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Abstract 
 

The present thesis describes a study towards the development of alternative 

methodologies for the synthesis of a wide spectrum of pyrimidine derivatives. The targeted 

pyrimidine scaffolds have been known for their immense biological, medicinal as well as 

synthetic values. Almost all of the synthesized compounds are found to be novel. Preliminary 

screening towards the antimicrobial and anti-urease activity of some selected pyrimidine 

derivatives have also been performed and covered in the thesis.  

A bismuth nitrate catalyzed Knoevenagel condensation between thiobarbituric acid 

and aromatic aldehydes has afforded the derivatives 1-20 in excellent yields (81-95%). The 

antimicrobial activities of compounds 1-20 were evaluated against two filamentous fungi 

(Alternaria solani and Fusarium solani), one bacterium (Erwinia carotovora) and six yeast 

strains of clinical importance (Candida albicans, C. tropicalis, C. parapsilosis, C. lusitaniae, 

C. dubliniensis and Cryptococcus neoformans). The IC50 for each strain was determined and 

this class of compounds showed promising activity against the yeasts. The activities were 

comparable, in some cases, to that found for the commercial antimicrobial drugs nystatin and 

miconazole. Most of the compounds presented IC50 <1.95 μg mL-1 towards at least one 

microbial strain, and some of them were selective microbe inhibitors. Minimum inhibitory 

concentration (MIC) was determined against the two pathogenic fungi, A. solani and F. 

solani. The compounds showed activity exclusively against A. solani confirming their 

selectivity as antimicrobial agents. Compounds 5 and 14 at 3.90 μg mL-1 were able to 

completely stop A. solani growth under the assay’s conditions. The selectivity and potent 

activity of the compounds points this class as a promising source of novel antimicrobial 

agents. Thiobarbituric acid derivatives also showed good anti-urease inhibitory activity with  

inhibition values of 48.66 - 69.92% at 40μM in 1% Tween-20. Amongst the series compound 

8, 12 and 18 showed better activity with MIC values of 63.18, 69.40 and 69.92%. 

 
  Synthesis of 2-amino-4,6-dihydroxypyrimidine (ADHP) derivatives with different 

moieties were performed to explore their biological profile. The 2-amino-4,6-

dihydroxypyrimidine (ADHP) was obtained in yield higher  than 90% by a ring closing 

reaction. A reaction of ADHP with different aldehydes in the presence of NaOH afforded 

Schiff bases in 92-96% yield. Schiff bases of ADHP were prepared and screened for their 

putative urease inhibitory activity. All of the synthesized compounds showed good anti-

urease activity with inhibition range of 59.09 - 84.76% at 40μML-1 in 1% Tween-20 solution. 



 xi 

Compounds 23, 27 and 28 were the most potent among the series with inhibition ranges of 

81.54, 80.70 and 84.76% respectively. These could serve as lead substances for the 

development of novel synthetic compounds with enhanced inhibitory ureolitic activity. 

Several studies have shown that the number of biotypes of resistant microorganisms is 

increasing and the search for new substances with new mechanisms of action becomes a 

necessity. In this context, the cadiolides deserve attention, as they present potent antibacterial 

activity and low cytotoxicity. In this sense, in the present work is presented the synthesis of 

the cadiolides by Diels−Alder cycloaddition cycloreversion reaction. The synthesis of the 

analogs to the cadiolides was carried out in four to five steps from the keto-alkynes, obtained 

by the Sonogashira cross coupling reaction with different acid chlorides or by the 

condensation reaction with an aldehyde, followed by oxidation reaction. The synthesized 

compounds were submitted to biological assays to evaluate their antimicrobial properties 

against Staphylococcus aureus, Escherichia coli, Salmonella. typhimurium, Bacillus cereus 

and Candida albicans. In general, the results of the bioassays showed that all compounds 

evaluated in the concentration of 128 µg/mL showed low antimicrobail activity for all the 

compounds tested except 68 which shows above 50% inhibition against B. cereus. IC50 

values were also determined for Compound  68, which shows comparable activity with the 

positive control with IC50 value of 0.19 μm mL-1. 
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Resume 
A presente tese descreve o desenvolvimento de metodologias alternativas para a 

síntese de vários derivados de pirimidina, sendo muitos inéditos, a fim de explorar o amplo 

espectro biológico dos arcabouços estruturais desta classe. Além disso, as atividades 

antimicrobianas e antiurease das novas substâncias foram avaliadas. 

A reação de condensação de Knoevenagel catalisada por nitrato de bismuto, entre o 

ácido tiobarbitúrico e aldeídos aromáticos, resultou na obtenção dos derivados 1-20 em 

excelentes rendimentos (81-95%). As atividades antimicrobianas destes compostos foram 

avaliadas frente a duas espécies de fungos filamentosos (Alternaria solani e Fusarium 

solani), em relação à espécie de bactéria Erwinia carotovora e seis cepas de leveduras de 

importância clínica (Candida albicans, C. tropicalis, C. parapsilosis, C. lusitaniae, C. 

dubliniensis e Cryptococcus neoformans). O CI50 para cada cepa de levedura foi 

determinado, o que mostrou que esta classe de compostos possui atividade relevante, sendo 

comparáveis, em alguns casos, àquelas encontradas para os antimicrobianos comerciais 

nistatina e miconazol. A maioria dos compostos apresentou CI50 <1,95 μg.mL-1 para pelo 

menos uma cepa microbiana, e alguns deles foram inibidores microbianos seletivos. A 

concentração inibitória mínima (CIM) foi determinada contra dois fungos patogênicos, A. 

solani e F. solani. Os compostos apresentaram atividade exclusivamente contra A. solani, 

confirmando a seletividade como agentes antimicrobianos. As substâncias 5 e 14, quando 

testadas na concentração de 3,90 μg.mL-1, foram capazes de interromper completamente o 

crescimento de A. solani nas condições do ensaio. A expressiva atividade e seletividade 

desses compostos apontam que essa classe pode ser considerada como fonte promissora de 

novos agentes antimicrobianos. Os derivados do ácido tiobarbitúrico também mostraram boa 

atividade inibitória antiurease com valores de inibição de 48,66 - 69,92% a 40μM em 1% de 

Tween-20. Os compostos 8, 12 e 18 apresentaram as melhores atividades com valores de 

CIM de 63,18, 69,40 e 69,92%. 

A síntese de derivados de 2-amino-4,6-dihidroxipirimidina (ADHP) com diferentes 

substituintes foi realizada para explorar o perfil biológico desta classe de compostos. A 

ADHP foi obtida com rendimento superior a 90%, a partir de ciclização. A reação de ADHP 

com diferentes aldeídos na presença de NaOH resultou em bases de Schiff com 92-96% de 

rendimento. As bases de Schiff do ADHP foram preparadas e investigadas quanto a atividade 

inibitória da urease. Todos os compostos sintetizados apresentaram boa atividade antiurease 

com porcentagem de inibição entre 59,09 a 84,76%, a 40μm.ml-1 em solução de Tween-20 a 
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1%. Os compostos 23, 27 e 28 foram os mais potentes entre as séries com valores de inibição 

de 81,54, 80,70 e 84,76%, respectivamente. Estes podem ser considerados como protótipos 

para o desenvolvimento de novos compostos sintéticos com atividade ureolítica inibitória. 

Vários estudos mostraram que o número de microrganismos resistentes aos 

medicamentos disponíveis na clínica está aumentando e a busca por novas substâncias com 

novos mecanismos de ação torna-se urgente. Nesse contexto, os cadiolídeos merecem 

atenção, pois apresentam potente atividade antibacteriana e baixa citotoxicidade. Neste 

sentido, no presente trabalho apresenta-se a síntese dos cadiolídeos pela reação de retro 

Diels-Alder. A síntese dos análogos aos cadiolídeos foi realizada em quatro e cinco etapas, a 

partir dos cetoalcinos obtidos pela reação de acoplamento cruzado de Sonogashira com 

diferentes cloretos de ácidos e pela reação de condensação com um aldeído, seguida da 

reação de oxidação. Os compostos sintetizados foram submetidos a ensaios biológicos para 

avaliar as atividades antimicrobianas contra Staphylococcus aureus, Escherichia coli, 

Salmonella typhimurium, Bacillus cereus e Candida albicans. Em geral, os resultados dos 

bioensaios evidenciaram que todos os compostos avaliados na concentração de 128 µg.mL-1 

apresentaram baixa atividade antimicrobiana, exceto o 68, que apresentou inibição acima de 

50% contra B. cereus. O CI50 foi determinado para o composto 68, o qual apresentou uma 

atividade comparável com o controle positivo, com um valor de CI50 de 0,19 µm.mL-1. 

 



 

 

1 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

General introduction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



                                                                                                                                

 

2 
1. Pyrimidine  

 
Pyrimidine is a heterocyclic aromatic compound, similar to benzene and pyridine, containing 

two nitrogen atoms at positions 1 and 3 of its six-member ring. The structural motif is present in 

the structure of several natural products.1 The most commonly recognized pyrimidines are the 

bases of RNA and DNA, the most abundant being cytosine, thymine and uracil.2 The origin of the 

term pyrimidine dates back to 1884 when Pinner coined the term from a combination of the words 

pyridine and amidine because of the structural similarity to those compounds.3 Since then hundreds 

of pyrimidine containing compounds have been found in different organisms. The numerous 

modifications upon this scaffold and its relative importance in nature make it an interesting area 

of study.4 

Pyrimidines have a long and distinguished history extending from the days of their discovery 

as important constituents of nucleic acids to their current use in the chemotherapy of AIDS.5 

Alloxan (1) is known for its diabetogenic action in a number of animals.6 Uracil (2), thymine (3) 

and cytosine (4) are the three important constituents of nucleic acids (Figure 1). 

 
Figure 1 Some pyrimidine derivatives  

The pyrimidine ring is found in vitamins like thiamine (5), riboflavin (6) and folic acid (7).7 

Barbitone (8), the first barbiturate hypnotic sedative and anticonvulsant, is a pyrimidine 

derivative.6 
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Figure 2 Drugs containing pyrimidine moiety 

 

Barbiturates are based on a pyrimidine ring structure. Substitution at the 2, 4, and 6 positions 

gives the basic structure for the oxybarbiturates (Figure 2). Replacement of the oxygen at position 

2 with sulfur results in the formation of thiobarbiturates. Barbiturates can be ranked according to 

their onset of activity, duration of action and degree of hypnotic potency. These pharmacological 

effects are influenced by the types of functional groups attached at position 5. The inclusion of 

alkyl or aryl groups, the number of carbons in the alkyl side chains, and the degree of branching 

will affect activity and toxicity. Barbiturates possess a rather wide range of therapeutic activity.8 

In particular, drugs belonging to this class of compounds have been used for more than a century 

as hypnotics and anticonvulsants. Pharmaceutical industries market more than 50 barbiturate 

derivatives under various trade-names.9 Pharmacologically active barbituric acid derivatives are 

either mono or bis C-alkylated derivatives. There are some molecular systems that are capable of 

modulating human immune responses, thus effectively opening an avenue for new and innovative 

treatments that combat terrible diseases such as AIDS10 and cancer. In addition to the 

pharmaceutical value, they are also useful building blocks in assembling supramolecular structures 

via noncovalent interactions.11 In this respect, Fenniri et al. devised helical nanotubes in 2001.12 

Barbiturate groups are strongly electron withdrawing because they gain aromatic stabilization 

upon reduction.13 This property has been exploited in the preparation of molecules which possess 

very pronounced quadratic non-linear optical (NLO) properties, of interest for potential 

applications in optic electronic and photonic technologies.14 

The present thesis describes a study towards the development of new methodologies for the 

synthesis of a wide spectrum of pyrimidine derivatives. The targeted pyrimidine scaffolds have 
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4 
been known for their immense biological, medicinal as well as synthetic values. Almost all of the 

synthesized compounds are found to be novel. Preliminary screening towards the antimicrobial 

and anti-urease activity of some selected pyrimidine derivatives has also been performed and 

covered in the thesis.  

In chapter 1 of this work, the synthesis of different benzylidene barbiturates will be described, 

where the key step is the condensation of aromatic aldehyde with thiobarbituric acid in the 

presence of different catalyst and solvents to optimize the best condition for condensation. 

Antimicrobial and anti-urease activities of thiobarbiturates will also be discussed in detailed. 

In chapter 2, Synthesis of 2-amino-4,6-dihydroxypyrimidine (ADHP) derivatives will be 

described. The 2-amino-4,6-dihydroxypyrimidine (ADHP) was obtained in high  yield than 90% 

by a ring closing reaction. Synthesis of Schiff bases of ADHP with different aldehydes and their 

anti-urease activity will be discussed. Synthesis of 5-substituted analogues of ADHP  will also be 

described in this chapter.  

 

2. Subunit furan-2(5H)-one and derivatives. 

The subunit furan-2(5H)-one (9) (Figure 3), represented by a a,b-unsaturated g-lactone is 

the most distinctive structure of the butenolide motif, being one of the most diversified and 

widespread nuclei found in nature. It was previously known as crotonolactone, and along with its 

isomer, furan-2(3H)-one (10) (isocrotonolatone), it was found as one of many complex natural 

products and its synthetic derivatives. 

For years butenolides have attracted the attention of researchers pursuing numerous studies 

in an attempt to accomplish their extraction, determine  their activities, and succeed in their 

synthesis. These fascinating compounds are found in a variety of natural sources, including 

microorganisms, insects, plants and vertebrates. These compounds also have a wide range of 

biological activities such as antimicrobial, anti-inflammatory, anticancer, antiviral (HIV-1), 

phytotoxic, cardiotonic, insecticidal, among others.15-16 

In that regard, butenolide shows an important application in medical and agricultural fields, 

acting as precursor for a variety of synthetic products. The most prominent examples of these 

synthetic compounds are represented by antiepileptic and anti-inflammatory drugs, pesticides, and 

even some precursors in the synthesis of antibodies.17-18  
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Figure 3 Butenolide core structure. 

 
Several bioactive natural products belong to the butenolide class. Perhaps, the most 

renowned of these is ascorbic acid (vitamin C) (Figure 4; 11) whose properties have been greatly 

explored. In that respect, two classical butenolides may be discussed. Firstly, the cardenolides (12), 

a class of glycosides present in plants of Asclepias spp. (milkweed), displaying powerful activity 

over the cardiac muscle in animals. Secondly, the furanocembranolides, represented by pukalide 

(13) and its analogs. These compounds are diterpenoids with a cembrane skeleton and were 

extracted from Sinularia abrupta, a soft coral, in 1975, and showed an organoleptic defense 

mechanism against predators.19-21 

Other examples of butenolides are: 4-benzyl-3-phenylfuran-2(5H)-one (Figure 4; 14), 

isolated from Malbranchea filamentosa, with vasodilating activity,22 compounds 15 and 16, 

obtained from the fungus, Malbranchea aurantiaca, and the plant, Siphonochilus aethiopicus, 

showing phytotoxic and antimalarial activities, respectively,23,24 the unsaturated molecule 17, 

found in the asymptomatic endophytic fungus E99297, symbiont of plant Cistus salviifolius, is 

also worth noting and it exhibits anticandidal activity as well as cytotoxicity against the Hep G2 

(human hepatocarcinoma) and Colo 320 (adenocarcinoma) cell lines,25 the marine compound 

Lissoclinolide (18), present in the ascidian Lissoclinum patella, showed antibiotic and antitumoral 

activities,26-27 finally, the isomers ellipsoidone A and B (19-20), isolated from the plant Hemsleya 

ellipsoidea, possess moderate cytotoxicity against human cancer cell lines.28 

O OO O
(9) (10)
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Figure 4 Natural bioactive butenolide examples. 

Several synthetic methodologies have been developed for the construction of biologically-

active butenolide derivatives, both synthetic and natural. Moreover, these approaches include the 

synthesis of a g-lactonic ring, as well as the use of starting materials with furan-2(5H)-one building 

blocks.29 

Due to the importance of butanolide moiety, the synthesis of some cadiolide derivatives will 

be described in Chapter 3. The key steps are the Sonogashira coupling in the presence of palladium 

catalyst, followed by Diels-alder (DA) and retro Diels-alder (RDA) reactions with excellent 

regioselectivity, using alkyne and oxazole as starting materials, producing furan which, through 

hydrolysis treatment with HBr, yielded the 3-ketofuran-2(5H)-one and finally the alkylidenation 

reaction of the lactone moiety with different aromatic aldehydes. The cadiolide were submitted to 

biological assays to evaluate their antimicrobial properties. 
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SYNTHESIS AND BIOLOGICAL EVALUATION OF 

THIOBARBITURIC ACID DERIVATIVES 
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1. INTRODUCTION 

 
1.1.History of Barbituric Acid 

In 1864, German chemist Adolph von Bayer, future founder of Bayer Pharmaceuticals, 

discovered one of the most notorious therapeutics known to chemists, malonylurea, more 

commonly known as barbituric acid (Figure 1.1).30-31 During the scientific era of Bayer, chemists 

had none of the tools available to modern day scientists, and analyses of compounds thought to 

possess biological activity were routinely made by taste, giving chemists first-hand knowledge of 

the physiological effects of potential therapeutics. Curiously, after this routine analysis was 

performed, barbituric acid itself was determined to be without therapeutic significance.32 However, 

the discovery of barbituric acid subsequently led to the introduction of many other barbiturate 

derivatives, fueling the discoveries of a broad new class of therapeutics that would quickly 

dominate both the medical and social circles in the early 20th century.33-34 

 
Figure 1.1 Synthesis of barbituric acid (1). 

1.2. Modifications to original barbituric acid 

In 1903 Fischer and von Mering synthesized the first therapeutically active derivative of 

barbituric acid, done by replacing the C-5 hydrogens of the barbituric acid ring with ethyl 

substituents.35 Upon administration of this new barbiturate derivative, human beings fell into a 

state of hypnosis, or deep sleep. This new diethyl barbiturate, commonly called veronal (3) (Figure 

1.2), is the first known active hypnotic derived from barbituric acid.36  

 

 
Figure 1.2 Synthesis of Veronal 
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Even in the early 20th Century, chemists realized that there was a serious problem with the 

metabolic degradation of veronal. The hypnotic drug was slow to take effect, and very slowly 

metabolized. According to early scientific accounts, human beings administered with this 

compound would sleep for several days, were unable to be roused from the coma-like state induced 

by the drug.37 From this point on, medicinal chemists have been exploring the therapeutic effects 

of barbituric acids, thier derivatives and new substitutions and derivations of barbituric acids as 

compounds with therapeutic value. Since the synthesis of veronal (3), improvements have been 

made to this class of therapeutics, which in turn elicited new structures belonging to perhaps one 

of the most valuable medicinal classes of compounds known to date.38 Early advances in the 

structure-activity relationship of barbiturates and their therapeutic effects produced, in 1912, the 

active drug phenobarbital (4) (Figure 1.3). Phenobarbital has been classically described as a 

medicinal compound possessing hypnotic and anticonvulsant activity, and given twice daily, keeps 

epileptic seizures under control.39 

 
Figure 1.3  Phenobarbital 

 
1.3. Effects of subsequent barbituric acid modification 

The modifications of barbiturates led to the yield of lipophilic compounds able to quickly 

pass through both the gastrointestinal tract (GI) tract and the blood-brain barrier (BBB), enabling 

the transformation of barbiturates into widely used anesthetics, anxiolytics, and sedatives. 

Functional substitutions of the original barbituric acid stem from either C-5 substitutions or C-2 

substitutions, each producing compound with varying activities. For example, manipulations of 

the C-5 position have resulted in the production of amobarbital (5), pentobarbital (6), secobarbital 

(7) and hexobarbital (8). Changing of  oxygen with sulfur atom at C-2 position, resulted in the 

production of the short acting barbiturates, thiamylal (9) and thiopental (10) (Figure 1.4).30 
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* * * * 

* * 

 
 

Figure 1.4 Barbituric acid modification at C-2 and C-5 position 

 
 1.4. Classifications of Barbiturates 

Barbituric acids and their derivatives are classified into four classes, which are arranged 

according to their metabolic degradation and tissue deposition.40 The duration of the effects of 

barbiturates as well as the protein binding affinity of barbiturates are directly proportional to the 

chain length of the hydrocarbon substituent attached to the C-5 position of the barbituric acid ring. 

For example, the classes include the following: 

i) Ultra-short-acting barbiturates. It includes compounds that are metabolized rapidly and are 

highly lipid soluble. These are typically used as intravenous anesthetics. Examples include 

hexobarbital (8), thiamylal (9), thiopental (10), all of which have C-5 substituents that are 

moieties of four or more carbon units.40  

ii) Short-acting barbiturates. It includes compounds that are lipid soluble and bind to proteins. 

Renal clearance of these derivatives is very low and they are generally used as hypnotics 

for patients who need help falling asleep. These compounds typically have a half-life of 

about three hours, and are advantageous because they do not cause next-day drowsiness. 

While these are compounds with similar structures of ultra-short acting counterparts, they 

lack the additional C-2 substitution. Several examples of short acting barbiturates include 

pentobarbital (6) and secobarbital (7).40 

iii) Intermediate-acting barbiturates. These derivatives are typically used as hypnotics for 
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persons waking in the middle of the night. They generally have a half-life of three to six 

hours, and cause next-day drowsiness. Several examples in this class include butabarbital 

and amobarbital (5).40 

iv) Long acting barbiturates. These compounds exert a hypnotic effect for longer than six 

hours, causing sedation and subsequent drowsiness. They are traditionally used for anti-

convulsant effects rather than hypnotic effects, due to the side effects. Examples include 

phenobarbital (4) and veronal (3).40 

 1.5. Physical Properties of barbituric acids 

Barbituric acids and their derivatives can be considered both hydrophilic, due to the 2,4,6-

pyrimidinetrione ring system, and lipophilic, depending on the nature of the 5,5’-substituents. 

Barbituric acid itself is relatively a strong acid, having a pKa of 4.01 in water.30 It is partially 

soluble in polar solvents, such as methanol and water, and in these solvents retains its acidic 

properties, as well as it is converted into the corresponding salt when treated with a base. Generally 

speaking, barbiturate derivatives having at least one unsubstituted NH hydrogen retain their acidic 

properties, but the relative acidity of barbituric acid derivatives depends not only on the N-

substitution, but on the C-5 substitution as well (Figure 1.5).38, 41 

 

 
Figure 1.5 Acidic properties of barbitutric acid and derivatives 

NH

O

HN

O O

Barbituric acid 
pKa = 4.01

NH

O

HN

O O

N

O

HN

O O

5,5’-disubstituted 
barbituric acid pKa = 6.5-8

3,5,5’-trisubstituted 
barbituric acid pKa = > 8

R1 R R1 R

Me



                                                                                                                                

 

12 
1.7. General biological and chemical importance  

Arylidene barbiturates are important members of the pyrimidine family. The major 

importance of these compounds has been centered on their application as useful precursors in the 

preparation of new heterocyclic bioactive molecules42 as potential selective oxidizing agents 43 and 

for the unsymmetrical synthesis of disulphides.44 Some of them have been studied as nonlinear 

optical materials.45 Barbiturates exhibit biological activities in fields areas, such as antibacterial, 

hypotensive, tranquilizing,5, 46 antioxidants,47 anticonvulsant and anesthetic,48 antiepileptic,49 

sedatives and hypnotics,50 anticancer,51 immuno-modulating,52 radio-sensitizing53 and gelatinase 

inhibitors.54 Similarly, thiobarbiturates behave as HIV integrase inhibitors,55 antifungal,56 

antiviral,57 antitumor activities,58 tyrosinase inhibitors,59 anti-inflammatory activities.60 Literature 

reviews also revealed that barbiturates and thiobarbiturates show anti- tuberculosis,61 and anti-

urease62 properties.  

Phenobarbital (4) has been classically described as a medicinal compound possessing 

hypnotic and anticonvulsant activities, and given twice daily, it keeps epileptic seizures under 

control 30, 39, 63. Compounds 11, 12 alkylated at position 5 have demonstrated anticancer, HIV-1 

and HIV-2 protease inhibitory 64, sedative-hypnotic65 and anticonvulsant66 properties. Many of 

their representatives have clinical use as anti-inflammatory67 and hypnotic drugs, such as veronal 

(3), seconal (13), bucolone (14) and sodium pentothal (15) (Figure 1.6). 68 
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Figure 1.6 Barbiturates derivatives 

Yan et al., synthesized a series of novel barbiturate and thiobarbiturate derivatives and 

determined their inhibitory effects on the diphenolase activity of mushroom tyrosinase and their 

antibacterial activities against Gram-positive and Gram-negative bacteria.59 The results showed 

that most of compounds had potential tyrosinase inhibitory activities. Particularly, compounds 16 

and 17 were found to be the most potent inhibitors with IC50 values of 13.98 µM and 14.49 µM, 

respectively. Interestingly, thiobarbiturates 17, 18 and 19 exhibited potent and selective 

antibacterial effects on Gram-positive bacteria S. aureus with the minimum inhibitory 

concentration (MIC) values of  3.1, 3.1 and 6.25 mg/mL, respectively (Figure 1.7).  
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Figure 1.7 Antibacterial and mushroom tyrosinase activities of barbiturates and thiobarbiturates 

Sokmen et al., also synthesized some barbiturates and thiobarbiturates and studied their 

antibacterial, anti-urease, and antioxidant activities.69 The results showed that all of compounds 

exhibited anti-urease and antioxidant activities. Among the synthesized compounds, 20 and 21 

were the most active reducing agent. Compounds 21, 23, 24, and 25 were determined to have 

the highest anti-urease activity. Compounds 20, 22, 23, and 24 also showed high antibacterial 

activity. These arylidene barbiturates have potential to be further developed to be used in 

agriculture and pharmacy industries due to their excellent antibacterial, anti-urease, and 

antioxidant activities (Figure 1.8).  

 

Figure 1.8 Antimicrobial and antioxidant activities of some arylidene barbiturates and 
thiobarbiturates 

Dhorajiya et al., synthesized barbituric acid derivatives through green route synthetic 

protocol.70 All synthesized compounds were evaluated for their anticancer and antimicrobial 

activities. Some of the compounds show significant anticancer activities against MCF-7, NCI-
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H460 and SF-268 and antitumor activity against WI-38 cell lines. Against gram-positive and gram-

negative bacteria, three compounds exhibited significant activities. On the other hand, two 

compounds having electron donating group showed highly potent activity against T. Rubrum 

fungal strain although three compounds were found to exhibit equipotent against T. rubrum fungal 

strain using griseofulvin as standard drug (Figure 1.9).  

 

Figure 1.9 General structure for amine derivatives of barbituric acid 

Dalal et al., synthesized some pyrazole and indole derivatives of thiobarbituric acid and 

were screened for their antifungal activity. Compounds 27-29 were found more active than the 

indole derivatives against all the tested moulds. It has been concluded that in the thiobarbiturates 

were more potent than the barbiturates derivatives and may be attributed due to the presence of 

sulfur instead of carbonyl oxygen at C-2 position that increase lipid solubility(Figure 1.10).71 

  

Figure 1.10 Thiobarbituric Acid Derivatives as Antifungal Agents. 

 

Elshaier et al., synthesized a series of pyrazole-thiobarbituric acid derivatives and 

evaluated the compounds for their antifungal and antibacterial activities.72 The results of microbial 
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study revealed that compounds 30 and 3l were the most active against C. albicans, with  MIC 

value of 4 µg/L. Next were compounds 32 and 33, which showed MIC of 8 µg/L, as compared 

with the reference drug Fluconazole with a MIC value of 0.5 µg/L. However, among the 

synthesized compounds, 34 exhibited marked activity against S. aureus and E. faecalis, with MIC 

values of 16 µg/L. Compound 32 and 33 were the most active against B. subtilis with MIC = 16 

µg/L in comparison to standard ciprofloxacin, with MIC values of <0.25 µg/L against all tested 

bacteria (Figure 1.11).  

 

 

Figure 1.11 Antimicrobial pyrazole-thiobarbiturates 

Oraby et al., synthesize then some new disubstituted arylazo-barbituric and thiobarbituric 

acids derivatives and evaluated their antimicrobial activities.73 The results of the antimicrobial 

screening (at 32 μg/mL) revealed that 35 had high activity against the Gram-negative bacteria, 

P.aeurginosa, ranging from 50-100% inhibition. Furthermore, both 36 and 37 showed significant 

activity (58-68% inhibition) against the Gram-positive S. aureus (MRSA). All of the compounds 

which were tested proved to be non-cytotoxic against the human embryonic kidney cell line, 

HEK293 with the CC50 values of  > 32 μg/mL (Figure 1.12).  
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Figure 1.12 Antimicrobial barbituric and thiobarbituric acid derivatives  

Fungal infections have continued to exist during the past two decades especially involving 

immunocompromised patients.74-76 Although it seems to have many drugs for the treatment of 

systemic and superficial mycoses, there are in fact only a limited number of effective antifungal 

drugs.75Azoles that inhibit ergosterol biosynthesis and polyenes that bind to mature membrane 

sterols have been the mainstays of antifungal therapy for more than two decades.76 However, the 

emergence of fluconazole resistance among different pathogenic strains and the high toxicity of 

amphotericin B,77-78 have led to the search for new antifungal agents.79 Although combination 

therapy has emerged as a good alternative to overcome these disadvantages,80-81 there is a real need 

for a next generation of safer and more potent antifungal agents. Due to their importance in the 

above- mentioned, we synthesize some arylidene thiobarbiturates and evaluated their antimicrobial 

and anti-urease effects. 

1.8. Urease 

The metalloenzyme urease (urea amidohydrolase; EC 3.5.1.5) is a large hetero-polymeric 

enzyme, which belongs to the superfamily of amidohydrolases and phosphotriesterases.82 It 

catalyzes the hydrolysis of urea to ammonia and carbamate. It is present in a wide variety of plants, 

algae, fungi and bacteria.82-84 The structure, number and type of subunits, molecular weight, and 

amino acid sequence of urease depend on its origin. Apart from these differences, the amino acid 

sequences of the active sites and the mechanism of enzyme activity are the same. The active center 

of urease possesses a metal center, i.e., two nickel(II) atoms85 with an interatomic distance of about 

3.5 Å (Figure 1.13). The ions are bridged by a carbamylated lysine and an oxygen donor. In 

addition to the bridges, one of the nickel ions (Ni1) is coordinated by two histidine and a water 

molecule. The coordination of Ni2 is similar to the one of Ni1 and includes two histidine residues, 

a water molecule and a terminally bound aspartate.86-87 
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Figure 1.13 Schematic depiction of the structure of the active site of Bacillus pasteurii urease. 

