hidrofurano ortoformato de trimetila
ROS s sl t t.a. TBAF TBDMS Tf THF TMOF TMS	espécies reativas de oxigênio simpleto sinal largo tripleto temperatura ambiente fluoreto de tetrabutilamônio <i>ter</i> -butildimetilsilila trifluormetanossulfonila tetra-hidrofurano ortoformato de trimetila tetrametilsilano
ROS s sl t t.a. TBAF TBDMS Tf THF TMOF TMS Ts	espécies reativas de oxigênio simpleto sinal largo tripleto temperatura ambiente fluoreto de tetrabutilamônio <i>ter</i> -butildimetilsilila trifluormetanossulfonila tetra-hidrofurano ortoformato de trimetila tetrametilsilano
ROS s sl t t.a. TBAF TBDMS Tf THF TMOF TMS Ts TTN	espécies reativas de oxigênio simpleto sinal largo tripleto temperatura ambiente fluoreto de tetrabutilamônio <i>ter</i> -butildimetilsilila trifluormetanossulfonila tetra-hidrofurano ortoformato de trimetila tetrametilsilano tosila nitrato de tálio (III)
ROS s sl t t.a. TBAF TBDMS Tf THF TMOF TS TTN Δ	espécies reativas de oxigênio simpleto sinal largo tripleto temperatura ambiente fluoreto de tetrabutilamônio <i>ter</i> -butildimetilsilila trifluormetanossulfonila tetra-hidrofurano ortoformato de trimetila tetrametilsilano tosila nitrato de tálio (III) aquecimento
ROS s sl t t.a. TBAF TBDMS Tf THF TMOF TMS TTN Δ δ	espécies reativas de oxigênio simpleto sinal largo tripleto temperatura ambiente fluoreto de tetrabutilamônio <i>ter</i> -butildimetilsilila trifluormetanossulfonila tetra-hidrofurano ortoformato de trimetila tetrametilsilano tosila nitrato de tálio (III) aquecimento
ROS s sl t t.a. TBAF TBDMS Tf THF TMOF TMS TS TTN Δ $\bar{\nu}$	espécies reativas de oxigênio simpleto sinal largo tripleto temperatura ambiente fluoreto de tetrabutilamônio <i>ter</i> -butildimetilsilila trifluormetanossulfonila tetra-hidrofurano ortoformato de trimetila tetrametilsilano tosila nitrato de tálio (III) aquecimento deslocamento químico

RESUMO

Este trabalho descreve um estudo comparativo da obtenção de pterocarpanos racêmicos utilizando aquecimento convencional e um novo método de aquecimento utilizando micro-ondas: foram obtidos sete pterocarpanos racêmicos por cicloadição [3+2], dentre os quais cinco são inéditos. Com este estudo ficou evidenciada a maior eficiência do aquecimento com micro-ondas, sendo os produdos obtidos com melhores rendimentos e com redução expressiva nos tempos quando comparado à metodologia convencional.

De forma a obter novos compostos com potencial aplicação biológica, foram sintetizados também mais onze pterocarpanos inéditos com diferentes substituintes nos anéis A e D, sendo dez obtidos por *O*-alquilação e um obtido por hidrólise de um derivado esterificado.

Finalmente, foi avaliada a potencial atividade antioxidante dos (±) pterocarpanos sintetizados utilizando o método de seqüestro do radical DPPH[•] (1,1-difenil-2-picrilidrazil). Estes experimentos foram monitorados por espectrofotometria usando como controle positivo o resveratrol. Todos os pterocarpanos substituídos com hidroxilas fenólicas apresentaram significativa atividade sequestradora de radicais livres, confirmada pelo método do DPPH[•]. Estes compostos apresentaram melhores atividades do que o controle positivo resveratrol.

ABSTRACT

This work describes a comparative study to obtain racemic pterocarpans by classical heat and a novel method using microwave: it was obtained seven racemic pterocarpans by cycloaddition [3+2], among them five are new. In this study it was proved the efficiency of the microwave heat, which allows yield enhancements and significant reduction of reaction time when compared to traditional methodology.

To obtain different new compounds with potential biological application, eleven new pterocarpans were synthesized with different substituents in the ring A and D, among them ten were obtained by *O*-alkylation and one by hydrolysis of an esterificated product.

Finally, a potential antioxidant activity of the (±) pterocarpans synthesized has been analysed by DPPH[•] (1,1-diphenyl-2-picrylhydrazyl) radical scavenging assay. This experiment was monitored by spectrophotometry employing resveratrol as the positive control. All pterocarpans with phenolic hydroxyl groups presented a significant scavenger activity confirmed by the DPPH[•] assay. These compounds presented better activities than the positive control resveratrol.

1 – INTRODUÇÃO

1.1 – Considerações iniciais

A descoberta de novos fármacos tem representado um grande desafio, sendo a tendência atual um trabalho multidisciplinar envolvendo diversos profissionais como químicos, farmacologistas e médicos. Essa busca é um trabalho intenso e complexo, todavia tem beneficiado enormemente a humanidade nas últimas décadas com a descoberta de inúmeros novos fármacos. Muitos dos fármacos atualmente utilizados foram obtidos por síntese ou isolados de produtos naturais. Também existem muitos casos nos quais produtos naturais servem como protótipos para síntese de novos compostos (BUTLER, 2004).

A descoberta de compostos com atividades biológicas desejáveis representa um processo longo e com gastos altíssimos (KAPPE & DALLINGER, 2006). Diante da dificuldade e custos envolvidos, há um grande interesse na busca de substâncias biologicamente ativas como potenciais fármacos. É importante considerar que os grupos de substâncias nas quais já se descobriu algum tipo de atividade, diante de seu potencial já avaliado, tornam-se ainda mais atraentes para a síntese química.

1.2 – Pterocarpanos

Um grupo muito importante de substâncias derivadas de produtos naturais são os isoflavonóides. Nesse grupo estão incluídas muitas classes de substâncias: isoflavonas <u>1</u> (p.2), isoflavanas <u>2</u> (p.2), 3-aril-4-hidroxicumarinas <u>3</u> (p.2), cumarocromonas <u>4</u> (p.2), isoflavanonas <u>5</u> (p.2), rotenóides <u>6</u> (p.2), pterocarpanos <u>7</u> (p.2) e cumestanos <u>8</u> (p.2) (HARBORNE *et al.*, 1975).

Os isoflavonóides têm sido estudados por apresentarem atividades na prevenção de câncer, na proteção contra doenças cardiovasculares, na proteção contra osteoporose e muitas outras. Dentre o grupo dos isoflavonóides se destacam os pterocarpanos, substâncias muito presentes em produtos naturais. Os pterocarpanos agem especialmente nos vegetais como fitoalexinas, isso é, substâncias que são produzidas como defesa para a planta em resposta a uma agressão externa de predadores, apresentando, portanto, interessantes atividades biológicas como, por exemplo, ação contra micro-organismos (ANDERSEN & MARKHAM, 2006).

Os pterocarpanos representam a segunda maior classe de isoflavonóides, sendo a maior classe a das isoflavonas. Eles apresentam um núcleo tetracíclico derivado do núcleo fundamental das isoflavonas <u>9</u> (p.3), mas com uma numeração diferente. Eles são subdivididos em pterocarpanos <u>10</u> (p.3), 6a-hidroxi-pterocarpanos <u>11</u> (p.3) e pterocarpenos <u>12</u> (p.3) (SIMÕES *et al.*, 2004).

Uma consideração importante é que todos os pterocarpanos de origem natural apresentam a junção dos anéis B/C fundidos de forma *cis*. Em alguns estudos computacionais foi mostrado que a junção *trans* <u>13</u> dos anéis B/C em pterocarpanos é energeticamente menos favorável do que a junção *cis*, o que explica o fato de todos os pterocarpanos de origem natural possuírem a configuração 6a, 11a-*cis* (VAN AARDT *et al.*, 2001). Conforme Harbone e colaboradores a configuração para o (-) pterocarpano <u>14</u> é 6a*R*, 11a*R* e para o enantiômero (+) <u>10</u> é 6a*S*, 11a*S* (HARBONE *et al.*, 1975).

É importante ressaltar que os pterocarpanos são intermediários-chave na síntese dos cumestanos <u>8</u> (p.2). Esses compostos, assim como os pterocarpanos, também são fitoalexinas e apresentam importantes atividades biológicas (PHILLIPS & KAPULNIK, 1995).

1.3 – Pterocarpanos e suas atividades biológicas

O que aumentou muito o interesse em se estudar os pterocarpanos foi o fato desse grupo de substâncias apresentar diferentes tipos de atividades biológicas, sendo algumas já testadas em estudos *in vitro* e *in vivo* (MURUGESH

et al., 1996). Jiménez-González e colaboradores publicaram um artigo de revisão bem recente mostrando pterocarpanos com importantes atividades como antifúngicos, antibacterianos, antitumorais e até com atividade inseticida (JIMÉNEZ-GONZÁLEZ *et al.*, 2008). A seguir serão comentadas as principais atividades biológicas relatadas para os pterocarpanos.

1.3.1 – Pterocarpanos com atividade contra veneno de cobra

O primeiro relato de pterocarpanos com atividade contra veneno de cobra foi em 1982, quando Nakagawa e Nakanishi isolaram os pterocarpanos cabenegrina A-I <u>15</u> (p.5) e cabenegrina A-2 <u>16</u> (p.5) de um preparado conhecido como "Específico Pessoa", utilizado popularmente na Amazônia como antídoto contra veneno de cobras e de aranhas. No referido trabalho, os autores citam que esse extrato é preparado a partir de uma planta conhecida como "cabeça de negro", não sendo mencionado o nome científico da espécie vegetal de origem. Nesse trabalho, a aplicação prévia dos pterocarpanos <u>15</u> e <u>16</u> reverteu todos os sintomas causados pela injeção do veneno de *Bothrops atrox* (jararaca) num cão anestesiado (NAKAGAWA & NAKANISHI, 1982). Após o trabalho de Nakagawa e Nakanishi, outros autores também estudaram pterocarpanos com atividade contra veneno de cobra utilizando testes *in vitro* e *in vivo* (Tabela 1, p. 5). Além de pterocarpanos, alguns cumestanos <u>18a-e</u> e <u>22</u> (p.5) e algumas naftoquinonas <u>19a-g</u> (p.5) muito semelhantes à pterocarpanos também foram ativos contra venenos de cobras (Tabela 1, p.5).

Os testes de avaliação dos pterocarpanos <u>15-17</u> e <u>22</u> foram realizados *in vivo* utilizando-se cães e ratos. As demais substâncias foram submetidas a teste *in vitro* de perda de creatina quinase (CK) analisada em músculos extensores longos dos dedos de ratos.

Pterocarpanos e análogos	Tipo de Cobra	Referência
HO 4 O 4	Bothrops atrox	(NAKAGAWA & NAKANISHI, 1982)
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	Bothrops atrox	(REYES-CHILPA <i>et</i> <i>al.</i> , 1994)
$\begin{array}{c} R_{1}O_{3} & \downarrow \\ R_{2} & \downarrow \\ O & \downarrow \\ R_{2} & \downarrow \\ O & \downarrow \\ 0 & \downarrow \\ 9 & g \\ \hline 18 & R_{3} \end{array} \begin{array}{c} a, R_{1}=R_{2}=H, R_{3}=R_{4}=OCH_{2}O \\ b, R_{1}=Me, R_{2}=R_{3}=R_{4}=OH \\ c, R_{1}=R_{2}=H, R_{3}=OH, R_{4}=OH \\ d, R_{1}=R_{2}=H, R_{3}=OH, R_{4}=OH \\ e, R_{1}=R_{2}=H, R_{3}=R_{4}=OH \\ \hline 18 & R_{3} \end{array}$	Bothrops jararacussu	(SILVA <i>et al</i> ., 2001)
$\begin{array}{c} 0 \\ a, R_1=Me, R_2=Bn \\ b, R_1=Bn, R_2=Me \\ c, R_1=R_2=Bn \\ d, R_1=R_2=CH_2 \\ e, R_1=Me, R_2=H \\ f, R_1=H, R_2=Me \\ 19 \\ 0R_1 \\ g, R_1=R_2=H \end{array}$	Bothrops jararacussu	(SILVA <i>et al</i> ., 2002)
$HO_{3} + O_{1} + O_{2} + O_{$	Bothrops jararacussu	(SILVA <i>et al</i> ., 2004)
HO 4 0 0 3 2 0 0 H 2 0 0 H 3 2 0 0 H 3 2 0 0 H 3 0 0 H 3 0 0 H 3 0 0 H 3 0 0	Bothrops jararacussu e Bothrops jararaca	(MELO <i>et al</i> ., 2010)

Tabela 1 – Pterocarpanos e análogos com atividade contra veneno de cobra

Observando-se a estrutura química dos pterocarpanos, cumestanos e naftoquinonas com atividade contra veneno de cobra mostrados na Tabela 1,

pode-se observar que a principal variação na estrutura química dessas substâncias está nos anéis A e D e, além disso, podem-se tirar algumas conclusões quanto aos substituintes mais importantes para a atividade dessas substâncias:

 - é comum a presença do grupo metilenodioxi ou grupos oxigenados nas posições C-8 e C-9;

- em todos os pterocarpanos e cumestanos há grupos oxigenados em C3, principalmente hidroxilas;

 - é comum a presença de grupos 3,3-dimetilalila ou grupos semelhantes nas posições C-2 e C-4.

1.3.2 – Pterocarpanos com atividade anti-HIV

Engler e colaboradores realizaram dois trabalhos interessantes onde foi avaliada a atividade biológica de pterocarpanos sintéticos contra a inibição da replicação do vírus HIV-1, sendo analisada *in vitro* a atividade das substâncias contra o vírus em linfócitos T4 (ENGLER *et al.*, 1993 e 1996).

Pouco menos da metade dos pterocarpanos racêmicos sintetizados no primeiro trabalho de Engler mostraram-se ativos contra o vírus HIV-1. Os resultados foram expressos em valores de CI_{50} (p.7) e CE_{50} (p.7). Como se tratava de pterocarpanos racêmicos, os autores imaginaram que um dos enantiômeros de cada mistura deveria ter atividade superior à da mistura. Os pterocarpanos <u>23a-g</u> (p.7) apresentaram atividade, sendo alguns mais potentes que os outros, como mostrado na Tabela 2 (p.7) (ENGLER *et al.*, 1993).

R ₁		0			
3	A	B]	6a	R ₂	
		^{11a} C		$\left\{ \right\}$	
		Ò—	- D	> <mark>8</mark> −F	२ 3
		<u>23</u>		={9	
				R_4	

Tabela 2 – Pterocarpanos com atividade anti-HIV

Composto	R_1	R_2	R_3	R_4	CI ₅₀ *	CE ₅₀ **
а	OCH_3	Н	ОН	OCH ₂ Ph	4,05 x10 ⁻⁵ M	1,21 x10 ⁻⁶ M
b	OCH_3	Н	ОН	OCH_2 - α -Naph	3,85 x10 ⁻⁵ M	4,30 x10 ⁻⁷ M
с	OCH_3	Н	ОН	OCH_2 - β -Naph	3,42 x10 ⁻⁵ M	3,25 x10 ⁻⁶ M
d	OCH ₃	Н	ОН	OCH ₂ CH(CH ₃) ₂	2,45 x10 ⁻⁵ M	2,28 x10 ⁻⁶ M
е	OCH_3	Н	ОН	OCH_2 - C_6H_{11}	2,22 x10 ⁻⁵ M	1,46 x10 ⁻⁶ M
f	OCH_3	Н	OCH ₃	OCH₂Ph	6,94 x10 ⁻⁵ M	5,70 x10 ⁻⁶ M
g	OCH ₃	Н	Н	OCH₂Ph	2,00 x10 ⁻⁴ M	3,12 x10⁻⁵ M

*Cl₅₀: Concentração de amostra que apresentou toxicidade para 50% dos linfócitos T4

**CE₅₀: Concentração de amostra teste que é capaz de suprimir em 50% a replicação de vírus HIV

No segundo trabalho de Engler foram obtidos a partir de uma síntese estereosseletiva outros pterocarpanos, sendo que nenhum mostrou atividade significativa (ENGLER *et al.*, 1996). Observando-se os resultados dos trabalhos de Engler podem ser realizadas algumas considerações com relação às estruturas dos pterocarpanos para a atividade anti-HIV:

 a principal variação na estrutura química dessas substâncias está nos anéis A e D;

- a presença de uma metoxila no carbono C-3 parece importante para a atividade, uma vez que pterocarpanos sintetizados no primeiro trabalho de Engler que não apresentavam essa metoxila não tiveram atividade;

- a presença de uma hidroxila em C-8 parece muito importante para a atividade, sendo que sua substituição por outros tipos de grupos oxigenados diminui a atividade;

- a presença de um grupo oxigenado em C-9 parece importante para a atividade, uma vez que pterocarpanos sem esse tipo de grupo não mostraram atividade no primeiro trabalho de Engler;

- a adição de um grupo metila nos carbonos C-6a ou C-11a extingue a atividade;

- o fato de testar a atividade de apenas um enantiômero ao invés da mistura racêmica não representou melhora na atividade anti-HIV.

1.3.3 – Pterocarpanos com atividade antimicrobiana

Como já mencionado, os pterocarpanos são importantes fitoalexinas, substâncias que são sintetizadas em tecidos sadios próximos a áreas infectadas da planta, quando a atividade é requerida (JIMÉNEZ-GONZÁLEZ *et al.*, 2008). Uma das definições de fitoalexinas é a de que são produtos do metabolismo de plantas superiores quase ausentes em tecidos saudáveis e que acumulam em grandes quantidades em resposta à infecções bacterianas e fúngicas (GRAYER & KOKUBUN, 2001). Uma das formas das plantas obterem tanto pterocarpanos como cumestanos como fitoalexinas capazes de inibir muitos micro-organismos é através da biotransformação de isoflavonas (PHILLIPS & KAPULNIK, 1995). Tudo isso explica o fato de que todos os relatos de pterocarpanos com atividade antifúngica e antibacteriana encontrados na literatura são de pterocarpanos naturais. Na Tabela 3 (p.9) são mostrados alguns pterocarpanos que agem como fitoalexinas, sendo descritos também os micro-organismos que estimulam a síntese dessas substâncias nos referidos vegetais.

Pterocarpano	Microrganismo Espécie		Referência	
HO 4 0 3 2 6a 2 4 0 6a 9 0CH ₃	Helminthosporium turcicum	Medicago sativa (alfafa)	(SMITH et al., 1971)	
OH H ₃ CO 4 H ₃ CO 2 H ₃ CO 2 H ₃ CO 2 H ₃ CO 2 H ₃ CO 4 H ₃ CO 2 H ₃ CO 2 H ₃ CO 2 H ₃ CO 4 H ₃ CO 2 H ₃ CO 2 CO 2 H ₃ CO 2 H ₃ CO 2 CO 2 CO 2 CO 2 CO 2 CO	Fusarium solani	Pisum sativum (ervilha)	(PUEPPKE & VANETTEN, 1976)	
HO 4 $6a$ $6a$ 26 10 9 0 10 9 0	Helminthosporium carbonum	Sophora japonica (sófora do japão)	(VANETTEN <i>et al.</i> , 1983)	
HO 4 0 3 2 11a 6a 27 10 9 0	Pseudomonas mors prunorum ou P. phaseolicola	Phaseolus vulgaris (feijão)	(LYON & WOOD, 1975)	
H ₃ CO 4 O OH 2 118 $6a$ 0 $6a$ 0 10 9 0 10 0 0 10 0 0 0 0 0 0 0 0 0	Nectria haematococca	<i>Pisum sativum</i> (ervilha)	(DIXON & STEELE, 1999)	

Tabela 3 - Exemplos de pterocarpanos que agem como fitoalexinas

Muitos pterocarpanos já foram avaliados e apresentaram atividade *in vitro* contra micro-organismos. Na Tabela 4 (p.10) são mostrados alguns exemplos mais recentes de pterocarpanos com atividade antimicrobiana, sendo que alguns deles apresentaram atividade superior à de antibióticos padrões. Dois exemplos interessantes são o pterocarpano eristagalina A <u>29</u> (p.10) e o pterocarpeno

ericristagalina <u>30</u>, substâncias isoladas de *Erythrina subumbrans*, os quais mostraram significativa atividade contra *Mycobacterium tuberculosis* com concentração inibitória mínima de 12,5 μg/mL (RUKACHAISIRIKUL *et al.*, 2007b). Em outro estudo, os compostos <u>29</u> e <u>30</u> apresentaram ainda atividade antibacteriana contra diferentes cepas dos micro-organismos dos gêneros *Streptococcus* e *Staphylococcus*, sendo em alguns exemplos com atividade em concentração inferior à do antibiótico vancomicina, atuando inclusive contra cepas resistentes (RUKACHAISIRIKUL *et al.*, 2007a).

Pterocarpano	Espécie	Micro-	Tipo de Teste	Referência
HO 4 O $6a$ OH B OH B OH HO 4 O OCH_3 HO 4 O OCH_3 HO 4 O OCH_3 HO 4 O OH B OH OH OH OH OH OH OH OH	Erythrina subumbrans	organismos Seis cepas do gênero Streptococcus, dez cepas do gênero Staphylococcus e Mycobacterium tuberculosis	Método de Difusão em Ágar e Concentração Inibitória Mínima	(RUKACHAISIRIKUL <i>et al.</i> , 2007a) e (RUKACHAISIRIKUL <i>et al.</i> , 2007b)
HO 4 0 $6a$ 26 9 0 10 0	<i>Swartzia</i> <i>apetala</i> var. glabra	Oito cepas padrão ATCC do gênero <i>Candida</i>	Método de Difusão em Ágar	(ARAÚJO <i>et al.,</i> 2009)

Tabela 4 - Pterocarpanos com atividade antimicrobiana

Conclusão Tabela 4.				
HO 4 3 6a MH H ^M 11a H ^M 11a H ^M 0 9 OH	Erythrina zeyheri	<i>Enterococci</i> vancomicina- resistente	Concentração Inibitória Mínima	(SATO <i>et al</i> ., 2004)
HO 4 0 6a min H HO 6a min H HO 9 OCH3	Erythrina fusca	Staphylococcus aureus e Staphylococcus aureus meticilina resistente	Concentração Inibitória Mínima	(INNOK <i>et al.</i> , 2010)
HO 3 4 0 6a MOH 2 6a MOH 33 10 0CH ₃	Erythrina latissima	Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Candida mycoderma	Concentração Inibitória Mínima	(CHACHA <i>et al.</i> , 2005)
HO 4 0 3 2 6a 11a 6a 0 8 34 0 0 0H	Erythrina poeppigiana	Staphylococcus aureus meticilina resistente	Concentração Inibitória Mínima	(TANAKA <i>et al.</i> , 2004)
HO 4 0 3 2 6a 35 0 8 10 0H	Bolusanthus speciosus	Staphylococcus aureus e Candida mycoderma	Bioautografia	(ERASTO <i>et al.</i> , 2004)

Num dos trabalhos de Rukachaisirikul e colaboradores foi avaliada a atividade antimicrobiana de outros pterocarpanos além dos já citados <u>29</u> e <u>30</u>, sendo estudada a influência de alguns grupos na atividade. Nesse trabalho foi observado que o grupo prenila nas posições C-2, C-4 e C-10 aumentaram a atividade antibacteriana para as substâncias testadas. Outra informação importante é que a presença de grupo hidroxila nas posições C-3, C-9 ou C-6a também aumentou a atividade (RUKACHAISIRIKUL *et al.*, 2007a).

Observando os compostos da Tabela 4 (p.10 e 11), pode-se perceber que a maioria dos pterocarpanos com atividade antimicrobiana descritos em publicações recentes foram isolados do gênero *Erythrina*. Além disso, pode-se observar que existem 6a-hidroxi-pterocarpanos, pterocarpenos e pterocarpanos semelhantes e com atividade, sugerindo que pequenas alterações nos grupos ligados nos carbonos 6a e 11a não influenciam na atividade antimicrobiana. Observando a estrutura e a atividade dos pterocarpanos mostrados nas Tabelas 3 (p.9) e 4 (p.10 e 11), pode-se perceber que as observações realizadas por Rukachaisirikul e colaboradores sobre a estrutura e a atividade são confirmadas pelos dados da Tabela 4. Além dos grupos descritos por esses autores, pode-se encontrar a presença de grupos metilenodioxi nas posições 8 e 9 e também a presença de metoxilas nas posições 9 de alguns pterocarpanos com atividade antimicrobiana.

Vanetten em uma pesquisa um pouco mais antiga discutiu um pouco sobre a atividade antifúngica dos pterocarpanos. Em seu trabalho, esse pesquisador observou que a atividade antifúngica dos pterocarpanos está associada tanto com pterocarpanos planares quanto não planares. Além disso, observou que essa atividade está muito mais associada com as propriedades físico-químicas dos pterocarpanos do que com a forma tridimensional desses compostos (VANETTEN, 1976). Perrin e Cruickshank também observaram a importância da presença de grupos oxigenados nos carbonos C-3 e C-9 dos pterocarpanos para a atividade antifúngica (PERRIN e CRUICKSHANK, 1969). Tais afirmações são confirmadas pela observação dos pterocarpanos com atividade antimicrobiana mostrados nas Tabelas 3 (p.9) e 4 (p.10 e 11), sendo aparentemente aplicáveis também à atividade antibacteriana.

1.3.4 – Pterocarpanos com atividade citotóxica

Muitos trabalhos recentes têm mostrado pterocarpanos com atividade citotóxica. A grande maioria é de pterocarpanos com atividade contra linhagens de células tumorais. Todavia, alguns trabalhos mostram também pterocarpanos com atividade citotóxica contra alguns protozoários. Por exemplo, em um estudo no qual foi avaliada a atividade de alguns metabólitos secundários isolados de plantas brasileiras, Vieira e colaboradores descobriram uma interessante atividade tripanocida para 0 pterocarpano (-)-2-geranil-3-hidroxi-8,9metilenodioxipterocarpano (36), o qual apresentou CI_{50} de 12,2 µg/mL contra formas epimastigotas de T. cruzi, um valor bem inferior ao fármaco padrão benzonidazol que apresenta Cl₅₀ de 50 µg/mL. Além disso, não apresentou efeito citotóxico contra células do sangue periférico humano, sendo dessa forma um interessante candidato a fármaco. Todavia ainda são necessários outros estudos avaliando mecanismos de ação, testes farmacotécnicos, diferentes tipos de análise de toxicidade além de outros parâmetros importantes para que a substância venha a se tornar um fármaco (VIEIRA et al., 2008).

Outro exemplo de pterocarpano com atividade citotóxica contra parasitas é do pterocarpano <u>37</u> (p.14) que apresentou atividade citotóxica para formas presentes na corrente sanguínea de *Trypanossoma brucei* com CI_{50} de 3,7µM (sendo que o controle positivo suramina apresenta CI_{50} de 0,15 µM) e também contra formas amastigotas de *Leishmania donovani* com CI_{50} de 37,3 µM (sendo que o controle positivo pentamidina tem CI_{50} de 6,7 µM). Apesar de apresentar atividade interessante contra os parasitas, o pterocarpano <u>37</u> apresentou pequena seletividade para os parasitas comparando com linhagem de células mamárias tipo Vero (SALEM & WERBOVETZ, 2006).

Como já exposto, existem muitos trabalhos recentes com exemplos de pterocarpanos com atividade citototóxica contra células tumorais. Um exemplo de uma importante publicação deste assunto foi sobre o (\pm) -3,4-diidroxi-8,9-metilenodioxipterocarpano <u>39</u> (p.15), o qual foi sintetizado por Netto e colaboradores e apresentou atividade citotóxica contra cinco linhagens diferentes de células de leucemia, incluindo algumas já resistentes aos fármacos atualmente utilizados. Algo importante a se considerar é que células resistentes a muitos fármacos representam a maior causa de falha nos tratamentos de quimioterapia da atualidade (NETTO *et al.*, 2009). Outros exemplos importantes de pterocarpanos com atividade citotóxica contra células tumorais são mostrados na Tabela 5 (p.15).

tumorais					
Pterocarpano	Origem	Células tumorais/CI ₅₀	Referência		
	sintético	Células de leucemia: K562- Cl ₅₀ =1,67 μ M e HL-60 - Cl ₅₀ =2,00 μ M	(NETTO <i>et al.</i> , 2010)		
	sintético	Células de leucemia: K562- CI_{50} =3,0 µM , HL- 60 - CI_{50} =2,1 µM, Lucena I CI_{50} =3,7 µM, Jurkat CI_{50} =7,6µM e Daudi CI_{50} =2,8µM	(NETTO <i>et al.</i> , 2009)		

 Tabela 5 - Exemplos de Pterocarpanos com atividade citotóxica contra células tumorais

$\begin{array}{c} HO \\ 3 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$		Cl ₅₀ =3,0 μ M , HL- 60 - Cl ₅₀ =2,1 μ M, Lucena I Cl ₅₀ =3,7 μ M, Jurkat Cl ₅₀ =7,6 μ M e Daudi Cl ₅₀ =2,8 μ M	
HO 4 O 10 8 10 9 0 10 0 0 10 0 0 0 0 0 0 0 0 0	Erythrina abyssinica	Células de câncer de mama: MCF7 - CI_{50} =11,8 µM, MCF/TAMR- CI_{50} =6,2 µM, MCF/ADR- CI_{50} =5,6 µM e MDA-MB-231- CI_{50} =7,7 µM	(NGUYEN <i>et al.</i> , 2009)
$\begin{array}{c} HO \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 4 \\ 10 \\ 9 \\ 0 \\ Me \end{array}$	própolis vermelho do Brasil	Células de câncer de cólon: 26-L5 - CI_{50} =11,3 µM, câncer de pulmão- CI_{50} =17,2 µM e câncer de cervix HeLa- CI_{50} =23,4 µM	(LI <i>et al</i> ., 2008a)
$HO_{3} \xrightarrow{4} O_{H}$ $HO_{3} \xrightarrow{4} O_{H}$ $HO_{3} \xrightarrow{4} O_{H}$ $HO_{3} \xrightarrow{8} OH$ $HO_{3} \xrightarrow{8} OH$ OMe	própolis vermelho do Brasil	Células de câncer de pâncreas: PANC-1 - CI ₅₀ =12,5 µM	(AWALE <i>et al.</i> , 2008)

Continuação Tabela 5.

$\underbrace{42}^{HO}$	Sophora tonkinensis	Células de carcinoma cervical humano: HeLa - CI_{50} = 24,3 µM e Células de câncer de mama: MDA- MB-231 - CI_{50} =48,8 µM	(LI <i>et al.</i> , 2008b)
<u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>10</u> <u>0</u> H	Erythrina addisoniae	Células de câncer de fígado - H4IIE - Cl ₅₀ =1 µM	(WÄTJEN <i>et al.</i> , 2007)
H_3CO H_3CO H_3CO 44 0 10 9 OMe	Platymiscium floribundum	Células de leucemia: K562- Cl ₅₀ =0,8 μ M , HL- 60 e Molt-4 - Cl ₅₀ =0,4 μ M e Jurkat Cl ₅₀ =0,1 μ M.	(MILITÃO <i>et al</i> ., 2007a)
HO_{3} 4 4 0 4 4 4 4 4 4 4 4 4 4	<i>Harpalyce brasiliana</i> Benth	Células de leucemia HL-60- $CI_{50}=3,1 \mu M$, células de melanoma MDA- MB-435- $CI_{50}=4,9$ μM e células de câncer de cólon HCT-8 $CI_{50}=8,5\mu M$.	(MILITÃO <i>et al</i> ., 2007b)
HO_{3} 2 HO_{3} 2 HO_{3} 2 H^{3} 0 0 H^{3} 0 0 0 0 0 0 0 0 0 0	Erythrina subumbrans	Células de câncer de pele KB- $CI_{50}=5,1 \mu g/mL$, células de câncer de mama BC- $CI_{50}=2,9 \mu g/mL$ e células de câncer de pulmão NCI- H187 $CI_{50}=2,1 \mu g/mL$.	(RUKACHAISIRIKU L <i>et al.</i> , 2007b)

Conclusão Tabela 5.			
HO $\frac{4}{2}$ $\frac{46}{10}$ $\frac{8}{0}$ $\frac{10}{0}$ $\frac{8}{0}$ $\frac{10}{0}$	Bituminaria bituminosa e Bituminaria morisiana	Células de câncer de cólon HT29 Cl ₅₀ =1,94 μ g/mL e LoVo Cl ₅₀ =1,73 μ g/mL. Células de leucemia Jurkat T Cl ₅₀ 21,4 μ M	(MAURICH <i>et al.</i> , 2006 e COTTIGLIA <i>et al.</i> , 2005)

Como se pode observar na Tabela 5, são muitos os exemplos de pterocarpanos com atividade citotóxica, principalmente considerando o fato de que só foram apresentadas publicações recentes. Além disso, os pterocarpanos descritos foram ativos contra diferentes linhagens de células tumorais e suas principais diferenças estruturais são o padrão de substituição dos anéis A e D.

Com relação aos substituintes mais comuns pode-se observar a presença em praticamente todas as estruturas de uma hidroxila na posição 3. Aqueles que não apresentam essa hidroxila apresentam algum substituinte oxigenado nessa posição. Um tipo de substituinte muito observado também nas estruturas dos pterocarpanos ativos é o grupo prenila, obervado nas posições 4, 8 ou 10. Alguns exemplos também apresentam o grupo metilenodioxi nas posições 8 e 9. De forma geral pode-se também observar a presença de grupos oxigenados nas posições 2, 3, 4, 8 e 9. Dois exemplos são bem diferentes dos demais, isto é, o composto <u>38</u> (p.15) que se trata de uma pterocarpanoquinona (uma estrutura intermediária entre um pterocarpano e uma quinona) e o composto <u>42</u> (p.16) que apresenta um alcalóide ligado ao pterocarpano.

