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Resumo

Esta tese aborda o problema da modelagem e coordenacao de multiplos robos na exe-
cucao de tarefas cooperativas. E proposta e apresentada uma nova metodologia que usa
alocacao dinamica de papéis na coordenacao de multiplos robos. Basicamente, cada robo
executa um papel que define as suas acoes durante a cooperacao. Dinamicamente assu-
mindo e trocando papéis de forma sincronizada, os robos sao capazes de executar tarefas
cooperativas com sucesso, se adaptando a eventos inesperados que possam ocorrer no am-
biente e obtendo um melhor desempenho. As tarefas cooperativas e a alocacao dinamica de
papéis sao modeladas utilizando-se sistemas hibridos. Um sistema hibrido pode ser visto
como uma composicao de estados discretos e equacoes continuas, sendo bastante adequado
para a representacao de sistemas com muiltiplos robds. Um automato hibrido é utilizado
para representar o comportamento de cada robo na execucao da tarefa e a composicao
de varios automatos permite que a tarefa cooperativa como um todo seja modelada. Isso
permite uma melhor representacao e formalizacao da execucao de tarefas cooperativas e
prové um arcabouco para obtencao de resultados formais sobre a cooperacao. Vérios ex-
perimentos sao realizados em diversas tarefas cooperativas, utilizando-se tanto robos reais
como simulados. Para isso, foi desenvolvido um simulador chamado de MuRoS, que per-
mite a simulacao de miiltiplos robos na execucao de tarefas cooperativas. Os experimentos

demonstram a efetividade da metodologia proposta na modelagem e execucao de tarefas

cooperativas.



Abstract

This thesis addresses the problem of how to model and coordinate multiple robots in
the execution of cooperative tasks. We present a novel methodology that uses a dynamic
role assignment mechanism for coordinating multiple robots. Basically, each robot in the
team performs a role that determines its actions during the cooperation. Dynamically as-
suming and exchanging roles in a synchronized manner, the robots are able to perform the
task successfully, having a better performance and adapting to unexpected events in the
environment. We use a hybrid systems framework to model the execution of cooperative
tasks and the role assignment mechanism. Hybrid systems can be viewed as a composition
of discrete states and continuous equations, being adequate to represent multi-robot sys-
tems. We use a hybrid automaton to specify the behavior of each robot and the parallel
composition of automata to model the cooperative task as a whole. This allows us to
better describe and formalize the execution of cooperative tasks by multi-robot teams and
provides a framework for obtaining formal results about the cooperation. Experiments
with the role assignment mechanism and the hybrid systems modeling are performed in
different tasks, both in simulated and real environments. A multi-robot simulator called
MuRoS has been developed in order to simulate the execution of cooperative tasks. The
experiments demonstrate the effectiveness of the proposed methodology in the modeling

and execution of cooperative multi-robot tasks.
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Chapter 1

Introduction

1.1 Motivation

Cooperative robotics has been an active research field in the last few years. Fundamentally,
it consists of a group of robots working cooperatively to execute various types of tasks in
order to increase the robustness and efficiency of task execution. The use of multi-robot
teams brings several advantages over single robot approaches. Firstly, depending on the
type of the task, multiple robots can execute it more efficiently by dividing the work
among the team. More than that, groups of simpler and less expensive robots working
cooperatively can be used instead of an expensive specialized robot. Robustness is also
increased in certain tasks by having robots with redundant capabilities and dynamically
reconfiguring the team in case of robot failures.

Additionally, there are certain kinds of tasks, called tightly coupled tasks, that cannot
be executed by a single robot and require the use of multiple robots working cooperatively.
To execute tightly coupled tasks, robots must act in a highly coordinated fashion and this
normally requires some knowledge about the states and actions of the teammates, either
through implicit (sensory perception) or explicit communication. Further, in many cases,
each robot is critical to the task and an individual failure could cause a failure of the task

as a whole. These are different from loosely coupled tasks, that can be executed by a single



CHAPTER 1. INTRODUCTION 2

robot alone, but, in general, have better performance when a team of robots is used. When
executing loosely coupled tasks, robots can act independently from each other and strict
coordination is not required. A classical example of a loosely coupled task is foraging, in
which a group of robots must search an area for certain items and individually retrieve
these items to a certain location. On the other hand, a typical example of a tightly coupled
task is the cooperative manipulation, in which two or more robots transport large objects
between different positions in the environment.

The research in cooperative robotics has a strong biological inspiration. Several animal
societies depend heavily on cooperative work in order to execute tasks that could not be
done by individual members or that are better performed by multiple agents, such as to
gather food, protect the group, etc. Some examples of this cooperation are the foraging
behavior of ants and bees, flight formations of birds and migrations of herds of elephants
and buffalos. Humans also use cooperation in the execution of their tasks. For example,
the construction of a bridge requires the cooperative work of several specialized workers,
from engineers to contractors, and it is also necessary a high level of coordination in
order to avoid failures and to meet deadlines. Even simpler human tasks like carrying a
heavy load or cleaning a house benefit from cooperative work and require different levels
of coordination.

In the same way as humans, robots must be coordinated in order to execute cooperative
work. The coordination of multi-robot teams in dynamic environments is a very challenging
task. Basically, the actions performed by each team member during each phase of the
cooperation must be specified considering several aspects such as robot properties, task
requirements, information flow, and characteristics of the environment. Thus, different
levels of coordination are required by different tasks and robots. Also, the coordination
mechanism should help multi-robot teams in the synchronization of their actions and in
the exchange of information necessary for the task execution. Besides that, it should
provide flexibility and adaptability, allowing the robots to complete cooperative tasks more
efficiently and robustly.

A precise modeling of multi-robot cooperation is also a very important aspect of co-
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operative robotics. Cooperative robotics systems normally require the representation of
both continuous and discrete dynamics, together with synchronization, communication,
etc. The modeling technique should address all these requirements and also provide ways
of obtaining some formal results about the cooperative system. All these factors make the
development of adequate coordination mechanisms and the modeling of cooperative tasks

some of the key issues in cooperative robotics.

1.2 Problem Definition and Objectives

The problem that we are addressing in this thesis can be stated as follows: given a group
of robots, with homogeneous or heterogeneous capabilities, how to model and coordi-
nate multi-robot cooperation so that the robots will be able to perform different types of
cooperative tasks in dynamic environments.

Thus, the main objective of this thesis is to develop a mechanism that allows the
coordination of multiple robots in different tasks, ranging from loosely coupled to tightly
coupled tasks. This mechanism should be built using a formal theory that allows a precise
modeling of the cooperation, including the interactions among the robots, the exchange of

information, and task synchronization.

1.3 Contributions

To accomplish these objectives, we propose a dynamic role assignment mechanism, in which
robots can dynamically change their behavior being able to successfully execute cooperative
tasks. We consider that a role is a function that one or more robots perform during the
execution of a cooperative task. It depends on the internal robot state and on information
about the environment and other robots, and defines the variables, information flow, and
the set of controllers that will be controlling the robot in each moment. By dynamically
assuming and exchanging roles in a synchronized manner, the robots are able to perform

cooperative tasks, adapting to unexpected events in the environment and improving their



CHAPTER 1. INTRODUCTION 4

individual performance in benefit of the team.

We model cooperative robotics and the role assignment mechanism using a hybrid
systems framework. Hybrid systems can be viewed as a composition of discrete states and
continuous dynamics, being adequate to represent multi-robot systems. Using a hybrid
automaton, we are able to represent roles, role assignments, continuous controllers, and
discrete variables related to each robot. The composition of these automata allows us to
model the execution of cooperative tasks.

Experiments with the role assignment mechanism on different cooperative tasks have
been performed in simulations and in real robots, showing the effectiveness of the proposed
methodology. A multi-robot simulator called MuRoS has been developed in order to sim-
ulate the execution of cooperative tasks. Implemented using object orientation in the MS
Windows environment, MuRoS has allowed the study of different aspects of cooperative
robotics in several application domains.

In summary, the main contributions of this thesis are:

1. The development of a novel mechanism for the coordination of multiple robots in
the execution of cooperative tasks. As mentioned, this mechanism uses dynamic
role assignment in order to allocate actions and dynamically coordinate multi-robot

teams in the performance of different applications.

2. The use of a hybrid systems framework in order to model the cooperative execution
of tasks by multiple robots, allowing a better formalization of the cooperation. Using
this framework, we are able to describe and study important aspects of cooperative

systems such as information exchange and synchronization.

Another important contribution of this thesis, although it is not a primary contribution,
is the implementation of a multi-robot simulator (MuRoS) for the execution of cooperative
tasks. We have used it to study several aspects of cooperative robotics and our intention

is to make it available to other research groups and use it in different applications.
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1.4 Organization of this work

This work is organized as follows: in the next chapter we discuss some related work, focus-
ing on coordination mechanisms for cooperative robotics, cooperative manipulation, and
modeling. In Chapter 3, we present the role assignment mechanism and discuss some im-
portant aspects of multiple robot coordination such as communication, synchronization,
and hierarchy. Chapter 4 gives a brief introduction about hybrid systems and shows our
modeling of cooperative robotics using the composition of hybrid automata. In Chapter
5, we present some simulations performed to show the effectiveness of the proposed frame-
work. Basically, we give an overview of the simulator developed for cooperative robotics
and then show the simulations of two cooperative tasks, namely cooperative manipulation
and cooperative search and rescue. Chapter 6 presents some experimental results of the
role assignment mechanism and the hybrid systems modeling in a cooperative manipula-
tion task, in which teams of two and three robots coordinate themselves to transport a
large box in an environment containing obstacles. Finally, Chapter 7 brings the conclusion

of this thesis and the possibilities for future work.



Chapter 2

Background

The field of cooperative robotics started in the late 80’s and early 90’s with two
seminal cooperative systems: CEBOT [Fukuda and Nakagawa, 1987] and ACTRESS
[Asama et al., 1989]. Since then, this field has grown substantially with the development
of several multi-robot systems and cooperative applications. It this chapter, we discuss
some related work focusing on three aspects of cooperative robotics directly related to this
thesis, namely: coordination of multi-robot teams, cooperative manipulation, and formal
modeling of robotic tasks. More general surveys of cooperative robotics can be found

in [Parker, 2000], [Cao et al., 1997], and [Dudek et al., 1996].

2.1 Coordination of Multi-Robot Teams

Given a group of robots and a task to be performed, how to coordinate the robots in order
to successfully complete the task? This is one of the fundamental problems in cooperative
robotics and, depending on the type of the task and the robots’ characteristics, has different
levels of difficulty. For example, coordinating a loosely coupled task with homogeneous
robots is much easier than executing a tightly coupled task with a heterogeneous team.
The Behavior-Based Paradigm [Brooks, 1986, Arkin, 1998] is one of the most used ap-

proaches to control and coordinate multiple robots in the execution of cooperative tasks.
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The behavior-based approach advocates that robots may not need models of the world,
and a set of reactive controllers composed by sensing/actuation pairs (called primitive be-
haviors) are sufficient to control mobile robots in dynamic environments. More elaborated
behaviors “emerge” from the composition of low level behaviors allowing robots to perform
complex tasks. The main criticisms of behavior-based approaches are that it is difficult to
obtain formal results about its correct execution. Sometimes it is difficult to predict what
behavior will emerge from the composition of low level behaviors and this lack of mod-
eling can make the analysis and implementation of more complex applications a difficult
task. In spite of that, the behavior-based paradigm has been used successfully in various
approaches. In [Mataric, 1994], there is an implementation of several basic social behav-
iors that can be combined to generate more complex social behaviors. These behaviors
are used to coordinate multiple robots both in simulated and real environments. Another
interesting approach is Alliance [Parker, 1998], a behavior-based software architecture for
heterogeneous multi-robot cooperation. It has a fault tolerance mechanism that allows the
robots to detect failures in one of the teammates and adapt their behaviors to complete
the task. But more traditional deliberative approaches, composed by hierarchical levels,
have also been used for controlling cooperative robots. In [Noreils, 1993], for example,
there is a description of a leader-follower architecture that is used in cooperative tasks.
The architecture is decomposed in three levels (planner, control, and functional), each one
with its proper competencies.

An important issue in multi-robot coordination is related to the kind and amount of
information that should be exchanged among the robots. Basically, the questions are: does
one robot need to have information about the position, state and goals of the others? If
so, is this achieved through explicit communication or through observation? Normally,
the answer depends on the task being performed. In [Balch and Arkin, 1995], there is a
study of explicit versus implicit communication in three different cooperative tasks (forage,
consume, and graze). The main conclusion is that explicit communication improves the
performance in tasks where the possibility of implicit communication through the environ-

ment is small. Similar conclusions can be found in [Parker, 1995], where robot awareness
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and action recognition were studied in a “puck moving” mission. An interesting cooperative
framework that does not use communication is presented in [Alur et al., 2001]. Equipped
only with omnidirectional cameras, a group of robots is capable of executing different tasks
such as formation control, mapping and manipulation. Using Kalman filters, the robots
can estimate the states of their teammates using visual information, reducing the need for
explicit communication. Although these works have shown that it is possible to coordinate
multiple robots in certain tasks without using explicit communication, the development of
cheaper and more reliable communication mechanisms has motivated the use of explicit
communication in multi-robot coordination. In spite of some drawbacks such as poor scala-
bility and lack of reliability in noisy environments, explicit communication has contributed
for the development of more general coordination mechanisms that can be used to control
multi-robot teams in different types of cooperative tasks.

Another important point in cooperative architectures is the task allocation problem,
i.e., how to divide the work among the robots, allocating subtasks to each team mem-
ber. In most of the cases, the task allocation should be performed dynamically, in such
a way that the robots will be able to coordinate themselves with flexibility and adapt-
ability, being capable of successfully completing cooperative tasks. Several researchers
have studied the task allocation problem, both for multi-agent software systems and dis-
tributed robots. In this work we do not focus on software agents, but some approaches
can be found in [Tambe, 1997] and [Shehory and Kraus, 1998] among others. In the co-
operative robotics field, one important work is the Alliance architecture [Parker, 1998]
mentioned above. Another behavior-based approach for task allocation is presented in
[Werger and Mataric, 2000], in which robots broadcast messages with their eligibility in
order to coordinate their actions in a multi-target observation task. Other task allo-
cation mechanism is Murdoch [Gerkey and Mataric, 2001], that uses a publish/subscribe
architecture. In this system robots broadcast messages with their resources and needs
and dynamically allocate tasks based on this information exchange. Another approach is
proposed by [Jennings and Kirkwood-Watts, 1998]: the Method of Dynamic Teams is a

programming model which addresses the mapping of tasks into dynamic teams of agents.
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These teams can grow, shrink, and change dynamically, being programmed according to
the task being executed. Task allocation is also studied in [Uchibe et al., 2001], where a
method to resolve conflicts between task modules is proposed.

As will be explained in the next chapter, we use a dynamic role assignment mech-
anism to allocate tasks and control robots in a cooperative task. The term dy-
namic role assignment has been used in other works such as [Stone and Veloso, 1999],
[Castelpietra et al., 2000], and [Emery et al., 2002], all restricted to the multi-robot soccer
domain. In [Stone and Veloso, 1999], a role is defined as the specification of an agent’s
internal and external behaviors. A formation is a set of roles, decomposing the task space.
Homogeneous agents can switch roles within formations dynamically, according to prede-
fined triggers that are evaluated at run-time. Each agent knows the current formation and
keeps mappings from teammates to roles in the current formation. The agents can commu-
nicate using low bandwidth channels and periodically synchronize in a full-communication
setting. This mechanism was implemented in the domain of simulated robotic soccer,
showing interesting results. The work of [Castelpietra et al., 2000] also implemented a role
assignment mechanism in a robot soccer domain, but using a team of three heterogeneous
robots. Examples of roles in this domain are: attacker, defender, etc. The coordination
protocol uses the internal state of each robot and explicit messages in order to define the
team formation and assign roles. In [Emery et al., 2002] the roles are basically the same,
but special care is taken during the role assignment to synchronize the robots avoiding

possible deadlocks, that in this case is to have two robots with the same role.

2.2 Cooperative Manipulation

Cooperative manipulation is one of the main testbeds for cooperative robotics. In this
task, two or more robots transport, reorient, or simply manipulate an object in cooper-
ation. It is a classical example of a tightly coupled task. An interesting characteristic
of cooperative manipulation is that the robots are physically coupled through the object.

So, in spite of the need for tight coordination, explicit communication can sometimes be
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replaced by sensing in some systems. This is discussed in [Donald et al., 1997], where the
type and amount of local and global information a team of robots needs to perform a
cooperative manipulation task was studied. For example, how much internal state a robot
should retain and how much communication is necessary. They perform this analysis using
the information invariants methodology [Donald, 1995] and a general conclusion is that,
depending on the interactions of the robot with the object and on the sensors available,
explicit communication can be removed from the pushing protocols in cooperative manip-
ulation. This work is complemented by [Rus et al., 1995] that shows several experiments
that use different protocols to cooperatively change the pose of objects.

In fact, several different approaches that rely only on sensors to coordinate
the robots have been proposed for cooperative manipulation. This is the case of
[Kosuge and Oosumi, 1996] that uses a decentralized control algorithm in which the mo-
tion command is given to one of the robots (the leader) and the other robots con-
trol their trajectory estimating the object motion through their sensors. This same
approach has been extended using a group of holonomic robots equipped with body
force sensors [Kosuge et al., 1998] and, more recently, using impedance control instead of
force/torque sensors [Kume et al., 2001]. Other work that rely only on sensors for coopera-
tive manipulation is [Khatib et al., 1995], in which mobile manipulators (Puma 560 manip-
ulators mounted on Nomadic’s XR4000 holonomic bases) equipped with force sensors use a
decentralized control structure to manipulate objects. Also, in [Brown and Jennings, 1995],
two robots are used to push/steer an object and control is based on the interactions among
them and the object. A contribution of that work is the introduction of the term “strong
cooperation”. It is a synonym for tightly coupled cooperation, meaning that the robots
must act in concert to achieve the goal, i.e. the strategy for the task is not trivially seri-
alizable. Another interesting approach can be found in [Kube and Zhang, 1997], where a
group of 31 homogeneous robots are used in a box pushing task. In that work, tasks are
decomposed using finite state machines and transitions between discrete states are spec-
ified as locally sensed perceptual cues that are highly dependent on the selected sensors

and the environment for which the cue was designed [Kube and Zhang, 1996].
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It is important to mention that in some of these works, for exam-
ple [Kosuge and Oosumi, 1996], [Khatib et al., 1995] and others not mentioned here,
the main focus is on the manipulation dynamics and not on the coordination mechanisms.
Also, a significant number of these approaches are specific to cooperative manipulation and
cannot be used for other types of cooperative tasks. But some of the general coordination
systems described in the previous section were also used for manipulation tasks. For
example, one of the tasks performed with the Alliance architecture is a box pushing task,
in which fault tolerance and adaptive control were demonstrated [Parker, 1994]. Similar
experiments were presented in [Mataric et al., 1995], where two six-legged robots using
explicit communication and a task sharing paradigm were used within the behavior-based
framework of [Mataric, 1994]. The Murdoch architecture, mentioned in the previous
section, was also used in a box pushing task: in [Gerkey and Mataric, 2002] there is a
description of a distributed control system that enables a team of three heterogeneous
robots to cooperatively relocate a box to a specified goal, using the task allocation
mechanism presented in [Gerkey and Mataric, 2001].

