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Abstract

The video segmentation problem consists in the identification of the boundary between
consecutive shots in a video sequence. The common approach to solve this problem is
based on the computation of dissimilarity measures between frames. In this work, the
video segmentation problem is transformed into a problem of pattern detection, where
each video event is represented by a different pattern on a 2D spatio-temporal image,
called visual rhythm. To cope with this problem, we consider basically morphological and
topological tools that we use in order to identify the specific patterns that are related
to video events such as cuts, fades, dissolves and flashes. To compare different methods
we define two new measures, the robustness and the gamma measures. In general, the
proposed methods present the quality measures better than the other methods used to

comparison.
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Résumé

Le probleme de la segmentation de séquences d’images vidéos est principalement associé
au changement de plan. L’approche courante pour résoudre ce probleme est basée sur
le calcul de mesures de dissimilarités entre images. Dans ce travail, le probleme de la
segmentation de séquences vidéo est transformé en un probleme de détection de motifs,
ou chaque évenement dans la vidéo est representé par un motif différent sur une image
2D, apellée rythme visuel. Cette image est obtenue par une transformation spécifique
de la vidéo. Pour traiter ce probleme, nous allons considérer principalement des outils
morphologiques et topologiques. Nous montrons commment identifier grace a ces outils,
les motifs spécifiques qui sont associés a coupures, fondus et fondus enchainés, ainsi qu’aux
flashs. Dans l'ensemble, les méthodes proposées dans cette these obtiennent des indices

de qualité meilleurs que les autres méthodes auxquelles nous les avons comparées.



Resumo

O problema de segmentacao em video consiste na identificagao dos limites entre as tomadas
em um video. A abordagem cldssica para resolver este problema é baseada no calculo de
medidas de dissimilaridade entre quadros. Neste trabalho, o problema de segmentacao
em video é transformado em um problema de deteccao de padroes, onde cada evento de
video é transformado em diferentes padroes em um imagem espaco-temporal 2D, chamada
ritmo visual. Para tratar este problema, nés consideramos basicamente ferramentas mor-
fologicas e topoldgicas com o objetivo de identificar os padroes especificos que sao rela-
cionados a eventos do video, como cortes, fades, dissolves e flash. Para comparar os
diferentes métodos, nés definimos duas novas medidas de dissimilaridade, a robusteza
e a medida gama, que relacionam as medidas bésicas de qualidade com um familia de
limiares. Os resultados obtidos a partir dos métodos propostos, definidos em termos de
medidas de qualidade, sao melhores que os resultados dos outros métodos usados como

critério de comparacao.
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Chapter 1
Introduction

Traditionally, visual information has been stored analogically and indexed manually.
Nowadays, due to the improvements on digitalization and compression technologies, data-
base systems are used to store images and videos, together with their meta-data and
associated taxonomy. Unfortunately, these systems are still very costly.

Meta-data include bibliography information, capture conditions, compression param-
eters, etc. The taxonomy is a hierarchy of subjective classes (people, nature, news) used
to organize image/video in different subjects, such as humor, politic, people, etc. A good
selection of meta-data and taxonomy must incorporate special features of the application
that, in general, represent the first step to create and use a large image/video database.
Obviously, there are many constraints related to the use of these indexes: manual anno-
tation represents a big problem in large databases (time-consuming); the domain of the
application and the personal knowledge bias the choice of these indexes, etc. Unfortu-
nately, the existing indexes are always limited in the sense of capturing the salient content
of an image (“a picture is worth a thousand words”) [11, 14, 44, 3, 7, 20].

Multimedia content analysis and content-based indexing represent together a promis-
ing direction for the above methodology. Many systems that consider image/video queries
based on content have been developed [29, 43, 15, 70, 8, 48, 6]. In the last few years,
progress in image/video searching tools for large database systems has been steady. To
build a query in these tools, one can use sketches, selection of visual features (color,
texture, shape and motion), examples and/or temporal /spatial features.

Concerning video, the indexing problem becomes much more complex, because it



involves the identification and understanding of fundamental units, such as, scene and
shots. Fundamental units can be semantically and physically sub-divided. To decrease
the number of items to index, we may consider the semantic units, the scenes, instead of
consider the physical units (shots). However, due to the non-structured format, the size
and the general content of a video, this indexing is non trivial [58, 15, 70]. Therefore,
automatic methods for video indexing are extremely relevant in modern applications, in
which speed and precision of queries are required. An example of the use of this index
is video browsing, where it is necessary to segment a video in fundamental units without
knowing the nature and type of the video [60]. Another video problem is the detection
of specific events, such as the identification of the instant in which a predator attacks its
“prey” in a documentary video [38, 37].

The World Wide Web presents itself as an enormous repository of information, where
thousands of documents are added, replaced or deleted daily. Among these documents,
there are large image/video collections that are produced by satellite systems, scientific
experiments, biomedical systems, etc.

Thus, the need of efficient systems to process and index the information is unquestion-
able, mainly if we are interested in information retrieval. The most important problem
is associated with the exponential increase of the Internet, and the consequent increase
in the number of duplicated documents. According to [16], 46% of all textual documents
have a duplicate. Considering multimedia documents, the problem is more complicated
because the same documents are spread in several machines around the world to facilitate
download, mainly, due to their size.

The need of video contents analysis tools has led many research groups to tackle this
matter, for which different tools have been proposed. Generally, these tools present the

following processing steps [72]:

e video parsing - temporal segmentation that involves identification of different shots,
and camera operation analysis;
e summarization - simplification of video content to facilitate the video browsing;

e classification and indexing - to facilitate the video retrieval.

Differently from the main works presented in literature, which use dissimilarity mea-

sure concepts for video parsing (as it will be discussed in Chapter 3), in this work, we will



1.1.  Qur contribution 3

consider the problem of video analysis as an image segmentation task. In other words,
the problem of video segmentation will be transformed into a 2D image segmentation
problem, in which the video content is represented by a 2D image, called visual rhythm
(VR). Informally, each frame is transformed into a vertical line on the VR image, as
illustrated in Fig. 1.1(a). Taking advantage of the fact that each event is represented by
a specific pattern in this image, different methods for video analysis based on 2D image

analysis have been proposed in the literature [71, 17, 57, 36].

(a) (b)

Figure 1.1: Video transformation: (a) simplification of the video content by transforma-
tion of each frame into a column on VR; (b) a real VR, obtained by the principal diagonal

sub-sampling (Chapter 4).
1.1  Our contribution

The general aspects of the video segmentation problem based on 2D image analysis has
been already studied in other works, which involve the use of: statistical methods [17],
texture analysis with Markov models [57], texture analysis with Fourier Transforms [1] and
Hough Transforms [42]. However, the computational cost of these approaches is high, and
most important, their results are not satisfactory. In this work we propose new methods
to solve the problem of video segmentation based on 2D image analysis using pre-existing
tools and developing new tools in the domains of mathematical morphology and digital

topology. In Fig. 1.2 we illustrate the general framework of the approach used in this



1.2.  Organization of the text 4

work. Firstly, the video is transformed into 2D images. Operators of image processing

are applied to these images to identify some specific events, like cuts, fades, dissolves and

flashes.

Video
transformation

l

Image Analysis

Detected
Transitions

Y

Figure 1.2: General framework for our approach to the video segmentation problem.

In the following, we enumerate the major contributions of our work:

e development of video transition identification methods that present low rates of false
detection and high rates of correct detection [36].

e definition and exploitation of a new transformation of the video content, named
visual rhythm by histogram. After application of this transformation, it is possible
to identify cuts, fades and flashes [31, 36, 33].

e a new approach to identify gradual video transitions. This approach is based on the
application of a sharpening method [35] .

e a specific method to detect fade [33].

e two methods to detect flashes [36].

1.2 Organization of the text

We use some basic concepts of Mathematical Morphology and Digital Topology (for de-
tailed explanations see [68, 63, 5, 45]). The text is organized as follows.
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Chapter 2 - Video model. We discuss the video model taking into account different

types of transitions and camera operations.

Chapter 3 - Video analysis. We present related works, considering two different

approaches to tackle the video segmentation problem.

Chapter 4 - Video transformation from 2D + ¢ to 1D + ¢. We define a video

transformation in which video events are transformed into image patterns.

Chapter 5 - Introduction for video transition identification. We introduce the
video transition identification problem. We summarize some patterns in which we are

interested, and also the correspondence between the patterns and the transitions.

Chapter 6 - Image analysis operators. We present and define some basic image

operators that will be used in our work.

Chapter 7 - Cut detection. A method for cut detection is presented. It takes ad-
vantage of the fact that each video event is transformed into a specific pattern on the

transformed image.

Chapter 8 - Flash detection. Two methods to identify flashes are presented. One
method is a variant of the cut detection method (Chapter 7) and the other considers a
new approach based on the filtering of a data structure created from statistical values of

the transformed image.

Chapter 9 - Gradual transition detection. Two methods are used to identify grad-
ual transitions. One method considers a natural approach in which a multi-scale analysis
is used. The other method tries to eliminate the gradual transitions by applying a sharp-

ening operator followed by an analysis of the sharp transitions.

Chapter 10 - Specific fade detection. We propose a specific fade detection method.

Here, we use a new video transformation that considers the histogram information.