1.3.5 – Pterocarpanos e outras atividades biológicas

Outros exemplos de pterocarpanos com atividades biológicas estão descritos na literatura com menor frequência. Um exemplo importante de pterocarpano com atividade biológica foi o composto indigocarpano <u>51</u> (p.20)

isolado de *Indigofera aspalathoides*, o qual apresentou significativa atividade inibidora da ciclooxigenase (COX-1) com Cl₅₀ de 30,5 μ M e, além disso, apresentou atividade anti-inflamatória *in vivo* com resposta comparável à do fármaco ibuprofeno, sendo que no teste foi avaliado o ensaio de indução de edema de pata de rato (SELVAM *et al.*, 2004). Existem outros dois exemplos de pterocarpanos <u>30</u> (p.20) e <u>50</u> (p.19) com atividade anti-inflamatória, todavia cada um apresenta mecanismo de ação diferente daquele apresentado pelo indigocarpano (NJAMEN *et al.*, 2003; ZHOU *et al.*, 2009). Esses exemplos podem ser observados na Tabela 6, assim como outros pterocarpanos com diferentes atividades biológicas.

Pterocarpano	Origem	Atividade biológica	Referência
HO 3 4 0 10 9 H 10 H	<i>Erythrina lysistemon</i> Hutch	Atividade inibidora da proteína tirosina fosfatase 1B (atividade importante para o tratamento de diabetes tipo 2)- CI ₅₀ - 1,01 g/mL	(DAO <i>et al.</i> , 2009)

Tabela 6 - Exemplos	de pterocarpa	nos com diferentes	atividades biológic	as
---------------------	---------------	--------------------	---------------------	----

Continuação Tabela 6 .				
HO 4 0 3 2 47 0 10 9 OH	Psoralea plicata	Atividade inibidora da oxidação do LDL (lipoproteína da baixa densidade) - atividade útil para o tratamento de aterosclerose	(TURCHI <i>et</i> <i>al.</i> , 2009)	
$\begin{array}{c} 0H \\ HO \\ HO \\ OH \\ 2 \\ 48 \\ 0 \\ 10 \\ 9 \\ 10 \\ 0 \end{array}$	Sophora flavescens	Inibição da enzima ciclooxigenase 2 (atividade anti- inflamatória) - 0,2 mM (diminuição da produção de 28% da produção da COX-2 em ratos)	(ZHOU et al., 2009)	
$H_{3}CO \xrightarrow{4} O \xrightarrow{6} O$	Sophora flavescens	Inibição de neuraminidases (enzima crucial para proliferação do vírus influenza) - Cl ₅₀ 1,4 μM	(RYU <i>et al.,</i> 2008)	
$HO \xrightarrow{3} OH O \xrightarrow{10} OH $	Zygophyllum eurypterum	Inibição das enzimas lipoxigenase - CI ₅₀ -13,5 μM, butirilcolinestera se - CI ₅₀ -12,5 μM	(AHMAD et al., 2006)	
H ₃ CO 3 2 H O OH <u>28</u> 10 9 0	<i>Pterocarpus macrocarpus</i> Kruz.	Atividade inseticida contra <i>Spodoptera</i> <i>litura</i> F. (lagarta) e <i>Reticuliterme</i> <i>speratus</i> (Kolbe) (cupins)	(MORIMOT O <i>et al.</i> , 2006)	
Continuação Tabela 6 .				
---	-----------------------------	---	---	--
OCH ₃ HO 4 3 2 51 HO 0 8 9 HO 0CH ₃	Indigofera aspalathoides	Inibição da enzima ciclooxigenase 1 (atividade anti- inflamatória) - CI ₅₀ 30,5 µM	(SELVAM <i>et al.</i> , 2004)	
H ₃ CO 4 0 3 2 0 8 52 10 9 OCH ₃	Bituminaria bituminos	Atividade anticlastogênica (atividade que evita a mutagenicidade do DNA)	(MAURICH <i>et al.</i> , 2004)	
HO 4 0 2 0 8 30 10 0H	Erythrina mildbraedii	Inibição da enzima 5- lipooxigenase (atividade anti- inflamatória) - CI ₅₀ 23,4 µM	(NJAMEN <i>et al.</i> , 2003)	
$H_{3}CO_{3} \xrightarrow{4} O_{2} \xrightarrow{4} O_{2} \xrightarrow{4} O_{2} \xrightarrow{4} O_{3} \xrightarrow{4} O_{2} \xrightarrow{4} O_{3} \xrightarrow{4} O_{4} \xrightarrow{5} O_{7} \xrightarrow{6} O_{$	Lespedeza homoloba	Atividade antioxidante em homogenato de cérebro de ratos (0,2 μM); formação e determinação de complexo de Fe ²⁺ (0,033 mg/mL, 22,9% em relação ao padrão); atividade sequestradora de radicais livres no ânion superóxido (85,1%)	(MIYASE <i>et</i> <i>al.</i> , 1999)	

Conclusão T abela 6 .			
HO 4 O	Melilotus messanensis	Inibição da germinação de <i>Allium cepa</i> L.	(MACÍAS et al., 1999)
24 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bolusanthus speciosus	Atividade seqüestradora de radicais livres contra DPPH (Cl ₅₀ =1100 μg/mL)	(ERASTO <i>et al.</i> , 2004)

Tendo em vista todas as atividades biológicas apresentadas, algumas considerações gerais sobre a relação estrutura/atividade dos pterocarpanos (<u>10</u>) podem ser tecidas:

- de forma geral os pterocarpanos apresentam diferentes atividades dependendo principalmente das substituições dos anéis A e D;

- é muito comum a presença de grupos oxigenados em pterocarpanos ativos principalmente nos carbonos 3 e 9;

- também é muito comum em pterocarpanos com atividade a presença do substituinte 3,3-dimetilalila nos carbonos 2, 4, 8 ou 10;

 - um substituinte também muito observado em pterocarpanos ativos é o grupo metilenodioxi, sendo observado com grande frequência nos carbonos 8 e 9;

- não é possível fazer uma correlação direta sobre a estereoquímica dos pterocarpanos e suas atividades biológicas;

- pterocarpenos, 6a-hidroxi-pterocarpanos e cumestanos também apresentam atividades biológicas;

- alguns outros substituintes também são observados na estrutura dos pterocarpanos, porém em menor frequência.

1.4 – Métodos de síntese de pterocarpanos

A maioria das rotas de síntese de pterocarpanos leva à formação de anéis B/C fundidos na forma *cis* que é mais estável, sendo esses obtidos como misturas racêmicas (JIMÉNEZ-GONZÁLEZ *et al.*,2005). Existem vários métodos para sintetizar (±) pterocarpanos, sendo os métodos clássicos: a redução e ciclização de 2'–hidroxi-isoflavanonas, a reação de anelação do tipo 1,3-Michael-Claisen, a reação de oxi-arilação de Heck e reações de cicloadição de 2*H*-cromenos com 2-alcoxi-1,4-benzoquinonas (SKOUTA & LI, 2007).

No método de ciclização de 2'-hidroxi-isoflavanonas os pterocarpanos são obtidos pela desproteção e subsequente ciclização de isoflavonóides. Com esse método, Van Aardt e colaboradores obtiveram quatro 6a,11a *cis* pterocarpanos conhecidos, com rendimentos variando entre 39 e 82%. Um exemplo de aplicação desta metodologia é fornecido no Esquema 1 (VAN AARDT *et al.*, 1999).

i) LDA, $Et_2O - 78^{\circ}C$; (69%) ii) BnSH, SnCl₄, CH_2Cl_2 , $0^{\circ}C$; (81%) iii) LiAIH₄, Et_2O , t.a.; (78%) iv) PPh₃, DEAD, t.a.; (86%) v) TBAF, THF, t.a.; (99%) vi) AgOTf, CH_2Cl_2 , $0^{\circ}C$; (50%).

Esquema 1 – Síntese do pterocarpano (\pm) <u>59</u> via reação de ciclização do derivado de 2'-hidroxi-isoflavonóide <u>58</u>.

As reações de formação de anéis aromáticos apresentam grande importância na síntese de produtos naturais e substâncias biologicamente ativas, sendo um exemplo importante desse tipo a reação de formação de anel do tipo 1,3-Michael-Claisen. Ozaki e colaboradores descrevem a síntese de pterocarpanos utilizando esse tipo de reação. Um exemplo interessante no trabalho desses autores foi a síntese do (\pm) pterocarpano <u>62</u> (Esquema 2), utilizando como material de partida a metilenolactona <u>60</u>, (preparada a partir de 7-hidroxicroman-4-ona em sete etapas), e a cetona <u>61</u> (obtida a partir do 1-(feniltio)propan-2-ona em duas etapas). A anelação [3C + 3C] foi alcançada por condensação de <u>60</u> com <u>61</u>, utilizando-se como solvente dimetoxietano (DME) na presença de NaH à temperatura ambiente. A mistura produzida nesta reação foi aquecida com ácido acético para fornecer o pterocarpano <u>62</u> com 21% de rendimento (OZAKI *et al.*, 1989).

Esquema 2 – Obtenção do (±) pterocarpano <u>62</u> utilizando a reação de anelação do tipo 1,3-Michael-Claisen.

O método conhecido como Oxiarilação de Heck também é uma importante forma de se obter pterocarpanos. Nestas reações ocorre o acoplamento de 2*H*-cromenos com compostos organomercúricos. Os cromenos são compostos com anéis benzênicos e pirânico fundidos, sendo que os 2*H*-cromenos apresentam uma ligação dupla entre o carbono 3 e 4, conforme mostrado na estrutura <u>63</u> do Esquema 3 (p.24) (ELLIS, 1977). Um exemplo é a reação do 2*H*-cromeno <u>63</u> com o 2-cloromercúrio-4,5-metilenodioxifenol <u>64</u>, na presença de Li₂PdCl₄ (tetracloropaladato II de lítio), gerado *in situ*, em acetona à temperatura ambiente, levando à obtenção do pterocarpano <u>65</u> com 55% de rendimento (Esquema 3, p.24) (COELHO *et al.*, 1992). Duas desvantagens desse tipo de reação são a utilização de compostos de mercúrio, por serem

altamente tóxicos, e também compostos de paládio que dificultam bastante a purificação dos produtos (EVANGELISTA, 2006).

Esquema 3 – Reação de oxiarilação do tipo Heck na síntese do (±) pterocarpano <u>65</u>.

Engler e colaboradores descrevem um método de obtenção de pterocarpanos no qual um complexo de Ti (IV) quiral promove a reação de cromenos com 2-alcoxi-1,4-benzoquinonas, a -78°C, produzindo ciclobutanos por cicloadição [2+2] e/ou pterocarpanos por cicloadição [3+2] (Esquema 4). Nessa metodologia, os pterocarpanos foram obtidos com excesso enantiomérico e não como misturas racêmicas (ENGLER *et al.*, 1991).

Esquema 4 - Reação de cromenos com 2-metoxi-1,4-benzoquinona na presença de Ti(IV).

A partir do método desenvolvido por Engler, Subburaj e colaboradores desenvolveram um método similar, porém mais simples, onde não são necessárias condições drásticas no controle da temperatura. Nesse método foi utilizado $ZnCl_2$ para promover a reação de cicloadição entre o 2*H*-cromeno <u>70</u> e a 2-metoxi-1,4-benzoquinona à temperatura ambiente. O rendimento do pterocarpano <u>71</u> foi de 79%, como representado no Esquema 5 (SUBBURAJ *et al.*, 1996; 1997).

Esquema 5 – Reação de cicloadição [3+2] do cromeno <u>70</u> com 2-metoxi-1,4benzoquinona.

Um método descrito recentemente para síntese de pterocarpanos e isoflavonas é uma anelação de alcinos e aldeídos catalisada por compostos de ouro. O que chama a atenção nesse método é o pequeno número de etapas para a obtenção de pterocarpanos de origem natural ou sintética, sendo os produtos obtidos com bons rendimentos como se pode observar no Esquema 6 (p.26) (SKOUTA & LI, 2007).

Esquema 6 - Síntese de (±) pterocarpanos por anelação catalisada por compostos de ouro.

Como já comentado, todos os pterocarpanos naturais se tratam de *cis* pterocarpanos. As rotas de síntese clássicas também levam a misturas racêmicas de *cis* pterocarpanos. O primeiro relato de síntese de *trans* pterocarpanos somente ocorreu em 2001. Van Aardt e colaboradores sintetizaram *cis* e *trans* pterocarpanos de forma estereosseletiva. Estes pesquisadores mostram que em todos os métodos descritos na literatura, que levam à obtenção de pterocarpanos *cis*, a formação do anel B, sempre ocorre antes da formação do anel C. Alguns modelos moleculares mostram que isso torna impossível a formação de uma configuração diferente de 6a, 11a-*cis* pterocarpanos (VAN AARDT *et al.*, 2001). Dessa forma, a mistura racêmica do pterocarpano <u>84</u> (p.27) foi obtida priorizando-se primeiro a síntese do anel C para depois ser sintetizado o anel B, conforme pode ser observado no Esquema 7 (p.27).

Esquema 7 - Síntese do (±) trans-pterocarpano 84.

Nessa síntese ocorreu uma adição aldólica entre o fenilacetato protegido <u>79</u> e o 2-hidroxi-benzaldeído protegido usando LDA, o que forneceu o 2,3-diaril-3-hidroxi-propanoato de metila <u>80</u> (10% ed) com 73% de rendimento. A desproteção dos acetais funcionalizados *treo* e *eritro*-propanoatos de metila <u>80</u> bem como a formação do tioéter usando SnCl₄/PhCH₂SH forneceu principalmente o *treo*-2,3-diaril-3-benzilsulfanilpropanoato de metila <u>81</u> com 65% de rendimento (88% ed). A ciclização de ambos os compostos <u>81</u> com AgBF₄ levou à obtenção do composto mais estável termodinamicamente, *trans*-2,3dissubstituído diidrobenzofurano <u>82a</u> (47%), que por redução com LiAlH₄ conduziu ao álcool primário <u>83</u> (p.27, 93%) que foi ciclizado via reação de Mitsunobu. Esse procedimento levou à formação do 6a,11a-*trans*-pterocarpano <u>84</u> (p.27) com 58% de rendimento (Esquema 7, p.27) (VAN AARDT *et al.*, 2001).

A primeira síntese enantiopura de cis e trans-pterocarpanos foi realizada em 2003 por Kiss e colaboradores (Esquema 8, p.29). Por exemplo, na síntese do trans-pterocarpano 92 (p.29) foi utilizado como material de partida a mistura racêmica de 2'-benzilflavanona 85 que foi resolvida com o agente quiral (2R,3R)butanodiol. Por catálise ácida foram preparados os acetais diasteroisoméricos 86a,b (p.29), os quais só puderam ser separados após remoção do grupo protetor benzila e a recristalização utilizando a mistura hexano/benzeno (15:1) de forma a obter o diasteroisômero 87a (p.29) com configuração R. A benzilação de 87a (p.29) e a remoção do agente quiral levou à obtenção da (+) flavanona 89 (p.29) com pureza enantiomérica que conduziu ao trans-6aS,11aRpterocarpano 92 (p.29). Para isso, utilizou-se trinitrato de tálio (TTN) para induzir a contração do anel de 89 (p.29) para 90 (p.29) com retenção de configuração relativa de C-2 e introdução de um novo estereocentro, C-3, também de configuração R. A redução de 90 (p.29) a 91a (p.29) seguida da introdução de um grupo tosila (91a e 91b, p.29), desproteção (91b a 91c, p.29) e ciclização de 91c (p.29), não modificou os estereocentros e, assim, obteve-se o transpterocarpano 92 (p.29), com configuração 6aS,11aR, o qual apresentou constante J_{H-6a/H-11a}=13,4 Hz, que está de acordo com a configuração transdiaxial de H-6a e H-11a (KISS et al., 2003).

(i) (2R,3R)-butanodiol, PTSA, tolueno e refluxo; (ii) H_2/Pd , MeOH; (iii) recristalização com hexano:benzeno 15:1; (iv) BnCl, K_2CO_3 , acetona e refluxo; (v) HCl (10%), acetona; (vi) TTN/TMOF, HClO₄, t.a.; (vii) LiAlH₄/ éter seco, t.a.; (viii) p-TsCl/piridina, t.a.; (ix) Pd(C)/H₂, MeOH; (x) NaOMe/MeOH, t.a.

Esquema 8 – Síntese do trans-pterocarpano 92.

Como se pode perceber, em geral, os métodos de síntese de pterocarpanos requerem muitas etapas e levam em muitos casos a produtos com baixos rendimentos. Dentre os métodos apresentados o método mais simples e com bons rendimentos é a cicloadição [3+2] em presença de ZnCl₂ descrita por Subburaj e colaboradores. Assim, a procura por métodos de síntese mais simples e gerais para a obtenção de novos pterocarpanos funcionalizados continua sendo um grande desafio na química orgânica contemporânea, considerando a importância desta classe de compostos na busca de substâncias biologicamente ativas.

2 – Proposta de Trabalho

Considerando as diversas atividades biológicas já avaliadas e constatadas para pterocarpanos, e que essas atividades estão relacionadas à diversidade estrutural dessas substâncias (Jiménez-González *et al.*, 2008), esse trabalho foi idealizado objetivando-se a síntese de diferentes pterocarpanos, com o fim de descobrir novos compostos biologicamente ativos.

Foi também objetivo deste trabalho o desenvolvimento de uma metodologia para a obtenção de pterocarpanos utilizando aquecimento em micro-ondas, uma vez que não havia relatos da utilização desse tipo de radiação para a síntese desses compostos.

Foi ainda objetivo desse trabalho a obtenção de híbridos de pterocarpanos com grupos tetrazólicos ou glicosídicos, levando a produtos com potenciais biológicos ainda não explorados.

Finalmente o último objetivo desse trabalho foi a avaliação de diferentes atividades biológicas dos produtos obtidos.

2.1 – Obtenção dos pterocarpanos e proposta de desenvolvimento de metodologia de síntese sob aquecimento em micro-ondas

A obtenção dos pterocarpanos foi dividida em duas etapas conforme pode ser observado na análise retrossintética representada no Esquema 9:

Esquema 9 – Análise retrossintética para obtenção dos pterocarpanos.

Dessa forma, inicialmente seriam sintetizados os 2*H*-cromenos <u>97</u>, <u>98</u>, <u>99</u> e <u>100</u>, conforme a rota de síntese representada no Esquema 10; em uma segunda parte seria realizada a etapa de acoplamento destes derivados com a 2-metoxi-1,4-benzoquinona (Esquema 11, p.32) e, finalmente, seria idealizada a obtenção dos pterocarpanos utilizando-se aquecimento em micro-ondas.

Inicialmente, conforme a reação geral representada no Esquema 10, o tratamento de cada fenol (<u>93</u>, <u>94</u>, <u>95</u>, e <u>96</u>, p.31), separadamente, com ácido fenilborônico e 3,3-dimetilacroleína em tolueno, poderia conduzir aos respectivos 2*H*-cromenos (substâncias <u>97</u>, <u>98</u>, <u>99</u> e <u>100</u>, Esquema 10, CHAUDER *et al.*, 1998).

Esquema 10 – Proposta de síntese dos 2H-cromenos.

A segunda parte envolveria a reação de cicloadição [3 + 2] dos 2*H*cromenos (**97**, **98**, **99** e **100**) obtidos com a 2-metoxi-1,4-benzoquinona, segundo metodologia descrita por Subburaj e colaboradores (1996), o que poderia conduzir aos respectivos pterocarpanos (**101**, **102**, **103** e **104**). Conforme se pode observar no Esquema 11 (p.32), até essa etapa do trabalho, as variações nas estruturas dos pterocarpanos estariam basicamente no anel A, sendo que praticamente todos os derivados têm substituintes oxigenados nesse anel. Todos os produtos têm também substituintes oxigenados no anel D. A síntese desses produtos com essas variações estruturais estariam sendo propostas, pois se sabe que as atividades biológicas dos pterocarpanos estariam relacionadas com o padrão de substituição dos anéis A e D, e que foi descrito que a presença de substituintes oxigenados nestes anéis parece ser essencial para a atividade dos mesmos (ENGLER et al., 1990). Nota-se também que para a obtenção dos produtos com as referidas variações estruturais no anel A, já se fazia necessário a presença dessas variações nos fenóis precursores dos 2*H*-cromenos observados no Esquema 10 (p.31).

Esquema 11- Proposta de síntese dos pterocarpanos.

A última etapa dessa primeira parte seria o estudo destas reações conduzidas em um forno de micro-ondas adaptado (SANSEVERINO, 2002). O

desenvolvimento dessa nova metodologia sob aquecimento em micro-ondas seria de grande interesse uma vez que as reações no método convencional selecionado acabariam após aproximadamente 24 horas de reação, sendo então uma possibilidade de reduzir esse tempo de reação, além de se conseguir um método de síntese com melhores rendimentos.

Após a obtenção dos produtos sob aquecimento em micro-ondas, esses poderiam ter então os seus rendimentos e tempos de reação comparados com os produtos das mesmas reações realizadas sob aquecimento convencional.

2.2 – Obtenção dos derivados O-alquilados dos pterocarpanos

Na terceira parte do trabalho, os pterocarpanos obtidos seriam submetidos a uma reação de *O*-alquilação com o 3-bromo-1-propanol e carbonato de potássio, que deveriam conduzir aos respectivos produtos *O*alquilados (SUGIHARA *et al.*, 1963). Estes produtos teriam então, em seguida, a transformação da hidroxila livre em um bom grupo abandonador (KOHN & SCHMIDT, 1987). Finalmente, seriam realizadas reações de substituição nucleofílica bimolecular utilizando-se como nucleófilos dois tetrazóis comerciais (1*H*-5-feniltetrazol ou 1*H*-fenil-5-tiotetrazol) e o 2,3,4-tri-*O*-acetil-6-desoxi- α -*D*glicopiranosídeo de metila, conforme reação geral representada no Esquema 12 (p. 34)(HARFENIST *et al.*, 1996).

Desta forma seriam obtidos os tetrazóis derivados de pterocarpanos <u>113</u>-<u>120</u> (p.34), que poderiam ser transformados nos seus sais correspondentes, por meio de uma reação clássica com sulfato de dimetila (ZHIVICH *et al.*,1990), o que poderia fornecer derivados potencialmente hidrossolúveis.

Esquema 12 – Rota de síntese proposta para a obtenção dos pterocarpanos *O*alquilados racêmicos <u>113</u> a <u>124</u>.

2.3 – Realização de testes biológicos com os produtos obtidos

Finalizadas as sínteses dos pterocarpanos com variações no anel A obtidos na primeira parte do trabalho e também dos pterocarpanos com variações no anel D obtidos na segunda parte do trabalho, todos esses compostos seriam submetidos a testes para avaliar diferentes atividades biológicas.

3 – Resultados e Discussão

3.1 – Síntese de pterocarpanos

De acordo com a rota de síntese representada no Esquema 9 (p.31), inicialmente seriam obtidos os 2*H*-cromenos <u>97</u> a <u>100</u>, os quais conduziriam aos respectivos pterocarpanos racêmicos representados no Esquema 10 (p.32). Uma vez estabelecida a metodologia de obtenção destes pterocarpanos, partiríamos para a segunda parte do trabalho (Esquema 11, p.34), que consistiria na *O*-alquilação destes pterocarpanos.

Durante o desenvolvimento da metodologia de síntese dos pterocarpanos utilizando-se aquecimento em micro-ondas, percebeu-se a possibilidade de aumentar o número de compostos sintetizados na primeira parte do trabalho. Com isso se teria um maior número de compostos para comparação entre as metodologias convencional e aquecimento sob micro-ondas, melhorando o estudo de desenvolvimento desse novo método, além de aumentar o número de pterocarpanos com variações nos substituintes presentes no anel A. Assim, além dos pterocarpanos <u>101</u> a <u>104</u> (Esquema 10, p.32), planejaram-se as sínteses dos pterocarpanos <u>133</u> a <u>136</u>, conforme Esquemas 13a e 13b (p.36).

Esquema 13a – Rota de síntese proposta para obtenção dos pterocarpanos racêmicos <u>133-135</u>.

Capítulo 3: Resultados e Discussão

Esquema 13b – Rota de síntese proposta para obtenção do pterocarpano racêmico <u>136</u>.

Assim, buscou-se inicialmente, sintetizar os 2*H*-cromenos <u>97</u> a <u>100</u>, representados no Esquema 10 (p.31) e depois os 2*H*-cromenos <u>129</u> a <u>132</u>, representados nos Esquemas 13a (p.35) e 13b. Para se obter tais cromenos, eram necessários os fenóis <u>93</u> a <u>96</u> e <u>125</u> a <u>128</u>, sendo que haviam disponíveis apenas <u>96</u> e <u>127</u>. Desta forma, a primeira etapa da síntese consistiu na obtenção dos fenóis <u>93-95</u>, <u>125-126</u> e <u>128</u> pela reação de Baeyer-Villiger a partir dos aldeídos <u>139-144</u> (Esquema 15). Os aldeídos <u>141-144</u> eram disponíveis no laboratório e os aldeídos <u>139</u> e <u>140</u> puderam ser obtidos facilmente pela benzilação da isovanilina <u>137</u> e da vanilina <u>138</u>, também disponíveis no laboratório, conforme mostrado no Esquema 14.

Esquema 14 – Benzilação da isovanilina 137 e da vanilina 138.

As reações dos aldeídos <u>139-144</u>, separadamente, com o ácido *meta*cloroperbenzóico 45% (AMCPB), levaram à obtenção dos respectivos formatos <u>145-150</u>. Esses foram diretamente hidrolisados com solução de NaOH 6 mol.L⁻¹, conduzindo assim aos fenóis <u>93-95</u>, <u>125-126</u> e <u>128</u> com rendimentos variando entre 38 a 100%, conforme metodologia descrita por Barrero e colaboradores (BARRERO *et al.*, 1998). Estas etapas da síntese estão representadas no Esquema 15.

Esquema 15 - Obtenção dos fenóis 93-95, 125-126 e 128.

A reação de oxidação dos aldeídos levando à formação dos fenóis mostrados no Esquema 15 ocorre conforme o mecanismo descrito para a reação de oxidação de Baeyer-Villiger, que pode levar à obtenção de fenóis e/ou ácidos benzóicos dependendo do efeito dos substituintes, pH do meio, solvente, e temperatura da reação (OGATA & SAWAKI, 1972). O mecanismo desta reação envolve a adição do AMCPB à carbonila do aldeído, seguida da migração do grupo arila para o oxigênio peroxídico e conseqüente quebra do peróxido. Essa reação mostra a importante capacidade migratória do grupo fenila (SOLOMONS & FRYHLE, 2006).

Uma vez que foram obtidos os fenóis necessários, partiu-se para a síntese dos 2*H*-cromenos. Existem diferentes métodos para a síntese de 2*H*-cromenos como o aquecimento de éteres arilpropargílicos com *N*,*N*-dietilanilina (HLUBUCEK *et al.*, 1969), a ciclização oxidativa dos α -(3,3-dimetilalil)fenóis (LÉVAI *et al.*, 2000), a reação de condensação de fenóis com aldeídos α , β -insaturados catalisada por piridina (BANDARANAYAKE *et al.*, 1969) e a condensação de fenóis com 3,3-dimetilacroleína na presença de ácido fenil borônico (CHAUDER *et al.*, 1998), entre outros. Considerando a simplicidade e

viabilidade do método descrito por Chauder e colaboradores, além do fato de que o referido método já havia sido utilizado por este grupo de pesquisa, optouse por trabalhar com o mesmo. Para a síntese dos 2*H*-cromenos, foram realizadas então as reações dos fenóis <u>93-96</u> e <u>125-128</u>, separadamente, com a 3,3-dimetilacroleína, na presença de ácido fenilborônico recém preparado e ácido acético glacial em tolueno anidro, conforme Tabela 7 (CHAUDER *et al.*, 1998). Estas reações foram realizadas sob atmosfera de nitrogênio e refluxo, utilizando-se uma montagem contendo um aparelho de Dean-Stark para a retirada de água da mistura de reação, pois a presença da mesma pode afetar o processo de ciclização (LICHTENFELS *et al.*, 1995). Na Tabela 7 estão representadas as condições e resultados dessas reações.

Tabela 7 – Obtenção de 2H-cromenos utilizando ácido fenil borônico

 93:
 R1=R2=-OCH2-O

 94:
 R1=OBn; R2=OCH3

 95:
 R1=OCH3; R2=OCH3

 96:
 R1=H; R2=CH3

 125:
 R1=OPh; R2=H

 128:
 R1=OH; R2=OCH3

 126:
 R1=OCH3; R2=OBn

 127:
 R1=OCH3; R2=OH

OH.

131: R1=OCH3; R2=OCOCH3

Cromeno	Tempo de reação (horas)	Temp. do banho (°C)	Rendimento (%)
<u>98</u>	5	157	60
<u>97</u>	15	145	79
<u>99</u>	19	145	68
<u>100</u>	24	145	—
<u>129</u>	16	145	52
<u>130</u>	23	145	77
<u>131</u>	19	145	81
132	24	145	29

Como se observa na Tabela 7 (p.38), os 2*H*-cromenos foram obtidos com rendimentos variáveis, com exceção de <u>100</u>. A reação de obtenção de <u>100</u> foi realizada mais de uma vez e em nenhuma delas se conseguiu isolar o produto desejado, devido à presença de mistura complexa observada por CCDS. Considerando a dificuldade no processo de obtenção e purificação do 2*H*-cromeno <u>100</u>, optou-se por não trabalhar com o mesmo, uma vez que havia outras possibilidades viáveis. O fenol <u>128</u> apresentava duas hidroxilas livres e, portanto sofreu a reação de ciclização de ambos os lados, levando a formação do produto <u>132</u>. No entanto, <u>132</u> foi obtido com baixo rendimento, não se conseguindo isolar os possíveis produtos ciclizados em apenas um lado. Como a reação é realizada na presença de ácido acético, o fenol <u>127</u> sofreu esterificação na posição R₂ e por isso levou à formação de <u>131</u>.

No Esquema 16 está representado o mecanismo proposto por Evangelista para o processo de ciclização e obtenção dos 2*H*-cromenos pela reação com a 3,3-dimetilacroleína, na presença de ácido fenilborônico, ácido acético glacial e tolueno anidro (EVANGELISTA, 2006).

Esquema 16 – Mecanismo de obtenção de 2*H*-cromenos utilizando ácido fenil borônico.

Assim, tendo-se os 2H-cromenos já sintetizados, partiu-se para a síntese dos pterocarpanos. Como já descrito na introdução deste trabalho, a maioria dos métodos de síntese de pterocarpanos apresenta algum tipo de desvantagem, como por exemplo: obtenção de produtos com baixos rendimentos, dificuldades na purificação e condições severas de temperatura. Desta forma, dentre os métodos descritos na introdução, optou-se por aquele descrito por Subburaj e colaboradores, o qual consiste na cicloadição [3 + 2] realizada entre um 2H-cromeno e a 2-metoxi-1,4-benzoquinona, em presença de ZnCl₂. Segundo estes autores, este método apresenta excelentes resultados, sem a formação de produtos indesejáveis e com reações realizadas à temperatura ambiente. Assim, segundo esta metodologia, planejou-se inicialmente a síntese dos pterocarpanos inéditos 103 e 133. Para isso, os cromenos (99 e 129), separadamente, e a 2-metoxi-1,4-benzoquinona foram colocados para reagir na presença de ZnCl₂, à temperatura ambiente, por uma reação de cicloadição [3+2], conforme está representado no Esquema 17.

Esquema 17 – Síntese dos (±) pterocarpanos <u>103</u> e <u>133</u> por reação de cicloadição [3+2].

Utilizando essa metodologia foi possível obter, de forma satisfatória, os pterocarpanos inéditos <u>103</u> (69%) após 20 horas de reação e <u>133</u> (33%) após 40 horas de reação.

No Esquema 18 está representado o mecanismo de obtenção dos pterocarpanos racêmicos por esta metodologia, conforme Engler e colaboradores (ENGLER *et al.*, 1993).

Esquema 18 – Mecanismo de formação de pterocarpanos racêmicos por reação de cicloadição [3+2].

3.2 – Obtenção de pterocarpanos utilizando-se um forno de microondas adaptado

Uma vez que a obtenção de pterocarpanos via cicloadição é, em geral, lenta e que um estudo destas reações utilizando o aquecimento em forno microondas doméstico adaptado já havia sido iniciado por Evangelista e colaboradores (EVANGELISTA, 2006), optou-se por dar continuidade a este estudo. É importante ressaltar que não há outros relatos na literatura sobre a síntese de pterocarpanos por cicloadição utilizando aquecimento em forno micro-ondas. As sínteses dos pterocarpanos 103 e 133 (Esquema 17, p.40) já realizadas até então nesse trabalho foram conseguidas após 20 e 40 horas de reação, respectivamente, sendo esses tempos relativamente longos, o que justifica mais ainda o interesse em se tentar reduzir o tempo de reação e melhorar os rendimentos utilizando-se o aquecimento com micro-ondas. Cabe ainda salientar que a utilização de aquecimento com micro-ondas têm representado uma grande importância para a química medicinal e para a descoberta de novos fármacos, uma vez que o tempo de reação utilizando esse aquecimento pode ser reduzido de dias e horas para minutos e segundos (KAPPE & DALLINGER, 2006).

Assim, foi proposta inicialmente a síntese de dois pterocarpanos, <u>101</u> e <u>102</u> (p.42), já obtidos por Evangelista (Evangelista, 2006), por reação de cicloadição utilizando um forno de micro-ondas doméstico adaptado, conforme descrito no Esquema 19.