The majority of works in cooperative manipulation (and in cooperative robotics in gen-
eral) uses distributed approaches to control cooperation. Each robot has its own controller
that uses local and global information acquired through sensing and communication to
control itself. The distributed approach is more suitable for cooperative robotics because
it allows a higher level of independence among the robots. This implies improved scalabil-
ity and fault tolerance when compared to centralized approaches. One work that applies
this approach is presented in [Stilwell and Bay, 1993], where a swarm of ant-like robots is
used in a material transportation system. This swarm is composed of several small robots,
with no central controller and minimal inter-robot communication. Simulations show the
use of this system in the transportation of a palletized load. But combinations of central-
ized and distributed approaches are also used is some architectures, mainly when global
plans are necessary for the execution of the task. This is the case of [Ota et al., 1995],
where motion planning is used in an object transportation through an environment with

obstacles. A mix of distributed and centralized control is also used in the BeRoSH sys-
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tem [Wang et al., 1996], where a central host acts as a leader generating goals and offering
some global positioning for the robots.

More recently, different approaches have been proposed for cooperative manipulation.
For example, the manipulation using ropes [Donald et al., 2000], that allows a group of
robots to reposition and transport several objects together. Other interesting work is the
cooperation among a human and a team of robots [Hirata and Kosuge, 2000], where a
human applies the motion intention on the object and the robots act like passive casters
helping the user. Finally, the cooperative manipulation of long payloads using Mars rovers
[Ollennu et al., 2002], that may have a great importance in planetary exploration.

The work developed in the GRASP Laboratory [Sugar and Kumar, 1998al,
[Sugar, 1999], and [Sugar and Kumar, 1999], in which a decentralized control system was
developed for the coordinated control of mobile manipulators, has served as a base for
some of our experiments. In that work, the use of passive compliance (implemented by an
actively controlled parallel manipulator) was shown to result in a robust grasp that allows
the cooperative transportation of a box by multiple robots. In that framework, the leader
plans a trajectory and broadcasts it to the followers, which control their trajectory based
on this plan and on feedback from their position, velocity, and sensors.

An extension of the cooperative manipulation task is what we call cooperative search
and transportation (also called cooperative search and rescue [Jennings et al., 1997] or
object sorting [Lin and Hsu, 1995]). In this task, before manipulating an object in coop-
eration, the robots must cooperatively locate the object. So, this task is a combination of
a loosely coupled task, where the robots search the area independently looking for objects,
and a tightly coupled task, in which the robots must manipulate objects in cooperation.
This characteristic makes the cooperative search and transportation a very interesting

testbed for coordination mechanisms.
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2.3 Formal Modeling of Robotic Tasks

In spite of the large number of works dealing with coordination mechanisms and approaches
to solve cooperative tasks, very few have considered aspects of modeling and formal verifi-
cation of cooperative robotics. As mentioned, several coordination mechanisms rely on the
behavior-based approach, which imposes difficulties in modeling due to its lack of formal-
ism. As will be explained later in this section, some researchers have applied formal models
to the behavior-based control of single robots, but for cooperative approaches not much
has been done. One framework that tries to better formalize the behavior-based paradigm
in cooperative robotics is described in [Kube and Zhang, 1997], where finite state machines
are used to encapsulate behaviors and discrete transitions are controlled by binary sensing
predicates. Finite state machines do not model the continuous aspects of the system but
can help in the modeling of the discrete part of the cooperation.

An example of a cooperative robotic architecture that uses a more formal approach in
its description is the MARS Project at the GRASP Laboratory [Alur et al., 2001]. That
architecture uses the Charon framework [Alur et al., 2000a] for the description of multiple
agents and their behavioral structure. As will be explained in the next chapter, Charon is
a high level modeling language for the specification and simulation of hybrid systems, and
can be used for modeling cooperative robotic systems.

The formal modeling of single robot controllers and tasks has received more attention
in recent years, even though the number of works in this area is also not very large.
Hybrid systems is one of the approaches that has been used by some researchers in order
to model robotic tasks for single robots. In [Egerstedt and Hu, 2002] for example, there
is a description of how a behavior-based control system for an autonomous robot can be
modeled using a hybrid automaton. Other works, such as [Milutinovic and Lima, 2002]
and [Wang and Saridis, 1993] have used Petri Nets for modeling robotic tasks.

A very interesting discussion about the specification and formal verification of robotic
tasks is presented in [Espiau et al., 1995]. It gives a brief overview about formal modeling

and verification of robotic tasks and discusses some approaches that have been used in
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this field, including hybrid systems. Also, there is a description of the ORCCAD design
environment and two features developed within it for the specification of robotic systems
called “Robot Task” and “Robot Procedure”. Verification can be performed using these
specification features together with tools for logical and temporal verification of certain
classes of hybrid systems (timed automata, linear automata, etc). More important, the
paper concludes stating that “we believe that all the area of hybrid systems (modeling,
programming, formal verification) is a key research domain for the future, the results of
which will find particularly relevant applications in robotics”. Our hybrid systems modeling

of cooperative robotics presented in this thesis is certainly a contribution in this direction.



Chapter 3

Coordination of Multiple Robots

The coordination of multiple robots in the execution of cooperative tasks is one of the fun-
damental aspects of cooperative architectures. In general, to execute cooperative tasks the
robots should synchronize their actions and exchange information. Also, the coordination
mechanism should be flexible, allowing the robots to adapt to unexpected events during
task execution. Coordination is even more important in the execution of tightly coupled
tasks, where each robot depends on the actions of its teammates and the task cannot be
completed by a single robot working independently.

In this chapter, we propose a coordination mechanism based on dynamic role assign-
ment. Each robot performs a role that determines its actions during the cooperative task.
According to its internal state and information about the other robots and the task received
through explicit communication, a robot can dynamically change its role, adapting itself
to changes and unexpected events in the environment. We also discuss some important
aspects of distributed systems applied to cooperative robotics, such as communication and

hierarchy.
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3.1 Distributed Systems

Using the computer science terminology, multiple robots working cooperatively can be con-
sidered a special type of a distributed system. A distributed system is an asynchronous
concurrent system composed by multiple computing systems connected by a communi-
cation network [Garg, 1996]. Asynchronous in this case means that computers execute
concurrently but do not share the same clock. Distributed systems use mainly message
passing to exchange information among distributed processes.

Communication and synchronization are two fundamental aspects in coordination of
distributed systems. In fact, a general definition is: coordination = communication + syn-
chronization. Basically, synchronization is necessary when two processes that are executing
concurrently need to perform a joint action, such as exchanging data, or when one process
should execute an action that depends on the others’ actions (for example, some input of
a process A depends on the output of a process B). Exclusive accesses to shared resources
should also be synchronized (mutual exclusion). One of the ways of synchronizing mul-
tiple processes is using communication. Communication is also necessary in coordination
mechanisms to exchange required information among the processes. There are several ways
of communicating distributed processes. The most common and intuitive is the message
passing or, more formally, message oriented communication. This is defined as a form of
communication in which the user is explicitly aware of the message and the mechanisms
used to send and receive it. A message can be viewed as a collection of typed data objects
which is constructed by a process and which is delivered to its final destination. Without
going into further details, some characteristics of message passing mechanisms are their
use of buffers (buffered vs. unbuffered), the necessity of the sender to wait for a message
to be sent (blocking vs. non-blocking), etc. More detailed information can be found in
[Mullender, 1993].

Another important concept in distributed systems is the global state of the system. The
global state of a distributed system is the union of the states of its individual processes

[Babaoglu and Marzullo, 1993]. Given that these processes do not share memory, a process
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that wishes to construct a global state must infer the remote components of that state
through message exchanges. This can be a challenging task, since the processes do not
share the same clock and different processes can construct different global states depending
on the sequence of message arrivals. Also, message delays and failures can compromise
the correct construction of global states. Therefore, a global state can become obsolete,
incomplete, or even inconsistent. Informally, a state is inconsistent if it could never have
been constructed by an idealized observer that is external to the system. In general,
global states are used to infer properties about the system. Two important properties that
can be inferred form the global state are safety and liveness. Informally, safety implies
that “nothing bad ever happens”, i.e., the system will always remain in a “good” state,
while liveness implies that “something good eventually happens”, i.e., the computation
progresses and the system reaches an objective state (for example terminate correctly) in
finite time.

Related to the global state and the verification of properties we have the notion of
superimposition. Superimposition is concerned with the use of some high level entity to
monitor the execution of a distributed system. Normally this entity is another process
in the system that can be responsible for insuring certain properties, taking snapshots,
detecting deadlocks, etc. Superimposition allows the separation of concerns in the system
because another process will be responsible for these types of monitoring tasks. The basic
idea is to try to add functionality to the system without disturbing the desirable properties
of the original system [Katz and Gil, 1999].

3.2 Distributed Robots

As mentioned, cooperative robotics can be considered a special case of distributed systems.
Instead of several distributed processes, we have several robots that must be synchronized
and coordinated. In the next sections we will apply some of the distributed systems aspects
presented in the previous section to multi-robot coordination mechanisms and show how

we cope with then in our coordination mechanism.
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3.2.1 Coordination, Communication, and Synchronization

To execute cooperative tasks, a team of robots must be coordinated. We consider that
each robot has a specification of the possible actions that should be performed during
each phase of the cooperation in order to complete the task. The coordination mechanism
will be responsible for allocating the correct actions to each robot and synchronizing the
cooperative execution. The actions performed by each team member must be specified and
synchronized considering several aspects, such as robot properties, task requirements, and
characteristics of the environment. An important characteristic of distributed robots when
compared to general distributed systems in computer science is that robots are physical
entities that have a body and act in the real world, having specific dynamics and interacting
with other physical entities such as obstacles and other robots. These characteristics
are generally known as situatedness and embodiment [Brooks, 1991] and make real robot
systems more vulnerable to failures when compared to computer programs. Thus, in
addition to organizing the robots and performing synchronization and communication, the
coordination mechanisms should provide flexibility and adaptability, coping with failures,
dynamic environments, and unpredictable situations.

Inter-robot communication is necessary for any coordination mechanism. Basically,
it can be categorized as explicit or implicit. In explicit communication, robots perform
some specific act in order to exchange information with the others. The most common
method for explicit communication is message passing, in which robots explicitly send
information using some kind of wireless communication (wireless ethernet, radio, etc). On
the other hand, implicit communication occurs as a consequence of robots actions, exploring
the situatedness and embodiment characteristics. Robots use their sensors to observe
the behavior and actions of their teammates and the way they change the environment,
extracting relevant information from this observation. For example, if one robot observes
other carrying an item in a cooperative foraging task, it can infer that it is moving towards
the goal, thus having information about the goal direction and the state of its teammate.

Both explicit and implicit communication have advantages and disadvantages. Explicit
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communication is more powerful and allows the exchange of more detailed information,
since various different types of data can be codified as messages. Also, if the communication
system is reliable, explicit communication can be used to reduce the uncertainty inherent
to the sensors used in implicit communication. Implicit communication is more restricted
regarding the amount and type of information exchanged but has advantages such as
simplicity, scalability, low power consumption, and robustness to faulty communication
environments.

Our coordination mechanism, presented in the next sections, relies on explicit commu-
nication to synchronize and exchange information among team members. We implemented
two types of explicit communication: synchronous and asynchronous. In synchronous com-
munication, the messages are sent and received continuously in a constant rate, while in
asynchronous communication an interruption is generated when a message is received.
Synchronous messages are important in situations where the robots must receive constant
updates about the state of the others. On the other hand, asynchronous communication is
used for coordination when, for example, one robot needs to inform the others about un-
expected events or discrete state changes such as the presence of obstacles, robot failures,
etc.

As mentioned in the previous section, another fundamental aspect of coordination is
synchronization. In cooperative robotics, synchronization is necessary mainly in the exe-
cution of tightly coupled tasks, in which robots must tightly coordinate their actions to
complete the task. When executing loosely coupled tasks, the robots act more indepen-
dently from each other and synchronization is not absolutely necessary. In our coordination
mechanism, we use explicit communication to synchronize the robots. Basically, when some
kind of synchronization is necessary (for example, when two robots should start the co-
operative transportation of an object), the robots exchange messages to coordinate their
actions.

Our coordination framework is completely decentralized. Each robot has its own con-
trollers and takes its own decisions based on local and global information. In general, each

team member has to communicate with other robots to gather information but they nor-
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mally do not need to construct a complete global state of the system for the cooperative
execution. As mentioned before, the construction of a global state may be necessary to
study some general properties of the system. As discussed in the previous section, this can
be done by a superimposing entity (also called supervisory system, using a terminology
from control theory). In robotics and automation, it is very common to have a human op-
erator supervising the execution or some monitoring processes that can observe the system
using sensors and take actions in case of failures. In the present work, our framework does
not verify these types of properties, letting this task to some external entity. Using the
hybrid systems modeling discussed in the next chapter, it may be possible to perform, to

some extent, verification of properties a priori, analyzing the model of the system.

3.2.2 Hierarchy

Another important point in coordination mechanisms is how to hierarchically organize the
robots. This organization may be used to define several aspects of the cooperation such
as information flow, responsibilities, priorities, etc. The simplest form of organization is
without any hierarchy. In this case, all robots are in the same level of coordination, i.e., they
do not depend on continuous information from any other teammate and can communicate
with any other robot in the group. This organization is very suitable for loosely coupled
tasks or other tasks where the robots do not need to exchange much information.

A second possibility is to organize the robots in a leader-follower hierarchy. In this
organization the leader normally has a plan or a general knowledge about the task and
sends information about its state to the followers, which act in order to cooperate with
the leader. The followers can also send messages to the leader, for example, requesting
synchronization or treating other coordination issues. A diagram of such organization can
be seen in Figure 3.1 that shows one leader and several followers. The leader has a plan and
broadcasts information about its state to the followers. The followers have controllers that
compute their trajectories based on their own states and information sent by the leader.

All robots have coordination modules that exchange messages in order to synchronize
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robot actions. Explicit communication composed by both synchronous and asynchronous
messages are used in this leader-follower architecture. Synchronous messages, also called
data messages, are continuously broadcast by the leader and contain an estimate of its
current state. This information can be used by the followers to control their positions
or velocities with respect to the leader. Asynchronous messages are exchanged among
the robots to coordinate and synchronize the cooperative execution and are called control
messages. The experiments presented in Chapter 6 use this kind of hierarchy together with

the role assignment mechanism in a cooperative manipulation task.
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Figure 3.1: Leader-follower architecture.

It is possible to generalize this leader-follower hierarchy to allow the use of multiple
leaders. While the team has one designated lead robot, there may be many leaders. A
follower can be a leader for another follower as shown in Figure 3.2. This can be thought
of as a military hierarchy in which there are several levels of command. These leader-
follower interactions or controllers are best described by a directed, acyclic graph (tree)
as discussed in [Desai et al., 1999]. Another generalization is to use multiple independent
leaders creating a hierarchy that can be represented by a set of different trees. Using
the same military analogy, this would be an army composed by the armies of different

countries, each one with its leader and independent hierarchy.
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Figure 3.2: Example of an architecture with one team leader (R;) and three followers that
are also leaders (Ry, R3, Ry1).

From the communication point of view, the coordination hierarchy can be thought of as
a network topology connecting multiple computers. Consequently, the robots’ hierarchical
organization may define how information will flow inside the team. For example, consid-
ering the robots organized in a tree topology, one robot will only be able to communicate
with his “father” and his “sons” in the hierarchy, and not with his “siblings” or other
robots. This restriction in the communication paths can be very important to reduce the
number of messages in teams composed by a large number of robots. Considering a team
with n members, in which all robots can communicate with each other, O(n?) messages
may be in the system if all robots broadcast at the same time. Other problems, including
physical interference, may also happen in the case of implicit communication if no hier-
archy is used. As will be discussed in Chapter 7, communication is one of the problems
in the scalability of our coordination system, and this hierarchical organization can help
reducing this problem.

Another important point is that the hierarchy should be flexible. During the execution
of the task, it may be necessary to change the leader or modify parts of the hierarchy due

to unexpected events, such as the presence of obstacles, failures, etc. Also, robots acting
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independently from each other in a cooperative task may build temporary hierarchies
to perform some specific actions. For example, supposing that the robots have a limited
communication range, they can build ad-hoc networks to transmit data to a distant base, as
shown in [Pimentel, 2002]. Another example is the cooperative search and transportation
presented in Chapter 5, in which robots act independently searching for objects to be
retrieved, but must build hierarchies in order to transport them cooperatively. The role
assignment mechanism presented in next section allows this dynamic reconfiguration of the

hierarchy, allowing robots to adapt to these situations.

3.3 Dynamic Role Assignment

As discussed in the previous sections, robots executing cooperative tasks must be coor-
dinated. We developed a mechanism for the coordination of multiple robots executing
cooperative tasks based on dynamic role assignment. Basically, each robot performs a role
that determines its actions during the cooperative task. According to its internal state and
information about the other robots and the task received through explicit communication,
the robot can dynamically change its role, adapting itself to changes and unexpected events
in the environment. The implementation of this role assignment mechanism is one of the
contributions of this thesis.