Chapter 11 - Conclusions and future works. Finally, we conclude by presenting

some future works and discussing the main contributions of our work.



Part 1

Theoretical background



Chapter 2

Video model

Video is a medium for storing and communicating information. The two most important
aspects of video are its contents and its production style [39]. The video content is the
information that is being transmitted, and the video production style is associated with
the category of a video, such as commercial, drama, science fiction, etc. In this chapter,
we will define some of the concepts used in literature (like shot, scene and keyframe).
Also, we will present the most popular types of transitions (like cut, dissolve, fade and

wipe) and types of camera works (like zoom and pan).

2.1 Basic definitions

Let AC N? A ={0,...H—1} x {0,..., W — 1}, where H and W are the height and the

width in pixels of each frame, respectively.

Definition 2.1 (Frame) A frame f, is a function from A to N where for each spatial
position (x,y) in A, fi(z,y) represents the grayscale value of the pizel (z,y) at time t.

Definition 2.2 (Video) A video V, in domain 2D + t, is a sequence of frames f; and

can be described by

V= (ﬁ)tE[O,dur(ztion—l] (21)

where duration is the number of frames contained in the video. The number of frames is

directly associated with the frequency and the duration of visualization. Generally, the

7
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huge amount of information represents a problem for video information storage. Thus,
to facilitate the task, file compression techniques, such MPEG 1, MPEG 2, MPEG 7 and
M-JPEG are normally used. In this work, all videos are compressed in MPEG 1 format.
To obtain information for each frame, we decompress only the specific frame without
decompressing the whole video file. Also, each frame is represented in the RGB (Red,
Green, Blue) color space. To facilitate our analysis, we consider only grayscale images,
in which grayscale values are obtained by a simple operation of averaging of the RGB
values.

A video is typically composed by a large quantity of information that is hard to be
physically or semantically related. This is why there is the need to segment a video.

The video fundamental unit is a shot (defined below) that captures a continuous action
considering the recording by a single camera, where the camera motion (e.g., zoom and
pan) and the object motion are permitted. According to [4], a scene is composed by a
small number of shots. While a shot represents a physical video unit, a scene represents
a semantic video unit. To summarize, a scene is a shot grouping that is composed by a

frame sequence, as illustrated in Fig. 2.1.

Cla 90
Yideno
|
Scene | || ]
" |Scene construction
Sho
Key-frame

Figure 2.1: Video hierarchical representation [61].

Definition 2.3 (Shot [4]) Shot is the fundamental unit of a video, because it captures

a continuous action from a single camera. A shot represents a spatio-temporally coherent
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frame sequence.

Definition 2.4 (Scene [4]) A scene is usually composed by a small number of inter-

related shots that are unified by similar features and by temporal proximity.

Definition 2.5 (Key-frame) A key-frame is a frame that represents the content of a

logical unit, as a shot or scene. This content must be the most representative as possible.

A shot consists of a sequence of frames with no significant change in the frame content.
So, by definition, two consecutive frames belong to the same shot if their content is very
similar (or exactly equal). This is true if fi(z,y) = fir1(z,y) for all ¢ € [1,duration],
where duration means shot size. To study the behavior of consecutive frames, we will
define a 1D image, g, that consists of pixel values fi(x,y) in a spatial position (z,y) at
each time ¢.

The shots can be grouped into many ways according to the desired effect. For example,
when we search for a video that transmits the idea of motion, the shots must change
rapidly. After that, we describe the transition types without considering the subjective

and intentional aspects.

2.2 Types of transitions

Usually, the process of video production involves two different steps [39], shooting and
editing, the former is for production of shots and the later is for compilation of the different
shots into a structured visual presentation. This compilation is associated with the type

of transition between consecutive shots.

Definition 2.6 (Transition) All edition effect that permits the passing from one shot
to another is called transition. Usually, a transition consists of the insertion of a series
of artificial frames produced by an editing tool.

To facilitate the understanding of transition types, we will introduce some notations.
The shot before a transition is denoted by P and the shot after a transition by Q. P(t)
will represent the frame at time ¢ in shot P. The transition between two shots P and @,
denoted by T, begins at time ¢y and ends at time ¢;. A frame T'(¢) represents a frame at

time ¢ in the transition 7', where ¢ €]ty t;].
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The choice of transitions in an editing process is associated with the features and style
of the video. The simplest transitions are cut, dissolve, fade and wipe. These transitions
are usually subdivided into sharp transitions (cuts) and gradual transitions (dissolves,

fades and wipes).

2.2.1 Cut

The simplest transition is the cut, which is characterized by the absence of new frames

between consecutive shots. Fig. 2.2 illustrates an example of the cut.

Definition 2.7 (Cut (sharp transition)) A cut is a type of transition where two
consecutive shots are concatenated, i.e., no artificial frame is created and the transition

18 abrupt.

Figure 2.2: Cut example.

2.2.2 Fade

According to [7], the fade process is characterized by a progressive darkening of a shot
until the last frame becomes completely black, or inversely. A more general definition is
given by [50], where the black frame is replaced by a monochromatic one. Fades can be

subdivided into two types: fade-in and fade-out.

Definition 2.8 (Fade-out) A fade-out is characterized by a progressive disappearing of
the visual content of the shot P. The last frame of a fade-out is a monochromatic frame

G (e.g., white or black). The frames of a fade-out can be obtained by

Ty (t) = a(t) x G+ (1 — a(t)) x P(t) (2.2)

where «(t) is a monotonic transformation function that is usually linear and t € ¢, %o+

duration| where duration represents the duration of the fade.
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Definition 2.9 (Fade-in) A fade-in is characterized by a progressive appearing of the
visual content of the shot Q. The first frame of the fade-in is a monochrome frame G (ex.

white or black). The frames of a fade-in can be obtained by
Ty (t) = (1 —a(t)) x G+ aft) x P(t) (2.3)
Fig. 2.3 illustrates an example of the fade-out.

Figure 2.3: Example of fade-out.

2.2.3 Dissolve

Inversely to the cut, the dissolve is characterized by a progressive change of a shot P into

a shot Q).

Definition 2.10 (Dissolve) A dissolve is a progressive transition of a shot P to a

consecutive shot (Q with non-null duration. Each transition frame can be defined by
Ta(t) = (1 —a(t)) x P(t) + a(t) x Q(t) (2.4)

Fig. 2.4 illustrates an example of a dissolve.

-

Figure 2.4: Example of dissolve.
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2.2.4 Wipe

The wipe is characterized by a sudden change of pixel values according to a systematic

way of chosing the pixels to be changed. Next, two different kinds of wipe are defined.

Definition 2.11 (Horizontal wipe) In a horizontal wipe between two shots P and Q, a
“vertical line” is horizontally shifted left or right subdividing a frame in two parts, where

in one side of this line we have contents of P, and in the other side the new shot ().

Definition 2.12 (Vertical wipe) In a vertical wipe between two shots P and Q, a
“horizontal line” is horizontally shifted up or down subdividing a frame in two parts,
where in one side of this line we have the content of P, and in another side the new shot
Q.

Fig. 2.5 and Fig. 2.6 illustrate the examples of horizontal and vertical wipes, respec-

tively.

Figure 2.6: Example of a vertical wipe (down to up).

2.2.5 Transition classification

In [39, 22], one can find a classification of different types of transitions considering editing

aspects. The classes of transitions are defined as follows:

TYPE 1: IDENTITY CLASS - the editing process does not modify either shot, it does not
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have a geometric model and the duration of this transition is null. The cut is the only

transition of this class.

TYPE 2: SPATIAL CLASS - only the spatial aspect between the two shots is manipulated,
so there is a geometric model and the duration of this transition is not null, but the

duration of a pixel transformation is null. The wipe is an example of this class.

TyYPE 3: CHROMATIC CLASS - only the color space is manipulated without a geometric
model because the whole image is modified at the same time, and the duration of this

transformation is not null. The fade-in, fade-out and dissolve are examples of this class.

TYPE 4: SPATIO-CHROMATIC CLASS - both color space and spatial aspect are manipu-

lated. The morphing is a kind of this class.

2.3 Camera work

The basic camera operations [2], as illustrated in Fig. 2.7, include: panning - camera
horizontal rotation; zooming - varying of focusing distance; tracking - horizontal traverse
movement; booming - vertical traverse movement; dollying - horizontal lateral movement;
tilting - vertical camera rotation.

Generally, panning and tilting are used to follow moving objects without changing the
location of the camera. Zooming indicates a change in “concentration” about something.
Tracking and dollying often represent a change in viewing or following moving objects

with a camera motion. Fig. 2.8 illustrates an example of a zoom-in.

2.4 Conclusions

In this chapter, we have shown some transition types used in video editing, like cut,
dissolve and fade. We also have shown the most common camera operations, like zoom
and pan. The choice of the events in the video process creation reflects the target of the

video, and also the video style. The event identification (camera operation detection and
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Dollying

Tracking

Tilting
Booming

Figure 2.7: Camera basic operations.

3

Figure 2.8: Example of zoom-in.

transition detection) is an enormous and promising domain of study. In this work, we

consider only the transition detection problem.