Esquema 19 – Rota de síntese proposta para obtenção dos (±) pterocarpanos <u>101</u> e <u>102</u>.

No trabalho de Evangelista, já havia sido testada a cicloadição de <u>97</u> para obtenção de (±)<u>101</u> sob aquecimento no micro-ondas na ausência de solventes, na presença de dimetoxietano (DME) e de acetonitrila. O resultado mais promissor obtido foi quando se utilizou DME na síntese do pterocarpano <u>101</u> (35% de rendimento) (Evangelista, 2006). Por isso, optou-se por começar esse estudo utilizando esse solvente. Todavia, planejou-se começar sintetizando o pterocarpano <u>102</u>, utilizando a melhor condição já testada para obtenção de <u>101</u>.

No primeiro experimento (Tabela 8, p.43), foi adicionado cloreto de zinco, previamente secado em forno de micro-ondas, à uma solução de 2-metoxi-1,4benzoquinona em DME em um balão de fundo redondo, sendo a mistura agitada por quinze minutos à temperatura ambiente. O 2*H*-cromeno <u>98</u> foi dissolvido em uma quantidade pequena de DME e adicionado à mistura que foi aquecida em forno de micro-ondas adaptado, utilizando a potência programada de cinco (50% da potência total). A reação foi monitorada por CCDS, sendo o sistema aquecido por um tempo total de vinte minutos. O solvente da reação foi removido sob pressão reduzida e a reação elaborada utilizando-se diclorometano. O produto foi purificado em coluna cromatográfica e **102** foi obtido com rendimento de 23 % (Tabela 8, reação 1). No segundo experimento realizou-se a reação utilizando maior quantidade da quinona e de ZnCl₂ (Tabela 8, reação 2) e a mesma potência. A reação foi monitorada por CCDS, e o sistema aquecido por um tempo total de vinte minutos. Desta vez, o pterocarpano **102** foi obtido com 44% de rendimento. Finalmente, no terceiro experimento a reação foi realizada utilizando a potência sete (70% da potência total do forno) e diminuiu-se a quantidade de cloreto de zinco, sendo também monitorada por CCDS, aquecendo-se num tempo total de vinte e cinco minutos. Nesta terceira reação, o pterocarpano **102** foi obtido com rendimento de 71% (Tabela 8), sendo essa a melhor condição encontrada. Para o cálculo dos rendimentos alcançados utilizando-se aquecimento em micro-ondas, sempre foi considerado o material de partida recuperado, uma vez que na maioria das reações observava-se cerca de 20 a 50% de material de partida após a finalização das mesmas.

Tabela 8 – Tentativas de otimização da obtenção do (±) pterocarpano <u>102</u> utilizando aquecimento em forno de micro-ondas doméstico adaptado

Uma vez estabelecida a metodologia de obtenção do pterocarpano <u>102</u> no forno de micro-ondas doméstico adaptado, foram realizadas as sínteses dos pterocarpanos <u>101</u>, <u>103</u> e <u>133</u> a partir dos 2*H*-cromenos <u>97</u>, <u>99</u> e <u>129</u>, respectivamente (Tabela 9, p.44). Os produtos foram obtidos com os seguintes rendimentos <u>101</u> (41%), <u>103</u> (85%) e <u>133</u> (39%), considerando o material de partida recuperado, conforme se pode observar na Tabela 9.

Tabela 9 – Comparação da obtenção dos (±) pterocarpanos <u>101</u>, <u>102</u>, <u>103</u> e <u>133</u> utilizando o método convencional e sob aquecimento em forno de micro-ondas doméstico adaptado

* Solvente: DME (aquecimento em micro-ondas); diclorometano (método convencional).

É importante considerar que todos os pterocarpanos obtidos pelo método convencional também foram obtidos sob aquecimento em forno micro-ondas adaptado e que tiveram rendimentos próximos e até um pouco melhores, como ocorrido para os pterocarpanos <u>102</u>, <u>103</u> e <u>133</u> (Tabela 9). Quando considerado o fator tempo, aí se obteve uma melhora muito grande, pois no método convencional obtiveram-se os pterocarpanos com no mínimo 18 e no máximo 36 horas, enquanto quando utilizou-se o aquecimento sob micro-ondas esse tempo foi de no máximo 40 minutos, o que representa uma redução significativa (Tabela 9).

Até esse momento já havia resultados interessantes na obtenção de pterocarpanos utilizando-se aquecimento em micro-ondas. Contudo ainda existiam alguns problemas para serem solucionados:

- a) não foi possível obter uma melhora tão significativa nos rendimentos utilizando aquecimento no aparelho de micro-ondas adaptado;
- b) para se obter um resultado comparável com as reações na metodologia convencional e de forma diferente da mesma foi necessário se considerar o material de partida recuperado;
- c) as duas metodologias foram comparadas utilizando-se solventes diferentes;
- d) o número de compostos sintetizados era pequeno para se comparar as duas metodologias;
- e) a reação realizada na metodologia convencional era efetuada à temperatura ambiente, não se podendo concluir se a mesma ocorreria com mais êxito se fosse realizada com aquecimento convencional ou da forma como estava sendo conduzida.

3.3 – Obtenção de pterocarpanos utilizando-se um reator de microondas

Considerando os problemas citados e também o fato de se ter adquirido no laboratório um reator de micro-ondas, optou-se por tentar melhorar essa metodologia utilizando-se o reator, aumentando o número de pterocarpanos sintetizados, tentando-se trabalhar com o mesmo solvente para as duas metodologias de reações e observando-se a possibilidade de usar aquecimento no método convencional.

Numa primeira tentativa a idéia era sintetizar o pterocarpano <u>101</u> (p.44) utilizando-se como solvente DME. Realizou-se a reação à temperatura ambiente e também sob refluxo. As duas tentativas resultaram na formação de apenas traços do pterocarpano <u>101</u>. A partir das duas tentativas, percebeu-se que DME não era um solvente interessante para se realizar a síntese de pterocarpanos

numa metodologia convencional. Com relação ao aquecimento não se pode concluir nada a partir dessa primeira tentativa.

A partir disso, optou-se por tentar sintetizar o pterocarpano 101 utilizandose diclorometano como solvente avaliando a síntese sob aquecimento convencional e sob micro-ondas. Ao realizar a síntese do pterocarpano 101 utilizando-se diclorometano sob refluxo, observou-se um rendimento de 38% em 16 horas de reação. Observou-se ainda uma redução do rendimento de 53% para 38%, comparando-se com a reação realizada à temperatura ambiente e, além disso, não se observou uma diminuição tão significativa do tempo de reação. Passou-se então para um estudo da síntese do pterocarpano 101 utilizando-se diclorometano como solvente e aquecimento sob irradiação de micro-ondas em reator, o qual foi conduzido em três tentativas. Numa primeira tentativa tentou-se realizar a síntese numa temperatura de 43°C, com a potência de 50 W e tempo de 30 minutos (Tabela 10). Observou-se a formação de apenas traços do produto. Numa segunda tentativa, tentou-se realizar a síntese numa temperatura de 60°C, com potência de 100 W e tempo de 30 minutos. Nesse caso, obteve-se 101 com 34% de rendimento (Tabela 10). Numa terceira tentativa foi encontrada a situação ideal. Foi realizada a reação numa temperatura de 60°C, com potência de 130 W e tempo de 35 minutos. Na segunda e terceira tentativas foram usadas temperaturas superiores ao ponto de ebulição do diclorometano. Isso foi feito, pois nesse reator de micro-ondas quanto mais alta a temperatura utilizada, por mais tempo se mantém a potência máxima. O pterocarpano 101 foi obtido com rendimento de 61% (Tabela 10, p.47), o qual foi superior ao obtido na metodologia convencional que foi de 53%.

$\begin{array}{c} BnO \\ H_{3}CO \\ \underline{97} \end{array} \xrightarrow{O} \\ C \\ \underline{97} \end{array} \xrightarrow{O} \\ C \\ \underline{0} \\ diclorometano \end{array} \xrightarrow{BnO} \\ H_{3}CO \\ \underline{101} \\ O \\ C \\ \underline{101} \\ O \\ C \\ C$				
Tentativa	Temp (°C)	Tempo (min)	Potência (W)	Rendimento (%)
1	43	30	50	-
2	60	30	100	34
3	65	35	130	61

Tabela 10 – Otimização da síntese de 101 usando reator de micro-ondas

Uma vez estabelecida a metodologia de obtenção do pterocarpano <u>101</u> sob aquecimento no reator de micro-ondas, planejou-se a síntese dos novos pterocarpanos <u>134-136</u> usando as metodologias convencional e sob aquecimento em reator de micro-ondas (Esquemas 20 e 21).

Esquema 20 – Rota de síntese proposta para obtenção dos pterocarpanos racêmicos <u>134</u> e <u>135</u>.

Esquema 21 – Rota de síntese proposta para obtenção do pterocarpano racêmico <u>136</u>.

Além desses, foram realizadas as sínteses dos pterocarpanos <u>101</u>, <u>102</u>, <u>103</u> e <u>133</u> a partir dos 2*H*-cromenos <u>97</u>, <u>98</u>, <u>99</u> e <u>129</u>, respectivamente, sendo todos os resultados sumariados na Tabela 11 (p. 48).

Tabela 11 – Comparação da obtenção de (±) pterocarpanos sob aquecimento em micro-ondas* e utilizando a metodologia convencional**

*Aquecimento em micro-ondas, 65°C; reações com potência de 130 W e sob refluxo ** sob refluxo Observando-se os dados da Tabela 11 (p. 48) pode-se notar que houve melhora no rendimento de todas as reações realizadas sob aquecimento em micro-ondas comparando-se com a metodologia convencional, não sendo considerado o material de partida recuperado. Entre as reações podem-se destacar os pterocarpanos <u>103</u> e <u>102</u> que foram obtidos com 95% e 89% de rendimento, sendo que <u>103</u> teve o melhor rendimento e <u>102</u> teve o maior aumento de rendimento. Mesmo o pterocarpano <u>133</u> que teve o menor rendimento na nova técnica, teve um aumento de rendimento significativo de 33 para 54%. Além disso, para síntese de todos os pterocarpanos houve redução significativa nos tempos de reação (horas para minutos).

Durante os estudos realizados observou-se também que não é interessante realizar aquecimento convencional para a síntese dos pterocarpanos, mas já o aquecimento sob irradiação de micro-ondas mostrou-se promissor. Um outro fator importante é que o diclorometano mostrou-se interessante como solvente nas duas metodologias utilizadas, sendo por isso selecionado como melhor opção de solvente.

Desta forma, solucionaram-se todos os problemas encontrados na primeira metodologia desenvolvida utilizando-se o aparelho de micro-ondas adaptado. A partir de todas essas observações pôde-se concluir a primeira etapa desse trabalho. Foi desenvolvida uma nova forma de sintetizar pterocarpanos utilizando aquecimento por micro-ondas, a qual mostrou bons resultados com reações efetuadas em tempos reduzidos.

3.4 – Obtenção de derivados dos pterocarpanos obtidos por *O*alquilação e por hidrólise de éster

Almejando-se obter um maior número de pterocarpanos com diferentes funcionalizações, partiu-se para a segunda parte desse trabalho. Pois como já mostrado na introdução, pequenas variações na estrutura dos pterocarpanos podem aumentar ou diminuir o potencial de atividades biológicas. Nessa segunda parte do trabalho o objetivo então foi obter derivados dos pterocarpanos sintetizados na primeira parte e avaliar a atividade biológica de todos os produtos.

Como já citado, a maioria dos pterocarpanos com atividade biológica apresenta variações estruturais nos anéis A e D, sendo que os substituintes presentes nestes anéis são na maioria das vezes oxigenados. Para definir os derivados a serem sintetizados nessa segunda parte do trabalho foram observados alguns substituintes mais frequentes nos pterocarpanos ativos mostrados na introdução. Dentre esses substituintes foram selecionados:

a) Grupo 3,3-dimetilalila – observado em pterocarpanos com atividade contra veneno de cobra (p.5), atividade antimicrobiana (p.10 e 11), atividade citotóxica (p.15 e 16) e outras atividades (p.18, 19 e 20);

b) Grupo fenila – observado em pterocarpanos com atividade contra veneno de cobra (p.5) e atividade anti-HIV (p.7);

c) Grupo hidroxila (pterocarpanos diidroxilados) – observado em pterocarpanos com atividade contra veneno de cobra (p.5), atividade antimicrobiana (p.10 e 11), atividade citotóxica (p.15 e 16) e outras atividades (p.18, 19 e 20);

 d) Grupos nitrogenados – observado em pterocarpanos com atividade citotóxica (p.16).

Considerando essas definições, planejou-se inicialmente a síntese do pterocarpano <u>151</u> a partir de <u>101</u>, conforme metodologia descrita por Santos e colaboradores em 2007 (Esquema 22, p.51). Nessa reação foi obtido o pterocarpano funcionalizado <u>151</u> com rendimento de 72%, o qual apresenta o substituinte 3,3-dimetilalila como muitos pterocarpanos naturais que apresentam atividades biológicas (SANTOS *et al.*, 2007).

Esquema 22 - O-alquilação do pterocarpano <u>101</u> para obtenção do (±) pterocarpano <u>151</u>.

De forma similar a <u>151</u>, foi obtido também o pterocarpano benzilado <u>152</u>, conforme Esquema 23. O referido produto foi obtido com 97% de rendimento, sendo mais um derivado de um dos pterocarpanos obtidos na primeira parte desse trabalho.

Esquema 23 - O-alquilação do pterocarpano <u>103</u> para obtenção do (±) pterocarpano <u>152</u>.

Outro substituinte que pareceu interessante acrescentar a um pterocarpano foi um derivado de piridina, o qual seria obtido a partir do 3,3piridinopropanol. Para realizar essa reação seria necessário substituir a hidroxila desse composto por um bom grupo abandonador. Para isso realizou-se a conversão do 3,3-piridinopropanol num derivado bromado sob irradiação de micro-ondas (Esquema 24). Como o produto dessa reação mostrou estabilidade limitada, optou-se por utilizar o produto imediatamente após a sua obtenção na etapa de *O*-alquilação do pterocarpano <u>102</u>.

Esquema 24 - Obtenção do brometo de (3-piridinil)propila a partir do 3,3-piridinopropanol.

Tendo-se o brometo de (3-piridinil)propila, partiu-se então para a *O*alquilação do pterocarpano <u>102</u>, levando à formação do produto <u>155</u>. A reação foi realizada utilizando-se o mesmo método das duas alquilações já descritas. O pterocarpano <u>155</u> foi obtido com o ótimo rendimento de 99%, conforme Esquema 25.

Esquema 25 - Reação de *O*-alquilação do pterocarpano <u>102</u> levando à obtenção do derivado <u>155</u>.

A partir do pterocarpano <u>135</u> pôde-se fazer a hidrólise de seu éster de forma a se obter o pterocarpano diidroxilado <u>156</u>. A hidrólise foi realizada em refluxo utilizando-se hidróxido de sódio e metanol como solvente (HYATT, 2008). Ao final de 30 minutos de reação o pterocarpano <u>156</u> foi obtido com 92% de rendimento, após elaboração e isolamento em coluna cromatográfica, como pode ser observado no Esquema 26.

Esquema 26 – Hidrólise do pterocarpano <u>135</u> levando à obtenção do pterocarpano <u>156</u>.

Além desses derivados pensou-se também na síntese de compostos constituidos de heterociclos (tetrazol e oxadiazol) e pterocarpanos, conforme Esquema 27. Na introdução desse trabalho são mostrados híbridos de pterocarpanos e naftoquinonas, substâncias que apresentaram atividade contra veneno de cobra (p.5) e também atividade citotóxica contra algumas linhagens de células de leucemia (p.14). Da mesma forma que os híbridos de pterocarpanos com naftoquinonas, os compostos constituídos de pterocarpanos e tetrazóis podem ter interessantes aplicações biológicas.

Esquema 27 – Compostos constituidos de pterocarpanos e heterociclos a serem obtidos.

Para a síntese dos derivados constituidos de pterocarpanos e tetrazóis, optou-se por realizar reações de alquilações envolvendo tetrazóis comerciais. Dentre esses, planejou-se utilizar nas alquilações o 5-fenil-1*H*-tetrazol (<u>161</u>), o 1-fenil-1*H*-5-tiotetrazol (<u>160</u>) e o 5-fenil-2-tio-oxadiazol (<u>162</u>).

Esses heteroaromáticos foram selecionados por apresentarem-se disponíveis em boa quantidade no laboratório e não levarem à formação de vários produtos. Os pterocarpanos selecionados para a reação com os heteroaromáticos foram escolhidos por já apresentarem-se disponíveis em maior quantidade no laboratório. Para a obtenção dos compostos constituídos por pterocarpanos e heterociclos, conforme Esquema 11 (p.34) do projeto de doutorado, foi primeiro planejado estender a cadeia lateral, para depois realizar as alquilações dos tetrazóis. Foi utilizado o 6-cloro-1-hexanol no lugar do 3-bromopropanol devido à disponibilidade do primeiro no laboratório. Nos Esquemas 28 e 29 estão representadas as extensões das cadeias laterais dos pterocarpanos <u>101</u> e <u>102</u>, as quais levaram aos pterocarpanos <u>163</u> e <u>164</u> com rendimentos de 82 e 66 % respectivamente. Essa alquilação foi realizada na presença de carbonato de potássio, acetona e refluxo, sendo os produtos, após elaboração, purificados em coluna de sílica.

Esquema 28 - Reação de *O*-alquilação do pterocarpano <u>102</u> levando à obtenção do pterocarpano <u>163</u>.

Esquema 29 - Reação de *O*-alquilação do pterocarpano <u>101</u> levando à obtenção do pterocarpano <u>164</u>.

55

Após a síntese dos pterocarpanos <u>163</u> e <u>164</u> (p.54) foi necessário transformar as hidroxilas terminais em bons grupos abandonadores, de forma a poder inserir os tetrazóis como nucleófilos na próxima etapa. Uma primeira estratégia para transformar hidroxila em bom grupo abandonador foi utilizada para o pterocarpano <u>163</u> que consistiu em substituir a hidroxila por iodo, por ser esse um ótimo grupo abandonador. Os reagentes utilizados foram imidazol, trifenilfosfina, iodo e tolueno. Na ausência de imidazol, o aduto formado entre a trifenilfosfina e o iodo é pouco solúvel em tolueno, o que dificulta a ocorrência da reação. A adição do imidazol leva à formação de um complexo parcialmente solúvel que rapidamente reage com o álcool (MEREYALA & GADDAM, 1994). Conforme se pode observar no Esquema 30, o produto <u>165</u> foi obtido com 40 % de rendimento após 15 minutos de reação.

Esquema 30 - Obtenção do pterocarpano 165 a partir do pterocarpano 163.

Tendo-se o pterocarpano <u>**165**</u> com um bom grupo abandonador, partiu-se para uma primeira substituição de pterocarpano com o 1-fenil-1*H*-5-tiotetrazol, utilizando K_2CO_3 , acetona e refluxo (SANTOS *et al.*, 2007). O pterocarpano <u>**157**</u> foi obtido com 89%, após elaboração e purificação em coluna sílica, conforme pode se observar no Esquema 31 (p.56).

Capítulo 3: Resultados e Discussão

Esquema 31 – Obtenção do pterocarpano 157 a partir do pterocarpano 165.

Como o pterocarpano <u>165</u>, a partir de <u>163</u>, não foi obtido com bom rendimento, optou-se por não substituir o pterocarpano <u>164</u> com iodo. Desta forma, preferiu-se utilizar o cloreto de mesila para a formação de um bom grupo abandonador. Para isso foi realizada a reação do pterocarpano <u>164</u> com cloreto de mesila, trietilamina e utilizando-se como solvente diclorometano. A reação foi conduzida a 0°C e ao final de 30 minutos de reação obteve-se o produto <u>166</u> com 85% de rendimento, após elaboração e purificação em coluna de sílica, conforme se pode observar no Esquema 32.

Esquema 32 – Obtenção do pterocarpano 166 a partir do pterocarpano 164.

Tendo o pterocarpano <u>166</u> como agente alquilante, realizou-se a alquilação do 5-fenil-1*H*-tetrazol <u>161</u> (p.53) e do 5-fenil-2-tio-oxadiazol <u>162</u> (p.53), utilizando-se trietilamina e acetonitrila como solvente. A reação foi conduzida à temperatura de 60° C e após 24 horas foram obtidos os pterocarpanos <u>158</u> e <u>159</u> com rendimentos de 52 e 64%, respectivamente, após elaboração e purificação em coluna de sílica, conforme se pode observar no Esquema 33 (p.57).

Esquema 33 – Alquilação do pterocarpano <u>166</u> levando à formação dos pterocarpanos <u>158</u> e <u>159</u>.

Na alquilação do 5-fenil-1*H*-tetrazol, obteve-se apenas o isômero 2,5dissubstituído, não se obtendo o isômero 1,5-dissubstituído. Conforme se pode observar na literatura, a formação de produtos alquilados na posição N-1 é favorecida por grupos doadores de elétrons no carbono tetrazólico, enquanto grupos retiradores favorecem alquilação na posição N-2 (BRIGAS, 2004; KOLDOSBSKII & OSTROVSKII, 1994).

Cabe ressaltar que não foi realizada a substituição nucleofílica bimolecular dos pterocarpanos com o 2,3,4-tri-*O*-acetil-6-desoxi- α -*D*-glicopiranosídeo de metila, conforme proposta de trabalho (Esquema 11, p.34), por restrição de tempo ao final do trabalho.

Todos os compostos aqui apresentados foram identificados por meio dos seus dados físico-químicos e espectros de RMN uni e bidimensionais, que se encontram relatados no capítulo 5. Além disso, os pterocarpanos e os 2*H*-cromenos foram submetidos a testes de atividade sequestradora de radicais livres descrita no capítulo 4.

4.1 – Atividade Antioxidante

Muitos estudos relacionados à saúde humana têm mostrado os danos induzidos pelo estresse oxidativo, o qual é produzido tanto por excesso de radicais livres como por ineficácia dos sistemas de defesa antioxidante. Muitas evidências atribuem o envelhecimento aos efeitos deletérios dos radicais livres e outras espécies reativas de oxigênio (ROS) as quais se formam espontaneamente na mitocôndria como consequência do metabolismo oxidativo. Esse conjunto de alterações nos sistemas antioxidantes da célula e o excesso de ROS são gerados tanto pelo envelhecimento das células como também por mecanismos etiopatogênicos de mais de cem patologias crônicas frequentes em pessoas idosas, tais como enfermidades cardiovasculares, mal de Parkinson, de Alzheimer, esclerose amiotrófica e o câncer. Diante disso, tem-se realizado todo um esforço na busca de novas substâncias com atividades antioxidantes que possam ser usadas para evitar o envelhecimento e também os demais danos causados pelo estresse oxidativo no organismo (MCARDLE *et al.*, 2002; ANTONIADES *et al.*, 2003).

A avaliação da atividade antioxidante em laboratório não pode ser diretamente medida, sendo analisada por meio dos efeitos que os antioxidantes proporcionam no controle da extensão da oxidação. Existem vários métodos para a medida desse tipo de atividade os quais se baseiam normalmente numa etapa de oxidação seguida da medida do resultado (BECKER *et al.*, 2004). Um exemplo importante de teste que avalia a atividade antioxidante é a atividade sequestradora do radical livre DPPH[•].

4.1.1 – Fundamentos da atividade sequestradora do radical livre DPPH[•]

O DPPH[•] (1,1-difenil-2-picrilidrazil) (<u>167</u>, Esquema 34) é um radical de nitrogênio orgânico, estável, de cor violeta e possui absorção máxima na faixa de 515-520 nm. A redução do radical DPPH[•] é monitorada pelo decréscimo da absorbância durante a reação (BRAND-WILLIAMS *et al.*, 1995).

O sequestro de radicais livres é um dos mecanismos pelo qual ocorre a ação dos antioxidantes. O método de sequestro do radical livre DPPH[•] pode ser utilizado para avaliar a atividade antioxidante de diferentes compostos. Na presença de um bom doador de radical hidrogênio ou elétron a intensidade de absorção da substância diminui e a solução com o radical vai mudando de cor, tornando-se amarela. Quando o elétron desemparelhado do átomo de nitrogênio do DPPH[•] recebe, por exemplo, um átomo de hidrogênio proveniente de compostos antioxidantes, ocorre mudança de cor (Esquema 34).

Esquema 34 – Reação do radical DPPH[•] com substâncias antioxidantes.

O método do DPPH é um método fácil e rápido para se avaliar a atividade sequestradora de radicais de substâncias antioxidantes.

4.1.2 – Metodologia utilizada para a avaliação da atividade sequestradora do radical DPPH[•]

A metodologia adotada se baseou em um sistema de reação de 100 μ L que era constituído de solução etanólica de DPPH[•] a 100 μ M mais os compostos-testes (em DMSO 0,27%) em concentrações que variaram de 0 a 160 μ M. As misturas de reação foram incubadas à temperatura ambiente e ausência de luz por 30 min, seguindo-se as medidas de absorbância a 517 nm. Os compostos-teste avaliados foram os 2*H*-cromenos <u>97-99</u> e <u>129-132</u> e os (±) pterocarpanos <u>101-103</u>, <u>133-136</u>, <u>156</u> e <u>163-164</u> (Quadro 1). O controle positivo utilizado foi o resveratrol <u>169</u> (p.61) e o controle negativo o próprio solvente utilizado para teste. Os testes foram realizados no Laboratório de Bioquímica de Plantas do Departamento de Botânica do Instituto de Ciências Biológicas da UFMG em colaboração com a professora Luzia Valentina Modolo.

4.1.3 – Resultados da avaliação da atividade sequestradora do radical DPPH[•]

Os resultados serão apresentados em valores de Cl₅₀ (concentração do oxidante necessária para reagir com 50% do radical DPPH[•]) e em porcentagem de sequestro de DPPH[•]. No Gráfico 1 está representada a porcentagem do sequestro do radical DPPH[•] *versus* a concentração da substância utilizada para o controle positivo (resveratrol).

Gráfico 1 – Porcentagem de sequestro do radical DPPH[•] para o resveratrol.

4.1.3.1 – Resultados da avaliação da atividade sequestradora do radical DPPH[•] para os 2*H*-cromenos

Nos Gráficos 2 a 4 estão representadas as porcentagens de sequestro do radical DPPH[•] *versus* a concentração da substância utilizada para três dos 2*H*-cromenos testados.

Gráficos 2 e 3 – Porcentagem de sequestro do radical DPPH[•] para os 2*H*-Cromenos <u>98</u> e <u>131</u>.

Gráfico 4 – Porcentagem de sequestro do radical DPPH[•] para o 2*H*-cromeno <u>130</u>.

Para os 2*H*-cromenos **97**, **99** e **129** não foi detectada nenhuma atividade de captura de DPPH[•] nas condições experimentais empregadas. Os 2Hcromenos **98** (captura de 11,8% de DPPH[•] guando empregado a 5 µM, com desvio padrão de $\pm 2,6\%$), **130** (captura de 4,1% de DPPH[•] guando empregado a 5 μ M, com desvio padrão de \pm 2,0%) e **132** (captura de 7,1% de DPPH[•] quando empregado a 160 µM, com desvio padrão de 3,4%) apresentaram uma pequena atividade de captura do radical DPPH[•], a qual não apresenta valores significativos comparando-se com os valores obtidos para o controle positivo. Já o 2H-cromeno 131 apresentou bons resultados como pode ser observado no Gráfico 3 (p.62), sendo o desvio padrão inferior a 4,1% para os experimentos nas diferentes concentrações. Os resultados obtidos para o 2H-cromeno 131 sugerem a ocorrência de hidrólise do grupo éster presente na molécula. De fato, tal composto não possui quaisquer hidroxilas fenólicas capazes de reagir com DPPH[•]. O armazenamento prolongado do composto <u>131</u> em geladeira realmente desencadeou a hidrólise da ligação éster como verificado no espectro de ressonância magnética nuclear de ¹H (Figura 132, Anexo 1) que indicou a presença de uma mistura de composto hidrolisado e composto esterificado. Dessa forma o derivado desprovido de grupo éster e não o composto 131 foi o responsável pela captura de DPPH[•].

4.1.3.2 – Resultados da avaliação da atividade sequestradora do radical DPPH⁻ para os (±) pterocarpanos

Nos Gráficos 5 a 14 (p.64 a 66) estão representadas as porcentagens de sequestro do radical DPPH[•] *versus* a concentração de cada (±) pterocarpano testado.

Gráficos 5 e 6 – Porcentagem de sequestro do radical DPPH[•] para os (±) pterocarpanos <u>133</u> (desvio padrão \leq 9,5%) e <u>135</u> (desvio padrão \leq 8,7%).

Gráficos 7 e 8 – Porcentagem de sequestro do radical DPPH[•] para os (±) pterocarpanos <u>101</u> (desvio padrão \leq 4,1%) e <u>134</u> (desvio padrão \leq 5,7%).

Gráficos 9 e 10 – Porcentagem de sequestro do radical DPPH[•] para os (±) pterocarpanos <u>103</u> (desvio padrão \leq 8,3%) e <u>102</u> (desvio padrão \leq 3,5%).

Gráficos 11 e 12 – Porcentagem de sequestro do radical DPPH[•] para os (±) pterocarpanos <u>136</u> (desvio padrão \leq 4,5%) e <u>156</u> (desvio padrão \leq 5,7%).

Gráficos 13 e 14 – Porcentagem de sequestro do radical DPPH[•] para os (±) pterocarpanos <u>163</u> (captura de 15,9% de DPPH[•] quando empregado a 5 μ M, com desvio padrão de 7,7%) e <u>164</u> (captura de 9,2% de DPPH[•] quando empregado a 160 μ M, com desvio padrão de 2,2%).

Observando-se os gráficos apresentados podem-se tecer alguns comentários:

a) a atividade dos pterocarpanos que possuem hidroxila fenólica quanto ao sequesto de DPPH[•] aumenta proporcionalmente quando o composto-teste é empregado a concentrações de no máximo 40 μM. Concentrações superiores a esta levam a reação de captura de DPPH[•] a atingir um *plateau* ocasionando a perda de linearidade;

b) os pterocarpanos <u>163</u> e <u>164</u> que não possuem hidroxila fenólica, apresentaram atividade sequestradora de DPPH[•] praticamente insignificante quando comparados com as demais substâncias e também com o controle positivo. Dessa forma pode-se observar que a presença de hidroxilas fenólicas é importante para a atividade sequestradora dos radicais DPPH[•];

c) o pterocarpano <u>156</u> apresentou atividades sequestradoras de DPPH[•] em concentrações menores que os demais pterocarpanos. Um diferencial dessa

substância em relação as demais é o fato dessa apresentar duas hidroxilas fenólicas e as demais apresentarem apenas uma, podendo-se então concluir que presença de mais de uma hidroxila fenólica contribui para uma maior atividade do composto-teste;

d) observando-se os pterocarpanos <u>101</u> e <u>134</u> pode-se notar que os dois são muito semelhantes, sendo a única diferença entre eles a ligação dos grupos metoxila e benziloxila nos carbonos C-2 e C3. Observando-se os gráficos do sequestro de DPPH[•] desses dois pterocarpanos pode-se notar que o pterocarpano <u>101</u> apresenta atividades maiores em concentrações menores quando comparado com <u>134</u>. A partir disso pode-se concluir que a presença do grupo benziloxila na posição C-2 e não na posição C-3 afeta negativamente a atividade de captura de DPPH[•] pelo pterocarpano.

Como já mencionado, uma forma importante de expressar a atividade sequestradora de DPPH[•] é através do uso da CI₅₀. A Tabela 12 apresenta os valores de CI₅₀ para os pterocarpanos testados.

Tabela 12 – Concentração de pterocarpanos (Cl₅₀) necessária para a captura de 50% dos radicais DPPH[•] no meio de reação

Composto	CI ₅₀ (μM)
<u>133</u>	31,1
<u>163</u>	Atividade muito baixa
<u>135</u>	22,1
<u>101</u>	26,0
<u>103</u>	25,0
<u>134</u>	35,1
<u>102</u>	29,7
<u>136</u>	23,0
<u>156</u>	17,9
Resveratrol (<u>169</u>)	34,4

Os menores valores das concentrações para reduzir em 50% o radical DPPH[•] foram referentes aos (±) pterocarpanos <u>156</u>, <u>135</u> e <u>136</u>. Já os maiores valores foram referentes aos (±) pterocarpanos <u>134</u>, <u>133</u> e <u>102</u>, apesar da diferença de atividade entre todos eles ser bem pequena. Assim, os (±) pterocarpanos que apresentaram os menores valores de CI_{50} podem ser considerados mais potentes por atuarem em menor concentração. Um outro fator muito interessante é que a maioria dos (±) pterocarpanos testados apresentou valor de CI_{50} menor que do controle positivo, apontando essas moléculas como potenciais antioxidantes. Um exemplo disso é o pterocarpano <u>156</u> que foi duas vezes mais potente que o resveratrol (composto <u>169</u>; Tabela 12, p.67). Interessantemente, o resveratrol apresenta três hidroxilas fenólicas enquanto que os pterocarpanos que apresentaram valores de CI_{50} inferiores ao do resveratrol possuem, no máximo, duas hidroxilas fenólicas.