Before describing in details the role assignment mechanism, it is necessary to define
what is a role in a cooperative task. Webster’s Dictionary! defines role as: (a) a function
or part performed especially in a particular operation or process and (b) a socially expected
behavior pattern usually determined by an individual’s status in a particular society. We
consider that a role is a function that one or more robots perform during the execution of a
cooperative task. Each robot will be performing a role while certain internal and external
conditions are satisfied, and will assume another role otherwise. The role will define the

behavior of the robot in that moment, including the set of controllers used by the robot,

Thttp://www.webster.com.
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the information it sends and receives, and how it will react in the presence of dynamical
and unexpected events.

The role assignment mechanism allows the robots to change their roles dynamically
during the execution of the task, adapting their actions according to the information they
have about the system and the task. Basically, there are three ways of changing roles during
the execution of a cooperative task: the simplest way is the Allocation, in which a robot
assumes a new role after finishing the execution of another role. In the Reallocation
mechanism, a robot interrupts the performance of one role and starts or continues the
performance of another role. Finally, robots can Exchange their roles. In this case, two
or more robots synchronize themselves and exchange their roles, each one assuming the role
of one of the others. Figure 3.3 shows a diagram with the three types of role assignment.
The vertical bars inside the robots indicate the percentage of the role execution that has

been completed.

Reallocation

Figure 3.3: Types of role assignment.
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The role assignment mechanism depends directly on the information the robots have
about the task, the environment and about their teammates. Part of this information,
mainly the information concerning the task, is obtained a priori, before the start of the
execution. For example, each robot knows a priori what roles it can assume during the
execution of the task and when it should change its current role. The rest of the information
used by the robots is obtained dynamically during the task execution and is composed by
local and global parts. Local information is the robot’s internal state and its perception
about the environment. Global information contains data about the other robots and their
view of the system and is normally received through explicit communication. A key issue is
to determine the amount of global and local information necessary for the role assignment.
As mentioned, this depends on the type of the task being performed. Tightly coupled tasks
require a higher level of coordination and consequently a greater amount of information
exchange. On the other hand, robots executing loosely coupled tasks normally do not need
much global information because they can act more independently from each other.

An important point is to define when a robot should change its role. In the role
allocation, the robot detects that it has finished its role and assumes another available
role. The possible role transitions are defined a priori and can be modeled using hybrid
systems as will be explained in Chapter 4. In the reallocation process, the robots should
know when to give up the current role and assume other. A possible way to do that is to
use a function that measures the utility of performing a given role. A robot performing
a role r has a utility given by p,.. When a new role 7’ is available, the robot computes
the utility of executing the new role pu, . If the difference between the utilities is greater
than a threshold 7 (y, — . > 7) the robot changes its role. Function p can be computed
based on local and global information and may be different for distinct robots, tasks and
roles. Also, the value 7 must be chosen such that the possible overhead of changing roles
will be compensated by a substantial gain on the utility and consequently a better overall
performance. Chapter 5 shows an example of an utility function used for role reallocation
in a cooperative task. The other type of role assignment is the role exchange. In this case,

one robot assumes the role of the other. For this, the robots must agree in exchanging
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roles and should synchronize the process, which is done using communication. Chapter 6
shows an experiment where two robots exchange roles in order to complete a cooperative
task.

Thus, dynamically allocating, reallocating, and exchanging roles in a synchronized man-
ner, the robots are able to work cooperatively in a coordinated fashion, performing the task
more efficiently, adapting to unexpected events in the environment, and improving their

individual performance in benefit of the team.



Chapter 4

Hybrid Systems Modeling

In this chapter, we describe the use of hybrid systems theory for modeling multi-robot
systems in the execution of cooperative tasks. A hybrid system is a dynamical system with
both continuous and discrete components. Basically, hybrid systems can be represented
by finite state machines augmented with variables that evolve according to continuous
differential equations and discrete assignments. We start the chapter giving a brief overview
of hybrid systems and hybrid automata. Then we show our approach to model cooperative
robotics using hybrid systems and the composition of multiple automata. Finally, we

present an example of hybrid systems modeling of a cooperative task.

4.1 Overview of Hybrid Systems

A hybrid system is a dynamical system composed by discrete and continuous states. The
execution of a hybrid system can be defined by a sequence of steps: in each step, the
system state evolves continuously according to a dynamical law until a discrete transition
occurs. These transitions are instantaneous state changes that separate continuous state
evolutions [Alur et al., 1995]. Therefore, the state of a hybrid system may change in two
ways: due to elapse of time (continuous evolution) or by a switch of the discrete state

(discrete transition).

27
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Hybrid systems theory is a very broad research area that has been developed with
contributions from both computer science and control theory. Hybrid systems have been
used as mathematical models for important and diverse applications such as air traffic
management, robotics, biological and medical applications, embedded systems, real-time
communication networks, etc [Alur et al., 2000b]. In general, the majority of the systems
that are composed by a digital program controlling an analog plant can be modeled using
hybrid systems.

Several aspects of hybrid systems have been studied in recent years and an interest-
ing overview of the field can be found in a special issue of the Proceedings of the IEEE
[Antsaklis, 2000]). One of the main areas of research is modeling, i.e., how to model and
describe real systems composed by discrete and continuous dynamics using hybrid systems
theory. Other important research area is the analysis of hybrid systems, mainly stability
and reachability analysis. Common problems regarding stability include finding conditions
that guarantee the stability of the system for any sequence of discrete transitions, or de-
signing a switching sequence that can stabilize a set of unstable equations. On the other
hand, reachability is concerned with verifying if some state is reachable from an initial set
of conditions. This is important, for example, to obtain formal guarantees about correction

of the system or to detect if the execution leads to some undesirable state.

4.2 Hybrid Automata

4.2.1 Description

Normally a hybrid system can be modeled as a finite state machine equipped with a set of
variables. Discrete states (control locations) contain evolution laws and the values of the
variables change according to these laws while the system is in a specific discrete state.
The discrete transitions of the system are labeled with a set of guards and assignments. A
transition is enabled when the boolean condition of its guard is satisfied. When a transition

occurs, the assignment associated with that transition is executed, possibly modifying the
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values of the variables. Additionally, each control location is labeled with an invariant
condition that must hold whenever the system is executing in that location.

One possible formal description of this finite state machine is a hybrid automaton. A
hybrid automaton is a finite automaton augmented with a finite number of variables that
can change continuously, as specified by differential equations, or discretely, according to

specific assignments. A hybrid automaton H can be defined as:

H=(Q,V,E, f, Inv, Init),
where:

e Q = {q1,q2,-..,q,} is the set of discrete states of the system, also called control

modes or control locations.

e I/ is a finite set containing the variables of the system and can be composed by
discrete (V) and continuous (V,) variables: V =V, U V.. Each variable z € V' has a
value that is given by a function v(z). This is called valuation (v) of the variables.
Thus, at any moment, the state of the system is given by a pair (¢, ), composed by

the discrete state and the valuation of the variables.

e Discrete transitions between pairs of control modes are specified by control switches
represented by E (also called edges). Each transition has an associated predicate ¢
that is called a guard or jump condition. The discrete transition can only be taken
(transition is enabled) if its predicate g is satisfied. Each transition may also have
a reset statement r that changes the value of some variable or perform some action
during a discrete transition. Finally, control switches can be tagged with a label
a € Y. This label can be also called event and is important for synchronization issues
in the composition of multiples automata. Thus, each discrete transition e € E can
be represented by a tuple (¢;, q;, 9,7, a) where ¢; € Q and ¢; € @ are the source and

destination states, g is the guard, r is the reset statement and a € X is the label.
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e The dynamics of the continuous variables are determined by the flows f, generally

described as differential equations inside each control mode.

e Invariants (Inv) are predicates related to the control modes. The system can stay
in a certain control mode ¢ while its invariant is satisfied and must left the mode
when it becomes invalid. If the invariant becomes false and there are no transitions

enabled for the current control mode, the system is considered to be in a deadlock.

e Init is the set of initial states of the system. Each initial state is composed by a pair

(¢,v(X)), where ¢ € @, and X C V.

Different representations of hybrid automata may exist depending on the author and the
context in which the definition is applied. For example, some authors consider that the set
V' can only be composed by continuous variables and call it X, representing the continuous
state of the system. Others represent the guards, reset statements and labels, as specific
components GG, R and ¥ decomposed from the set E. Some other descriptions of hybrid
automata can be found in [Henzinger, 1996] and [Alur et al., 1995] for example. In spite
of these small differences, the general idea of the hybrid automaton does not change.
Also, there are some restricted classes of automata that can be used to model some
specific systems. One example the timed automata [Alur and Dill, 1994] that is used to
represent discrete systems augmented with clocks. The clocks are continuous variables
representing the time within each discrete state. A timed automaton can be viewed as
a hybrid automaton where all continuous equations have the form & = 1. A simple ex-
ample of a system that can be modeled using a timed automata is a traffic light that
switches between red and green every 60 seconds. Another important class is linear au-
tomata [Henzinger et al., 1997], that constrains flows, invariants, and transitions to linear
equations. These special classes of automata are important because they allow the devel-
opment of mathematical proofs and automatic verification tools that help in the study of
properties such as stability, reachability, etc. This is much harder or even impossible in a

hybrid automaton due to its generality and complexity.
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4.2.2 Example

A classical example of a hybrid automaton is the model of a thermostat. Asshown in Figure
4.1 [Henzinger, 1996], a hybrid automaton can be pictorially represented by a directed
graph, in which discrete modes are represented by vertices and discrete transitions by
edges. In Figure 4.1, the system starts in the Off mode with the temperature = set to
20 degrees. In this mode, the temperature falls according to the differential equation
2 = —0.1z. Due to the jump condition z < 19, the heater may go to the On state as
soon as the temperature falls below 19 degrees. Additionally, according to the invariant
condition x > 18, at the latest the heater will move to the On state when the temperature
falls below 18 degrees. In the On control mode, the temperature increases according to
the equation £ = 5 — 0.1x and the control jumps to the Off mode when the temperature
is between 21 and 22 degrees. It is important to note that the hybrid automaton allows
nondeterminism in the execution of the system. A discrete transition can be taken in any
moment provided that its guard is valid. To force determinism in the execution, guards
and invariants must be synchronized in such a way that a transition will become enabled
in the exact moment that an invariant is violated. In this example, this would be possible

by setting the guards to x < 18 and x > 22.

x UJ500.1x

Figure 4.1: Hybrid automaton modeling a thermostat.
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4.3 Architectural and Behavioral Hierarchies

Recently, some important concepts from software engineering have been applied to the
modeling of hybrid systems. The basic idea is to try to use concepts like modularization,
encapsulation, hierarchy, etc, to build models that are easier to understand, implement,
extend, and reuse in other systems. An interesting effort in this direction is the Charon
language [Alur et al., 2000a], that is being developed at the University of Pennsylvania.
Charon is a modeling language for the specification and simulation of hybrid systems. A
hybrid system in Charon is described by a set of parallel agents that communicate through
a set of shared variables in an asynchronous way. The behavior of each agent in Charon
is given by a set of control modes that are connected by a set of transitions. Each mode
has a certain continuous behavior given by a set of algebraic and differential equations.
Invariants and guards control the activation of modes and transitions. In a sense, one can
consider that each agent’s behavior is modeled by a hybrid automaton. An important point
is that these modes may be grouped in a hierarchical way, with higher level modes being
composed by submodes. This is called behavioral hierarchy of the system. Agents may also
be grouped hierarchically creating more sophisticated agents from more primitive (atomic)
ones. Variables representing the state of an agent may be hidden from others, encapsulating
the data. The grouping of agents into compound agents gives the architectural hierarchy of
the hybrid system. For example, as mentioned in [Alur et al., 2000a], an agent representing
a robot can be modeled as a composition of a sensing agent, a controller agent, etc.

Some of these concepts are used in our hybrid systems modeling of cooperative robotics,
described in the next section. Firstly, the roles can be organized creating a behavioral
hierarchy. A role can be composed by several subroles, each one with its own behavior.
This is the case, for example, of some of the experiments presented in Chapter 6, in which a
high level role called Transport is divided in the subroles Lead and Follow. The behavioral
hierarchy helps organizing the roles, encapsulating the variables and continuous equations
inside each control mode and creating high level roles from the composition of lower level

ones. Agents can also be organized in hierarchies. But our hierarchical organization is
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different from the one explained in the previous paragraph. We do not have the concept
of agents being composed by other agents. All agents in our methodology are high level
entities. As explained in Chapter 3, the hierarchy defines, among other things, how the
information flows among the agents. We can have an independent parallel composition, a
leader-follower hierarchy, etc, and it can be dynamically changed during the execution of

the task.

4.4 Modeling a Cooperative Multi-Robot System

In general, a cooperative multi-robot system can be described by its state (X), which is a

composition of the states of the robots:
X =[xy, a,...,Tn]", X = F(X).

Considering a simple control system, the state of each robot varies as a function of its
continuous state (x) and the input vector (u). Also, each robot may receive information
about the rest of the system (2) that can be used in the controller. This information is
basically composed by estimates of the state of the other robots that are received mainly
through communication. We use the hat (") notation to emphasize that this information
is an estimate because the communication can suffer delays, failures, etc. Using the role
assignment mechanism, in each moment each robot will be controlled by a different con-
tinuous equation according to its current role in the task. Therefore, we use the subscript
g to indicate the current role of the robot. Following this description, the state equation

of each robot during the execution of the task can be defined as:
&= f,(x,u, 2).

The equations shown above model the continuous behavior of each robot and conse-

quently the continuous behavior of the team during the execution of a cooperative task.
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These equations, together with the roles, role assignments, variables, communication and
synchronization can be better understood and formally modeled using hybrid systems. As
will be explained in the remainder of this chapter, we use a hybrid automaton to model
each robot and the composition of these automata to model the cooperative task execution.
This is one of the main contributions of this thesis.

Our basic idea to model cooperative robotics using hybrid systems is to represent each
role as a control mode! of the hybrid automaton. Therefore, internal states and sensory
information within each role can be specified by continuous and discrete variables of the
automaton. The variables are updated according to the equations inside each control mode
(flows) and reset statements of each discrete transition. The role assignment is represented
by discrete transitions and the invariants and guards define when each robot will assume
a new role. Finally, we model the cooperative task execution using a parallel composition
of several automata, as will be explained in the next section. Table 4.1 summarizes the

mapping from cooperative robotics to hybrid systems.

Cooperative robotics Hybrid systems

Roles Control modes

Discrete and continuous information | Variables

Controllers Flows

Role assignment Discrete transitions, guards, and invariants
Communication Send and receive actions, self transitions
Cooperative execution Parallel composition of hybrid automata

Table 4.1: Modeling cooperative robotics using hybrid systems

Communication among robots can also be modeled in our hybrid systems framework.
As explained in Chapter 3, we use a message passing mechanism to exchange information
among the agents. To model this message passing in a hybrid automaton, we consider
that there are communication channels between agents and use the basic operations send

and receive to manipulate messages. The basic syntax is send(channel, value) to send a

1Since we are using control modes to represent roles, in the remainder of this thesis we use the terms
roles, modes and control modes with the same meaning.



CHAPTER 4. HYBRID SYSTEMS MODELING 35

message containing a certain value in a channel and receive(channel, variable) to receive
a message and put its value in a local variable. In fact, the value can be some kind of
object or record that groups several values together. Also, messages are implicitly tagged
with a message type, to insure that the correct action will be taken for each message that
arrives. In the hybrid automaton, messages are sent and received in discrete transitions.
These actions are modeled in the same way as assignments of values to variables (reset
statements). As will be shown in the example, it is very common to use a self transition,
i.e., a transition that does not change the discrete state, to receive and send messages.
Discrete transitions are instantaneous and we consider that there are no delays or failures
in the communication. We also consider that when a message is sent, it is immediately
received before any continuous evolution of the automata.

We have chosen hybrid systems in order to represent cooperative robotics for two main
reasons. The first one is that hybrid systems provide a simple and logical way for modeling
the cooperative execution of tasks by multiple robots. To model cooperative robotics, it is
necessary to represent both continuous and discrete dynamics, together with synchroniza-
tion, communication, etc. All these aspects are covered in hybrid systems modeling. Also,
as described in the previous paragraph, the mapping from our role assignment mechanism
to the hybrid automaton is relatively simple. Consequently, using hybrid systems we have
a simple, structured, and formal way of reasoning about, representing, and implementing
multi-robot cooperation. The second main reason is that hybrid systems are backed by a
powerful theory, which may allow the development of formal proofs about some aspects of
the cooperative execution. For example, through an analysis of the hybrid systems model
of a cooperative task it may be possible to detect deadlock states, test reachability of unde-
sirable or goal states, and study stability of the cooperative system. As will be mentioned
in the next sections, methodologies for obtaining some of these formal results are already
available for some restricted classes of automata. As hybrid systems theory and computer
power evolves, we can expect that in the future we will have more advanced and efficient
mechanisms for obtaining formal results from models based on general classes of hybrid

automata.
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In this thesis we focus only on the modeling of cooperative robots using hybrid systems.
The use of techniques for formally studying stability, reachability and other properties of
cooperative robots modeled as a composition of hybrid systems is certainly an important

but very large research area, and is left for future work.

4.5 Composition of Hybrid Systems

As discussed in the previous section, the execution of a cooperative task by multiple robots
can be modeled using a parallel composition of several automata, one for each robot.
Our approach to formally describe the composition of hybrid automata is based on the
composition of transition systems. Basically, we can consider that a transition system is
the discrete part of a hybrid automata, i.e, the graph (@, F) of the automata without
considering variables, invariants, etc.

More formally [Alur and Dill, 1994], a transition system S is a tuple (@, Q°, =, E') where
Q is the set of states, Q° C @ is a set of initial states, ¥ is a set of labels (or events), and
E C QxX¥xQ is aset of transitions. For a transition (g, [, ¢') in E we write ¢ LN q', where
q is the source, ¢’ is the destination and [ is the label. The system starts in a initial state
and if there is a transition ¢ LN ¢ € E, the system can change its state from ¢ to ¢’ on
event [. Two or more transition systems can be combined in a new transition system. Let
S1 = {Q1,Q% %1, Er) and Sy = (Q2,QY, 39, Es) be two transition systems. The parallel
composition S; || S is the transition system (Q; X Q2, Q) x Q9,31 UX,, E'). A state of the
composition is a pair (¢, ¢2) with ¢; € Q1 and g, € Q2. The transitions E’ from S; || S are
labeled with symbols from ¥; UY,. A transition of the form (g1, ¢2) N (qy,¢5) is part of E'
iff either () 1 € S1 NSy, 1 = ¢, € By and go — ¢ € By, or (i) 1 € 51\ X0, 1 5 ¢, € B
and ¢, = g or (iii) [ € X9 \ X4, ¢o N ¢ € Ey and ¢ = ¢;. The labels that belong to
both ¥; and ¥, are used for synchronization of the parallel system. For example, if the
label [ belongs to both ¥; and X, the transition (¢, ¢o) 1N (g1, ¢5) will only be taken if the
transitions ¢ N q; and ¢y N ¢4 of the two original automata are executed simultaneously.