 
 

Urease is involved in the pathogenesis of hepatic encephalopathy, hepatic coma, 

urolithiasis, pyelonephritis, ammonia and urinary catheter encrustation.88 It is also a major cause 

of pathologies induced by Helicobacter pylori (HP) as this allows bacteria to survive at the low 

pH of the stomach and hence plays an important role in producing peptic and gastric ulcers.84 As 

a result, ureases have been identified as important targets in research both for human and animal 

health, as well as in agriculture. These are also known to lessen the environmental issues and 

augment the uptake of urea nitrogen by plants.89-93 

Urease inhibitors have also known to be potent antiulcer drugs.94 Urease inhibitors can be 

broadly classified into two categories: (i) substrate-like inhibitors such as hydroxyurea95 and 

hydroxamic acids96; (ii) mechanism based inhibitors such as phosphorodiamidates97-98 and 

imidazoles such as proton pump inhibitors of rabeprazole99, lansoprazole100, and omeprazole.101 

Among the known inhibitors of urease, the most efficient are phosphorodiamide and 

phosphorotriamide derivatives.102-104 This group includes the following: N-n-

butylthiophosphorictriamide (NBPT) which has been shown to form stable complexes with urease 

and is among the most efficient inhibitors of the enzyme105-106; phenylphosphorodiamidate 

(PPD),107-108 N-n-butylphosphorictriamide (NBPTO),109-110 and N-diaminophosphoryl-4-

fluorobenzamide (flurofamide)98, 111 as sketched in Figure 1.14. Many urease inhibitors112-115 have 

been described in the past decades but part of them was prevented from being used in vivo because 

of their toxicity or instability. 
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Figure 1.14 Chemical structures of some known inhibitors of urease. 

 

Hence, there are unmet medical needs for novel and efficacious urease inhibitors with 

greater stability and low toxicity. Meanwhile, the studies on novel urease inhibitors are essential 

not only for the basic research on urease biochemistry. 

 
1.8.1. Barbituric acid derivatives as urease inhibitors 

 
In an effort to further broaden the scope of urease inhibition, Khan et al.47 reported a range 

of diverse barbiturate derivatives that exhibited significant potential on tolerance against H. pylori 

urease. Molecular modeling was also carried out for the prediction of potential ligands. These 

compounds showed varying degrees of urease inhibitory potential when compared with standard 

inhibitor of urease, thiourea. Compounds 38 (IC50 = 13.0±1.2 𝜇M), 39 (IC50 = 17.6±1.3 𝜇M) and 

40 (IC50 = 19.1 ± 1.6 𝜇M)) exhibited excellent urease inhibitory potential higher than the standard 

thiourea. Some other analogs showed comparable activity. This highest potency of compound 38 

may be attributed to the presence of fluoro group at para position. Its ortho-fluoro and meta-fluoro 

analogs also exhibited excellent urease inhibitory potential. However, overall, among the fluoro-

substituted arylidene barbiturate analogs, the p-fluoro derivative was the most potent one. 

Compound 39 with p-N,N-dimethylamino group was found to be the second most potent inhibitor 

of urease with an IC50 value of 17.6 ±1.3 𝜇M. Replacement of this substituent at the same position 

with chlorine atom leads to a slight decrease in activity but comparable to standard thiourea. These 

results clearly demonstrated that the para-substituted arylidene barbiturates are the most potent 

inhibitors of urease, as compared to their ortho- or meta-analogues (Figure 1.15).  
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The research group of Amanlou and co-workers116 identified new H. pylori urease inhibitor 

scaffolds by virtual screening of a library of compounds. Barbituric acid and compounds 40 and 

(41) were found to be more potent urease inhibitors than the standard inhibitor hydroxyurea, with 

IC50 values of 60.0 ± 4.93 and 41.6 ± 4.82 𝜇M, respectively. 5-Benzylidene barbituric acid has 

enhanced biological activities compared to barbituric acid. Furthermore, the results indicated that 

among the substituted 5-benzylidene barbiturates, those with para-substitution have higher urease 

inhibitory activities. This may be attributed to the close proximity of the barbituric acid moiety to 

the bimetallic nickel center in unsubstituted or para-substituted than in ortho- or meta-substituted 

analogs, so it has greater chelating ability. The results presented Amanlou and co-workers revealed 

that these compounds could be used as starting points for lead optimization. (Figure 1.15)  

 
 

Figure 1.15 Arylidene barbiturates as anti-urease. 

 

Thiobarbiturates also showed excellent inhibitory activity against urease. The work by 

Khan at el. (2014) have demonstrated that some thiobarbituric acid derivatives, 43-48, can inhibit 

urease at a very small concentration (IC50= 1.61 µM) compared to thiourea (IC50 = 21 ± 0.11µM), 

as illustrated by some selected examples shown in Figure 1.16. 

 

N
H

NH

O

O

O

R

F

O

(38)

(39)

(40)

(41)

(42)

(IC50 = 13.0 ±1.2 !M)

IC50 = 17.6±1.3 !M)

(IC50 = 19.1± 1.6 !M)

(IC50 = 60.0 ± 4.93  !M )

(IC50 = 41.6 ± 4.82 !M

R =

F

N



 

 

21 

  
 

Figure 1.16 Thiobarbituric acid derivatives with potent urease inhibitory activity. 

 
 
1.9. Previous approaches towards the synthesis of barbiturates 

The Knoevenagel condensation of aldehydes with active methylene compounds is an 

important and widely employed method for carbon-carbon bond formation in organic synthesis.117-

118 Amidst diverse classes of active methylene compounds available for Knoevenagel 

condensation, barbituric acids and their derivatives have become a subject of significant research. 

Arylidene barbituric acids (A) and their 2-thio analogues (B) are useful intermediates for the 

synthesis of a variety of heterocyclic compounds119 and benzyl barbituric acid derivatives (Figure 

1.17).120 

 

Figure 1.17 Barbiturate (A) and Thiobarbiturate (B) 

N
H

NH

S

O

O

R

N

N

O

HO

(43)

(44)

(45)

(46)

(47)

IC50 = 16.0 ± 0.45 !M

(IC50 = 16.0 ± 0.22 !M)

(IC50 = 14.3 ± 0.27 !M)

(IC50 = 6.7 ± 0.27 !M )

(IC50 = 10.6 ± 0.17 !M

R =
CH3

O

H3C

Br

Br

OH
HO

(IC50 = 1.6 ± 0.18 !M

(48)



                                                                                                                                

 

22 
In view of the importance of barbituric acid derivatives, many methods have been reported 

in the literature for their synthesis. The reaction of barbituric acid with carbonyl compounds was 

studied as early as 1864 and the products were monosubstituted as well as bis-substituted barbituric 

acids (Figure 1.18).121 

 

Figure 1.18 Mono and bis-substituted barbiturates 

The formation of mono-substituted condensation products between aromatic aldehydes and 

barbituric acid has been achieved by various acid and base catalyzed reactions.122-127 Cui et. al 

have synthesized arylidene barbituric acids by refluxing a mixture of aldehyde and barbituric acid 

in acetic acid. The arylidene barbiturates were then used as intermediates for the synthesis of 

inhibitors of Plasmodium falciparum purine nucleoside phosphorylase (Scheme 1.1).128 

Li et al have utilized SiO2.12WO3.24H2O as a solid acid catalyst for the condensation of 

aromatic aldehydes and barbituric acid in aqueous media at room temperature to give 5-arylidene 

barbituric acids (Scheme 1.1).129 They carried out the reaction under exposure to ultrasound also, 

but it resulted in decreased yields and increased reaction time. 

Jin and co-workers found an efficient and convenient approach for the condensation 

reaction of aromatic aldehydes and barbituric acid using ZrO2/SO42- solid super acid by grinding 

the mixture at room temperature. The method has several advantages such as neutral conditions, 

high yields and was an environmentally benign technique.130 

Dry media condensation of barbituric acid with aryl aldehydes has been reported in 

presence of basic alumina, sodium chloride, anhyd. K2SO4, NH4OAc/AcOH, Montmorillonite K-

10, Montmorillonite KSF and KSF-NaCl as catalytic reagents under microwave irradiation by 

Dewan and co-workers.131-132 

A new method for the Knoevenagel condensation of aromatic aldehydes with barbituric 

acid has been described by Ren and coworkers in the presence of cetyltrimethylammonium 

bromide at room temperature in water (scheme 1.1).133 
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Scheme 1.1 General scheme for the synthesis of arylidene barbiturates 

The above discussion demonstrates that this reaction can be easily carried out without a 

catalyst but it requires several hours. To overcome this problem and reduce reaction time, an 

alternative methodology is required for the synthesis of arylidene thiobarbiturates.  
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Objectives and strategies 

 
The aim of this work is to develop a simple, short, and efficient methodology for the 

synthesis of arylidene barbiturates. The main step involves a Knoevenagel condensation between 

aromatic aldehydes and thiobarbituric acid in the presence of different catalysts and solvent to 

optimize the reaction conditions and produce the desired target compounds in good yields. 

 

Figure 1.19 Proposed structure for the synthesis of thiobarbiturates 

 
 

The methodology established will serves as a reference for the synthesis of the other 

barbiturate derivatives. Also, a series of benzylidene thiobarbiturate was synthesized to evaluate 

their anti-fungal, antibacterial and anti-urease activities.  
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Results and Discussion 
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2. Results and discussion  

2.1. Chemistry 

For the synthesis of compounds 1-20 a well-known reaction, namely Knoevenagel 

condensation, between aldehydes and  thiobarbituric acid was carried out. Although this 

condensation can be carried out without a catalyst, the use of a variety of acids and bases have 

been reported, including sulphamic acid,134 NaOH,135 Et3N,136 piperidine,137 and nickel 

nanoparticles,138 Even though the use of bismuth (III) nitrate [Bi(NO3)3.5H2O] as catalyst in 

organic synthesis has increased considerably over the years due to its thermal stability, low cost, 

low toxicity and stability to air,139 we found no report on its application for the condensation 

reported in this work. So, we herein report, for the first time, the catalytic activity of bismuth(III) 

nitrate for the efficient synthesis of arylidene derivatives of thiobarbituric acid. 

Initially we have carried out the condensation of 4-hydroxybenzaldehyde and 

thiobarbituric acid under a variety of conditions (Table 1.1) and found that the use of 20 mol% of 

Bi(NO3)3 in ethanol at 80 °C, efficiently catalyzes the condensation, resulting in the required 

products in 10-20 minutes (Table 1.1). In the absence of catalyst this reaction usually requires 

several hours. 

The reaction was initially carried out at 80 °C employing EtOH or H2O as solvent, yielding 

the desired product in 70 and 65% yield respectively (Table 1.1, entries 1and 2). In the presence 

of NaOH as catalyst H2O or EtOH as a solvent  at room temperature, the yields were almost the 

same (entries 3 and 5) . However,  at 80 °C the yield increases to 75% (Table 1.1, entry 4). The 

reaction was also carried out in the presence of Bi(NO3)3 as a catalyst in EtOH at room temperature 

yielding   89% (entry 6). However, at 80 °C in EtOH and Bi(NO3)3  as a catalyst 95%  was observed 

(entry 7). In case of MeCN as solvent at  80 °C no product  was formed (entry 8). The reaction 

was also carried out in binary system MeCN/H2O (1:1 v/v), and only 25% yield was observed 

(Table 1.1, entry 9).  

To further investigate the reaction, we carried out the reaction in aprotic solvents. In the 

cases of THF or DCM as a solvent and Bi(NO3)3 as a catalyst at 80 and 50 °C, only 25 and 35% 

were observed (Table 1.1, entry 10 and 11). However, in the case of HNO3 as a catalyst in EtOH 

at room temperature and at  80 °C low yields were obtained (entries 12 and 13). It is confirmed 
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from the above discussion that Knoevenagel condensation gives better results in polar and protic 

solvents and in the presence of Bi(NO3)3.  

 

Table 1.1 Effect of solvent and catalyst on synthesis of arylidene derivatives of thiobarbituric 
acid 

 
Entry Solvent Catalysta (equiv.) Temp. (ºC) Time (h) Yield (%) 

1 H2O - 80 7 65 
2 EtOH - 80 2 70 
3 
4 

H2O 
H2O 

NaOH (1.0) 
NaOH (1.0) 

25 
80 

7 
4 

68 
75 

5 
6 

EtOH 
EtOH 

NaOH (1.0) 
Bi(NO3)3 (0.2) 

25 
25 

6 
1 

70 
89 

7 EtOH Bi(NO3)3 (0.2) 80 0.3 95 
8 MeCN Bi(NO3)3 (0.2) 80 8 - 
9 MeCN/H2O - 80 8 25 
10 THF Bi(NO3)3 (0.2) 80 6 35 
11 
12 
13 

DCM 
EtOH 
EtOH 

Bi(NO3)3 (0.2) 
HNO3 

HNO3 

50 
25 
80 

6 
5 
5 

20 
20 
30 

         a In all cases Bi(NO3)3 catalyst stands for Bi(NO3)3.5H2O 
 

 

Compound 1 was identified by melting point, in addition to spectroscopic analysis as IR, 1H 

and 13C NMR and HRMS. 

The IR spectra show sharp as well as broad bands in the range of 3172 cm-1, indicating the 

presence of N-H group, and stretching’s at 1659 cm-1 corresponding to the C=O group were found. 

The bands in the range of  1652-1539 cm-1 were assigned to C=C of aromatic rings, C=C of alkene 

and C=N of the conjugated form of thiobarbituric acid moiety (data not shown). 
1H NMR spectrum showed two singlets characteristic of the two NH groups at d  12.22 and 

12.23. A singlet may also be observed at d  8.24, referring to H-7 of the double bond. Signals 

corresponding to the hydrogens H-10/12 and H-9/13, with similar chemical environments of the 

benzylidene ring can be seen at 6.90 and 8.38 ppm (J = 7.9 Hz), respectively (Figure 1.19). 
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Figure 1.19 1H NMR spectrum (400 MHz, DMSO-d6) of 4-hydroxybenzelidenethiobarbiturate (1) 

 

 In the 13C NMR  spectrum,  the signal  of the  C-2  attached  to  the sulfur atom  is likely to  

be at  d  178.3. Two signals of higher intensity may also be seen, which clearly corresponds to the 

unsubstituted carbons of the aromatic ring with chemical shift of 115.8 and 139.0 ppm. Signals of 

carbons C-4 (d  160.2) and C-6 (d  162.6), confirm the presence of two carbonyl groups. Signal at 

156.8 ppm confirms the formation benzelidene barbiturates correspond to carbon  C-7. Signal at 

163.9 ppm which is the aromatic carbon bonded to the hydroxyl group is also easily visible. 

Finally, the signals for C-5 and C-8 are apparent at d  124.1 and 114.3 respectively (Figure 1.20).  
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Figure 1.20 13C NMR spectrum (100 MHz) of 4-hydroxybenzelidenethiobarbiturate (1) 

 

Heterogeneous catalysts have also gained much importance in the recent years due to 

economic and environmental benefits. These catalysts make the synthetic processes clean, safe, 

high yielding and inexpensive.140 Amongst the heterogeneous catalysts, bismuth salts have 

attracted much attention recently.141 Bismuth is the heaviest stable element of the periodic table 

and even though it carries the status of heavy metal, it is rated as relatively nontoxic and 

noncarcinogenic unlike its neighboring elements.142 Additionally, the fact that it tolerates air and 

moisture143 makes the chemistry of bismuth attractive to synthetic chemists. The catalytic nature 

of this metal is attributed to the capability of its salts to acts as Lewis acids in reactions. The 

nontoxicity together with the ability to endure moisture makes bismuth compounds favorites of 

chemists and scientists who are concerned about environmental hazards, and such properties are 

highly desirable for scale-up of a method. The Lewis acidic nature of salts of this element have 

been thoroughly investigated in various types of reactions such as cycloaddition reactions, 

reactions of sugars, protection and deprotection reactions, synthesis of heterocyclic systems, 

oxidation reactions, multi component reactions, etc. 144 

Our work with bismuth nitrate has led to the discovery of bismuth nitrate pentahydrate, 

Bi(NO3)35H2O, an inexpensive, easy-to handle, commercially available solid as a versatile catalyst 
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for the synthesis of thiobarbiturates. By having developed a good methodology based on the use 

of Bi(NO3)3 as a catalyst for the condensation of thiobarbituric acid with aldehydes, we turned our 

attention to investigate the scope of this new protocol. For this, we have selected a series of 

benzaldehydes bearing electron-donating and electron-withdrawing groups at different positions 

of the aromatic ring, in order to evaluate the effect of such groups on the efficacy of the 

methodology. We have also selected some heteroaromatic carbaldehydes and 2-

naphtalenecarbaldehyde to evaluate even further the scope of the new methodology. Such selected 

substrates, if they can be effectively converted into the required products, will allow the 

preparation of a series of compounds for structure-activity relationship studies. The results of such 

investigation are summarized in Table 1.2. 

 As can be observed from Table 1.2, the product yields were generally high (compounds 1-20, 

yields 81-95%). Aldehydes bearing electron donating or electron withdrawing functional groups 

as hydroxyl (1-5), methoxyl (6 and 7), bromine (8), chlorine, fluorine (9), cyano (11), 

trifluoromethyl (12) and nitro (10) react well under this protocol. Importantly, excellent yields 

were also obtained with the 2-naphthaldehyde (20), 4-phenylbenzaldehyde (19) and some 

heteroaromatic aldehydes (13-18). The structures of all the synthesized compounds were 

established after extensive spectroscopic analysis.  
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Table 1.2 Bismuth(III) nitrate catalyzed synthesis of thiobarbituric acid derivatives and 
respective yields 

 
 

2.2. Antimicrobial activities 

A broad antimicrobial screening was conducted against two filamentous fungi, one Gram-

negative bacterium and six yeast strains. The bioactivities of compounds 1-20 were assessed 

against two strains of filamentous fungi (Alternaria solani and Fusarium solani) and the results 

are summarized in Table 1.3. For the two filamentous fungi, since there is profuse mycelia 

EtOH, 80 °C, 10-20 min 

 



                                                                                                                                

 

32 
formation, assay was conducted using minimum antifungal inhibitory activity and the calculation 

of IC50 was not possible. On the other hand, in the assays against bacterium and yeasts, the results 

are expressed as IC50. 

F. solani is a phytopathogenic fungus that causes several crop diseases, such as root and stem 

rot of pea, sudden death syndrome of soybean, foot rot of bean and dry rot of potato145. This fungus 

was resistant to all compounds 1-20 in all concentrations tested. On the other hand, A. solani, a 

pathogenic fungus that causes a disease in potato plants called ‘early blight’146, was inhibited at 

different levels according to the nature of substituents on the aromatic ring. Moderate activities 

were observed for compounds 11 and 12 (MIC = 15.63 µg mL-1), 8, 13, 15, 16 and 19 (MIC = 

31.25 µg mL-1). Compounds 6 and 7 showed notable activity with MIC of 7.81 µg mL-1. Most 

active derivatives were compounds 5 and 14, which were able to inhibit fungal growth in a low 

concentration (MIC = 3.90 µg mL-1). The activity found for compounds 5 and 14 is comparable to 

the effect of the positive control miconazole (MIC = 1.95 µg mL-1) (Table 1.3).  
  

Table 1.3 Minimum inhibitory concentration for compounds 1-20 against A. solani and F. solani 

MIC (µg mL-1) 

Compound Alternaria solani Fusarium solani Compound Alternaria solani Fusarium solani 

1 125.00 -a 11 15.63 - 

2 250.00 - 12 15.63 - 

3 125.00 - 13 31.25 - 

4 250.00 - 14 3.90 - 

5 3.90 - 15 31.25 - 

6 7.81 - 16 31.25 - 

7 7.81 - 17 62.50 - 

8 31.25 - 18 62.50 - 

9 62.50 - 19 31.25 - 

10 125.00 - 20 62.50 - 

Miconazole 1.95 1.95 Miconazole 1.95 1.95 
a (-) No activity observed at all concentrations tested. 

The activities of compounds 1-20 were evaluated against the Gram-negative 

phytopathogenic bacteria Erwinia carotovora and the yeast strains Candida albicans, Candida 

dubliniensis, Candida tropicalis, Candida parapsilosis, Candida lusitaniae and Cryptococcus 

neoformans. Control experiments were carried out using ampicillin (Amp) for the bacteria and 

miconazole (Mico) and nystatin (Nys) for the yeast strains (see Table 1.4).  
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Table 1.4 IC50 (µg mL-1) for the compounds 1-20 calculated using micro-dilution methodology 
for six yeast strains (Candida albicans, C. dubliniensis, C. tropicalis, C. parapsilosis, C. 

lusitaniae and Cryptococcus neoformans) and for the bacterium Erwinia carotovora  

Compound 

IC50 (µg mL-1) 

C. albicans 
C. 

dubliniensis 

C. 

lusitaniae 

C. 

parapsilosis 

C. 

tropicalis 

C. 

neoformans 

E. 

carotovora 

1 -a - - 4.21 - 14.31 - 

2 - - - 4.24 - 9.25 154.8 

3 - - - - - 155.79 214.01 

4 218.48 92.64 129.14 - - 45.61 210.87 

5 - - - 48.49 - - - 

6 - - - <1.95 <1.95 27.38 - 

7 214.73 187.31 194.46 <1.95 <1.95 <1.95 <1.95 

8 - - - <1.95 <1.95 123.53 - 

9 - - - 8.12 - 17.73 - 

10 - - - 3.17 26.27 68.41 - 

11 - - - - - - - 

12 - - - <1.95 <1.95 81.26 - 

13 31.45 44.33 76.83 <1.95 <1.95 6.39 - 

14 <1.95 9.39 6.18 <1.95 <1.95 <1.95 - 

15 12.77 56.21 34.46 <1.95 <1.95 53.58 - 

16 - - - - - - 15.36 

17 - - - - - - - 

18 - - - <1.95 - 12.63 - 

19 221.69 - 166.62 9.78 <1.95 12.36 141.46 

20 172.38 196.92 192.03 3.60 <1.95 11.35 207.29 

Ampicillin 
Not 

tested 

Not 

tested 

Not 

tested 

Not 

tested 

Not 

tested 

Not 

tested 
<1.95 

Miconazole <1.95 <1.95 <1.95 <1.95 <1.95 <1.95 
Not 

tested 

Nystatin <1.95 <1.95 <1.95 <1.95 <1.95 <1.95 
Not 

tested 
a (-) IC50 value was not calculated since inhibition was lower than 50% at the higher concentration assayed. 

 

Candida albicans is a harmless microorganism present in healthy individuals that can adapt 

and generate genetically altered variants, more adapted to the host environment. In 

immunocompromised patients, this species can cause serious symptomatic infections, such as 

oropharyngeal candidiasis in AIDS patients 147 and candidemia associated with high mortality rates 
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in cancer patients 148. Nevertheless the importance of C. albicans as a human pathogen, other 

species of Candida genus like C. tropicalis and C. parapsilosis are relevant sources of invasive 

Candida infections, especially in surgical patients 149. Cryptococcus neoformans is opportunist 

yeast that causes lung infection that also deserves attention due to its clinical relevance in 

individuals with host defenses compromised. 

For all yeasts assayed, as well as for E. carotovora, most compounds showed a good correlation 

between concentration tested and the percentage of growth inhibition, indicating that the 

antimicrobial activity provided by this class of compounds is dose-dependent. Therefore, the IC50 

values for the active compounds were determined as shown in Table 1.4, and illustrated for some 

compounds in (Figure 1.21, A and B). 

 

  
 

Figure 1.21 The dose response curves and IC50 for some selected compounds. (A) Concentration 
(µg mL-1) of compound 2 versus inhibition of C. parapsilosis and C. neoformans. (B) 
Concentration (µg mL-1) of compounds 9, 10, 19 and 20 versus inhibition of C. parapsilosis. 

 

In general, the effects of this series of compounds on the microorganisms varied according to 

the structure and to the species tested. For the six yeast strains assayed, C. albicans, C. dubliniensis, 

and C. lusitaniae were resistant to most of the compounds, while C. parapsilosis, C. tropicalis and 

Cryptococcus neoformans were more effectively inhibited (see Table 1.3 and 1.4). For the less 

sensitive strains, it was observed that C. albicans, C. dubliniensis and C. lusitaneae, were more 

affected by compounds 14 (IC50 <1.95, 9.39 and 6.18 µg mL-1, respectively) and 13 (31.45, 44.33 

and 76.83 µg mL-1, respectively). Compound 15 was also very active against C. albicans (IC50 = 
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12.77 µg mL-1). These three compounds 13-15 were also very effective against C. parapsilosis, C. 

tropicalis and Cryptococcus neoformans (IC50 = <1.95 µg mL-1 for most cases). These IC50 values 

are comparable to those of the positive controls (miconaloze and nystatin). In special, activity of 

compounds against C. parapsilosis is outstanding in view of the great demand for effective and 

selective agents to fight infections caused by this species in cancer patients 150. 

Looking at the structural formulas of derivatives 13-15 it can be seen that all of them are 

derived from five-membered ring heteroaromatic aldehydes. The other compounds derived from 

substituted benzaldehyde, six-membered heteroaromatic aldehydes and naphthalenecarbaldehyde 

were ineffective against C. albicans, C. dubliniensis, and C. lusitaniae. Compounds 14 and 15 are 

isomers with the phenyl group at a or b position in the thiophene ring. This causes 14 to be linear 

while 15 has an angular shape. Such modifications resulted in dramatic effect as observed for the 

higher IC50 values of 15 compared to those of 14, except in the case of C. parapsilosis were IC50 

was very low (1.95 µg mL-1). 

As already mentioned, C. parapsilosis, C. tropicalis and C. neoformans were in general more 

sensitive to these compounds. The IC50 found for compounds 6, 7, 8, 12, 13, 14, 15 and 18 were 

smaller than the lower concentration tested (<1.95 µg mL-1) for C. parapsilosis. The compounds 

6, 7, 8, 12, 13, 14, 15, 19 and 20 had IC50 < 1.95 µg mL-1 for C. tropicallis, which is also an 

organism of great concern since it is also reported to cause invasive candidiasis in hospitalized 

patients worldwide 151. Moreover, the compounds 7 and 14 showed IC50 < 1.95 µg mL-1 for C. 

neoformans. These results are outstanding since IC50 of several tested compounds were comparable 

to the two antimicrobial agents (miconazole and nystatin) used as control in the assay. 

Although we could not get a clear structure-activity relationship, by observing the data for C. 

parapsitosis among the phenolic derivatives (1-5), only 1 and 2 were very active (IC50 = 4.21 µg 

mL-1). Derivatives of benzaldehydes bearing electron-donating (OMe) or electron-withdrawing 

groups at various positions (F, Cl, Br, CN, CF3, NO2) were active. The naphthalene carbaldehyde 

derivative 20 and the biphenyl derivative 19 were very active against C. parapsilosis, C. tropicalis 

and C. neoformans. From such results we envisage the preparation of other derivatives bearing 

five-membered heterocyclic, biphenyl and naphthalene substituted derivatives to a better 

understanding of the structure-activity relationship and to obtain more active substances. 

We have also investigated the effect of those compounds on Gram-negative bacteria (E. 

carotovora). This bacterial strain is important since it infects a variety of vegetables and plants 



                                                                                                                                

 

36 
including carrots, potatoes, cucumbers, onions, tomatoes, lettuce and ornamental plants like iris 
152-153. As observed from Table 3, derivative 7 was very active against this microorganism, with 

IC50 <1.95 µg mL-1, an activity comparable to the commercial antimicrobial agent ampicillin effect 

(<1.95 µg mL-1). The other compounds were less active or inactive against E. carotovora. It is 

interesting the presence of some inactive compounds, since this fact suggests that the structural 

features were effective to modulate the antimicrobial activity of the prepared derivatives. Besides, 

the derivatives showed preference towards inhibition of specific microbial strains. Selectivity is a 

very important characteristic on the development of novel antimicrobial agents. 

 

2.3. Urease Inhibitory Activity  

Synthetic compounds 1–20 were evaluated for their urease inhibitory activity based on 

their structural similarity with thiourea and previously reported thiobarbiturates as urease 

inhibitors. All compounds when tested at 40 μM demonstrated in vitro urease inhibitory activity 

causing inhibition in the range of 46.46 to 69.92% (Table 1.5). In order to study the structure-

activity relationship, thiobarbiturates with varying substituents were synthesized. These 

substituents include electron donating groups, such as alkoxy, OH, NH2  and electron withdrawing 

groups such as  Cl, F, Br, CN, and  NO2 substituents. The position of these groups on phenyl ring 

also influenced their enzyme inhibition potential (Figure 5). A close look of arylidene 

thiobarbiturates 1–20 suggested that their urease inhibitory activities are primarily dependent upon 

various substituents at the arylidene part of the skeleton. Compounds 8, 9, 12 and 18 showed good 

urease inhibitory activity as compared to the standard hydroxyurea. The compounds 1-7, 10, 11, 

13-17, 19 and 20 also showed good to moderate inhibitory activity against urease. 

Structure activity relationship can be studied based on these data. The thiobarbituric acid 

moiety remains constant and the only changes were in the aromatic aldehydes. The SAR is mainly 

based on changes in the substitution pattern of the aromatic aldehydes. 
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Table 1. 5 Anti-urease activity of thiobarbiturate derivatives 1-20 at the final concentration of 40 
μM in 1% Tween-20 

Compound (40 µM) % inhibition Compound (40 µM) % inhibition 
1 48.64 11 56.87 
2 55.42 12 69.40 
3 46.46 13 50.75 
4 49.74 14 53.05 
5 54.15 15 54.51 
6 48.66 16 52.83 
7 52.13 17 52.80 
8 63.18 18 69.92 
9 63.14 19 55.36 
10 50.12 20 55.07 

Hydroxyurea 86.16   
 

The 3-bromo-4-pyridine analog 18, 4-trifluoro methyl substituted analog 12, 4-bromo 

analog 8 and 2-Cl,4-F analog 9 showed potent activities at 40 μM, causing inhibition of 69.92, 

69.41, 63.18, and 63.14% respectively. The compounds 8, 9, 12, 16, 17 and 18 have electron 

withdrawing groups on the phenyl ring. Although halogens have -I effects, but also having +M 

(mesomeric effect) which almost cancel the -I effect and can donate electron to aromatic ring and 

hence the activity might be due to mesomeric effect. The difference in activities of pyridine 

analogues is due to the position of bromo groups and can also be influenced by the position of 

nitrogen atom. However, in literature it is mentioned that urease is a nickel-containing enzyme, 

and it can show coordination with sulfur atom of thiobarbituric acid. Compounds 1, 2, 3, 4 and 5 

have hydroxyl groups on phenyl ring. The activity might be due to these EDGs on the phenyl ring. 