Chapter 3

Video analysis

Excellent works can be found in literature which summarize and review the main video
problems and the way to cope with them [53, 12, 72, 7]. In general, the first step in video

analysis is video parsing, which can be divided in:

e video segmentation, which consists in dividing the video in fundamental units ac-

cording to the semantic level considered, like shot, scene, etc;

e camera work analysis, which consists in identifying camera operations, like zoom

and pan;

e key-frame extraction, which consists in identifying the representative frames of each

fundamental unit.

Following the parsing, other tasks can be considered, like classification, summarization
and indexing. Classification is concerned with separating scenes or shots in different
classes. According to [72], summarization is essential in building a video retrieval system
where we need to have compact video representations to facilitate browsing. And finally,
video indexing is fundamental for querying large video databases, where the quality and
speed of responses depend on the video descriptor used in the indexing phase.

Usually, video problems are basically related to the analysis of visual features, such as,
color, texture, shape and motion. In this work, we will review some of the most popular
methods to cope with video segmentation problem and we will describe some quality

measures that can be used to compare different methods related to video parsing.

15
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3.1 Video segmentation

The video segmentation problem can be considered as a problem of dissimilarity between
images (or frames). Usually, the common approach to deal with this problem is based
on the use of a dissimilarity measure which allows the identification of the boundary
between consecutive shots. The simplest transitions between two consecutive shots are
sharp and gradual transitions [39]. A sharp transition (cut) is simply a concatenation of
two consecutive shots. When there is a gradual transition between two shots, new frames
are created from these shots [39].

In the literature, we can find different types of dissimilarity measures used for video
segmentation, based on different visual features, such as pixel-wise comparison, histogram-
wise comparison, edge analysis, etc. If two frames belong to the same shot, then their
dissimilarity measure should be small, and if two frames belong to different shots, this
measure should be large, but in the presence of effects like zoom, pan, tilt and flash,
this measure can be affected. Hence, the choice of a meaningful measure is essential
for the quality of the segmentation results. Another approach to the video segmentation
problem is to transform the video into a 2D image, and to apply image processing methods
to extract specific patterns related to each transition. In Fig. 3.1, we illustrate a diagram
that represents the main approaches for video segmentation which are subdivided into
dissimilarity measures and 2D image analysis. In the next sections we will discuss these

approaches and, also, their features and limitations for video segmentation.

3.1.1 Approaches based on dissimilarity measures

The use of dissimilarity measures is based on the following hypothesis: “Two or more
frames belong to the same shot if their dissimilarity measure is small’. The definition of
dissimilarity measures is a bit fuzzy, and it usually depends on the type of visual feature
used to compare two or more frames. Visual features can be broadly classified into four

categories: color, texture, shape and motion.
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Color-based

Texture-based

Dissimilarity measure

Shape-based

Video < Motion-based

Image-based

Figure 3.1: Two different approaches for video segmentation.

3.1.1.1 Visual features

In what follows, we describe the visual features and make some important remarks about

the most popular methods for video segmentation.

Color-based. The color information is an important image content component, because
it is robust with respect to object distortion, object rotation and object translation [66].
The simplest approach used for video segmentation is based on pixel-wise comparisons
between corresponding pixels in consecutive frames. In [79], a simple technique is defined
to detect a qualitative change in the content between two consecutive frames. The sensi-
bility to camera motion represents a problem of this technique, but this influence can be
minimized by the use of a smoothing filter. Another pixel-wise dissimilarity measure is
associated with the average of the pixel difference between two consecutive frames.
Typically, the image color information is represented by an image histogram [6]. The
image histogram (Hy) with color in the range [0, L — 1] is a discrete function p(i) =
n;/n, where i is a color of a pixel, n; is the number of pixel in the image f with color
7, n is the total number of pixels in the image and i = 0,1,2,...,L — 1. Generally,
p(i) = n;/n represents an estimation of the probability of color occurrence i. Taking
advantage of the global information and the invariance to rotation and translation, some
dissimilarity measures based on histogram can be found in [79, 7, 69, 46], among them, are
the histogram intersection and the histogram difference. Another possibility to use color
information is based on statistical measures. [65] used some measures for cut detection,

like the x? test. Also, with the purpose to reproduce the creation process of the gradual
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transition from mathematical equations, [26] studied the behavior of gradual transitions,
as fades and dissolves, but his method fails in small transitions (transitions with duration

smaller than 15 frames).

Texture-based. Texture is an important element for the human visual system that
helps to provide in a scene the idea of depth and orientation of surfaces. The texture
feature represents a very important descriptor of natural images, and is also related to a
visual pattern with some homogeneity property [19, 24, 40, 18, 21, 51].

Other representations for texture information include Markov random fields, Gabor
transforms and wavelet transforms [49]. For video segmentation based on texture, [73]

used wavelet transform for cut detection.

Shape-based. Shape is an important criterium to characterize objects and it is related
to their profile and their physical structures [9, 55, 67, 27, 59]. Its use is more frequent
where the image objects are similar to color and texture, as is the case of medical images.
In image retrieval applications, the shape feature can be considered as global or local.
Some global features are symmetry, circularity and central moments. Local features are
associated with size and segment orientation, curvature points, curve angles, etc.

As for image retrieval, we can use the local features as dissimilarity measures for video
segmentation. Some works consider edge analysis for event detection [75, 76, 77|, this
technique is associated with the number of edges that appear and disappear in consecutive
frames, but this method is very costly with respect to computational time due to the
computation of edges for each frame of the sequence. From this method, it is possible to

detect fades, dissolves and wipes.

Motion-based. Motion can be considered the most important attribute of a video. Two
approaches can be considered for motion-based video segmentation: blocking matching
and optical flow [41]. The motion-based video segmentation is related to the change of the
motion model in consecutive shots. From this approach, high-level features that reflect
camera motions such as panning, tilting and zooming can be extracted (as we will see in

Sec. 3.2).
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3.1.1.2 General frameworks for video segmentation

With the aim of increasing the robustness of the results for video segmentation, some
techniques can be applied to different approaches, i.e., we can apply the same process to
different dissimilarity measures. In the original papers, the presented techniques were ap-
plied only to a specific dissimilarity measure, but we can easily extend to other measures.

So, we will present these techniques without considering specific measures.

Block-comparison [56, 79]. Instead of computing dissimilarity measures directly from
all pixels of the image, the images are divided in blocks and these measures are computed
for each pair of blocks in consecutive frames. Afterwards, we perform an analysis of the
number of blocks that present a dissimilarity measure greater than a threshold. This

technique is more robust to local motions and to noise than pixel-wise comparison.

Post-filtering [22, 31]. This technique is based on the filtering of the dissimilarity
measures computed on the video. Firstly, the dissimilarity measure is computed. Sec-
ondly, a filter is applied to the 1D image (resulting of the computation of the dissimilarity
measure). And finally, a thresholding is applied. This technique can be used to decrease

the number of false detections and to detect some patterns in the 11D image.

Twin-comparison [79]. Considering that in gradual transitions the dissimilarity mea-
sures between two transition frames are greater than the dissimilarity measures of frames
in a same shot, two different thresholds can be considered T;, and T. T, > T} are set for
cut and gradual transitions, respectively. If a dissimilarity measure d(i,i+ 1) between two
consecutive frames satisfies T, < d(i,7 + 1) < T}, then potential start frames for gradual
transitions are detected. For every potential frame detected, an accumulated comparison
A7) = > d(i,i+ 1) is computed if A(i) > T, and d(i,7 + 1) < T,. The end frame of the

gradual transition is declared when the condition A(i) > Ty is satisfied.

Plateau-method [74]. With the objective of detecting gradual transitions, instead of
calculating dissimilarity measures between two consecutive frames, these are calculated
between two frames at time ¢ and ¢t + k, where k depends on the duration of the transition

to detect.
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The choice of a framework and dissimilarity measures, depends on the time constraints
and the expected quality of the results. Usually, for cut detection, the methods that use
pixel values and statistical measures are the fastest, but the best results are obtained by
histogram analysis, where both can consider the block comparison and/or post-filtering.
For gradual transitions, the histogram twin-comparison is the most indicated, because the

plateau-method is highly dependent on the maximum duration permitted for a transition.

3.1.2 Image-based

When we work directly on the video, we have to cope with two main problems: the
high processing time and the choice of a dissimilarity measure. Looking for reducing
the processing time and using tools for 2D image segmentation instead of a dissimilarity
measure, we can transform the video into a 2D image (as we will see in Sec. 4).

The image-based approach for video segmentation is based on transforming the video V
into a 2D image, called VR, and applying image processing methods on VR to extract the
specific patterns related to each transition. Informally, each frame is transformed into a
vertical line of VR, as illustrated in Fig. 3.2(a). This approach can be found in [71, 17, 57].
[71] defined the X-ray and Y-ray as the result of a video transformation obtained by a
linear image transformation in each axis, and an edge analysis was performed to detect
cuts. They also cited another video transformation based on the intensity histogram,
but it was not well defined and not exploited. [17] defined the visual rhythm and [57]
defined the spatio-temporal slice, both related to the same video transformation and
a sub-sampling of each frame, like the principal diagonal sub-sampling (illustrated in
Fig. 3.2(b)). [17] used statistical measures to detect some patterns, but the number of
false detections was very high. [57] used Markov models for shot transition detection,
but it fails when the contrast is low between textures of consecutive shots. Statistical

measures are used in [17, 23] for cut, wipe, fade and dissolve detection.