Based on the composition of transitions systems, we propose an algorithm for composing
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multiple automata in order to represent the execution of cooperative tasks by multiple
robots. Let Hy = (Q1, V1, E1, f1, Invy, Init;) and Hy = (Q, V2, Es, fo, Invy, Inity) be two
hybrid automata. Some considerations have to be made before defining the composition.
Firstly, we assume that the sets of variables V; and V5 are disjoint. This is a reasonable
assumption since there are no shared variables. The two automata can share information,
but this information will be stored in different variables and gathered in different ways.
Another consideration is that, similarly to transition systems, two transitions from E; and
FE5 labeled with the same label [ are taken at the same time in both automata. This is a
way of synchronizing the execution of both automata and can be done, for example, using
communication. With these considerations, the parallel composition H; || Hs of H; and

H, is the hybrid automaton:

Hi | Hy = (Q1 X Qo, Vi UVo, E', f1 U fo, Inv', Init").

The control modes of the compound automaton are pairs (¢, ¢2), where ¢; € @ and
¢2 € @2, and the set of variables of H; || Hy are the union of the sets Vi and V5 from
both automata. The discrete transitions (E') are defined based on the transitions of both

automata, in the same way as for transition systems:

1. if there is a transition labeled [ on both automata (I € ¥; N %,), for every tran-

sition (q1, 4}, 91,71,0) in Ey and (g2, ¢, ga, 72, [) in E,, E' contains the transition

((q1,92), (41, G5), g1 A ga, 71 U T, 1);

2. for I € 3\ Xy, for each transition (g1, ¢, g1,71,[) in E; and every ¢ € @2, E' contains

the transitions ((q1,q), (¢}, q), g1,71,1) Vq € Q2;

3. for I € 35\ Xy, for each transition (gs, ¢y, g2, 72, 1) in E5 and every ¢ € @1, E’ contains

the transition (¢, ¢2), (¢, 43), 92,72, 1) Vg € Q1.

The flows f" of Hy || Hy are simply the union of the flows from H; and Hy: f' = f; U f.

Since the variable sets V; and V5 are disjoint, the continuous update in each compound
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control mode (¢i, g2) is simply the union of the continuous updates from both ¢; and ¢5. In
the same way, the invariant of each compound mode (¢;, ¢2) is the conjunction (logical and)
of the invariants of both ¢; and ¢o: Inv'(s1, s2) = Invi(s1) AInvy(sy). This means that the
execution of the automaton H; || H, can stay in control mode (g;, ¢2) while the invariants
of both ¢; and ¢, are true. Finally, the initial state set Init' of Hy || Hs is a composition
of Init; and Inits. In general, a initial state set Init is composed by a set of discrete
states and valuations of some of the variables: Init = (Q°, v(X)), where Q° C Q, X C V.
Therefore, the composition of Imit; = (Q? v(X1)) and Inity = (Q5, v(X3)) is given by
Imit' = (Q% x QY, v(X; U X»)).

4.6 Example: Modeling Cooperative Manipulation

To demonstrate the hybrid automata composition described in the previous section we
modeled a task in which two robots coordinate themselves to transport a box in coopera-
tion. We consider that the transportation is performed in one dimension and each robot
i has an estimate of its position (x;) and the position of the box (x;;). In fact, they need
only to know their distance to the box, which can be obtained using some kind of range
sensor. We also consider that the robots can exchange messages using explicit communica-
tion. The robots use a very simple kinematic model, in which the only input is the linear

velocity (# = u). Figure 4.2 shows a diagram of this task.

Box

e
»X

X1 Xbl Xb2 X2

Figure 4.2: Diagram of two robots transporting a box in one dimension.

Before formally describing the behavior of the robots using hybrid automata, let us
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give a brief overview of the execution. The robots can be in one of four discrete states
or roles: Approach, Wait, Transport, and Lost. Each one starts in the Approach mode,
where it uses a proportional controller in order to get closer to the box. When the box is
close enough, the robot switches to the Wait mode and sends a message to the other robot
informing that its approach phase is complete. Both the Approach and Wait states have
self transitions in order to receive this message from the other robot when it is available.
When both robots have approached the box, they synchronously start the Transport role,
in which they cooperate to move the box. In this mode, one of the robots (robot;) is the
leader and has a plan that sets its velocity. The follower (roboty) estimates the leader’s
velocity (v;) (through sensing or communication, for example) and sets its velocity to the
estimated value. If one of the robots loses contact with the box, it sends a message to the
other robot and switches to the Lost mode. The other robot will receive this message, send
an acknowledgment and both robots will synchronize and switch to the Approach mode,
restarting the cycle. Note that we do not use any kind of role exchange in this example,
only role allocations and reallocations.

The execution of each robot can be formally modeled using a hybrid automaton.
The automaton H, = (Q1, V1, E1, f1, Invy, Init;) for robot; is described below and de-
picted in Figure 4.3. The variables of H; include the position of the robot and the box,
and three boolean conditions that indicate if the other robot has approached, lost the
box, or sent an acknowledgment message. Some special transitions that do not change
the discrete state of the automaton (self transitions) are used to set these conditions
according to the messages received from the other robot. One example is the transi-
tion (A, Ay, MsgAvailable(Cs), Receive(Ca, DockOks), ¢), that sets the variable DockOks
when a message from robot 2 is available in channel C5;. In the description below we use a
short notation for the discrete transitions, showing only the source and destination states
(¢i, qj). In figure 4.3, it is possible to see the guards, actions, and labels of each transition:
the guards are shown in normal font, the actions in bold and the labels in italic. Some of
the transitions may not have all of these components. For example, following the complete

notation, the transition (A;, W;) is in fact (A, Wi, |z1 — 21| == 0, Send(Ci3, True), ¢),
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where ¢ indicates that there is no label. Flows and invariants are set according to the
behavior explained in the previous paragraph, and the execution starts in the Approach

mode with the boolean conditions set to false.

b Ql = {AthaLlaTl}

Vi = {z1, zp1, DockOkg, LostBoxy, ACKrecva }

o By = {(A1, A1), (A1, Wh), (Wh, Wh), (W1, T), (T, Tv), (T4, L), (T1, Av), (La, Ln), (L1, A1)}

fi={1 =k(x1 —zp), 21 = 0,21 = f(¢)}

Inv; = {lzr — zp] > 0,DockOky ==F, (|Jz1 — zp] > 0) A

(LostBoxg == F), (ACKrecvy == F)}

Inity = {A1,DockOky = F, LostBoxe = F, ACKrecvy, = F}

Receive(Cz;, DockOKk;) Receive(Cz1, DockOKk;)

MsgAvailable(Cﬂ)/_\ MsgAvailable(Czl)/_\

Approach (A)) ‘x Ox ‘ m o Wait (W)
1 bl
X, Ok(x, Ox,)) x, 0O
Send(Cz, True)
b, Ox,,| 00 DockOk, [ F
LostI‘ Lost 2
DockOk, [ T

LostBox, I T
ACKrecv, I T

Begin Transportation

A

Lost (L)) Transport (T)
% 1O X Uf@)
Send(C2, True)
ACKrecv, I F (‘xI Dxm‘ M 0) O(LostBox, M F)

U MsgAvailable(Cy;) UMsgAvailable(Cz 1)

Receive(Cz1, ACKrecv,) Receive(C;;, LostBox2)
Send(Cyz, True);

Figure 4.3: Hybrid automaton for robot 1.

The automaton Hy = (Qq, V2, Es, fo, Invy, Inity) for roboty is very similar to H; and

is shown in Figure 4.4. It is basically a copy of H; with the variables and communication
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channels renamed (from 1 to 2 and 2 to 1). The basic difference is in the dynamic equation
of the Transport mode. As mentioned, robot 2 is the follower and sets its velocity to be
equal to the leader’s velocity: #o = ©;. The formal description of the automaton is show

below:
o Q2 = {A2, Wy, Ly, T5}
o V5 = {9, zp2, DockOky, LostBox;, ACKrecvy }

o FEy = {(As, A2), (A2, Wa), (Wa, Wa), (Wa, T3), (T2, T2), (T2, L2), (T2, As), (L2, La), (L2, A2) }

o fo= {22 =k(z2 — Tp2), 72 = 0,32 = 9/}

o Invy = {lza — xp2] > 0,DockOk; ==F, (Jza — mzp2| > 0) A
(LostBox; == F), (ACKrecv; ==F)}

e Inity = {Ay,DockOk; = F,LostBox; = F, ACKrecv; = F}

Receive(Ciz, DockOk;) Receive(Crz, DockOk;y)
MsgAvailable(C)») /\ MsgAvailable(C)2) /\
Approach (A,) Wait (W,)
‘xz Ox,, I 0
x, Ok(x, Ox,,) x, 1O
Send(Czy, True)
b, Oy, 00 DockOk I F
Lost 2 4 Lost 1
DockOk, M T
LostBox, I T
ACKreev, mT Begin Transportation
y

Lost (L) Transport (T,)
‘xz Dxbz‘ 0o

x, 0O < x, OV,
Send(Czy, True)
ACKrecv, [ F (i, Ox,,| M 0) O(LostBox, I F)

UMsgAvailable(C 12) U MsgAuvailable(Cy,)

Receive(C2, ACKrecvy) Receive(C2, LostBox;)
Send(Cyy, True);

Figure 4.4: Hybrid automaton for robot 2.



CHAPTER 4. HYBRID SYSTEMS MODELING 42

The composition of H; and H, represents the cooperative execution of the task by the
two robots. The hybrid automaton H; || Hs is built following the rules explained in the
previous section. Figure 4.5 shows part of this automaton. In fact, H; || Hy is composed
by 16 control modes, the product of the modes of the two automata (Q; X Q2), but Figure
4.5 only shows the 8 control modes that are reachable from the initial state of the system.
To simplify the figure, we do not show the control modes (and consequently the related

transitions, invariants, etc.) that are not reachable from the initial state.

Recv(Cy, DockOKy) MsgAvail (Cy1)
MsgAvail(C),) /\' /\?cv(cm DockOk;)
A Ok(x, O
Reev(Cyy, DockOk;) ‘xz thz‘ mo M (x, Uxyy) ‘xl Dxm‘ mo
MsgAvail (Cyy) P ).CZ 0o o
Recv(Cyz, DockOKk;) ‘ Send(Cz;, True) Send(Cyz, True) l MsgAvail(C),) (€12 DockOks)
Rec 0C])
MsgAvail(Cys) /\v (‘xl Dxbl‘ 00) O (DockOk | [ F) Y 1
' AA ww .
x, Ok(x, Ox,,) x, 00
)'Cz Dk(x2 thz) Recv(Cyz, DockOk,) MsgAvail (C,) xz DO
Lost 2 MsgAvail(C,5) /\' /\:ecv(cu, DockOk;)
(‘xl Dxbl‘ 00) D(‘xz Dxbz‘ 0o0) (DockOk, [ F) 0 (DockOk, [ F) [MsgAvail (C2))
WA . 0o
X,
Lost 1 ‘ ‘xl I:Ixhl‘ m o ! ‘xz Dxbz‘ mo T
> x, Ok(x, Ox,,) RecV(Ca1, DockOky)
L 2
Send(Cyz, True) : o Send(Ca1, True)
(DockOk, [ F) D(‘xz Dxbz‘ 00)
(ACKrecv, [ T) O(LostBox, [ T) MsgAvail(C))  Reev(Cys, LostBox,) (DockOk, M@ T) O
l Send(Cyy, True); (DockOk, [ T)
LT . . ~
= x, 00, x,0Ov, . .
‘xz wa‘ o ‘xl Dxbl‘ ao Begin Transportation
- (ACKreev, [ F) O <
Recv(Cy1, ACKRecy,) Send(C;y, True) Send(Cy2, True) MsgAvail(Cy;)
"(2 ]xbz‘ M 0) O(LostBox | M F) v
LL TT ecv(Cy;, LostBox;)
- . —x O t x DV end(Cy,, True);
MsgAvail(Cy)) X 0o MsgAvall(Czl)U 1 f( ) 2 I
; MsgAvail(C),
x, 00 Reev(Car, ACKReeyy ) (v Dxpy| @ 0) D(LosiBor, @B O
ecv(Cyz, ACKRecvy) MsgAvail(Cyy)
(ACKrecv, [ F) O(ACKrecv) [ F) (‘Xz D"bz‘ @ 0) O(LostBox| M F) & 2
TL . . .
= x, 01, x,00
Reev(Cpz, ACKRecv;) T ‘xl thl‘ go ‘xz Dxbz‘ 0o
X (jx; Ox;q| @ 0) O(LostBox , M F) [|g Recv(Cy,, LostBox;)
MsgAvail(Cy,) 1 bl 2 < L
h Send(Ciz, True) Send(C;y, True) Send(Cyy, True);
(ACKrecv I F)
(ACKrecv; [ T) O(LostBox, 0 T) ‘ Reev(Cyy, LostBoxy)

Send(Cy;, True);
MsgAvail(Cyy)

Figure 4.5: Compound automaton.

The composition of control modes, invariants and flows is relatively simple, as explained
in the previous section. The major challenge is to define the discrete transitions of the new

automaton. According to the composition rules, there are three situations: (i) when there
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is a transition labeled [ in E; but not in Es, (ii) when there is a transition labeled [ in E5 but
not in E, and (iii) when there is a transition labeled [ in both E; and F5. For situation (i),
a transition ¢; — ¢; from mode ¢; to mode ¢; in E; generates a transition (¢;,q) — (¢;,q)
in the compound automaton for each mode ¢ € Q5. To exemplify, let us consider the
transition (A, Wy, |x1—xp1| == 0, Send(Cyq, True), ¢) € E;. In our modeling, we label only
the transitions that are part of both automata. Transitions without labels are unique to H
or H,. In the compound automaton, this transition should appear four times connecting
the modes: AA — WA, AW — WW, AT —+ WT, AL — WL 2. Since we are showing only
the reachable modes, this transition appear two times in the automaton of Figure 4.5. The
same thing happens for situation (ii) when there is a transition in H, that is not present in
H,. For example, the transition (T5, Lo, |x1 — 22| > 0, Send(Csyy, True), ¢) € Es turns into
the transitions AT — AL, WT — WL, TT — TL, LT — LL in the automaton H; || Hs.

The other possible situation (iii) is when there is a transition labeled [
in both H; and H,. In this case, as explained in the previous sec-
tion, a single transition is generated in the compound automaton. For ex-
ample, the transitions (Wi, Ty, DockOky == T, ¢, Begin Transportation) € E; and
(Wy, Ty, DockOky; == T, ¢, Begin Transportation) € E, results in the transition
(WW, TT, DockOk; == T A DockOky == T, ¢, Begin Transportation) in the compound
automaton. As mentioned, these labeled transitions are used for synchronization. In the
modeling, we consider that transitions that have the same label in both automata are taken
at the same time. This is the case, for example, of the Begin Transportation transition
that synchronize the start of the transportation. Another example is the Lost 1 transition,
in which both robots go to the Approach mode when robot, receives the information that
robot; have lost the box and robot; receives the acknowledgment.

In real implementations, synchronization is obtained using explicit communication.

When a robot receives a certain message or acknowledgment, it sets some of its variables

2To simplify the notation, we use only two letters for the names of the compound modes. The first
letter is the mode of @)1 and the second the mode of ). For example the mode AW in ()1 x @2 is in fact
the mode composed by A; and Ws.
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and switches to another discrete state. In the model presented in this example, we consider
that a command to send a message is automatically followed by one to receive the message,
before any continuous update of the automaton. If this condition is not followed, some
undesirable situations may happen. For example, consider the transition AW — WW in
the model of Figure 4.5. In mode AW, robot, is waiting while robot; is approaching the
box. Suppose that the variable DockOks of robot; is set to true, considering that robots
has send a message during transition AA — AW and robot; has received this message in
the self transition of mode AW. When the transition AW — WW is executed, a message
is sent through channel C}5 to inform robot, that robot; has finished its approach phase.
If this message is not immediately received in mode WW (i.e. the guard MsgAvail(Cjs) is
not true), the system is deadlocked, since the invariant of mode WW is false and there is
no transition enabled for this mode.

Another example of deadlock is the mode LL of the compound automaton. The mode
LL is a sink, since there are no transitions leaving from it. In normal situations, the system
does not go to this mode from modes LT or TL (the transitions lost 1 and lost 2 to the
AA mode are taken instead), but if there is some delay between the sending of a message
and the receiving of an acknowledgment and both robots lose contact with the box in
this interval this state can be reached. In fact, these deadlock situations can be avoided
by introducing some extra modes with the objective of waiting for specific messages and
synchronizing the automata. In the example presented here, we preferred to avoid this

extra states in order to make the automaton less complex.



Chapter 5

Simulations

This chapter presents some simulations that we have performed using the role assignment
mechanism and the hybrid systems modeling described in the previous chapters. Firstly,
we give an overview of the simulator developed for cooperative robotics and then we show
the simulations of two cooperative tasks, namely cooperative manipulation and cooperative

search and rescue.