The difference in the activity may be due to the position of hydroxyl group on the phenyl ring and 

the coordination of sulfur atom with the Ni atom of urease enzyme. Among the dihydroxylated 

derivatives 2-5, the most active was compounds are 2 and 5 (55.42% and 54.15 inhibition, 

respectively), being more active than the monohydroxylated compound 1 (48.64% inhibition). The 

activities of 3 and 4 are comparable to that of 1. Such results show that the position of the OH 

groups has an influence on the potency of such compounds.  

  The presence of a methoxyl group (compounds 6 and 7)  doesn’t improve the potency of 

the compounds in comparison of derivative 1. Compounds 10 and 11 having the electron-

withdrawing groups NO2 and CN groups on phenyl ring also exhibit good activities (50.12 and 

56.87%). 5-Cl-furyl analogue 13 also shows moderate inhibitory activity causing  50.75% 
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inhibition of urease. The activity might be due to the Ni metal interaction with sulfur atom of 

urease. Amongst the heterocycle derivatives, compound 15 having 5-phenylthiophene group 

shows better inhibitory potential (54.50%) as compare to its isomer 4-phenylthiophene 14 

(53.05%). Compound 19 and 20 almost having same inhibitory activities (55.36 and  55.07 %, 

respectively). Compound 19 has 4-phenyl group and 20 with naphthalene moiety. Both phenyl and 

naphthalene are electron donating groups, and the activity might due to the EDG groups. 

 

2.4 Molecular docking studies 

Molecular docking has contributed significantly in the identification of novel small drug-

like scaffolds exhibiting high binding affinity and selectivity for the target of interest. Hence, we 

extended our study to investigate in silico binding orientation of the synthesized derivatives in the 

active site of urease. The crystal structure of urease enzyme from Jack bean urease was selected 

for these studies.154 Docking simulations were performed using the Molecular Operating 

Environment (MOE) docking program. The active site of urease is located within the cavity or the 

crevice in its internal territory in which an HAE molecule chelates with two nickel ions (Ni798 

and Ni799) via hydroxyl oxygen. The key amino acid residues in the catalytic site of JBU are 

Ala170, His137, His139, Lys220, His249, His275, Gly280, Cys322, His323, His324, Arg339, 

Ala363 and Asp363. His137, His139 and KCX220, which interact with Ni799. Whereas, the 

His249, His275, Asp363 residues interact with Ni798. Carbamylated Lys490 (KCX220, a 

nonstandard residue), acts as a bridging residue between the two Ni ions. 

We analyzed the computer-generated molecular models of the compounds, and our 

analysis identified that all active compounds interact with the Ni ions in the urease enzyme. The 

coordination pattern of the most active compound 18 (69.92% inhibition) is shown in Figure 1.22. 

Compound 18 anchors itself in a way that enables a stronger coordination with the bi-nickel center 

(2.2 and 2.3 Å, respectively) via its sulfur atom at position 2. It also interacted through hydrogen 

bond with Ala 170.C (Figure 1.22).  
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Figure 1.22 The ligand-protein interactions of 18 with the active site of urease from Bacillus pasteurii (4UBP). (a) 
The left side displays 3D interactions of the compounds in the binding site. (b) The right side shows the 2D interaction 
patterns. Dashed lines show the interactions among the ligand and the amino acids of the protein. 

To get better understanding of the roles of substituents on the aromatic ring, a docking 

analysis of compounds 12 and 8 was also carried out. According to the docked pose, trifluoro 

methyl substituted analog 12 is well accommodated into the catalytic cavity, which allows the 

cyclic thiourea moiety of thiobarbiturate to coordinate tightly with the bi-nickel center (2.6 and 

3.0A˚, respectively, Figure 1.23).  

 

 

Figure 1.23 The ligand-protein interactions of 12 with the active site of urease from Bacillus pasteurii (4UBP). 
(a)The left side displays 3D interactions of the compounds in the binding site. (b)The right side shows the 2D 
interaction patterns. Dashed lines show the interactions among the ligand and the amino acids of the protein. 

(a) (b) 

(a) (b) 



                                                                                                                                

 

40 
Compound 12 also show hydrogen bonding interaction with Arg 338.C and Ala170.C 

through its carbonyl oxygen and amide hydrogen respectively. Similarly, compound 8 also showed  
similar types of interactions with Ni atom and Ala170.C to that of compound 12 (Figure 1.24).  

 

 

 

Figure 1.24. The ligand-protein interactions of 8 with the active site of urease from Bacillus pasteurii (4UBP). 
(a)The left side displays 3D interactions of the compounds in the binding site. (b)The right side shows the 2D 
interaction patterns. Dashed lines show the interactions among the ligand and the amino acids of the protein. 

However, the distances between the thiourea moiety of thiobarbiturate and the binickel 

center are 2.1 and 2.5 Å, respectively. To rationalize the high urease inhibitory activity of 

compound 18 over 12, binding affinity of both compounds was analyzed. Compound 18 exhibited 

a docking score of -10.61, a strong binding affinity of -9.403 kcal/mol and a low binding energy 

of -40.137 kcal/mol. On the other hand, compound 12 was found to have a docking score of -9.09, 

a binding affinity of -8.732 kcal/mol and a binding energy of -38.369 kcal/mol, which correlates 

with the in vitro data. To further rationalize the comparison of molecular docking and in vitro 

results, docked pose of compound 8 was also investigated. Figure 1.23 revealed that the presence 

of 4-bromo group has a marked effect on potency. In compound 8, thiobarbiturate moiety displaced 

away from Ni798 (3.5A˚) and showed weak metal ligation, and this is a possible explanation for 

lower in vitro activity of compound 8 in comparison with compounds 12 and 18. Furthermore, 

compound 8 ranked lower having a docking score of -7.19 a binding affinity of -6.591 kcal/mol 

and a binding energy of -29.861 kcal/mol. 

 

 

(a) (b) 
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3. Conclusion 

In conclusion, we have described a simple Knoevenagel condensation between aldehydes 

and thiobarbituric acid in ethanol employing Bi(NO3)3 as a catalyst. The reaction was fast (10-20 

minutes), carried out under mild conditions and afforded 80-95% product yields without any side 

reactions. During this study, we synthesized twenty thiobarbituric acid derivatives and evaluated 

their inhibitory potential against different microbes and anti-urease. Several compounds were 

identified as excellent selective microbe inhibitors with IC50 values of <1.95 µg mL-1, comparable 

with the positive control. Some of the compound also showed good inhibitory activity against 

urease. Molecular docking studies were also done for urease enzyme from Jack bean (4UBP). All 

of the compounds showed interactions with  Ni atoms of urease and hydrogen bonding the amino 

acid moieties of urease. Docking studies shows good correlation ship with in vitro urease activity. 

Such compounds can be used as a new template for the further development of new antimicrobial 

agents. 
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3. Material and Methods 

3.1. Chemicals and instruments 

Most of the chemicals were acquired from Sigma Aldrich Chemicals Ltd. and used without 

further purification. IR spectra were recorded in KBr on Shimadzu IR Affinity-1 FT-IR 

spectrophotometer and 1H and 13C NMR spectra were recorded on a Bruker Avance II 300 MHz 

and III 400 MHz NMR spectrometers in DMSO-d6. Mass spectra were recorded on Waters, Q-

TofMicromass (LCMS) spectrometer and Varian Inc. 410 Prostar Binary LC with 500 Mass 

Spectrophotometer. Melting points are uncorrected and were measured with a MQAPF-301 

apparatus. 

 

3.2. General procedure for the synthesis of thiobarbituric acid derivatives (1-20) 

 
The syntheses of thiobarbituric acid derivatives (1–20) were carried out by the reaction of 

thiobarbituric acid (0.144 g, 1.0 mmol) with different aromatic aldehydes (1.00 mmol, table 1.6) 

in the presence of pentahydrated bismuth nitrate (32.0 mg; 0.0650 mmol) in ethanol. The reaction 

mixture was stirred for 10-20 minutes at 80 oC. The completion of reaction was monitored 

periodically by TLC. After completion of the reaction, the product precipitated as a solid, which 

was filtered off, dried and recrystallized from ethanol.  
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Table 1.6 Structure of aldehydes used in the synthesis of benzylidene thiobarbiturates (1-20) 

 
 

3.3. Spectral data  

5-(4-hydroxybenzylidene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (1) (page -146): Yield: 

95%. Mp: 335-340 °C (Decompose), (>250 °C, lit.)59 IR (KBr): 

vmax= 3470, 3188, 3072, 3016, 2980, 2926, 1694, 1652, 1610, 1533, 

1453, 1345, 1285,1174, 1079, 975 cm-1. 1H NMR: (DMSO-d6, 400 

MHz): δ 12.32 (s, 1H, NH), 12.22 (s, 1H, NH), 8.38 (d, 2H, J =  7.9 

Hz, H-9/13), 8.24 (s, 1H, H-7), 6.90 (d, 2H, J =  7.9 Hz, H-10/12). 
13C NMR: δ 178.3 (C=S, C-2), 163.8 (C-11), 162.5 (C=O, C-6), 160.2 (C=O, C-4), 156.8 (CH, C-
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7), 138.9 ( C-9/3), 124.1 (C-8), 115.8 (C-10/12), 114.3 (C5); HRMS (ESI TOF-MS) [M+H]+ calcd. 

for [C11H9N2O3S]+: 249.0334, found 249.0239. 

5-(2,4-dihydroxybenzylidene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (2): Yield: 94%, 

Mp: 350-356 °C (Decompose), (>250 °C, lit)59. IR (KBr): vmax= 

3215, 3029, 3045, 2979, 2946, 1701, 1628, 1595, 1473, 1370, 1290, 

1212, 1124, 999 cm-1. 1H NMR: (DMSO-d6, 300 MHz): δ 12.53 (s, 

2H, NH), 8.96 (s, 1H, H-7), 7.99 (d, 1H, J =  7.5 Hz, H-13), 7.08 (d, 

1H, J =  7.5 Hz, H-12), 7.03 (s, 1H, H-10). 13C NMR: δ 178.6 (C=S, 

C-2), 164.3 (C-1), 164.2 (C-9), 162.8 (C=O, C-6), 160.3 (C=O, C-4), 156.7 (C-7), 134.5 (C13), 

114.2 (C-5), 112.3 (C-8), 110.2 (C-12), 105.6 (C-10). HRMS (ESI TOF-MS) [M+H]+ calcd. for 

[C11H9N2O4S]+: 265.0321, found 265.023 

 

5-(3,4-dihydroxybenzylidene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (3): Yield: 87%, 

Mp: 305-310 °C (Decompose). IR (KBr): vmax= 3369, 3267, 2924, 

1699, 1649, 1512, 1437, 1347, 1239, 1205, 1148, 1115, 1086, 972 

cm-1. 1H NMR: (DMSO-d6, 400 MHz): δ 12.29 (s, 1H, NH), 12.20 

(s,1H, NH), 8.25 (d, 1H, J = 2.1, H-9), 8.12 (s, 1H, H-7), 7.65 (d, 

1H, J =  8.6, H-12), 6.85 (d, 1H, J =  8.6 Hz, H-13). 13C NMR: δ 

178.5 (C=S, C-2), 162.9 (C=O, C-6), 160.5 (C=O, C-4), 157.5 (CH, C-7), 153.7 (C-11), 145.5 (C-

10), 132.7 (C-8), 124.9(C-13), 121.9 (C-5), 115.9 (C-12), 114.1 (C-9). HRMS (ESI TOF-MS) 

[M+H]+ calcd. For [C11H9N2O3S]+: 265.0321, found 265.0222. 

 

5-(2,5-dihydroxybenzylidene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (4): Yield: 84%, 

Mp: 350-356 °C (Decompose). IR (KBr): vmax= 3276, 3148, 2894, 1654, 

1560, 1500, 1452, 1224, 1134, 1082 cm-1. 1H NMR: (DMSO-d6, 300 

MHz): δ 12.51 (s, 1H, NH), 12.46 (s, 1H, NH), 8.23 (s, 1H, H-7), 7.51 

(s, 1H, H-13), 7.03 (d, 1H, J =  8.5 Hz, H-11), 6.82 ( d, 1H, J =  8.5 Hz, 

H-10). 13C NMR: δ 178.4 (C=S, C-2), 162.4 (C=O, C-6), 160.6 (C=O, C-4), 157.6 (C-7), 154.1 

(C-9), 150.5 (C-12), 133.2 (C-8), 124.5 (C-5), 119.3 (C-10), 118.5 (C-11), 115.3 (C-13). HRMS 

(ESI TOF-MS) [M+H]+ calcd. for [C11H9N2O3S]+: 265.0321, found 265.0319. 
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5-(2,3-dihydroxybenzylidene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (5): Yield: 83%, 

Mp: 328-334 °C (Decompose). IR (KBr): vmax= 3422, 3178, 2964, 

1660, 1570, 1470, 1372, 1182, 1078, 992 cm-1. 1H NMR: (DMSO-d6, 

300 MHz): δ 12.24 (s, 1H, NH), 12.10 (s, 1H, NH), 8.21 (s, 1H, H-7), 

7.14 (d, 1H, J =  8.0 Hz, H-13), 7.00 (m, 1H, H-12), 6.89 (d, 1H, J =  

8.0 Hz, H-11). 13C NMR: δ 173.72 (C=S, C-2), 162.76 (C=O, C-6), 160.57 (C=O, C-4), 154.87 

(C-9), 150.00 (C-10), 145.08 (C-7), 125.39 (C-8), 124.60 (C-5), 118.63 (C-12), 98.52 (C-11), 

91.03 (C-13). HRMS (ESI TOF-MS) [M+H]+ calcd. for [C11H9N2O3S]+: 265.0321, found 

265.0219. 

 

5-(3-methoxybenzylidene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (6): Yield: 90%, Mp: 

310-317 °C (Decompose). IR (KBr): vmax= 3254, 3118, 2904, 1690, 

1588, 1446, 1348, 1206, 1140, 1064 cm-1. 1H NMR: (DMSO-d6, 300 

MHz): δ 12.43 (s, 1H, NH), 12.31 (s, 1H, NH), 8.56 (s, 1H, H-7), 

7.34-7.57 (m, 1H, H-12), 7.20 (d, 1H, J =  8.0 Hz, H-13), 7.12 (s, 

1H, H-9), 6.87 (d, 1H, J =  8.0 Hz, H-11).13C NMR: δ 178.69 (C=S, C-2), 161.76 (C=O, C-6), 

160.27 (C=O, C-4), 160 (C-10), 157.44 (C-7), 136.30 (C-8), 129.78 (C-12), 125.3 (C-5), 120.82 

(C-13), 113.46 (C-11), 113.2 (C-9). HRMS (ESI TOF-MS) [M+H]+ calcd. for [C12H11N2O3S]+: 

263.0421, found 263.0433. 

 

2-thioxo-5-(2,4,6-trimethoxybenzylidene)dihydropyrimidine-4,6(1H,5H)-dione (7): Yield: 92%, 

Mp: 330-335 °C (Decompose). IR (KBr): vmax= 3436, 3138, 2916, 

1702, 1668, 1538, 1454, 1320, 1226, 1128, 906 cm-1. 1H NMR: 

(DMSO-d6, 300 MHz): δ 12.25 (s, 1H, NH), 12.11 (s, 1H, NH), 

8.18 (s, 1H, H-7), 6.25 (s, 2H, H-10/12), 3.85 (s, 6H, -OCH3), 3.80 

(s, 3H, -OCH3). 13C NMR: δ 178.7 (C=S, C-2), 166.5 (C=O, C-6), 

164.3 (C=O, C-4), 163.9 (C-11), 162.2 (C-9/13), 147.7 (C-7), 118.1 (C-5), 108.3 (C-8), 91.2 (C-

10/12), 56.5 (C-14/15), 56.4 (C-16). HRMS (ESI TOF-MS) [M+H]+ calcd. for [C14H15N2O5S]+: 

323.0560, found 323.0510. 
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5-(4-bromobenzylidene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (8): Yield: 88%, Mp: 

290-294 °C (Decompose). IR (KBr): vmax= 3428, 3050, 2916, 1706, 

1654, 1542, 1414, 1360, 1192, 1010 cm-1. 1H NMR: (DMSO-d6, 300 

MHz): δ 11.63 (s, 2H, NH), 8.07 (d, J = 8.3 Hz, 2H, H-10/12), 7.26 (d, 

2H, J =  8.3 Hz, H-9/13), 6.07 (s, 1H, H-7).13C NMR: δ 173.45 (C=S, 

C-2), 162.46 (C=O, C-6), 160.27 (C=O, C-4), 145.67 (C-7), 135.43 (C-9/13), 132.47 (C-10/12), 

126.49 (C-8), 123.50 (C-5), 119.79 (C-11). HRMS (ESI TOF-MS) [M+H]+ calcd. for 

[C11H8BrN2O2S]+: 310.9432, found 310.9247. 

 

5-(2-chloro-4-fluorobenzylidene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (9): Yield: 

92%. Mp: 260-265 °C (Decompose). IR (KBr): vmax= 3388, 3348, 

3083, 2914, 1718, 1695, 1591, 1572, 1466, 1383, 1243, 1163, 1043, 

950 cm-1. 1H NMR: (DMSO-d6, 300 MHz): δ 12.54 (s, 1H, NH), 12.38 

(s, 1H, NH), 8.26 (s, H, H-7), 7.96 (t, 1H, J = 6.4 Hz, H-13), 7.59 (d, 

1H, J = 6.4 Hz, H-10), 7.30 (t, 1H, J = 6.4 Hz, H-12), 13C NMR: δ 

179.2 (C=S, C-2), 163.7 (d, J = 251.6 Hz, C-11), 161.4 (C=O, C-4), 159.4 (C-6), 149.6 (C-7), 

135.6 (d, J = 11.1 Hz, C-9), 134.8 (d, J = 9.6 Hz, C-13), 128.9 (d, J = 3.4 Hz, C-8), 122.2 (C-5), 

116.9 (d, J = 25.4 Hz, C-10), 114.4 (d, J = 21.5 Hz, C-12). HRMS (ESI TOF-MS) [M+H]+ calcd. 

for [C11H7ClFN2O2S]+: 284.8932, found 284.9743. 

 

5-(4-nitrobenzylidene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (10): Yield: 81%, Mp: 

280-287 °C (Decompose).  IR (KBr): vmax= 3632, 3539, 3437, 

3123, 3066, 2357, 2339, 1708, 1655, 1607, 1516, 1443, 1349, 

1300, 1212, 1144, 1006, 887 cm-1. 1H NMR: (DMSO-d6, 400 

MHz): δ 11.74 (s, 2H, NH), 8.05 (d, 2H, J = 8.0 Hz, H-10/12), 

7.26 ( d, 2H, J = 8.0 Hz, H-9/13), 6.03 (s, 1H, H-7).13C NMR: δ 

173.6 (C=S, C-2), 163.5 ( C=O, C-4/6), 152.3 ( C-11), 145.8 (C-7), 128.3 (C-10/12), 123.6 (C-

9/13), (C-8 not observe), 95.6 (C-5). HRMS (ESI TOF-MS) [M+H]+ calcd. for [C11H8N3O4S]+: 

278.0210, found 278.0083. 
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2-((4,6-dioxo-2-thioxotetrahydropyrimidin-5(2H)-ylidene)methyl)benzonitrile (11): Yield: 95%, 

Mp: 300-307 °C (Decompose). HRMS: IR (KBr): vmax= 3448, 2875, 1682, 

1504, 1436, 1320, 1254, 1162 cm-1. 1H NMR: (DMSO-d6, 400 MHz): δ 

12.35 (s, 1H, NH), 11.80 (s, 1H, NH), 9.22 (d, 1H, J = 8.20 Hz, H-10), 

7.68-7.51 (m, 1H, H-13), 7.57-7.34 (m, 2H, H-11, H-12), 7.23 (s, 1H, H-

7). 13C NMR: δ 178.5 (C=S, C-2), 162.4 (C=O, C-6), 160.9 (C=O, C-4), 154.4 ( C-7), 132.5 (C-

8), 131.2 (C-10), 130.6 (C-12), 129.9 (C-13), 129.5 (C-11), 119.5 (C-14, C-N), 114.6 (C-5), 110.1 

(C-9). HRMS (ESI TOF-MS) [M+H]+ calcd. for [C12H8N3O2S]+: 258.0241, found 258.0239. 

 

2-thioxo-5-(4-(trifluoromethyl)benzylidene)dihydropyrimidine-4,6(1H,5H)-dione (12): Yield: 

93%, Mp: 315-318 °C (Decompose). HRMS: IR (KBr): vmax= 3430, 

3140, 2920, 1686, 1634, 1568, 1434, 1330, 1208, 1122, 1070 cm-1. 
1H NMR: (DMSO-d6, 300 MHz): δ 12.41 (s, 1H, NH), 12.40 (s, 1H, 

NH), 7.54 (d, 2H, J = 9.0 Hz, H-9/13), 7.23 (d, 2H, J = 9.0 Hz, H-

10/12), 5.99 (s, 1H, H-7). 13C NMR: δ 178.5 (C=S, C-2), 161.2 (C=O, C-4), 159.2 (C=O, C-6), 

153.6 (C-7), 134.9 (d, J = 8.8 Hz, C-9/13), 132.1 (d, J = 31.5 Hz, C-11), 130.9 (d, J = 8.3 Hz, C-

10/12), 130.2 (d, J = 118.3 Hz, C-14), 126.2 (C-8), 119.5 (C-5). HRMS (ESI TOF-MS) [M+H]+ 

calcd. for [C12H8F3N2O2S]+: 301.0221, found 301.0371. 

 

 

5-((5-chlorofuran-2-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (13): Yield: 

90%, Mp: 281-287 °C (Decompose). HRMS: IR (KBr): vmax= 3547, 3148, 

3065, 3009, 2915, 2610, 1706, 1641, 1577, 1465, 1378, 1324, 1240, 1174, 

1028, 961 cm-1. 1H NMR: (DMSO-d6, 300 MHz): δ 12.45 (s, 1H, NH), 

12.39 (s, 1H, NH), 8.47 (d, 1H, J = 3.0 Hz, H-10), 7.88 (s, 1H, H-7), 6.95 

(d, 1H, J = 3.0 Hz, H-9). 13C NMR: δ 178.7 (C=S, C-2), 161.8 (C=O, C-6), 160.3 (C=O, C-4), 

150.2 (C-8), 144.5 (C-7), 136.2 (C-11), 129.78 (C-5), 113.9 (C-9), 113.5 (C-10). HRMS (ESI 

TOF-MS) [M+H]+ calcd. for [C9H6ClN2O3S]+: 256.8954, found 256.9445. 
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5-((4-phenylthiophen-2-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (14): 

Yield:  90%, Mp: 334-339°C (Decompose). HRMS: IR (KBr): 

vmax= 3436, 3152, 3085, 2922, 1702, 1644, 1538, 1336, 1266, 

1186 cm-1. 1H NMR: (DMSO-d6, 300 MHz): δ 12.41 (s, 1H, 

NH), 12.40 (s, 1H, NH), 8.65 (s, 2H, H-7/9), 8.61 (s, 1H, H-11), 

7.76 (d, 2H, J = 7.5 Hz, H-13/17), 7.44 (dd, 2H, J = 7.5, 7.2 Hz, H-14/16), 7.33 (t, J = 7.2, Hz 1H, 

H-15). 13C NMR: δ 178.8 (C=S, C-2), 162.2 (C=O, C-6), 161.4 (C=O, C-4), 147.0 (C-7), 144.4 

(C-11), 142.6 (C-8), 138.5 (C-13), 137.7 (C-10), 134.0 (C-12), 129.6 (C-15/17), 128.4 (C-16), 

126.5 (C-14/18), 112.8 (C-5). HRMS (ESI TOF-MS) [M+H]+ calcd. for [C15H11N2O2S2]+: 

315.0223, found 315.9163. 

 

5-((5-phenylthiophen-2-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione(15): 

Yield: 88%, Mp: 330-337°C (Decompose). IR (KBr): vmax= 3144, 

3060, 2908, 2812, 2593, 1701, 1643, 1558, 1442, 1345, 1228, 1160, 

1077, 954 cm-1. 1H NMR: (DMSO-d6, 300 MHz): δ 12.40 (d, 2H, J = 

6.0 Hz, NH), 8.57-8.67 (m, 3H, H-7/9/10), 7.75 ( d, 2H, J = 7.5 Hz, 

H-13/17), 7.43 (dd, 2H, J = 7.5, 7.2 Hz, H-14/16), 7.32 (t, 1H, J = 7.2 

Hz, H-15). 13C NMR: δ 178.8 (C=S, C-2), 162.2 (C=O, C-6), 161.4 (C=O, C-4), 147.0 (C-7), 144.4 

(C-10), 142.6 (C-12), 138.5 (C-11), 137.7 (C-8), 134.0 (C-13), 129.5 (C-15/17), 128.3 (C-16), 

126.5 (C-14/18), 112.7 (C-5). HRMS (ESI TOF-MS) [M+H]+ calcd. for [C15H11N2O2S2]+: 

315.0223, found 315.0163. 

 

5-((2-bromopyridin-3-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (16): Yield: 

86%, Mp: 285-290 °C (Decompose). IR (KBr): vmax= 3426, 3276, 3062, 

2860, 1654, 1566, 1430, 1278, 1148, 1098 cm-1. 1H NMR: (DMSO-d6, 

300 MHz): δ 12.38 (s, 1H, NH), 11.90 (s, 1H, NH), 8.12 (d, 1H, J = 6.0 

Hz, H-13), 7.57 (d, 1H, J = 6.0 Hz, H-11), 7.20 (t, 1H, J = 6.0, Hz, H-

12), 5.15 (s, 1H, H-7). 13C NMR: δ 174.0 (C=S, C-2), 161.4 (C-7), 155.8 (C=O, C-6), 154.7 (C=O, 

C-4), 146.7 (C-11), 139.0 (C-9), 122.8 (C-13), 119.2 (C-8), 98.1 (C-5), 91.4 (C-12). HRMS (ESI 

TOF-MS) [M+H]+ calcd. for [C10H7BrN3O2S]+: 311.8723, found 311.9201. 
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5-((6-bromopyridin-3-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (17): Yield: 

82%, Mp: 260-264 °C (Decompose). IR (KBr): vmax= 3420, 3035, 2911, 

1702, 1668, 1554, 1420, 1330, 1170, 1060, 950 cm-1. 1H NMR: (DMSO-

d6, 300 MHz): δ 11.70 (s, 2H, NH),  8.88 (s, 1H, H-9), 8.57 (d, 1H, J = 

7.5 Hz, H-12), 7.60 (d, 1H, J = 7.5 Hz, H-13), 5.85 (s, 1H, H-7). 13C 

NMR: δ 173.9 (C=S, C-2), 162.8 (C=O, C-6), 161.3 (C=O, C-4), 154.0 (C-9), 150.5 (C-7), 146.5 

(C-11), 140.4 (C-13), 133.6 (C-8), 132.6 (C-5), 130.0 (C-12). HRMS (ESI TOF-MS) [M+H]+ 

calcd. for [C10H7BrN3O2S]+: 311.8723, found 311.9661. 

 

5-((3-bromopyridin-4-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (18): Yield: 

93%, Mp: 290-294 °C (Decompose). IR (KBr) vmax= 3527, 3218, 3113, 

2972, 2912, 1662, 1630, 1552, 1489, 1435, 1358, 1241, 1152, 1047, 1008, 

921 cm-1. 1H NMR: (DMSO-d6, 400 MHz): δ 11.79 (s, 2H, NH), 9.00 (s, 

1H, H-10), 8.67 (d, 1H, J = 5.8 Hz, H-12), 7.71 (d, 1H, J = 5.8 Hz, H-

13), 5.88 (s, 1H, H-7).13C NMR: δ 173.9 (C=S, C-2), 163.2 (C=O, C-4/6), 161.8 (C-7), 145.8 (C-

12), 141.5 (C-10), 122.4 (C-9), 93.2 (C-13). HRMS (ESI TOF-MS) [M+H]+ calcd. for 

[C10H7BrN3O2S]+: 311.8723, found 311.9158. 

 

 

5-([1,1'-biphenyl]-4-ylmethylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (19): Yield: 

88%, Mp: 300-305 °C (Decompose). IR (KBr): vmax= 3422, 3030, 

2864, 1706, 1654, 1508, 1414, 1308, 1186, 1144, 1020 cm-1. 1H 

NMR: (DMSO-d6, 400 MHz): δ 12.51 (s, 1H, NH), 12.40 (s, 1H, 

NH), 8.32 (s, 1H, H-7), 8.27 (d, 2H, J = 8.0 Hz, H-9/13), 7.72-

7.80 (m, 4H, H-10,12/15,19), 7.48 (t, 2H, J = 8.0 Hz, H-16/18), 7.42 (t, 1H, J = 8.0 Hz, H-17). 13C 

NMR: δ 179.0 (C=S, C-2), 162.3 (C=O, C-6), 160.1 (C=O, C-4), 155.8 (C-7), 144.7 (C-11), 139.2 

(C-14), 135.3 (C-9.13), 132.1 (C-5), 129.6 (C-10/12), 129.1 (C-8), 127.4 (C-15/19), 126.7 (C-

16/18), 119.1 (C-17). HRMS (ESI TOF-MS) [M+H]+ calcd. for [C17H13N2O2S]+: 309.0583, found 

309.0545. 
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5-(naphthalen-2-ylmethylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (20): Yield: 89%, 

Mp: 315-320 °C (Decompose). IR (KBr): vmax= 3368, 3134, 2922, 

1702, 1654, 1540, 1426, 1380, 1196, 978 cm-1. 1H NMR: (DMSO-

d6, 400 MHz): δ 12.51 (s, 1H, NH), 12.40 (s, 1H, NH),  8.71 (s, 1H, 

H-7), 8.46 (s, 1H, H-9), 8.25 (d, 1H, J = 8.7 Hz, H-17), 7.93-8.03 

(m, 3H, H-11/14/16), 7.63-7.697 (m, 1H, H-13), 7.56-7.62 (m, 1H, 

H-12). 13C NMR: δ 179.1 (C=S, C-2), 162.3 (C=O, C-6), 160.0 (C=O, C-4), 156.1 (C-7), 136.5 

(C-9), 135.1 (C-12), 132.6 (C-13), 131.0 (C-11), 129.9 (C-10), 129.5 (C-14), 129.2 (C-17), 128.1 

(C-5), 127.7 (C-15), 127.4 (C-16), 119.5 (C-8). HRMS (ESI TOF-MS) [M+H]+ calcd. for 

[C15H11N2O2S]+: 283.0523, found 283.0491. 