Na introdução desse trabalho foram mostrados o pterocarpano <u>24</u> (p.21) e o pterocarpeno <u>53</u> (p.20) com atividades antioxidantes. Para a análise da atividade antioxidante do pterocarpeno <u>53</u> foram utilizadas outras metodologias diferentes do sequestro de DPPH[•]. À semelhança do pterocarpano <u>156</u>, o pterocarpeno <u>53</u> (p.20) analisado por Miyase e colaboradores (1999) apresenta duas hidroxilas fenólicas livres, o que confirma a importância de grupos fenólicos para atividade sequestradora de radicais livres. O pterocarpano <u>24</u> foi avaliado para atividade sequestradora de DPPH[•] e apresentou Cl₅₀ de 1100 µg/mL, uma concentração bem maior do que as obtidas para os pterocarpanos avaliados nesse trabalho. Por exemplo, após fazer a conversão de medidas, o pterocarpano <u>136</u> apresenta Cl₅₀ de 9,4 µg/mL para a atividade sequestradora

pterocarpano <u>24</u> (p.21). Uma diferença importante entre os pterocarpanos sintetizados nesse trabalho com boa atividade antioxidante e o pterocarpano <u>24</u> é que esse apresenta a hidroxila fenólica no anel A e os pterocarpanos sintetizados nesse trabalho apresentam a hidroxila fenólica no anel D.

- 5 Caracterização dos compostos sintetizados
- 5.1 Obtenção dos intermediários da síntese de pterocarpanos
- 5.1.1 3,4-Metilenodioxifenol (93)

O fenol <u>93</u> foi obtido como um sólido branco e apresentou ponto de fusão 62-66 °C. A identificação deste composto foi feita utilizando-se o espectro no infravermelho e os espectros de RMN de ¹H e de ¹³C, além de comparação com os dados obtidos no trabalho de Evangelista, que também sintetizou esse composto (EVANGELISTA, 2006).

No espectro no IV (Figura 1) foram observadas, dentre outras absorções, uma banda larga do estiramento característico de O-H em 3437 cm⁻¹, uma banda forte de estiramento da ligação C-O do fenol em 1217 cm⁻¹ e também uma outra em 1020 cm⁻¹, característica de estiramento simétrico da ligação C-O-C (SILVERSTEIN & WEBSTER, 2000).

Figura 1 – Espectro no Infravermelho de 93

Analisando o espectro de RMN de ¹H (Figura 2) puderam ser atribuídos todos os hidrogênios de <u>93</u>. O simpleto em δ 5,90 foi atribuído aos hidrogênios CH₂ do grupo metilenodioxi. O dupleto duplo presente em δ 6,26 foi atribuído ao hidrogênio H-6, considerando sua multiplicidade uma vez que esse se acopla com H-5 e H-2. A presença de um sinal largo entre δ 4,8 e δ 5,4 foi atribuído ao hidrogênio do grupo hidroxila.

Observando as constantes de acoplamento dos dois dupletos presentes no espectro, puderam ser atribuídos os sinais de H-2 em δ 6,43 (d, 1H, H-2, J_{H2-} _{H6}=2,5 Hz) e de H-5 em δ 6,65 (d, 1H, H-5, J_{H-5-H6} = 8,3 Hz). Os dados referentes ao espectro de RMN de ¹H encontram-se nas Tabelas 13 (p.72) e 14 (p.75).

Figura 2 – Espectro de RMN de ¹H de <u>93</u> (200 MHz, $CDCI_3$).

Analisando o espectro de RMN de ¹³C (Figura 3, p.72), juntamente com o subespectro de DEPT 135 de <u>93</u>, inicialmente foi atribuído o sinal de carbono em δ 101,11 ao CH₂ do grupo metilenodioxi. Os demais sinais foram atribuídos comparando-se os deslocamentos com os observados na literatura (Tabela 13),

sendo atribuído o sinal em δ 98,29 a C-2, o sinal em δ 108,14 a C-5, o sinal em δ 141,44 a C-1, o sinal em δ 148,20 a C-4 e o sinal em δ 150,65 a C-3 (EVANGELISTA, 2006).

Figura 3 – Espectro de RMN ¹³C e subespectro DEPT 135 de <u>93</u> (50 MHz, CDCl₃).

Tabela 13 – Comparação dos dados de RMN de ¹H e ¹³C do fenol <u>93</u> sintetizado neste trabalho e os dados da literatura

	(EVANGELISTA, 2006)* DADOS DESTE TRABALHO*													
	HIDROGÊNIO CARBONO HIDROGÊNIO CARBONO													
Nº	δ	М	J (Hz)	δ	Тіро	δ	М	J (Hz)	δ	Тіро				
1	_			141,45	С	_		_	141,45	С				
2	6,42	d	H-2/H-6=2,6	98,29	СН	6,43	d	H-2/H-6=2,5	98,29	CH				
3				150,33	С				150,65	С				
4		l		148,11	С		I		148,20	С				
5	6,63	d	H-5/H-6=8,0	108,17	СН	6,65	d	H-5/H-6=8,3	108,14	СН				
6	6,25	dd	H-6/H-5=8,0 H-6/H-2=2,6	106,75	СН	6,26	dd	H-6/H-5=8,3 H-6/H-2=2,5	106,67	СН				
7	5,88	S	_	101,07	CH_2	5,90	S	_	101,11	CH ₂				

*CDCl₃/200MHz

5.1.2 - Caracterização dos Fenóis 94, 95, 125, 126 e 127

Os fenóis já conhecidos 3-O-benzil-4-metoxifenol (94), 3,4-dimetoxifenol (95), 3-fenoxifenol (125), 3-metoxi-4-O-benzilfenol (126) e 3-hidroxi-4metoxifenol (128) serão todos descritos nesse mesmo item, uma vez que os mesmos apresentam estruturas e espectros muito semelhantes. Todos os fenóis apresentaram-se como sólidos, sendo 94 um sólido alaranjado, 95, 126 e 128sólidos rosados e 125 um sólido branco. As faixas de fusão de 94, 95, 125, 126e 128 são respectivamente 82-83 °C, 79-82 °C, 41-42 °C, 85-86°C e 67-68°C. A identificação destes compostos foi feita utilizando-se apenas os espectros no infravermelho e os espectros de RMN de ¹H e de ¹³C que foram comparados com aqueles do fenol 93, considerando a similaridade dos espectros obtidos. Estes resultados encontram-se descritos na Tabela 14 (p.75) juntamente com os dados obtidos para o fenol 93. Desta forma, os espectros desses compostos não serão apresentados aqui, estando presentes no item **Anexo 1**. Para o fenol <u>125</u> não foi possível atribuir os sinais de cada hidrogênio, uma vez que esse composto apresenta apenas hidrogênios aromáticos que se superpuseram na mesma região do espectro. Sendo assim, os únicos sinais observados foram os multipletos presentes entre δ 6,48-6,58 e 7,00-7,37. Dessa forma, a análise deste composto já conhecido foi feita principalmente pela análise do espectro no Infravermelho e espectro de RMN de ¹³C.

								Tab	ela 14	- Dac	los d	le F	RMN de ¹ H e	de ¹³ 0	C pa	ra os	fen	óis <u>9:</u>	<u>3, 94, 95</u>	5, <u>125</u>	, <u>126</u>	e _	128							
$\begin{array}{c ccccc} & & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\$,OH	H ₃ CO 2 3 H ₃ CO 4 5					PhO 2 OH				H ₃ CO 2 OH 3 1 Ph 0 4 5						⊦ H₃C		0H	ł			
			FENOL <u>93</u>	-				FENOL g	4		FENOL <u>95</u>				FENOL <u>125</u>				FENOL <u>126</u>							FENOL 12	28			
HIDROGÊNIO CARBON					ONO	HIDROGÊNIO CARBONO					HIDROGÊNIO CARBON			ONC	HIDROGÊNIO CARBONO			HIDROGÊNIO			CARB	ONO	HIDROGÊNIO			CARB	ONO			
Nº	δ	М	J (Hz)	δ	Тіро	δ	м	J (Hz)	δ	Tipo	δ	М	J (Hz)	δ	Tipo	δ	М	J (Hz	δ	Тіро	δ	М	J (Hz)	δ	Тіро	δ	М	J (Hz)	δ	Tipo
1	_	_	_	141,44	С	_	_	_	143,40	С	_	_	_	143,06	С	_	_	_	156,89	с	_		_	151,03	С	_	_	_	150,51	С
2	6,43	d	H-2/H-6=2,5	98,29	СН	6,44	d	H-2/H-6=2,6	102,82	СН	6,47	d	H-2/H-6=2,8	100,82	СН		_	_	106,20	СН	6,43	d	H-2/H-6=2,8	101,07	СН	6,51	d	H-2/H-6=2,8	103,23	СН
3	_	_	_	150,65	с	_	_	_	150,12	С	_	_	_	150,45	С	_	_	_	156,97	с	_		_	151,00	С	_	_	_	146,43	с
4	_			148,20	с	_	_		148,95	С	_		_	149,93	С	_	_	_	111,13 ou 110,38	СН	_		_	142,07	С	_		_	141,08	с
5	6,65	d	H-5/H-6=8,3	108,14	СН	6,71	d	H-5/H-6=8,5	113,40	СН	6,72	d	H-5/H-6=8,6	112,72	СН		_	_	130,60	СН	6,70	d	H-5/H-6=8,6	116,49	СН	6,72	d	H-5/H-6=8,6	112,13	СН
6	6,26	dd	H-6/H-5=8,3 H-6/H-2=2,5	106,66	СН	6,32	dd	H-6/H-5=8,5 H-6/H-2=2,6	106,64	СН	6,36	dd	H-6/H-5=8,6 H-6/H-2=2,8	106,12	СН		_	_	111,13 ou 110,38	сн	6,23	dd	H-6/H-5=8,6 H-6/H-2=2,8	106,27	СН	6,33	dd	H-6/H-5=8,6 H-6/H-2=2,8	106,23	СН
7	5,90	s	—	101,11	CH_2	5,00	s	—	70,77	CH_2	_	_	—	—	_	_	_	-	—	–	5,03	s	—	72,55	CH_2	_	_	_	_	_
OCH₃	_	_	-	_	_	3,80	s	_	56,85	OCH₃	3,78	s	_	55,89	CH3		_	_	_		3,76	s	_	56,01	OCH₃	3,83	s	_	56,83	OCH₃
OCH₃	_	_	_	_	_	_	-	_	_		3,81	s	_	56,75	CH₃		_	_	_		—	_	_	_			_	_	_	-
<u>Ph</u>			_	_	_	7,27- 7,38	m	_	127,29 127,83 128,47 136,68	2XCH CH 2XCH C	_	_	_	_		6,48- 6,58 e 7,00- 7,37	m	_	119,48 123,74 129,95	2XCH CH 2XCH C	7,29- 7,38	m	_	127,75 127,99 128,61 137,49	2XCH CH 2XCH C	_		_	_	_

Capítulo 5: Caracterização dos Compostos Sintetizados

5.1.3 – 2,2-Dimetil-6,7-metilenodioxi-2H-1-benzopirano (98)

O cromeno <u>98</u>, composto já conhecido, apresentou-se como um sólido amarelo, o qual foi identificado por intermédio do espectro no infravermelho e espectros de RMN de ¹H, de ¹³C e subspectro DEPT 135, além de comparação com dados da literatura (EVANGELISTA, 2006).

Observaram-se no espectro no infravermelho (Figura 4) as bandas características referentes ao estiramento assimétrico da ligação C-O-C em 1252 e simétrico em 1036, além das bandas características de estiramento das ligações C=C em 1605 e 1500 (SILVERSTEIN & WEBSTER, 2000).

Figura 4 – Espectro no Infravermelho de 98.

No espectro de RMN de ¹H de <u>98</u> (Figura 5) foram inicialmente atribuídos: o simpleto em δ 1,39 aos seis hidrogênios dos grupos CH₃ e o simpleto em δ 5,87 aos dois hidrogênios H-9. Os demais sinais foram atribuídos observando os dados apresentados na literatura para o presente composto e estão sumariados na Tabela 15 (p.78), além de poderem ser observados na Figura 5 (EVANGELISTA, 2006).

Figura 5 – Espectro de RMN de ¹H de <u>98</u> (200 MHz, CDCl₃).

No subespectro de DEPT 135 pode-se atribuir ao sinal em δ 100,88 ao C-9 (Figura 6, p.78). Observando o espectro de RMN de ¹³C pôde-se atribuir os dois grupos CH₃ ao sinal em δ 27,42. Os demais sinais foram atribuídos comparando-se seus valores aos observados na literatura (EVANGELISTA, 2006), sendo os mesmos indicados na Figura 6 (p.78) e descritos nas Tabelas 15 (p.78) e 16 (p.80).

Figura 6 – Espectro de RMN ¹³C e subespectro DEPT 135 de <u>98</u> (50 MHz, $CDCI_3$).

Tabela 15 – Comparação dos dados de RMN de ¹H e ¹³C do 2*H*-cromeno <u>98</u> sintetizado neste trabalho e os dados da literatura

	9 0 7 8 0 2 3 3 3 3 3 3 3 3 3 3													
	(EVANGELISTA, 2006)* DADOS DESTE TRABALHO*													
	HIDROGÊNIO CARBONO HIDROGÊNIO CARBONO													
Nº	δ	М	J (Hz)	δ	Tipo	δ	М	J (Hz)	δ	Tipo				
2	_		_	75,96	С	-			76,01	С				
3	5,46	d	H-3/H-4=10,0	128,11	СН	5,47	d	H-3/H4=9,8	128,16	CH				
4	6,19	d	H-4/H-3=10,0	122,26	СН	6,19	d	H-4/H-3=9,8	122,30	СН				
4a			_	114,19	С	_	_		114,23	С				
5	6,47	S		105,58	CH	6,47	s		105,62	СН				
6 ou 7	_	_	—	141,35	С	_	_	—	141,38	С				
7 ou 6	_		_	147,55	С			_	147,58	С				
8	6,37	S		99,06	СН	6,38	S		99,06	СН				
8a			_	148,17					148,20	I				
9	5,86	s	_	100,84	CH_2	5,87	s		100,88	CH_2				
2 X CH ₃	1,39	s	_	27,38	CH_3	1,39	s	_	27,42	CH ₃				
	3/200	NVIF	IZ											

5.1.4 - Caracterização dos 2H-Cromenos 97, 99, 129, 130, 131 e 132

Considerando o fato de que os 2*H*-cromenos <u>97</u>, <u>99</u>, <u>129</u>, <u>130</u>, <u>131</u> e <u>132</u> apresentam estruturas químicas semelhantes, além dos mesmos já serem compostos conhecidos, serão agrupados nesse item para suas caracterizações.

Os 2*H*-cromenos <u>99</u> e <u>129</u> se apresentaram como óleos de cor amarela à temperatura ambiente. Já os compostos <u>97</u>, <u>130</u>, <u>131</u> e <u>132</u> apresentaram-se como sólidos amarelos, sendo seus pontos de fusão respectivamente 78-80 °C, 80-83 °C, 87-89°C e 159-160°C. Os mesmos foram identificados por intermédio dos espectros no infravermelho e espectros de RMN de ¹H, de ¹³C e subespectros DEPT 135. Devido à similaridade entre os compostos <u>97</u>, <u>99</u>, <u>129</u>, <u>130</u>, <u>131</u> e <u>132</u>, os dados de RMN de ¹H e ¹³C e subespectro DEPT 135 de todos eles estão descritos nas Tabelas 16 (p.80) e 17 (p.81) e são comparados com aqueles obtidos para o composto <u>98</u>. Desta forma, os espectros não serão incluídos nesse item, podendo ser observados no item Anexo 1.

O espectro no infravermelho do 2*H*-cromeno <u>131</u> (Figura 49, Anexo 1) foi realizado depois de cerca de um ano de sua obtenção. Como mencionado no capítulo 4 (p.63), esse composto sofreu hidrólise e por isso o espectro do mesmo corresponde à mistura de <u>131</u> e de seu produto de hidrólise do grupo acetila.

Tabela 16 – Dados de RMN de ¹H e de ¹³C para os 2*H*-cromenos <u>97</u>, <u>98</u> e <u>99</u>

	×			$\frac{1}{2}$		Ph	9 Н ₃ С				$H_{3}CO = 7$ $H_{3}CO = 6$ 5 4						
		21	-CROMENC) <u>98</u>				2H-CROME	NO <u>97</u>	2 <i>H-</i> CROMENO <u>99</u>							
	ł	HIDRO	DGÊNIO	CARBONO		F	IIDRC	GÊNIO	CARBONO		F	IIDRC	GÊNIO	CARBONO			
N ^o	δ	Μ	J (Hz)	δ	Tipo	δ	М	J (Hz)	δ	Tipo	δ	М	J (Hz)	δ	Tipo		
2			_	76,01	С		_	_	75,95	С	_	_	_	76,19	С		
3	5,47	d	H-3/H-4=9,8	128,16	СН	5,47	d	H-3/H-4=9,2	127,81	СН	5,48	d	H-3/H-4=9,6	128,41	СН		
4	6,19	d	H-4/H-3=9,8	122,30	СН	6,24	d	H-4/H-3=9,2	121,95	СН	6,24	d	H-4/H-3=9,6	122,15	СН		
4a	_	_	_	_	_	_	_	_	113,67	С	_	_	_	113,25	С		
5	6,47	s		105,62	СН	6,56	s	—	110,54	СН	6,53	s		109,90	СН		
6			—	141,38 ou 147,58	С	_	—	_	147,15	С	—	—	_	143,25	с		
7			—	141,38 ou 147,58	С		_	—	143,65	С	_	_	—	147,39	С		
8	6,38	s		99,06	СН	6,44	s		103,17	СН	6,42	s	_	101,20	СН		
8a			_	—			_	_	148,92	С	_	_		149,81	С		
9	5,87	s	—	100,88	CH ₂	5,10	S	—	70,87	CH ₂	—	-	—	—			
2 X CH_3	1,39	s	—	27,42	CH_3	1,39	S	_	27,64	CH ₃	1,41	S	_	27,85	CH_3		
OCH ₃			—	—	_	3,82	S		56,85	CH ₃	3,82	s		56,09	CH_3		
OCH ₃	—	_		—	—	—	—	—	_	—	3,84	S	—	56,71	CH_3		
<u>Ph</u>	_			_	7,33- 7,41	m	_	127,27 128,50 136,89	2CH 3CH C	_	_	_	_	_			

Tabela 17 – Dados de RMN de ¹H e de ¹³C para os 2*H*-cromenos <u>129</u>, <u>130</u>, <u>131</u> e <u>132</u>

	I	PhC		1 0 2 3 4	_	Ph	H ₃ (/ 2 3	/	H O		a O^{l} 2 4 3 4	1	$H_{3}CO = \begin{pmatrix} 10 \\ 8 \\ 7 \\ 4a \\ 4a \\ 4a \\ 4 \end{pmatrix}$					
	2H-CROMENO <u>129</u>							H-CROME	NO <u>130</u>		H-CROME	NO <u>131</u>		2H-CROMENO 132							
	HIDROGÊNIO CARBONO						IDR	OGÊNIO	CARBC	NO	Н	IDR	OGÊNIO	CARBO	NO	Н	IDR(ogênio	CARBONO		
Nº	δ	М	J (Hz)	δ	Tipo	δ	М	J (Hz)	δ	Tipo	δ	М	J (Hz)	δ	Тіро	δ	М	J (Hz)	δ	Tipo	
2	-	_	_	ni	С			_	76,23	С	_	_	_	76,73	С	_	_	_	76,21 ou 76,46	С	
3	5,51	d	H-3/H-4=9,8	ni	СН	5,46	d	H-3/H-4=9,6	128,30	СН	5,48	d	H-3/H-4=9,7	128,56	СН	5,48	d	H-3/H-4=9,6	128,49	СН	
4	6,28	d	H-4/H-3=9,8	ni	СН	6,18	d	H-4/H-3=9,6	122,10	CH	6,20	d	H-4/H-3=9,7	121,54	СН	6,21	d	H-4/H-3=9,6	122,48	СН	
4a	_	_	_	116,64	С	_	_	_	113,33	С	_	_	_	113,78	С	_	_	_	113,54	С	
5	6,90	d	H-5/H-6=8,2	ni	СН	6,57	s	_	113,69	СН	6,66	s		120,08	СН	6,46	s	_	111,16	СН	
6	6,48	dd	H-6/H-5=8,2 H-6/H-8=2,2	110,71	СН			—	142,28	С			_	151,54	С		_	_	142,50 ou 142,89	С	
7	-	_	_	ni	С		-	_	148,10	С	l	_	_	133,24	С		_	_	142,50 ou 142,89	С	
8	6,43	d	H-8/H-6=2,2	106,62	СН	6,44	s		101,48	СН	6,43	s	_	101,38	СН		_	_	111,53	С	
8a	_		_	ni	С	-	_	_	150,89	С		_	_	151,72	С		_	_	151,60	С	
9		_	_	_	_	5,06	s	_	72,52	CH_2		—	_	169,64	_	6,65	d	H-9/H-10=10,0	117,03	СН	
10		_	_	_	_	-	_	_	_	_		_	_	_	_	5,58	d	H-10/H-9=10,0	129,52	СН	
11	_	_	_	—	_	_	_	_	—	_	_	_	_		_		_	_	76,21 ou 76,46	С	
2 X CH ₃	1,41	s	—	28,01	CH_3	1,42	s	—	27,91	CH_3	1,42	s	_	28,21	CH_3	1,40	s	—	27,93	CH_3	
2 X CH ₃	_	_	_	_	—	_	_	_	_	_	_	_	_	_	—	1,46	s	_	27,93	CH_3	
OCH ₃	_	_	—	—	—	3,84	s	—	56,13	CH_3	3,77	s	_	56,11	CH_3	3,80	s	—	57,37	CH_3	
COCH ₃	-	_	_	_	_	_	_	_	—	_	2,28	s	_	20,82	CH_3	_	_	—	—	—	
<u>Ph</u>	7,01- 7,13 7,28-	m	_	ni	С СН	7,32- 7,45	m	_	127,66; 127,92; 128,61;	2CH 3CH C	_	_	_	_	_	_	_	_	_	_	
ni =	sinai	s ná	ão identificado	s (δ 119,3	89; 12 ⁻	1,73; 1	23,4	48; 127,03; 12	28,92; 129	,69; 1	54,13;	156	5,67; 158,29)								

5.2 – Síntese de pterocarpanos

5.2.1 – (±) 6a,11a-Diidro-2,3,9-trimetoxi-8-hidroxi-6,6-dimetil-6*H*-benzofuro [3,2-c] [1]benzopirano ($\underline{103}$)

O pterocarpano inédito <u>103</u>, sólido amarelado, apresentou ponto de fusão de 65-68 °C.

A análise deste composto foi feita por intermédio dos espectros no infravermelho, massas, RMN de ¹H, de ¹³C e subespectro DEPT 135. Utilizaramse também os mapas de contornos homonuclear COSY, heteronuclear HMQC e heteronuclear HMBC.

Iniciou-se a análise do composto <u>103</u> por seu espectro no infravermelho (Figura 7, p.83) onde foram observados em 1244 cm⁻¹ absorção correspondente a estiramento assimétrico da ligação C-O-C, e em 1025 cm⁻¹ estiramento simétrico da mesma ligação. Além disso, foi observado em 3538 cm⁻¹ estiramento da ligação O-H. As demais absorções estão mostradas no espectro e descritas na parte experimental (SILVERSTEIN & WEBSTER, 2000).

Capítulo 5: Caracterização dos Compostos Sintetizados

Figura 7 - Espectro no Infravermelho de 103.

Pela análise do espectro de RMN de ¹H (Figura 8, p.84) do composto <u>103</u>, observou-se inicialmente a presença de dois simpletos em δ 0,89 e δ 1,52, referentes aos hidrogênios dos dois grupos CH₃ ligados ao carbono 6. Além disso, observou-se a presença de dois simpletos em δ 3,86 e δ 3,89 referentes respectivamente aos hidrogênios dos grupos OCH₃.

Observando-se ainda o espectro de RMN de ¹H do composto <u>103</u>, notouse a presença de dois dupletos em δ 3,31 e δ 5,44, os quais referem-se aos dois hidrogênios da junção dos anéis B e C do pterocarpano <u>103</u>. Os dois sinais apresentam *J*=7,6 Hz (H-6a/H-11a), e, segundo a literatura, são característicos para a fusão cis dos anéis B e C. Conforme observado em outros pterocarpanos, o sinal mais blindado em δ 3,31 corresponde a H-6a e o sinal em δ 5,44 corresponde a H-11a (VAN AARDT *et al.*, 1999). O acoplamento de H-6a e H-11a pode ser confirmado pelo mapa de contornos COSY (Figura 9, p.85).

No espectro de RMN de ¹H havia ainda mais quatro simpletos em δ 6,48, 6,50, 6,88 e 6,98 que correspondem aos hidrogênios ligados aos anéis aromáticos H-1, H-4, H-7 e H-10. Observando-se a estrutura da molécula podese notar uma semelhança muito grande na vizinhança dos hidrogênios H-4 e H-10, levando a prever que esses dois sinais devem se encontrar bem próximos no espectro. Referida conclusão é confirmada ao se verificar na literatura deslocamentos químicos de hidrogênios de pterocarpanos com vizinhança química bem semelhante a 103, podendo-se observar que os hidrogênios H-4 e H-10 apresentam-se mais blindados que H-1 e H7 (SANT'ANNA et al., 2005). Dessa forma, pode-se concluir que os sinais em δ 6,48 e 6,50 correspondem aos hidrogênios H-4 e H-10 e que os sinais em δ 6,88 e 6,98 correspondem aos hidrogênios H-1 e H-7. A partir daí, passou-se a analisar o espectro de HMQC para atribuir os sinais de carbonos hidrogenados dessa molécula.

Analisando o mapa de contornos HMQC (Figura 10, p.86), inicialmente puderam-se atribuir os sinais dos carbonos dos dois grupos CH₃ em δ 20,08 e 27,71 e os carbonos dos três grupos OCH₃ em δ 56,32, pelas correlações diretas com os hidrogênios dos respectivos grupos. Nota-se que tanto os sinais dos hidrogênios quanto os sinais dos carbonos dos dois grupos CH₃ apresentaram deslocamentos distintos, fato que não ocorreu com os sinais desses dois grupos no 2*H*-cromeno de partida **99**, o que é justificado pelos diferentes ambientes químicos. Além disso, puderam ser atribuídos os carbonos C-6a e C-11a respectivamente aos sinais em δ 49,67 e 79,19 pelas correlações com os hidrogênios correspondentes.

Continuando a análise do mapa de contornos HMQC (Figura 10, p.86), puderam ser atribuídos aos carbonos C-10 e C-4 os sinais em δ 94,45 e 101,66, respectivamente. Como os sinais dos hidrogênios H-4 e H-10 não haviam sido definidos ainda, também não se poderia definir especificamente os carbonos C-4 e C-10. No entanto, observando os dados da literatura para pterocarpanos com

estrutura similar a <u>103</u>, pode-se observar que C-10 apresenta sinal próximo a δ 94,45 e C-4 próximo a δ 101,66 (SANT'ANNA *et al.*, 2005).

Figura 10 – Mapa de contornos HMQC de 103 (200 MHz, CDCl₃).

Com a análise do mapa de contornos HMQC não foi possível identificar os sinais dos carbonos C-1a, C-3, C-4a, C-8, C-9 e C-10a, uma vez que esses não são hidrogenados. Mesmo os carbonos hidrogenados C-1 e C-7 não puderam ser identificados. Esses carbonos puderam ser atribuídos a partir da análise do mapa de contornos HMBC. As atribuições para os carbonos C-1, C-7, C-1a, C-3, C-4a, C-8, C-9 e C-10a puderam ser feitas inequivocamente a partir das correlações H-1/C-11a (³*J*), H-7-C-6a (³*J*), H-6a/C-1a (³*J*), H-1/C-3 (³*J*), H-1/C-4a (³*J*), H-10/C-8 (³*J*), H-7/C-9 (³*J*) e H-7/C-10a (³*J*), as quais podem ser observadas no mapa de contornos HMBC (Figura 11, p.87). As atribuições dos sinais de RMN de ¹³C de <u>103</u> estão apresentadas no espectro de ¹³C (Figura 12, p.87) e na Tabela 20 (p.93).

Capítulo 5: Caracterização dos Compostos Sintetizados

Figura 12 – Espectro de RMN de 13 C de <u>103</u> (50 MHz, CDCl₃).

No espectro de massas ESI-HRMS de alta resolução positivo de <u>103</u> (Figura 13) foi possível observar o sinal do composto protonado (M+H)⁺ em m/z 359,1451.

Figura 13 – Espectro ESI-HRMS positivo de 103.

5.2.2 – Caracterização dos pterocarpanos 101, 102, 133, 134, 135 e 136

Os pterocarpanos já conhecidos <u>101</u> e <u>102</u> apresentaram-se como sólidos amarelados, sendo a faixa de fusão de <u>102</u> de 156-160 °C e de <u>101</u> de 165 a 170 °C. Os pterocarpanos inéditos <u>133</u>, <u>134</u>, <u>135</u> e <u>136</u> também apresentaram-se como sólidos amarelados com faixas de fusão de 136-139 °C, 163-166°C, 173-174°C e 159-160 °C, respectivamente.

Todos foram identificados por intermédio dos espectros no infravermelho e espectros de RMN de ¹H, de ¹³C, subespectros DEPT 135. Para identificação dos pterocarpanos <u>101</u> e <u>102</u> foi realizada comparação com dados dessas substâncias presentes na literatura (EVANGELISTA *et al.*, 2006). Para os pterocarpanos inéditos <u>133</u>, <u>134</u>, <u>135</u> e <u>136</u>, da mesma forma que para o pterocarpano <u>103</u>, foram utilizados também mapas de contornos homonuclear COSY, heteronucleares HMQC e HMBC, além da espectrometria de massas de alta resolução.

Na síntese do pterocarpano <u>136</u> havia a possibilidade da formação de dois isômeros, conforme se pode observar no Esquema 35 (pág 90). No entanto só foi observada a formação de um deles. Para elucidação de qual isômero foi formado, foi necessário a análise dos mapas heteronucleares HMQC e HMBC

(Figuras 85 e 86, Anexo 1). Observando-se o mapa de contornos HMBC há uma correlação do hidrogênio H-1 com o carbono C-11a, além da correlação do hidrogênio H-11a com o carbono C-1. Caso o produto formado fosse <u>170</u>, não haveria o sinal de H-1 e sim H-3, e este não poderia correlacionar-se com C-11a devido à distância. Unindo isso a todos os demais dados dos espectros foi confirmado inequivocamente que o isômero sintetizado tratava-se de <u>136</u>.

Esquema 35 – Possíveis pterocarpanos que poderiam ser obtidos a partir do 2*H*-cromeno <u>132</u>.

Devido à similaridade existente entre todos esses pterocarpanos, serão apresentados os dados de RMN de ¹H e ¹³C nas Tabelas 18 (p.91), 19 (p.92), 20 (p.93) e 21(p.94) onde são ainda comparados com os dados dos espectros obtidos para o composto <u>103</u>. Desta forma, os espectros não serão incluídos nesse item, podendo ser observados no item Anexo 1.

Todos os derivados inéditos de pterocarpanos também foram caracterizados utilizando-se espectrometria de massas ESI-HRMS positivo (Anexo 1), sendo possível observar para cada derivado o pico do composto protonado (M+H)⁺.