5.1 MuRoS - A Multi-Robot Simulator

Good simulation tools are very important in the study of cooperative robotics. Normally,
it is difficult and expensive to obtain and maintain multi-robot teams, specially when a
large number of robots (say, 10 or more) is required. Additionally, multi-robot simulators
allow researchers to achieve results rapidly and to implement and test different control,
modeling, and coordination approaches before starting real implementations. In order to
perform simulations of cooperative robots, we have developed MuRoS, a software tool for
simulating multi-robot teams in the execution of cooperative tasks. It allows the simulation
of several multi-robot applications such as cooperative manipulation, formation control,
foraging, etc. Both loosely coupled and tightly coupled tasks can be simulated making

MuRoS a very useful tool in the study of cooperative robotics.
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Developed in Visual C++ using object oriented programming, MuRoS allows the imple-
mentation of robots with different controllers, sensors and actuators. New types of robots
can be easily implemented inheriting characteristics from the classes already developed.
Also, robots of these classes can be directly used in the simulations. The robots devel-
oped so far are controlled using the distributed hybrid approach described in the previous
chapters: the behavior of each robot is described by a hybrid automaton and robots can
switch among different discrete states (modes), having different continuous controllers in
each mode. Switches between modes are triggered based on the robots continuous states,
perception of the environment and explicit communication. Several controllers have been
experimented in the simulator, such as potential fields, path following, leader-follower and
open loop approaches. Both implicit and explicit multi-robot communication can be simu-
lated, allowing the robots to exchange information during the task execution. For explicit
communication, a message passing system was implemented. Robots also have sensing
capabilities and the ability of building maps and plans in real time.

Developed for the MS-Windows system, MuRoS has a graphical user interface that
allows the construction of different environments containing a large number of robots and
obstacles. The simulator has a very good performance and results are obtained very rapidly.
Execution can be observed in real time and several parameters such as controller gains,
integration step, etc., can be modified dynamically. Also, results can be exported to other
tools such as Matlab for data analysis. Figure 5.1 shows a snapshot of the simulator with
4 nonholonomic robots carrying an object, 10 holonomic robots moving towards the goal,

and 3 obstacles. A more detailed description of the simulator is presented in Appendix B.

5.2 Cooperative Manipulation

Our first simulations using the dynamic role assignment mechanism were performed in
a cooperative manipulation task, in which a team of robots cooperates to carry a large
object in an environment containing static and dynamic obstacles. As mentioned before,

cooperative manipulation is one of the most widely used testbeds for cooperative robotics.
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Figure 5.1: Snapshot of MuRoS interface.

It is also a classical example of a tightly coupled task because it cannot be performed by

a single robot working alone and requires tight coordination to grasp and transport the

object without dropping it. We simulated different scenarios for cooperative manipulation,

with different types of robots, coordination hierarchies and communication strategies.

5.2.1 Description

Basically, the approach used for the cooperative manipulation was a leader-follower archi-

tecture as discussed in Chapter 3 (Figure 3.1). One robot is identified as a leader, while

the others are designated as followers. The assigned leader has a planner and broadcasts

its estimated position and velocity to all the followers using data messages. Each follower

has its own trajectory controller that acts in order to cooperate with the leader.

The

planner and the trajectory controllers send set points to the low level controllers that are

responsible for the actuators. All robots have a coordination module that controls the

cooperative execution of the task. This module receives information from the sensors and

exchanges control messages with the other robots. It is responsible for the role assignment
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and for other decisions that directly affect the planners and trajectory controllers.

The role assignment is used to exchange the leadership responsibilities among the
robots: at any moment, the robot performing the leading role can become a follower,
and any follower can take over the leadership of the team. There are basically three roles
in this task: Dock, where the robots coordinate themselves to get the object, and Trans-
port, which in fact is composed by the subroles Lead and Follow. The hybrid automaton
for this task (controllers and transitions related to these roles) will be detailed in the next
chapter when we present the cooperative manipulation using real robots. It is important
to mention that the main purpose of the leadership exchange mechanism here is to allow
the robots to react and adapt easily to sudden events such as obstacle detection, sensor
failures, etc. It is also important to divide the leadership among the robots in such a way
that, in each phase of the cooperation, the robot that is best suited in terms of sensor
power, manipulation capabilities, etc., will be leading the group.

We implemented two methods for changing the leadership: request and resignation. In
the leadership request, one of the followers sends a message requesting the leadership. This
normally happens when one of the robots is not able to follow the leader’s plan and/or
knows a better way to lead the group in that moment. For example, if one of the followers
detects an obstacle, it can request the leadership, avoid the obstacle, and then return the
leadership to the previous leader. In the resignation process, the leader relinquishes the
leadership to another robot. This may happen when the robot senses that it is unable to
continue leading or when it finishes its leading turn in a task that has multiple leaders.

The leadership can be offered to a specific robot or to all robots simultaneously.

5.2.2 Simulation Results

Initially, two different experiments were performed with the simulator to show the effec-
tiveness of the role exchange in cooperative manipulation [Chaimowicz et al., 2001b]. In
the first experiment, four holonomic robots cooperate in order to carry an object from an

initial position to the goal. In this experiment, we show the leadership request mechanism:
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one of the robots requests the leadership when it senses that it will not be able to follow
the path determined by the leader. Figure 5.2 shows snapshots of the simulator during the

task execution.
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Figure 5.2: Leadership request with four holonomic robots transporting an object.

Snapshot (a) in Figure 5.2 shows the robots before starting the docking phase. The
robots are represented by circles and the object to be carried is the square in the middle of
them. Each robot has a sensing area represented by a dashed circle around it. The other
rectangles on the environment are obstacles and the goal is marked with a small x on the
right of the figure. After docking, the robots start transporting the object (snapshot (b)).
To choose the initial leader, the robots exchange information and the robot that is closer
to the goal (robot on the right, shown in black) is elected. As explained in the previous
section, the leader has a trajectory to the goal, and continuously sends its state information

to the followers, that move in order to cooperate with it. But the current leader is unaware
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of the first obstacle, that is outside its sensing region. This obstacle is on the path of
one of the followers (the robot on the bottom). When this robot senses the obstacle, it
broadcasts a message requesting a role exchange. The leader receives this message and
sends another message passing the leadership to the requester. The new leader is then able
to avoid the obstacle and continue moving towards the goal, as shown is snapshot (c) in
Figure 5.2. The same thing happens with the next two obstacles: the robot on the top
assumes the leadership to avoid the second obstacle (snapshot (d)) and the robot on the
bottom requests it again to avoid the last obstacle (snapshot (e)) before reaching the goal
(snapshot (f)).

The second simulation shows another type of dynamic leadership exchange. The leader
senses that it is not able to continue leading and resigns the leadership, that is taken by one
of the other robots. Figure 5.3 shows four nonholonomic robots manipulating an object
using compliant arms. This type of robot is similar to one of the real robots that will be
presented in the next chapter. Snapshot (a) in Figure 5.3 shows the robots starting the
manipulation task. The robot on the bottom right is the initial leader and the line between
the leader and the goal is the planned path!. Note that the robot has not detected the
obstacle yet, so it plans a straight line to the goal. When the leader detects the obstacle
(snapshot (b)), it replans its path, and senses that it will not be able to continue leading
due to its controller constraints. Therefore, it sends a message resigning the leadership.
In this message, it includes other information, such as its planned path, the position of
the obstacle, etc. This information is used by the other robots to select the new leader.
The robot on the bottom left is chosen and performs a backup maneuver in order to help
the previous leader. After this maneuver, the robot returns the leadership to the previous
leader (snapshot (c)) that replans its path and resumes the transportation avoiding the
obstacle (snapshot (d)).

We also simulated leadership resignation considering possible communication failures

among the robots. This specific simulation was developed as part of a larger project where

!This path was generated using the Grassfire algorithm that will be explained in Appendix B.
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Figure 5.3: Leadership resignation with four nonholonomic robots transporting an object.

we propose the use of implicit communication for the leadership exchange in a cooperative
box carrying task [Pereira et al., 2002]. Two nonholonomic robots equipped with compliant
arms were used on the simulations. Figure 5.4 shows a snapshot of the simulation, where
the Leader is the black robot and the Follower is the dark gray one. A trace of the box
position is also shown. The goal is located at the top-right corner of the screen, inside the
dashed rectangle.

The communication models used in this simulation are the following: in the explicit
communication, the robots exchange asynchronous messages and failures are simulated by
“losing” a percentage of these messages during transmission. An acknowledgment message
is sent to confirm that a message was received and, in case of failure, the sender transmits
the message again after a timeout period. On the other hand, using implicit communica-

tion, the leading robot simply starts to move backwards at a constant velocity during a
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Figure 5.4: Snapshot of the box carrying simulation.

given period of time. The follower senses this movement through the compliant arm, and
automatically assumes the leadership.

Thus, there are four possible roles in this task: Dock, where the robots approach
the box, Lead, Follow, and Wait. The Wait role is necessary because of the possible
failures in communication during the role exchange. After sending a message to change the
leadership, the robot should wait for an acknowledgment in order to continue execution. As
explained, robots are controlled by different continuous equations in each role. Therefore,
it is interesting to observe how these equations evolve with time during the execution
of the task. The graphs of Figure 5.5 present the linear velocities of robot 1 and robot
2 as a function of time during task execution (robot 1 is the gray robot in Figure 5.4).
Together with the velocities, the graphs present the roles (control modes) of each robot. It
is possible to observe how the continuous equations behave in each control mode and the
discontinuities due to discrete transitions. For example, the velocity of robot 2 abruptly
changes from -100 to 0 when the robot changes from the Lead role to the Wait role (shortly
after time = 5). In this case, robot 2 detected an obstacle and stopped, offering the

leadership to the other robot and waiting for a response.
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Figure 5.5: Roles and linear velocities of robots 1 (left) and 2 (right) during task execution.

To compare implicit and explicit communication mechanisms, the simulation time spent
by the two robots to carry a box from an initial position to the goal was measured. Both
implicit and explicit communication were used and communication failures were simulated
by increasing the rate of lost messages during execution. Figure 5.6 shows the task com-
pletion time using implicit and explicit communication, increasing the rate of failures in
the transmission from 0 to 90%. For each point of the graph, 200 runs were executed and
the arithmetic mean was computed.

As expected, the execution time increases when communication failures are inserted
in the system. The robots use an acknowledgement/timeout mechanism, consequently,
the total waiting time will be significant in faulty communication situations. Another
important result is that the completion time using implicit communication is constant and
similar to the time using explicit message exchange in a reliable environment. In this case,
the performances are similar because the explicit communication is used only to pass the
leadership. No other additional information that could increase the performance, such as
trajectory direction or leadership requests, are transmitted by the leader. Also, failures in
the implicit communication that can degrade the task overall performance are not being

considered.
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Figure 5.6: Completion times for implicit and explicit communication.
5.3 Cooperative Search and Transportation

In this section, our role assignment mechanism is demonstrated in a Cooperative Search and
Transportation task, in which a group of robots must find and cooperatively transport sev-
eral objects scattered in the environment [Chaimowicz et al., 2002]. It is a combination of
a loosely coupled task, where the robots search the area looking independently for objects,
and a tightly coupled task, in which the robots must manipulate objects in cooperation.
This task is similar to the cooperative search and rescue proposed in [Jennings et al., 1997]
with the basic difference that more than one object must be transported to complete the
task. Another similar task is the object sorting described in [Lin and Hsu, 1995], where
groups of robots must transport several objects between different locations in a bounded
area. We use the cooperative search and transportation to demonstrate the role reallocation

mechanism, showing that its use can improve the task performance and avoid deadlocks.



CHAPTER 5. SIMULATIONS 25

5.3.1 Description

The cooperative search and transportation task can be stated as follows: a group of n
robots must find m objects that are scattered in an area and transport them to a goal
location. Each object i requires at least k& robots (kK > 1) to be transported and has a
importance value v. Thus, each object can be described by a pair {k,v}, representing
respectively the amount of work (in terms of number of robots) and the reward for that
object. Differently from a common foraging task, in which the robots can act independently
from each other and communication is not strictly necessary, this task requires the robots
to coordinate themselves in order to transport the objects in cooperation.

The coordination of the robots is done using the role assignment mechanism. Basi-
cally, there are five different roles in the cooperative search and transportation. In each
of these roles, the robots compute a utility pu that is used in the role assignment mech-
anism. Initially, all robots start in the Explore mode, in which they randomly move in
the environment searching for items to be transported. When a robot detects an object
inside its sensing area, it finishes its exploration role and starts the Attach role, in which
it approaches the object preparing to transport it. If a robot is the first one to attach to
an specific object, it assumes the Attach Lead role. Besides approaching the object, the
attach leader is responsible for broadcasting messages informing the other robots about
the new role available, and the number of volunteers that are necessary to transport that
object to the goal. All robots that receive this message compare the new role utility
with their current utility p,. and send a message back to the attach leader if they want to
volunteer for the new role. This works like a bidding process, where the volunteers with
the higher utility values are recruited by the attach leader. These robots reallocate to the
Approach role and start moving towards the object. When the object is inside the robot’s
sensor range, it assumes the Attach role. When the number of robots necessary to carry
the object is sufficient, they assume the Transport role and cooperatively move the object
to the goal.

When a robot assumes the Approach or Attach roles, it makes a commitment to the
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attach leader. The attach leader keeps broadcasting messages in a fixed rate offering
the role until the number of committed robots is sufficient to transport the object. If a
committed robot reallocates to another role, it must send a message to the leader resigning
the previous role. It is important to mention that we are not considering robot and
communication failures in these experiments.

In each one of these roles, robots may be controlled by different continuous equations.
For example, in the Explore mode they move randomly while in the Approach and Attach
modes they use a potential field like controller in order to approach the objects. Also, other
continuous and discrete variables may be stored within each mode and updated during the
execution of the task. Figure 5.7 shows the hybrid automaton for the cooperative search
and transportation. For clarity, only the control modes (roles) and discrete transitions (role
assignments) are presented. The solid arrows represent the role allocation and the dashed
arrows represent the reallocation, in which the robots interrupt the performance of one role
to assume another. As mentioned in Chapter 3, a robot performing a role r reallocates
to another role ' when the difference p,» — p, is greater than a threshold 7. There are
four role reallocations in this diagram: the first one is when an explorer volunteers and is
recruited to approach a certain object, as explained before. The same thing can happen
when the robot is already in the Attach mode and an Approach role with better utility
is offered. The other two reallocations happen from/to the Attach Lead mode: an attach
leader can reallocate itself to an Approach role with higher utility if its object has no other
attachers. In this case, the robot stores its position in a local memory in order to return
to this object after finishing the new role. Also, a robot that is approaching can become
a attach leader if it finds a new object and the utility of the new role is higher than its
current utility. Another kind of reallocation that is possible is when a robot approaching
an object 7 reallocates to approach a different object j. In this case, the robot will be
performing the same role but with a different parameter.

The choice of a suitable function to measure the role utilities is an important aspect of
the task. The execution of the role assignment mechanism and consequently the perfor-

mance of the task will vary according to the function chosen to measure the role utilities.
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Figure 5.7: Control modes (roles) and discrete transitions (role assignments) for the coop-
erative search and transportation.

Depending on the objective of the cooperative search and transportation, for example min-
imize execution time or maximize the value in a shorter time, different utility functions
can be implemented. In the experiments presented in this thesis we use a simple heuristic
function in order to test the execution of the role assignment mechanism. We do not intend
to compare different functions, analyze performance in detail, or search for optimal results.
Instead, we just want to provide a simple testbed for our role assignment mechanism. The
selection of optimal utility functions for the role assignment (and for task allocation in
general) is a difficult problem in itself and is beyond the scope of this thesis. In Chapter
7 we outline some future work that can be done in this area.

The utility function g used in the experiments presented here is defined as follows:
robots performing the Explore role have a very low utility (0) while robots transporting
an object have the highest utility (co). For the other roles, we have defined an utility
function that balances the value of the object (v) with the number of robots being waited

to start the transportation (k,) and a function of the distance to the object (f(d)). Thus,
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the utility of performing a role r is given by:

0, r = Explore,
=< 00, r = Transport,

2 .
T T ﬁ, otherwise.

Using this heuristic function, each robot tries to maximize the value recovered in a short
time but also gives priority to objects that need fewer robots to be transported and are
near the robot’s current position. Note that robots in the Transport mode will never be
reallocated while robots performing the Explore role have a great probability of being
reallocated, depending on the threshold. For example, for a threshold 7 = 0 the robots in

the Explore mode will always be reallocated.

5.3.2 Simulation Results

The dynamic role assignment in the cooperative search and transportation task was imple-
mented and tested using MuRoS. Figure 5.8 shows a snapshot of the simulator during the
execution of the task. In this figure, the goal is represented by a square area marked with
an x and the objects are represented by the five circles with numbers (pairs {k,v}) inside.
Two of them (inside the goal region) have already been transported. The small circles are
the robots and the dashed circles represent the boundary of their sensing area. The robot
color represents its current role: two white robots, one at the bottom right and the other
at the top left of the screen, are in the Explore mode. Three black robots at the center
of the screen are transporting the object marked with the numbers {3, 1} to the goal. At
the bottom left, there is the attach leader (light gray) and two gray robots attaching the
object {5,1}. The other two robots (dark gray) are approaching the same object.

The experiments were performed using 20 holonomic robots and 30 objects randomly
distributed in the environment. The dimensions of the search area and the goal region

are 30 by 30 meters and 4 by 4 meters respectively. Comparatively, the diameter of each
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Figure 5.8: Snapshot of the simulator during the execution of the cooperative search and
transportation task.

robot is 30 centimeters. The value of each object (v) and the number of robots necessary
to transport it (k) were generated randomly, with v = {1,...,5} and k = {2,...,5}. The
utility function described in the previous section was utilized varying the threshold 7 from
0 to 8. For each value of 7, 100 runs were performed and the mean values were computed.

Firstly, the time to complete the task was measured. The results are presented in Figure
5.9. The graph shows that the completion time starts to increase for values of 7 greater
than 2. This result was expected because the number of role reallocations decreases as 7
increases. With few reallocations, the robots act more independently as they do not accept
new role offers. In this situation, the work force is divided and the level of cooperation
decreases since each robot only attaches to the objects detected by itself, not accepting
offers from its teammates. Consequently, the time to gather the k robots necessary to

transport each object will increase, also increasing the overall time to complete the task.
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Figure 5.9: Completion time varying the threshold 7.

The extreme case of this work division causes deadlocks. A deadlock occurs when
all robots are performing the Attach role to specific objects, but the number of robots
attached to each object is not sufficient to transport it. In this case, the robots keep waiting
indefinitely and do not complete the task. Figure 5.10 shows the number of deadlocks for
each value of 7. More than 50% of the runs with large values of 7 results in deadlocks.