 

3.4. Antimicrobial assays  

Antimicrobail activity was performed by Amanda C. S. Coelho at chemistry department in 

the laboratory of Prof. Jacqueline A. Takahashi.  

The bioassays were conducted with one Gram-negative (E. carotovora CCT 0101) 

bacterium, two filamentous fungi (A. solani CCT 2673 and F. solani CCT 1204) and six yeast 

strains (C. albicans ATCC 18804, C. dubliniensis clinical isolate 28, C. lusitaniae CBS 6936, C. 

parapsilosis ATCC 22019, C. tropicalis ATCC 750 and C. neoformans ATCC 24067). 

To determine the MIC (IC100) and the IC50 for compounds 1-20, the Gram-negative bacteria 

and the filamentous fungi were inoculated into test tubes containing Brain Heart Infusion (BHI) 

broth, while the yeasts were inoculated in Sabouraud broth. Assays were performed according to 

Clinical and Laboratory Standards Institute guidelines. The microorganisms were incubated in an 

oven at 37 ºC for 24 h. The suspensions containing the Gram-negative bacterium and the six yeast 

strains were transferred to tubes containing sterile distilled water to reach a suspension (inoculum) 

compatible with the McFarland scale 0.5 (108 cells mL-1). For the filamentous fungi this procedure 

for cells counting was carried out with Neubauer chamber (103 spore mL-1). To assay the 

compounds 1-20, 96-well microtiter plate containing the appropriate broth were used (Brain Heart 

infusion for yeasts and bacterium and Potato Dextrose Broth for filamentous fungi). The samples 

were dissolved and microdiluted in DMSO (250.00, 125.00, 62.50, 31.25, 15.63, 7.81, 3.90, 1.95 

µg mL-1) in the microtiter plates. The inoculum was equally added to each well. The plates were 

incubated in an oven at 37 ºC for 24 h. The readings were obtained after 24 h of incubation on a 
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microplate’s reader at 600 nm. MIC value was assigned to the tube containing the smallest dilution 

that did not present microbial growth. The IC50 values were calculated for the samples that showed 

inhibition higher than 50% the highest concentration assayed. Commercially available drugs 

ampicillin, miconazole and nystatin were used as positive standards. All the tests were performed 

twice under the same conditions. 

3.5 Urease inhibition assay 

Anti-urease activity was performed by Ana Cláudia Rodrigues at botany department in the 
laboratory of Prof. Luzia Modolo. 
 

The screening for identifying potential urease inhibitors was done using the indophenol 

method. Each thiobarbiturate at final concentration of 40 mM was incubated in a buffered reaction 

medium with 20 mM phosphate (pH 7.4) and supplemented with 1 mM EDTA, 10 mM urea and 

12.5 mU of Canavalia ensiformis (jack bean) type III urease (Sigma). Reactions were maintained 

at 25 ºC for 10 min, followed by addition of 0.5 volume of 1% w/v phenol in 5 ppm sodium 

nitroprusside (SNP) and 0.7 volume of 0.5% w/v NaOH in 0.1% v/v NaOCl to interrupt enzyme 

activity. Reactions were then incubated at 50 ºC for 5 min prior the measurement of absorbance at 

630 nm to determine the amount of ammonium (NH4+) formed. Hydroxyurea (HU) and thiourea 

(TU) were used as references of urease inhibitors. Urease inhibition was determined in terms of 

percentage of NH4+ formed in BAs-containing reactions in relation to total urease activity in 

reactions devoid of inhibitor.155 

3.6 Molecular Docking 

Molecular docking simulation was performed by Syed Baber Jamal at ICB in the laboratory 

of Prof. Vasco Ariston de Carvalho Azevedes.  

In this study, an effort was made to carry out the docking of the ligands into urease protein 

with the following infrastructure; Intel (R) xenon (R) CPU E5620@2.40GHz system having 3.8GB 

RAM with the open 11.4 (X 86_64) operating platform was used. The software package MOE 

(Molecular Operating Environment) (http://www.chemcomp.com/) was used for docking.  MOE 

is a software system designed by the Chemical Computing Group to support Cheminformatics, 

Molecular Modeling, Bioinformatics, Virtual Screening, Structure-based-design and can be used 

to build new applications based on SVL (Scientific Vector Language). To imagine the interaction 

between urease and ligands, ligPlot implementation in MOE was used. 
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3.6.1 Ligands Preparation 

            The inhibitors for urease incorporated in our study were all synthesized as previously 

described in this thesis. The structures of these inhibitors were constructed using MOE-Builder 

tool. The correlated 3D structures were also obtained and hydrogens were added. The energies of 

all the constructed molecules were minimized using the Energy minimization algorithm of MOE 

tool. The following parameters were used for energy minimization; gradient: 0.05, Force Field: 

MMFF94X, Chiral Constraint: Current Geometry. All the minimized molecules were saved in the 

(.mdb) file format. In the next step, the prepared ligands were used as input files for MOE-Dock. 

 

3.6.2 Protein Preparation 

              The protein atomic coordinates (Urease) used in our study were obtained from Protein 

Data Bank (4UBP). Water molecules were removed and the 3D protonation of the protein molecule 

was carried out. The energy of the protein molecule was minimized using the Energy minimization 

algorithm of MOE tool. The following parameters were used for energy minimization; gradient: 

0.05, Force Field: MMFF94X+Solvation, Chiral Constraint: Current Geometry. Energy 

minimization was terminated when the root mean square gradient falls below the 0.05. The 

minimized structure was used as the template for Docking.156-157 

3.6.3 Docking 

The binding of the ligand molecule with the protein molecule was analyzed using MOE 

docking program to find the correct conformation of the ligand, so as to obtain minimum energy 

structure. After the completion of docking we analyze the best poses for Hydrogen Bonding/π-π 

interactions and root mean square deviation (RMSD) calculation by using MOE applications. 
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1. INTRODUCTION 

Pyrimidine is a heterocyclic aromatic compound, similar to benzene and pyridine, 

containing two nitrogen atoms at positions 1 and 3 of its six-member ring. It is isomeric with two 

other forms of diazine. Pyrimidine has many properties in common with pyridine, as the number 

of nitrogen atoms in the ring increases, the ring electrons become less energetic and electrophilic 

aromatic substitution gets more difficult while nucleophilic aromatic substitution gets easier. 

Compared to pyridine, N-alkylation and N- oxidation is more difficult, and pyrimidines are also 

less basic. The pKa value for protonated pyrimidine is 1.23 compared to 5.30 for pyridine. 

Pyrimidine also found in meteorites, although scientists still do not know its origin. It decomposes 

photolytically into Uracil under UV light.158-161 

Pyrimidines have been the subject of substantial attention by synthetic and medicinal 

chemists due to the role of such class of heteroaromatic ring in many biological systems. Presently, 

fifteen drugs approved by FDA (Food and Drug Administration) for the treatment of different viral 

diseases are pyrimidine and purin derivatives; Idoxuridine,162 Trifluridine,163 Acyclovir,164 

Ganiciclovir165 for herpes; Zidovudine166 and Lamivudine167 for HIV and Ribavarine168 for RSV 

infection in children.165 Some of the structures of functionalized pyrimidines and examples of 

drugs  containing these nuclei are shown below (Figure 2.1). 

 

Figure 2.1 Drugs containing pyrimidine ring system 

1.1. Biological significance of pyrimidine derivatives  

Pyrimidines have a long and eminent history extending from the days of their discovery as 

important constituents of nucleic acids to their current use in the chemotherapy of AIDS.  Alloxan 

is used for its diabetogenic action in a number of animals. Uracil,  thymine and cytosine are the 

three important constituents of nucleic acids (2.2).  
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Figure 2.2 Nucleic acid containing pyrimidine moiety  

Vitamins like riboflavin, thiamine, folic acid and  barbitone the first barbiturate hypnotic 

sedative and anticonvulsant are pyrimidine  derivative (Figure 2.3).5, 168-170   

 

Figure 2.3 Biologically important pyrimidine derivatives  

One of the early metabolites prepared was 5-fluorouracil (5-FU), a pyrimidine derivative. 

5-Thiouracil also exhibits some useful antineoplastic activities (Figure 2.4).5, 171 
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Figure 2.4 Pyrimidines as an antineoplastic agent  

Pyrimidine derivatives of sulfa drugs, namely sulfadiazine, sulfamerazine and 

sulfadimidine are superior to many other sulfonamides and are used in some acute urinary tract 

infections, cerebrospinal meningitis and for patients allergic to pencillins.172 Sulfanamide 

trimethoprim combinations are used extensively for opportunistic infections in patients with 

AIDS.173 Sulfadoxine, a short and intermediate acting sulfonamide with a half-life of 7-9 day is 

used for malarial prophylaxis. Sulfisomidine, with a half-life of 7 hours, is used as a combination 

sulfa therapy in veterinary medicine.174 Sulfadiazine, sulfamerzine and sulfadimidine possess good 

water solubility and therefore carry minimum risk of kidney damage, which makes them safe even 

for patients with impaired renal functions (Figure 2.5).175  

In 1959, sulfadimethoxine was introduced with a half-life of approximately 40 hours.176 

The related 4-sulfanamidopyrimidine, sulfamethoxine177 having two methoxy groups at 5 and 6 

positions, has by far the longest half-life of about 150 hours.178 Methyldiazine has a half-life of 65 

hours. Also, sulfamethoxydiazine possesses good is half-life.179 A new broad-spectrum 

sulfonamide,180 sulfamethomidine181 relatively nontoxic was introduced with a half-life of 

approximately 40 hours and patients do not need extra fluid intake or alkalization. Sulfacytine has 

been reported  to be 3 - 10 times more potent than sulfaisoxazole and sulfisodimidine.173  

FNO

O
H
N O

Tegafur (12)

N
ClCl

O

HN NH

O

Uramustine (13)

HN

O
H
N O

5-Thiouracil (14)

SHHN

O
H
N O

F

5-Fluorouracil (1)



 

 

65 

 
Figure 2.5 Sulfa drugs containing pyrimidine moiety  

There are few examples of pyrimidine antibiotics. The simplest of all is bacimethrin (5-

hydroxymethyl-2-methoxypyrimidin-4-amine), which is active against several staphylococcal 

infections. Gourgetin, a cytosine derivative is active against mycobacteria as well as several Gram-

positive and Gram-negative bacteria. There are more derivatives of cytosine, namely amicetin182 

and plicacetin which exhibit activity against acid-fast and Gram-positive bacteria as well as on 

some other organisms. Puromycin has a wide spectrum of antitrypanosomal activity. Another 

antibiotic tubercidine is reported to exhibit antitumour properties. In addition, they have 

antineoplastic activity (Figure 2.6).175, 183 

 

Figure 2.6 Pyrimidine antibiotics  

Pyrimidines also exhibit antifungal properties. Flucytosine184 is a fluorinated pyrimidine 

used as nucleosidal antifungal agent for the treatment of serious systemic84,85 infections caused by 
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susceptible strains of Candida and Cryptococcus. Hexitidine185 is mainly used for the treatment of 

aphthous ulceration (Figure 2.7).171 

 
Figure 2.7 Antifungal agents  

 
1.2 Schiff bases of 2-aminopyrimidine derivatives  

Schiff bases sustain azomethine or imine (–C=N) unit. This is the primary condensation of 

amines with carbonyl compounds and have been reported by Hugo Schiff.186 Schiff bases have a 

wide variety of applications in different areas such as biological chemistry, organic and inorganic 

chemistry.187-188 The medicinal uses and applications of Schiff bases and their metal complexes 

are of increasing clinical and commercial importance. Schiff bases have picked up significance in 

medicinal and pharmaceutical fields because of an expansive range of biological activities like 

anti-inflammatory189-190, analgesic191-192, antimicrobial and antispasmodic.193-194 Schiff bases of 2-

amino- 4,6 dihydroxypyrimidine and its complexes have a variety of applications including 

biological, clinical and analytical. The coordinating possibility of 2-amino-4,6- 

dihydroxypyrimidine has been improved by condensing with a variety of carbonyl compounds.195  

Shankarwar et.al synthesized some Schiff bases complexes of 2-amino-4,6- 

dihydroxypyrimidne derivatives and evaluated their biological activities. Some of the compound 

showed good activities against bacteria and fungi.196 

Schiff bases complexes were specialized in inhibiting Gram-positive bacterial strains 

(Staphylococcus pyogenes and P. aeruginosa). The importance of this unique property of the 

investigated Schiff base complexes lies in the fact that, it could be applied safely in the treatment 

of infections caused by any of these particular strains.197  

Platinum(II) Schiff bases complexes containing of salicylaldehyde and 2-furaldehyde with o- 

and p-phenyl-enediamine were reported as antibacterial against E. coli, Bacillus subtilis, P. 

aeruginosa, Staphylococcus aureus. The activity data show that the Platinum(II) complexes are 
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more potent antimicrobials than the parent Schiff base ligands against one or more 

microorganisms.198  

Metal complexes of a novel Schiff base derived from condensation of sulphametrole and 

varelaldehyde were screened against bacterial species (E. coli and S. aureus). The newly prepared 

Schiff base and its metal complexes showed a higher effect on E. coli (Gram-negative bacteria) 

and S. aureus (Gram-positive bacteria).199  

 

1.3. Schiff base as urease inhibitors 

Although Schiff bases are known to have a variety of biological properties, few examples 

of this class of substances have been described as anti-urease agents. In 2011, Aslam and 

coworkers described the synthesis and in vitro anti-urease activity of 18 Schiff base hydrazine 

derivatives (Figure 2.8). All synthesized compounds exhibited significant urease inhibition, but 

compound 30 showed the most potent activity (IC50 = 0.102 µM) followed by compounds 32 and 

35 (IC50 = 0.177 and 0.127 µM, respectively). Thiosemicarbazone  derivatives 25, 37, 38, 40 and 

41 exhibited moderate activity, while analogs 26, 27, 28, 29, 31, 33, 34, 36, 39 and 42 showed 

little effect on urease activity. In general, Schiff base derivatives with electron-withdrawing 

substituents on the aromatic ring showed stronger anti-urease activities than those with electron 

donating substituents. Aslam and co-workers also disclosed that compound 30, which bears an 

electron-withdrawing group (NO2) at the meta position, exhibited competitively inhibition against 

urease (Figure 2.8).200 

 
Figure 2.8  Thiosemicarbazone derivatives synthesized by Aslam et.al.200 

 

H
N NH2N

S
R

(25) R= (2-Cl)-(C6H4)                     (34) R= (3,4,5-OCH3)-(C6H2)
(26) R= (3-Cl)-(C6H4)                     (35) R= (4-N(CH3)2-(C6H4)
(27) R= (4-Cl)-(C6H4)                     (36) R= ((E)-CH=CH-C6H5)-(C6H4)
(28) R= (3-Cl)-(C6H4)                     (37) R= (2-OCH2-C6H5)-(C6H4)
(29) R= (4-Cl)-(C6H4)                     (38) R= (3-OCH2-C6H5, OCH3)-(C6H3)
(30) R= (3-NO2)-(C6H4)                 (39)  R= (4-OH)-(C6H4)
(31) R= (4-NO3)-(C6H4)                 (40)  R= (2,3-OH)-(C6H3)
(32) R= (3-OCH3)-(C6H4)               (41) R= (4OH,3,5-OCH3)-(C6H2)
(33) R= (4-OCH3)-(C6H4)               (42( R= (E)-CH=CH-CH3
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In 2014, Saeed and co-workers described the inhibition of purified urease from jack bean 

by Schiff base thiosemicarbazone derivatives.201 Out of a series of thirteen compounds, seven of 

them presented promising abilities to inhibit urease enzyme (Figure 2.9). The range of IC50 values 

for Schiff base thiosemicarbazone derivatives (43-49) was 0.58-4.84 μM, and all of them were 

more potent than thiourea (IC50 = 21 μM), a positive control used in the urease inhibitory assay 

(Figure 2.9).  

 

 
Figure 2.9 Thiosemicarbazone derivatives synthesized by Saeed and co-workers 

 

Rafiq and co-workers (2017) reported the preparation of eleven Schiff bases containing 

1,2,4-triazole cores and their inhibitory effects on urease activity.202 Out of this series of Schiff 

bases, compounds 50 and 51 (Figure 2.10) were the most potent with IC50 values of 8.02 μM and 

17.02 μM, respectively. Other Schiff bases have also been recognized as potential urease 

inhibitors. For instance, Iftikhar and co-workers (2017) described dihydropyrimidine (DHPM) 52 

as the most potent jack bean urease inhibitor (IC50 = 0.23 μM).203 Rahim and co-workers204 showed 

that bis-Schiff bases 53, 54 and 55 (Figure 2.10), derived from isophthalaldehyde, were able to 

inhibit urease with IC50 values of 13.8 μM, 13.9 μM and 18.3 μM, respectively (Figure 2.10). 
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Figure 2.10 Antiurease activity of some Schiff bases 

 

1.4 Methodologies for the synthesis of 2-aminopyrimidines  

The methodology for the synthesis of substituted pyrimidines is based on two general 

approaches. One approach involves the construction of the heterocycle by the condensation of 

moieties containing required substituents. Another approach is based on the introduction of the 

amino group into the pyrimidine ring by the replacement of the substituent in position 2. The latter 

approach is less efficient and gives target products in low yields, particularly, in the reactions with 

arylamines, which require a large excess of nucleophiles.205  

The preparation of 2-aminopyrimidines is most often based on the convergent synthesis 

(method a), which is often called the conventional synthesis.206 The method a is based on the 

condensation of dielectrophiles containing the three-carbon chain and the carbonyl, ester, or nitrile 

group with dinucleophiles containing the N-C-N moiety (Figure 2.11). If guanidine serves as the 

dinucleophilic component, the formation of the pyrimidine ring is accompanied by the introduction 
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of the amino group in position 2. 2-Aminopyrimidines substituted at the amino group are formed 

in the reactions with alkyl-, aryl-, or arylsulfonyl- guanidines, as well as with dicyanodiamide.  

 

Figure 2.11 Variants of the condensation of the reagents giving rise to the pyrimidine ring. 

b-Dicarbonyl compounds and their derivatives (b-keto esters, b-keto nitriles, and acid 

chlorides, whose terminal functional fragments can react with nucleophiles), serve as the 

dielectrophilic component. The condensation is performed in polar solvents with heating in the 

presence of a condensing agent. In some cases, the reactions are performed by fusion. The yields 

of 2-aminopyrimidines containing various substituents in the ring (Alk, Ar, Het, CF3, CHF2, OH, 

CO2Et, CN, NHCOAr) are 60 - 95%.207 

In the study of the reactions of acetylacetone and dimethyl malonate with guanidine (25), 

it was found that the 1,2-addition of amine to the most reactive carbonyl group is the rate-

determining step. 2-Aminopyrimidine derivatives (26) and (27) are formed as a result of the 

elimination of water or methanol (Scheme 2.1).206  

Scheme 2.1 Synthesis of 2-amino-4,6-dihydroxy pyrimidine (26) and its dimethyl analogue (27) 

H+ -H+ 
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The reactions of 2-substituted chalcones (33) with guanidine (25) afford both 5-substituted 

pyrimidines (34) and 2-amino-4,6-diphenylpyrimidine unsubstituted at position 5 (31) (Scheme 

2.2).14  

 
Scheme 2.2 5-substituted 2-aminopyrimidine derivatives 

The heating of acylphenylacetylenes (35) with guanidine resulted in the formation of 2-

amino-4-aryl-6-phenylpyrimidines (31). It was synthesized also by the condensation of guanidine 

with chalcone dibromide (36) in the presence of Et3N; the initially formed 2-amino-5-bromo-4,6-

diphenyl-5,6-dihydropyrimidine (37) is unstable under the reaction conditions and is stabilized by 

the elimination of HBr (Scheme 2.3).208  

 
 

Scheme 2.3 Synthesis of 2-aminopyrimidine using acetylene and dibromochalcone 

In the 1980s mono- and di-b-sulfanyl derivatives of a,b-unsaturated ketones found use as 

efficient synthons for the synthesis of 2-aminopyrimidines (Scheme 2.4). These compounds 

contain two reaction centers for the nucleophilic attack [the C(1) and C(3) atoms] and have a weak 

tendency to undergo polymerization. The reactions of sulfanyl ab-enones(38) 24 with guanidine 

afford the corresponding 2-aminopyrimidines (39).209 
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Scheme 2.4 2-aminopyrimidine synthesis using a,b-sulfanyl derivatives 

 

2-Aminopyrimidines can be synthesized also by the three-component condensation of 

amines, aldehydes, and CH-acids, which has been developed in recent years.210 This method for 

the construction of the pyrimidine ring based on the use of b-dicarbonyl compounds as a source of 

the two-carbon moiety (see the retrosynthetic scheme given below, in which one of the carbonyl 

groups remains intact) is known as the Biginelli reaction (scheme 2.5).211 

 

 
Scheme 2.5 Retrosynthetic analysis to obtained pyrimidine derivatives (Biginelli reaction) 

	

Silyl-substituted b-amino enones 57, which were synthesized by the catalytic 

hydrogenolysis of 3-methyl-5-(silylmethyl)isoxazoles 56, have different stability depending on the 

nature of the silyl group. Compound 57 containing a nucleofuge212 group (for example, the 

dimethylphenyl, methyldiphenyl, or tert-butyldiphenylsilyl group) react with cyanamide to give 

guanidines 58, which undergo cyclization to pyrimidines 59, with the silyl group remaining intact 

(Scheme 2.6).213  
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Scheme 2.6 Synthesis of 2-aminopyrimidine derivatives using oxazole  

The above discussions reveal the importance of pyrimidines and their biodynamic 

properties, which prompted us to design pyrimidine derivatives simulating pharmacophores and 

substituents responsible for diverse pharmacological activities.  
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STRATEGIES AND OBJECTIVES  

In this chapter derivatives of 2-amino-4,6-dihydroxypyrimidine (ADHP) bearing 

substituents at position 2 and 5 of pyrimidine moiety were synthesized. Schiff base derivatives  of 

ADHP were synthesized with different aromatic aldehyde in the presence of NaOH in EtOH at 80 

°C for about 5 h.  

 

 

 
 Scheme 2.7 General scheme for the synthesis of ADHP analogues 

 
Furthermore, pyrimidine derivatives have demonstrated their importance in the 

development of various pharmaceuticals of broad spectra of therapeutical activities. Within this 

respect, the present work was aimed to synthesise 2-amino-4,6-dihydroxypyrimidine derivatives 

to study their anti-urease activity. Structure activity relationships have also been studied to detect 

the preferable structures required for such purposes.  
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Results and discussion 
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2. Synthesis  

Since our objectives were the discovery of new compounds based on the pyrimidines-imine 

scaffold, we have selected the 2-amino-4,6-dihydroxypyrimidine (ADHP) moiety to react with a 

series of substituted benzaldehydes, some heteroaromatic-carbaldehydes and 2-

naphtalenecarbaldehyde. For the synthesis of compounds 21-28, a  reaction between 2-amino-4,6-

dihydroxy pyrimidine (1 mmol) and different aromatic aldehydes (1 mmol) were carried out in the 

presence of NaOH (1.5 mmol) in absolute ethanol at 80 °C. The reaction mixture was stirred for 

about 5 h at 80 °C, resulting in precipitation of product. After the completion of the reaction, excess 

ethanol was removed by rotary evaporator and the product was washed with 20 mL of 1M HCl 

solution, filtered and recrystallized from ethanol. 

As can be observed from Table 1, the product yields were generally high (compounds 21-

28, yields 92-96%). Aldehydes bearing electron donating or electron withdrawing functional 

groups as hydroxyl 21-28, methoxy 22, bromine 26, chlorine, flourine 27 react well under this 

protocol. Importantly, excellent yields were also obtained with the 2-naphthaldehyde 28, 4-

phenylbenzaldehyde 23 and some heteroaromatic aldehydes 24 and 25. The structures of all the 

synthesized compounds were established after extensive spectroscopic analysis.  
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Table 2.1 Synthesis of Schiff bases of 2-amino-4,6-dihydroxypyrimidine and their respective 
yields (21-28) 

 

Compound 26 was identified by melting point, in addition to spectroscopic analysis, IR, 1H 

and 13C NMR. 

The IR spectra of the Schiff base 26 bands at 3336, 1643, 1585, 1267, and 1215 cm-1 

assignable to OH (intramolecular hydrogen bonded), C=C (aromatic), C=N (azomethine), C-N 

(aryl azomethine) and C-O (phenolic) stretching modes, respectively (data not shown).  
1H NMR spectrum showed a singlet characteristic of the azomethine group at d  8.22. Two 

doublets may also be observed at d  7.69 and 8.04 referring to four aromatic hydrogen atoms (H-

10/12, 9/13) of the phenyl group. Signal for hydrogen at C-5 of pyrimidine can be seen at d  7.83 

(Figure 2.12). 
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Table 1. Synthesis of schiff bases of 2-amino-4,6-dihydroxypyrimidine and their respective yields (21-28)
___________________________________________________________________________________________
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Figure 2.12 1H NMR spectrum (300 MHz, DMSO-d6) of compound 26. 

 
In the 13C NMR spectrum, signal for carbon 7 appear at d  173.2, and signals for C-4,6 is 

likely to be at d  163.1. Signal at d  127.9 and 123.2 corresponds to the C-9/13 and 10/12 of phenyl 

ring. Signals for Carbon 2 and 5 can be seen at d = 151.9 and 95.3 respectively (Figure 2.13).  
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Figure 2.13 13C NMR spectrum (75 MHz, DMSO-d6) of compound 26. 

 
2.2 Anti-urease activity  

Synthetic compounds 21–28 were evaluated for their urease inhibitory activity based on 

previously reported Schiff bases derivatives. The effect of each compound was assessed at the 

concentration of 40 µM by comparing the inhibitory characteristic of the Schiff bases with that of 

hydroxyurea (HU), the standard compound used as urease inhibitor. All compounds demonstrated 

in vitro urease inhibitory activity between 59-85 % (Table2.2).  

In order to study the structure-activity relationship, 2-amino-4,6-dihydroxypyrimidine 

derivatives with varying substituents were synthesized. These substituents include both electron 

withdrawing groups such as Cl, Br, F, and electron donating groups, such as methoxyl, phenyl and 

some heterocyclic moieties like thiophene, indole.  

A close look at the results showed that the most active compounds are 23, 27 and 28, 

causing urease inhibition in the range of 80.70-84.76%, close to the value observed for the positive 

control HU (86.17%). Compound 28 is the only naphthalene derivative. This result suggests that 

this group is important for the activity and other analogues bearing this aromatic unit with different 
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substituents should be prepared for the evaluation of the effect of such modifications on the 

potency of such imines.  

The other two most potent compounds 23 and 27 are derived from substituted 

benzaldehydes. While 23 has a phenyl group at the para position, 27 has two electron-withdrawing 

halogens (F, Cl). Such differences in structures revealed that the lack of a clear correlation between 

structure-activity. This is confirmed the by low activities of the other two benzaldehydes-

derivatives 22 (72.54% inhibition) and 26 (59.09%). Such results demonstrate that the substitution 

on the aromatic ring has a profound effect on the compounds potency, but more derivatives should 

be prepared in order to stablish some structure-activity correlations (Table 2.2).  

 

Table 2.2 Screening of  2-amino-4,6-dihydroxypyrimidine derivatives as urease inhibitors at 40 
μM in 1% Tween-20. 

 

 
 

 
 

 
 
 
 

Amongst the heterocycle derivatives, compound 24 (% of inhibition = 74.52%) having 4-

phenylthiophene group shows better inhibitory potential when compared to its isomer 5-

phenylthiophene 25 (% of inhibition = 63.15%).  The other heterocyclic derivative 21, with indole 

moiety, although showed a good activity (67.99%) as urease inhibitor, it was less potent in 

comparison with its hydrocarbon analogue 28.   

Although the number and diversity of the imines evaluated is limited, the results revealed 

that such compounds have a good urease inhibitory activity, some of them as potent and the 

standard control HU. Also, the nature of the aldehyde derived moiety has a large influence on the 

compound potency, with the naphthalene derivative being the most active. Further study is needed 

for the better understanding the effect of structural modification on of activity of these compounds 

as urease inhibitors. 

Compounds (40 µM) % urease inhibition  
21 67.99 
22 72.54 
23 81.54 
24 74.52 
25 63.14 
26 59.09 
27 80.70 
28 84.76 

Hydroxyurea 86.17 
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2.3 Molecular docking studies 

Molecular docking simulation was performed by Syed Baber Jamal at ICB in the laboratory 

of Prof: Vasco Ariston de Carvalho Azevedes.  

The MOE
 
Docking program was used for the molecular docking of the newly synthesized 

compounds. Molecular docking has contributed significantly in the identification of novel small 

drug-like scaffolds exhibiting high binding affinity and selectivity for the target of interest. Hence, 

we extended our study to investigate in silico binding orientation of the synthesized derivatives. 

The crystal structure of urease enzyme from Jack bean urease was selected for these studies. The 

compounds were studied by docking them into the crystal structure of Jack bean urease to observe 

the common behavior of interaction of these compounds with the enzyme. It was observed that all 

of the compounds have a similar binding mode of interaction with urease enzyme. The aromatic 

rings of the compounds make similar stack of interactions with HIS492, HIS593, ARG439, 

LYS169, and ALA170 residues which form a hydrophobic cavity in the opening of the active site 

pocket and allow greater flexibility to the compounds to adopt different conformations in that area. 

The coordination pattern of the most active compound 28 (84.76% inhibition) is shown in Figure 

20. Compound 28 anchors itself in a way that enables a stronger coordination with the LYS169 

via its aryl group (Figure 2.14).  

 

 

Figure 2.14 The ligand-protein interactions of 28 with the active site of urease from Bacillus pasteurii (4UBP). 
(a)The left side displays 3D interactions of the compounds in the binding site. (b)The right side shows the 2D 
interaction patterns. Dashed lines show the interactions among the ligand and the amino acids of the protein. 

 

(a) (b) 



                                                                                                                                

 

82 

 

To get better understanding of the roles of substituents on the aromatic ring, a docking 

analysis of compounds 23 and 24 was also carried out. According to the docking studies, 4-phenyl 

substituted analog 23 is well accommodated into the catalytic cavity, which allows it to interact 

tightly with the ARG339 and ALA170 through hydrogen bonding. While its biphenyl part shows 

pi-interaction with the LYS169 (Figure 2.15).  