H₃CC H₃CC			- 7 0 9 0 0 0 0 0 0 0 0 0 0 0 1 3	PhO 3 2 1		63 1a 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		5 0 11 0 11	a 10 0CH ₃	Ph 4 5 $6a$ 7 $6a$ $11a$ 7 8 $0H$ 11 9 $0H$ 3				
	PTEROCAR	PANO) (±) <u>103</u>	PTERO	CARF	PANO (±) <u>133</u>	PTERO	CARF	PANO (±) <u>102</u>	PTERC	CAR	PANO (±) <u>101</u>		
Hidrog.	δ	М	J (Hz)	δ	М	J (Hz)	δ	М	J (Hz)	δ	М	J (Hz)		
CH_3	0,9	s	_	0,90	s		0,87	s		0,87	s	—		
CH_3	1,52	s	_	1,51	s	—	1,50	s	—	1,50	s	—		
OCH ₃	3,86	s	—	3,86	s	_	3,86	s	_	3,85	s	_		
OCH ₃	3,86	s	—	_	_	_	_	—	_	3,89	s	_		
OCH ₃	3,9	s	_	_	—		_	_	_	_	_			
H-1	6,98	s	_	7,46	d	H-1/H-2 = 8,4	6,93	s	—	7,01	s	_		
H-2		_	_	6,70	dd	H-2/H-1 = 8,4 H-2/H-4 = 2,4	_	—	—		_	_		
H-4	6,48		_	6,53	d	H-4/H-2 = 2,4	6,45	s	—	6,51	s	_		
H-7	6,88	s		6,88	s	—	6,87	s	—	6,86	s	_		
H-10	6,50	s	_	6,49	s		6,48	s	_	6,49	s			
H-6a	3,31	d	H-6a/H-10a = 7,6	3,32	d	H-6a/H-10a = 7,4	3,29	d	H-6a/H-10a = 7,4	3,28	d	H-6a/H-10a = 7,6		
H-11a	5,44	d	H-10a/H-6a = 7,6	5,46	d	H-10a/H-6a = 7,4	5,39	d	H-10a/H-6a = 7,4	5,42	d	H-10a/H-6a = 7,6		
PhC <u>H</u> ₂		—	_		—	—		—	_	5,11-5,12	m			
Ph	_	_		7,03-7,39	m			_		7,32-7,42	m			
OCH ₂ O	_	—	_		—		5,92-5,94	m		_	—			

Tabela 18 - Dados de RMN de ¹H dos (±)-pterocarpanos 103, 133, 102 e 101
Pł	5 6a 11a 0-	/ <u>6</u> 10 0СН ₃	H ₃ CO 3 0 2	4	5 6a 7 11a 0 10 9 0CH ₃	H ₃ CO ²	12	5 6 6 11a 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	PTEROCA	RPAN	O (±) <u>134</u>	PTEROCARPANO (±) <u>135</u>			PTEF	ROCAF	RPANO (±) <u>136</u>
Hidrog.	δ	М	J (Hz)	δ	М	J (Hz)	δ	М	J (Hz)
CH ₃	0,90	s	_	0,90	s	_	0,79	s	_
CH_3	1,52	S	_	1,51	S	_	1,36	S	—
CH ₃		—	—		—	_	1,43	s	_
CH_3	—		_	_	—	_	1,45	S	—
OCH ₃	3,84	s	_	3,79	S		3,76	s	—
OCH₃	3,85	S		3,84	S		3,78	S	—
H-1	7,07	s		7,17	s		6,84	s	_
H-4	6,50	s	_	6,51	s			—	_
H-7	6,88	s	_	6,86	s	_	6,79	s	_
H-10	6,49	s		6,46	s		6,40	s	
H-6a	3,28	d	H-6a/H-10a = 7,5	3,28	d	H-6a/H-10a = 7,6	3,22	d	H-6a/H-10a = 7,6
H-11a	5,38	d	H-10a/H-6a = 7,5	5,39	d	H-10a/H-6a = 7,6	5,33	d	H-10a/H-6a = 7,6
H-12	_	—		_	—		6,59	d	H-12/H-13 = 9,9
H-13			_	_	—		5,51	d	H-13/H-12 = 9,9
H-12a		d	H-12a/H-12b= Hz						
H-12b		sl	H-12b/H-12a= Hz	_			_		
Ph	7,34-7,49	m		_	—		—		
OCOCH ₃		—	_	2,30	s	—		_	

Tabela 19 - Dados de RMN de ¹H dos (\pm)-pterocarpanos <u>134</u>, <u>135</u> e <u>136</u>

	Tabela 20 - Dados de RMN de ¹³ C dos (±)-pterocarpanos <u>101</u> , <u>102</u> , <u>103</u> e <u>133</u>									
		$H_3CO_3 \xrightarrow{4} O_4$ $H_3CO^{-2} U_1^{11a} \xrightarrow{7} O_4$ $H_3CO^{-2} O_1$ $H_1 \xrightarrow{6a} O_4$ $H_2 \xrightarrow{7} O_4$ $H_1 \xrightarrow{7} O_4$ $H_2 \xrightarrow{7} O_4$ $H_3 \xrightarrow{7} O_4$ $H_1 \xrightarrow{7} O_4$ $H_2 \xrightarrow{7} O$	PhO 3 4 5 66 7 7 66 0 0 0 0 0 0 0 0 0 0	о - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Ph 0 4 5 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
		PTEROCARPANO (±) <u>103</u>	PTEROCARPANO (±) <u>133</u>	PTEROCARPANO (±) 102	PTEROCARPANO (±) <u>101</u>					
CARBONO	TIPO	δ	δ	δ	δ					
C-1	CH	111,53	130,88	107,91	112,08					
C-1a	С	110,96	115,00	112,14	111,36					
C-2	C ou CH	144,13	111,89	142,22	144,44					
C-3	С	150,64	158,98	148,61	149,65					
C-4	CH	101,66	107,37	99,58	103,54					
C-4a	С	147,50	153,62 ou 154,34	148,26	147,20					
C-6	C	77,24	*	76,64	77,66					
<u>C-6a</u>	CH	49,67	49,41	49,39	49,45					
0.7-	СН	111,18	110,92	110,90	110,95					
0-7a		119,26	118,91	118,92	119,03					
		139,90	139,78	139,71	139,72					
C 10		147,03	04.20		140,00					
C-102		153 77	153 62 ou 154 34	153 51	153 53					
C-11a	СН	79.19	78 52	79.1/	78.94					
Me	CH₂	20.08	20.13	19.80	19.84					
Me	CH ₃	27,71	27,46	27,46	27,46					
OMe	OCH ₃	56,32	56,12	56,12	56,09					
OMe	OCH ₃	56.32		, 	56.51					
OMe		56,32	_							
PhCH ₂	CH ₂	· · · · · · · · · · · · · · · · · · ·	_		70,72					
Ph	C e CH		119,60; 123,73; 129,79; 156,44		127,27; 127,85; 128,51; 136,66					
OCH ₂ O	CH ₂	_	—	101,13	—					

* Sinal não observado no espectro devido ao fato de que o mesmo, possivelmente, apresentava-se superposto ao sinal do solvente CDCl₃.

	Tabela 21 - Dados de RMN de ¹³ C dos (±)-pterocarpanos <u>134</u> , <u>135</u> e <u>136</u>								
		$\begin{array}{c} H_{3}CO, & 4 \\ H_{3}CO, & 3 \\ Ph & 0 \\ 1^{12} & 2 \\ 1 \\ 11a \\ 0 \\ 11 \\ 10a \\ 10 \\ 9 \\ OCH_{3} \end{array} OH$	H_3CO 4 4a 5 6 12 0 2 1 11a 6a 7 0 1 10a 8 0H 10 9 0CH ₃	H_3CO^{-2} 1 11 H_3CO^{-2} 1 11 H_3CO^{-2} $H_3CO^$					
		PTEROCARPANO (±) 134	PTEROCARPANO (±) 135	PTEROCARPANO (±) 136					
CARBONC	TIPO	δ	δ	δ					
C-1	СН	114,99	123,37	112,45					
C-1a	С	111,04	111,88	111,26					
C-2	С	143,25	134,18	143,36					
C-3	С	151,58	152,45	143,36					
C-4	CH/C	101,93	102,08	112,07					
C-4a	С	148,09	152,00	142,94					
C-6	С	76,74	*	76,47					
C-6a	СН	49,59	49,44	49,77					
C-7	СН	111,16	111,12	111,16					
C-7a	C	119,23	118,96	119,21					
C-8	C	139,90	139,93	139,88					
C-9	C	147,00	147,07	147,00					
C-10	СН	94,44	94,49	94,42					
C-10a	С	153,76	153,78	153,67					
C-11a	СН	79,05	78,47	79,30					
C-12	CH ₂ /CH	72,02	—	117,12					
C-13	СН	_	_	129,40					
C-14	С	_	_	76,76					
Me	CH₃	20,12	20,79	20,24					
Me	CH₃	27,68	20,79	27,35					
Me	CH₃	_	_	27,67					
Me	CH₃	_	_	28,27					
OMe	OCH ₃	56,06	56,06	56,27					
OMe	OCH ₃	56,27	56,28	56,83					
C=0	С	_	169,54	_					
OCOCH ₃	OCH ₃		27,64	_					

* Sinal não observado no espectro devido ao fato de que o mesmo, possivelmente, apresentava-se superposto ao sinal do solvente CDCl₃.

5.2.3 – Caracterização dos pterocarpanos <u>151</u>, <u>152</u>, <u>155</u>, <u>156</u>, <u>157</u>, <u>158</u>, <u>159</u>, <u>163</u>, <u>164</u>, <u>165</u> e <u>166</u>

Os pterocarpanos <u>151</u>, <u>152</u>, <u>155</u>, <u>156</u>, <u>157</u>, <u>158</u>, <u>159</u>, <u>163</u>, <u>164</u>, <u>165</u> e <u>166</u> foram identificados por intermédio dos espectros no infravermelho, espectros de RMN de ¹H, de ¹³C, subespectro DEPT 135 e comparação com os compostos de origem. Devido à similaridade existente entre todos esses pterocarpanos, serão apresentados seus dados de RMN de ¹H e ¹³C nas Tabelas 23 a 31 (p. 97 a 105). Desta forma, os espectros não serão incluídos nesse item, podendo ser observados no item Anexos e os dados físico químicos são apresentados na Tabela 22.

PTEROCARPANOS	ASPECTO FÍSICO	FAIXA DE FUSÃO (°C)
$(\pm)\underline{163}^{0}^{4} \underbrace{44}_{10} \underbrace{5}_{0} \underbrace{6}_{6}_{75} \underbrace{7}_{7}_{0} \underbrace{7}_{11} \underbrace{7}_{10} \underbrace{7}_{0} \underbrace{7}_{13} \underbrace{7}_{0} \underbrace{7}_{13} \underbrace{7}_{0} \underbrace{7}_{13} \underbrace{7}_{14} \underbrace{16}_{15} \underbrace{16}_{17} \underbrace{18}_{0} \underbrace{7}_{11} \underbrace{7}_{0} \underbrace{7}_{10} \underbrace{7}_{0} \underbrace{7}_{11} \underbrace{7}_{0} \underbrace{7}_{11} \underbrace{7}_{0} \underbrace{7}_{11} \underbrace{7}_{0} \underbrace{7}_{11} \underbrace{7}_{10} \underbrace{7}_{11} \underbrace{7}_{0} \underbrace{7}_{11} \underbrace{7}_{10} \underbrace{7}_{11} \underbrace{7}_{0} \underbrace{7}_{11} \underbrace{7}_{11} \underbrace{7}_{0} \underbrace{7}_{11} \underbrace{7}_{11} \underbrace{7}_{0} \underbrace{7}_{11} \underbrace{7}_{10} \underbrace{7}_{11} \underbrace{7}_{11} \underbrace{7}_{0} \underbrace{7}_{11} \underbrace{7}_{0} \underbrace{7}_{11} \underbrace{7}_{11} \underbrace{7}_{11} \underbrace{7}_{0} \underbrace{7}_{11} \underbrace{7}_{0} \underbrace{7}_{11} \underbrace{7}_{0} \underbrace{7}_{11} \underbrace{7}_{1$	sólido amarelado	122-124
(\pm) <u>165</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u>	sólido branco	110-112
$(\pm)157$	sólido marrom	101-102
$\begin{array}{c} Bn0 & 4 & 4a & 5 & 6a \\ H_{3}CO & 2 & 1 & 11a & 6a \\ \hline (\pm)\underline{164} & 0 & 10 & 9 \\ \hline 0 & 11 & 100 & 0 \\ \hline 0 & 0 & 13 & 15 & 17 & 0H \end{array}$	sólido marrom	100-102

Tabela 22 – Dados físico químicos dos pterocarpanos

H₃CC óleo viscoso (±)<u>166</u> amarelado sólido marrom 101-103 H₂C((±)<u>151</u> H₃CC sólido amarelo 141-142 H₃C0 (±)<u>152</u> sólido marrom 124-126 (±)<u>155</u> H₃CC sólido marrom 157-158 (±)<u>156</u> óleo viscoso H₃CC marrom (±)<u>159</u> sólido amarelado 149-151 (±)<u>158</u>

Conclusão Tabela 22.

	Та	bela 2	23 - Dados de RM	N de ¹ H dos (±)-pt	erocarpanos <u>157,</u> <u>16</u>	<u>3</u> e <u>165</u>		
$12 \begin{pmatrix} 0 & -\frac{4}{44a} & \frac{5}{6} & \frac{5}{6} \\ 12 & -\frac{2}{1} & \frac{11a}{11a} & \frac{6a}{7a} & \frac{7}{7} \\ 0 & -\frac{7}{11} & \frac{7}{10a} & \frac{7}{8} & 0 \\ 0 & -\frac{13}{13} & \frac{16}{15} & \frac{18}{17} & 0H \end{pmatrix}$					6 6a 7a 10a	9 0CH ₃ 14 15 16 18 17 1	$\begin{array}{c} \begin{array}{c} & 4 \\ 12 \\ & 2 \\ & 1 \end{array} \end{array} \xrightarrow{1}_{11a} \begin{array}{c} & 5 \\ & 6 \\ & & 6 \\ & & 11a \\ & & 0 \\ & & 11 \end{array}$	a a 10 9 00	-0, 14 13 16 18 N-N 2H ₃ 17 S 19 N
PTEROCARPANO (±) <u>163</u>			(±) <u>163</u>	PTEI	ROCAF	RPANO (±) <u>165</u>	PT	EROCAR	RPANO (±) <u>157</u>
Hidrog.	δ	М	J (Hz)	δ	М	J (Hz)	δ	М	J (Hz)
CH ₃	0,87	S	_	0,87	S	_	0,86	S	—
CH ₃	1,51	S	_	1,51	S	—	1,51	S	—
OCH ₃	3,83	S	_	3,83	S	_	3,81	S	—
H-1	6,94	S	_	6,94	s	_	6,93	S	—
H-4	6,44	S	_	6,45	S	—	6,44	S	—
H-7	6,85	S	_	6,85	S	—	6,84	S	—
H-10	6,50	S	_	6,50	S	—	6,49	S	—
H-6a	3,30	d	H-6a/H-11a = 7,6	3,30	d	H-6a/H-11a = 7,6	3,29	d	H-6a/H-11a = 7,6
H-11a	5,41	d	H-11a/H-6a = 7,6	5,41	d	H-11a/H-6a = 7,6	5,38	d	H-11a/H-6a = 7,6
H-12	5,92-5,94	m	_	5,92-5,94	m	_	5,92-5,93	m	—
H-13	3,96	t	H-13/H-14 =6,7	3,96	t	H-13/H-14 =6,6	3,95	t	H-13/H-14 =6,4
H-14 a H-17	1,58-1,86	m		1,83-1,87	m		1,52-1,84	m	—
H-18	3,66	t	H-18/H-17 = 6,3	3,21	t	H-18/H-17 = 6,9	3,42	t	H-18/H-17 = 7,2
Ph	_	—	_	_	_		7,57	S	—

Tabela 24 - Dados de RMN de ¹ H dos (<u>+</u>)-pterocarpanos <u>151</u> , <u>164</u> e <u>166</u>									
BnO 3 H ₃ CO 2	7 8-0 1 0CH ₃	3 14 15 16 17 OH	Bn0 4 4a 5 H ₃ CO 2 1 11a H ₁ CO 2 1 11a 0 1 1	6 6 7 0 7 0 7 8	DCH ₃ 14 0CH ₃ 17 0CH ₃ 17 0CH ₃ 0 0CH ₃	BnO 3 H ₃ CO	4a 5 66 011a 011 10a	$1 \sqrt{\frac{7a}{10}} \sqrt{\frac{7}{80}} \sqrt{\frac{14}{13}} \sqrt{\frac{15}{100}} \sqrt{\frac{14}{100}} \sqrt{\frac{15}{100}} $	
F	PTEROCARP	ANO (±) <u>164</u>	PTEF	ROCAF	RPANO (±) <u>166</u>	PT	EROCAF	RPANO (±) <u>151</u>
Hidrog.	δ	М	J (Hz)	δ	М	J (Hz)	δ	М	J (Hz)
CH ₃	0,86	S	_	0,86	S	_	0,86	s	—
CH ₃	1,51	S	—	1,50	S	_	1,49	S	—
CH ₃		_	_	_		_	1,71	s	—
CH ₃		_	_			_	1,77	s	—
OSO ₂ CH ₃		_	_	2,98	S	_	_		—
OCH ₃	3,82	S	_	3,81	S	_	3,83	s	—
OCH ₃	3,90	S	_	3,89	S	_	3,89	S	—
H-1	7,02	S	—	7,01	S	_	7,01	S	—
H-2	_		_	—	_	_	_	_	—
H-4	6,51	S	_	6,50	S	_	6,51	s	—
H-7	6,85	S	—	6,85	S	_	6,85	S	—
H-10	6,51	S	—	6,50	S	_	6,51	S	—
H-6a	3,30	d	H-6a/H-11a = 7,6	3,29	d	H-6a/H-11a = 7,6	3,29	d	H-6a/H-11a = 7,4
H-11a	5,45	d	H-11a/H-6a = 7,6	5,44	d	H-11a/H-6a = 7,6	_		—
O <u>CH</u> ₂Ph	5,12	sl	_	5,11	m	_	5,12	m	—
H-13	3,96	t	H-13/H-14 = 6,7	3,95	t	H-13/H-14 = 6,5	4,53	d	H-13/H-14 = 6,8
H-11a e H-14							5,42-5,54	m	
H-14 a H-17	1,51-1,86	m		1,52-1,82	m				
H-18	3,66	t	H-18/H-17 = 6,3	4,23	t	H-18/H-17 = 6,4			
Ph	7,26-7,45	m	—	7,32-7,45	m	_	7,32-7,41	m	—

$H_{3}CO_{4} \xrightarrow{4}_{4a} \xrightarrow{5}_{6a} \xrightarrow{7}_{6a} \xrightarrow{7}_{11 \ 10a} \xrightarrow{7a}_{10} \xrightarrow{7}_{9} \xrightarrow{7}_{0} \xrightarrow{7}_{11 \ 10a} \xrightarrow{7a}_{10} \xrightarrow{7}_{11 \ 10a} \xrightarrow{7a}_{10} \xrightarrow{7}_{10} \xrightarrow{7}_{11 \ 10a} \xrightarrow{7a}_{10} \xrightarrow{7}_{10} \xrightarrow{7}_{11 \ 10a} \xrightarrow{7a}_{10} \xrightarrow{7}_{10} \xrightarrow{7}_{11 \ 10a} \xrightarrow{10}_{10} \xrightarrow{10}_{11 \ 10a} \xrightarrow{10}_{10} \xrightarrow{8}_{10} \xrightarrow{10}_{11 \ 10a} \xrightarrow{10}_{10} \xrightarrow{10}_{11 \ 10a} \xrightarrow{10}_{10} \xrightarrow{8}_{10} \xrightarrow{10}_{11 \ 10a} \xrightarrow{10}_{10} \xrightarrow{10}_{11 \ 10a} \xrightarrow{10}_{11 \ 10a} \xrightarrow{10}_{10} \xrightarrow{10}_{11 \ 10a} \xrightarrow{10}_{11 \ 10}_{11 \ 10} \xrightarrow{10}_{11 \ 10}_{11 \ 10}_{11 \ 10} \xrightarrow{10}_{11 \ 10}_{11 \$									5 6 6 11a 0 11 10a 10 9 0CH ₃
	PTEROCAR	RPANC) (±) <u>152</u>	PTEF	ROCA	RPANO (±) <u>155</u>	PTE	ROCAF	RPANO (±) <u>156</u>
Hidrog.	δ	М	J (Hz)	δ	М	J (Hz)	δ	М	J (Hz)
CH ₃	0,80	S	—	0,87	S	—	0,88	S	—
CH ₃	1,36	S	—	1,49	S	—	1,50	S	—
OCH ₃	3,85	S	—	3,84	S	—	3,84	S	—
OCH ₃	3,86	S	—	—	S	—	3,84	S	—
OCH ₃	3,89	S	—	_	S	—	_		—
H-1	6,97	S	—	6,94	S	—	7,05	S	—
H-4	6,46	S		6,44	S	—	6,48	S	—
H-7	6,77	S		6,84	S	_	6,86	S	—
H-10	6,52	S		6,51	S	_	6,45	S	—
H-6a	3,24	d	H-6a/H-11a = 7,6	3,29	d	H-6a/H-11a = 7,6	3,28	d	H-6a/H-11a = 7,6
H-11a	5,43	d	H-11a/H-6a = 7,6	5,41	d	H-11a/H-6a = 7,6	5,39	d	H-11a/H-6a = 7,6
H-12	5,08	m	_	5,92-5,94	m	_		_	—
H-13			_	3,98	t	H-13/H-14 = 6,2			
H-14				2,06-2,16	m			_	—
H-15				2,86	t	H-15/H-14 =7,5			—
				7,23-7,27	m				
H-17-H-20			_	7,56	d	7,6	—	_	_
				8,47-8,51	m				
Ph	7,32-7,40	m			—	_	_		_

Tabela 26 - Dados de RMN de ¹ H dos (±)-pterocarpanos <u>158</u> e <u>159</u>							
H ₃ CO ²	4 4a 5 6 1 11a 6a 7a 11 10a 10	7 8 9 0CH ₃	14 15 17 19 0	H ₃ CO ⁻² 1 Ha	$\frac{\sqrt{6}}{100}$	-0, 14 13 16 18 14 15 17 N N N N	
	PTEROC	ARPANO	(±) <u>159</u>	PTE	ROCARF	PANO (±) <u>158</u>	
Hidrog.	δ	М	J (Hz)	δ	М	J (Hz)	
CH ₃	0,87	S	—	0,86	S	—	
CH ₃	1,51	S	—	1,50	S	—	
OCH ₃	3,82	S	_	3,81	S	—	
OCH ₃	3,89	S	—	3,87	S		
H-1	7,02	S	—	7,01	S	—	
H-4	6,51	S	_	6,51	S	_	
H-7	6,86	S	_	6,84	S	_	
H-10	6,51	S	_	6,51	S	—	
_	-	-	—	3,28	d	H-6a/H-11a = 7,6	
H-6a e H-18	3,28-3,35	m	—	-	-	—	
H-11a	5,44	d	H-11a/H-6a = 7,6	5,44	d	H-11a/H-6a = 7,6	
H-12	5,12	m	—	5,12-5,13	m	—	
H-13	3,97	t	H-13/H-14 = 6,7	3,95	t	H-13/H-14 = 6,4	
H-14 a H-17 e CH ₃	1,51-1,89	m	—	1,50-2,14	m	_	
H-18	_	_		4,66	t	H-18/H-17 = 7,0	
Ph	7,32-7,50	m	_	7,32-7,49	m	_	

		Tabela 27 - Dados de RMN de ¹³ C dos (±)-pterocarpanos <u>163</u> e <u>165</u>								
		$\begin{array}{c} 4 \\ 4 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$\begin{array}{c} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$							
		PTEROCARPANO (±) <u>163</u>	PTEROCARPANO (±) <u>165</u>							
CARBONO	TIPO	δ	δ							
C-1	СН	108,11	108,14							
C-1a	С	112,56	112,72							
C-2	С	142,89	142,84							
C-3	С	148,82	148,84							
C-4	СН	99,72	99,76							
C-4a	С	148,42	148,44							
C-6	C	76,81	76,83							
<u>C-6a</u>	CH	49,65	49,67							
<u> </u>	CH	112,29	112,30							
<u>C-7a</u>	0	118,24	118,27							
<u>C-8</u>	0	142,42	142,45							
0.40		151,20	151,28							
0.10	CH	95,46	95,47							
C-10a		155,02	155,12							
<u>C-11a</u>	CH	/9,48	79,52							
C-12	CH_2	101,32	101,35							
C-13	CH ₂	70,97	70,92							
Me	CH ₃	19,98	20,03							
Me	CH ₃	27,79	27,84							
OMe	OCH ₃	56,21	56,25							
C-14 a C-17	CH ₂	25,74; 26,02;29,62, 31,11 e 32,84	25,21;29,49; 30,47; 33,59;							
C-18	CH ₂	63,02	7,24							

	Tabela 28 - Dados de RMN de ¹³ C dos (±)-pterocarpanos 157 e 155							
	5 6 6 111a 0 11 10a 10	9 OCH ₃ 0CH ₃	$\begin{array}{c} & & & & & & & & & & \\ & & & & & & & & $					
		PTEROCARPANO (±) 157	PTEROCARPANO (±) 155					
CARBONO	TIPO	δ	δ					
C-1	CH	108,11	108,05					
C-1a	С	112,65	112,18					
C-2	С	142,84	142,56					
C-3	C	148,82	148,79					
C-4	СН	99,73	99,67					
C-4a	C	148,43	148,37					
<u>C-6</u>	C	76,81	76,68					
<u> </u>		49,65	49,55					
C-7		112,29	118.34					
C-8		1/0,20	1/0,34					
C-0		142,43	142,38					
C-10	СН	95.46	95.46					
C-10a	C C	155.09	155.38					
C-11a	СН	79.5	79.49					
C-12	CH ₂	101,32	101,26					
C-13	CH ₂	70,87	70,01					
C-14 e C-15	CH ₂	_	29,46; 30,91					
C-14 a C-18	CH ₂	25,70; 28,61; 29,24; 29,50; 33,40	_					
C-16	CH ₂ /C	_	137,04					
C-17 a C-19 e C-20	СН	_	123,44; 136,05; 147,58; 150,17					
C-19	С	155,09	_					
Me	CH ₃	20,01	19,95					
Me	CH ₃	27,81	27,72					
OCH ₃	OCH ₃	56,22	56,11					
Ph	CH	124,02; 129,95; 130,26	_					

Tabela 29 - Dados de RMN de ¹³C dos (±)-pterocarpanos 164 e 166 ОСН3 PTEROCARPANO (±) 164 PTEROCARPANO (±) 166 CARBONO TIPO δ δ 112,61 112,27 C-1 СН 112,27 C-1a С 112,3 144,62 C-2 С 144,69 C-3 С 149,88 149,80 СН C-4 103,77 103,71 147,32 C-4a С 147,39 C-6 С * 77,53 CH 49,75 49,68 C-6a C-7 СН 111,57 111,50 C-7a С 118,40 118,37 C-8 С 142,93 142,77 C-9 С 151,21 151,17 C-10 СН 95,44 95,48 С 155,10 C-10a 155,08 C-11a СН 79,33 79,27 C-12 CH_2 70,77 ou 70,87 70,95 70,77 ou 70,87 C-13 CH_2 70,95 CH_2 C-14 a C-17 25,75; 26,04; 29,63; 32,86 25,40; 25,66; 29,20; 29,44 C-18 CH_2 63,05 70,12 Me CH_3 20,06 20,03 CH_3 27,83 Me 27,79 OSO₂CH₃ CH₃ _ 37,45 OCH₃ OCH₃ 56,24 56,17 56,73 OCH₃ OCH₃ 56,67 C-19 С 133,88 133,81

Capítulo 5: Caracterização dos Compostos Sintetizados

* Sinal não observado no espectro devido ao fato de que o mesmo, possivelmente, apresentava-se superposto ao sinal do solvente CDCl₃.

Tabela 30 - Dados de RMN de ¹³ C dos (±)-pterocarpanos 151, 152 e 156						
4' 5'	3' 2' 6' 1' F	4_{3} CO 2_{1} 1_{11a} 5_{6} 6_{6} 7_{a}	$H_{3}CO_{4} = \frac{4}{10} + \frac{5}{6a} + \frac{7a}{10} + 7a$	$H_{3}CO_{4} + 4a_{4}O_{6} + 6a_{6}OH_{11100} + 6a_{10} + 9OH_{3}OH_{10} + 9OH_{3}OH_{10} + 9OH_{3}OH_{10} + 9OH_{3}OH_{10} + 9OH_{10}OH_{10} + 9OH_{10}OH_$		
		PTEROCARPANO (±) <u>151</u>	PTEROCARPANO (±) <u>152</u>	PTEROCARPANO (±) 156		
CARBONO	TIPO	δ	δ	δ		
C-1	CH	112,23	114,61	114,40		
C-1a	С	111,58	110,86	112,18		
C-2	С	144,68	144,12	140,35		
C-3	С	149,85	150,64	146,75		
C-4	CH	103,76	101,63	100,90		
C-4a	С	147,38	147,46	148,03		
C-6	С	*	*	*		
<u>C-6a</u>	CH	49,72	49,57	49,65		
<u> </u>	CH	113,16	111,54	111,16		
<u>C-7a</u>	C	118,19	118,34	119,16		
<u>C-8</u>	C	142,47	142,08	139,80		
0.40		151,34	151,69	147,01		
<u>C-10</u>	CH	95,27	95,42	94,48		
C-10a	C	153,13	155,59	153,81		
C-11a	СН	79,28	79,34	78,88		
C-12	CH_2	70,91	73,22	_		
C-13	CH ₂	67,56	_	_		
C-14	СН	120,59	—	—		
C-15	С	137,75	_	_		
2 Me	CH_3	20,01; 27,69	19,96; 27,59	20,07; 27,62		
C-16 e C-17	CH_3	18,32; 25,98	-	_		
2 OMe	OCH_3	56,13; 56,69	56,03; 56,22	56,01; 56,23		
OMe	OCH ₃	_	56,46			
C-1'	С	136,86	137,62	_		
Ph	СН	127,44; 128,03; 128,70	127,95; 128,03; 128,62	_		

* Sinal não observado no espectro devido ao fato de que o mesmo, possivelmente, apresentava-se superposto ao sinal do solvente CDCl₃.

Tabela 31 - Dados de RMN de ¹³ C dos (±)-pterocarpanos <u>158</u> e <u>159</u>							
Ph	12 3 H ₃ CO 2	$\begin{array}{c} 1 \\ 4a \\ 1 \\ 1 \\ 10 \\ 10 \\ 10 \\ 10 \\ 9 \\ 0 \\ CH_3 \\ 15 \\ 17 \\ 10 \\ 17 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	Ph 4^{4}_{12} 4^{4}_{3} $6^{5}_{6}_{6}_{6}_{11}$ $11a^{7a}_{10}$ 8^{7a}_{13} 14^{16}_{15} 18^{19}_{17} Ph				
		PTEROCARPANO (±) 159	PTEROCARPANO (±) 158				
CARBONO	TIPO	δ	δ				
C-1	СН	112,67	112,84				
C-1a	С	112,29	112,36				
C-2	С	144,63	144,72				
C-3	С	149,82	149,91				
C-4	CH	103,72	103,81				
C-4a	C	147,36	147,43				
C-6	C	76,93	76,32				
<u>с-ва</u>		49,68	49,/4				
		111,00	119.45				
C-R	C C	1/2 82	1/0,40				
C-0	0	151 10	151 30				
C-10	СН	95.46	95.51				
C-10a	C	155.09	155.23				
C-11a	CH	79,29	82,10				
C-12	CH ₂	70,85	79,86 ou 70,96				
C-13	CH ₂	70,85	79,86 ou 70,96				
2 Me	CH ₃	20,02; 27,79	20,07; 27,83				
2 OCH ₃	OCH ₃	56,18; 56,68	56,22; 56,74				
C-14 a C-18	CH ₂	25,65; 29,34; 29,46; 29,83; 32,64	-				
C-14 a C-17	CH ₂	-	25,63; 26,37; 29,44; 29,85				
C-18	CH ₂	_	53,26				
C-19	С	_	165,26				
C-19 e C-20	С	164,68 e 165,80	_				
Ph	CeCH	123,78; 126,76; 127,44; 128,66; 129,16; 131,74; 136,83	126,98; 127,49; 128,73; 129,07; 130,42; 136,88				

6 – Parte Experimental 6.1 - Materiais e métodos

Para determinação das faixas de fusão foi utilizado o aparelho *Mettler FP80HT Central Processor* acoplado a microscópio Olympos *CH-2 Mettler FP82HT Hot Stage*, e não foram corrigidas (Departamento de Química, UFMG).

Os espectros na região do IV foram registrados em aparelho Perkin-Elmer *Spectrum One SP-IR Spectrometer* (Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, UFMG), sendo as amostras inseridas diretamente no aparelho. Para a atribuição de bandas no infravermelho utilizaram-se como referência Silverstein e Webster (2000).

Os espectros de RMN de ¹H e de RMN de ¹³C foram registrados nos espectrômetros BRUKER *AVANCE* DRX/400 e DPX/200 (Departamento de Química, UFMG). Utilizou-se como referência interna o tetrametilsilano.

Para as reações conduzidas com aquecimento usando irradiação por micro-ondas utilizou-se um reator de micro-ondas e um aparelho de micro-ondas doméstico adaptado. O reator de micro-ondas utilizado foi do tipo CEM Discover. O aparelho de micro-ondas doméstico utilizado foi do modelo Panasonic Junior Smart NNS53BH, que foi adaptado para uso em laboratório, conforme o trabalho de Silva e colaboradores (SILVA *et al.*, 2006).

Para CCDS foi utilizada sílica gel 60 G Merck, com espessura de 0,25 mm sobre placas de vidro. As purificações em colunas cromatográficas foram realizadas com sílica gel 60 Merck (tamanho de partícula 0,063-0,200 mm – 70-230 mesh ASTM).

Os espectros de massas de alta resolução ESI/HRMS foram realizados utilizando-se o aparelho Bruker Daltonics MicroTOF instrument com ESI (Central Analítica, USP).

6.1.1 – Purificação e secagem de solventes e reagentes (PERRIN *et al.*, 1980)

• Acetona anidra

Adicionou-se permanganato de potássio à acetona, sob refluxo, até que a mesma permanecesse com coloração violeta. Deixou-se a mistura sob refluxo por mais 6 horas, quando então esta foi destilada e o solvente foi recolhido em um balão contendo carbonato de potássio calcinado.

• Diclorometano e Tolueno

Diclorometano e tolueno foram destilados na presença de CaH₂.

• Tetra-hidrofurano anidro

Tetra-hidrofurano foi previamente secado com CaH₂ e destilado na presença de sódio metálico sob atmosfera de nitrogênio, utilizando benzofenona como indicador.

• Cloreto de zinco

Cloreto de zinco foi secado antes do uso por aquecimento em forno de microondas doméstico.

6.1.2 – "Elaboração usual"

O termo "elaboração usual" quando foi utilizado significa que: as fases orgânicas foram reunidas, lavadas com água destilada e em seguida foram colocadas em contato com sulfato de sódio anidro por cerca de 20 minutos, sendo filtradas e o solvente destilado em evaporador rotatório.

6.1.3 – Secagem da vidraria

As seringas, agulhas e vidrarias utilizadas nas reações de litiação eram lavadas previamente várias vezes com água destilada e acetona, secadas em estufa a 100 °C por 24 horas e resfriadas em dessecador com CaCl₂.

6.1.4 – Organolítio

O n-butil-lítio (n-BuLi, solução em ciclo-hexano) foi adquirido da Aldrich Chemical Co. A solução do organolítio foi titulada com álcool 2,5dimetoxibenzílico (WINKLE *et al.*, 1980).

Titulação do n-BuLi

Pesaram-se 75 mg (0,446 mmol) do álcool 2,5-dimetoxibenzílico em um balão de 50 mL. Adicionaram-se, com uma seringa, 5 mL de THF anidro. A solução foi mantida sob atmosfera de N₂ com agitação. Com uma seringa de 1 mL adicionou-se n-butil-lítio, até a solução tornar-se avermelhada. Registrou-se o volume gasto na titulação para determinação da concentração do n-butil-lítio.