3.2 Camera work analysis

Camera operations represent the effects controlled by the camera man with the intention

of following objects and/or changing the “concentration” on an object. In this work, we
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(a) (b)

Figure 3.2: Video transformation: (a) simplification of the video content by transforma-
tion of each frame into a column on VR; (b) a real example of the principal diagonal

sub-sampling.

consider only camera operation presence, such as zooming and panning.

Nowadays, the main direction of research on estimating camera operations is the
optical-flow-based approach which consists of two main steps [52]: computing the optical
flow in a frame and analyzing the optical flow to extract camera operations. According to
[52], this approach has two major faults in practice: it is generally time-consuming and it
may be generally affected by noise, such as unintentional camera vibration and flashlight
presence. With the purpose of eliminating these faults, [52] presented an approach to
extract camera operations based on X-ray and Y-Ray images, and texture analysis, where
the movement can be estimated by investigating the directivity of the textures by 2D
Discrete Fourier Transform. [46] considered the result of the 2D fast Fourier Transform
as an input for a multilayer perceptron neural network, which will detect the camera
operations.

Another method to extract camera operations is presented in [1]. In this method,
called Video Tomography Method (VTM), tomographic techniques are applied to video
motion estimation, allowing the visualization of the structure of motion. The VTM is

based on spatio-temporal processing of video. Informally, two spatio-temporal images,
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the X-ray and Y-ray are computed by horizontal and vertical sub-samplings. Afterwards,
an edge filter is applied with the objective of enhancing of the edges, in particular, a
first order derivative is used. Finally, the Hough Transform is applied to extract zoom
and pan. The purpose of this step is to combine the two main stages of the classical
camera operation detection problem, the matching procedure and the estimation process.
[42] used also Hough Transform, but differently from [1], the edge detection step was
eliminated. According to [42], its results for motion detection are better than those
presented in [1].

The utilization of DF'T and Hough Transform to detect specific patterns is interesting,

but the parameter analysis is difficult and the computational cost is relatively high.

3.3 Quality measures for video analysis

The increase in the number of methods for video parsing makes the choice between them
very difficult. In order to find the best method, it is necessary to use the same evaluation
criteria for different works. What follows, we describe some of the metrics found in
literature that are used to characterize the video segmentation quality.

Generally, the goal of quality measures is to verify the performance of methods in
detecting different events in the video. An event can involve transitions like cut, dissolve,
wipe and camera operations like zoom, pan and tilt.

In this work, we define two new measures: robustness, which allows one to analyse the
sensitivity of a transition detection method relative to a threshold; and gamma measure,
which sets a compromise between the number of correct and false detections. We also

present a quantitative analysis of the results.

3.3.1 Quantitative analysis

We denote by # Events the number of events (cuts, fades, flashes, etc.), by #Corrects the
number of events correctly detected, by # Falses the number of detected frames that do
not represent an event and by #M1isses the number of the events that were not detected,
defined by #Misses = #FEvents — #Corrects. From these numbers we can define two

basic quality measures.
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Definition 3.1 (Recall, error and precision rates) The ratio of number of events
correctly detected to the number of events is called the recall rate. The ratio of number
of events falsely detected to the number of events is called the error rate. The ratio of
number of events correctly detected to the sum of correctly and falsely detected is called

the precision rate. These rates are given by

o= —ZCEO:ZZ';ZS (recall) (3.1)
8= e (error) (3:2)

C ..
0= #Cor#fecizjre:z;alses (pTGCZSZOTL) (33)

3.3.2 Threshold sensitivity

Let 7 be the threshold used for transition detection within the range [0,1]. Let a(r)
and ((7) be the recall and error, respectively, with respect to a given threshold 7. If we
consider that for each threshold 7 we obtain different values for o and 3, we can represent
these relations as functions «(7) and 3(7), respectively. A new measure can be created
to relate ranges in which « and [ are adequate, according to the allowed percentages of

misses and false detections.

Definition 3.2 (Robustness) Let a(7) and 3(1) be the functions that relate the thresh-
old to recall and error rates, respectively. Let P, and Py be the percentage of miss and
false detection that are allowed. The robustness p is a measure related to the interval
where the recall and error rates have values smaller than (1 — Py,,) and Py, respectively.

This measure is within the range [0, 1] and is given by

-1 B  pel . 1 B a1
w(Pu Py = 1° (1—Pn)—B7HPy) , if a1 —Py)—B7Y(P) >0 -
0 , otherwise

where a1 and 37! are the inverses of the functions a(7) and 3(7), respectively. Here, the
result of the inverse functions is the rate of recall and error that are related to threshold,
respectively. In Fig. 3.3, we illustrate the robustness measure obtained from functions a(r)

and (7). Usually, it is expected that the results of the methods present the characteristics
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of the graphic illustrated in Fig. 3.3, because it is desired to correctly detect events with

a “small” number of false detections.

~ Robustness (v)

Recall (o)

Percentage of detection

Threshold

Figure 3.3: Robustness (u) measure.

Next, we define two other measures, I, and Ry, that are associated with the absence

of miss and false detection, respectively.

Definition 3.3 (“Missless” error) The missless error E,, is associated with the per-
centage of false detection when we have results without miss (a “small ratio” of miss P,

can be permitted, like 3% ). The missless error is given by

En(Py) = 6(0471(1 — Pn)) (3.5)

Definition 3.4 (“Falseless” recall) The falseless recall Ry is associated with the per-
centage of correct detection when we have results without false detection (a “small number”

of false detection Py can be permitted, like 1%). The falseless recall is given by

Ry (Py) = (37 (Py)) (3.6)

When we use methods for video parsing, we expect the recall to be the highest when
error rate is the smallest. To find the best compromise between these two requirements,
we must define a “reward function” by combining «(7) and 3(7). Since high values of «

and low values of # should be rewarded, the function a(7) x (1 — (7)) is a natural choice.
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Definition 3.5 (Gamma measure) The gamma measure vy represents the maximal

value of the reward function defined above for all possible values of T:

v = mar{a(T) x (1 = B(7))|r € [0,1]} (3.7)

The gamma measure could also be defined as the area between the two curves, o and
£, but this measure is not exploited in this work. The quality of the results is associated
with the values of the measures above defined.

To declare that a method A is better than a method B, it is necessary to evaluate
the quality measures defined previously, for example, A is better than B if the values of
robustness, falseless recall and gamma measure of A are higher than the values of B, and if
the values of missless error of A is smaller than B. If these considerations do not occur for
all measures, then we need to consider the features more important for the application. To
generalize, the highest values of robustness, falseless recall and gamma measure represent
the best results of a method. The lowest values of missless error represent the best results

of a method.

3.4 Conclusions

In this chapter, we enumerated some video problems and we described how we can cope
with these problems. Also, we described some quality measures used in video analysis to
compare different methods.

For the video segmentation, we presented two approaches, dissimilarity-measure-based
and image-based. Due to the problem of choice a dissimilarity measure, and the possibility
of using 2D image segmentation, we will transform the video segmentation problem into
a problem of 2D image segmentation without consider dissimilarity measures (as we will

see in Chapter 4).



Chapter 4

Video transformation from 2D +¢ to

1D+t

Usually, the shot transition detection is the first step in the process of automatic video
segmentation and it is associated with the detection of a cut and gradual transitions
between two consecutive shots [39]. In this chapter, we transform the video segmentation
problem into a 2D image segmentation problem, taking advantage of the observation that
each video event is represented by a specific pattern in this image. We present the main
patterns found in this image making a correspondence with the video events. We also
discuss about the proposed approaches to solve the problem of image segmentation using
morphological and topological tools, without the need of defining a dissimilarity measure
between frames. In this way, we can use a simplification of the video content, called visual
rhythm, where the video segmentation problem, in the 2D +¢ domain, is transformed into
a problem of pattern detection, in domain 1D+ ¢. So, we can apply methods of 2ID image
processing to identify different patterns on the visual rhythm because each video effect
corresponds to a pattern in this image, for example, each cut is shows up as a “vertical

line” on the visual rhythm.

4.1 Visual rhythm by sub-sampling

The visual rhythm obtained by sub-sampling (or simply visual rhythm) is a simplification

of the video content represented by a 2D image. This simplification can be obtained by a

26
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systematic sampling of points of the video, such as, extraction of points in the diagonal

of each frame.

Definition 4.1 (Visual rhythm [17] or spatio-temporal slice [57]) Let V =
(f) te[0.duration—1] be an arbitrary video sequence, in domain 2D +t. The visual rhythm, in
domain 1D +t, is a simplification of the video in which each frame f; is transformed into

a vertical line of the visual rhythm image VR, defined by

VR(t,z) = fi(ry X z+a,ry X z+b)

where z € {0,...,Hygr — 1} and t € {0, ..., duration — 1}, Hyr and duration are, respec-
tively, the height and the width of the visual rhythm, r, and r, are pixel sampling ratios,
a and b are spatial offsets on each frame. Thus, according to these parameters, different
pixel samplings could be considered, for example, if r, = r, = 1 and a = b = 0 and
H = W then we obtain all pixels of the principal diagonal. If r, = 1 and r, = 0 and
a =0 and b = W/2 then we obtain all pixels of the central horizontal line. If r, = 0 and
r, =1 and ¢ = H/2 and b = 0 then we obtain all pixels of the central vertical line, etc.