In this task, deadlocks are detected by a timeout period, i.e., if the robots do not
complete the task within a certain amount of time then a deadlock has occurred. The
timeout mechanism works fine in this situation, where the only cause for not completing
the task is the presence of a deadlock. But more elaborated mechanisms to detect deadlocks
can be used in general situations. An example is the use of a superimposing process that
monitors the global state of the system and detects if it is changing as time flows. In
the cooperative search and transportation, the global state can be a set composed by the
current role plus the position of each robot. If there are no role assignments and the robots
do not move within a fixed period of time, then the global state is not modified and the

system is deadlocked.
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Figure 5.10: Number of deadlocks (in 100 runs) for different values of 7.

Another result that can be observed is that the use of dynamic role assignment with
the utility function explained above helps to maximize the total value transported in the
beginning of the execution. The graph of Figure 5.11 shows the percentage of the total value
recovered as a function of the execution time for different values of 7. It can be observed
that for small values of 7, objects with larger values are transported first, according to
the utility function that prioritizes objects with large values (v?). But it is important to
mention that depending on the main objectives of the task, this utility function may not
be adequate. For example, if the main objective is to decrease the distance covered by
the robots, the results obtained with this utility function are not satisfactory. A small
threshold causes more reallocations making the robots move from one object to another.
This implies in a larger distance covered by each team member.

Observing the results presented in this section, it can be seen that the dynamic role
assignment allows the successful execution of the cooperative search and transportation

task, demonstrating that this mechanism can be used for the coordination of multiple
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Figure 5.11: Percentage of the total value transported as a function of execution time.

robots. In this specific case, the use of the role assignment with a suitable utility function
and adequate threshold values brought good performance in terms of time and other metrics

while avoiding deadlocks that would prevent the task completion.



Chapter 6

Real Experiments

In this chapter, we present some of the real experiments performed to show the effectiveness
of the dynamic role assignment and hybrid systems modeling of cooperative robotics. In
these experiments, two and three heterogeneous robots work cooperatively to transport a
large box between two locations in a environment that may contain static and dynamic
obstacles [Chaimowicz et al., 2001c].

Here, in the same way as in the simulations, we used a leader-follower approach in
which the leader broadcasts its position and velocities and the followers have independent
trajectory controllers and act in order to collaborate with the leader. The role assignment
is used to exchange the leadership among robots: the leader can resign it or one of the
followers can request the leadership. This allows the robots to divide responsibilities and

adapt to unexpected situations that can occur during task execution.

6.1 The Team of Robots

Three heterogeneous robots with different sensing capabilities, driving mechanisms and
operating systems were used in the experiments. Figure 6.1 shows a picture of the robots.
The robot on the left in Figure 6.1 is a TRC Labmate platform, equipped with an ac-

tively controlled compliant arm [Sugar and Kumar, 1998b]. The platform is non-holonomic,

63
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Figure 6.1: Team of heterogeneous robots.

and the only on-board sensors are encoders located at the arm and at the two actuated
wheels. All the programming is done using Simulink and Real Time Workshop (RTW)
and compiled for DOS. Simulink is a very powerful tool for the simulation of continuous
systems. Together with Real Time Workshop, it can be used to generate code for real
applications. For this, it is necessary to implement specific blocks of code to integrate the
Simulink model with real devices such as wireless communication boards and robot motors.

The robot on the right in Figure 6.1 is a XR4000, developed by Nomadic Technologies.
It has a holonomic driving system offering three degrees of freedom and has several sensors,
including two rings of 24 ultrasound and infrared sensors, a stereo vision system, and
encoders. It is also equipped with a fork-lift arm that has one prismatic joint along the
vertical axis. It uses the Linux system and the programming is done using C. The third
robot is a Nomad Super Scout II. In the same way as the XR4000, it has a Pentium-based
PC processor running Linux, but it has a non-holonomic differential driving system. The
Scout is equipped with ultrasound and contact sensors, but it does not have manipulation

capabilities.
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All robots are equipped with wireless Ethernet boards and exchange messages using
the IPX protocol. IPX is a connectionless datagram protocol. The robots do not have
to establish a connection to exchange packages and each package is treated as an indi-
vidual entity, having no logical or sequential relation to another package. Consequently,
IPX packages are addressed and sent to their destination, but there is no guarantee or
verification of successful delivery. Because of these characteristics, IPX is a fast and sim-
ple communication protocol being suitable for this kind of application. Data messages
are continuously broadcast by the leader at a frequency of 20Hz and control messages are
sent asynchronously, upon necessity. Because IPX does not provide delivery confirmation,
an acknowledgment mechanism was developed. This is not necessary for data messages,
that are continuously sent, but is important for control messages, that are used in the
task control. All messages are broadcast using specific sockets and received by all the
robots. Different sockets are used for data and control messages and there is no one-to-one
communication. If a message needs to be specific to one robot, it is possible to put its

identification number in the package header, and it will only be considered by that robot.

6.2 Modes and Controllers

Different controllers and planners are used by each robot depending on its role in the task.
The two robots carrying a box must tightly coordinate themselves to keep the balance of
the box while they are moving to the desired position. When the third robot is used as
a remote sensor, it must maintain a certain position with respect to the other robots in
order to detect possible obstacles.

To determine the kinematic equations and inputs it is necessary to consider the charac-
teristics of each robot in each mode. In this cooperative manipulation task, the robots can
be in one of the following control modes: Dock, where they must coordinate themselves
to grasp and pick up the box, and Transport, where they march in a coordinated fashion.
Figure 6.2 presents these modes using behavioral hierarchy diagrams. Diagram (a) shows

the high level modes of the task. The Transport mode consists of two submodes Lead, and
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Follow, as shown in Diagram (b). Diagram (c) presents the submodes of the XR4000’s
Dock mode. In this task, the Transport mode is similar for all robots, but the Dock mode

depends on the sensing and manipulation capabilities of each one.

( i Pass/ Resign i \

o118

k Request / Get j

Figure 6.2: Behavioral hierarchy diagrams. (a) High level modes, (b) Transport mode, and
(c) XR4000’s Dock mode.

Figure 6.3 shows a diagram of the two robots carrying a box in an environment with
obstacles. Since the Labmate is non-holonomic the inputs for its low level controllers are

the linear and angular velocities (u; = v, us = w). Thus, the state equations become:

T cosf 0
. U
&= f(x,u) = |y| = [sinfd 0
. U
0 0 1

The input will depend on the current mode of the robot. In the Dock mode the inputs

are computed based on the state of the compliant arm (x,), shown in Figure 6.3:

Uy = f(wa)a

Uy = g(ma)'

Dock

The behavioral hierarchy diagram for the Transport mode is shown in Figure 6.2(b). It
consists of two submodes: in the Lead mode, the Labmate uses an open loop planner,

and in the Follow mode, it uses information sent by the leader together with feedback
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information from the compliant arm to compute its input. On our notation, the superscript
(") represents estimates of the state of the other robots. If we use the subscript [ to refer
to the leader, and D is the distance between the robots, the control laws for the submodes
are given by the following equations:

up = v(t), uy = vy cos(6, — 0) + f(xa),

Follow

Lead ;
uy = w(t), uy = (0;/D) sin(6; — ) + g(x,).

»X

Figure 6.3: Diagram of the Labmate and the XR4000 carrying an box. The states of
Labmate’s compliant arm (z, = [T4, Y4, 0,)") and of XR4000’s infrared sensors (x;) are
shown.

The XR4000 is holonomic, having three degrees of freedom and, consequently, three
inputs (# = wuy, § = us, 6 = uz). The behavioral hierarchy diagram for the Dock mode
is shown in Figure 6.2(c). Note that there are several submodes in the XR4000. The
information from the infrared sensors (x;) is used by the XR4000 in the Approach submode:

Uy = f(mS)a
Dock (Approach) § u, = g(x,),

Uz = h(ms)
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The Transport mode is similar to those in other robots (see Figure 6.2(b)), but the con-
tinuous equations of the submodes are different. The Lead mode uses a planner and the
Follow mode uses a simple proportional controller based on the information sent by the
leader. The terms z%, y¢, 87 are set points that depend on the task. For example, when the

Labmate is leading the task we have: ¢ = 2; + D cos#, y¢ = ¢, + D sin# and ¢ = 0.

t), up = ky(2¢ — x) + f(2,),
Lead ¢ uy = v,(t), Follow ¢ uy = ko(y? — y) + g(2,),
uz = w(t), uz = k3 (0% — 0) + h(2,).

The Scout is non-holonomic, having the same state equations as the Labmate, but it is
not used directly in the manipulation of the box. Consequently, it does not have a Dock
mode and the controller in its Transport mode can be more flexible because its position
relative to the leader can vary during the task execution. In the experiment presented in
this paper, the Scout uses a planner when leading and sets its velocity to be equal to the
leader’s velocity in the Follow mode:

ur=v(t), Follow =0,

uy = w(t), Uy = Wy.

Lead

6.3 Results

Three different experiments are presented to demonstrate the dynamic leadership exchange
with real robots. In all experiments, the XR4000 and the Labmate cooperate to carry a
box (Figure 6.4) between two different locations in the environment, but different scenarios
in each experiment demonstrate several features of the architecture. The graphs of figures
6.5, 6.6, and 6.9 show the trajectories executed by the robots in each experiment with
data acquired from odometry. The numbers inside the graphs indicate the initial positions
and the points where the leadership has been changed. Each robot is indicated by a letter
(X-XR4000, L-Labmate, S—Scout).

Before beginning the transportation, the two robots must coordinate themselves to get
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the box. This is called the Dock mode of the cooperation. The XR4000 uses its infrared to
approach the box and deploy its arm at the correct position. The Labmate uses feedback
information from the compliant arm to hold the box. Docking is done in one dimension
(the robots and the box are aligned), and the Labmate waits until the XR4000 finishes

before starting its own docking.

Figure 6.4: Two robots carrying a box.

The first experiment, shown in Figure 6.5, demonstrates the leadership resignation
mechanism. The XR4000 begins leading (0X), followed by the Labmate (0L), until it
detects an obstacle using its infrared sensor (1X). Then it sends a control message resigning
the leadership to the Labmate. The new leader moves backwards in a curvilinear trajectory
(from 1L to 2L), returning the leadership to the XR4000 (2X) when it finishes its plan. This
experiment shows that, instead of trying to avoid the obstacle locally, which is difficult to
accomplish while carrying a box in cooperation, the robots can exchange roles: the XR4000
offers the leadership to the Labmate, which takes it and modifies the trajectory. In this
case, the modification is a simple open loop reversal with a turn. Note that during the
execution the modes and controllers are changed dynamically due to the role exchange.

The second experiment, shown in Figure 6.6, demonstrates the leadership request pro-
cess. The Labmate begins leading by going backwards in a curvilinear trajectory (from 0L

to 1L). The XR4000 begins following (0X) using its controller and requests the leadership
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Figure 6.5: Experiment 1 - the XR4000 resigns the leadership (1X) and receives it back
(2X).

when its infrared sensor detects an obstacle in its way (1X). After moving to avoid the
obstacle, the XR4000 (2X) returns the leadership to the Labmate (2L) that leads until
the end of the task. The leadership exchange here is very important because the leader is
not aware of the obstacle in the path of the follower. The XR4000 therefore requests the
leadership, avoids the obstacle, and returns the leadership to the Labmate.

It is important to note that these experiments are not meant to show or suggest per-
formance of algorithms. In fact, Experiments 1 and 2 show different approaches to how a
robot might react in the presence of obstacles.

As mentioned, communication is very important for both coordination and control.
Figure 6.7 shows the hybrid automata of the two robots together with messages exchanged
by the robots in each role. The circles represent the discrete states of the robots and the
rectangles indicate the continuous dynamics (controllers and planners) for each state. The
arrows between the two automata are the control and data messages exchanged and the

links among the states in a robot are state transitions. To simplify the diagram both the
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Figure 6.6: Experiment 2 - the XR4000 requests the leadership (1X) and returns it (2X)
to the Labmate.

acknowledgment messages and the final states are not shown.

The diagrams for the other experiments are very similar to this one, meaning that it is
possible to perform different actions by simply changing the role assignment sequence and
the control message flow. It is important to note that, in the experiments presented here,
state transitions have a strong relationship with control messages. Transitions normally
happen when some event is detected by one of the robots. This robot must notify its
teammates using control messages. The reception of a control message by one robot nor-
mally causes a state transition because this robot must adjust itself to the changes in the
cooperative task. Using the hybrid systems terminology, the transition guards depend on
discrete variables that are changed by the reception of some messages. Thus, a transition
is taken when a message is received.

Figure 6.8 shows the discrete states (modes) of each robot as a function of time during
the execution of Experiment 2. As shown in Figure 6.2(c), the Dock mode of the XR4000
can be divided in four submodes: Approach (A), Deploy (D), Lift (L) and Wait (W).

The closeup view in Figure 6.8 shows a detail of a state transition. State transitions do
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Figure 6.7: The two automata and the messages exchanged in Experiment 2.

not occur simultaneously in the two robots: there is a small delay due to communication.
In this specific case, at time t, the XR4000 sends a message requesting the leadership.
The Labmate receives the message at time t,, changes its state and sends a message to the
XR4000 passing the leadership. The XR4000 only changes its state when this confirmation
message arrives at time ¢.. The interval ¢, — ¢, is equal to approximately 0.03 seconds and

does not affect the execution of the leadership change mechanism.

Modes: [ ] Dock

[ Lead
- Follow
Labmate
XR4000
1)
415 2530 3252 3858 5570  63.84 8731

Figure 6.8: Time chart for Experiment 2, with a closeup view of a state transition.
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In the third experiment, shown in the graph of Figure 6.9, the Scout is used in the
cooperation as a remote sensor for the Labmate. At the start position, the robots are
aligned: the XR4000 is in the front (0X), the Labmate in the middle (OL) and the Scout
in the back (0S). After docking, the Labmate starts leading, moving backwards until the
Scout detects an obstacle using its sonar (1S). Then it requests the leadership, moves to the
front (2S) and returns the leadership to the Labmate (2L), who finishes the task making
a curve to avoid the obstacle. An interesting fact in this experiment is that the dispatch
frequency of data messages had to be reduced to 8Hz, because the Scout was not able to
process all the messages using the original frequency of 20Hz. In spite of that, the task was
executed without any problem, showing that the architecture can adapt to small changes

in communication bandwidth.
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Figure 6.9: Experiment 3 - the Scout requests the leadership in a three robot team (1S)
and returns it (2S) to the Labmate.

It is important to mention that, sometimes, the leadership exchange protocol may lead
to conflicts that need to be resolved. Two examples in the small team with one leader are:

(a) a robot requests leadership but the leader does not relinquish it; and (b) a robot resigns
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its leadership, but there are no takers. A related problem is the possibility of a chattering
phenomenon where changes in leadership occur too frequently. A priority-based approach
is necessary to resolve such conflicts. In the experiments presented in this chapter, we
detect deadlocks (using timeout mechanisms, for example) and, in such situations, the

command is relinquished to the human operator whose authority supersedes other robots.



Chapter 7

Conclusions

In this chapter we present a summary of the work, highlighting the main contributions of
this thesis. We also discuss two important aspects of our framework for cooperative robotic
systems, namely applicability and scalability, and we finish the chapter presenting future

directions for this work.

7.1 Summary of the Accomplished Work

In this thesis, the problem of how to model and coordinate multiple robots in the execution
of cooperative tasks has been addressed. Basically, this work offers two main contributions

to the state-of-the-art:

e We proposed a methodology that allows the coordination of multiple robots in the
execution of cooperative tasks. This methodology is based on a dynamic role as-
signment mechanism, in which robots dynamically assume and exchange roles during
the task in a synchronized manner, being able to adapt to sudden events in the

environment and perform cooperative tasks robustly and efficiently.

e We modeled multi-robot cooperation under a hybrid systems framework, using hy-
brid automata to specify the behavior of each robot and the parallel composition of

automata to model the cooperative task as a whole. This has allowed us to better

7
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formalize the execution of cooperative tasks by multi-robot teams and has provided

a framework for developing formal proofs about the cooperation.

The role assignment mechanism and the hybrid systems modeling were used in different
cooperative tasks, both in simulations and in real experiments. To perform the simulations,
we have implemented MuRoS, a software tool specially developed for the simulation of
multi-robot teams in the execution of cooperative tasks. Real experiments were performed
in a cooperative manipulation task using two and three heterogeneous robots. The obtained
results were very satisfactory, showing that both the role assignment and the hybrid systems

modeling are suitable for cooperative robotics.

7.2 Applicability and Scalability

In spite of the good results obtained for different tasks both in simulations and real exper-
iments, the applicability and scalability of this framework are two important issues that
should be discussed. The applicability concept refers to the capacity of using this frame-
work in several different cooperative tasks, while the scalability studies if the framework is
still valid when the number of robots increases, i.e., if the framework scales well with the
number of robots.

We tried to make the role assignment mechanism as general as possible, so that it
can be used in completely different cooperative tasks. Basically, a role can execute any
kind of action, from a purely reactive controller (sensor/actuator pair) to a more elaborate
planning strategy. The role assignment can be performed according to several conditions
and different types of information can be stored and transmitted. The same is valid for
modeling: hybrid systems is a very powerful framework that can be used to model and
study several types of mixed discrete and continuous systems. Different controllers and
variables can be defined for each control mode and guards and reset statements in the
discrete transitions can be used to model the execution requirements. The only drawback

on the applicability of the hybrid systems modeling is that complex systems require the
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use of more complex automata to be modeled. This imposes some difficulties in the use
of automatic tools for verification, that, as mentioned in Chapter 4, are only available for
simpler classes of automata.

In this thesis, we have shown the applicability of our framework in some different tasks
such as cooperative manipulation and cooperative search and transportation. In spite of
their particular characteristics, other cooperative tasks found in the main journals and
conferences (see [Parker, 2000] and [Cao et al., 1997] for an overview) have similar needs
for coordination and modeling. These needs are fulfilled in our framework as explained
above. Therefore, to the best of our knowledge, the role assignment mechanism and the
hybrid systems modeling presented in this thesis may be used successfully in the execution
of other cooperative tasks.