6.1.5 - Ácido *meta*-cloroperbenzóico

O ácido *meta*-cloroperbenzóico (AMCPB) foi adquirido da Aldrich Chemical Co.

Titulação do AMCPB (SILVA,1998)

A 0,1 g de ácido *m*-cloroperbenzóico (AMCPB) adicionaram-se 50 mL de água destilada, 1,0 g de iodeto de potássio, 5,0 mL de clorofórmio e 5,0 mL de ácido acético glacial. Titulou-se a mistura com solução aquosa de tiossulfato de sódio 0,1 mol.L⁻¹. Cada 1,0 mL de solução 0,1 mol.L⁻¹ de tiossulfato de sódio equivale a 0,0086285 g de AMCPB.

6.1.6 – Banho e baixa temperatura

Para o banho a uma temperatura de -78°C foi utilizado uma mistura de N_2 líquido e acetato de t-butila.

6.1.7 – Reveladores

lodo sublimado

A cromatoplaca era colocada em uma cuba contendo iodo.

Solução de ácido sulfúrico

Para revelação borrifou-se ácido sulfúrico 15% em etanol. Aqueceram-se as placas em uma estufa a 100°C.

6.1.8 – Adaptação do forno micro-ondas doméstico Panasonic Junior Smart NNS53BH

Foi confeccionado um tubo de vidro PyrexTM, que foi adaptado através de uma perfuração feita na parte superior do forno, com diâmetro menor que a metade do comprimento de onda da radiação ($\lambda/2$ – menor que 6,0 cm) para evitar vazamento de radiação. A este tubo adaptou-se, assim, um condensador de refluxo. Foi confeccionado também um tubo de vidro em formato de U o qual também foi adaptado por duas perfurações feitas na parte posterior do forno, com diâmetros também menores que a metade do comprimento de onda da radiação, no qual se fez passar água para captação das micro-ondas excedentes. Para realização das reações o giro do prato do micro-ondas foi desativado. Na parte superior do forno adaptou-se ainda um cooler para resfriamento (SALMORIA *et al.*, 1997; PECORARO *et al.*, 1997; SILVA *et al.*, 2006; ARDON *et al.*, 2002).

6.2 – Procedimentos experimentais: síntese de (±) pterocarpanos

6.2.1 – Reação de benzilação da isovanilina <u>137</u>. Adaptação da metodologia descrita por Mingzhang Gao e colaboradores (MINGZHANG GAO *et al.*, 2006).

Em um balão de 125 mL adicionaram-se 1,5 g (9,9 mmol) de isovanilina **137** e 1.5 g (10.9 mmol) de carbonato de potássio, que foram misturados a 40 mL de acetona anidra. Em seguida, adicionou-se 1,31 mL (10,9 mmol) de brometo de benzila e a mistura foi refluxada durante 20 horas. O desenvolvimento da reação foi acompanhado por CCDS (eluente: hexano/acetato de etila, 7:3, revelador: iodo). Após o término da reação o solvente foi removido sob pressão reduzida em evaporador rotatório. Diluiu-se a mistura com com 30 mL de diclorometano e realizou-se a extração em funil de separação, sendo a mistura lavada com H₂O, com solução saturada de NaCI e finalmente secada com Na₂SO₄ anidro e filtrada. O solvente foi removido em evaporador rotatório e o resíduo purificado em cromatografia por coluna de sílica (CCS) utilizando como eluente n-hexano/acetato de etila 8:2, fornecendo 1,42g (6,3 mmol) do composto **139**.

Rendimento: 63 % (1,42 g, 6,3 mmol) Aspecto físico: sólido branco FM: $C_{15}H_{14}O_3$ MM: 242,00 g.mol⁻¹ Ponto de fusão: 57-60° C (Literatura: 61-64 °C. ALDRISH, 2001). IV (\bar{v} , cm⁻¹) (Figura 16, Anexo 1): 2918, 2848, 1529, 1466, 1395, 1340, 1281, 1196, 1145, 1022, 998, 922, 787, 768, 728. **RMN de** ¹**H** (200 MHz, CDCl₃) δ (ppm) (Figura 14, Anexo 1): 3,94 (s, 3H, OCH₃); 5,17 (s, 2H, OCH₂); 6,97 (d, 1H, H-5, *J*_{H-5-H6}= 8,6 Hz); 7,33-7,47 (m, 7H); 9,80 (s, 1H, C<u>H</u>O).

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 15, Anexo 1): 56,07 (OCH₃); 70,71 (OCH₂); 110,67 (CH); 111,20 (CH); 126,82 (CH); 127,40 (CH); 128,03 (CH); 128,55 (2CH); 129,86 (CH); 136,19 (C); 148,58 (C); 154,93 (C); 190,77 (<u>C</u>HO).

6.2.2 – Reação de benzilação da vanilina <u>138</u>. Adaptação da metodologia descrita por Mingzhang Gao e colaboradores (MINGZHANG GAO *et al.*, 2006).

Em um balão de 125 mL adicionaram-se 1,5 g (9,9 mmol) de vanilina (138) e 1,5 g (10,9 mmol) de carbonato de potássio, que foram misturados a 40 mL de acetona anidra. Em seguida, adicionou-se 1,31 mL (10,9 mmol) de brometo de benzila e a mistura foi refluxada durante 20 horas. O desenvolvimento da reação foi acompanhado por CCDS (eluente: hexano/acetato de etila, 7:3, revelador: iodo). Após o término da reação o solvente foi removido sob pressão reduzida em evaporador rotatório. Diluiu-se a mistura com diclorometano e realizou-se a extração em funil de separação, sendo a mistura lavada com H₂O, com solução saturada de NaCl e secada com Na₂SO₄ anidro e filtrada. O solvente foi removido em evaporador rotatório e o resíduo foi purificado em cromatografia em coluna de sílica (CCS) utilizando como eluente n-hexano 8:2, fornecendo 1,79g (7,9 mmol) do composto 140.

Rendimento: 80 % (1,79 g, 7,9 mmol)

Aspecto físico: sólido branco

FM: $C_{15}H_{14}O_3$

MM: 242,00 g.mol⁻¹

Ponto de fusão: 62-67 °C (Literatura: 74-75°C. CRUZ & TAMARIZ, 2005).

IV (*v̄*, cm⁻¹) (Figura 19, Anexo 1): 2950, 2840, 1671, 1582, 1504, 1466, 1455, 1423, 1384, 1347, 1256, 1235, 1158, 1131, 1030, 988, 918, 865, 855, 811, 746, 728, 697, 656.

RMN de ¹**H** (200 MHz, CDCl₃) *δ* (ppm) (Figura 17, Anexo 1): 3,95 (s, 3H, OCH₃); 5,25 (s, 2H, OCH₂); 6,99 (d, 1H, H-5, *J*_{H-5-H6}= 8,2 Hz); 7,36-7,43 (m, 7H); 9,84 (s, 1H, C<u>H</u>O).

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 18, Anexo 1): 56,20 (OCH₃); 71,01 (OCH₂); 109,50 (CH); 112,54 (CH); 126,74 (CH); 127,37 (2CH); 128,36 (CH); 128,88 (2CH); 130,44 (CH); 136,16 (C); 150,22 (C); 153,74 (C); 191,06 (<u>C</u>HO).

6.2.3 – Obtenção dos fenóis <u>93</u>, <u>94</u>, <u>95</u>, <u>125</u>, <u>126</u> e <u>127</u> por reação de oxidação de Baeyer-Villiger (BARRERO *et al.*, 1998)

1^a etapa

Em um balão de 250 mL contendo 13,3 mmol do aldeído correspondente (<u>139</u>, <u>140</u>, <u>141</u>, <u>142</u>, <u>143</u> ou <u>144</u>) dissolvido em 140 mL de diclorometano anidro,

adicionaram-se 8,0 g (20,8 mmol) do ácido *meta*-cloro-perbenzóico (45% m/v). Agitou-se a mistura à temperatura ambiente durante 12 horas adquirindo essa uma coloração amarelada. O desenvolvimento da reação foi acompanhado por CCDS (eluente: hexano/acetato de etila 7:3, atmosfera de amônia; revelador: iodo). Após o término da reação diluiu-se a mistura com 30 mL de diclorometano e realizou-se a extração em funil de separação, sendo a mistura lavada com solução de Na₂CO₃ (3 X 30mL) e com solução saturada de NaCl (3 X 5mL). A fase orgânica foi então secada com Na₂SO₄ e filtrada. O solvente foi removido em evaporador rotatório. Os resíduos com os respectivos intermediários (<u>145-</u> <u>150</u>) obtidos foram usados diretamente na etapa seguinte.

2^a etapa

Em um balão de 100 mL dissolveu-se, separadamente, cada um dos intermediários (**145-150**) obtidos na etapa anterior, em 20 mL de metanol. Em seguida, adicionaram-se 5,0 mL de solução de NaOH 6 mol.L⁻¹. Agitou-se a mistura à temperatura ambiente por 5 minutos, adquirindo esta uma coloração marrom escuro. Diluiu-se a mistura da reação com 10 mL de diclorometano e adicionaram-se 30 mL de água destilada. Realizou-se a extração em funil de separação. A fase orgânica foi lavada várias vezes com água destilada, pois como o meio estava básico, o fenol encontrava-se na forma de fenóxido. A fase aquosa recolhida foi acidificada com solução de HCI 10% até pH=1. Realizou-se uma nova extração com 100 mL de diclorometano. Lavou-se a solução orgânica com água destilada (2 x40 mL) a fim de elevar o seu pH para próximo de seis. Lavou-se a fase orgânica com uma solução de saturada de bicarbonato de sódio a fim de eliminar resíduos de ácidos. Finalmente, a fase orgânica foi secada com Na₂S0₄ e filtrada. O solvente foi removido sob vácuo em evaporador rotatório e o produto bruto obtido, purificado em CCS.

3,4- Metilenodioxifenol (93)

Rendimento: 90 % (1,66 g, 12,03 mmol) **Aspecto físico:** sólido branco **FM:** $C_7H_6O_3$ **MM:** 138,00 g.mol⁻¹ **Ponto de fusão:** 62,0-66,0 °C (Literatura: 65 °C. EYRE & SPOTTISWOODE, 1965). IV (*v̄*, cm⁻¹) (Figura 1, p.70): 3437, 3074, 2934, 2839, 1685, 1505, 1483, 1430, 1301, 1290, 1217, 1129, 1020, 949, 851, 807, 743, 718.

RMN de ¹**H** (200 MHz, CDCl₃) δ (ppm) (Figura 2, p.71): Os dados encontram-se na Tabela 14, p.75.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 3, p.72): Os dados encontram-se na Tabela 14, p.75.

3-O-Benziloxi-4-metoxifenol (94)

Rendimento: 78% (1,33 g, 5,80 mmol) Aspecto físico: sólido alaranjado FM: $C_{14}H_{14}O_3$ MM: 230,0 g.mol⁻¹ Ponto de fusão: 82-83 °C (Literatura: 86 °C. MCMURRY & THENG, 1960).

IV (*v̄*, cm⁻¹) (Figura 22, Anexo 1): 3501, 3009, 2940, 1598, 1511, 1469, 1448, 1437, 1386, 1348, 1294, 1272, 1237, 1218, 1194, 1185, 1160, 1121, 1006, 968, 922, 829, 758, 725, 703.

RMN de ¹**H** (200 MHz, CDCl₃) δ (ppm) (Figura 20, Anexo 1): Os dados encontram-se na Tabela 14, p.75.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 21, Anexo 1): Os dados encontram-se na Tabela 14, p.75.

3,4-Dimetoxifenol (95)

Rendimento: 76% (1,42 g, 9,20 mmol) Aspecto físico: sólido rosado FM: $C_8H_{10}O_3$ MM: 154,20 g.mol⁻¹ Ponto de fusão: 77-81 °C (Literatura: 80-82 °C. TUMMATORN *et al.*, 2007). IV (v̄, cm⁻¹) (Figura 25, Anexo 1): 3419, 3003, 2964, 2935, 2838, 1608, 1506, 1477, 1459, 1434, 1289, 1221, 1185, 1150, 1126, 1022, 948, 857, 839, 804, 762, 717.

RMN de ¹H (200 MHz, CDCl₃) δ (ppm) (Figura 23, Anexo 1): Os dados encontram-se na Tabela 14, p.75.

RMN de ¹³**C** (50 MHz, CDCl₃) (ppm) (Figura 24, Anexo 1): Os dados encontramse na Tabela 14, p.75.

3-Fenoxifenol (125)

Rendimento: 38% (720 mg, 3,90 mmol) Aspecto físico: sólido branco FM: $C_{12}H_{10}O_2$ MM: 186,21 g.mol⁻¹ Ponto de fusão: 102-106 °C (Literatura: 105 °C. SCHWARZ & KUCHEN, 1953).

IV (*v̄*, cm⁻¹) (Figura 28, Anexo 1): 3355, 3064, 1697, 1586, 1480, 1275, 1209, 1163, 1130, 1071, 1022, 1000, 960, 849, 755, 684.

RMN de ¹**H** (200 MHz, CDCl₃) δ (ppm) (Figura 26, Anexo 1): Os dados encontram-se na Tabela 14, p.75.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 27, Anexo 1): Os dados encontram-se na Tabela 14, p.75.

3-Metoxi-4-O-benziloxifenol (127)

Rendimento: 97% (2,95 g, 12,90 mmol) Aspecto físico: sólido amarelado FM: $C_{14}H_{14}O_3$ MM: 230,00 g.mol⁻¹ Ponto de fusão: 85-86 °C (Literatura: 85-86 °C. CRUZ & TAMARIZ, 2005). IV (v̄, cm⁻¹) (Figura 31, Anexo 1): 3346, 3086, 3033, 2939, 2875, 1603, 1510, 1469, 1446, 1387, 1278, 1250, 1213, 1193, 1165, 1120, 1081, 1028, 999, 991, 950, 920, 857, 830, 804, 793, 749, 722, 698.

RMN de ¹**H** (200 MHz, CDCl₃) δ (ppm) (Figura 29, Anexo 1): Os dados encontram-se na Tabela 14, p.75.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 30, Anexo 1): Os dados encontram-se na Tabela 14, p.75.

3-Hidroxi-4-metoxifenol (126)

Rendimento: 100% (1,86 g, 13,30 mmol)
Aspecto físico: sólido amarelado
FM: C₇H₈O₃
MM: 140,10 g.mol⁻¹
Ponto de fusão: 67-68 °C (Literatura: 72 °C. HEAD & ROBERTSON, 1931).

IV ($\bar{\nu}$, cm⁻¹) (Figura 34, Anexo 1): 3368, 2923, 2852, 1720, 1606, 1508, 1465, 1443, 1376, 1292, 1209, 1145, 1116, 1072, 1024,964, 841, 792, 760, 726. **RMN de ¹H** (200 MHz, CDCl₃) δ (ppm) (Figura 32, Anexo 1): Os dados encontram-se na Tabela 14, p.75.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 33, Anexo 1): Os dados encontram-se na Tabela 14, p.75.

6.2.4 - Obtenção de 2H-cromenos (CHAUDER et al., 1998)

1ª etapa: Preparação do ácido fenil borônico 172

A uma solução de bromobenzeno <u>171</u> (0,5 mL; 5,0 mmol) em THF (15 mL) a -78°C, sob atmosfera de nitrogênio, adici onaram-se, com o auxílio de uma seringa, 8,40 mL (6,0 mmol) de n-BuLi (0,714 mol.L⁻¹). A mistura foi agitada a -78°C durante 5 minutos. Em seguida, adiciona ram-se 2,40 mL (20,0 mmol) de borato de trimetila e a mistura foi agitada à temperatura ambiente por 12 horas. O desenvolvimento da reação foi acompanhado por CCDS (eluente: hexano/acetato de etila 7:3; revelador: iodo sublimado). A reação foi interrompida pela adição de 10 mL de solução saturada de NH₄CI. À mistura com aspecto gelatinoso adicionou-se HCI 2 mol.L⁻¹ até pH 5-6. O produto foi extraído com diclorometano em funil de separação. A fase orgânica foi secada com Na₂S0₄ e filtrada. O solvente foi removido em evaporador rotatório e o produto bruto secado em bomba de vácuo. Obteve-se um sólido branco que foi utilizado, sem purificação prévia, nas reações de obtenção de 2*H*-cromenos.

2ª Etapa: Obtenção dos 2H-cromenos 97, 98, 99, 129, 130, 131 e 132.

A reação foi feita sob atmosfera de nitrogênio e utilizando-se a montagem Dean-Stark. Em um balão tritubulado de 500 mL colocaram-se 3,6 mmol de fenol (93, 94, 95, 125, 127, 128 e 126) e 30 mL de tolueno anidro. A mistura de 5,0 mmol do ácido borônico em 10 mL de tolueno foi adicionada ao balão tritubulado. Em seguida, adicionaram-se, 0,33 mL (3,6 mmol) da 3,3dimetilacroleína, 17 mL de ácido acético glacial e mais 90 mL de tolueno anidro. O desenvolvimento da reação foi acompanhado por CCDS (eluente: hexano/acetato de etila 8:2; revelador: iodo sublimado). Após 5 horas de reação, sob refluxo, constatou-se o fim da reação de obtenção do cromeno 98. Já para os demais cromenos o final das reações foi constatado com até 24 horas. Após resfriamento, o solvente foi removido por destilação sob pressão reduzida e o produto extraído em funil de separação utilizando-se diclorometano (3 X 20mL). Lavou-se a fase orgânica com aproximadamente 20 mL de solução de NaHCO₃ e com 10 mL de solução saturada de NaCI, sendo a mesma secada com Na₂SO₄ e filtrada. O solvente foi removido sob vácuo e o produto purificado por CCS (n-hexano/acetato de etila 95:5).

2,2-Dimetil-6,7-metilenodioxi-2H-1-benzopirano (98)

Rendimento: 60% (441,0 mg, 2,2 mmol) Aspecto físico: sólido amarelo FM: $C_{12}H_{12}O_3$ MM: 204,00 g.mol⁻¹ Ponto de fusão: 78-81 °C (Literatura: 82-84 °C. CHEN *et al.*, 2005).

IV (v̄, cm⁻¹) (Figura 4, p.76): 3042, 2974, 2890, 1605, 1500, 1479, 1372, 1360, 1263, 1252, 1150, 1109, 1036, 937, 903, 856, 755, 708, 669.

RMN de ¹**H** (200 MHz, CDCl₃) δ (ppm) (Figura 5, p.77): Os dados encontram-se na Tabela 16, p.80.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 6, p.78): Os dados encontram-se na Tabela 16, p.80.

7-O-Benziloxi-2,2-dimetil-6-metoxi-2H-1-benzopirano (97)

Rendimento: 79% (510,0 mg, 1,72 mmol) Aspecto físico: sólido amarelo FM: $C_{19}H_{20}O_3$ MM: 296,00 g.mol⁻¹ Ponto de fusão: 78-80 °C

IV ($\bar{\nu}$, cm⁻¹) (Figura 37, Anexo 1): 3051, 2973, 2936, 2877, 1608, 1500, 1456, 1420, 1378, 1360, 1339, 1271, 1262, 1244, 1208, 1191, 1181, 1160, 1122, 1103, 1025, 998, 956, 947, 917, 901, 855, 835, 815, 770, 741, 695, 678. **RMN de ¹H** (200 MHz, CDCl₃) δ (ppm) (Figura 35, Anexo 1): Os dados

encontram-se na Tabela 16, p.80.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 36, Anexo 1): Os dados encontram-se na Tabela 16, p.80.

2,2-Dimetil-6,7-dimetoxi-2H-1-benzopirano (99)

Rendimento: 54% (385,0 mg, 1,8 mmol) **Aspecto físico:** óleo amarelo **FM:** $C_{13}H_{16}O_3$ **MM:** 220,00 g.mol⁻¹

IV ($\bar{\upsilon}$, cm⁻¹) (Figura 40, Anexo 1): 2973, 2935, 2837, 1614, 1578, 1504, 1463, 1442, 1420, 1382, 1361, 1278, 1262, 1245, 1215, 1194, 1163, 1127, 1107, 1029, 1008, 945, 903, 853, 833, 814, 752, 728, 680.

RMN de ¹**H** (200 MHz, CDCl₃) δ (ppm) (Figura 38, Anexo 1): Os dados encontram-se na Tabela 16, p.80.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 39, Anexo 1): Os dados encontram-se na Tabela 16, p.80.

2,2-Dimetil-7-fenoxi-2H-1-benzopirano (129)

Rendimento: 52 % (350,0 mg, 1,4 mmol) **Aspecto físico:** óleo amarelo **FM:** $C_{17}H_{16}O_2$ **MM:** 251,31 g.mol⁻¹

IV (v̄, cm⁻¹) (Figura 43, Anexo 1): 3039, 2975, 2926, 1638, 1611, 1589, 1571, 1484, 1429, 1388, 1374, 1361, 1311, 1274, 1258, 1239, 1209, 1163, 1145, 1112, 1070, 1022, 990, 943, 892, 851, 810, 772, 749, 735, 691.

RMN de ¹**H** (200 MHz, CDCl₃) δ (ppm) (Figura 41, Anexo 1): Os dados encontram-se na Tabela 17, p.81.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 42, Anexo 1): Os dados encontram-se na Tabela 17, p.81.

6-O-Benziloxi-2,2-dimetil-7-metoxi-2H-1-benzopirano (130)

IV (v̄, cm⁻¹) (Figura 46, Anexo 1): 3034, 2972, 2928, 2869, 1686, 1633, 1611, 1574, 1513, 1502, 1455, 1447, 1426, 1384, 1359, 1341, 1275, 1263, 1245, 1213, 1195, 1180, 1162, 1133, 1103, 1016, 1003, 955, 943, 928, 920, 905, 852, 832, 818, 808, 746, 718, 696, 675, 667.

RMN de ¹H (200 MHz, CDCl₃) δ (ppm) (Figura 44, Anexo 1): Os dados encontram-se na Tabela 17, p.81.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 45, Anexo 1): Os dados encontram-se na Tabela 17, p.81.

6-Acetil-2,2-dimetil-7-metoxi-2H-1-benzopirano (131)

Rendimento: 81% (724 mg, 2,91 mmol) Aspecto físico: sólido amorfo amarelo FM: $C_{14}H_{16}O_4$ MM: 248,27 g.mol⁻¹ Ponto de fusão: 87-89 °C

IV (v̄, cm⁻¹) (Figura 49, Anexo 1): 3411, 3036, 2975, 2933, 2852, 1751, 1620, 1577, 1500, 1459, 1443, 1382, 1357, 1289, 1258, 1215, 1192, 1157, 1105, 1010, 946, 925, 908, 898, 869, 840, 813, 750, 708, 698, 676 (Esse infravermelho corresponde a esse produto misturado a seu produto hidrolisado).

RMN de ¹**H** (200 MHz, CDCl₃) δ (ppm) (Figura 47, Anexo 1): Os dados encontram-se na Tabela 17, p.81.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 48, Anexo 1): Os dados encontram-se na Tabela 17, p.81.

2,2,8,8-Tetrametil-6-metoxi-2H,8H-benzo[1,2-b;3,4b']dipirano (132)

Rendimento: 29% (140,0 mg, 0,51 mmol) Aspecto físico: óleo viscoso amarelo FM: $C_{17}H_{20}O_3$ MM: 272,00 g.mol⁻¹

IV (v̄, cm⁻¹) (Figura 52, Anexo 1): 2974, 2884, 1618, 1604, 1497, 1478, 1464, 1447, 1385, 1373, 1357, 1256, 1213, 1199, 1155, 1111, 1070, 1038, 959, 940, 925, 905, 859, 848, 812, 774, 758, 711, 697, 671.

RMN de ¹H (200 MHz, CDCl₃) δ (ppm) (Figura 50, Anexo 1): Os dados encontram-se na Tabela 17, p.81.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 51, Anexo 1): Os dados encontram-se na Tabela 17, p.81.

6.2.5 - Obtenção de (±) pterocarpanos por reação de cicloadição (3+2) (SUBBURAJ *et al.*, 1996)

Agitou-se uma solução de 0,48 mmol de 2-metoxibenzoquinona e 0,56 mmol de cloreto de zinco anidro fundido em 1 mL de diclorometano anidro por 15 minutos, e, então, adicionou-se 0,48 mmol de 2*H*-cromeno (<u>98</u>, <u>97</u>, <u>99</u>, <u>129</u>, <u>130</u>, <u>131</u> ou <u>132</u>) dissolvido em 2,0 mL de diclorometano anidro. O desenvolvimento da reação foi monitorado por CCDS (eluente: hexano/acetato de etila 7:3/revelador: anisaldeído/ácido sulfúrico) sendo deixada sob agitação, à temperatura ambiente, de 20 a 48 horas. A mistura de reação foi transferida para um funil de separação e o produto extraído utilizando-se diclorometano (3 X 15mL). Lavou-se a fase orgânica com água e solução saturada de NaCI. A fase orgânica foi secada com Na₂SO₄ e filtrada. O solvente foi removido sob vácuo

em evaporador rotatório e o produto purificado por CCS utilizando como eluente *n*-hexano/acetato de etila 8:2.

6.2.5.2 – Método utilizando aquecimento com reator de micro-ondas. Adaptação da metodologia descrita por Subburaj e colaboradores (SUBBURAJ *et al.,* 1996)

Antes de se utilizar o micro-ondas, para cada reação agitou-se a solução de 0,5 mmol de 2-metoxibenzoquinona e 1,0 mmol de cloreto de zinco anidro (fundido previamente em 1,5 mL de diclorometano por 15 minutos) em um balão de 50 mL adaptado com um condensador tipo Liebig e, então, adicionou-se 0,32 mmol do respectivo 2*H*-cromeno (<u>98, 97, 99, 129, 130, 131</u> ou <u>132</u>) dissolvido em 1,0 mL de diclorometano. A mistura foi levada para o reator de micro-ondas e aquecida a 65 °C usando uma potência de 130 W por 25-110 minutos. O desenvolvimento da reação foi monitorado por CCDS (eluente: hexano/acetato de etila 7:3/revelador: iodo/ácido sulfúrico). Constatado que a reação não estava mais evoluindo, o processo de aquecimento era interrompido. Após resfriamento, a mistura da reação foi transferida para um funil de separação e o produto extraído utilizando-se diclorometano, sendo inicialmente Lavada com água e depois com solução saturada de NaCI. A fase orgânica foi secada com Na₂SO₄ anidro e filtrada. O solvente foi removido sob vácuo em evaporador rotatório e o produto purificado em CCS utilizando como eluente nhexano/acetato de etila 8:2.

(±)6a,11a-Diidro-9-metoxi-8-hidroxi-2,3-metilenodioxi-6,6-dimetil-6*H*-benzofuro [3,2-c] [1]benzopirano (<u>102</u>).

Rendimentos:

48% (convencional) (79 mg, 0,23 mmol)
89% (micro-ondas) (96 mg, 0,28 mmol)
Tempo de reação:
48 horas (convencional)
25 minutos (micro-ondas)

Aspecto físico: sólido amarelado FM: $C_{19}H_{18}O_6$ MM: 342,11 g.mol⁻¹ Ponto de fusão: 156-160 °C.

IV (v̄, cm⁻¹) (Figura 55, Anexo 1): 3538, 3341, 3038, 3004, 2973, 2936, 2879, 2850, 2835, 1631, 1608, 1575, 1518, 1501, 1468, 1456, 1420, 1379, 1360, 1338, 1300, 1272, 1263, 1244, 1209, 1191, 1182, 1161, 1132, 1102, 1026, 998, 985, 900, 856, 835, 817, 770, 744, 695, 678.

RMN de ¹**H** (200 MHz, CDCl₃) δ (ppm) (Figura 53, Anexo 1): Os dados encontram-se na Tabela 18, p.91.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 54, Anexo 1): Os dados encontram-se na Tabela 20, p.93.

(±) 6a,11a-Diidro-3-benziloxi-2,9-dimetoxi-8-hidroxi-6,6-dimetil-6*H*benzofuro [3,2-c] [1]benzopirano (<u>101</u>)

Rendimentos:

53% (convencional) (108 mg, 0,25 mmol) 61% (micro-ondas) (82 mg, 0,19 mmol) **Tempo de reação:** 48 horas (convencional) 35 minutos (micro-ondas) **Aspecto físico:** sólido amarelado **FM**: $C_{26}H_{26}O_6$ **MM**: 434,18 g.mol⁻¹ **Ponto de fusão:** 165-170 °C.

IV (\bar{v} , cm⁻¹) (Figura 59, Anexo 1): 3340, 3038, 3004, 2972, 2936, 2877, 1641, 1608, 1575, 1518, 1501, 1456, 1420, 1378, 1360, 1338, 1302, 1271, 1262, 1244, 1209, 1191, 1181, 1160, 1125, 1103, 1025, 988, 985, 956, 947, 917, 901, 856, 835, 816, 770, 744, 695, 678.

RMN de ¹**H** (200 MHz, CDCl₃) δ (ppm) (Figura 56, Anexo 1): Os dados encontram-se na Tabela 18, p.91.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 57, Anexo 1): Os dados encontram-se na Tabela 20, p.93.

(±) 6a,11a-Diidro-2,3,9-trimetoxi-8-hidroxi-6,6-dimetil-6*H*-benzofuro [3,2-c] [1]benzopirano (<u>103</u>).

Rendimentos:

69% - (convencional) (118 mg, 0,33 mmol) 95% - (micro-ondas) (107 mg, 0,30 mmol) **Tempo de reação:** 20 horas (convencional) 55 minutos (micro-ondas) **Aspecto físico:** sólido amarelado **FM**: $C_{20}H_{22}O_6$ **MM**: 358,14 g.mol⁻¹ **Ponto de fusão:** 65-68 °C.

IV (\bar{v} , cm⁻¹) (Figura 7, p.83): 3538, 3038, 2972, 2924, 1608, 1501, 1456, 1379, 1360, 1338, 1272, 1244, 1209, 1161, 1122, 1103, 1025, 998, 901, 856, 770, 744, 695, 678.

RMN de ¹**H** (200 MHz, CDCl₃) δ (ppm) (Figura 8, p.84): Os dados encontram-se na Tabela 18, p.91.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 12, p.87): Os dados encontramse na Tabela 20, p.93.

EMAR: ESI(+)-MS (Figura 13, p.88): calculado (M+H)⁺ 359,1416, obtido (M+H)⁺: m/z 359,1451.

(±) 6a,11a-Diidro-3-fenoxi-9-metoxi-8-hidroxi-6,6-dimetil-6*H*-benzofuro [3,2-c] [1]benzopirano (<u>133</u>).

IV (\bar{v} , cm⁻¹) (Figura 67, Anexo 1): 3511, 2976, 2928, 1617, 1586, 1485, 1444, 1432, 1386, 1370, 1345, 1302, 1265,1246, 1211, 1181, 1153, 1134, 1097, 1051, 1010, 991, 963, 928, 889, 859, 823, 810, 783, 744, 727, 693.

RMN de ¹**H** (200 MHz, CDCl₃) δ (ppm) (Figura 60, Anexo 1): Os dados encontram-se na Tabela 18, p.91.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 61, Anexo 1): Os dados encontram-se na Tabela 20, p.93.

EMAR: ESI(+)-MS (Figura 68, Anexo 1): calculado (M+H)⁺ 391,1467, obtido (M+H)⁺: m/z 391,1541.

(±) 6a,11a-Diidro-2-benziloxi-3,9-dimetoxi-8-hidroxi-6,6-dimetil-6*H*benzofuro [3,2-c] [1]benzopirano (<u>134</u>)

Rendimentos:

37% (convencional) (78 mg, 0,18 mmol)
59% (micro-ondas) (82 mg, 0,19 mmol)
Tempo de reação:
25 horas (convencional)
35 minutos (micro-ondas)

Aspecto físico: sólido amarelado FM: $C_{26}H_{26}O_6$ MM: 434,18 g.mol⁻¹ Ponto de fusão: 163-167 °C.

IV (*v̄*, cm⁻¹) (Figura 74, **Anexo 1**): 3437, 2924, 2865, 2840, 1620, 1493, 1451, 1419,1383, 1367, 1334, 1262, 1241, 1212, 1194, 1173, 1153, 1124, 1102, 1052, 1009, 962, 936, 889, 873, 855, 816, 794, 770, 704.

RMN de ¹**H** (200 MHz, CDCl₃) δ (ppm) (Figura 69, Anexo 1): Os dados encontram-se na Tabela 19, p.92.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 70, Anexo 1): Os dados encontram-se na Tabela 21, p.94.

EMAR: ESI(+)-MS (Figura 75, Anexo 1): calculado (M+H)⁺ 435,1729, obtido (M+H)⁺: m/z 435,1799.

(±) 2-Acetil-6a,11a-diidro-3,9-dimetoxi-6,6-dimetil-8-hidroxi-6*H*-benzofuro [3,2-c] [1]benzopirano (<u>135</u>).

Rendimentos:

70% - (convencional) (131 mg, 0,34 mmol) 86% - (micro-ondas) (104 mg, 0,27 mmol) **Tempo de reação:** 46 horas (convencional) 55 minutos (micro-ondas) **Aspecto físico:** sólido marrom **FM**: $C_{21}H_{22}O_7$ **MM**: 386,14 g.mol⁻¹ **Ponto de fusão:** 173-174 °C.

IV (*v̄*, cm⁻¹) (Figura 80, Anexo 1): 3538, 3488, 3434, 2979, 2938, 2880, 1764, 1626, 1589, 1505, 1474, 1444, 1377, 1366, 1346, 1317, 1274, 1247, 1223, 1190,
1171, 1121, 1100, 1050, 1005, 964, 946, 913, 885, 860, 838, 819, 809, 797, 777, 726, 673.