         

 

Figure 2.15 The ligand-protein interactions of 23 with the active site of urease from Bacillus pasteurii (4UBP). 
(a)The left side displays 3D interactions of the compounds in the binding site. (b)The right side shows the 2D 
interaction patterns. Dashed lines show the interactions among the ligand and the amino acids of the protein. 

The 4-phenylthiophene substituted analogue 24 also show hydrogen bonding interaction 

with ARG339and ALA170 through pyrimidine hydroxyl groups, while its 4-phenylthiophene part 

showed interaction with LYS169 (Figure 2.16).  

 

 

Figure 2.16 The ligand-protein interactions of 24 with the active site of urease from Bacillus pasteurii (4UBP). 
(a)The left side displays 3D interactions of the compounds in the binding site. (b) The right side shows the 2D 
interaction patterns. Dashed lines show the interactions among the ligand and the amino acids of the protein. 

(a) (b) 

(a) (b) 
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To rationalize the high urease inhibitory activity of compound 28 over 23, binding affinity 

of both compounds was analyzed. Compound 28 exhibited a docking score of -13.462, a strong 

binding affinity of -11.401 kcal/mol and a low binding energy of -47.146 kcal/mol. On the other 

hand, compound 23 was found to have a docking score of -12.342, a binding affinity of -10.632 

kcal/mol and a binding energy of -45.339 kcal/mol, which correlates with the in vitro data. 

Furthermore, compound 24 ranked lower having a docking score of -11.64 a binding affinity of -

9.491 kcal/mol and a binding energy of -44.361 kcal/mol. 

 
2.4 Conclusion  

In conclusion, we have described a simple synthesis of 2-amino-4,6-dihydroxypyrimidine 

(ADHP) derivatives. Schiff bases of ADHP with different aromatic aldehydes in the presence 

of NaOH were synthesized, affording good yields (92-95%). Schiff bases 21–28 were 

evaluated for their urease inhibitory activity. All the compounds exhibit good urease inhibitory 

activity (59-85%). The most active compounds are 23, 27 and 28, causing urease inhibition in 

the range of 80.70-84.76%, close to the value observed for the positive control HU (86.17%). 

For better understanding of the SAR of the schiff bases,  molecular docking studies were also 

done against urease enzyme (Jack bean urease). Based on these studies, it is assumed that the 

newly identified inhibitors (i.e. compounds 21–28) may serve as leads for further studied 

towards the treatment of diseases caused by urease enzyme.  
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Experimental 
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3.1 General Experimental techniques 

Almost  all the chemicals and materials were acquired from Sigma Aldrich Chemicals 

Ltd. and used without further purification. IR spectra were recorded in KBr on Shimadzu IR 

Affinity-1 FT-IR spectrophotometer and 1H and 13C NMR spectra were recorded on a Bruker 

Avance II 300 and III 400 MHz NMR spectrometer in DMSO-d6 (d H 2.50; d C 39.52) as 

solvent. Chemical shifts of 1H and 13C NMR spectra are reported in ppm and related to solvent 

signals. All coupling constants (J values) are expressed in Hertz (Hz). Multiplicities are 

reported as follows: singlet (s), doublet (d), doublet of doublets (dd), triplet (t), sextet (sext), 

septet (sept), multiplet (m), and broad (br). Mass spectra were recorded on Waters, Q-

TofMicromass (LCMS) spectrometer and Varian Inc. 410 Prostar Binary LC with 500 Mass 

Spectrophotometer. Melting points are uncorrected and were measured with a MQAPF-301 

apparatus. 

3.2 General procedure for the Sythesis of Schiff bases of 2-amino-4,6-dihydroxypyrimidine 

(21-28) 

To a 100 mL round bottomed flask, were added 2-amino-4,6-dihydroxypyrimidine (50 

mg, 0.4 mmol), EtOH (15 mL) and NaOH (24 mg, 0.6 mmol). The reaction mixture was stirred 

at 80 ºC for 1h. After the dissolution of all pyrimidine, the aromatic aldehyde (0.4 mmol) was 

added and reaction mixture was stirred under reflux for about 4 hours. After the consumption 

of the starting material, the reaction mixture was quenched by addition of aqueous 1M HCl 

solution (5 mL). Schiff base thus formed was cooled to room temperature and collected by 

filtration, followed by recrystallization in ethanol and dried in vacuo over anhydrous calcium 

chloride (Yield: 92-96%). 

3.3 Compounds physical and spectroscopic data ( All new compounds). 

(E)-2-(((1H-indol-2-yl)methylene)amino)pyrimidine-4,6-diol (21). Yield: 96%. Mp: 310-

315 ºC, decompose. IR (KBr): nmax= 3320, 1650,1470,1207, 

1100 cm-1. 1H NMR: (DMSO-d6, 300 MHz): δ 5.59 (s, 1H, H-

5), 7.70-7.49 (m, 2H, H-14/15), 8.04-7.89 (m, 2H, H-16, NH), 

8.24 (d, 1H, J =  8.8 Hz, H-13), 8.46 (s, 1H, H-12), 8.72 (s, 1H, 
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H-7). 13C NMR: δ 167.7 (C-4,6), 166.3 (C-7), 164.2 (C-2), 136.7 (C-9), 127.6 (C-10), 127.4 

(C-11), 121.8 (C-15), 121.5 (C-11), 120.9 (C-12), 111.9 (C-8), 108.8 (C-14), 103.1 (C-5). 

(E)-2-((2,4,6-trimethoxybenzylidene)amino)pyrimidine-4,6-diol (22). Yield: 95%. Mp: 320- 

325 ºC, decompose. IR (KBr): nmax = 3331, 1641,1487,1207, 

1091 cm-1.  1H NMR: (DMSO-d6, 400 MHz): δ 3.79 (s, 6H, H-

OCH3), 3.87 (s, 3H, OCH3), 6.25 (s, 1H, H-5), 6.26 (s, 2H, H-

10,12), 8.20 (s, 1H, H-7). 13C NMR: δ 165.4 (C-7), 164.8 (C-

9,13), 162.9 (C-11), 161.1 (C-2), 160.4 (C-4), 158.56 (C-6), 

146.3 (C-8),105.7 (C-5) 90.2 (C-10,12), 55.5 (C-OCH3), 55.3 (C-OCH3). 

 

(E)-2-(([1,1'-biphenyl]-4-ylmethylene)amino)pyrimidine-4,6-diol (23) (page-160). Yield: 

93%. Mp: 300-305 ºC decompose. IR (KBr): nmax= 3350, 

1620,1478,1207, 1091 cm-1. 1H NMR: (DMSO-d6, 300 

MHz): δ 7.47-7.58 (m, 5H, H-16, 17, 18, 19, 20), 7.97 (d, 

J = 8.3 Hz, 2H, H-10/12), 8.13 (d,  J = 8.3 Hz, 2H, H-9/13), 

8.67 (s, 1H, H-5), 9.01 (s, 1H, H-7). 13C NMR: δ 168.6 (C-

4,6), 165.1 (C-7), 164.3 (C-2), 144.6 (C-8), 140.4 (C-14), 

135.4 (C-11), 129.3 (C-17), 128.9 (C-9,17), 128.3 (C-10,12), 128.1 (C-15,19), 127.3 (C-16,18), 

110.1 (C-5). 

 
(E)-2-(((4-phenylthiophen-2-yl)methylene)amino)pyrimidine-4,6-diol (24). Yield: 96%. 

Mp: 315-320 ºC, decompose. IR (KBr): nmax = 3340, 

1660,1480,1200, 1100 cm-1. 1H NMR: (DMSO-d6, 300 

MHz): δ 6.1 (s, 1H, 5), 7.33 (t, 1H, J = 7.3 Hz, H-16), 

7.44 (dd, 2H, J = 7.5, 7.3 Hz, H-15/17), 7.77 (d, 2H, J = 

7.5 Hz, H-14,18), 8.62 (s, 1H, H-7), 8.67 (s, 2H, H-9,11). 13C NMR: δ 161.3 (C-7), 160.4 (C-

4,6), 146.0 (C-9), 143.4 (C-11), 141.6 (C-2), 137.4 (C-8), 136.7 (C-10), 133.0 (C-14,18), 128.6 

(C-16), 127.4 (C-15,17), 125.5 (C-13), 111.8 (C-5). 
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(E)-2-(((5-phenylthiophen-2-yl)methylene)amino)pyrimidine-4,6-diol (25). yield: 96%. 

Mp: 305-310 ºC, decompose. IR (KBr): nmax = 3300, 

1670,1450,1230, 1060 cm-1. 1H NMR: (DMSO-d6, 300 MHz): 

δ 6.1 (s, 1H, H-5), 7.33 (t, 1H, J = 7.2 Hz, H-16), 7.44 (dd, 2H, 

J = 7.5, 7.2 Hz, H-15/17), 7.76 (d, 2H, J = 7.5 Hz, H-14,18), 

8.62 (s, 1H, H-7), 8.65 (s, 2H, H-9,10). 13C NMR: δ 161.4 (C-

7), 160.7 (C-4,6), 146.4 (C-9), 143.7 (C-10), 141.9 (C-11), 

137.8 (C-8), 137.0 (C-2), 133.3 (C-13), 128.8 (C-14/18), 127.7 (C-16), 125.8 (C-15,17), 112.0 

(C-5). 

 
(E)-2-((4-bromobenzylidene)amino)pyrimidine-4,6-diol (26). Yield: 92%. Mp: 290-ºC, 

decompose. IR (KBr): nmax= 3331, 1641,1487,1207, 1091 cm-1. 

1H NMR: (DMSO-d6, 300 MHz): δ 7.67 (d, 2H, J = 8.6 Hz, H-

9,13), 7.8 (s, 1H, H-5), 8.03 (d, 2H, J = 8.6 Hz, H-10/12), 8.22 

(s, 1H, H-7). 13C NMR: δ 161.3 (C-7), 159.2 (C-4,6), 153.7 (C-

2), 134.8 (C-9,13), 131.7 (C-10/12), 130.9 (C-11), 126.2 (C-8), 119.6 (C-5). 

 
(E)-2-((2-chloro-4-fluorobenzylidene)amino)pyrimidine-4,6-diol (27). yield: 95%. Mp: 

325- 330 ºC, decompose. IR (KBr): nmax= 3320, 1620,1467,1190, 

1091 cm-1. 1H NMR: (DMSO-d6, 400 MHz): δ 6.03 (s, 1H, H-5), 

7.30 (td, 1H, J = 8.7, 2.5 Hz, H-12), 7.59 (dd, 1H J = 6.3, 2.5 Hz, 

H-10), 7.96 (dd, 1H, J = 8.7, 6.3 Hz, H-13), 8.63 (s, 1H, H-7). 13C 

NMR: δ 173.7 (C-7),164.4 (d, J = 251.4 Hz, C-11), 163.1 (C-4), 161.3 (C-6) 160.3 (C-2), 136.0 

(d, J = 11.3 Hz, C-9), 132.3 (d, J = 9.9 Hz, C-13), 129.3 (d, J = 3.5 Hz, C-8), 121.9 (d, C-5), 

118.1 (d, J = 25.7 Hz, C-10), 115.4 (d, J = 22.1 Hz, C-12). 

 
 
(E)-2-((naphthalen-2-ylmethylene)amino)pyrimidine-4,6-diol (28). yield: 94%. Mp: 288-

290 ºC, decomposed. IR (KBr): nmax= 3345, 

1641,1480,1210, 1091 cm-1. 1H NMR: (DMSO-d6, 300 

MHz): δ 6.19 (s, 1H, H-5), 7.58-7.47 (m, 2H, H-15/16), 7.98 

(d, 2H, J =  7.9 Hz, H-14/17), 8.13 (d, 2H, J = 7.9 Hz, H-
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9/10), 8.67 (s, 1H, H-13), 9.01 (s, 1H, H-7). 13C NMR: δ 167.6 (C-7), 164.7 (C-4,6), 150.4 (C-

2), 135.0 (C-16), 133.9 (C-15), 132.4 (C-17), 129.8 (C-14), 128.9 (C-10), 128.5 (C-11), 127.1 

(C-13), 127.0 (C-12), 126.5 (C-9), 113.4 (C-5) 

 

3.4 Urease inhibition assay 

Anti-urease activity was performed by Ana Cláudia Rodrigues at botany department in the 
laboratory of Prof: Luzia V. Modolo. 
 

The screening for identifying potential urease inhibitors was done using the indophenol 

method. Each ADHP Schiff base at final concentration of 40 mM was incubated in a medium 

reaction buffered with 20 mM phosphate (pH 7.4) and supplemented with 1 mM EDTA, 10 mM 

urea and 12.5 mU of Canavalia ensiformis (jack bean) type III urease (Sigma). Reactions were 

maintained at 25 ºC for 10 min, followed by addition of 0.5 volume of 1% w/v phenol in 5 ppm 

sodium nitroprusside (SNP) and 0.7 volume of 0.5% w/v NaOH in 0.1% v/v NaOCl to interrupt 

enzyme activity. Reactions were then incubated at 50 ºC for 5 min prior the measurement of 

absorbance at 630 nm to determine the amount of ammonium (NH4+) formed. Hydroxyurea (HU) 

and thiourea (TU) were used as references of urease inhibitors. Urease inhibition was determined 

in terms of percentage of NH4+ formed in ADHP Schiff base-containing reactions in relation to 

total urease activity in reactions devoid of inhibitor.155 

 
3.5 Molecular Docking 

Already presented in chapter-1 (page 51)   
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Chapter 3 

 
SYNTHETIC STRATEGIES FOR THE SYNTHESIS OF CADIOLIDE 

ANALOGUES AND THEIR ANTIMICROBIAL ACTIVITIES 
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1.1 INTRODUCTION 

Butenolides, a family of a,b-unsaturated lactones, also known as furanones, are ubiquitous 

chemical moieties found in many natural products.214-215 They are typical products of a polyketide 

biochemical synthesis pathway. Butenolide ring systems occupy a special place in natural product 

chemistry and in heterocyclic chemistry since this is a frequently encountered structural motif in 

many pharmacologically relevant compounds. Some common examples of compounds having a 

butenolide ring are cardiotonic digitoxines (1) from Digitalis species216, antifungal incrustoporine 

(2)217, and COX-2 inhibitor rofecoxib (3) (Figure 3.1)218, and many others are encountered among 

fungi, bacteria219, and gorgorians220. Their saturated analogs act as signaling substances in 

bacteria221 and enhance spore formation of streptomycetes, or induce metabolite production222. 

The g-lactone ring present in butenolides is significantly reactive, and it has been utilized for the 

synthesis of nitrogen hetrocycles (pyrrolones) of potential biological activity.223-224  

 

 

 

 

 

 

Figure 3.1 Some bioactive butenolides. 

 
 There are several other types of natural products that include the butenolide motifs, 

specially some bearing a g-benzylidene unit as the rubrolides225, cadiolides226-227, henhygrolides228, 

nostoclides226. Such compounds are endowed with a large array of biological activities and can act 

as antibiotic229, herbicides230, photosynthesis inhibitors231, anticancer232, bacterial biofilm 

inhibitors233, amongst others.  

 More recently it has been shown that some natural cadiolides are potent antibiotic and can 

also inhibit biofilm formation of some pathogenic bacteria. So, in this work we will describe some 

of our research in this area.  
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1.2. Cadiolides  

The cadiolides are a class of natural compounds isolated from marine ascidians and belong 

to the butenolide family. Like the rubrolides, the cadiolides also have the 4-aryl-5-

arylmethylenefuran-2-(5H)-one moiety. The structure of cadiolides 4-12 is shown in Figure 3.2. 

Cadiolide A (4) and B (5) were the first ones to be isolated. These compounds were found in 

Botryllus ascii, collected at Barrang Caddi in Indonesia.227  B-I cadiolides have been isolated more 

recently from Pseudodistoma antinboja (Cadiolides C-F) ascites234 and from the genus Synoicum 

(cadiolides B, E, G-I).235-236 The cadiolide F was obtained as a mixture of Z/E isomers with 

predominance of the Z form. 

 
Figure 3.2 Cadiolides isolated from marine organisms. 

B-F cadiolides show significant activity against strains of methicillin resistant 

Staphylococcus aureus (MRSA), with ranges of minimum inhibitory concentration of 0.5-1, 0.13-

0.5, 0.25-1, 0.5-2 and 1-2 μg mL-1, respectively. These values are comparable or superior than 

some commercial drugs such as vancomycin (0.5-1 μg mL-1), linezolid (2-4 μg mL-1), daptomycin 

(<32 μg mL-1) and platensimicin (8 μg mL-1).234 MRSA is a serious health threat, not only for 

hospitalized patients, but also for healthy individuals, it can lead infected patient to death.237 

Besides the antibacterial activity, another publication reveals that the cadiolide E strongly 

inhibits the enzyme isocitrate lyase of Candida albicans, with IC50 of 7.62 μM, suggesting that it 

has antifungal activity.238 The antifungal used as a positive control, 3-nitropropinato, inhibits the 

same enzyme with IC50 of 13.91 μM. Cadiolides H and I also showed inhibitory activity with IC50 
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of 17.16 and 10.36 μM respectively. Also, it has been reported that cadiolide B inhibits the 

Japanese encephalitis virus at 1 μg.mL-1 concentration.235 

All the studies performed to date involve the evaluation of the cytotoxicity of cadiolides and 

the results showed that these compounds do not present cytotoxic activity.236, 239 

 

1.2.1. Synthesis of natural cadiolides and analogues 

 
The first synthesis of a cadiolide was reported in 2005 by Boukouvalas and Pouliot.240 In this 

work, the cadiolide B was synthesized from the 4-bromofuran-2-(5H)-one lactone in 6 steps and 

42% overall yield (Scheme 3.1). 

The first reaction constituted the formation of dibutylboronate 2-furanate from 13, 

followed by aldol reaction with p-anisaldehyde (64% yield) (Scheme 3.1). In the next step, the aryl 

group was inserted at the 4-position of the butenolide ring using the Suzuki cross-coupling reaction 

(86% yield). Then, lactone 67 was obtained after oxidation reaction using Dess-Martin periodinane 

(DMP) in 89% yield. The introduction of the arylmethylene group at position 5 of the butenolide 

ring was performed in 94% yield, via an aldol reaction performed with p-anisaldehyde, 

TBDMSOTf and i-Pr2Net, followed by b-elimination reaction in the presence of DBU. The 

following steps for formation of cadiolide B consisted of removal of the methyl groups with BBr3 

(93% yield) and bromination with Br2/KBr (98%). 
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Scheme 3.1 Synthesis of cadiolide B (Boukouvalas and Pouliot, 2005). 

 

The syntheses of cadiolide B and analogs were reported by the research group of Franck 

and Leleu241 in only 3 steps, with 48% overall yield from dioxinone (19) (Scheme 3.2). However, 

it is noteworthy that (19) was obtained after 4 steps starting from p-methoxybenzoic acid in 76% 

yield, which would give a total of 7 steps in 36% overall yield. Nevertheless, these authors reported 

on the construction of the cadiolide skeleton using a new approach. 

Initially a multicomponent microwave reaction (300 W) was performed, using reagents 39-

41, triethylamine and toluene. Butenolide 42 was obtained in 77% yield. The following steps to 

obtain cadiolide B were demethylation with BBr3 (94% yield) and bromination with Br2/KBr (67% 

yield) (Scheme 3.2). 

O

Br

O
a

O O

HO
OMe

MeO

(a) 2,6-lutidine, n-Bu2OTf, p-anisaldehyde, THF, -78 to -20 C, 45 min, 64%; (b) 4-methoxyphenylboronic acid, AsPh3, AgO2, 
PdCl2(PhCN)2, THF, H2O, 23 C, 20 h, 86%; (c) DMP, CH2Cl2, 23 C, 15 h, 89%; (d) TBDMSOTf, panisaldehyde, i-Pr2NEt, 
CH2Cl2, 23 C, 1 h, DBU, 23 C, 2 h, 94%; (e) BBr3, CH2Cl2, -78 to -23 C, 20 h, 93%; KBr, dioxano, H2O, 23 C, 1 h, 98%.
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(a) 2,6-lutidine, n-Bu2BOTf, p-anisaldehyde, THF, -78 to 20 ºC, 45 min, 64%; (b) 4-methoxyphenylboronic acid, AsPh3, 
Ag2O, PdCl2(PhCN)2, THF, H2O, 23 ºC, 20 h, 86%; (c) DMP, CH2Cl2, 23 ºC, 15 h, 89%; (d) TBDMSOTf, p-anisaldehyde, 
i-Pr2Net, CH2Cl2, 23 ºC, 1 h, DBU, 23 ºC, 2 h, 94%; (e) BBr3, CH2Cl2, -78 to -23 ºC, 20 h, 93%; KBr, dioxane, H2O, 23 
ºC, 1 h, 98%. 
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Scheme 3.2 Synthesis of cadiolide B (Peixoto et al., 2013). 

 

In the study by Peixoto et al. (2013), analogues 21-27 (Figure 3.3) were also synthesized 

using a multicomponent reaction similar to that shown in Scheme 3.2. 

 

 
Figure 3.3 Analogues of cadiolides obtained by multicomponent reaction.241 

 

Using the same strategy of the multicomponent reaction, the research group of Franck and 

Leleu recently reported the synthesis of cadiolides A, B and C and of 13 analogues, compounds 

28-43 represented in Figure 3.4. The antibacterial activities of compounds 4-6 and 28-43 as well 

as their methoxylated precursors were evaluated against strains of Gram-positive and Gram-
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O
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negative bacteria. The methoxylated compounds were inactive at the assessed concentration (125 

μg mL-1), while the hydroxylated compounds showed moderate or significant activity. The 

presence of bromine atoms and their position influenced the activity and the presence of the furan 

ring showed a significant increase in the antibacterial activity.239 

 

 
Figure 3.4 Analogues of cadiolides obtained by multicomponent reaction (Boulangé et al., 

2015). 

 

The most active compounds were 34, 36 and 42, with MIC of 1.95 μg mL-1 against Bacillus 

cereus, Staphylococcus aureus, Enterococcus faecalis, Salmonella typhi and Escherichia coli 405, 

while the tetracycline standard antibiotic showed MIC of 3.90, 0.24, 0.48, 7.81 and 7.81 µg mL-1, 

respectively. Among the natural cadiolides, cadiolide C was the most active, with a MIC of 3.90 

μg mL-1 for the mentioned bacteria.239 

Recently, Boukouvalas and Thibault, have described the total synthesis of cadiolides A, B 

and D using a methodology different from those described previously.242 In this, two stages stand 

out: the first involves a one-pot diels-alder cycloaddition/cycloreversion reaction, using 

oxazole/ynone, followed by hydrolysis reaction to generate the precursor butanolide (scheme 3.3). 

The second involves the Knoevenagel condensation reaction to obtain cadiolides A, B and D 

(Scheme 3.3). 
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(28) R1=R2=R3=R4=R5=H (72%)
(29) R1=R2=R3=R4=H; R5=Br (39%)
(30) R1=R2=R4=H; R3=R5=Br (38%)
(31) R1=H; R2=R3=R4=R5=Br (38%)
(32) R1=R4=Br; R2=R3=R5=H (37%)
(33) R1=R2=R4=Br; R3=R5=H (44%)
(34) R1=R2=R4=R5=Br; R3=H (61%)
(35) R1=R2=R3=R4=Br; R5=H (47%)

Br

(36) R1=R3=Br; R2=R4=H (39%)
(37) R1=R3=R4=Br; R2=H (21%)
(38) R1=R2=H; R3=R4=Br (19%)
(39) R1=R2=Br; R3=R4=H (18%)
(40) R1=R2=R3=R4=Br (48%)

OR1

(41) R1=R2=R3=R4=H (37%)
(42) R1=R3=H; R2=R4=Br (30%)
(43) R1=R2=R3=Br; R4=H (13%)
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Scheme 3.3 Synthesis of butenolides by Diels-Alder reaction (Boukouvalas and Thibault, 2015). 

 

In the first step ynone 65, obtained by the Sonogashira coupling reaction between 4-

benzoyl chloride and phenylacetylene, reacts with oxazole derivative, leading to the formation of 

adduct (non-isolated compound). Then, the cyclo-reversion reaction occurs with loss of 

acetonitrile, forming compound 66, which was obtained and submitted directly to the hydrolysis 

using hydrobromic acid. Lactone 67 was obtained in 70% yield and its 44 isomers in 2% yield 

(Scheme 3.3). The demethylation and bromination reactions of 67 were performed one-pot, 

yielding 42 in 84% yield. Finally, the Knoevenagel condensation reaction yielded cadiolides A, B 

and D in yields of 80%, 65% and 73%, respectively (Scheme 3.4). 
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Scheme 3.4 Synthesis of cadiolides A, B and D (Boukouvalas and Thibault, 2015). 
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STRATEGIES AND OBJECTIVES  

 

In this chapter, strategies for the synthesis of cadiolide analogues will be discussed. For the 

synthesis of cadiolides, some strategies have been developed, such as the strategy reported by 

Boukouvalas and Thibault (2015), which uses as a key step a Diels-Alder 

cycloaddition/cycloreversion reaction as shown in the previous section. In this way, new analogs 

to the cadiolides were obtained by varying the substituents (Figure 3.5).  

 
R1= R2 = Br, OMe 

Figure 3.5 General structure of cadiolide 

 

In this methodology, analogs were obtained from lactone 70 (retrosynthesis shown in 

Scheme 3.5. Lactone 70 was obtained by hydrolysis of alkoxyfuran 69. Finally, 69 was obtained 

by Diels-Alder / retro Diels-Alder reaction between 68 and 4-methyl-5-ethoxyoxazole. 

 

Scheme 3.5 Retrosynthetic analysis to obtain cadiolide analogues. 

 

The cadiolide analogues were submitted to biological tests to evaluate their antibacterial 

and antifungal properties.  
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2. Results and discussion  

2.1. Synthesis of phenylacetylene derivatives 

Since the acetylenes used in Scheme 3.6 are not commercially available, their synthesis 

was required. The first attempt to synthesize 3-bromo-4-methoxyphenylacetylene 61 was made 

using the Corey-Fuchs reaction.243-244 The first step consisted in reacting benzaldehyde 51 with 

CBr4 in the presence of triphenylphosphine, resulting the intermediate obtaining 2,2-

dibromovinyl-3-bromro-4-methoxybenzene 60 in 94% yield (Scheme 3.6). The second step 

involved an elimination of two HBr molecules by treatment of 60 with BuLi. This step however, 

was unsuccessful and the desired product 61 was not obtained, since butyllithium also promoted 

the reductive elimination of the Br in the aromatic ring resulting the debrominated alkyne 62 in 

14% yield.  

 
Scheme 3.6 Corey-Fuchs reaction for the synthesis of terminal alkyne 

Phenylacetylene can also be prepared from acetophenone by microwave radiation. In this 

method, a mixture of pyridine and PCl5 were used at different ratios. This stable reagent is 

relatively mild to convert ketones to acetylenes under microwave irradiation. Initially, the same 

reaction was carried out under classical experimental conditions using a refluxing utility for 2.5 h 

which resulted in a very low yield (from 5% to 15%). In contrast, the reaction progressed easier 

under microwave irradiation to confirm the nonthermal effects of microwave irradiation in this 

reaction (Table 3.1).245  

O

MeO
Br

PPh3, CBr4, CH2Cl2
0  to 25 ℃, 4 h MeO

Br

Br

Br

(51) (60, 94%)

n-BuLi, Et2O-78 ℃ X

MeO

Br
MeO

(14%) (0%)
(61)(62) (64) 
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As shown in Table 3.1, the best reaction time found for preparing 4-

methoxyphenylacetylene is 60 s, and the best molar ratio of PCl5 to pyridine for this product is 

(1:18). In case of 3-bromo-4-methoxyphenylacetylene  (64) yield decreases due to  the addition of 

bromine at meta position. The strong affinity of phosphorus for oxygen atoms caused the initial 

bond between oxygen of the carbonyl group and phosphorus. At these conditions, a-hydrogen 

atoms become more acidic and are abstracted readily by a weak base such as pyridine, and 

eventually the  acetylenic compound is produced.	246	

Table 3.1 Optimization of the molar ratio of pyridine to PCl5 for preparing terminalalkyne under 
microwave irradiation 

 

Pyridine / PCl5 (mole ratio) Temp ºC Time (s)      Yield % 

62 64 

5:1 110 60 15 10 

10:1 110 60 20 16 

12:1 110 60 25 20 

15:1 110 60 35 30 

18:1 110 60 50 40 

 

Our observation showed that the presence of electron-donating groups on the aromatic 

nuclei enhanced the rate of reaction. The presence of oxygen- bearing functional groups such as 

methoxy group on the aromatic ring, because of its complexation with phosphorus and its 

conversion to a negative induction group, diminished the yield. With respect to this observation 

the following mechanism was proposed for this reaction (scheme.3.7). 

O

MeO
R

PCl5.Py

MW MeO
R

63a R = Br
63b R = H

64   R = Br (40%)
62   R = H  (50%)

+
Cl

MeO
R

65a R = Br (15%)
65b R = H  (10%)
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Scheme 3.7 Possible mechanism for the synthesis of phenylacetylene 

Our studies showed that a-chlorostyrene was produced. To overcome this issue, different 

ratios of the reagent to ketone were tested, and increasing the ratio of pyridine to PCl5 was more 

effective. The excess of pyridine trapped the released HCl and caused the abstraction of hydrogen 

from a-position to be easier. It is important to note that when pyridine had a low ratio (PCl5.5Py), 

the released HCl produced an additional amount of a-chlorostyrene (65) because of the absence 

of an effective base.  

Despite the partial success in preparing the required alkynes (40-50% yields), we 

investigated the preparation of such compounds using the Bestmann-Ohira method.247 Due to the 

high cost of the Bestmann-Ohira reagent it was synthesized in four steps as outlined in Scheme 

3.8. The methodology used was based on the work of Pietruszka and Witt (2006), however, 1-

bromopropan-2-one and tetrabutylammonium bromide (TBABr) instead of 1-chloropropan-2-one 

and chloride of tetrabutylammonium were used, and the yields obtained in both cases were similar 

for such steps.  
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Scheme 3.7 Synthesis of Bestmann-Ohira reagent 

 

With the Bestmann-Ohira reagent in hands, it was reacted with bromoaldehyde 51 and the 

required alkyne 61 was obtained in 93% yield (Scheme 3.9). 

 

 

 

 

 

Scheme 3.8 Synthesis of alkyne using bestmann-Ohira reagent. 