In Fig. 4.1, we show 4 different examples of the pixel samplings.

Figure 4.1: Example of pixel samplings: D1 is the principal diagonal, D2 is the secondary

diagonal, V is the central vertical line and H is the central horizontal line.

4.1.1 Pattern analysis

The choice of a pixel sampling constitutes an important problem since different samplings

produce different visual rhythms in which video events (cuts, fades, flashes, etc) will
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appear as different patterns. Unfortunately, depending on the type of visual rhythm,
this correspondence is not a one-to-one relation, i.e., a cut transition corresponds to a
vertical line, but a vertical line is not necessarily a cut. This problem can be solved
by considering visual rhythms obtained at different pixel sampling rates. Afterwards,
a simple intersection operation between these results may be used to correctly identify

sharp video transitions.

Figure 4.2: Examples of visual rhythm by principal diagonal sub-sampling: (a) video
“0132.mpg”; (b) video “0599.mpg” and (c) video “0117.mpg”.

Fortunately, in general, we need to use only the visual rhythm obtained by principal
diagonal sampling because the correspondence problem rarely occurs in practice. Further-
more, the visual rhythm represents the best simplification of the video content, according
to [17]. [17] presented different pixel sampling possibilities with their corresponding vi-

sual rhythms. The authors mention that the best results are obtained when sampling
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is based on a diagonal because it usually contains both horizontal and vertical features.
In Fig. 4.2, we show examples of visual rhythms obtained by the principal diagonal sub-
sampling. Another example of visual rhythm is shown in Fig. 4.3, where we illustrate
two visual rhythms obtained from the same video but with different pixel sampling rates.
In these cases we use the principal diagonal (Fig. 4.3-top) and the central vertical axis
(Fig. 4.3-bottom) samplings. We can observe that there are “vertical lines” in Fig. 4.3-
bottom that do not correspond to a sharp video transition but all sharp video transitions

correspond to “vertical lines” on the visual rhythm.

Figure 4.3: Visual rhythm obtained by a real video using different pixel sub-samplings:
principal diagonal (top) and central vertical line (bottom). The temporal positions of the

cuts are indicated in the middle image.

In Fig. 4.4, we illustrate the correspondence between visual patterns and video events.

Next, we analyse the different kinds of patterns on the visual rhythm by sub-sampling.

Sharp image transitions. The notion of sharp transitions on the visual rhythm de-
pends on the human visual perception. For example, in Fig. 4.5, we illustrate vertical
sharp transitions and an inclined sharp transition. According to the type of visual rhythm,
this pattern can be generally associated with cuts and wipes. On the visual rhythm by
principal diagonal sub-sampling, for example, all cuts are represented by vertical tran-
sitions, but some vertical transitions can be related to diagonal wipes. In practice the
correspondence problem is irrelevant because the number of wipes is typically consider-

ably smaller than the number of cuts. So, the cut detection can be related to detection



4.1. Visual rhythm by sub-sampling 30

_____ - Video .
Transformation

Image
_____ & Analysis
R . Y S ,__\_‘_k____, ‘-:‘:“_‘L_____,
, Funnele | y o Shifted | i Wertical sharp 1 Oblique sharp
! Region | ! Region | ! transition | I transition !

o oE o=l [
| Light vertical | | Gradual |
I lines : I transition :
|__J7____ J I

|
|
:"-._
|
|
|
|
|
I
|
|
|
|
|
|
I
|
|
|
|
:
l
I
|
|
|
|
|
,_
|
|
|
7Z
|
|
|
|
|
o
11
2
8

Event

Figure 4.4: Block diagram for video segmentation using visual rhythm by sub-sampling.

of vertical transition lines, and the wipe detection can be associated with the detection
of inclined sharp transitions, both considering the visual rhythm by principal diagonal

sub-sampling.

Gradual image transitions. The gradual image transitions can only be found in visual
rhythm by sub-sampling (for all types of sub-samplings) and are associated with dissolves
and fades. These two types of video events are differently represented on the visual
rhythm. While the pattern related to the fade is a gradual image transition between
a monochrome region and a non-monochrome region, the dissolve is represented by a
transition between two non-monochrome regions. In Fig. 4.6, we show examples of these

gradual image transitions.

Light vertical regions. Depending on the change of luminosity in a video, light vertical
regions appear on the visual rhythm by sub-sampling. Usually, these regions can represent
video effects as the presence of flashes. In Fig. 4.7, we illustrate some examples of light

vertical regions.
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Figure 4.5: Examples of sharp transitions in the visual rhythm by sub-sampling (a-c)

vertical sharp transitions, and (d) inclined sharp transition.

(d)

Figure 4.6: Examples of gradual transitions present in the visual rhythm.

|
I

Figure 4.7: Examples of light and thin vertical regions present in the visual rhythm.
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Deformed regions. The definition of a deformed region is a high-level concept, and
in the visual rhythm by sub-sampling, a deformation is only considered in regard to
time axis and can be represented by funneled, expanded and shifted regions. These
regions can be related to camera operations like zoom-in, zoom-out and pan, and also to
object movements. Some methods which consider these kinds of patterns can be found in

[1, 42, 52]. In Fig. 4.8, we illustrate some examples of the deformed regions.

(a) (b) (c)

Figure 4.8: Example of deformed regions present in the visual rhythm: (a) shifted region

(pan); (b) expanded region (zoom-in); and (c¢) funneled region (zoom-out).

4.2 Visual rhythm by histogram

To take advantage of the properties of the image histogram, such as global information,
invariance to rotation and translation, we define here a new video transformation, called
visual rhythm by histogram (VRH), where the video is transformed into a 2D image
containing information of the histogram of each frame. Consider a partition of N in L

intervals Iy - - - Ir_; called bins. A histogram Hy, of an image f; is given by

Hy, (i) = #{(z,y) | filz,y) € L}

where # X denotes the cardinality of a set X.
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(c) (d)

Figure 4.9: Real examples of visual rhythm by histogram: (a) video “0094.mpg”; (b)
video “0136.mpg”; (c) video “0132.mpg” and (d) video “0131.mpg”.

Definition 4.2 (Visual rhythm by histogram (VRH)) Let V = (f),c(0.quration-1) 0
an arbitrary video, in domain 2ID + t and (Hft)te[o duration—1] the sequence of histograms
of luminance computed from all frames of V. The visual rhythm by histogram VRH is

a 2D representation of all frame histograms where each vertical line represents a frame
histogram, VRH is defined by

VRH(t, z) = Hy,(2)

where ¢ € [0, duration — 1] and z € [0, L — 1], duration is the number of frames and L the
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number of histogram bins. The main problem of this representation is associated with
the transformation of all histogram values into grayscale values. The simplest way for
histogram representation is obtained by normalization of each histogram independently.
Another possibility is the truncation of the values greater than G — 1, where G is the
number of grayscales. Due to the loss of information in the representation by truncation,
we chose the histogram normalization to represent the visual rhythm by histogram. Fur-
thermore, this normalization produces a filtering effect on the weakest histogram values,
which mainly occurs when most pixels are grouped in only few bins. In fact, this kind
of filtering is desirable for our application. In Fig. 4.9, we illustrate an example of visual

rhythm by histogram where each value of the histogram is in the range [0, 255].

4.2.1 Pattern analysis

In Fig. 4.10 we illustrate the correspondence between the visual patterns and the video

events.
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Figure 4.10: Block diagram for video segmentation using visual rhythm by histogram.

Sharp image transitions. Considering the visual rhythm by histogram the correspon-

dence between vertical transitions and cuts is a one-to-one relation. Unfortunately, the
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computational time to obtain the visual rhythm by histogram is greater than the visual
rhythm by sub-sampling. Also, the fade detection can be associated with the detection
of the inclined sharp transitions in the visual rhythm by histogram, but these transitions
can also be interpreted as deformed regions. In Fig. 4.11, we illustrate some examples of

the sharp image transitions in the visual rhythm by histogram.

Figure 4.11: Real examples of sharp transitions present in the visual rhythm by histogram.

Orthogonal discontinuities. Usually, the images corresponding to the frames of a
same shot have the same characteristics, but the presence of a flash, for example, produces

an effect of discontinuity towards the time axis. This effect can be visualized in Fig. 4.12.

-
Bibi

Figure 4.12: Examples of orthogonal discontinuities present in visual rhythm by his-

togram. Both contain flashes.

Deformed regions. Three types of deformed regions are found: expanded regions,
funneled regions and fuzzy regions. Differently from the deformed regions in the visual
rhythm by sub-sampling which represent camera operations, here they are associated

with gradual transitions. The expanded and funneled regions are both related to fade
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transitions, and the fuzzy regions correspond to the dissolve transitions. In Fig. 4.13, we

illustrate some examples of the deformed regions on the visual rhythm by histogram.

(a) (b)

Figure 4.13: Examples of deformed regions present in the visual rhythm by histogram:

(a) corresponds to a fade and (b) to a dissolve.