Regarding scalability, one of the main factors that should be considered is communica-
tion. As shown, depending on the task, the role assignment mechanism should use explicit
communication in order to exchange information and synchronize execution. As the num-
ber of robots increases, the explicit communication may become a bottleneck because of
the large number of messages being exchanged among the robots. At any time, there will
be a large number of packages being transported in the wireless network and this can cause
delays and failures affecting the task execution. This is even worse if each robot has to
communicate with all other robots and this communication should be performed very fre-
quently. There are some solutions that can help minimize the scalability problems related
to explicit communication: first of all, as mentioned in Chapter 3, we can impose some
kind of hierarchy, dividing the robots in groups and allowing communication only among
robots of the same group and among group leaders. Also, we may reduce the frequency in
which messages are exchanged and rely more on implicit communication, using sensors to
infer information from other robots. These changes will certainly help reduce the number
of messages. Besides that, in recent years technological advances have allowed the develop-
ment of more reliable, affordable, large bandwidth wireless networks, reducing the impact
of communication on the scalability of cooperative architectures.

From the modeling perspective, other factor that influences the scalability of our frame-
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work is related to the exponential explosion of control modes. In the composition of the
hybrid automata of several robots, the number of control modes of the compound au-
tomaton increases exponentially with the number of robots. Basically, if we have n robots
with m control modes each, the number of control modes in the compound automaton
will be limited by m™. This huge number of states may cause some difficulties in the use
of automatic tools for formal analysis, that in general are computer expensive and have
a complexity that depends on the number of states. To minimize these problems we may
try to reduce the total number of states to be analyzed in the compound automaton. For
example, in the compound automaton of Section 4.6, we focused only on the control modes
that are reachable from the initial state.

In spite of these possible drawbacks regarding scalability, we have been working together
with researchers from the GRASP Laboratory [Song and Kumar, 2002] to simulate a large
number of robots in the execution of cooperative tasks. Figure 7.1, for example, shows a

cooperative manipulation task being executed in MuRoS by 50 robots.
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Figure 7.1: Scalability: 50 robots executing the cooperative manipulation task.
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7.3 Future Work

There are several possibilities of research in order to continue the work developed in this
thesis. The first is to continue the research of hybrid systems modeling of cooperative
robotics. As discussed in this thesis, we believe that hybrid systems are well suited to
represent and study multi-robot teams in the execution of cooperative tasks. But there are
important points that should still be addressed, for example, how to use the hybrid mod-
eling in order to obtain formal proofs about a cooperative task execution. As mentioned
in Chapter 4, hybrid systems are backed by a powerful theory that can be used to study
stability and reachability of mixed continuous and discrete systems. Thus, we can use this
theory in cooperative robotics to detect deadlocks, test reachability of undesired or target
states and study the stability of the cooperative system. For this, it should be necessary
to abstract our representation trying to obtain simpler models (for example a linear au-
tomata) from our general hybrid automata, in order to use the tools already available for
the analysis of these classes of hybrid systems. We also believe that with the advances in
both hybrid systems theory and in computer technology, we may soon have software tools
and computer power to formally analyze general hybrid systems models.

Another important future work is to experiment the role assignment mechanism in
other cooperative tasks and with larger groups of real robots. The main difficulty of
real implementations is to have large teams of real robots available. One solution is to
build several Lego robots, similar to the ones presented in [Pereira et al., 2002], and use
them in cooperative tasks. Lego robots are relatively cheap and easy to build, but they
have limitations in sensor, actuation, and communication capabilities. Another possibility
is continue this work in cooperation with other laboratories. For example, the GRASP
Laboratory, where part of this work has been developed, has plans to build ten Clodbuster
robots that would be a good testbed for experiments using the role assignment.

Still regarding the dynamic role assignment mechanism, an aspect that we have not
addressed in this thesis and that should be investigated in future research is the choice of

suitable utility functions for the role reallocation. In the cooperative search and transporta-
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tion presented in Chapter 5, we used a simple heuristic function for the role reallocation.
We believe that using some optimization technics applied to each task objective, it would
be possible to implement tailored functions, thus obtaining a better performance for a
given task.

In this work, we are making a strong assumption that sensors, plans and commu-
nication are almost perfect and errors do not influence the cooperative task execution.
Consequently, the robots are able to know their exact location using odometry, can accu-
rately detect obstacles using their cameras or sonar and can transmit their data without
failures. In general, these assumptions are not realistic. Robots are inherently uncertain
about their state and the state of the environment. Uncertainty in mobile robotics arises
from different sources like sensors, actuators, and communication mechanisms. So, an im-
portant extension of this work is to consider these types of uncertainties, observing how
the coordination mechanism would behave under these new conditions and trying to cope
with them. In Appendix A we present some of the approaches that have been used in
robotics to deal with these uncertainties and can be applied to our methodology in the
future.

Another objective we would like to accomplish in a near future is to develop a “release
version” of the simulator. In its current stage, due to several modifications implemented
during the development of this work, the readability of MuRos code is somewhat compro-
mised. Also, for now, to implement new applications using the simulator the user must
have access to all the code to create new classes according to his/her necessity. In spite of
the object orientation, sometimes users have to modify some of the base classes in order to
implement their applications. We would like to avoid this, encapsulating the base classes
in a class library that will be used to develop new applications under MuRoS. We also
want to better organize the code, write a technical documentation (user manual) about
the simulator and make it available on the World Wide Web. This will make MuRoS more
usable and portable and will allow other research groups to use it and collaborate on its
development.

Finally, a very interesting possibility of research is to increase the integration between
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the hybrid systems modeling and the simulator. As shown in this thesis, simulations de-
veloped in MuRoS already benefit from the hybrid systems modeling: users can define
roles, transitions and synchronize transitions using explicit communication. But every-
thing should be explicitly implemented in the simulation code. A very useful feature is
to automatically generate code for the simulator from high level specifications. In this
way, the users would simply give a high level modeling of the cooperative task (for ex-
ample the hybrid automaton of each robot) and the simulation code in MuRoS would be
automatically generated. In fact, some tools like Charon [Alur et al., 2000a] and State-
flow [Mathworks, 2001] have already started addressing this problem, but none of them
are specifically implemented for cooperative robotics. The “Holy Grail” of multi-robot
programming (and mobile robotics programming in general) is to be able to, from high
level specifications such as a hybrid automaton, automatically generate code to control
different types of real robots acting in real environments and performing several types of
tasks. This would certainly be a huge advance in the modeling and implementation of

cooperative robotics.
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Appendix A

Dealing with Uncertainty

In our coordination mechanism, robots depend on local and global information in order
to make decisions regarding the role assignment and other aspects of the task execution.
Normally, the robots use several kinds of sensors (cameras, sonar, laser, odometry) in order
to gather information, rely on pre-computed maps and plans, and use explicit communi-
cation mechanisms to exchange information with other robots. In this thesis, we made a
strong assumption that sensors, plans, and communication are almost perfect and errors
do not influence the cooperative task execution. In general situations, this assumption
is not realistic and robots are inherently uncertain about their state and the state of the
environment. So, in spite of not considering these factors in our coordination mechanism
so far, we think that it is important to present some of the approaches that have been used
in robotics to deal with these uncertainties.

Uncertainty arises from different sources. First of all, robots depend on their sensors
to gather information about their state and the environment. In a very broad sense,
we can say that sensors are noisy, return incomplete descriptions of the environment and
cannot usually be modeled completely [Dudek and Jenkin, 2000]. In general, a single sensor
measurement is not sufficient to correctly estimate the robot’s state and gather reliable
information from the environment. Each sensor category has its limitations: odometry,

for example, is subjected to systematic errors (such as misalignment of robot wheels) and
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non-systematic errors (such as wheel slippage) [Borenstein and Feng, 1996]. Sonar sensors
have a limited range and can be influenced by specular reflections, surface properties, etc.
Misinterpretation of sensor data can also lead to incorrect beliefs. Other important sources
of uncertainty also exist. In general, the use of a priori and static models brings uncertainty
to the system because prior knowledge about the environment may be incorrect and real
world environments usually have unpredictable dynamics. For example, maps omit details,
metric information can be imprecise, objects move, and even relatively stable features may
change over time [de Weerdt, 1998]. Also, the effects of control actions are not completely
reliable: wheels slip, controllers are affected by noise, etc. Summarizing, we can say that
both the robots and the environment are stochastic, sensors are limited and noisy, models
are inaccurate, and all these factors lead to a high level of uncertainty in mobile robotics.

A large group of researchers have been studying how to deal with uncertainty, making
this a very broad and active research area. Most of the material discussed in this section
was compiled from a recent survey [Thrun, 2000] and from a tutorial presented during the
2001 International Conference of Robotics and Automation [Burgard et al., 2001]. Other
references are also cited throughout the text.

The dominant approach that has been used to deal with uncertainty is called Probabilis-
tic Robotics. The main idea is to explicitly represent uncertainty through the probability
theory, using probability densities to represent information. The central conjecture of this
approach can be stated as follows: A robot that carries a notion of its own uncertainty
and that acts accordingly will do better that one that does not. The main advantages of
probabilistic approaches are that they can accommodate inaccurate models and imperfect
sensors acting robustly in real world applications. On the other hand, probabilistic algo-
rithms tend to be computationally demanding, need to perform approximations in order
to represent the world and depend on some assumptions that may not be completely true
in all situations.

One of the areas where probabilistic robotics has been used with great success is in
the localization problem. In this problem, robots must find their coordinates relative to

the environment assuming that they have a map of this environment. The localization



APPENDIX A. DEALING WITH UNCERTAINTY 96

problem can be categorized according to different difficulty levels. The easier situation is
when the robot knows precisely its initial location, and needs only to maintain an accurate
estimate of its current pose. This problem is known as position tracking. When the robot
does not have information about its initial location, it faces a more difficult localization
problem, in which it must find its pose from scratch, relying only on its sensors. This is
called global localization. It is important to mention that some researchers consider the
localization problem the most fundamental problem that needs to be solved to provide a
mobile robot with autonomous capabilities [Cox, 1991].

A successful family of probabilistic approaches that has been developed and used by
several researchers to solve both localization problems is called Markov localization. The
central idea of Markov localization is to represent the robot’s belief by a probability dis-
tribution over possible positions and to use Bayes’ rule and convolution to update the
belief whenever the robot senses or moves [Fox et al., 1999]. The general equation for the
Markov localization comes from Bayes’ filters. Considering that = denotes a position in the
state space of the robot, m is the map of the environment and a; and s; (i =0,...,t), rep-
resent respectively consecutive robot actions and observations, the distribution bel(xz;|m)
expresses the robot’s belief for being at position x at time ¢ given the map m, and can be

defined as:

bel(zi|m) = p(x¢|so, ..., a1, ¢, m)

To estimate this equation, probabilistic approaches normally resort to a Markov as-
sumption, which states that the future is independent of the past given knowledge of the
current state. Hence, it is assumed that the observations are independent (and so the
noise), and that the robot’s pose is the only state that would impact more than just one
isolated sensor reading. This is also known as the static world assumption. Based on the

Markov assumption, and applying Bayes’ rule and the total probability theorem, the belief
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bel(x;/m) can be computed using a recursive formula as shown below:

bel(z¢|m) = np(s¢|so, ..., a1, e, m)p(xe|so, ..., ai—1,m) (Bayes)

bel(z|m) = np(si|ze, m)p(zilso, ..., ai—1,m) (Markov)
bel(x¢|m) = np(s¢|xy, m) /p($t|so, ey G 1, T—1, M)P(Te—1|S0y - - - St—1, 041, m)dzy—1  (T. Prob.)
bel(w¢|m) = np(si|xe, m) /p(xt|at—laxt—lam)p(xt—1|303 ey G2, 8¢ 1, m)dTy (Markov)

bel(xt|m) = Up(3t|$t,m) /p(fﬁt|at—1,$t—1,m)b€l($t—1|m)dmt—1

The constant 7 is a normalizer that ensures that the result sums up to one. To implement
this last equation, two probabilistic densities must be specified: the first one, p(s;|x;, m), is
a probabilistic model of the perception and the second one, p(x;|a; 1,x; 1, m), characterizes
the effect of robot actions on its pose, and can be considered as a probabilistic generalization
of the robot’s kinematics. Both densities are usually time-invariant, so the time index ¢
can be omitted.

An important point in the Markov localization is the definition of a suitable repre-
sentation for the belief. One of the more traditional approaches is to use Kalman filters
[Kalman, 1960], assuming that the uncertainty in the robot’s position can be described
by a unimodal Gaussian distribution. This kind of approach has been used successfully
in various robot applications for position tracking, for example in [Gutmann et al., 1998].
This kind of representation, however, has some drawbacks. In practice, localization ap-
proaches using Kalman filters require that the starting position of the robot is known,
making difficult its use on the global localization problem. In addition, Kalman filters rely
on sensor models that generate estimates with Gaussian uncertainty, which is often unre-
alistic [Fox et al., 1999]. Other possible representations include multi-hypothesis tracking
[Jensfelt and Kristensen, 1999], topological representations [Simmons and Koenig, 1995],
and grid-based representations [Burgard et al., 1996]. A very powerful approach for the
representation is to approximate the belief using a weighted set of samples so that the

discrete distribution defined by the samples approximates the desired one. This technique
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is generically known as importance sampling, but is also known with other names accord-
ing to the area of application (for example, particle filters or condensation algorithm). In
robotics, it is sometimes called Monte Carlo localization and has some advantages over
other representations [Fox et al., 1999]: it is easier to implement, allows the representation
of multimodal distributions, can globally localize a robot and has improved efficiency in
terms of memory and speed when compared to grid-based approaches.

Another area where probabilistic approaches have been used successfully is mapping.
The mapping problem consists in creating a representation of the environment (map) based
on information gathered with the robot sensors. Besides the difficulties regarding sensor
noise and modeling, mapping can be a very hard task if the robot does not have precise
information about its current pose. As mentioned in [Thrun, 2000], this problem has a
“chicken and egg” nature: localization with a map is relatively easy, as is mapping with
known locations. Combined, however, they turn into a difficult problem.

In combination, however, this problem is hard.

One of the seminal works in probabilistic mapping is the occupancy grid approach
[Elfes, 1989]. Basically, this approach decomposes the world in a grid of cells and the
value of each cell represents the probability of it being occupied or not. The occupancy
values are updated with consecutive sensor readings using an equation based on Bayes’
rule. Occupancy grids is one of the most used mapping algorithms when a good estimation
of the robot’s pose is available. Normally it is augmented with ad-hoc methods for local-
ization during mapping. Other common algorithm uses a similar approach for mapping as
for localization. The basic idea is to include the map together with the robot’s state in
the computation of the belief. Examples of this approach using Kalman filters to repre-
sent the belief can be found in [Castellanos et al., 1999] and [Leonard et al., 1992]. These
techniques are generically known as SLAM (simultaneous localization and mapping). Ex-
tensions of these algorithms using other representations for belief have also been developed,

for example, using the EM (expectation-maximization) algorithm [Thrun et al., 1998].



Appendix B

MuRoS - A Multi-Robot Simulator

All the simulations presented in this thesis were performed using MuRoS, the simulator the
we have developed for cooperative robotics. In this appendix, we describe the simulator
in details. We begin by giving a general description of the simulator and discussing other
simulators available for cooperative robotics. Then we explain MuRoS structure in terms
of its hierarchy, control, communication and sensing mechanisms, and finish showing some

examples of its use in the simulation of cooperative tasks.

B.1 General Description

MuRoS (Multi-Robot Simulator) is a software tool that we have developed for the simu-
lation of cooperative robotics. It allows the simulation of various types of tasks, ranging
from loosely coupled to tightly coupled cooperative tasks. Developed using object oriented
programming in Visual C++ for the MS Windows environment, MuRoS allows the sim-
ulation of several multi-robot applications such as cooperative manipulation, formation
control, foraging, etc. It allows the creation of different types of robots and obstacles and
the observation of the simulation in real time. Also, result data can be exported to other
tools such as Matlab for future analysis. New types of robots can be implemented with

different controllers, driving mechanisms and sensors, inheriting characteristics from other
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robots. Implicit and explicit communication can be simulated, allowing the robots to ex-
change information during the task execution. All these characteristics make MuRoS a

suitable tool for simulation of cooperative robotic systems.

B.2 Simulators for Cooperative Robotics

Some general simulators for cooperative robotics can be found in the literature and are
available for use. One example is the Teambots platform [TeamBots, 2001], in which
teams of robots controlled by behavior-based approaches can be simulated. This plat-
form is implemented in Java and contains several classes that allows the implementa-
tion of different multi-robot scenarios. One example of these scenarios can be found
in [Balch and Hybinette, 2000]. Other software is Stage, which simulates mobile robots
sensing and moving in a two-dimensional bitmapped environment, controlled through a de-
vice server called Player [Gerkey et al., 2001]. An extension that groups a previous version
of Stage with a wireless network simulator is described in [Ye et al., 2001] and is used in the
study of communication protocols for cooperative robotics. Another interesting approach
is Charon, a tool for modeling and analyzing hybrid systems in general that can be used to
simulate multi-robot coordination and control [Alur et al., 2000a]. Nomadic Technologies
developed a simulator for its Nomad 200 robot [Nomadic, 1993]. This simulator is interest-
ing because the control program being simulated can be used in the real robot without any
modification, by simply linking the program with a different library. Several robots can be
created in this simulator, allowing it to be used for multi-robot cooperation. Another sim-
ulation tool is MissionLab [Arkin, 1998], which is used for designing multi-agent missions.
It allows the recursive definition of robot societies and includes a graphical configuration
editor, a multi-agent simulation system, and code generators for two different architectures.
Some results of its use in a formation control task can be found in [Balch and Arkin, 1998|.
Finally, general software tools such as Matlab and Simulink [Mathworks, 2001] have also
been used to simulate some specific cooperative robotic applications. Examples can be

found in [Pimentel, 2002] and [Song and Kumar, 2002].
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We have tried some of these simulators but none of them completely fulfilled our needs
for simulations of the role assignment mechanism in teams of potentially heterogeneous
robots. Some simulators are specific to a certain type of robot or controller, restricting
their use. Others are too general, making the implementation of cooperative robotic tasks
a difficult job. Furthermore, sometimes it is easier to start the development of a simu-
lator from scratch than to use a simulator developed by other groups, due to the lack of
documentation and problems in extending and reusing the source code. Consequently, we
have preferred to start the development of a new simulator for cooperative robotics and to

perform our experiments using it.