 

 The structure of alkyne 64 was confirmed by its spectroscopic data. In the 1H NMR 

spectrum of compound 61 (Figure 3.6), the methoxy signal was observed as a singlet at d  3.80 

and singlet at  d  2.94 corresponds to CH alkyne hydrogen. One doublet and one doublet of doublets 

at d   6.72 and d   7.32 with J values of 8.5, 8.5 and 1.9 Hz and a doublet at d   7.59 with J value 

of 1.9 Hz representing hydrogens H-5, H-6 and H-2 respectively. 
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              50 ℃

O
P OMeO

OMe

64%

1) toluene, 
0 ℃, NaH

2) azide, THF,
25 ℃, 16 h

O
P OMeO

OMe
N2

NHAc

SO2Cl

1) CH2Cl2, TBABr
2) NaN3, 25 ℃, 12 h

NHAc

SO2N3

(90%)

(45%)
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Figure 3.6 1H NMR spectrum (400 MHz, CDCl3) of compound 64 

 

In the 13C NMR spectrum of compound 64 (Figure 3.7), the methoxy signal is observed at d 

56.6 and the signal at  d  82.5 corresponds to carbon C-9. Signals for carbon C-5 and C-6 appear 

at d  132.8 and d  137.0 respectively. The signals at d  111.7 and d  115.8, refer to carbons C-2 and 

C-3 respectively. Signal for C-1, and C-4 appear at d = 111.6 and  d = 156.8 respectively. 
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Figure 3.7 13C NMR spectrum (100 MHz, CDCl3) of compound 64 

Preparation of different benzoyl chlorides were carried out in quantitative yields. In this 

reaction, benzoic acid was refluxed in thionyl chloride for about 6 hours. The 4-methoxybenzoyl 

chloride (67b) and 3-bromo-4-methoxybenzoylchloride (67a) were obtained (Scheme 3.10) in 

quantitative yield (100%) and then used in the Sonogashira coupling without further purification. 

 

 
Scheme 3.9 Synthesis of benzoyl chloride  

Compound 51 was obtained from p-methoxybenzaldehyde by the bromination reaction 

(80% yield) with Br2 in DCM for about 12 h. (Scheme 3.11). 
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66a R = Br
66b R = H

67a R = Br, (100%)
67b R = H, (100%)
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Scheme 3.10 Bromination of 4-methoxybenaldehyde 

It can also be synthesized by reacting 50b with NBS (N-bromosuccinamide) in solid state 

just by mixing aldehyde and NBS in china dish for about 4h. 

 
Scheme 3.12 Bromination of 4-methoxybenaldehyde 

 
2.2.Synthesis of ynone 

As shown in the objectives, for the synthetic methodology proposed for cadiolides 

analogues some ynones are required as starting materials. In the following sections we have 

attempted to rationalize numerous methods available for the synthesis of ynones, discussing 

mainly three methodologies as summarized in Scheme 3.12. The first strategy investigated 

involves the reaction between benzaldehyde (50) and acetophenone (51a and 51b) in the presence 

of thionyl chloride as a catalyst in dry methanol to get chalcone (52 and 53). Further bromination 

and dehydrobromination of chalcone would afford the desired ynone. In the dehydrobromination 

step, bromine attached in alpha position to carbonyl group was difficult to remove. In this sense, 

we tried three different methods: in the first two methods no product formation was found. In the 

third method which is catalyzed by KOH and acetone/water (1:1, v/v) mixture as solvent, 25% and 

30% of the product were formed for compound 56a and 56b respectively as shown in Scheme 

3.12.248 

 



                                                                                                                                

 

110 

 

Scheme 3.11 Synthesis of ynones via intermediate chalcones. 

 
Due to the difficulties in the debromination step in Scheme 3.11, resulting in very low 

yields for the desired compounds, another strategy involving a Sonogashira coupling reaction 

between 3-bromo-4-methoxyphenylacetylene and 4-methoxyphenylacetylene (57a,b) and benzoyl 

chloride (58a,b) using palladium catalysts was investigated (Scheme 3.13).249 The use of this 

methodology afforded the required compounds 59a and 59b in high yields (78-80%). A slightly 

highest yield was obtained when using the benzoyl chloride 58a, while the use of the p-

methoxybenzoyl chloride 58b resulted in the lower yield (78%). These results can be rationalized 

by analyzing the catalytic cycle of the Sonogashira reaction. In the oxidative addition step, an 

electron-rich palladium (0) complex reacts with the aryl halide to generate the palladium (II) 

species. Thus, the more electrophilic the aryl halide, the more favorable this stage becomes, in 

consonance with the results obtained. 
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Scheme 3.12 Synthesis of ynone through Sonogashira coupling reaction. 

 

Reactions of the terminal alkynes with different benzoyl chlorides were performed with a 

palladium catalyst, a copper(I) co-catalyst, and an amine base. Typically, the reaction requires 

anhydrous and inert atmosphere conditions, but newer procedures have been developed where 

these restrictions are not important. The first cross-coupling reaction was between alkyne 64 and 

benzoyl chloride (69), obtaining ynone (70) in optimum yield (96%) as shown in Scheme 3.13. In 

this reaction, no homocoupling product formation was observed. Reaction of 64 with benzoyl 

chloride 67 led to the formation of a-ketoalkyne 72 in 78% yield. In this reaction, the formation 

of the homocoupling product (71) was observed in 8% yield, Scheme 3.13. The reaction of alkyne 

61 with benzoyl chloride (67a), however, led to the formation of the ynone in 85% yield, and 

homocoupling product 71 in 5% yield. (Scheme 3.13). 

 

 
Scheme 3.13 Synthesis of ynones through sonogashira reaction  

 
 

The structures of the keto-alkynes were confirmed by their spectroscopic data. In the 1H NMR 

spectrum of compound 59a (Figure 3.8), the methoxy signals were observed as singlets at d  3.86 

and 3.90 respectively. The two doublets at d  6.81 and d  6.90 with J = 8.6 Hz referred to H-3’’ 
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69 R = R1 = H
67a R1 = OMe; R = Br
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72 R1 = H; R2 = OMe; R3 = Br (78%)
59a R1 = Br; R2 = OMe; R3 = Br (85%)
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and H-3’respectively. The two deshielded doublets with J = 8.6 Hz correspond to H-2’ and H-

2’’respectively. Two singlets at d = 7.76 and d = 8.27 representing H-6’ and H-6’’, respectively. 

 

 
Figure 3.8 1H NMR spectrum (400 MHz, CDCl3) of compound 59a. 

 

The signals at  d 56.9 and d 56.7 refers to the C-7' and C-7" methyl, respectively. The signal 

at  d  86.8 refers to carbon 2 and in  d  93.5, refers to 1, both sp carbons. The signal at  d  112.1, 

refers to carbon C-1', in  d = 113.8 and   d = 114.4, refers to C-3''and 3' carbons, respectively. The 

carbon 1" appears in  d  130.4 and the 2'' and 2 ' carbons appear in  d = 131.9 and  d = 135.0, 

respectively. The carbons bound to the methoxy groups show chemical shift at  d  161.6 (4 ') and  

d = 164.3 (4 "). The signal at  d  176.8 refers to carbon 3, consistent with the carbonyl group of 

ketone in conjugated systems (Figure 3.9). 
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Figure 3.9 13C NMR spectrum (100 MHz, CDCl3) of compound 59a. 

 

A proposal for the catalytic cycle of the Sonogashira reaction is given in figure 3.10 (Karak 

et al., 2014).249 An analysis of the oxidative addition step may suggest the probable cause for the 

results obtained in the present work.  
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Figure 3.10 Catalytic cycle of the Sonogashira reaction. From (Karak et al., 2014). 

 
In addition to the hydroxyl group being a better electron donor than methoxy, hydrogen from 

the hydroxy group can be removed in the reaction medium (due to the presence of base and the 

inherent acidity of such a hydrogen), further increasing the electron density in the molecule. Thus, 

the oxidative addition reaction with Pd (0) becomes unfavorable and the Sonogashira coupling 

product is not formed. 

2.3. Synthesis of lactones 

For the synthesis of the lactones, the preparation of oxazole 76 was required (Scheme 3.15). 

The methodology used was based on the works of Dean et al. (2008) and Babu et al.250-251 Ethyl 

2-aminopropanoate hydrochloride (74) was initially obtained by the reaction between DL-alanine 

and SOCl2 in ethanol, resulting in a quantitative yield. Subsequently 74 was treated with 

triethylorthoformate to give compound 75 in 93% yield. 
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Scheme 3.14 Synthesis of oxazole 76 

 

Reaction of 75 with phosphorus pentoxide in chloroform in the presence of magnesium 

oxide and Celite led to the formation of oxazole 76 in 25% yield. It is worth mentioning that, 

according to the literature, the presence of the Lewis acid MgO in the cyclization step is important 

for the success of the same.250, 252 The low yield obtained in this reaction was attributed, mainly, 

to the losses caused by the evaporation of the product during the purification processes. The 

reference article showed a yield of 50% in the synthesis of such compound.  

In the second method, the esterification reactions have been carried out in ultrasonic bath 

at ambient temperature. It has been demonstrated that the esterification can be significantly 

accelerated by the use of ultrasound. In a typical reaction, to cooled dry ethanol, freshly distilled 

SOCl2 was added. And, the amino acid was slowly added and subjected to ultrasonication at 

ambient temperature using an ultrasonic bath. The reaction at ambient temperature, as monitored 

by TLC has been found to be complete in about 2-3 hours with 95% yield (scheme 3.15).   

 Oxazol 76 and ynones 72 and 59a were subjected to the Diels-Alder /retro Diels-Alder 

type reaction followed by hydrolysis to form compounds 80 and 81, respectively (Scheme 3.16). 

The methodology used was proposed by Boukouvalas et al. (2015).239 In this reaction the adduct 

77 is formed, which under the reaction conditions lose an acetonitrile molecule to generate the 

intermediate furan 78 (which have not been isolated). After hydrolysis, compounds 80 and 81 were 

obtained with 72% and 75% yields, respectively. 
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Scheme 3.14 Synthesis of butanolide intermediates 80 and 81. 

 

The yields of the Diels/Alder cycloaddition/cycloreversion reactions are associated with the 

molecular structures of the ynones. The highest yield (75%) was obtained when using ynone 72, 

due to the fact that this compound has in each aromatic ring an electron donor group (methoxy) 

and in this way the electronic density in the triple bond was increased, leading, therefore, to a 

higher yield. It can also be noted that the presence of electron-withdrawing groups in the aromatic 

rings (bromine) together with electron-donor groups caused the yield to decrease, such as ynone 

80 which obtained the intermediate yields of 72% (presence of two methoxy and two bromine). 

All synthesized compounds were suitably characterized using spectroscopic techniques.   

In the 1H NMR spectrum of compound 81 (Figure 3.11), the methoxy signals were observed 

as singlets at d  3.78, 3.83 and the singlet at d  5.29, integrated for two hydrogens, identified as H-



 

 

117 

5. The doublet at d = 6.83 was assigned to H-3’and H-5’, with J = 8.7 Hz, the doublet at d = 6.90 

assigned to H-3’’and H-5’’, with J = 8.7 Hz. The doublets at d  7.34 and 7.90 were assigned to H-

2’/H-6’and H-2"/H-6", respectively. 

 
Figure 3.11 1H NMR spectrum (400 MHz, CDCl3) of compound 81 

 

In the 13C NMR spectrum (Figure 3.12) the methoxy signals appear at d  55.5 and 55.6. The 

signal at d  70.5 refers to carbon C-5. The peaks at d  114.3 and d  114.7, refer to carbons C-3’/C-

5’ and C-3’’/C-5’’’, respectively. The signals for the C-2’/C-6’, and C-2’’/C-6’’ appear at d  129.7 

and d  132/11 d  129.1, respectively. And the signals for the carbons C-2 and C-6 appear at d  

171.4, and d  190.3, respectively. The signals at d  158.7 and d  159.4 refer to the C-4' and C-4’’. 

The lactone carbonyl appears at d  171.4 and the carbonyl of the ketone at 190.3. 
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Figure 3.1213C NMR (100 MHz, CDCl3) spectrum of compound 81. 

 2.4 Synthesis of cadiolides analogues  

For the synthesis of cadiolides analogues from lactones 80 and 81, the first methodology 

evaluated was the Knoevenagel condensation reaction.239 This reaction is used to obtain several g-

alkylidenobutenolides from different butenolides.253-254 Reaction of the lactone 80, piperidine and 

4-phenylthiophenecarboxyldehyde in methanol afforded compound 83 in only 30% yield (Scheme 

3.17). This reaction was repeated once more, but the result was the same. 

 
Scheme 3.15 Synthesis of compound 68 using Knoevenagel condensation reaction. 
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Due to the low yield obtained using the Knoevenagel reaction, it was decided to evaluate 

the methodology reported by Boukouvalas et al. (1994).255 This methodology led to the 

achievement of the desired product 83 in 80% yield. Due to the better yield obtained, the 

methodology described in Scheme 3.18 was applied to obtain the other natural cadiolide analogues. 

 
Scheme 3.16 Synthesis of cadiolides using methodology reported by Boukouvalas et al. (1994) 

 

For the alkylidenation reaction, different aldehydes were employed and reacted with the 

lactone 80. It is worth mentioning that in all reactions only the Z isomer was formed, confirming 

the high stereoselectivity of the methodology used (Table 3.2). 

 

 

 

 

 



                                                                                                                                

 

120 

Table 3.2 Synthesis of cadiolides derivatives and their respective yields (82-85) 

 
 

The mechanism for the alkylidenation reaction was proposed by TEIXEIRA (2008),256 as 

shown in Scheme 3.18. Initially, an attack of the oxygen pair of the lactone carbonyl oxygen to the 

TBDMSOTf occurs, with elimination of the triflate. DIPEA then captures one of the acid hydrogen 

H-5 of the above intermediate, leading to the in-situ formation of the silyl ether, which in the next 

step attacks the carbonyl of the aldehyde, resulting in the formation of the corresponding non-
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isolated aldol intermediates. This step occurs via regeneration of the Lewis acid TBDMSOTf, since 

the silicon undergoes nucleophilic attack of the triflate ion.257 

In the b-elimination of the tert-butyldimethylsilyloxy group, the DBU captures the second 

hydrogen H-5 of the lactonic ring with stereoselective formation of the exocyclic double. This 

stereoselectivity can be explained by the presence of an aromatic group in the position of the 

lactonic ring, as well as by the formation of non-classical hydrogen bonds between the hydrogens 

in the ortho position of the benzylidene ring and the oxygen of the g-lactonic nucleus, which 

increase the stability of the Z configuration in relation to E (Scheme 3.19).256, 258 

 
Scheme 3.17 Proposed mechanism for the condensation reaction used in the synthesis of (Z) -5-

benzylidene-4-aryl-3-benzoylfuran-2 (5H)-one. 

 
All the synthesized compounds 82-85 were suitably characterized using spectroscopic 

techniques. In the 1H NMR spectrum of 82 (Figure 3.13), the H-7’and H-7’’methoxyl signals 

were observed as singles at d  3.88 and d  3.94, respectively. Ferrocene signals appear at d  4.07, 

4.40 and 4.69 respectively. For hydrogen H-7’’ a singlet can be seen at d  5.98. The two doublets 
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at d  6.82 and 6.91, correspond to hydrogen 5’and 5’’respectively. Signals for H-2’, H-2’’, H-

6’and H-6’’ appear at d  7.57, 8.12, 7.37 and 7.84 respectively. 

 

  

 
Figure 3.13 1H NMR spectrum (400 MHz, CDCl3) of compound 82 

 

In the 13C NMR spectrum the signals at d  56.5 and d  56.7 refers to carbon 7’and 7’’ of 

methoxy groups. Signals for ferrocene carbon 13’’’, 8’’’,9’’’, 10’’’, 11’’’ and 12’’’ appear at d  

70.2, d  71.3 and d  71.8 respectively. The signals referring to the carbons 4, 7’’’, 3’, 1’, 6’, 6’’, 2’, 

2’’, 5’’, 3’’ and 1’’ appear at   d = 111.5, d = 112.2, d  112.6, d  112.7, d  122.7, d  124.3, d  129.1, 

d  129.7, d  131.3, 132.5 and  d  134.7 respectively. The signals at d = 159.5 and d = 160.9 refers 

to the carbons 4’and 4’’. The lactone carbonyl appears at d = 170.7 and the carbonyl of the ketone 

at  d  188.8 (Figure 3.15).  
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Figure 3. 14. 13C NMR spectrum (100 MHz, CDCl3) of compound 82 

 

2.5 Antimicrobial activity  

The compounds 52, 54 and 59a and 80-83 were subjected to in vitro assays for evaluation of 

their inhibitory effects on the growth of Staphylococcus aureus, Escherichia coli, 

Salmonella typhimurium and Bacillus cereus, opportunistic bacteria of clinical relevance by to 

undertake post-surgical and immunocompromised patients.259-262 The activities of the compounds 

against Candida. albicans, a pathogenic fungus frequently associated with infections reported in 

hematological units and in intensive care units, were also evaluated. Initially an evaluation of the 

activities of the compounds in the concentration of 250 μg mL-1 was performed, as shown in Table 

3.2. 
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Table 3.2 Percentage of inhibition at 250 μg/mL (highest concentration tested). 

 Microorganisms 

Compound  S. aureus B. cereus E. coli S. typhimurium C. albicans 

52 17.34 ± 1.60 23.12 ± 0.73 17.97 ±  1.69 23.96 ± 2.35 0.00 

54 19.79 ± 1.87 22.35 ± 2.19 15.75 ± 0.24 17.80 ± 2.32 17.79 ± 1.28  

59a 17.03 ± 2.18 28.31 ± 2.05 18.93 ± 2.56 22.60 ± 1.25 47.61 ± 1.74 

80 20.55 ± 1.69 32.46 ± 2.93 22.81 ± 2.06 20.27 ± 0.58 26.99 ± 0.84 

82 22.21 ± 2.00 15.77 ± 1.53 17.59 ± 2.67 12.89 ± 1.51 0.00 

83 13.20 ± 1.53 51.47 ± 2.01 7.04 ± 1.35 11.02 ± 089 5.26 ± 0.84 

Ampiciline 97.10 ± 0.12 95.27 ± 0.95 92.32 ± 0.83 92.89 ± 0.12 - 

Miconazol - - - - 91.65 ± 1.35 

 
 

Commercial products Ampicillin and Miconazole were used as positive controls at the 

same concentration of the evaluated compounds. From the data obtained (Table 3.2), most of the 

compounds evaluated were found to cause less than 50% inhibition against all the microorganism 

species. However, compound 68 cause more than 50% inhibition against B. cereus.  Chalcones 

derivatives 52, 54) showed weak activity against all the microorganism tested. Compound 59a 

shows some activity against C.albicans with percentage of inhibition of 47.61 ± 1.74%. 

On the other hand, the joint analysis of activity against the microorganisms showed that 

the evaluated compounds are more active against the Gram-positive bacteria (S. aureus and B. 

cereus) than against the Gram-negative bacteria (E. coli and S. typhimurium) and present low 

activity for the fungus C. albicans, showing some selectivity. The most active and promising 

antibacterial compound was 83 against B. cereus  with percentage of inhibition of 51.47 ± 2.01%.  

For compounds that showed inhibition greater than 50%, the IC50 values were calculated, and 

compound 83 showed good activity with IC50 value of 0.1943 µM as compared with the positive 

control, ampicillin (0.0068 µM) 
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2.6 Conclusion  

In the present work, alternatives for obtaining cadiolide analogues were evaluated, and 4 

analogous of cadiolides were synthesized. The strategy used was the Diels-Alder/retro Diels-Alder 

reaction between a keto-alkyne and 4-methyl-5-ethoxyoxazole. 

To obtain such compounds, the synthesis of the terminal alkyne was first necessary, which 

was possible after use of the Bestmann-Ohira and py.PCl5 reagents. The use of the Corey-Fuchs 

reaction for this purpose only led to the formation of the terminal alkyne when LDA was used as 

the base instead of BuLi. However, the first step of such a reaction, which generates a 

dibromovinyl, was successfully obtained in all reactions performed (yields of 94% to 100%). 

 For the synthesis of ynones different methodologies were used, but Sonogashira cross 

coupling reaction was the best choice. The synthesized alkyne 76 was subjected to the Sonogashira 

cross coupling reaction with different acid chlorides, leading to the formation of ketoalkynes in 

yields ranging from 78% to 85%. The ketoalkyne could also be obtained by the condensation 

reaction with an aldehyde, followed by oxidation reaction. The latter strategy may be advantageous 

where the terminal alkyne or acid chloride is not available. 

The DA/retro-DA reaction was regioselective, leading to formation of the desired product 

in yields ranging from 70% and 75%. Finally, the alkylation reaction yielded four analogs 

methoxylated to the cadiolides in good yields (80%) and high stereoselectivity (only the Z isomer 

was obtained). 

The lactones 80, cadiolides analogs 82 and 83, ketoalkyne (59a) and chalcone derivatives 

(54 and 56) were subjected to bioassays to evaluate their antimicrobial properties. The results 

showed that all compounds evaluated at concentrations of 250 µg/mL showed low toxicity for all 

the microorganism tested except compound 83. Compound 83 activity is comparable with the 

positive control with IC50 value of 0.19 μg mL-1. 
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3. Materials and Methods 

3.1.General Experimental techniques 

The following experimental procedures were used according to the methodologies reported 

in the literature. All reactions were performed using analytical-grade solvents. Reagents and 

solvents were purified, when necessary. All reactions were carried out under dry nitrogen. 

Moisture sensitive reactions were performed on oven dried glass and sealed with rubber septum. 

Moisture sensitive liquids, solutions and anhydrous solvents were transferred via the syringe or 

cannula through rubber septa.  

Analytical thin layer chromatography analyses were conducted on aluminum-backed pre-

coated silica gel plates Polygram-UV254 0.20 mm, Macherey-Nagel (20x20 cm) observed under 

UV light (λ = 254 nm; 365 nm). Column chromatography was performed on silica gel (230–400 

mesh). Melting points are uncorrected and were obtained using an MQAPF-301 melting point 

apparatus (Microquimica, Brazil). 

3.2.General Spectroscopic techniques 

1H and 13C NMR spectroscopic data were recorded at 400 and 100 MHz, respectively, with 

a Bruker NMR spectrometer with CDCl3 (d H 7.26;  d C 77.16) as solvent and in some cases 

tetramethylsilane (TMS) as internal standard (d = 0 ppm). Chemical shifts of 1H and 13C NMR 

spectra are reported in ppm and related to solvent signals. All coupling constants (J values) are 

expressed in Hertz (Hz). Multiplicities are reported as follows: singlet (s), doublet (d), doublet of 

doublets (dd), triplet (t), multiplet (m) and broad (br). Infrared spectra were recorded with a Varian 
660-IR instrument, equipped with Gladi ATR scanning from 4000 to 500 cm–1. High-resolution 

mass spectra were recorded with a Bruker MicroTof (resolution = 10000 FWHM) using 

electrospray ionization (ESI) and are given to four decimal places. 

3.3.General purification techniques 

 
Drying of tetrahydrofuran (THF)  - To a 500 mL flask were added 300 mL of THF and 12 g of 

calcium hydride. The system was allowed to reflux for 2 hours. The THF was then distilled and 

transferred to another 500 mL metal sodium-containing flask. The mixture was allowed to reflux 

for one hour. Next, benzophenone was added to the flask containing THF, leaving the system under 
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reflux until the reaction mixture became blue. After the change in staining, the anhydrous THF 

was distilled, which was stored over a 4Å molecular sieve in a sealed amber glass vial under a 

nitrogen atmosphere.263 

Drying of dichloromethane (DCM) and methanol (MeOH) -  To a 500 mL flask were added 

300 mL of dichloromethane or methanol and 3 g of calcium hydride. The system was allowed to 

reflux for three hours. The anhydrous dichloromethane or methanol was then distilled off, and 

stored over a 4Å molecular sieves in a sealed amber glass flask under a nitrogen atmosphere.263 

 

Drying of diisopropylethylamine (DIPEA) - To a 500 mL flask was added 300 mL of 

diisopropylethylamine on potassium hydroxide lentils. The mixture was refluxed for two hours. 

After this time, the diisopropylethylamine was distilled and stored on potassium hydroxide 

lentils.263 

3.4 Synthetic procedures  

3.4.1 Bromination of 4-methoxybenzaldehyde (50)  

To a 100 mL round bottomed flask, were added 4-methoxybenzaldehyde  

(4 g, 29.42 mmol), DCM  (30 mL), Br2 (7.05g; 44.13 mmol) drop wise. 

The reaction mixture was stirred at room temperature for 12 h. After the 

consumption of the starting material, the reaction mixture was quenched 

by addition of aqueous NaHCO3 (20 mL) solution, extract with DCM (3x 10 mL). Organic phase 

was washed with aqueous NaCl (10 mL) and Na2S2O4 (15 mL) solution. The combined organic 

layers were dried over anhydrous Na2SO4, filtrated and the solvent evaporated. The crude residue 

was purified by silica gel column chromatography, eluted with hexane/ethyl acetate (70:30 v/v) to 

afford compound 3-bromo-4-methoxybenzaldehyde (50) as white solid in 93% yield (5.9 g, 72.4 

mmol). 1H NMR(400 MHz, CDCl3): d  9.83 (s, 1H, 8), 8.04 (s, 1H, 2), 7.77 (d, J = 8.4 Hz, 1H, 6), 

7.15 (d, J = 8.4 Hz, 1H, 5), 3.94 (s, 3H, 9); 13C NMR (100 MHz, CDCl3): d  192.7 (7), 151.8(4), 

132.9 (1), 130.3 (3), 128.1 (2), 127.5 (5), 127.4 (6), 56.62 (9).  
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3.4.2 Bromination of 4-methoxyacetophenone (51). 
 

To a 100 mL round bottomed flask, were added 4-methoxyacetophenone  

(2 g, 13.31 mmol), AcOH (14 mL), AcONa (3.3g; 40 mmol) and Br2 (4.30 

g, 26.62 mmol). The reaction mixture was stirred at room temperature for 

4 h. After the consumption of the starting material, the reaction mixture was 

quenched by addition of aqueous NaHCO3 (50 mL) solution, extract with EtAc (3x 10 mL). 

Organic phase was washed with aqueous NaCl (10 mL) and Na2S2O4 (15 ml) solution. The 

combined organic layers were dried over anhydrous Na2SO4, filtrated and the solvent evaporated. 

The crude residue was purified by silica gel column chromatography, eluted with hexane/ethyl 

acetate (80:20 v/v) to afford compound 3-bromo-4-methoxyacetophenone (51) as white solid in 

95% yield (2.9 g, 12.57 mmol). 1H NMR (400 MHz, CDCl3): δ 2.57 (s, 3H, 8), 3.94 (s, 3H, 10), 

6.89 (d, J = 8.5 Hz, 1H, 5), 7.53 (d, J = 2.5 Hz, 1H, 2), 7.72 (dd, J = 8.5, 2.5 Hz, 1H, 6).13C NMR 

(100 MHz, CDCl3): δ 26.1 (8), 55.9 (10), 110.0 (5), 110.1 (6), 123.2 (2), 130.5 (1), 149.0 (3), 153.3 

(4), 196.7 (7).  

 

3.4.3 Preparation of chalcone (52). 

A mixture of 3-bromo-4-methoxyacetophenone (1g, 4.40 

mmol) and 3-bromo-4-methoxybenzaldehyde (1.033g, 4.8 

mmol) was dissolved in absolute methanol (30 mL), then 

SOCl2 (1.5 mL 12.3 mmol) was added dropwise, while the 

temperature was kept under 10 °C, the reaction mixture was stirred under this condition for 0.5 h, 

then the stirring was continued at room temperature for 12 h. There after the reaction mixture was 

poured into ice-water; the precipitated solid was filtered off, and recrystallized from aqueous 

ethanol to get chalcone as a light-yellow powder in 85% yield. m.p: 152-153°C. 1H NMR (400 

MHz, CDCl3): δ = 8.21 (d, 1H, J = 1.9 Hz,  2’), 7.96 (dd, J =  8.6 Hz, J =  1.9 Hz, 1H, 6’), 7.94 

(d, J = 1.9 Hz, 1H, 2’’), 7.82 (d, J =15.5 Hz, 1H, H-2), 7.62 (d, J =8.5 Hz, J =  1.9 Hz, 1H, 6’’), 

7.47 (d, J = 15.5 Hz, 1H, 3), 6.93 (d, J = 8.6 Hz, 1H, 5’), 6.88 (d, J = 8.5 Hz, 1H, 5’’), 3.93 (s, 3H, 

7’), 3.89 (s, 3H, 7’’). 13C NMR: δ = 56.5 (7’), 56.4 (7’’), 111.2 (C-5’), 111.9 (C-5’’), 112.0 (C-3’), 

112.4 (C-3’’), 119.9 (C-2), 128.9 (C-6’’), 129.6 (C-1’’), 129.8 (C-6’), 132.0 (C-1’), 132.7 (C-2’), 

133.9 (C-2’’), 143.0 (C-3), 157.6 (4’’), 159.5 (4’), 187.2 (1). 
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3.4.4 Preparation of 2,3-dibromo-1,3-bis(3-bromo-4-methoxyphenyl)propan-1-one (54) 

To a 100 mL round bottomed flask, were added chalcone 

(4 g, 29.42 mmol), AcOH (10 mL), Br2 (7.05g, 44.13 

mmol) drop wise. The reaction mixture was stirred at 

room temperature for 2 h. After the consumption of the 

starting material, the reaction mixture was quenched by addition of aqueous NaHCO3 (50 mL) 

solution, extract with DCM (3x 10 mL). Organic phase was washed with aqueous NaCl (10 mL) 

and Na2S2O4 (15 mL) solution. The combined organic layers were dried over anhydrous Na2SO4, 

filtrated and the solvent evaporated. The crude residue was purified by silica gel column 

chromatography, eluted with hexane/ethyl acetate (8:20 v/v) to afford compound 55 as orange 

solid in quantitative yield (5.90 g, 72.43 mmol). M.p: 170.3-170.9 °C. 1H NMR (400 MHz, CDCl3) 

δ: 8.07 (d, J = 2.0 Hz, 1H, H-2’), 7.84 (dd, J =  8.6, 2.0 Hz, 1H, H-6’), 7.69 (d, J = 1.9 Hz1H, H-

2’’), 7.26 (dd, J = 8.0, 1.9 Hz, 1H, H-6’’), 7.14 (d, J =8.6 Hz, 1H, H-5’), 6.99 (d, J = 8.0 Hz, 1H, 

H-5’’), 5.86 (d, J = 5.8 Hz, 1H, H-2), 5.79 (d, J = 5.8 Hz, 1H, H-3), 3.92 (s, 3H, OCH3), 3.89 (s, 

3H, OCH3). 13C NMR: δ = 49.53 (C-2), 52.13 (C-3), 56.63 (7’), 56.73 (7’’), 113.45 (C-5’), 112.09 

(C-3’’), 112.26 (C-5’’), 113.66 (C-3’), 124.23 (C-6’’), 129.15 (C-6’), 129.87 (C-1’), 130.04 (C-

2’), 132.32 (C-2’’), 132.7 (C-1’’), 157.89 (C-4’), 159.71 (C-4’’), 187.35 (C-1). 