4.3 Conclusions

According to the video transformation from 2D + ¢ to 1D + ¢, the video events are repre-
sented by specific patterns in the image, visual rhythm, obtained by this transformation.
In this chapter, we described some of the main patterns present in the visual rhythm. Also,

we presented the correspondences between the video events and the different patterns.
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Video transition identification by 2D

analysis
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Chapter 5

Introduction for video transition

identification

The video segmentation problem can be considered a problem of dissimilarity between
images (or frames). As described in Chapter 4, an approach to cope with the video
segmentation problem is to transform the video into a 2D image, and to apply image
processing methods to extract the specific patterns related to each transition (or each
video event). In this sense, we summarize the main patterns existing in the visual rhythm

by sub-sampling in which we are interested to identify:

e Sharp vertical image transition (SVIT) - the identification of this pattern corre-
sponds to the identification of video cuts;

e Light vertical image transition (LVIT) - the identification of this pattern corresponds
to the identification of flashlight (or simply flash) in video;

e Gradual vertical image transition (GVIT) - the identification of this pattern corre-

sponds to the identification of gradual video transitions, like fade and dissolve.

Fig. 5.1(a) illustrates the framework for video segmentation based on visual rhythm
by sub-sampling. The identification of SVIT and GVIT is associated with the problem
of boundary identification. The boundary identification represents an interesting and dif-
ficult problem in image processing, mainly if two flat zones (regions) are separated by a
fuzzy region (gradual transition). The most common gradient operators like Sobel and

Roberts [28] work well for sharp edges. Unfortunately, the identification of SVIT is not
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done by the simple application of these techniques. Thus, we consider a gradient operator
to identify sharp transitions as the first step of our methods. Afterwards, some mor-
phological and topological tools are considered to finally identify sharp video transitions.
This method is described in Chapter 7. The LVIT disturbs the identification of video
transitions. In Chapter 8, we discuss about these patterns proposing two methods to

detect them.

R by sub- VR by
sampling histogram

Sharp vertical Inclined edge
line analysis analysis

Gradual vertical Gradual

region analysis transitions
Light vertical Sharp vertical
line analysis line analysis

(a) (b)

Figure 5.1: Block diagram for event detection from (a) visual rhythm by sub-sampling

and (b) by histogram in which we are interested.

The above operators unfortunately fail considerably for gradual transitions. The grad-
ual transitions can be detected by a statistical approach proposed by Canny [13]. Another
approach to cope with this problem is through mathematical morphology operators which
include, for example, the notion of thick gradient and multi-scale morphological gradient
[68]. From this approach, and depending on the size of the transition and its neighboring
flat zones, this transition cannot be well detected (as we will see in Chapter 9). To face
this problem, we will try to eliminate these gradual transitions by a sharpening process
which does not change the number of flat zones of the original image. Thus, in Chapter 9,
we propose two different methods to identify gradual video transitions: a method based

on a multi-scale analysis and another one based on a sharpening process.
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If we consider another video transformation, the visual rhythm by histogram, we can

summarize its main patterns:

e Sharp vertical image transition (SVIT) - the identification of this pattern corre-
sponds to the identification of video cuts;
e Inclined lines (IL) - the identification of this pattern corresponds to the identification

of video fades.

Fig. 5.1(b) illustrates the framework for video segmentation based on visual rhythm by
histogram in which we are interested. To identify the SVIT of this transformation, we can
use the same approach used in visual rhythm by sub-sampling. The necessity to identify
the IL pattern is that sometimes, we need to classify the gradual video transitions, for
that, a method to differentiate a dissolve and a fade is necessary, in this sense, we propose,
in Chapter 10, a specific method to identify only fade transitions. Before describing our

methods, we introduce some basic image operators in the next chapter.

5.1 Description of the corpora

Nowadays, our video database contains approximately 500 videos with approximately 30
seconds each one, having different video events as zoom, tilt, flash, dissolve, fade, cut,
camera motion, object motion, wipe, etc. These videos were downloaded from different
websites. All videos are stored in MPEG 1 format. For each method, we choose different
corpus of videos depending on the video features, this choice was subjective. The number
of videos used for each experiment was associated with the quantity of videos with features
in which we were interested. This thesis has a CD-ROM containing some of the videos

used in the examples.



Chapter 6

Image analysis operators

In this chapter, we describe the basic image operators that are used in this work. These
operators are defined in the mathematical morphology, digital topology and discrete ge-

ometry domains.

6.1 Mathematical morphology

In this section, we describe some basic morphological operators used in this work (see

(68, 63] for more details).
6.1.1 Basic operators

Let B be a flat structuring element (SE) and its homotetic representation (AB = {\b | b €
B}, A > 0), such that the size A represents the radius of the SE.

Definition 6.1 (Morphological gradient [68, 63]) Let 0, and ¢, be the dilation and
erosion operators with a structuring element B of size n, respectively. The morphological

gradient p, of size n is defined by
Pn = 0p — €n (61)

The morphological gradient, also called thick gradient, gives the maximum variation
of the function in a neighborhood of size n (square or line neighborhood). If n equals the
width of the transition between regions of homogeneous grayscale values, the morpholog-
ical gradient will output the contrast value between these regions. However, the output

of this gradient is represented by thick edges.
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Another interesting morphological operator that extracts light regions of the image,

smaller than a certain structuring element (SE), is the white top-hat, defined next.

Definition 6.2 (White top-hat [68, 63]) Let v, be an opening by a structuring element
B of sizen (v, = 0pen). The white top-hat WTH,, of size n corresponds to the residue of
the opening, and is defined by

WTH, = Id — ~, (6.2)

13 2

where Id is the identity operator, “—” represents either the binary or grayscale values
difference for binary and grayscale images, respectively.

The white top-hat represents the residues of the application of an opening with a
specific size of SE. Another operator can be considered if we replace the opening by the

erosion in a white top-hat definition. This new operator is called inf top-hat [22].

Definition 6.3 (Inf top-hat [68, 63]) Let ¢, be an erosion by a structuring element B
of size n (e,). The inf top-hat ITH, of size n corresponds to the residue of the erosion,
and is defined by

ITH, = Id — ¢, (6.3)

Another important operator, the ultimate erosion, that will be explored in this work,
is associated with the simplification of images. The ultimate erosion indicates the moment

in which a connected component disappears. Its definition is given next.

Definition 6.4 (Ultimate erosion [68, 63]) The ultimate erosion represents the set
of all components of an image that disappears from one erosion step to the other, when

we consider increasing SE. It is defined for binary and grayscale images as follows.
ULT(X) = | e ™ (NG [ V(0] (6.4)

ULT(f) = {1 (f) = Goyoo o a0 (O]} (6.5)

where G is the morphological reconstruction by dilation operator [68, 63].
If we generalize the concept of white top-hat to a range of SE, then we can define

morphological residues, which are described in detail in the next section.
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6.1.2 Morphological residues

The morphological residues characterize the information extracted from an image by con-
sidering a set of granulometric transformations. The residues are given by the difference

between two consecutive granulometric levels, as follows:

Definition 6.5 (Morphological residues [54]) Let (¢\)x>0 be a granulometry. The
morphological residues, Ry, of residual level X are given by the difference between the

result of two consecutive granulometric levels, that is,

VA >1,X € RN Ry(X) = ¢hr_1(X)\a(X) (6.6)
VA > 1, f e RY. RA(f) = vaca(f) — () (6.7)

where X and f represent binary and grayscale images, respectively. The morphological
residues represent the components preserved at level (A — 1) that are eliminated at the
granulometric level \.

According to the transformation v, the set of residues corresponding to (Ry)a>1 con-
tains the complete granulometric information and defines a complete hierarchical repre-
sentation of an image in the sense that the original image can be exactly reconstructed

from its residues: for the binary case, we have

X =JRa(x) (6.8)

A>1

and, for the grayscale case,

f= ZR)\(f) (6.9)

A>1

An image can be completely decomposed into morphological residues. Here, we con-
sider this decomposition for the morphological gradient image in order to study the behav-
ior of its single domes, that is, we will verify if a single dome in the morphological gradient
image corresponds to a n-transition in the original image. To facilitate the analysis of

this decomposition, we consider the residue mapping [47].

Definition 6.6 (Residue mapping [47]) Let g be a 1D image. We denote by (Rx)x>o0

the family of morphological residues of g. Let M be a set of regional maxima of 1D image
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g. For all points p € M, we define a residue mapping, M, as follows

M(p) = Mi(p), Ma(p),- -, Ma(p)) where
1, if Ri(p) > 1

M, = o 6.10
PN 0 iR =0 (010

where A represents the last level in which the morphological residues are greater than

Z€ETro.
6.1.3 Multi-scale gradient

A gradient model proposed by Soille can be represented by the block diagram in Fig. 6.1.
According to this model [68], the problem of thickness introduced by the morphological
gradient is avoided by the application of erosions on the thick image. To avoid the merge

of boundaries, a white top-hat is applied to the thick gradient before the erosion operation.

Definition 6.7 (Soille’s morphological gradient [68]) The morphological gradient

at scale n is given by:

P =pn % L) WTHypy (6.11)

where p,,, £(,—1) and WTH,, represent the thick gradient of size n, the erosion of size n —1
and the white top-hat of size n, respectively. L represents a thresholding operation. To
compute a multi-scale gradient at scale n, it is necessary to calculate the supremum of
the gradient values at scale within the range [1,n].