B.3 MuRoS Structure

As mentioned, MuRoS has been implemented using Visual C++. Visual C++ has a inter-
nal structure and an extensive API (Application Programming Interface) that facilitates
the development of applications for the Windows environment. It is based on the concept
of documents and views. Basically, the document class stores the application data and
the view class is responsible for displaying it. Different view classes can be implemented
for the same document, and MDI (Multiple Document Interface) applications can handle
several documents simultaneously. An example of this structure is a text editor (such as
MS Word), in which several files can be opened and edited simultaneously. More details
about the document/view architecture can be found in [Kruglinski et al., 1998].

MuRoS uses the document /view structure, but only a single document is active during
execution. Therefore, it is a SDI (Single Document Interface) application. The document
class contains the main data structures of the simulator, namely: m_robots, m_obstacles,
and m_boxes. These variables are arrays that store respectively the robots being simulated,
the obstacles in the environment and possible boxes' to be transported in cooperative

manipulation tasks. Using object orientation (inheritance and polymorphism) it is possible

'In this appendix, we are using the term “box” instead of “object” to avoid confusion with the term
“object” in object oriented programming.
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to store different types of robots, obstacles, and boxes in these structures.

The user interacts with these data structures using the graphical interface. Selecting the
appropriate buttons, it is possible to create robots, obstacles, and boxes by clicking at the
desired positions in the application screen. After creating the simulation elements (robots,
obstacles, and boxes), the user can start the simulation by choosing the start button on
the interface. At this point, a new thread is created in order to integrate the differential
equations that control each robot. This thread is basically a loop that increments the
simulation time by a step factor and calls the Update method of each element in the
m_robots and m_boxes arrays. This method is responsible for computing the velocities and
positions of the robots and boxes integrating the dynamic equations defined for them. In
fact, the Update method is a virtual function that is redefined in each class according to
the desired dynamics of the robots and boxes. For now, we are using the Euler method
[Press et al., 1988] for integration. Despite its simplicity, this method has been adequate
for integrating the differential equations used thus far and has good performance when
compared to higher order integration methods. In each simulation step, after calling the
Update methods, the thread calls another method to redraw the simulation screen. This
method calls the Draw method of each object, another virtual function implemented in each
class, that is responsible for drawing the elements on the screen. If necessary, the rate in
which the screen is redrawn can be reduced, improving the performance of the simulator.

The use of two different threads, one for running the simulation and other for the user
interface, leads to an excellent performance and allows the access to the data structures
during the simulation. For example, the user can add or remove robots and obstacles, and

change control parameters while the simulation is running.

B.4 Class Hierarchy

One of the fundamental concepts in object oriented programming is inheritance. The inher-
itance mechanism allows the developer to create base classes with general characteristics of

an entity and specialize them in new subclasses, with the addition of attributes, methods
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and the redefinition of virtual functions. It is a very important concept, mainly when code
reuse and extensibility are necessary.

In MuRoS, we have implemented a class hierarchy that allows the creation of new types
of robots inheriting characteristics from classes that have already been developed. The
main class is CRobot that contains the basic attributes, methods, and virtual functions of
a generic robot. The attributes include, for example, the position of the robot, the number
of obstacles detected by its sensors, etc. As mentioned in the previous section, two main
virtual functions must be redefined: Update and Draw. Thus, to create a new type of
robot, the user must create a new class that inherits from the CRobot class or from one of
its subclasses, redefine some of its functions, and add methods and data members for new
capabilities such as new sensors, actuators, etc.

Figure B.1 shows MuRoS’s class hierarchy diagram. In the first level of inheritance, we
have the subclasses CRobotHolonomic and CRobotNonHolonomic, with the specific char-
acteristics of holonomic and non-holonomic robots respectively. From them, we can derive
more specific classes, for example: CRobotXR4000 representing the Nomadic Technologies’
holonomic robot or CRobotLabmate representing a TRC Labmate platform equipped with
a compliant arm [Sugar and Kumar, 1998b]. The class hierarchy also includes different
types of obstacles, boxes, and a class for mapping and planning, that is used by some of
the robots. Some internal classes of the simulator (for example the document and view
classes explained before) are not shown in this diagram.

This class hierarchy is being continuously upgraded with the addition of new classes,
methods, and attributes. As discussed in Chapter 7, one of our future directions is to
create a fixed class library that will be used as base for the development of new classes and

applications under MuRoS, to allow other research groups to use the simulator.

B.5 Controllers

The simulator allows the implementation of different types of robot controllers. We are

using the distributed hybrid approach described in Chapter 4: the behavior of each robot
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Figure B.1: Class hierarchy of the simulator.

is described by a hybrid automaton and robots can switch among different discrete states
(modes), having different continuous controllers in each mode. Basically, the user defines
in the Update method the differential equations that control the robots in each mode, and
the simulator integrates these equations displaying the robots trajectories in real time.
Switches between modes are triggered based on the robots continuous states, perception of
the environment, and explicit communication. Several controllers have been experimented
in the simulator, such as potential fields, path following, leader-follower, and open loop
approaches.

We are using simple kinematic models to describe the robots in the simulator. Each
robot is described by its pose [z,y,8]T and velocities [v,w]T for nonholonomic robots and
[V, vy, w]" for the holonomic ones. As explained in the previous sections, the poses are
updated integrating the velocities using the Euler method. The velocities can either be
set, directly or be obtained from forces applied on the robots. In this case, we have a
simple dynamic model where robots are subject to forces and torques and the velocities
are computed integrating these forces. This is the case, for example, of the potential field
method [Khatib, 1986] used by the robots to navigate through the environment in some

applications. In this method, each robot is subject to attractive forces from the targets (for
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example the items to be retrieved, the goal, etc.) and local repulsive forces from the other
robots and obstacles. Forces due to physical contacts with obstacles and other robots are
also computed using a simplified rigid body dynamic model based on [Song et al., 2001].
Basically, each robot computes the resultant of all these forces and integrates it to obtain
the velocities. For the holonomic robots, the forces and torques [F,, F,, 7|7 are directly
integrated giving [v;, vy, w|". For the non-holonomic robots, we implemented some con-
trollers that are similar to the ones described in [De Luca and Oriolo, 1994] in order to
obtain the velocities [v,w]? from these forces.

An interesting feature of the simulator is the ability to dynamically change the values
of controller parameters during the simulation. This allows the user to test different values
and rapidly see the effects of the changes in the performance of the controllers. To be able
to use this feature in his/her simulations, the user should implement a page in a property
sheet, containing the desired controller parameters, and use the values set directly into the
controllers. Figure B.2 shows the parameters for the potential field controller. The user

can set values to control the repulsion among robots, the goal attraction, etc.

conctants x|
Colison  Polertial | yelociy | Do |
He-p-.lmﬂnhu-l-ﬂn:hntl I'm::l_l
gl s Fobot « Obatacke: | ﬂz:'_,
Attaction Fobot - Bowe | 20004
Aleact duing hanspofstion [

sraction Rabol - Goat | 10

[ ok ]| cancel | Apok

Figure B.2: Parameters for the potential field controller. The user can change the values
dynamically.
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B.6 Communication

Communication is fundamental for the majority of cooperative applications. In the simula-
tor, the robots can use both implicit and explicit communication mechanisms to exchange
information. Implicit communication does not require any special mechanism. The robots
simply use their sensors in order to observe the actions of their teammates gathering
the desired information. One example of the use of the simulator with implicit commu-
nication in a cooperative manipulation task is presented in Chapter 5 and detailed in
[Pereira et al., 2002].

For the explicit communication, a message passing system was implemented in the
simulator. A given robot can broadcast messages to all robots or send messages to a specific
one. Two types of explicit communication can be used in the simulator: synchronous
and asynchronous. Both of them were explained in Chapter 3. The inter-robot explicit
communication in the simulator was implemented using windows messages. Each robot
class has a handler that is called when a message is received. This handler is implemented
by the user as a virtual function and specifies the actions that should be performed for
each type of received message. Another important feature is that delays and errors (noise)
in the communication mechanism can be simulated using stochastic functions, shortening
the gap between simulation and real world applications. In this case, the robots can use an

acknowledgement / time-out mechanism in order to assure the proper delivery of messages.

B.7 Sensors, Localization, and Mapping

Each robot is equipped with a sensor that allows the detection of obstacles, robots, and
other targets in a certain range. This sensor is represented by a circular region around
the robot. The robot is able to detect obstacles, boxes, and other robots inside this range.
This sensor can be thought of as, for example, an omnidirectional camera, such as the ones
that have been used in some real mobile robots to construct local range maps, perform

localization tasks, and navigate trough cluttered environments [Das et al., 2001]. We also
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implemented a bumper that can detect contacts among the robots and other entities. As
mentioned above, other types of sensors can be implemented in new robot classes.

The robots are also equipped with odometry sensors that measure their position and
orientation. For now, a strong assumption in the simulator is that each robot knows its
exact position in the environment and can accurately detect obstacles, i.e., we are not
considering errors in odometry and other measurements. In real robots, uncertainty in
localization and sensing can be corrected using stochastic algorithms and other techniques.
For example, a robot can estimate its position using probabilistic distributions with the
help of features detected in the environment and estimates from other robots.

Knowing their position and using information acquired by the sensors, the robots can
construct maps of the environment and plan trajectories in some of the tasks. The Grassfire
Algorithm, also called Distance Transform Algorithm, has been used in some applications
for planning in real time. In this algorithm, the area is divided into cells and a value is
attributed to each cell according to its distance to the goal. The planner starts at the
goal cell and propagates distances through free spaces. Cells containing obstacles receive
higher values. After the distance transforms are generated, a path is planned from the start
position to the goal through the cells with decreasing values (see [McKerrow, 1991] for a
detailed explanation). This algorithm is used locally, and thus can generate non-optimal
paths. In spite of that, it generates a path whenever it is possible and can also be used
together with other navigation strategies. Figure B.3 shows an example of a map (distance
transform) and a plan generated using the grassfire algorithm. The gray levels indicate the
cell values (increasing from white to black), the rectangles are obstacles and the line is the

planned path from a start position to the goal.

B.8 Examples

To present some of the features of MuRoS, we developed two sample cooperative scenarios
using the simulator [Chaimowicz et al., 2001a]. The first is a foraging task, in which a

group of robots must search an environment looking for items, collect these items, and
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Map / Path ]|

Figure B.3: Map and plan generated using the Grassfire Algorithm.

take them to a specific location. The second scenario is a cooperative manipulation where
a group of robots grasp and push a box. They represent loosely and tightly coupled tasks

respectively, being good testbeds for the simulator.

B.8.1 Foraging Task

The foraging task is a classical example of a loosely coupled cooperative task and has
been used by several researchers as a testbed for simulations and real implementations of
cooperative architectures, for example [Arkin et al., 1993] and [Drogoul and Ferber, 1992].
Using the simulator, we implemented different coordination methods with different levels
of inter-robot communication and strategy, and analyzed completion time and speedup
varying the number of robots.

In this simulation, the robots use distributed controllers and dynamic role assignment,
to control themselves during the execution of the task. Each robot can be in one of the
following modes: Wander, Retrieve, and Transport (Figure B.4). In the Wander mode each
robot searches the environment for items to be retrieved. When it detects an item, the

robot changes its state to Retrieve and moves to get the item. After getting it, the robot
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switches to the Transport mode and carries the item to the goal. While performing the
Wander role, the robots move randomly in the environment. In the Retrieve and Transport
modes, the robots use the artificial potential field method as explained in previous sections.
In the Retrieve mode each robot is attracted by the item and in the Transport mode it is

attracted by the goal.

Retrieve Transport

Item delivered to the goal

Figure B.4: Control modes and discrete switches for the forage task.

Figure B.5 shows a snapshot of the simulator during the forage task: the items to be
collected are the small dots in the screen, while the robots are the circles. The sensor range
of each robot is shown as a dashed circle around it. In this figure, there are four robots in
the Transport mode carrying items (black), four in the Wander mode (light gray), and two
in the Retrieve mode (dark gray, at the bottom-right of the screen). The goal is marked
with an x.

Four different algorithms have been implemented to coordinate the robots during the

execution of forage task:

1. Random: in this algorithm, the robots move randomly around the area and, when
they find a item, they retrieve and transport it to the goal. There is no communication

or multi-robot strategy.

2. List: this algorithm is very similar to the previous one, with the difference that each
robot keeps a list with the position of the items that it has already detected but has

not been able to retrieve because it can only transport one item at time.

3. Communication: in this algorithm, the robots also move randomly and maintain
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Figure B.5: Snapshot of MuRoS during the simulation of a forage task.

a list with the detected items, but they also exchange their lists using explicit com-
munication. In this way, robots that are performing the Wander role can reallocate

and retrieve items detected by other robots.

4. Divide and Conquer: in the divide and conquer algorithm, the robots do not
communicate and, instead of moving randomly, they divide the search space among
them and perform an exhaustive search in their area. When a robot finishes searching

its area, it can start searching other areas.

Experiments were executed varying the number of robots (from 5 to 25) and the co-
ordination algorithm. Each experiment was repeated 100 times and the average time to
complete the task was computed. In these experiments, we used holonomic robots, 50
items and a search area of 10x10 meters with the goal placed in the middle. Each robot
has a diameter of 30 centimeters and cannot carry more than one item at a time. Also, as
mentioned, we consider that there is no uncertainty in the localization: the robots know
their exact position and the position of the goal. The results are shown in the graph of

Figure B.6.
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Figure B.6: Execution time X number of robots for the forage task.

When the number of robots is small, the Divide and Conquer algorithm has the best
performance, showing that strategy is more important than keeping a list or communi-
cating at this point. But the other two algorithms also have good performances when
compared to the completely random approach. When the number of robots is increased,
the difference in the execution time of all the methods decreases, showing that a larger
number of robots brings benefits independently of the algorithm that is being used. There
are two important results to point out when 25 robots are used: first, the performance of
the Random algorithm is equal to the List algorithm, showing that with a large number
of robots, keeping a list of the previously detected items does not contribute much to the
task; second, the Communication and Divide and Conquer algorithms also have very simi-
lar performances, demonstrating that the use of communication is as important as strategy
when a large number of robots is used.

A metric that can be used for this application is the speedup, a common metric used in

the parallel programming community to analyze the benefits of using multiple processors
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5 10 15 20 25
Rand | 4.72 ] 9.69 | 14.62 | 19.16 | 23.13
List 4.99 1 9.09 | 12.03 | 16.13 | 17.98
Comm | 5.00 | 9.89 | 13.38 | 17.65 | 20.55
D&C | 4.50 | 7.81 | 10.41 | 13.13 | 15.16

Table B.1: Speedup results for the forage task.

or machines to perform a task. In our application domain, the speedup can be defined as:

Ezxecution time using 1 robot

Speedup = .
b P Execution time using N robots

Table B.1 shows the speedup values computed for the four algorithms varying the number
of robots. All the algorithms have large speedups, mainly the random and communication
algorithms. The speedup shows how much the execution time is reduced when more than
one robot is used. Speedup values close to n (n = number of robots) are called linear
speedup and indicate that the task is benefiting totally from the use of multiple robots.
This happens with the Communication Algorithm for n < 10 and the Random for n > 5.
The communication helps orienting the wandering robots to the items that have been
found by others, bringing significant improvements over the single robot approach. In the
Random Algorithm, linear speedups were expected because the robots act in a completely
independent fashion, thus, the addition of more robots causes a proportional reduction
in the execution time. The Divide and Conquer is the algorithm that has the smallest
speedup results because the use of strategy is effective even when only one robot is in use

and the addition of new robots does not cause a linear improvement on the performance.

B.8.2 Cooperative Manipulation

Differently from the simulations that were presented in Chapter 5, the coordination of
cooperative manipulation here is relatively simple: we don’t have any leader-follower hi-

erarchy and, consequently, role reallocations and exchanges are not necessary. The main
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objective here is to demonstrate some of the features of MuRoS.

In this simulation, our approach to cooperative manipulation uses potential field con-
trollers to guide the robots, and role allocations and communication for coordination.
This is similar to the approach used in loosely coupled cooperation, with the main differ-
ence that communication and strict coordination are completely necessary. Basically, the
robots are attracted by the box and the goal, and repelled by each other. The contacts
with the box, obstacles, and other robots are computed using rigid body dynamic mod-
els [Song et al., 2001]. Figure B.7 shows the discrete modes and the transitions during the
execution of the task. The transitions marked with a * are triggered by messages received
from the other robots. Using a more formal definition, these transitions have guards that

depend on variables set by explicit communication (global information).

Pos OK Dock OK* Lost Contact
@ uy @
Regroup*

Figure B.7: Simplified discrete state diagram for the cooperative manipulation task.

Initially, the robots are in the Dock mode and are attracted by the box. At the same
time, they are repelled by each other, being able to distribute themselves along the box
and prepare for transportation. When one robot senses that it is close enough to the box,
it switches to the Wait mode, and broadcasts a message communicating that it is ready.
When all robots are ready, they switch to the Transport mode and there is a controller
switch so that each robot becomes attracted by the goal. If for some reason one robot
loses contact with the box, it will switch to the Lost mode, broadcast a message, and stop
moving. If all robots lose contact, they regroup and start docking again.

Figure B.8 shows some snapshots of the simulator during the manipulation of a round

box by ten holonomic robots in an environment with three obstacles. The goal position
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is marked with an x. Snapshot (a) shows the robots in the Dock mode, starting to move
in the direction of the box (light gray circle). Snapshot (b) shows nine robots in the Wait
mode while the last one is still finishing the Dock phase. In (c) eight of the robots have lost
contact with the box because of a collision with an obstacle. It is important to note that
the robots lose contact when the box is outside their sensor range, so two robots (shown in
black) are still in contact. As these two robots move towards the goal, they will also lose
contact with the box. When this happens, they regroup, grab the box again and resume
the transport, finishing the task (snapshot (d)).
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Figure B.8: Snapshots of the manipulation task: (a) Robots (small circles) in the Dock
mode. (b) Robots preparing to transport the box. (c¢) Robots lose contact with the box
after colliding with an obstacles. (d) Transportation is finished after a robot regrouping.
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Differently from loosely coupled tasks, communication and coordination are necessary
in this task. Without strict coordination and communication the robots would not be able
to transport the box and recover from failures. Also, depending on the size, shape, and
mass of the box, a single robot alone or a small team cannot be able to complete the task.
Some experiments were performed varying the mass and size of the box and in all cases at
least 3 robots were necessary to transport the box. In the case of Figure B.8, eight robots

were necessary to complete the task adequately.