RMN de ¹**H** (200 MHz, CDCl₃) δ (ppm) (Figura 76, Anexo 1): Os dados encontram-se na Tabela 19, p.92.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 77, Anexo 1): Os dados encontram-se na Tabela 21, p.94.

EMAR: ESI(+)-MS (Figura 81, Anexo 1): calculado (M+H)⁺ 387,1365, obtido (M+H)⁺: m/z 387,1438.

(±) 2,9-Dimetoxi-6,6-dimetil-chinpterocarpano (136)

Rendimentos:

47% - (convencional) (94 mg, 0,23 mmol) 89% - (micro-ondas) (115 mg, 0,28 mmol) **Tempo de reação:** 40 horas (convencional) 35 minutos (micro-ondas) **Aspecto físico:** sólido amarelado **FM**: $C_{24}H_{26}O_6$ **MM**: 410,18 g.mol⁻¹ **Ponto de fusão:** 159-160 °C.

IV (v̄, cm⁻¹) (Figura 87, Anexo 1): 3460, 3053, 2976, 2924, 2849, 1674, 1650, 1628, 1613, 1498, 1479, 1458, 1393, 1377, 1360, 1334, 1306, 1279, 1270, 1240, 1216, 1198, 1177, 1163, 1136, 1120, 1103, 1075, 1056, 1014, 961, 934, 889, 848, 832, 813, 777, 766, 715.

RMN de ¹**H** (200 MHz, CDCl₃) δ (ppm) (Figura 82, Anexo 1): Os dados encontram-se na Tabela 19, p.92.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 83, Anexo 1): Os dados encontram-se na Tabela 21, p.94.

EMAR: ESI(+)-MS (Figura 88, Anexo 1): calculado (M+H)⁺ 411,1729, obtido (M+H)⁺: m/z 411,1814.

6.2.6 – Procedimento geral de alquilação de pterocarpanos. Adaptação da metodologia descrita por Santos e colaboradores (SANTOS *et al.,* 2007)

Para cada reação, em um balão de fundo redondo, foram adicionados 0,170 mmol (reações I a V) e 0,220 mmol (reação VI) do respectivo nucleófilo, 5 mL de acetona anidra e 58 mg (0,42 mmol) de carbonato de potássio. A mistura de reação ficou sob agitação magnética e fluxo de nitrogênio, por 10 minutos. Solubilizou-se 0,220 mmol (reações I a V) e 0,170 mmol (reação VI) dos respectivos haletos em 2 mL de acetona anidra e, em seguida, esta solução foi adicionada lentamente à mistura de cada reação por meio de uma seringa. Deixou-se as misturas sob agitação à temperatura de 60 °C. O desenvolvimento de cada reação foi acompanhado por CCD (eluente: Hexano/AcOEt 7:3 v/v; revelador iodo/ácido sulfúrico) e após 24 horas foi feita a elaboração da mistura de reação. Para as reações I e II foram adicionados também 57 mg (0,340 mmol) de iodeto de potássio para acelerar a reação, uma vez que o cloro é pior grupo abandonador que o bromo. O haleto mostrado na reação V foi obtido e utilizado in situ conforme descrito no item 6.2.7 (p.134). O haleto mostrado na reação VI foi obtido conforme descrito no item 6.2.8 (p.134). Após o término de cada reação a acetona foi eliminada por destilação sob pressão reduzida e a cada resíduo foram adicionados 30 mL de água destilada. Procedeu-se a extração com três porções de 10 mL de diclorometano e seguiu-se o procedimento "elaboração usual" (item 6.1.2, p.107). O produto de cada reação foi purificado em CCS (n-hexano/acetato de etila 8:2), obtendo-se os rendimentos que variaram de 66 a 99%.

(±)6a,11a-Diidro-9-metoxi-8-(hexoxi-6-ol)-2,3-metilenodioxi-6,6-dimetil-6*H*-benzofuro [3,2-c] [1]benzopirano (<u>163</u>).

Rendimento: 82% - (62 mg, 0,14 mmol)Aspecto físico: sólido amarelado FM: C₂₅H₃₀O₇ MM: 442,20 g.mol⁻¹ Ponto de fusão: 122-124 ° C. IV $(\bar{\nu}, \text{ cm}^{-1})$ (Figura 92, Anexo 1): 3545, 2977, 2926, 1740, 1617, 1505, 1479, 1446, 1396, 1368, 1339, 1288, 1243, 1209, 1188, 1165, 1133, 1106, 1087, 1067, 1034, 1016, 995, 965, 940, 902, 872, 845, 824, 812, 783, 771, 728, 691. **RMN de** ¹H (200 MHz, CDCl₃) δ (ppm) (Figura 89, Anexo 1): Os dados encontram-se na Tabela 23, p.97.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 90, Anexo 1): Os dados encontram-se na Tabela 27, p.101.

(±) 6a,11a-Diidro-3-benziloxi-2,9-dimetoxi-8-(6-hidroxi-hexoxi)-6,6-dimetil-6*H*-benzofuro [3,2-c] [1]benzopirano (<u>164</u>)

Rendimento: 66% - (59 mg, 0,11 mmol) Aspecto físico: sólido amarelado FM: C₃₂H₃₈O₇ MM: 534,26 g.mol⁻¹ Ponto de fusão: 100-102 °C.

IV ($\bar{\nu}$, cm⁻¹) (Figura 103, **Anexo 1**): 3560, 2934, 2860, 1616, 1511, 1500, 1464, 1450, 1425, 1380, 1366, 1323, 1292, 1258, 1240, 1212, 1186, 1174, 1139, 1124, 1108, 1066, 1049, 1026, 989, 960, 947, 920, 897, 875, 853, 821, 798, 767, 749, 698.

RMN de ¹H (200 MHz, CDCl₃) δ (ppm) (Figura 100, **Anexo 1**): Os dados encontram-se na Tabela 24, p.98.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 101, **Anexo 1**): Os dados encontram-se na Tabela 29, p.103.

(±) 6a,11a-Diidro-3-benziloxi-2,9-dimetoxi-8-(3,3-dimetilaliloxi)-6,6-dimetil-6*H*-benzofuro [3,2-c] [1]benzopirano (<u>151</u>)

Rendimento: 72% (60 mg, 0,12 mmol) Aspecto físico: sólido amarelado FM: $C_{31}H_{34}O_6$ MM: 502,24 g.mol⁻¹ Ponto de fusão: 101-103 °C.

IV (v̄, cm⁻¹) (Figura 111, Anexo 1): 2926, 2856, 1615, 1503, 1463, 1443, 1421, 1400, 1380, 1367, 1340, 1321, 1294, 1242, 1209, 1186, 1173, 1159, 1108, 1052, 1026, 979, 965, 938, 918, 896, 876, 860, 840, 823, 815, 766, 748, 700, 672.

RMN de ¹**H** (200 MHz, CDCl₃) δ (ppm) (Figura 108, Anexo 1): Os dados encontram-se na Tabela 24, p.98.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 109, Anexo 1): Os dados encontram-se na Tabela 30, p.104.

(±) 6a,11a-Diidro-8-benziloxi-2,3,9-trimetoxi-6,6-dimetil-6*H*-benzofuro [3,2-c] [1]benzopirano (<u>152</u>).

Rendimento:

97% - (72 mg, 0,16 mmol) Aspecto físico: sólido amarelado FM: $C_{27}H_{28}O_6$ MM: 448,19 g.mol⁻¹ Ponto de fusão: 141-142 °C.

IV (\bar{v} , cm⁻¹) (Figura 115, Anexo 1): 3007, 2985, 2934, 2875, 1615, 1497, 1450, 1419, 1381, 1367, 1339, 1326, 1291, 1261, 1241, 1211, 1194, 1186, 1172, 1141, 1124, 1106, 1053, 1032, 1000, 961, 935, 917, 895, 875, 850, 829, 816, 795, 772, 758, 741, 701, 673.

RMN de ¹**H** (200 MHz, CDCl₃) δ (ppm) (Figura 112, Anexo 1): Os dados encontram-se na Tabela 25, p.99.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 113, Anexo 1): Os dados encontram-se na Tabela 30, p.104.

(±)6a,11a-Diidro-9-metoxi-8-[3-(3-piridinil)propiloxi-2,3-metilenodioxi-6,6dimetil-6*H*-benzofuro [3,2-c] [1]benzopirano (<u>155</u>).

Rendimento:

99% - (78 mg, 0,168 mmol) Aspecto físico: sólido amarelado FM: $C_{27}H_{27}NO_6$ MM: 461,18 g.mol⁻¹ Ponto de fusão: 124-126 °C.

IV (\bar{v} , cm⁻¹) (Figura 119, Anexo 1): 2987, 2951, 2923, 2875, 2852, 1614, 1573, 1507, 1481, 1445, 1421, 1403, 1383, 1367, 1340, 1324, 1288, 1245, 1214, 1205, 1190, 1165, 1131, 1108, 1090, 1044, 1031, 1006, 990, 964, 937, 897, 868, 844, 830, 818, 809, 771, 770, 692.

RMN de ¹H (200 MHz, CDCl₃) δ (ppm) (Figura 116, Anexo 1): Os dados encontram-se na Tabela 25, p.99.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 117, Anexo 1): Os dados encontram-se na Tabela 28, p.102.

(±)6a,11a-Diidro-9-metoxi-8-[6-(1'-fenil-1H-tetrazol-5'-ilsulfanil)hexoxi]-2,3metilenodioxi-6,6-dimetil-6*H*-benzofuro [3,2-c] [1]benzopirano (<u>167</u>).

Rendimento:

89% - (90 mg, 0,15 mmol) Aspecto físico: sólido amarelado FM: $C_{32}H_{34}N_4O_6S$ MM: 602,22 g.mol⁻¹ Ponto de fusão: 101-102 °C. IV (v̄, cm⁻¹) (Figura 99, Anexo 1): 2924, 2854, 1617, 1597, 1498, 1480, 1447, 1383, 1368, 1339, 1292, 1244, 1209, 1187, 1161, 1129, 1108, 1035, 1013, 962, 937, 894, 874, 856, 819, 759, 730, 692.

RMN de ¹**H** (200 MHz, CDCl₃) δ (ppm) (Figura 96, Anexo 1): Os dados encontram-se na Tabela 23, p.97.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 97, Anexo 1): Os dados encontram-se na Tabela 28, p.102.

6.2.7 – Obtenção do brometo de (3-piridinil)propila (154) (KAD et al., 2003)

Uma mistura de 3-piridinopropanol (70 mg, 0,51 mmol), ácido bromídrico 48% (0,12 mL, 2,3 mmol) e brometo de tetrabutilamônio (31 mg, 0,10 mmol) foi colocada no reator de micro-ondas que foi acoplado a um condensador de refluxo e em seguida foi aquecida a 100 °C usando uma potência de 150 W por 4 minutos. Após este tempo a mistura foi diluída com diclorometano, seguindose o procedimento "elaboração usual" (item **6.1.2**, p.107). O resíduo foi utilizado *in situ* na obtenção do pterocarpano <u>155</u> (item **6.2.6**, p.129).

6.2.8 – Obtenção do (±) 6a,11a-Diidro-9-metoxi-8-(6-iodo-hexoxi)-2,3metilenodioxi-6,6-dimetil-6*H*-benzofuro [3,2-c] [1]benzopirano (<u>165</u>) (MEREYALA & GADDAM, 1994)

Em um sistema isento de umidade e acoplado a um condensador de refluxo, adicionaram-se 200 mg (0,45 mmol) do pterocarpano <u>163</u>, 10 mL de tolueno anidro, 92 mg (1,4 mmol) de imidazol, 180 mg (0,67 mmol) de trifenilfosfina e 172 mg (0,7 mmol) de iodo. A mistura foi mantida sob refluxo e a reação acompanhado por CCD (eluente: hexano/acetato de etila 7:3) que evidenciou o consumo do material de partida após 15 minutos de seu início. A mistura foi resfriada à temperatura ambiente e lavou-se com 70 mL de solução saturada de bicarbonato de sódio. Adicionou-se solução de tiossulfato de sódio a 20% m/v, sob agitação até o desaparecimento da coloração castanho-amarelada. O solvente foi removido sob pressão reduzida em evaporador rotatório. O resíduo resultante foi dissolvido em diclorometano e seguiu-se o procedimento "elaboração usual" (**item 6.1.2**, p.107). O produto foi purificado em CCS (*n*-hexano/acetato de etila 8:2), obtendo-se o respectivo produto com rendimento de 40%.

(±) 6a,11a-Diidro-9-metoxi-8-(6-iodo-hexoxi)-2,3-metilenodioxi-6,6-dimetil-6*H*-benzofuro [3,2-c] [1]benzopirano (<u>165</u>).

Rendimento: 40% - (99 mg, 0,18 mmol)Aspecto físico: sólido branco FM: C₂₅H₂₉IO₆ MM: 552,10 g.mol⁻¹ Ponto de fusão: 110-112 °C.

IV (v̄, cm⁻¹) (Figura 95, Anexo 1): 2994, 2973, 2936, 1615, 1504, 1481, 1445, 1400, 1381, 1367, 1340, 1322, 1290, 1245, 1208, 1186, 1158, 1132, 1107, 1032, 993, 964, 937, 898, 862, 839, 822, 807, 772, 749, 727, 720, 693, 672, 664.

RMN de ¹**H** (200 MHz, CDCl₃) δ (ppm) (Figura 93, Anexo 1): Os dados encontram-se na Tabela 23, p.97.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 94, Anexo 1): Os dados encontram-se na Tabela 27, p.101.

6.2.9 – Obtenção do (±) 6a,11a-Diidro-3,9-dimetoxi-2,8-di-hidroxi-6,6-dimetil-6*H*-benzofuro [3,2-c] [1]benzopirano (<u>156</u>) (HYATT, 2008).

Uma mistura do pterocarpano <u>135</u> (120 mg, 0,31 mmol), uma mistura a 50% de hidróxido de sódio aquoso (124 mg, 3,1 mmol) e 5 mL de metanol foi refluxada durante 30 minutos. O solvente foi removido sob vácuo em evaporador rotatório. Em seguida o resíduo foi dissolvido com diclorometano, seguiu-se o procedimento "elaboração usual" (item **6.1.2**, p.107). O produto foi purificado em CCS (*n*-hexano/acetato de etila 7:3), obtendo-se o respectivo produto com rendimento de 70%.

(±) 6a,11a-Diidro-3,9-dimetoxi-2,8-di-hidroxi-6,6-dimetil-6*H*-benzofuro [3,2-c] [1]benzopirano (<u>156</u>).

Rendimento: 70% - (98 mg, 0,28 mmol)Aspecto físico: sólido amarelado FM: C₁₉H₂₀O₆ MM: 344,13 g.mol⁻¹ Ponto de fusão: 157-158 °C.

IV (v̄, cm⁻¹) (Figura 123, Anexo 1): 3531, 3513, 2924, 2853, 1629, 1501, 1445, 1383, 1367, 1332, 1294, 1267, 1244, 1221, 1207, 1193, 1167, 1154, 1122, 1101, 1049, 1008, 966, 937, 891, 882, 863, 845, 818, 796, 775, 759, 745, 694.

RMN de ¹**H** (200 MHz, CDCl₃) δ (ppm) (Figura 120, Anexo 1): Os dados encontram-se na Tabela 25, p.99.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 121, Anexo 1): Os dados encontram-se na Tabela 30, p.104.

6.2.10 – Obtenção do (±) 6a,11a-Diidro-3-benziloxi-2,9-dimetoxi-8-(6-O-mesil-hexoxi)-6,6-dimetil-6H-benzofuro [3,2-c] [1]benzopirano (<u>166</u>) (VIANA, 2004).

À solução do pterocarpano <u>164</u> (100 mg; 0,19 mmol) em CH_2CI_2 (10 mL) a 0°C (banho de gelo) sob atmosfera de nitrogên io, adicionaram-se, com o auxílio de uma micro seringa, 30 µL (0,4 mmol) de cloreto de mesila e, logo após, acrescentou-se lentamente 106 µL (0,8 mmol) de trietilamina. A mistura foi agitada a 0°C durante 30 minutos. O desenvolvimento da reação foi acompanhado por CCDS (eluente: hexano/acetato de etila 7:3; revelador: iodo sublimado). A reação foi interrompida pela adição de gelo picado. O produto foi extraído com diclorometano em funil de separação. A fase orgânica foi secada com Na₂S0₄ anidro e filtrada. O solvente foi removido em evaporador rotatório, sendo o produto purificado em CCS (*n*-hexano/acetato de etila 8:2) obtendo-se o respectivo produto com rendimento de 85%.

(±) 6a,11a-Diidro-3-benziloxi-2,9-dimetoxi-8-(6-*O*-mesil-hexoxi)-6,6-dimetil-6*H*-benzofuro [3,2-c] [1]benzopirano (<u>166</u>).

Rendimento: 85% - (95 mg, 0,16 mmol) Aspecto físico: óleo amarelado

FM: C₃₃H₄₀O₈S

MM: 596,24 g.mol⁻¹

IV (*v̄*, cm⁻¹) (Figura 107, Anexo 1): 2931, 2858, 1617, 1494, 1450, 1422, 1382, 1340, 1257, 1242, 1213, 1188, 1170, 1125, 1051, 1027, 998, 962, 929, 895, 874, 853, 817, 768, 736, 721, 696.

RMN de ¹H (200 MHz, CDCl₃) δ (ppm) (Figura 104, Anexo 1): Os dados encontram-se na Tabela 24, p.98.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 105, Anexo 1): Os dados encontram-se na Tabela 29, p.103.

6.2.11 – Obtenção do (±) 6a,11a-Diidro-3-benziloxi-2,9-dimetoxi-8-[6-(5'-fenil-1'H-tetrazol-1'-il)hexanoxi]-6,6-dimetil-6*H*-benzofuro [3,2-c] [1]benzopirano (<u>158</u>) e do (±) 6a,11a-Diidro-3-benziloxi-2,9-dimetoxi-8-[6-(5'-fenil-oxadiazol-2'-ilsulfanil)hexanoxi]-6,6-dimetil-6*H*-benzofuro [3,2-c] [1]benzopirano (<u>159</u>)

Pterocarpano	Nucleófilo	Produto
$\underbrace{\frac{12}{12} - 3}_{H_{9}CO} + \underbrace{\frac{4}{110} + \frac{6}{10} + \frac{6}{10}}_{H_{1} + 10} + \underbrace{\frac{6}{10} + \frac{7}{10} + \frac{7}{10}}_{OCH_{3}} + \underbrace{\frac{16}{10} + \frac{18}{10} + \frac{18}{10}}_{OCH_{3}} + \underbrace{\frac{166}{10} + \frac{18}{10} + \frac{16}{10}}_{OCH_{3}} + \underbrace{\frac{166}{10} + \frac{18}{10} + \frac{16}{10}}_{OCH_{3}} + \underbrace{\frac{166}{10} + \frac{18}{10} + \frac{16}{10} + \frac{18}{10} + \frac{16}{10} + \frac{18}{10} + \frac{16}{10} + 1$	лем ин N ин <u>161</u>	$\underbrace{\frac{120}{12}, \frac{4}{12}, \frac{4}{11}, \frac{5}{10}, \frac{6}{10}, \frac{6}{10}, \frac{7}{10}, \frac{7}{10}, \frac{7}{10}, \frac{7}{10}, \frac{16}{10}, \frac{16}{10}, \frac{18}{10}, \frac{16}{10}, \frac{18}{10}, \frac{110}{10}, \frac$
$\underbrace{166}^{5}$	HS N N <u>162</u>	$\underbrace{120}_{H_{3}CO} \underbrace{4}_{H_{3}CO} \underbrace{4}_{H_{3}CO} \underbrace{6}_{H_{3}CO} \underbrace{7}_{H_{3}CO} \underbrace{7}_{H_{3}} \underbrace{7}$

Para cada reação, em um balão de fundo redondo, foram adicionados 0,340 mmol do respectivo nucleófilo, 5 mL de acetonitrila anidra e 70 mg (0,7 mmol) de trietilamina. A mistura de reação ficou sob agitação magnética e fluxo de nitrogênio, por 10 minutos. Solubilizou-se 0,170 mmol do pterocarpano <u>166</u> em 2 mL de acetonitrila anidra e, em seguida, esta solução foi adicionada lentamente na mistura de cada reação por meio de uma seringa. Deixaram-se as misturas sob agitação à temperatura de 60 °C. O desenvolvimento de cada reação foi acompanhado por CCD (eluente: Hexano/AcOEt 7:3 v/v; revelador iodo/ácido sulfúrico) e após 24 horas foi feita a elaboração da mistura de cada reação sob pressão reduzida e a cada reação a acetonitrila foi eliminada por destilação sob pressão reduzida e a cada resíduo foram adicionados 30 mL de água destilada. Procedeu-se à extração com três porções de 10 mL de diclorometano e seguiu-se o procedimento "elaboração usual" (item **6.1.2**, p.107). Os produtos foram purificados em CCS (*n*-hexano/acetato de etila 8:2), obtendo-se os rendimentos de 52 e 64%.

(±) 6a,11a-Diidro-3-benziloxi-2,9-dimetoxi-8-[6-(5'-fenil-1'H-tetrazol-1'il)hexanoxi]-6,6-dimetil-6*H*-benzofuro [3,2-c] [1]benzopirano (<u>158</u>).

Rendimento:

52% - (60 mg, 0,09 mmol) Aspecto físico: sólido amarelado FM: $C_{39}H_{42}N_4O_6$ MM: 662,31 g.mol⁻¹ Ponto de fusão: 149-151 °C.

IV (v̄, cm⁻¹) (Figura 131, Anexo 1): 2931, 2862, 1617, 1564, 1493, 1464, 1449, 1422, 1382, 1367, 1340, 1326, 1256, 1241, 1213, 1183, 1173, 1126, 1109, 1084, 1073, 1051, 1028, 1005, 994, 962, 939, 912, 895, 874, 853, 818, 789, 769, 729, 694.

RMN de ¹H (200 MHz, CDCl₃) δ (ppm) (Figura 128, Anexo 1): Os dados encontram-se na Tabela 26, p.100.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 129, Anexo 1): Os dados encontram-se na Tabela 31, p.105.

(±) 6a,11a-Diidro-3-benziloxi-2,9-dimetoxi-8-[6-(5'-fenil-oxadiazol-2'ilsulfanil)hexanoxi]-6,6-dimetil-6*H*-benzofuro [3,2-c] [1]benzopirano (<u>159</u>).

Rendimento:

64% - (76 mg, 0,11 mmol) Aspecto físico: óleo viscoso amarelado FM: $C_{40}H_{42}N_2O_7S$ MM: 694,27 g.mol⁻¹

IV (\bar{v} , cm⁻¹) (Figura 127, Anexo 1): 2927, 2856, 1617, 1556, 1492, 1467, 1449, 1422, 1382, 1367, 1340, 1293, 1257, 1242, 1213, 1183, 1173, 1126, 1109, 1077, 1051, 1026, 1002, 962, 938, 908, 874, 853, 818, 772, 729, 704, 693. **RMN de ¹H** (200 MHz, CDCl₃) δ (ppm) (Figura 124, Anexo 1): Os dados encontram-se na Tabela 26, p.100.

RMN de ¹³**C** (50 MHz, CDCl₃) δ (ppm) (Figura 125, Anexo 1): Os dados encontram-se na Tabela 31, p.105.

7 – CONCLUSÕES

Neste trabalho foram sintetizados sete pterocarpanos racêmicos por cicloadição [3+2] utilizando uma metodologia convencional e também um novo método de aquecimento utilizando-se um reator de micro-ondas (Esquema 36). Cabe ressaltar que a obtenção de pterocarpanos utilizando-se a irradiação por micro-ondas foi realizada pela primeira vez neste trabalho. Além disso, após a comparação dos rendimentos e tempos de reação dos produtos obtidos pelos dois métodos, observou-se em todos os casos quando se utilizou aquecimento em micro-ondas que os pterocarpanos foram obtidos com melhores rendimentos e as reações tiveram seus tempos reduzidos de horas para minutos. Dessa forma, esse novo método de aquecimento para a síntese dos pterocarpanos por cicloadição mostrou-se mais eficiente do que a metodologia usual.

Esquema 36 – Síntese de (±) pterocarpanos utilizando a metodologia convencional e também aquecimento em reator de micro-ondas.

Abaixo estão representados os sete pterocarpanos racêmicos obtidos por cicloadição, sendo os pterocarpanos <u>103</u>, <u>133</u>, <u>134</u>, <u>135</u> e <u>136</u> inéditos.

Foram obtidos também onze derivados inéditos dos (±) pterocarpanos com diferentes substituintes nos anéis A e D, sendo dez obtidos por *O*-alquilação e um obtido por hidrólise, os quais podem ser visualizados abaixo:

Como intermediários para a síntese dos pterocarpanos foram também obtidos os 2*H*-cromenos <u>97</u>, <u>98</u>, <u>99</u>, <u>129</u>, <u>130</u>, <u>131</u> e <u>132</u>, apresentados na página 143.

Além da síntese, tanto os (±) pterocarpanos <u>101-103</u>, <u>133-136</u>, <u>156</u> e <u>163-</u> <u>164</u> (p.142) quanto os 2*H*-cromenos <u>97-99</u> e <u>129-132</u> foram avaliados quanto à atividade sequestradora do radical DPPH[•]. Dentre os 2*H*-cromenos, somente o composto <u>131</u> apresentou atividade sequestradora do radical DPPH[•] significativa. Todavia foi constatado que o composto apresentava-se em mistura, uma vez que a porção éster da molécula havia começado a sofrer processo de hidrólise. A atividade para esse composto não pode ser considerada uma vez que a mesma possivelmente deva-se ao produto hidrolisado que apresentaria uma hidroxila livre, diferente dos demais 2*H*-cromenos.

Os resultados mostraram que todos os (±) pterocarpanos com hidroxilas fenólicas apresentaram atividade sequestradora de DPPH[•]. Além disso, cabe ressaltar que praticamente todos os pterocarpanos que possuíam essas hidroxilas apresentaram atividade sequestradora de DPPH[•] superior ao controle positivo (resveratrol). O pterocarpano <u>156</u> (p.142) apresentou atividade superior a todos os outros e também Cl₅₀ de praticamente metade à do resveratrol, provavelmente por ser o único composto testado que apresenta duas hidroxilas fenólicas em sua estrutura. Outro fator interessante de se observar é que o resveratrol apresenta três hidroxilas fenólicas e, no entanto, tem atividade menor do que a maioria dos pterocarpanos, indicando que o fato dos compostos terem hidroxilas fenólicas não é o único fator que interfere na atividade sequestradora de DPPH[•]. Esses resultados apontam os novos pterocarpanos como potenciais agentes antioxidantes.

- AHMAD, V.U.; IQBAL, S.; NAWAZ, S.A.; CHOUDHARY, M.I.; FAROOQ, U.; ALI, S.T.; AHMAD, A.; BADER, S.; KOUSAR, F.; ARSHAD, S.; TAREEN, R.B. Isolation of Four New Pterocarpans from *Zygophyllum eurypterum* (Syn. Z. atriplicoides) with Enzyme-Inhibition Properties. *Chemistry & Biodiversity*, v.3, p.993-1003, **2006**.
- ALDRICH. Handbook of fine chemical and laboratory equipment. p.177, 2000-2001.
- ANDERSEN, O.M.; MARKHAM, K.R. *Flavonoids Chemistry, Biochemistry and Applications.* 1^a ed., New York: Taylor & Francis Group, 1197p., **2006**.
- ANTONIADES, C.; TOUSOULIS, D.; TENTOLOURIS, C.; TOUTOUZAS, P.; STEFANADIS, C. Oxidative stress, antioxidant vitamins, and atherosclerosis. From basic research to clinical practice. *Herz*, v.28, p.628-638, **2003**.
- ARAÚJO, M.F.; VIEIRA, I.J.C.; BRAZ-FILHO, R.; VIEIRA-DA-MOTA, O.; MATHIAS, L. Chemical constituents from Swartzia apétala Raddi var. glabra and evaluation of their antifungal activity against Candida spp. *Revista Brasileira de Farmacognosia*, 19(2A), 366-369, **2009**.
- ARDON, M.; HAYES, P.D.; HOGARTH, G. Microwave-Assisted Reflux in Organometallic Chemistry: Synthesis and Structural Determination of Molybdenum Carbonyl Complexes. *Journal of Chemical Education*, v. 79(10), p. 1249-1251, **2002**.
- AWALE, S.; LI, F.; ONOZUKA, H.; ESUMI, H.; TEZUKA, Y.; KADOTA, S. Constituents of Brazilian red propolis and their preferential cytotoxic activity

against human pancreatic PANC-1 cancer cell line in nutrient-deprived condition. *Bioorganic & Medicinal Chemistry*, v.16, p. 181–189, **2008**.

- BANDARANAYAKE, W.M.; CROMBIE, L.; WHITING, D.A. Novel methods for the synthesis of 2,2-dimethychromens. *Chemical Comunications*, p.970-971, 1969.
- BARRERO, A.F.; ALVARES-MANZANEDA, E.J.; CHAHBOUN, R. Synthesis of wiedendiol-A and wiedendiol-B from labdane diterpenes. *Tetrahedron*, v.54(21), p.5635-5650, **1998**.
- BECKER, E.M.; NISSEN, L.R.; SKIBSTED, L.H. Antioxidant evaluation protocols: Food quality or health effects. *European Food Research Technology*, v.219, p.561-571, **2004**.
- BRAND-WILLIAMS, W.; CUVELIER, M.E.; BERSET, C. Use of free radical method to evaluate antioxidant activity. *Lebensmittel Wissenschaften und Technologie*, v.28, p.25-30, **1995**.
- BRIGAS, A.F. Product class 30: Tetrazoles. *Science of Synthesis*, v.13, p.861-915, **2004**.
- BUTLER, M.S. The Role of Natural Product Chemistry in Drug Discovery. *Journal* of Natural Products, v.67(12), p.2141-2153, **2004**.
- CHACHA, M.; BOJASE-MOLETA, G.; MAJINDA, R.R.T. Antimicrobial and radical scavenging flavonoids from the stem wood of *Erythrina latissima*. *Phytochemistry*, v.66, p.99-104, **2005**.

- CHAUDER, B.A.; LOPES, C.C.; LOPES, R.S.C.; SILVA, A.J.M.; SNIECKUS, V. Phenylboronic Acid-Mediated Synthesis of 2*H*-Chromenes. *Synthesis*, p.279-282, **1998**.
- CHEN, J.; DUH, C.; CHEN, I. Cytotoxic Chromenes from *Myriactis humilis*. *Planta Medica*, v.71(4), p.370-372, **2005**.
- COELHO, A.; VASCONCELOS, M.L.A.A.; SIMAS, A.B.C.; RABI, J.A.; COSTA, P.R.R. A conveniente synthesis of (±)-4-Prenylpterocarpin. *Synthesis*, p.914-916, **1992**.
- COTTIGLIA, F.; CASU, L.; BONSIGNORE, L.; CASU, M.; FLORIS, C.; LEONTI,
 M.; GERTSCH, J.; HEILMANN, J. New citotoxic prenylated isoflavonoids
 from Bituminaria morisiana. *Planta Medica*, v.71, p.254-260, **2005**.
- CRUZ, M.D.C.; TAMARIZ, J. An efficient synthesis of benzofurans and their application in the preparation of natural products of the genus *Calea*. *Tetrahedron*, v.61(42), p.10061-100072, **2005**.
- DAO, T.T.; NGUYEN, P.H.; THUONG, P.T.; KANG, K.W.; NA, M.; NDINTEH, D.T.; MBAFOR, J.T.; OH, W.K. Pterocarpans with inhibitory effects on protein tyrosine phosphatase 1B from *Erythrina lysistemon* Hutch. *Phytochemistry*, v.70, p.2053-2057, **2009**.
- DIXON, R.A.; STEELE, C.L. Flavonoids and isoflavonoids a gold mine for metabolic engineering. *Trends in Plant Science Reviews*, v.4(10), p.394-400, **1999**.
- ELLIS, G.P. *Chromenes, chromanones and chromones.* 1^a ed., New York: Jonh Wiley, 1196p., **1977**.

- ENGLER, T.A.; REDDY, J.P.; COMBRINK, K.D.; VELDE, D.V. Formal 2 + 2 and 3 + 2 cycloaddition reactions of 2*H*-chromenes with 2-alkoxy-1,4benzoquinones: regioselective synthesis of substituted pterocarpans. *Journal of Organic Chemistry*, v.55(4), p.1248-1254, **1990**.
- ENGLER, T.A.; LETAVIC, M.A.; REDDY, J.P.R. Asymmetric Induction in Reaction of Styrenes with 1,4-Benzoquinones Utilizing Chiral Ti (IV) Complexes. *Journal of the American Chemical Society*, v. 113, p.5068-5070, **1991**.
- ENGLER, T.A.; LYNCH, K.O.; REDDY, J.P.; GREGORY, G.S. Synthetic pterocarpans with anti-HIV activity. *Bioorganic & Medicinal Chemistry Letters*, v.3(6), p.1229-1232, **1993**.
- ENGLER, T.A.; LATESSA, K.O.; IYENGAR, R.; CHAI, W.; AGRIOS, K. Stereoselective syntheses of substituted pterocarpans with anti-HIV activity, and 5-Aza-/5-Thia-pterocarpan and 2-Aryl-2,3-dihydrobenzofuran analogues. *Bioorganic & Medicinal Chemistry*, v.4(10), p.1755-1769, **1996**.
- ERASTO, P.; BOJASE-MOLETA, G.; MAJINDA, R.R.T. Antimicrobial and antioxidant flavonoids from the root wood of *Bolusanthus speciosus*. *Phytochemistry*, v.65, p.875-880, **2004**.
- EVANGELISTA, E.A.; COURI, M.R.C.; RASLAN, D.S.; ALVES, R.B. Synthesis of New Pterocarpans and Rapid O-alkylation under microwave irradiation. *Heteroatom Chemistry*, v.17(4), p.239-244, **2006a**.
- EVANGELISTA, E.A. Síntese de pterocarpanos e de xantonas. 148p. Tese (Doutorado em Ciências Químicas) Departamento de Química. Instituto de

Ciências Exatas. Universidade Federal de Minas Gerais, Belo Horizonte, **2006b**.