For the application considered here, the problems of this approach are directly related
to the choice of the SE family. The first problem we can identify is related to the quality of
the detection. For example, let us consider a 1D image (Fig. 6.2(a)) and a homotetic family
of SE. If we apply the Soille’s gradient on such configuration the transition is not well
identified for the corresponding scale (Fig. 6.2(b) and (c)). The second problem concerns
the elimination of regions due to the introduction of the erosion operation. Finally,
from this approach, it is not possible to classify the detected transitions according to a
parameter of size, i.e., we can not identify the transitions of a specific size k because these
transitions, identified at a certain scale i, correspond to the transition size smaller than i.

Intuitively, this problem can be avoided by the difference between two consecutive levels,
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Multi-scale
gradient

Thresholding |@4——— Erosion

Figure 6.1: Soille’s gradient.

but the gradient values depend on the thick gradient that may vary at consecutive scales.
In Fig. 6.3(b) we show the result of the Soille’s gradient applied to the image in Fig. 6.3(a).
Here, the parameter of size is in the range [1,7], and the final result corresponds to the

supremum of the gradient values at all levels.

6.1.3.1 Multi-scale gradient based on ultimate erosion

Now, we replace the erosion in Fig. 6.1 by the ultimate erosion to try to eliminate some

undesirable components.

Definition 6.8 (Gradient based on ultimate erosion) Our proposed morphological

gradient at scale n is defined by:

pY = p, x Ly ULT(WTH,p,) (6.12)

To compute a multi-scale gradient at scale n, it is necessary to calculate the supremum
of the gradient values at scale within the range [1,n]. In Fig. 6.2(d) and (e) we illustrate
the application of the multi-scale gradient based on ultimate erosion, considering a certain
scale and a range of scales, respectively.

The problem identified here is associated with noise sensitivity, and with the fact
that the transitions are not thin. Also, it is not possible to classify the transitions regions
according to size criterion. In Fig. 6.3(c), we show the result of the multi-scale gradient
based on ultimate erosion of the image in Fig. 6.3(a). The parameter of size is in the
range [1,7], and the final result corresponds to the supremum of the gradient values at

all levels.
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N

(a) Original.

(f) Gradient based on thinning. (g) Gradient based on thinning.

Figure 6.2: Morphological multi-scale gradient: (a) original 1D image; (b,d,f) correspond
to the gradient values at a specific level n = 4 and (c,e,g) correspond to the supremum of

the gradient values at different levels (n = [1,5]) .
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Next, we propose a variant that replaces the ultimate erosion by a thinning operator.

6.1.3.2 Multi-scale gradient based on thinning

While the erosion operation may produce thick edges, the thinning transformation defines
one-pixel-thin edges. Another feature of this operator is that it preserves topology in the

sense of [5].

Definition 6.9 (Gradient based on thinning) Our proposed morphological gradient
at scale n is defined by:

pg = Pn X L[HT( WTH,p,) (6.13)

where T represents the thinning operator described in Section 6.2. To compute a multi-
scale gradient at scale n, it is necessary to calculate the supremum of the gradient values
at scale within the range [1,n].

In Fig. 6.2(f) and (g) we illustrate the application of the multi-scale gradient based
on thinning, considering a certain scale and a range of scales, respectively.

The problem of this approach is the high noise sensitivity. In Fig. 6.3(d), we illustrate
the gradient based on thinning applied to the image in Fig. 6.3(a). Here, the parameter of
size is in the range [1, 7] and the final result corresponds to the supremum of the gradient

values at all levels.

6.2 Thinning

In this section, we describe the basic topological operator used in this work (see [5] for
more details). Let us consider a point z in a 1D image (or signal) g. We say that a point
x is destructible for g, if one neighbor of x has a value greater than or equal to g(z) and
the other neighbor has a value strictly smaller than g(z). The thinning procedure consists

in repeating the following steps until stability:

i select a destructible point x;

ii lower the value of x down to the value of its lowest neighbor.
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(d) Multi-scale gradient based on thinning.

Figure 6.3: Examples of multi-scale gradients where the SE size is in range [1,7]. These

results correspond to the supremum of gradient values of all levels.
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In Fig. 6.4, we illustrate an artificial example of thinning. Selection of destructible
points must be done in increasing order of value, so that each point is modified at most
once. Points having the same value are scheduled with a fifo policy which guarantees
that, in case of large flat maxima, the thinned image is “well centered” with respect
to the original one. This procedure is in fact a particular case, in 1D domain, of a
topological operator introduced in [5]. Topological operators aim to simplify the image
while preserving the topology. [5] presents operators for image segmentation based on
topology which generalizes to 2D grayscale images the notions of binary digital topology
[45].

(a) Original (b) Result

Figure 6.4: 1D image thinning example. Dotted line, in (b), represents the original image

(a).

6.3 Max-tree

In this section, we describe a structure that deal with the problem of efficiently filtering
images. This structure is called Maz-tree [62]. The idea consists in recursively creating a
tree, the nodes of which are the connected components of the sections (thresholds) of the
image at each possible level. In Fig. 6.5 we illustrate an example of the max-tree creation
process.

The original image (Fig. 6.5(a)) is composed of seven at zones identified by a letter
{A, B, C, D, E, F, G}. L; means that the value of gray level of the region L is . In this
example, the gray level values range from 0 to 2. In the first step, we apply a thresholding
operation at level 0, resulting in a binary image, in which the all pixel at level h = 0 (pixels
of region A) are assigned to the root node of the tree (Fig. 6.5(b)). Furthermore, the pixels

of gray level value strictly higher than h = 0 form two connected components that are
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(©) e

A}

(a) Original image. (b) Tree for levels 0 and 1

{G} {C} {E} {G} {C} {E}

{B,D,F} {B,.D,F}

(c) Tree for levels 0, 1 and 2 (d) Final tree

Figure 6.5: Process of max-tree creation [62]: (a) original image; (b) first step of the
process considering the levels 0 and 1; (c) second step considering the levels 0, 1 and 2;

and (d) the final tree.

temporarily assigned to two nodes: {B, C, D, E, F} and {G} (Fig. 6.5(b)). In a second
step, the threshold is increased by one (h = 1). Each children node of the root is processed
separetely (as in first step) (Fig. 6.5(c)). In summary, at each temporary node, a local
background is defined by keeping all pixels of gray level value equal to h.

In this procedure, some nodes may become empty. Therefore, at the end of the tree
construction, the empty nodes are removed. The final tree is called a Maz-Tree in the
sense that it is a structured representation of the image which is oriented towards the
maxima of the image (maxima are simply the leaves of the tree). In our example the final

tree is illustrated in Fig. 6.5(d).
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6.4 Conclusions

In this chapter, we enumerated some basic image operators that constitute the basis for
the development of video transition identification methods presented in this work. To
apply the mathematical morphology operators, we consider that the structuring elements
(SE) are flat and 1D. The direction of the this SE depends on the method and the purpose

of its application (as we will see in the next chapters).



Chapter 7

Cut detection

The video segmentation problem is transformed into a problem of pattern detection, where
each video effect is transformed into a different pattern on the visual rhythm. To detect
sharp video transitions (cuts) we use topological and morphological tools instead of using
a dissimilarity measure. We propose a method to detect sharp video transitions between
two consecutive shots. We present a comparative analysis of our method with respect to

some other methods.

7.1 Introduction

The simplest transition between two consecutive shots is the sharp transition (cut) that
is simply a concatenation of these shots. In Fig. 7.1, we illustrate an example of cut. The
common approach to cope with the cut detection is based on the use of a dissimilarity
measure. [72] and [7] review some of the most popular methods for cut detection, such
as pixel-wise comparison and histogram comparison. Unfortunately, the cut detection is
complicated by the presence of effects, like gradual transitions, flashes and fast camera

and object motions.

Figure 7.1: Cut example.
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Another approach to solve the video segmentation problem is to transform the video
sequence V into a 2D image VR, called visual rhythm, and to apply image processing
methods on VR to extract the different patterns related to each transition. As it was
illustrated in Chapter 4, each frame is transformed into a vertical line in VR.

We propose, in this work, a method for video segmentation based on analysis of a 2D
image. Here, we consider also the notion of visual rhythm by histogram, and we use it
to detect different kinds of transition. On these two variants of visual rhythm, namely
visual rhythm by sub-sampling and visual rhythm by histogram, we apply morphological
and topological tools to segment the video without the need of defining a dissimilarity
measure between frames. The simplicity of implementation, the low processing cost and
the high quality of results can be considered as the main qualities of this method for cut
detection. Also, we verified that our methods are more robust than other implemented
methods with respect to the tuning of threshold values. The fact that two different video
events may be represented by the same visual rhythm pattern can be considered as the
main drawback of our method. Fortunately, this problem is not frequent in real cases.

This chapter is organized as follows. In Sec. 7.2 we present our methodology for cut
detection. In Sec. 7.3 we show a comparative analysis for cut detection involving our
method and some other methods, using four different quality measures. According to
these measures, we can verify that our method presents generally the best results. Some

conclusions are given in Sec. 7.4.