3.4.5 Preparation of 1,3-bis(3-bromo-4-methoxyphenyl)prop-2-yn-1-one (55) 

A) To a stirred solution of 2,3-dibromo-1,3-diphenylpropan-1-one  (1 mmol) in dry benzene (10 

mL), a solution of triethylamine (4 mmol) in dry benzene (10 mL) was added. The reaction 

mixture was stirred at room temperature for 24 hrs. The triethylamine hydrobromide formed 

was removed by filtration and the filtrate was concentrated by distilling the benzene under 

reduced pressure. The resulting mixture was extracted in to ether (50 mL); the solvent was 

evaporated to dryness, but unfortunately no product was formed (yield 0%). 

B) To a 100 mL round bottomed flask, were added 54 (63mg, 0.13 mmol) in acetone 4mL (free 

of methanol), a solution of KOH (0.12 mmol) H2O 4mL. The reaction mixture was stirred at 

120 °C for 1 h. The reaction mixture was monitored by TLC, after the completion of the 

reaction the resulting mixture was extracted into ether (3x, 15 mL). The combined organic 
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layers were dried over anhydrous Na2SO4, filtrated and the solvent evaporated. The crude 

residue was purified by silica gel column chromatography, eluted with hexane/ethyl acetate 

(8:20 v/v) to afford compound 55 as white solid in 40 % yield (20 mg, 0.064 mmol). 

3.5 Synthesis of 3-bromo-4-methoxyphenylacetylene  

3.5.1 Preparation of reagent 
 

In a 100 mL beaker, 9 mmol (0.725 mL) pyridine were placed. While stirring 1 mmol 

(0.208 g) of phosphorus pentachloride was added to make PCl5-Py reagent. Using this 

reagent it is important to work under powerful hood to minimize the inhalation of 

chemicals. 

3.5.2 Preparation of phenylacetylene (64)  

A mixture of ketone (1 mmol) and PCl5-Py reagente (1 mmol) was 

refluxed at 110 °C in a 50 mL flask for 210 s in microwave oven. After 

cooling in air, the mixture was washed with aqueous HCl (2%) to 

remove pyridine and then extracted with DCM (3 x 10 mL). The organic layer was separated and 

dried over anhydrous Na2SO4. The solvent was evaporated and the crude product was purified by 

silica gel column chromatography, eluted with hexane/ethyl acetate (90:10 v/v) to afford 

compound 3-bromo-4-methoxyphenylacetylene as white solid in 30% yield (65 mg, 0.30 mmol). 

M.p: 91.3-92.0 °C. IR (v/cm-1):  3302, 3266, 3007, 2942, 2640, 2538, 2028, 1887, 1782, 1593, 

1491, 1465, 1284, 1251, 1194, 1142, 1052, 1015, 892, 818, 667, 662, 584, 491. 1H NMR (400 

MHz, CDCl3) d : 2.94 (s, 1H, H-9), 3.80 (s, 3H, 7), 6.72 (d, J = 8.5 Hz, 1H, 5), 7.31 (dd, J = 8.5, 

1.9 Hz, 1H, 6), 7.57 (d, J = 1.9 Hz, 1H, 2). 13C NMR (100 MHz, CDCl3) d : 56.7 (7), 76.9 (9), 82.1 

(1), 111.3 (3), 111.5 (5), 115.6 (8), 132.6 (6), 136.8 (2), 156.4 (4).  
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3.6 Synthesis of 3-bromo-4-methoxybenzoic acid (66a). 

To a 100 mL round bottomed flask, were added 3-bromo-4-

methoxybenzaldehyde (4 g, 18.60 mmol), H2O (20 mL) NaHCO3 (3.13g, 

35.80 mmol). The reaction mixture was stirred at 90 °C temperature for 1h. 

KMnO4 was added (5.90g, 37.32 mmol) and the reaction mixture was 

stirred for another 1h.  After the consumption of the starting material monitoring by TLC, the 

reaction mixture was quenched by addition of  (20 mL) aqueous HCl (5%) solution, product 

precipitate out as a white solid. Wash with water and dissolved in ethylacetate. Solvent was 

removed by rotary evaporator to get 3-bromo-4-methoxybenzoic acid  as white solid in 93% (4g, 

17.31 mmol). M.p: 220-222 °C.  IR (vmax): 3072, 2953, 2850, 2639, 2531, 1789, 1687, 1544, 1399, 

1256, 1140, 1065, 977, 896, 736, 649, 511. 1H NMR (400 MHz, CDCl3): δ 8.22 (d, J = 2.0 Hz, 

1H, 2), 7.98 (dd, J = 8.0, 2.0 Hz, 1H, 6), 6.87 (d, J = 8.0 Hz, 1H, 5), 3.89 (s, 3H, 7). 13C NMR (100 

MHz, CDCl3): δ 168.4 (8), 161.0 (4), 135.7 (1), 132.0 (3), 125.4 (2), 112.5 (6), 112.1 (5), 57.0 (7).  

3.7 Synthesis of benzoylchloride (67a) 

To a 100 mL round bottomed flask, were added 3-bromo-4-

methoxybenzoic acid (5 g, 13.08 mmol), SOCl2 (10 mL for a 13.08 mmol). 

The reaction mixture was stirred at 70 C for 12 h. After this the excess 

thionylchloride was evaporated by rotary evaporator to get benzoyl 

chloride as light-yellow solid in quantitative yield. 

 

3.8 Preparation of bestman ohira reagent 

3.8.1 Bromination of acetone (58) 
 

In a round-bottomed (100 mL) flask containing acetone (34.05 g, 587 

mmol) and 48% HBr (8 mL) under magnetic stirring at 0 °C was added 

bromine (9.33 g, 3 mL, 58.70 mmol) via an addition funnel over a period 

of 30 minutes. The reaction was maintained under magnetic stirring and room temperature 

for one hour. Thereafter, excess HBr was removed by the passage of nitrogen gas into the 

reaction mixture. H2O (20 mL) was added to the reaction medium and extracted with 
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dichloromethane (3 x 60 mL). The organic phase was washed with saturated NaHCO3 

solution (1 x 30 mL) and NaCl (1 x 30 mL). The organic phase was dried over anhydrous 

magnesium sulfate and concentrated under reduced pressure at 40 °C to give a light-yellow 

tear liquid which turned dark brown (14.38 g, 105 mmol, 89%). The resulting mono-bromo 

product was used without any further purification.  1H NMR (400 MHz, CDCl3): d  2,36 

(s, 3H, 3), 3,88 (s, 2H, 1). 13C NMR (100 MHz, CDCl3): d  27,1 (3), 34,8 (1), 199,8 (2). 

3.8.2 Synthesis of Dimethyl 2-Oxopropylphosphonate (59). 

To a two-neck flask (50 mL), bromoacetone (58) (4.20 mL, 50 mmol) 

was added to a suspension of KI (8.30 g, 50 mmol) in acetone (10 mL) 

and MeCN (12.5 mL) under stirring. Stirring was continued for 1 h at room temperature. 

Trimethylphosphite (5.90 mL, 50 mmol) was added slowly. After 12 hours at room 

temperature, the mixture was heated to 50 ° C to ensure complete conversion. Filtration 

through a pad of celite and evaporation of the solvents under reduced pressure gave the 

crude product. Purification by column chromatography (ethyl acetate: methanol, 97: 3 v / 

v) afforded the phosphonate 59 (5.20 g, 31.3 mmol, 63%) as a yellow liquid. 1H NMR (400 

MHz, CDCl3) d :  2.30 (s, 3H, H-1), 3.04 (d, J3,P = 22.8 Hz, 2H, H-3), 3.79 (d, JOMe,P = 11.2 

Hz, 6H, OMe). 13C NMR (100 MHz, CDCl3) d : 31.4 (s, C-1), 42.2 (d, J3,P = 169.0 Hz, C-

3), 53.1 (d, JOMe,P = 9.0 Hz, OMe), 199.6 (d, J = 8.0 Hz, C-2).  

 

3.8.3 Dimethyl 1-diazo-2-oxopropylphosphonate (60). 

A 1-L, three-necked flask was equipped with an overhead stirrer and 

an addition funnel. The flask was charged with phosphonate  (500 

mg, 3,01 mmol) in toluene (3 mL) and the solution cooled to 0 °C. 

NaH ((132 mg, 55% in paraffin; 3.3 mmol) was added in portions. 

After the gas evolution had ceased, a solution of azide 61 (795 mg, 3,3 mmol) in THF (2 

mL) was added dropwise; the highly viscous suspension slowly discolored to yellow-

brown and stirring became easier. After 16 h the mixture was diluted with petroleum ether, 

filtered through a pad of Celite, rinsed thoroughly with Et2O, and the solvents was removed 

by rotary evaporator. For many applications the remaining slightly impure yellow oil can 

be directly used. Flash column chromatography (silica gel, PE–EtOAc, 1:1) furnished the 
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product 60 (260 mg, 1,35 mmol, 45%).  1H NMR (400 MHz, CDCl3) d : 2.26 (s, 3H, H-3), 

3.84 (d, JOMe,P = 16.0 Hz, 6H, OMe). 13C NMR (100 MHz, CDCl3) d : 27.1 (s, C-3), 53.6 

(d, JOMe,P = 7.0 Hz, OMe), 112.9 (s, C-1), 189.9 (d, J3,P = 18.0 Hz, C-2). 

3.8.4 p-Acetamidobenzenesulfonyl Azide (61). 
To a stirred suspension of 4-acetamidobenzenesulfonyl chloride (1.50 

g, 6.42 mmol) 7  in CH2Cl2 (800 mL) was added TBAC (10mg, 0.03 

mmol), followed by a solution of NaN3 (630 mg, 9.63 mmol) in H2O 

(30 mL) (CAUTION: AZIDES CAN CAUSE EXPLOSIONS!). 

Stirring was continued at r.t.; two clear phases formed overnight. The organic layer was washed 

with H2O (2 × 10 mL), dried (MgSO4), and the solvent removed under reduced pressure. A 

colorless solid was obtained that was directly used without any further purification (yield: 93.4 g, 

91%). 1H NMR (400 MHz, CDCl3) d : 2.24 (s, 3H, CH3 ), 7.78 (d, J  = 8.9 Hz, 2H, H-2/6), 7.83 

(s, 1H, NH), 7.89 (d, J 3,2 = J 5,6 = 8.9 Hz, 2H, H-3/5). 13C NMR (100 MHz, CDCl3) d : 24.9 (CH3), 

119.5 (C-2, C6), 129.0 (C-3, C-5), 132.6 (C-1), 144.0 (C-4), 169.4 (C=O). 

 
3.9 Preparation of oxazole  

3.9.1 Esterification of DL-alanine (74).  

A solution of L-alanine (20 g, 225 mmol) in absolute ethanol (150 mL) 

was added to a two-neck flask (250 mL) under nitrogen atmosphere and 

at room temperature. The system was cooled to 0 °C and SOCl2 (22.8 

mL, 315 mmol) was added slowly. The mixture was refluxed for 3 hours and left at room 

temperature under stirring for 45 hours. Ethanol and excess SOCl2 were then removed under 

reduced pressure on a rotary evaporator and 74 were obtained as a pale-yellow viscous oil (35.52 

g) in quantitative yield. 1H NMR (400 MHz, D2O) d :1.17 (t, J = 7.2 Hz, 3H, 1), 1.44 (d, J = 7.3 

Hz, 3H, 4), 4.06 (q, J = 7.3 Hz, 1H, 3), 4.18 (q, J = 7.2 Hz, 2H, 2). 13C(100 MHz, D2O) d : 13.1 

(1), 15.0 (4), 48.8 (3), 63.4 (2), 170.7 (C=O).  

3
2

1

6
5

4
N
H
7

8

O

H3C
9

S
O

O

N3



 

 

135 

3.9.2 Synthesis of ethyl N-formyl-2-aminopropanoate (75). 

4 g (26.04 mmol) of ethyl 2-aminopropanoate hydrochloride and 13 

mL (78.12 mmol, 11.58 g) of triethyl orthoformate were refluxed for 

1.5 h. The produced ethanol and excess orthoformate were removed 

under reduced pressure to give a light orange oil (Yield 85%). 1H NMR 

(400 MHz, CDCl3) d : 1.27 (t, J2’,1’ = 7.1 Hz, 3H, 1), 1.42 (d, J3,2 = 7.2 Hz, 3H, 5), 4.20 (q, J1’,2’ = 

7.1 Hz, 2H, 2), 4.78 – 4.48 (m, 1H, 4), 6.43 (s, 1H, NH), 8.17 (s, 1H, 7). 13C NMR (100 MHz, 

CDCl3) d : 14.1 (1), 18.5 (5), 46.9 (4), 61.7 (2), 160.6 (6), 172.6 (3).  

3.9.3 Synthesis of 4-methyl-5-ethoxyoxazole (76). 

A suspension of P2O5 (20 g), Celite® (6 g) and MgO (6 g) was vigorously 

stirred, until it became homogeneous, in a 500 mL round bottom flask with 

150 mL CHCl3 at room temperature under N2. A solution of ethyl N-formyl-

2-aminopropanoate (4 g, 27.19 mmol) in 50 mL CHCl3 was added drop wise and the stirring was 

continued for 30 min. The mixture was heated to reflux for 20 h. A saturated solution (300 mL) of 

NaHCO3 was slowly added and the mixture was cooled and filtered. The filtrate was extracted 

with chloroform, the organic phase was washed with water, and dried with anhydrous Na2SO4. On 

removing the solvent, a dark brown oil was obtained. Yield 50%; (chloroform–methanol, 9:1). 1H 

NMR (400 MHz, CDCl3) d : 1.33 (t, J = 7.1 Hz, 3H, 8), 2.02 (s, 3H, 9), 4.13 (q, J = 7.1 Hz, 2H, 

7), 7.36 (s, 1H, 2). 13C NMR (100 MHz, CDCl3) d : 9.9 (9), 14.9 (8), 70.1 (7), 112.2 (5), 142,1 (2), 

154.2 (5).  

 3.10 Synthesis of ynone  

To a 30 mL Schlenk tube was added CuI (9.5 mg, 0.050 mmol), PdCl2(PPh3)2 (7.0 mg, 

0.010 mmol), and Et3N (5 mL). Then 3-bromo-4methoxyphenylacetylene (0.33 mL, 2.5 mmol) 

was added. Benzoyl chloride (0.38 mL, 3.3 mmol) was added dropwise to the reaction mixture. 

After stirred at r.t for 20 h, the mixture was quenched with H2O (5 mL). The aqueous layer was 

extracted with AcOEt (3x 10 mL). The combined organic layer was washed with brine (10 mL), 

and dried over MgSO4, then filtered. After concentration under vacuum, the crude mixture was 
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subjected to silica gel column chromatography (hexane/AcOEt = 90:10) to obtain ynone (620 mg, 

2.0 mmol, 80%) as a brown solid. 

3.10.1 1,3-bis(4-methoxyphenyl)prop-2-yn-1-one (72). 

M.p: 72.7-73.6 °C (72.5-73.5 °C, lit)264. IR (vmax): 3197, 

2933,2840, 2188, 2041, 1629, 1593, 1506, 1459, 1251, 

1157, 1110, 1019, 830, 754, 684, 595, 507.  1H NMR 

(400 MHz, CDCl3) d :  3.84 (s, 3H, 7’), 3.88 (s, 3H, 

7’’), 6.92 (d, J = 8.5 Hz, 2H, 3’/5’), 6.97 (d, J  = 8.5 Hz, 2H, 3’’/5’’), 7.62 (d, J = 8.5 Hz, 2H, 

2’/6’), 8.18 (d, J = 8.5 Hz, 2H, 2’’/ 6’’). 13C NMR (100 MHz, CDCl3) d : 55.5 (7), 55.6 (7’), 

86.8 (9), 93.5 (10), 112.1 (1), 113.8 (3’/ 5’), 114.4 (3/5), 130.4 (1’), 131.9 (2’/ 6’), 134.9 (2/ 

6), 161.5 (4), 164.3 (4’), 176.8 (8). 

M.10.2 1,3-bis(3-bromo-4-methoxyphenyl)prop-2-yn-1-one (59a). 

M.p: 150.3-151.5 °C. IR (vmax): 3074, 2947, 2843, 2556, 

2178, 1977, 1690, 1632, 1589, 1493, 1377, 1260, 1184, 

1049, 977, 880, 815, 732, 688, 580, 512.  1H NMR (400 

MHz, CDCl3) d :  3.86 (s, 3H, 7’), 3.90 (s, 3H, 7’’), 6.87 

(d, J = 8.5 Hz, 1H, 3’), 6.90 (d, J = 8.0 Hz, 1H, 3’’), 7.52 (d, J = 8.5 Hz, 1H, 2’), 7.85 (s, 1H, 2’), 

8.05 (d, J = 8.0 Hz, 1H, 2’’), 8.27 (s, 1H, 6’’). 13C NMR (100 MHz, CDCl3) d : 56.3 (7’), 56.5 

(7’’), 86.6 (1), 91.9 (2), 111.0 (5’), 111.7 (6’), 111.7 (1’), 111.9 (3’), 113.1 (2’), 130.8 (1’’), 131.0 

(3’’), 134.0 (5’’), 134.5 (6’’), 137.6 (2’’), 158.0 (4’), 160.3 (4’’), 175.1 (3). 

3.11 General procedure for the synthesis of compounds (80 and 81)  

To a solution of ynone (59a, 72) (170.4 mg, 0.64 mmol) in anhydrous ethylbenzene (5 mL) 

was added 5-ethoxy-4- methyloxazole (446.5 mg, 3.51 mmol). The Schlenk flask  was capped, 

subjected to strong vacuum under agitation, and then purged with nitrogen. This process was 

repeated three times. The Schlenk flask was covered with aluminum paper, magnetically stirred, 

and heated in an oil bath maintained at 145−150 °C for 15 h. After cooling, the volatiles were 

evaporated under vacuum at 60 °C. The crude product was dissolved in THF (6 mL), and aq 48% 
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HBr (34.5 μL, 0.31 mmol) was slowly added. After being stirred for 8 h at r.t, the mixture was 

quenched with brine (10 mL) and extracted with EtOAc (3x, 10mL). The organic phase was dried 

(MgSO4) and concentrated in vacuo. After concentration under vacuum, the crude mixture was 

subjected to silica gel column chromatography (hexane/AcOEt = 50:50) to obtain lactone 80 and 

81 (2.36 mmol, 70%) as brown colored paste. 18 

3.11.1 3-(3-bromo-4-methoxybenzoyl)-4-(3-bromo-4-methoxyphenyl)furan-2(5H)one (80).

M.p:170.6-171.4 ºC. IR (vmax): 2922, 2851, 1744, 1732, 

1651, 1633, 1586, 1495, 1463, 1440, 1392, 1372, 1334, 

1289, 1266, 1237, 1201, 1165, 1148, 1091, 1052, 1038, 

1010, 946, 905, 890, 866, 800, 780, 688, 675. 1H RMN(400 

MHz, CDCl3) d : 3.81 (s, 3H, 7’), 3.86 (s, 3H, 7’’), 5.20 (s, 

2H, 5), 6.75 (d, J = 8.7 Hz, 1H, 3’), 6.83 (d, J = 8.7 Hz, 1H, 3’’), 7.28 (dd, J = 8.7, 2.3 Hz, 1H, 

2’), 7.49 (d, J = 2.3 Hz, 1H, 6’), 7.74 (dd, J = 8.7, 2.3 Hz, 1H, 2’’), 8.04 (d, J = 2.3 Hz, 1H, 6’’). 
13C RMN (100 MHz, CDCl3) d : 56.6 (7’), 56.7 (7’’), 70.4 (5), 111.4 (3), 112.2 (5’), 112.6 (3’), 

112.7 (1’), 122.6 (4), 124.3 (1’’), 129.1 (2’), 129.7 (2’’), 131.3 (3’), 134.7 (3’’) 158.8 (3), 159.5 

(4’), 160.9 (4’’), 170.7 (2), 188.8 (7). 

3.11.2. 3-(4-Methoxybenzoyl)-4-(4-methoxyphenyl)furan-2(5H)-one (81).  

M.p:165.6-166.7 ºC, (mp 166− 167 °C, lit)242. IR (vmax): 

2933, 2838, 1732, 1655, 1624, 1595, 1569, 1456, 1420, 

1366, 1334, 1307, 1248, 1185, 1159, 1113, 1078, 1057, 

1022, 919, 879, 829, 792, 623.1H RMN(400 MHz, CDCl3) d 

: 3.80 (s, 3H, 7’), 3.86 (s, 3H, 7’’), 5.31 (s, 2H, 5), 6.83 (d,  J =  8.8 Hz, 2H, 3’/ 5’), 6.92 (d, J = 

8.8 Hz, 2H, 3’’/ 5’’), 7.37 (d, J 2’,3’ = J  = 8.8 Hz, 2H, 2’/6’), 7.93 (d, J  = 8.8 Hz, 2H, 2’’/ 6’’). 
13C RMN (100 MHz, CDCl3) d : 55.5 (7’), 55.6 (7’’), 70.4 (5), 114.2 (3’’/ 5’’), 114.7 (3’/ 5’), 

121.5 (1’), 123.5 (4), 128.8 (1’’), 129.7 (2’/ 6’), 132.1 (2’’/ 6’’), 159.9 (3), 162.5 (4’), 164.8 (4’’), 

171,3 (2), 190.3 (6). 
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3.12 General procedure for the synthesis of cadiolides derivatives 

A solution of the lactone (80) (50 mg, 0.118 mmol), aldehyde (1.2 mmol), TBDMSOTf 

(38 μl, 0.163 mmol) and DIPEA (42 μL, 0.248 mmol) in 5 mL of anhydrous dichloromethane was 

kept under magnetic stirring at 25 °C for 1 hour under nitrogen atmosphere. The reaction mixture 

was refluxed at 40 C and DBU (36 μL, 0.246 mmol) was added, maintaining the reflux for 2 hours. 

The system was cooled and transferred to a separatory funnel with 10 mL of dichloromethane. The 

resulting organic phase was washed with 1M aqueous HCl solution (5 mL) and saturated NaCl 

solution (5 mL), dried over anhydrous MgSO4, filtered and concentrated under reduced pressure. 

The crude material from the reaction obtained as a brown residue was purified by silica gel column 

chromatography (hexane: ethyl acetate, 2: 1 v/v) affording cadiolides in 80-85% yield. 

 

3.12.1 (Z)-3-(3-bromo-4-methoxybenzoyl)-4-(3-bromo-4-methoxyphenyl)-5-

(ferrocene)methylene)furan-2(5H)-one (82).  

M.p: 255.3-255.8 °C. IR (vmax): 2921, 2851, 1741, 1634, 

1589, 1492, 1458, 1366.70, 1269.38, 1257.66, 1211.17, 1181, 

1152, 1105, 1048, 1015, 962, 929, 882, 819, 794, 698, 668. 
1H NMR (400 MHz, CDCl3) δ : 3.93 (s, 3H, 7’), 3.94 (s, 3H, 

7’’), 4.22 (s, 5H, 13’’’), 4.61 (s, 2H, 9’’’, 12’’’), 4.88 (s, 2H, 

10’’’, 11’’’), 6.21(s, 1H, 7), 6.88 (d, 1H, J = 8.0 Hz, 5’), 6.94 

(d, 1H, J = 8.0 Hz, H-5’’),  7.36 (d, 1H, J = 8.0 Hz, H-6’), 

7.59 (s, 1H, H-2’), 7.80 (d, 1H, J = 8.0 Hz,  H-6’’), 8.00 (s, 

1H, H-2’’). 13C NMR δ : d : 56.5 (7’), 56.7 (7’’), 70.2 (C-13’’’), 71.3 (C-10’’’, 11’’’), 71.8 (C-

8’’’, 9’’’, 12’’’) 111.5 (4), 112.2 (7’’’), 112.6 (3’), 112.7 (1’), 122.7 (6’), 124.3 (6’’), 129.1 (2’), 

129.7 (2’’), 131.3 (5’’), 132.5 (3’’),  134.7 (1’’) 158.8 (3), 159.5 (4’), 160.9 (4’’), 170.7 (2), 188.8 

(8). 
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3.12.2 (Z)-3-(3-bromo-4-methoxybenzoyl)-4-(3-bromo-4-methoxyphenyl)-5-((4-

phenylthiophen-2-yl)methylene)furan-2(5H)-one (83)  

M.p: 260.2-260.7 °C. IR (vmax): 2922, 2852, 1734, 1713, 

1634, 1591, 1540 1494, 1461, 1376, 1258, 1181, 1112, 

1051, 1016, 950, 808, 756, 721, 689. 1H NMR (400 MHz, 

CDCl3): δ  3.91 (s, 3H, OCH3), 3.97 (s, 3H, OCH3), 6.89 

(s, 1H, H-7), 6.92 (d, J = 8.0 Hz, 1H, H-3’), 6.97 (d, 1H, J 

= 8.0 Hz, H-3’’), 7.27 (m, 1H, H-9’’’),  7.37 (m, 3H, H-2’, 

8’’’, 10’’’), 7.62 (m,  3H, 6’, 7’’’/ 11’’’), 7.41 (s, 1H,  H-

3’’’), 7.75 (s, 1H, H-5’’’), 7.81 (s, 1H, H-6’), 7.98 (s, 1H, 

H-6’’).13C NMR δ : 55.6 (C-7, OCH3), 55.7 (C-7’, OCH3), 111.0 (C-3), 111.6 (C-5), 111.9 (C-3’), 

112.9 (C-5’’), 113.2 (C-5’), 127.0 (C-1), 127.6 (C-7’’’/ 11’’’), 127.9 (C-9’’’), 128.5 (C-8’’’/ 10’’’), 

129.2 (C-6), 130.0 (C-6’), 132.4 (C-1’), 135.8 (C-2’), 135.8 (C-2), 136.4 (C-6’’’), 140.4 (C-2’’’), 

146.7 (C-4’’), 147.6 (C-4’’’), 149.4 (C-2’’), 157.3 (C-4), 161.1 (C-4’), 165.0 (C-2’’), 189.1 (C-8). 

3.12.3 (Z)-5-((1H-indol-3-yl)methylene)-3-(3-bromo-4-methoxybenzoyl)-4-(3-bromo-4-

methoxyphenyl)furan-2(5H)-one (84) 

M.p: 250.3-250.9 °C. IR (vmax): 3663, 3483, 2971, 2921, 

2896, 1741, 1634, 1599, 1492, 1458, 1366, 1255, 1229, 

1170, 1105, 1048, 1033, 962, 929, 882, 819, 794, 698. 1H 

NMR (400 MHz, CDCl3): δ  3.93 (s, 3H, 7’), 3.94 (s, 3H, 

7’’), 6.65 (s, 1H, H-7), 6.84 (s, 1H, H-7), 6.89 (d, 1H, J = 

8.0 Hz, H-3’), 6.98 (d, 1H, J = 8.0 Hz, H-3’’),  7.07 (m, 

1H, H-6’’’), 7.12 (s,  1H, 2’’’), 7.23 (m, 1H,  H-7’’’), 7.37 (d, 1H, J = 8.0 Hz, H-8’’’), 7.45 (d, 1H, 

J = 2.0 Hz, H-6’), 7.48 (d, 1H, J = 8.0 Hz, H-5’’’), 7.65 (d, 1H, J = 8.0 Hz, H-2’), 7.83 (s, 1H, H-

6’’) 8.03 (d, 1H, J = 8.0 Hz, H-2’’). 13C NMR (100 MHz, CDCl3) δ : 55.6 (C-7’’, OCH3), 55.7 (C-

7’, OCH3), 107.3 (C-3’’’), 108.2 (C-7), 111.0 (C-5’), 111.9 (C-3’), 112.2 (C-3’’), 112.2 (C-5’’’), 

112.9 (C-3), 113.2 (C-5’’), 120.4 (C-6’’’), 121.5 (C-8’’’), 122.1 (C-7’’’), 128.4 (C-6’), 128.4 (C-

9’’’), 129.7 (C-6’’), 135.8 (C-2’’), 136.7 (C-4’’’), 146.7 (C-4), 154.3 (C-5), 157.3 (C-4’), 161.1 

(C-4’’), 165.0 (C-2), 190.1 (C-8).  
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3.12.4 (Z)-5-(benzo[d][1,3]dioxol-5-ylmethylene)-3-(3-bromo-4-methoxybenzoyl)-4-(3-

bromo-4-methoxyphenyl)furan-2(5H)-one (85) 

(page-179, 180) 

M.p: 220.2-220.8 °C. IR (vmax): 3457, 3082, 2918, 2849, 2361, 

2030, 1740, 1663, 1585, 1502, 1440, 1334, 1259, 1158, 1039, 

958, 874,826, 733, 659. 1H NMR (400 MHz, CDCl3): δ 3.85 

(s, 3H, 7’), 3.88 (s, 3H, 7’’), 5.96 (s, 2H, 7’’’), 6.18 (s, 1H, 7), 

6.67-6.87 (m, 2H, 5’’’, 2’’’), 7.04 (d, J = 8.5 Hz, 1H, H-3’), 

7.13 (dd, 1H, J = 8.5, 1.6 Hz, H-2’), 7.27 (dd, 1H, J = 8.5, 2.1 Hz, H-6’’’),  7.48 (d, J = 1.6 Hz, 

1H, H-6’), 7.53 (d, J = 2.1 Hz, 1H, H-6’’), 7.71 (dd, 1H, J = 8.6, 2.1 Hz,  H-2’’), 7.91 (d, 1H, J = 

2.1 Hz, H-6’’). 13C NMR δ : 56.6 (C-7’), 56.8 (C-7’’), 102.0 (C-7’’’) 108.9 (C-4’’’), 110.6 (C-

2’’’), 111.3 (C-3’), 112.1 (C-7), 112.3 (C-5’), 118.0 (C-3’’’), 122.6 (C-3), 123.0 (C-2’’), 125.1 (C-

1’), 127.2 (C-1’’’), 127.8 (C-6’), 130.2 (C-6’’), 130.3 (C-1’’), 131.3 (C-2’’), 134.0 (C-2’), 135.1 

(C-5), 145.8 (C-3’’’), 148.7 (C-4’’’), 149.9 (C-4), 156.5 (C-4’), 157.9 (C-4’’), 166.2 (C-2), 186.8 

(C-8). 