- EYRE & SPOTTISWOODE (PUBLISHER) LTD. E & F. N. SPON LTD. *Dictionary* of Organic Compounds, v.4: London, **1965**, p.2191.
- GRAYER, R.J.; KOKUBUN, T. Plant-fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants. *Phytochemistry*, v.56, p.253-363, **2001**.
- HARBONE, J.B.; MABRY, T.J.; MABRY, H. *The Flavonoids*. 1^a ed. London: Chapman and Hall, p.768-775, **1975**.
- HARFENIST, M., HEUSER, D. J., JOYNER, C. T., BATCHELOR, J. F., WHITE,
 H. L. Selective inhibitors of monoamine oxidase 3. Structure-activity relationship of tricyclics bearing imidazoline, oxadiazole, or tetrazole groups. *J. of Med. Chem.*, v.39, p.1857-1863, **1996**.
- HEAD, F.S.H.; ROBERTSON, A. Hydroxy-carbonyl compounds. Part.1. A synthesys of scopoletin. *Journal of the Chemical Society*, p.1241-1245, 1931.
- HYATT, J.A. Convenient Preparation of 2,7,8-Trimethyl-6-hydroxychroman-2carboxylic Acid (γ-Trolox). *Synthetic Communications*, v.38, p.8-14, **2008**.
- HLUBUCEK, J.; RITCHIE, E.; TAYLOR, W.C. Synthesis of 2,2-Dimethychromenes. *Tetrahedron Letters*, v.17, p.1369-1370, **1969**.

- INNOK, P.; RUKACHAISIRIKUL, T.; PHONGPAICHIT, S.; SUKSAMRARN, A. Fuscacarpans A–C, new pterocarpans from the stems of *Erythrina fusca*. *Fitoterapia*, v.81(6), p.518-523, **2010**.
- JIMÉNEZ-GONZÁLEZ, L.; ÁLVARES-CORRAL, M.; MUÑOZ-DORADO, M.; RODRÍGUEZ-GARCÍA, I. A concise and diastereoselective total synthesis of cis and trans-pterocarpans. *Chemical Communications*, v.21, p.2689-2691, **2005**.
- JIMÉNEZ-GONZÁLEZ, L.; ÁLVARES-CORRAL, M.; MUÑOZ-DORADO, M.; RODRÍGUEZ-GARCÍA, I. Pterocarpans: interesting natural products with antifungal activity and other biological properties. *Phytochemistry Review* v.7, p.125-154, **2008**.
- KAD, G. L.; KAUR, I.; BHANDARI, M.; SINGH, J.; KAUR, J. Functional group transformations of diols, cyclic ethers, and lactones using aqueous hydrobromic acid and phase transfer catalyst under microwave irradiations. *Organic Process Research & Development*, v.7, p. 339-340, **2003**.
- KAPPE, C.O.; DALLINGER, D. The impact of microwave synthesis on drug discovery. *Nature Reviews/Drug Discovery*, v.5, p.51-63, **2006**.
- KISS, L.; ANTUS, S.; BENYEI, A. Chiroptical properties and synthesis of enantiopure cis and trans pterocarpan skeleton. *Chirality*, v.15(6), p.558-563, 2003.
- KOLDOSBSKII, G.I. & OSTROVSKII, V.A. Tetrazoles. *Russian Chemical Reviews*, v.63, n.10, p.797-814, **1994**.

- KOHN, A.; SCHMIDT, R. R. Untersuchungen zur Synthese von C1-verzweigten Cycliten aus D-Glucose. *Liebigs Ann. Chem.*, p. 1045-1054, **1987**.
- LÉVAI, A.; TIMÁR, T.; SEBÖK, ESZENYI, T. Synthesis of 2,2-dimethy-2*H*chromenes. *Heterocycles*, v.53(5), p.1193-1203, **2000**.
- LI, F.; AWALE, S.; TEZUKA, Y.; KADOTA, S. Cytotoxic constituents from Brazilian red propolis and their structure-activity relationship. *Bioorganic & Medicinal Chemistry*, v.16, p.5434-5440, **2008**a.
- LI, X.; LU, Z.; QIN, S.; YAN, H.; YANG, M.; GUAN, S.; LIU, X.; HUA, H.; WU, L.; GUO, D. Tonkinensines A and B, two novel alkaloids from *Sophora tonkinensis*. *Tetrahedron Letters*, v.49, p.3797-3801, **2008**b.
- LICHTENFELS, R.A.; COELHO, A.L.; COSTA, P.R.R. Total synthesis of pterocarpan: (±)-neorautenane. *Journal of Chemical Society Perkin. Trans.* I, p.949-951, **1995**.
- LYON, F.M.; WOOD, R.K.S. Production of phaseollin, coumestrol and related compounds in bean leaves inoculated with *Pseudomonas spp. Physiological Plant Pathology*, v.6(2), p.117-124, **1975**.
- MACÍAS, F.A.; SIMONET, A.M.; GALINDO, J.C.G.; CASTELLANO, D. Bioactive phenolics and polar compounds from *Melilotus messanensis*. *Phytochemistry*, v.50, p.35-46, **1999**.
- MCARDLE, A.; VASILAKI, A.; JACKSON, M. Exercise and skeletal muscle ageing: cellular and molecular mechanisms. *Ageing Research Review*, v.1, p.79-93, **2002**.

- MCMURRY, T.B.H.; THENG, C.Y. The constituition and synthesis of afromosin. Journal of the Chemical Society, p.1491-1498, **1960**.
- MAURICH, T.; IORIO, M.; CHIMENTI, D.; TURCHI, G. Erybraedin C and bitucarpin A, two structurally related pterocarpans purified from *Bituminaria bituminosa*, induced apoptosis in human colon adenocarcinoma cell lines MMR- and p53-proficient and deficient in a dose-, time-, and structure-dependent fashion. *Chemico-Biological Interections*, v.159, p.104-116, 2006.
- MAURICH, T.; PISTELLI, L.; TURCHI, G. Anti-clastogenic activity of two structurally related pterocarpans purified from *Bituminaria bituminosa* in cultured human lymphocytes. *Mutation Research*, v.561, p.75-81, **2004**.
- MELO, P.A.; PINHEIRO, D.A.; RICARDO, H.D.; FERNANDES, F.F.A.; TOMAZ,
 M.A.; EL-KIK, C.; STRAUCH, M.A.; FONSECA, T.F.; SIFUENTES, D.N.;
 CALIL-ELIAS, S.; BUARQUE, C.D.; BRITO, F.V.; COSTA, P.R.R.; SILVA,
 A.J.M. Ability of a synthetic coumestan to antagonize *Bothrops* snake
 venom activities. *Toxicon*, v.55, p.488-496, **2010**.
- MEREYALA, H.B.; GADDAM, B.R. Synthesis of conduritols A, (+)-C and (–)-C from D-galactose. *J. Chem. Soc., Perkin Trans.* 1, p.2187-2190, **1994.**
- MILITÃO, G.C.G.; BEZERRA, D.P.; PESSOA, C.; MORAES, M.O.; PONTE, F.A.F.; LIMA, M.A.S.L.; SILVEIRA, E.R.; COSTA-LOTUFO, L.V. Comparative cytotoxicity of 2,3,9-trimethoxypterocarpan in leukemia cell lines (HL-60, Jurkat, Molt-4, and K562) and human peripheral blood mononuclear cells. *J. Nat. Med.*, v.61, p. 196-199, **2007**a.

- MILITÃO, G.C.G.; PINHEIRO, S.M.; DANTAS, I.N.F.; PESSOA, C.; MORAES, M.O.; COSTA-LOTUFO, L.V.; LIMA, M.A.S.; SILVEIRA, E.R. Bioassayguided fractionation of pterocarpans from roots of *Harpalyce brasiliana* Benth. *Bioorganic & Medicinal Chemistry*, v.15, p.6687-6691, **2007**b.
- MINGZHANG GAO, M.W.; MOCK, B.H.; MILLER, K.D.; SLEDGE, G.W.; HUTCHINS, G.D.; ZHENG, Q. Synthesis of carbon-11 labeled fluorinated 2arylbenzothiazoles as novel potential PET cancer imaging agents. *Bioorganic & Medicinal Chemistry*, v.14, p.8599-8607, **2006**.
- MIYASE, T.; SANO., M.; YOSHINO, K.; NONAKA, K. Antioxidants from Lespedeza homoloba (II). Phytochemistry, v.52, p.311-319, **1999**.
- MORIMOTO, M.; FOKUMOTO, H.; HIRATANI, M.; CHAVASIRI, W.; KOMAI, K. Insect antifeedants, pterocarpans and pterocarpol, in heartwood of *Pterocarpus macrocarpus* Kruz. *Biosci. Biotechnol. Biochem.*, v.70(8), p.1864-1868, **2006**.
- MURUGESH, M.G.; SUBBURAJ, K.; TRIVEDI, G. Regioselective Synthesis of Substituted Pterocarpans and Pterocarpenes. Lewis Acid Ti (IV) Promoted Formal (3+2) Cycloaddition Reactions. *Tetraedron*, v.52(6), p.2217-2228 1996.
- NAKAGAWA, M.; NAKANISHI, K. Structures of Cabenegrins A-I and A-II, potent anti-snake venoms. *Tetrahedron Letters*, v.23(38), p.3855-3858, **1982**.
- NETTO, C.D.; SANTOS, E.S.J.; CASTRO, C.P.; SILVA, A.J.M.; RUMJANEK, V.M.; COSTA, P.R.R. (±)-3,4-Dihydroxy-8,9-methylenedioxypterocarpan and derivatives: Cytotoxic effect on human leukemia cell lines. *European Journal of Medicinal Chemistry*, v.44(2), p.920-925, **2009**.

- NETTO, C.D.; SILVA, A.J.M.; SALUSTIANO, E.J.S.; BACELAR, T.S.; RIÇA, I.G.; CAVALCANTE, M.C.M.; RUMJANEK, V.M.; COSTA, P.R.R. New pterocarpanquinones: Synthesis, antineoplasic activity on cultured human malignant cell lines and TNF-α modulation in human PBMC cells. *Bioorganic & Medicinal Chemistry*, v.18, p.1610-1616, **2010**.
- NGUYEN, P.H.; LE, T.V.T.; THUONG, P.T.; DAO, T.T.; NDINTEH, D.T.; MBAFOR, J.T.; KANG, K.W.; OH, W.K. Cytotoxic and PTP1B inhibitory activities from *Erythrina abyssinica*. *Bioorganic & Medicinal Chemistry*, v.19, p.6745-6749, **2009**.
- NJAMEN, D.; TALLA, E.; MBAFOR, J.T.; FOMUM, Z.T.; KAMMANYI, A.; MBANYA, J.; CERDÁ-NICOLÁS, M.; GINER, R.M.; RECIO, M.C.; RÍOS, J.L. Anti-inflammatory activity of erycristagallin, a pterocarpene from *Erythrina mildbraedii. European Journal of Pharmacalogy*, v.468, p.67-74, 2003.
- OGATA, Y.; SAWAKI, Y. Kinects and mechanism of the Bayer-Viliger reaction of benzaldehydes with perbenzoic acids. *Journal of American Chemical Society*, v.94, p.4189-4196, **1972**.
- OZAKI, Y.; MOCHIDA, K.; KIM, S. Total Synthesis of Sophorapterocarpan A, Maackiain, and Anhydropisatin: Aplication of a 1,3-Michael-Claisen Annulation to Aromatic Synthesis. *Journal of Chemical Society*, p.1219-1224, **1989**.
- PECORARO, E.; DAVOLOS, M.R.; JUNIOR, M.J. Adaptação em forno de microondas domésticos para utilização em laboratório. *Química Nova* v.20(1), p.89-92, **1997**.

- PERRIN, D.D., ARMAREGO, W.L.F., PERRIN, D.R. *Purification of Laboratory Chemicals*. 2^a edição. Great Britain: Pergamon Press, **1980**, 568p.
- PERRIN, D.R.; CRUICKSHANK, A.M. The antifungal activity of pterocarpans towards *Monilinia fructicola*. *Phytochemistry*, v.8(6), p.971-978, **1969**.
- PHILLIPS, D.A.; KAPULNIK, Y. Plant isoflavonoids, pathogens and symbionts. *Trends in Microbiology*, v.3(2), p.58-64, **1995**.
- PUEPPKE, S.G.; VANETTEN, H.D. Accumulation of pisatin and three additional antifungal pterocarpans in *Fusarium solani*-infected tissues of *Pisum sativum*. *Physiological Plant Pathology*, v.8(1), p.51-61, **1976**.
- REYES-CHILPA, R.; GÓMEZ-GARIBAY, F.; QUIJANO, L.; MAGOS-GUERRERO, G.A.; RÍOS, T. Preliminary results on the protective effect of (-)-edunol, a pterocarpan from *Brongniartia podalyrioides* (Leguminosae) against *Bothrops atrox* venom in mice. *Journal of Ethnopharmacology*, v.42, p.199-203, **1994**.
- RUKACHAISIRIKUL, T.; INNOK, P.; AROONRERK, N.; BOONAMNUAYLAP,
 W.; LIMRARGSUN, S.; BOONYON, C.; WOONJINA, U.; SUKSAMRARN,
 A. Antibacterial Pterocarpans from Erythrina subumbrans. *Journal of Ethnopharmacology*, v.110, p.171-175, **2007**a.
- RUKACHAISIRIKUL, T.; SAEKEE, A.; THARIBUN, C.; WATKUOLHAM, S.; SUKSAMRARN, A. Biological Activities of the Chemical Constituents of *Erythrina stricta* and *Erythrina subumbrans*. Archives of Pharmacal Research, v.30(11), p.1398-1403, **2007**b.

- RYU, Y.B.; CURTIS-LONG, M.J.; KIM, J.H.; JEONG, S.H.; YANG, M.S.; LEE,
 K.W.; LEE, W.S.; PARK, K.H. Pterocarpans and flavanones from Sophora flavescens displaying potent neuraminidase inhibition. Bioorganic & Medicinal Chemistry Letters, v.18, p.6046-6049, 2008.
- SALEM, M.M.; WERBOVETZ, K.A. Isoflavonoids and other compounds from Psorothamnus arborescens with antiprotozoal activities. *J. Nat. Prod.*, v.69, p.43-49, **2006**.
- SALMORIA, G.V.; DALL' OGLIO, E.L.; ZUCCO, C. Isomerization of safrole and eugenol under microwave irradiation. Synthetic communications v.27(24), p.4335-4340, 1997.
- SANSEVERINO, A. M. Microondas em síntese orgânica. *Química Nova*, v. 25 (4), p. 660-667, **2002**.
- SANTOS, L.J.; LUDUVICO, I.; COURI, M.R.; ALVES, R.B.; PRADO, M.A.F.; GIL, R.P.F. Synthesis of new tetrazole derivatives of α,α-trehalose. *Synthetic Communications*, v.37, p.3059-3066, **2007**.
- SANT'ANNA, S.S.; EVANGELISTA, E.A.; ALVES, R.B.; RASLAN, D.S. Synthesis of New (±) Pterocarpans by Heck Oxyarylation. Chemistry of Natural Compounds, v.41(4), p.385-387, 2005.
- SATO, M.; TANAKA, H.; OH-UCHII, T.; FUKAI, T.; ETOH, H.; YAMAGUCHI, R. Antibacterial Activity of Phytochemicals Isolated from Erythrina zeyheri against Vancomycin-resistant Enterococci and their Combinations with Vancomycin. *Phytotherapy Research*, v.18, p.906-910, **2004**.

- SCHWARZ, R.; KUCHEN, W. Zur Kenntnis der Kieselsäuren, IX. Mitteil.: Einige neue Ester der Orthokieselsäure. *Chemische Berichte*, v.86, p.1144-1149, 1953.
- SELVAM, C.; JACHAK, S.M.; GNANA OLI, R.; THILAGAVATHI, R.; CHAKRABORTI, A.K.; BHUTANI, K.K. A new cyclooxygenase (COX) inhibitory pterocarpan from Indigofera aspalathoides: structure elucidation and determination of binding orientation in the active sites of the enzyme by molecular docking. *Tetrahedron Letters*, v.45, p.4311-4314, **2004**.
- SILVA, T.A.A. Tentativas de Síntese de 4-quinolinocarbinolaminas potencialmente antimaláricas e modelagem molecular de quinina, quinidina, epiquinina, epiquinidina e 4-quinolinocarbinolaminas por métodos semiempíricos e de mecânica molecular. 212p. Tese de Doutorado. Departamento de Química, UFMG, BH, **1998**.
- SILVA, A.J.M.; COELHO, A.L.; SIMAS, A.B.C.; MORAES, R.A.M.; PINHEIRO, D.A.; FERNANDES, F.F.A.; ARRUDA, E.Z.; COSTA, P.R.R.; MELO, P.A. Synthesis and pharmacological evaluation of prenylated and benzylated pterocarpans against snake venom. *Bioorganic & Medicinal Chemistry Letters*, v.14, p.431-435, **2004**.
- SILVA, F.C.; FERREIRA, V.F.; SOUZA, M.C.B.V. Adaptação de Forno de Microondas Doméstico para Realização de Reações de Transesterificação sob Refluxo e Catálise por Argilas. *Química Nova*, v.29(2), p.376-380, **2006**.
- SILVA, A.J.M.; MELO, P.A.; SILVA, N.M.V.; BRITO, F.V.; BUARQUE, C.D.; SOUZA, D.V.; RODRIGUES, V.P.; POÇAS, E.S.C.; NOEL, F.; ALBUQUERQUE, E.X.; COSTA, P.R.R. Synthesis and Preliminary Pharmacological Evaluation of Coumestans with Different Patterns of

Oxygenation. *Bioorganic & Medicinal Chemistry Letters*, v.11, p.283-286, **2001**.

- SILVA, A.J.M.; BUARQUE, C.D.; BRITO, F.V.; AURELIAN, L.; MACEDO, L.F.;
 MALKAS, L.H.; HICKEY, R.J.; LOPES, D.V.S. NOEL, F.; MURAKAMI,
 Y.L.B.; SILVA, N.M.V.; MELO, P.A.; CARUSO, R.R.B.; CASTRO, N.G.;
 COSTA, P.R.R. Synthesis and Preliminary Pharmacological Evaluation of
 New (±) 1,4-Naphthoquinones Structurally Related to Lapachol. *Bioorganic*& *Medicinal Chemistry*, v.10, p. 2731–2738, **2002**.
- SILVERSTEIN, R.M.; WEBSTER, F.X. Identificação Espectrométrica de Compostos Orgânicos. 6ª ed., Rio de Janeiro: Editora Guanabara Koogan S.A., 387p., 2000.
- SIMÕES, C.M.O.; SCHENKEL, E.P.; GOSMANN, G.; MELLO, J.C.P.; MENTZ, L.A.; PETROVICK, P.R. *Farmacognosia da planta ao medicamento.* 5^a ed., Porto Alegre/Florianópolis: Editora da UFSC, 1102p., **2004**.
- SKOUTA, R.; LI, C. Rapid syntheses of (±)-pterocarpans and isoflavones via gold-catalyzed annulation of aldehydes and alkynes. *Tetrahedron Letters*, v.48, p.8343-8346, **2007**.
- SMITH, D.G.; MCINNES, A.G.; HIGGINS, V.J.; MILLAR, R.L. Nature of the phytoalexin produced by alfalfa in response to fungal infection. *Physiological Plant Pathology*, v.1(1), p.41-44, **1971**.
- SOLOMONS, T.W.G; FRYHLE, C.B. *Química Orgânica*, v.2. 8^a ed., Rio de Janeiro: Editora LTC, 588p., **2006**.

- SUBBURAJ, K.; MURUGESH, M.G.; TRIVEDI, G.K. ZnCl₂ promoted formal (3+2) cycloaddition reactions of 2-alkoxy-1,4-benzoquinones with 2*H*-chromenes. *Synthetic Communications*, v.26(15), p.2881-2893, **1996**.
- SUBBURAJ, K.; KATOCH, R.; MURUGESH, M.G.; TRIVEDI, G.K. Regioselective total synthesis of (±) Neuratanin and their analogs. Microwave mediated synthesis of 2*H*-chromenes from propargyl phenyl ethers. *Tetrahedron*, v.53(37), p. 12621-12628, **1997**.
- SUGIHARA, J. M., TEERLINK, W. J., MACLEOD, R. , DORRENCE, S. M., SPRINGER, C. H. Direct synthesis of some cyano and nitro derivatives of carbohydrates by nucleophilic displacement. *J. Am. Chem. Soc.*, v.28, p. 2079-2082, **1963**.
- TUMMATORN, J.; KHORPHUENG, P.; PETSOM, A.; MUARGSIN, N.; CHAICHIT, N.; ROENGSUMRAN, S. Convenient synthetic route to a dehydrorotenoid via selective intramolecular aldol condensation of 1,2-diaryl diketone. *Tetrahedron*, v.63(48), p.11878-11885, **2007**.
- TANAKA, H.; SATO, M.; OH-UCHI, T.; YAMAGUCHI, R.; ETOH, H.; SHIMIZU,
 H.; SAKO, M.; TAKEUCHI, H. Antibacterial properties of a new isoflavonoid from Erythrina poeppigiana against methicillin-resistant *Staphylococcus aureus*. *Phytomedicine*, v.11, p. 331–337, **2004**.
- TURCHI, G.; ALAGONA, G.; LUBRANO, V. Protective activity of plicatin B against human LDL oxidation induced in metal ion-dependent andindependent processes .Experimental and theoretical studies. *Phytomedicine*, v.16, p.1014–1026, **2009**.

- VAN AARDT, T.G.; VAN RESBURG, H.; FERREIRA, D. Direct synthesis of pterocarpans via aldol condensation of phenyacetates with benzaldehydes. *Tetrahedron*, v.55, p.11773-11786, **1999**.
- VAN AARDT, T.G.; VAN RESBURG, H.; FERREIRA, D. Synthesis of isoflavonoids. Enantiopure cis and trans-6a-hydroxypterocarpans and racemic trans-pterocarpan. *Tetrahedron*, v.57, p.7113-7126, **2001**.
- VANETTEN, H.D.; MERCER, M.E.H. (+)-Maackiain and (+)-medicarpin as phytoalexins in *Sophora Japonica* and identification of the (–) isomers by biotransformation. *Phytochemistry*, v.22(10), p.2291-2295, **1983**.
- VANETTEN, H.D. Antifungal activity of pterocarpans and other selected isoflavonoids. *Phytochemistry*, v.15, p.655-659, **1976**.
- VIANA, G. H. R. Síntese de novos sais de amônio quaternário quirais com potencial atividade antimicrobiana. Dissertação (Mestrado em ciências -Química) - Departamento de Química do Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, **2004**, 128p.
- VIEIRA, N.C.; ESPÍNDOLA, L.S.; SANTANA, J.M.; VERAS, M.L.; PESSOA, O.D.L.; PINHEIRO, S.M.; ARAÚJO, R.M.; LIMA, M.A.S.; SILVEIRA, E.R. Trypanocidal activity of a new pterocarpan and other secondary metabolites of plants from Northeastern Brazil flora. *Bioorganic & Medicinal Chemistry*, v.16, p.1676-1682, **2008**.
- WÄTJEN, W.; KULAWIK, A.; SUCKOW-SCHITKER, A.K.; CHOVOLOU, Y.;
 ROHRIG, R.; RUHL, S.; KAMPKÖTTER, A.; ADDAE-KYEREME, J.;
 WRIGHT, C.W.; PASSREITER, C.M. Pterocarpans phaseollin and neorautenol isolated from Erythrina addisoniae induce apoptic cell death

accompanied by inhibition of ERK phosphorylation. *Toxicology*, v.242, p.71-79, **2007**.

- WINKLE, M.R.; LANSIGER, J.M.; RONALD, R.C. 2,5-Dimethoxybenzyl alcohol: a convenient self-indicating standard for the determination of organolithium reagents. *Journal of Chemical Society Chemical Communication*, p.87-88, 1980.
- ZHIVICH, A. B., KOLDOBSKII, G. I., OSTROVSKII, V. A. Tetrazolium salts (review), *Chem. of Het. Compounds*, v.26(12), p.1319-1328, **1990**.
- ZHOU, H.; LUTTERODT, H.; CHENG, Z.; YU, L. Anti-Inflammatory and Antiproliferative Activities of Trifolirhizin, a Flavonoid from Sophora flavescens Roots. J. Agric. Food Chem., v.57, p.4580-4585, **2009**.

ANEXO 1: Espectros

Figura 15 - Espectro de RMN de ¹³C de <u>139</u> (50 MHz, CDCl₃).

Figura 16 - Espectro no Infravermelho de 139.

Figura 17 - Espectro de RMN de ¹H de <u>140</u> (200 MHz, CDCl₃).

Figura 19 - Espectro no Infravermelho de 140.

Figura 21 - Espectro de RMN de ¹³C de <u>94</u> (50 MHz, CDCl₃).

Figura 22 - Espectro no Infravermelho de 94.

Figura 23 - Espectro de RMN de ¹H de <u>95</u> (200 MHz, CDCl₃).

Figura 24 - Espectro de RMN de ¹³C de <u>95</u> (50 MHz, CDCl₃).

Figura 25 - Espectro no Infravermelho de 95.

Figura 27 - Espectro de RMN de ¹³C de <u>125</u> (50 MHz, CDCl₃).

Figura 28 - Espectro no Infravermelho de 125.

Figura 29 - Espectro de RMN de ¹H de <u>127</u> (200 MHz, CDCl₃).

Figura 31 - Espectro no Infravermelho de 127.

Figura 32 - Espectro de RMN de ¹H de <u>126</u> (200 MHz, CDCl₃).

Figura 33 - Espectro de RMN de ¹³C de <u>126</u> (50 MHz, CDCl₃).

Figura 34 - Espectro no Infravermelho de 126.

Figura 35 - Espectro de RMN de ¹H de <u>97</u> (200 MHz, CDCl₃).

Figura 37 - Espectro no Infravermelho de 97.

Figura 39 - Espectro de RMN de ¹³C de <u>99</u> (50 MHz, CDCl₃).

Figura 40 - Espectro no Infravermelho de 99.

Figura 41 - Espectro de RMN de ¹H de <u>129</u> (200 MHz, CDCl₃).

Figura 43 - Espectro no Infravermelho de 129.

Figura 44 - Espectro de RMN de ¹H de <u>130</u> (200 MHz, CDCl₃).

Figura 45 - Espectro de RMN de ¹³C de <u>130</u> (50 MHz, CDCl₃).

Figura 46 - Espectro no Infravermelho de 130.

Figura 47 - Espectro de RMN de ¹H de <u>131</u> (200 MHz, CDCl₃).

Figura 48 - Espectro de RMN de ¹³C de <u>131</u> (50 MHz, CDCl₃).

Figura 49 - Espectro no Infravermelho de 131 e de seu produto de hidrólise.

Figura 50 - Espectro de RMN de ¹H de <u>132</u> (200 MHz, CDCl₃).

Figura 51 - Espectro de RMN de ¹³C de <u>132</u> (50 MHz, CDCl₃).

Figura 52 - Espectro no Infravermelho de 132.

Figura 53 - Espectro de RMN de ¹H de (±)<u>102</u> (200 MHz, CDCl₃).

Figura 55 - Espectro no Infravermelho de (±)102.

Figura 57 - Espectro de RMN de ¹³C de (±)<u>101</u> (50 MHz, CDCl₃).

Figura 59 - Espectro no Infravermelho de (±)101.

Figura 60 - Espectro de RMN de ¹H de (±)<u>133</u> (200 MHz, CDCl₃).

Figura 61 - Espectro de RMN de ¹³C de (±)<u>133</u> (50 MHz, CDCl₃).

Figura 62 – Mapa de contornos COSY de 133 (200 MHz, CDCl₃).

Figura 63 – Expansão do mapa de contornos COSY de <u>133</u> (200 MHz, $CDCI_3$).

Figura 64 – Mapa de contornos HMQC de 133 (200 MHz, CDCl₃).

Figura 65 – Expansão do mapa de contornos HMQC de 133 (200 MHz, CDCl₃).

Figura 66 – Mapa de contornos HMBC de 133 (400 MHz, CDCl₃).

Figura 67 - Espectro no Infravermelho de (±)133.

Figura 68 – Espectro ESI-HRMS positivo de (±)133.

Figura 70 - Espectro de RMN de ¹³C de (±)<u>134</u> (50 MHz, CDCl₃).

Figura 71 - Subespectro Dept 135 de (±)<u>134</u> (50 MHz, CDCl₃).

Figura 73 – Mapa de contornos HMBC de <u>134</u> (400 MHz, CDCl₃).

Figura 74 - Espectro no Infravermelho de (±)134.

Figura 75 – Espectro ESI-HRMS positivo de (±)134.

Figura 77 - Espectro de RMN de ¹³C de (±)<u>135</u> (50 MHz, CDCl₃).

Figura 78 – Mapa de contornos HMQC de <u>135</u> (400 MHz, CDCl₃).

Figura 79 – Mapa de contornos HMBC de 135 (400 MHz, CDCl₃).

Figura 80 - Espectro no Infravermelho de (±)135.

Figura 81 – Espectro ESI-HRMS positivo de (±)135.

Figura 82 - Espectro de RMN de ¹H de (±)<u>136</u> (200 MHz, CDCl₃).

Figura 83 - Espectro de RMN de ¹³C de (±)<u>136</u> (50 MHz, CDCl₃).

Figura 85 – Mapa de contornos HMQC de <u>136</u> (400 MHz, CDCl₃).

Figura 86 – Mapa de contornos HMBC de <u>136</u> (400 MHz, $CDCl_3$).

Figura 87 - Espectro no Infravermelho de (±)136.

Figura 89 - Espectro de RMN de ¹H de (±)<u>163</u> (200 MHz, CDCl₃).

Figura 90 - Espectro de RMN de ¹³C de (±)<u>163</u> (50 MHz, CDCl₃).

Figura 91 - Subespectro Dept 135 de (±)<u>163</u> (50 MHz, CDCl₃).

Figura 93 - Espectro de RMN de ¹H de (±)<u>165</u> (200 MHz, CDCl₃).

Figura 94 - Espectro de RMN de ¹³C de (±)<u>165</u> (50 MHz, CDCl₃).

Figura 95 - Espectro no Infravermelho de (±)165.

Figura 96 - Espectro de RMN de ¹H de (±)<u>157</u> (200 MHz, CDCl₃).

Figura 97 - Espectro de RMN de ¹³C de (±)<u>157</u> (50 MHz, CDCl₃).

Figura 98 - Subespectro Dept 135 de (±)<u>157</u> (50 MHz, CDCl₃).

Figura 99 - Espectro no Infravermelho de (±)157.

Figura 100 - Espectro de RMN de ¹H de (±)<u>164</u> (200 MHz, CDCl₃).

Figura 101 - Espectro de RMN de ${}^{13}C$ de (\pm) <u>164</u> (50 MHz, CDCl₃).

Figura 102 - Subespectro Dept 135 de (\pm) 164 (50 MHz, CDCl₃).

Figura 103 - Espectro no Infravermelho de (±)164.

Figura 105 - Espectro de RMN de ¹³C de (±)<u>166</u> (50 MHz, CDCl₃).

Figura 107 - Espectro no Infravermelho de (±)166.

Figura 111 - Espectro no Infravermelho de (±)151.

Figura 112 - Espectro de RMN de ¹H de (±)<u>152</u> (200 MHz, CDCl₃).

Figura 113 - Espectro de RMN de ${}^{13}C$ de (\pm) 152 (50 MHz, CDCl₃).

Figura 115 - Espectro no Infravermelho de (±)152.

Figura 118 - Subespectro Dept 135 de (\pm) 155 (50 MHz, CDCl₃).

Figura 119 - Espectro no Infravermelho de (±)155.

Figura 121 - Espectro de RMN de ${}^{13}C$ de (\pm) <u>156</u> (50 MHz, CDCl₃).

Figura 123 - Espectro no Infravermelho de (±)156.

Figura 125 - Espectro de RMN de ${}^{13}C$ de (\pm) 159 (50 MHz, CDCl₃).

Figura 127 - Espectro no Infravermelho de (±)159.

Figura 129 - Espectro de RMN de ${}^{13}C$ de (\pm) 158 (50 MHz, CDCl₃).

Figura 131 - Espectro no Infravermelho de (±)158.

ANEXO 2: Produção Científica

Artigos científicos publicados:

VENTURA, C.P.; VIANA, I.M.O.; FERREIRA, E.A.E.; FREITAS, R.P.; ALVES, R.B. Fast [3+2] Cycloaddition Synthesis of (±) Pterocarpans under Microwave Irradiation. *Letters in Organic Chemistry*, v.7(5), p.348-352, **2010**.

VENTURA, C.P. 3-Methyl-2-Butenal. Synlett, 17, p.2677-2678, 2010.

ALVES, R.B.; FREITAS, R.P.F.; VENTURA, C.P.; SANTOS, L.J. Reações orgânicas clássicas auxiliadas por irradiação de micro-ondas. *Revista Virtual de Química*, 2(3), 214-224, **2010**.

Trabalhos apresentados em congresso sob a modalidade de painel

VENTURA, C.P.; ALVES, R.B.; FREITAS, R.P.; FERREIRA, E.A.E. Síntese (±) *Pterocarpanos Utilizando-se Microondas*. 32^a Sociedade Brasileira de Química (SBQ), São Paulo, **2009**.