3.13 Antimicrobial assays 

 Antimicrobail activity was performed by Geane Pereira de Oliveira at chemistry department 

in the laboratory of Prof: Jacqueline A. Takahashi.  

The antimicrobial bioassays were performed in 96-well plates in triplicate. The compounds 

were tested against strains of Staphylococcus aureus ATCC 29212 (Gram-positive), Bacillus 

cereus ATCC 11778 (Gram-positive), Escherichia coli ATCC 25922 (Gram negative), Salmonella 

typhimurium ATCC 14028 (Gram negative) and yeast Candida albicans ATCC 18804 (yeast). 

Suspensions of the microorganisms used in the bioassays were prepared at the concentration 

corresponding to 105 CFU/mL. The tested compounds and the standard antibiotics were 

solubilized in 12.5 mg/mL dimethylsulfoxide (DMSO). From this solution, the working solution 

at the concentration of 500 μg/ml in culture medium BHI broth (for bacterial assay) or Sabouraud 

broth (for yeast assay) was prepared. From 200 μL of the concentration of 500 μg /mL serial 

microdilution (1: 1) was performed in wells containing 100 μL culture medium. Then, 100 μL of 
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standardized microorganism inoculum was added to each well. Thus, the concentrations ranged 

from 250 to 0.12 μg/mL. Growth control of the microorganism was performed (to verify cell 

viability); the blank, which consists of the sample solution at the same concentrations evaluated, 

replacing the inoculum with sterile distilled water; positive control (replacement of the working 

solution by a commercial antibiotic) and sterility control of the culture medium containing 100 μL 

of culture medium and 100 μL of sterile distilled water. The microplates were incubated in an oven 

at 37 ° C and after 24 h the plate reader was read from the plate at 490 nm. The antibiotic standards 

used for the quality control of the trials were: ampicillin, for bacteria and miconazole, for yeast. 
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General conclusion 

In this part, the major findings are summarized and general conclusions based on the 

findings of the works presented in this thesis are described. Furthermore, the strengths and 

limitations of this thesis are considered and suggestions for further research.  

The research work developed in the present thesis explores the development of new 

methodology for the synthesis of arylidene thiobarbiturates. Lewis acid Bi(NO3)3.5H2O used as 

catalyst for a Knoevenagel condensation between aromatic aldehyde and thiobarbituric acid. The 

procedure is simple and scalable, works well for benzaldehydes bearing electron-donating and 

electron-withdrawing groups at different positions of the aromatic ring. This methodology also 

works for heteroaromatic carbaldehydes, 2-naphtalenecarbaldehyde and 4-phenyl benzaldehyde.  

In addition, 2-amino-4,6-dihydroxypyrimidine derivatives were synthesized. Schiff bases 

of ADHP with different aromatic aldehydes in the presence of NaOH were synthesized, affording 

good yields. Different substituted benzaldehydes, some heteroaromatic-carbaldehyde, 4-phenyl 

benzaldehyde and 2-naphtalenecarbaldehyde were selected to react with 2-amino-4,6-

dihydroxypyrimidine (ADHP) moiety.  

The thesis also contributes to the total synthesis of marine natural products, cadiolides 

analogues. Cadiolides derivatives were synthesized in four major steps, starting from Sonogashira 

cross coupling reaction followed by Diels-Alder cycloaddition/cycloreversion, hydrolysis and 

finally alkylidenation reaction. These cadiolides are not as easily accessible by existing 

methodologies, due to the challenges associated with the preparation of starting materials, 

specially oxazole and Bestmann-Ohira reagent and handling of the reaction conditions. In this 

contest several methodologies were developed for the synthesis of cadiolides. Specially the 

synthesis of chalcone and its conversion to a-ketoalkyne derivatives. Due to the difficulties in the 

debromination step of chalcones, resulting in very low yields for the desired compounds, another 

strategy involving a Sonogashira coupling reaction between phenylacetylene and benzoyl chloride  

using palladium catalysts was investigated. This  methodology resulted the desired compounds in 

high yields. The most important step is the Diels-Alder reaction between oxazole and ynone for 

the synthesis of lactone, which give the furan moiety in good yield, followed by the hydrolysis 

reaction with the aq. HBr (40%)  give the desired lactone.  
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Finally, the reaction of lactone with different heterocyclic aldehydes in the presence of 

DIPEA, TBDMSOTf and DBU give the desired cadiolides with high yields and stereoselectivity 

has been reported.  

All the synthesized compounds, thiobarbiturates, Schiff bases and cadiolides were 

investigated for their possible biological activities against fungus , bacteria and urease.  

Analogues of thiobarbituric acid were synthesized and evaluated for their antimicrobial 

prosperities against six yeast, two filamentous fungi and one Gram-negative bacteria. In case of 

filamentous fungi, the activity of tiobarbiturates were specific against A. solani and showed 

moderate to good activity. Compounds 5, 6, 7 and 14 were the most active with MIC values of 

7.81, 7.81, 3.90 and 3.90 µg mL-1 respectively. 

Against yeast the activities were comparable, in some cases, to that found for the 

commercial antimicrobial drugs nystatin and miconazole. Most of the compounds presented IC50 

<1.95 μgmL-1 towards at least one microbial strain, and some of them were excellent selective 

microbe inhibitors. Thiobarbituric acid derivatives also showed good anti-urease inhibitory 

activity with the inhibition values of 48.66 - 69.92% at 40µM in 1% tween-20. Amongst the series 

compound 8, 12 and 18 showed better activity with inhibition values of 63.18, 69.40 and 69.92% 

respectively. 

Schiff bases of 2-amino-4,6-dihydroxypyrimidine were prepared and screened for their 

putative urease inhibitory activity. All of the synthesized compounds showed good ati-urease 

activity with inhibition range of 59.09 - 84.76%  at 40µM in 1% tween-20. Compound 23, 27 and 

28 are the most potent amongst the series with inhibition values of 81.54, 80.70 and 84.76% 

respectively. These could serve as lead substances for the development of novel synthetic 

compounds with enhanced inhibitory ureolitic activity. 

Cadiolides derivatives were synthesized and submitted to biological assays to evaluate their 

antimicrobial properties against Staphylococcus aureus, Escherichia coli, Salmonella. 

typhimurium, Bacillus cereus and Candida albicans. Amongst cadiolides derivatives, compound 

68 showed good activity against Bacillus cereus with IC50 value of 0.1943 μM comparable with 

positive control ampicillin (0.0068 µM). 
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Appendix 

1. NMR spectra of synthesized compounds (Chapter 1) 

 

 
1H NMR spectrum (400 MHz, DMSO-d6) of compound 1. 

 
13C NMR spectrum (100 MHz, DMSO-d6) of compound 1. 
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1H NMR spectrum (300 MHz, DMSO-d6) of compound 2. 

 

 
1H NMR spectrum (400 MHz, DMSO-d6) of compound 3. 
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 13C NMR spectrum (100 MHz, DMSO-d6) of compound 3. 

 
1H NMR spectrum (300 MHz, DMSO-d6) of compound 8. 
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1H NMR spectrum (400 MHz, DMSO-d6) of compound 9. 

 
13C NMR spectrum (100 MHz, DMSO-d6) of compound 9. 
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1H NMR spectrum (400 MHz, DMSO-d6) of compound 10. 

 
13C NMR spectrum (100 MHz, DMSO-d6) of compound 10. 
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13C NMR spectrum (100 MHz, DMSO-d6) of compound 11. 

 

 1H NMR spectrum (300 MHz, DMSO-d6) of compound 13. 
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13C NMR spectrum (75 MHz, DMSO-d6) of compound 13. 

 
1H NMR spectrum (300 MHz, DMSO-d6) of compound 14. 
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13C NMR spectrum (75 MHz, DMSO-d6) of compound 14. 

 
1H NMR spectrum (300 MHz, DMSO-d6) of compound 15. 
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13C NMR spectrum (75 MHz, DMSO-d6) of compound 15. 

 
1H NMR spectrum (300 MHz, DMSO-d6) of compound 16 
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13C NMR spectrum (75 MHz, DMSO-d6) of compound 16 

 

 
1H NMR spectrum (300 MHz, DMSO-d6) of compound 17. 
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1H NMR spectrum (400 MHz, DMSO-d6) of compound 18. 

 
13C NMR spectrum (100 MHz, DMSO-d6) of compound 18. 
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1H NMR spectrum (400 MHz, DMSO-d6) of compound 19. 

 
13C NMR spectrum (100 MHz, DMSO-d6) of compound 19. 
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1H NMR spectrum (400 MHz, DMSO-d6) of compound 20. 

 
13C NMR spectrum (100 MHz, DMSO-d6) of compound 20. 
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2. NMR spectra of synthesized compounds (Chapter 2) 

 
1HNMR spectrum (300 MHz, DMSO-d6) of compound 21. 

 
 

1HNMR spectrum (400 MHz, DMSO-d6) of compound 22. 
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13CNMR spectrum (100 MHz, DMSO-d6) of compound 22. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1H NMR spectrum (300 MHz, DMSO-d6) of compound 23. 
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1H NMR spectrum (300 MHz, DMSO-d6) of compound 24. 

 
 

 
13C NMR spectrum (75 MHz, DMSO-d6) of compound 24. 
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1H NMR spectrum (300 MHz, DMSO-d6) of compound 25. 

 

 
13C NMR spectrum (75 MHz, DMSO-d6) of compound 25. 
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1H NMR spectrum (300 MHz, DMSO-d6) of compound 26. 

 
13C NMR spectrum (75 MHz, DMSO-d6) of compound 26. 
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1H NMR spectrum (300 MHz, DMSO-d6) of compound 28. 
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3. NMR spectra of synthesized compounds (Chapter 3) 

 
1H RMN spectrum (400 MHz, CDCl3) of compound 52. 

 
13C RMN spectrum (100 MHz, CDCl3) of compound 52. 
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1H NMR spectrum (400 MHz, CDCl3) of compound 59a. 

 
13C NMR spectrum (100 MHz, CDCl3) of compound 59a. 
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1H NMR spectrum (400 MHz, CDCl3) of compound 59b. 

 
13C NMR spectrum (100 MHz, CDCl3) of compound 59b. 
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1H NMR spectrum (400 MHz, CDCl3 ) of compound 59. 

 
13C NMR spectrum (100 MHz, CDCl3) of compound 59. 
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1H NMR spectrum (400 MHz, CDCl3) of compound 60. 

 
13C NMR  spectrum (100 MHz, CDCl3) of compound 60. 
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1H NMR spectrum (400 MHz, CDCl3) of compound 61. 

 
13C NMR spectrum (100 MHz, CDCl3) of compound 61. 
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1H RMN spectrum (400 MHz, CDCl3) of compound 64. 

 
13C RMN spectrum (100 MHz, CDCl3) of compound 64. 

5

4 3
2
1

6
8

9

MeO
Br7

5

4 3
2
1

6
8

9

MeO
Br7



 

 

173 

 
1H NMR spectrum (400 MHz, CDCl3) of compound 66a. 

 
1H NMR spectrum (400 MHz, CDCl3) of compound 70. 
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13C NMR spectrum (100 MHz, CDCl3) of compound 70. 

 
 

 
 

1H NMR spectrum (400 MHz, CDCl3) of compound 72. 
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13C NMR (100 MHz, CDCl3) spectrum of compound 72. 

 

 
1H NMR spectrum (400 MHz, D2O) of compound 74. 
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1H NMR spectrum (400 MHz, CDCl3) of compound 75. 

 
1H NMR spectrum (400 MHz, CDCl3) of compound 76. 
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13C NMR spectrum (100 MHz, CDCl3) of compound 76. 

 
1H NMR spectrum (400 MHz, CDCl3) of compound 80. 
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13C NMR spectrum (100 MHz, CDCl3) of compound 80. 

 
 

 
1H NMR spectrum (400 MHz, CDCl3) of compound 81. 
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13C NMR spectrum (100 MHz, CDCl3) of compound 81. 

 

 

 
1H RMN spectrum (400 MHz, CDCl3) of compound 82. 
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13C NMR spectrum (100 MHz, CDCl3) of compound 82. 

 
1H NMR spectrum (400 MHz, CDCl3) of compound 85. 
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13C NMR spectrum (100 MHz, CDCl3) of compound 85. 
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Abstract Hospitalized patients can suffer from Candida
and Crytptococcus infections, aggravating underlying
health conditions. Due to the development of drug-resistant
microorganisms, we report here on the potential of some
arylidene-thiobarbiturate to control five Candida spp. and
one Cryptococcus species of medical interest. Initially, a
bismuth nitrate catalyzed Knoevenagel condensation with
thiobarbituric acid and aromatic aldehydes was developed.
This new procedure generated seven new and thirteen
known arylidene-thiobarbiturate derivatives (1–20) with
excellent yields (81–95%), with a reaction time within 20
min. The antimicrobial activities of all compounds were
evaluated against Candida albicans, C. tropicalis, C.
parapsilosis, C. lusitaniae, C. dubliniensis, and Crypto-
coccus neoformans. Several compounds were as active as
the commercially available drugs (IC50< 1.95 µg mL−1)
towards at least one microbial strain. The results suggest
that some of the new compounds can serve as leads for new
antimicrobial agents for the treatment of human fungal
infections.

Keywords Thiobarbituric acid ● Knoevenagel condensation ●

Antimicrobial activity ● Antifungal compounds

Introduction

Fungal infections have been increasing to alarming levels in
all regions of the world, including underdeveloped and
developed countries. The mortality rates associated with
multidrug resistance fungal infections are unacceptably high
(Monk and Goffeau 2008; Mathew and Nath 2009; Rajen-
dran et al. 2016). The emergence of fluconazole resistance
among different pathogenic strains (Pfaller et al. 2007) and
the high toxicity of amphotericin B (Kullberg and Pauw
1999; Sheehan et al. 1999) intensified the search for newer,
safer, and more effective agents to combat serious fungal
infections. To search for a lead for a new antifungal com-
pound we focused on barbituric acid derivatives (BAs)
among the many classes of small organic molecules with
known biological activities (Gurib-Fakim 2006; Bello et al.
2008; Baell and Holloway 2010; Taferner et al. 2011;
Nigam et al. 2014).

BAs have contributed to the development of many
commercially available hypnotic, sedative and antic-
onvulsant drugs, such as Veronal (Fig. 1a) (Lemke et al.
2012). More recently, benzylidene-derivatives like B (Fig.
1) were shown to be active against Mycobacterium tuber-
culosis (IC50= 4.71 μg mL−1), (Laxmi et al. 2011) while
compound C (Fig. 1) was effective against Candida albi-
cans (X=O, IC50= 12.5 μg mL−1) (Faidallah and Khan
2012). Other reported activities of BAs include anticancer
(Dhorajiya et al. 2014) and protein tyrosine phosphatase
inhibition (Kafle et al. 2011).

In addition to the BAs, the thiobarbiturate derivatives
(TBAs, Fig. 1) exhibit highly sought after biological prop-
erties such as antifungal (C, IC50= 25 μg mL−1, X=S)
(Faidallah and Khan 2012), urease inhibition (D, IC50=
1.61 μΜ) (Khan et al. 2014a), antibacterial (Jin et al. 2012;
Khan et al. 2014b; Yan et al. 2009) and anti-inflammatory
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properties (Kopff et al. 2007). Some studies have also
demonstrated that thiobarbiturate derivative E is effective
for the treatment of non-alcoholic fatty liver disease (Ma
et al. 2011).

Despite the large array of biological activities of barbi-
turates as mentioned above, few reports on the antifungal
activities of TBAs are known (Faidallah and Khan 2012;
Khan et al. 2014b; Neumann et al. 2014). Thus, we planned
to investigate the effect of some known and other new
thiobarbiturate derivatives against five Candida and one
Cryptococcus species. Among the investigated species, C.
albicans is a harmless microorganism present in healthy
bodies, which can adapt and generate genetically altered
variants, more adapted to the host environment. However,
in immunocompromised patients, C. albicans can cause
serious symptomatic infections; such as oropharyngeal
candidiasis in AIDS patients (Morschhäuser 2016) and
candidemia associated with high mortality rates in cancer
patients (Jung et al. 2015). Nevertheless, the importance of
C. albicans as a human pathogen, and other species of
Candida genus like C. tropicalis and C. parapsilosis are
relevant sources of invasive Candida infections, especially
in surgical patients (Smeekens et al. 2016). On the other
hand, Cryptococcus neoformans, an opportunistic yeast that
causes lung infections, also deserves attention due to its
clinical relevance in individuals with compromised host
defences (Schmalzle et al. 2016). It is worth mentioning that
antifungal multi-drug resistance in C. neoformans is of great
concern (Perfect and Cox 1999).

Considering the limited reports on the antifungal activ-
ities of thiobarbiturate derivatives, and in line with our
continuous efforts to synthesize antimicrobial heterocyclic
compounds (Pereira et al. 2014a, b; Karak et al. 2016), we
report here on the expeditious synthesis of arylidene TBAs
and their antifungal activities against five Candida spp. and
one Cryptococcus species. Considering previous reports on
anti-Candida activities of some benzylidene barbiturates
(Fig. 1, R=H, Me or aryl; X=O) (Faidallah and Khan 2012;
Khan et al. 2014b; Neumann et al. 2014), we propose the
preparation of the corresponding TBAs (Fig. 2, X=S;
R=H), and expand the structural diversity of such

compounds possessing electron-withdrawing groups (Fig.
2, Y=CN, CF3, NO2, and Halogen) and heteroaromatic ring
(pyridine). We also included a thiophene unit as a spacer
between the TBA core and the arylidene unit.

Experimental

Chemicals and instruments

All chemicals and materials were acquired from Sigma
Aldrich Chemicals Ltd. and used without further purifica-
tion. IR spectra were recorded in KBr on Shimadzu IR
Affinity-1 FT-IR spectrophotometer and 1H and 13C NMR
spectra were recorded on a BrukerAvance II 300 and 400
MHz NMR spectrometers in DMSO using TMS as an
internal standard. Mass spectra were recorded on Waters, Q-
TofMicromass (LCMS) spectrometer and Varian Inc. 410
Prostar Binary LC with 500 Mass Spectrophotometer.
Melting points are uncorrected and were measured with a
MQAPF-301 apparatus.

General procedure for the synthesis of thiobarbituric
acid derivatives (1–20)

To a 50 mL round-bottomed flask charged with penta-
hydrated bismuth nitrate (0.032 g, 0.065 mmol) in ethanol
(20 mL) were added thiobarbituric acid (0.144 g, 1.0 mmol)

Fig. 1 Structures of commercial
BA drug Veronal (a) and some
biologically active BAs and
TBAs (b–e)

Fig. 2 Proposed structural modifications on thiobarbituric acid
derivatives
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and aromatic aldehydes (1.0 mmol). The reaction mixture
was stirred for 10–20 min at 80 °C, when thin layer chro-
matography analyzes revealed it was completed. After
completion the precipitated product was separated by fil-
tration, dried, and recrystallized from ethanol. Full physical
and spectroscopic data and yields for all compounds are
presented in the supporting information (SI).

Biological activity

The bioassays were conducted with six yeast strains (C.
albicans ATCC 18804, C. dubliniensis clinical isolate 28,
C. lusitaniae CBS 6936, C. parapsilosis ATCC 22019, C.
tropicalis ATCC 750 and Cryptococcus neoformans ATCC
24067).

To determine the IC50 values for compounds 1–20, the
yeasts were inoculated in Sabouraud broth. Assays were
performed according to Clinical and Laboratory Standard
Institute guidelines (CSLI 2002). The microorganisms were
incubated in an oven at 37 °C for 24 h. The suspensions
containing the six yeast strains were transferred to tubes
containing sterile distilled water to reach a suspension
(inoculum) compatible with the McFarland scale 0.5 (108

cells mL−1). To assay the compounds 1–20, 96-well
microtiter plates containing the appropriate broth were
used (Brain Heart infusion for yeasts and bacterium and
Potato Dextrose Broth for filamentous fungi). The samples
were dissolved and microdiluted in DMSO (250.00, 125.00,
62.50, 31.25, 15.63, 7.81, 3.90, and 1.95 µg mL−1) in the
microtiter plates. The inoculum was added equally to each
well. The plates were incubated in an oven at 37 °C for 24
h. The readings were obtained after 24 h of incubation on a
microplate reader at 600 nm. The IC50 values were calcu-
lated for the samples that showed an inhibition higher than
50% in the highest concentration assayed. Commercially
available drugs, i.e., miconazole and nystatin, were used as
positive standards. All the tests were performed twice under
the same conditions.

Results and discussion

Chemistry

Our synthetic study commenced from the Knoevenagel
condensation between aldehydes and thiobarbituric acid
(Table 1). Although this condensation can conventionally
be carried out under acid or base catalysis (Li et al. 2006;
Khan et al. 2014a, b; Rahimov and Avdeev 2009; Mital
et al. 2015) or even in an uncatalyzed manner (Ahmed and
Karrar 2013; Chen et al. 2014), it normally requires high
temperature and a long reaction time. Considering that the
use of bismuth (III) nitrate [Bi(NO3)3·5H2O] as a catalyst

has increased considerably over the years due to its thermal
stability, low cost, low toxicity and stability to air (Bothwell
et al. 2011), we investigated its effect on the condensation
of TBA with aldehydes (SI, Table S1). Initially we carried
out the condensation of 4-hydroxybenzaldehyde and thio-
barbituric acid under a variety of conditions (SI, Table S1)
and found that the use of 20 mol% of Bi(NO3)3·5H2O in
ethanol at 80 °C, efficiently catalyzes the condensation,
resulting in the desired products in 10–20 min (Table 1). We
envisage that the catalysis takes place via a transition state
formed by coordination of bismuth (III) with the formyl
group increasing its electrophilicity. Since bismuth (III) can
be hydrolyzed producing an acidic solution, a protic cata-
lysis cannot be ruled out without experimental evidence
(Aggen et al. 2004). So, a control experiment reacting of 4-
hydroxybenzaldehyde with TBA in the presence of 60 mol
% of HNO3 was carried out and no product was formed
within 20 min. After one hour only 30% of product 1 was
isolated (SI, Table S1), confirming the effect of bismuth
(III) as the catalyst. A similar catalytic effect of bismuth
(III) on the conversion of aromatic aldehydes to a variety of
acylals has been reported (Aggen et al. 2004).

As can be observed from Table 1, the yields were gen-
erally high (compounds 1–20, yields 81–95%). Aldehydes
bearing electron donating or electron withdrawing func-
tional groups such as hydroxy (1–5), methoxy (6 and 7),
bromo (8), chloro, fluoro (9), cyano (11), trifluoromethyl
(12) and nitro (10) react well under this procedure. Fur-
thermore, excellent yields were also obtained with the 2-
naphthaldehyde (20), 4-phenylbenzaldehyde (19) and some
heteroaromatic aldehydes (13–18). The structures of all the
new compounds (9, 11, 13, 14, 16–18) were determined by
the spectroscopic analysis and the data are reported in the
SI. For the known compounds, the spectroscopic data were
identical to those from the literature (See the SI).

Biological activity

All the synthesized compounds have been screened for their
antimicrobial activities against the yeast strains Candida
albicans, C. dubliniensis, C. tropicalis, C. parapsilosis, C.
lusitaniae, and Cryptococcus neoformans. Positive control
experiments were carried out using miconazole and
nystatin.

For all yeasts assayed, most of the compounds showed a
good correlation between the concentrations tested and the
percentage of growth inhibition, indicating that the anti-
microbial activity provided by this class of compounds is
dose-dependent. Therefore, the IC50 values for the active
compounds were determined as shown in Table 2.

In general, the activities of this series of compounds on
the microorganisms varied according to the structure and
the species tested. Among the six yeast strains assayed,
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C. albicans, C. dubliniensis, and C. lusitaniae were resistant
to most of the compounds, while the growth of C. para-
psilosis, C. tropicalis, and Cryptococcus neoformans were
more effectively inhibited.

The less sensitive strains, C. albicans, C. dubliniensis,
and C. lusitaneae, were more affected by compounds 14
(IC50< 1.95, 9.39, and 6.18 µg mL−1, respectively) and 13
(31.45, 44.33, and 76.83 µg mL−1, respectively). Com-
pound 15 was also significantly active against C. albicans
(IC50= 12.77 µg mL−1). TBAs 14 and 15, which were

active against C. albicans, are promising since the corre-
sponding BAs showed weak activity (Neumann et al. 2014).
Compound 20 with IC50= 172.38 µg mL−1, is slightly less
active than its oxo-analog (MIC80 of 125 µg mL−1, pre-
viously reported by Neumann et al. 2014), suggesting that
sulfur could have a restrictive effect on bioactivity. As
found by Neumann et al. (2014), our results also showed
that the compounds bearing OH or OMe groups (one or
more, at various positions) are generally not active against
C. albicans. This is also consistent for C. dublinensis and C.

Table 1 Bismuth(III) nitrate facilitated synthesis of thiobarbituric acid derivatives
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lusitanea that no previous study has been found in this
context. Although the inhibitory activities of some N,N-
dimethylbarbiturates have been reported for C. albicans
(Khan et al. 2014b), it was not possible to compare these
results with ours since a different bioassay (disc diffusion
method at a fixed dose of 100 μg) was adopted.

Compounds 13–15 also showed potent activity against
C. parapsilosis, C. tropicalis, and Cryptococcus neofor-
mans (IC50=<1.95 µg mL−1 for most cases), whose IC50

values are comparable to those of miconazole and nystatin.
The inhibitory activity of BAs and TBAs against C. para-
psilosis, herein reported for the first time, is especially
noteworthy in view of the great demand for effective and
selective agents to treat infections of cancer patients (Sabino
et al. 2015).

Structurally, 13–15 possess five-membered ring hetero-
aromatic aldehydes. On the other hand, compounds com-
posed of substituted benzaldehyde, six-membered
heteroaromatic aldehydes and naphthalene carbaldehyde
were inactive against C. albicans, C. dubliniensis, and C.
lusitaniae. Substitution by a phenyl group at α or β position
in the thiophene ring makes 14 to be linear, while 15 to be
angular-shaped. Such modifications seemed to have a

dramatic effect on the activities except for C. parapsilosis
and C. tropicalis, both showing low IC50 (1.95 µg mL−1).

As already mentioned, C. parapsilosis, C. tropicalis and
C. neoformans were in general more sensitive to TBAs
derivatives. The IC50 values of compounds 6, 7, 8, 12, 13,
14, 15, and 18 were lower than the minimum concentration
tested (<1.95 µg mL−1) for C. parapsilosis. For 6, 7, 8, 12,
13, 14, 15, 19, and 20, the IC50 values were <1.95 µg mL−1

for C. tropicallis, which is also an organism of great con-
cern since it causes invasive candidiasis in hospitalized
patients worldwide (Xiao et al. 2014). Moreover, it was
noteworthy that compounds 7 and 14 showed IC50< 1.95
µg mL−1 against C. neoformans, which were as potent as
the antimicrobial drugs, miconazole and nystatin.

Among the phenolic derivatives (1-5), only 1 and 2 were
highly active (IC50= 4.21 µg mL−1) against C. para-
psitosis. Derivatives of benzaldehydes bearing electron-
donating (OMe) or electron-withdrawing groups at various
positions (F, Cl, Br, CN, CF3, and NO2) were all active. The
naphthalene derivative 20 and the biphenyl derivative 19
were very active against C. parapsilosis, C. tropicalis and
C. neoformans. Although we could not determine a clear
structure–activity relationship (SAR), we envisaged that the

Table 2 IC50 for the
compounds 1–20 for six yeast
strains

Compound IC50 (µg mL−1)

C. albicans C. dubliniensis C. lusitaniae C. parapsilosis C. tropicalis C. neoformans

1 –a – – 4.21 – 14.31

2 – – – 4.24 – 9.25

3 – – – – – 155.79

4 218.48 92.64 129.14 – – 45.61

5 – – – 48.49 – –

6 – – – <1.95 <1.95 27.38

7 214.73 187.31 194.46 <1.95 <1.95 <1.95

8 – – – <1.95 <1.95 123.53

9 – – – 8.12 – 17.73

10 – – – 3.17 26.27 68.41

11 – – – – – –

12 – – – <1.95 <1.95 81.26

13 31.45 44.33 76.83 <1.95 <1.95 6.39

14 <1.95 9.39 6.18 <1.95 <1.95 <1.95

15 12.77 56.21 34.46 <1.95 <1.95 53.58

16 – – – – – –

17 – – – – – –

18 – – – <1.95 – 12.63

19 221.69 – 166.62 9.78 <1.95 12.36

20 172.38 196.92 192.03 3.60 <1.95 11.35

Miconazole <1.95 <1.95 <1.95 <1.95 <1.95 <1.95

Nystatin <1.95 <1.95 <1.95 <1.95 <1.95 <1.95

a (–) IC50 value was not calculated since inhibition was lower than 50% at the higher concentration assayed
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preparation of other derivatives bearing five-membered
heterocyclic, biphenyl, and naphthalene-substituted deriva-
tives would lead to a better understanding of the SAR and to
more active substances.

Conclusion

In conclusion, we have described the expeditious synthesis
of TBA derivatives via bismuth (III) nitrate catalyzed
Knoevenagel condensation between aryl-carbaldehydes and
TBA. The reactions proceeded smoothly to afford the
desired 5-arylidenethiobarbiturates in high yields within 20
min. Using this methodology, seven new and thirteen
known TBAs were prepared and their inhibitory potential
was evaluated against five Candida spp. and one Crypto-
coccus species. Several compounds had activities compar-
able to the commercial drugs. The preliminary SAR
analysis suggested that (i) the presence of OH/OMe groups
on the benzene ring and (ii) the substitution of benzene to
naphthalene or pyridine moieties are detrimental for activ-
ities. On the other hand, the most active compounds against
all Candida species had a thiophene spacer between the
thiobarbiturate and the benzene ring. The position of the
phenyl group on the thiophene also had an impact on the
activity, with the linear-shaped compound being more
potent. A new furyl derivative (13) was also among the
most active compounds. The two species C. parapsilosis
and C. tropicalis were most sensitive to the majority of the
TBAs tested. These results suggest that such compounds
can be further modified for the development of new anti-
microbial agents for the treatment of candidiasis.
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