7.2 Our method

With the aim of perfoming a video segmentation without defining a dissimilarity measure,
we use a simplification of the video content, the visual rhythm, where the video segmen-
tation problem, in domain 2ID + ¢, is transformed into a problem of pattern detection, in
domain 1D + ¢. So, we can apply methods of 2ID image processing to identify different
patterns on the visual rhythm because each video effect corresponds to a pattern in this
image, for example, each sharp video transition is transformed into “vertical lines” on
the visual rhythm. This correspondence is not a one-to-one relation, i.e., a sharp video
transition corresponds to a vertical line, but a vertical line is not necessarily a sharp

video transition, as illustrated in Chapter 4. This problem can be solved considering
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Figure 7.2: Cut detection block diagram.
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visual rhythms obtained from different pixel samplings. Afterwards, a simple intersec-
tion operation between these results may be used to identify correctly the sharp video
transitions.

Fortunately, in general, we can use only a visual rhythm obtained from principal
diagonal sampling because this problem rarely occurs in practice. Furthermore, this
visual rhythm represents the best simplification of the video content, according to [17].

Next, we will define a method for cut detection based on visual rhythm that is illustrated

in Fig.7.2.

Visual rhythm computation. The visual rhythm by sub-sampling is computed from
the principal diagonal of each frame. Also, it is possible to use the visual rhythm by
histogram to detect the cuts. In Fig. 7.3, we illustrate an example of visual rhythm by

principal diagonal sub-sampling.

Filtering. In this step, we reduce noise on VR using mathematical morphology filters
(see [64], [68]). The filtered visual rhythm is denoted by VRp. Here, we apply an ope-
ning (closing) by reconstruction to eliminate the small light (black) components. These
morphological filters have the interesting property of preserving the sharp contours of
the image. In Fig. 7.4, we illustrate the result of this filtering when applied to image

illustrated in Fig. 7.3.
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Figure 7.3: Visual rhythm by principal diagonal sub-sampling computed from the video
“132.mpg”.

Horizontal gradient. The goal of this step is to detect the locations where horizontal
grayscale discontinuities occur in the filtered visual rhythm. These locations, when ver-
tically aligned, can represent a cut. So, we calculate the norm of the horizontal gradient

Vi, of the filtered image by

|thRF(t,Z)’ = |VRF(t,Z) —VRF(t— 1,2)|. (71)

In Fig. 7.5, we illustrate the result of the computation of the horizontal gradient.

Thinning. This transformation is used here to simplify the peak detections (see [5]). In-
tuitively, a horizontal transition between two consecutive regions corresponds to a “peak”
in the horizontal gradient of each line. In the case of a cut, the maximum of this peak
is generally reduced to only one pixel but for gradual video transitions, for example, the
maximum of a peak may consist of several neighboring pixels. In such cases, a simple
maximum detection would result in multiple responses for a single transition. This is why
we introduce the thinning step, with the aim of reducing every peak to a one-pixel-thin
maximum.

In Fig. 7.6, we illustrate the result of the thinning when applied to horizontal gradient
image illustrated in Fig. 7.5.

Detection of the local maximum points. After the thinning operation, we have

a new image It where each horizontal peak is represented by a point, called maximum
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Figure 7.4: Visual rhythm filtered in which the small components are eliminated: (a)
the original visual rhythm and (b) the result of the morphological filtering (reconstructive
opening followed by a reconstructive closing). The radius size of the horizontal structuring

element is 4.

point. A point z in 1D image ¢, is maximum if its two neighbors have values strictly
smaller than g,(z). So, we must find all maximum points of the image It to identify the
center points of the transitions. The image of maximum points is denoted by M.

In Fig. 7.7, we illustrate the result of the identification of maximum points of the

thinned image (Fig. 7.6(b)).

Maxima image filtering. The locations of the cuts appear as “vertical lines” in image
M, embedded in irrelevant components (noise) which can be reduced by a morphological
filtering. This filtering is an opening by reconstruction [68, 63] with a vertical structuring
element of size A = 7, defined empirically. The filtered maximum image is denoted by
Mp.

In Fig. 7.8, we illustrate the result of the filtering of maximum points.

Detection of cuts. From the filtered maximum image Mg, we create a 1D image P
where each point ¢t has a value P(t) representing the number of maximum points of the
vertical line t on Mp. Finally, when the value of the point P(¢) is greater than or equal

to a threshold 7', then a cut is detected at time ¢.
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Figure 7.5: Horizontal gradient image. To facilitate the visualization, we apply an oper-

ator to equalize the image histogram.

In Fig. 7.9 (Fig. 7.10), we illustrate the results of the main steps of our method when
applied to a visual rhythm by sub-sampling (or histogram) obtained from the same real

video.

7.3 Experiments

In these experiments, we implemented three methods described in literature: a variant
of pixel-wise comparison, a histogram intersection and a statistical technique based on
visual rhythm. We chose these methods due to their simplicity and their effectiveness
according to [22], [10] and [17], respectively. We also implemented the proposed method
with some variations. Next, we describe all experiments applied to Corpus 1, identified

in Table 7.1, followed by a global analysis of the results.

|| || Videos | Cuts | Fades | Flashes | Frames |

Corpus 1 (Cut) 32 778 15 14 29933

Table 7.1: Video features selected for experiments.

Experiment 1. This experiment uses the difference between pixels according to [22] as
the dissimilarity measure. A 1 image is created from the dissimilarity values calculated
in each frame of the video. Then a mathematical morphology operator, called inf top-hat,

is applied to this image, and finally, a threshold is used to detect the cuts.



7.3. Experiments 58

(a) (b)

Figure 7.6: Thinning operation: (a) the equalized horizontal gradient image and (b) the
result of the thinning. To facilitate the visualization, we apply an operator to equalize

the histogram.

Experiment 2. This experiment uses the histogram intersection according to [10] as
the dissimilarity measure. If the dissimilarity value is greater than a threshold, then a cut

is detected. With the aim of improving the results, a subdivision of each frame is made.

Experiment 3. This experiment uses the visual rhythm for cut detection based on
statistical method as described in [17]. Here, the parameters are different from those used
in the other mentioned methods, particularly the threshold. While in this method the
threshold is locally adaptive and related to a parameter that varies from 1 to 10, in the

other methods the threshold is fixed and global.

Experiment 4. In this experiment, that is a variant of our method introduced in
Sec. 7.2, we compute a 1D image associated with the mean of the difference between
pixels in consecutive frames. We apply the following algorithm to this image: i) apply
a white top-hat by reconstruction with a flat structuring element of size 3; ii) apply a

thinning; and iii) apply a thresholding.

Experiment 5. In this variant of our method introduced in Sec. 7.2, instead of applying

the summation of the number of maximum points to each vertical line, we use the filtered
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(a) (b)

Figure 7.7: Detection of maximum points: (a) the equalized thinning image and (b) the

maximum points.

Figure 7.8: Filtering of the maximum points.

maxima Mg image as a mask to select the grayscale values associated with all maximum
points. Afterwards, we find the mean of these grayscale values in each vertical line. Then,

a thresholding is applied to these results.

Experiments 6 and 7. These experiments are related to the method defined in Sec. 7.2
concerning the analysis of the visual rhythm by sub-sampling and by histogram, respec-
tively.

In Fig. 7.11, we show graphically the experimental results for each experiment pre-
viously described. The graphics relate the threshold (rate with respect to the maximum

value obtained from each experiment) to recall and error rates. From the curves shown
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Figure 7.9: Cut detection from a visual rhythm by sub-sampling: (a) visual rhythm; (b)

thinning of the horizontal gradient (equalized); (¢) maximum points; (d) maxima filtering;

(e) normalized number of maximum points in the range [0, 255]; (f) detected cuts (white

bars) superimposed on the visual rhythm.
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Figure 7.10: Cut detection from a visual rhythm by histogram: (a) visual rhythm; (b)

thinning of the horizontal gradient; (¢) maximum points; (d) maxima filtering; (e) nor-

malized number of maximum points in the range [0,255]; (f) detected cuts (white bars)

superimposed on the visual rhythm.
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Figure 7.11: Experimental results.
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in these graphics, it is possible to find the robustness p, missless error rate FE,,, false-
less recall rate Ry and gamma v measures, that are outlined in Table 7.2. According to
Sec. 3.3, we expect high values for p, v and Ry, and small values for £,,. In Table 7.3,
we illustrate the basic quality measures when we consider the values associated with the
gamma measure, i.e., the gamma measure corresponds to the maximal value of a function
(Eq. 3.7), this value is related to the recall and error for all values of thresholds, thus we
represent in Table 7.3, the values of recall, error and the threshold used to compute the
gamma measure. From these experiments, we can verify that the proposed method based
on visual rhythm analysis generally produces the best results, mainly according to the
robustness and the missless error rate. The good value of the robustness means that the
proposed method is not very sensitive to small variations around an “optimal value” of
the main parameter. Another interesting aspect of our method concerns the missless error
rate since, in general, we want results without miss and with the smallest possible ratio
of false detections, so that we can eliminate them posteriorly. Indeed, a post-processing
is essential to increase the quality of the results because there are many false detections
due to the presence of effects like flash, pan, zoom. Also, we can observe that the process-
ing time for experiments based on visual rhythm by sub-sampling is significantly lower
than for the experiments applied directly to the video. We notice that the results of the
proposed method based on analysis of the visual rhythm by sub-sampling are better with
respect to the visual rhythm by histogram.

Experiment 1 | 0.01 0.80 0.10 0.77
Experiment 2 | 0.00 0.51 0.00 0.68
Experiment 3 | 0.00 1.20 0.51 0.72
Experiment 4 | 0.06 0.49 0.21 0.80
Experiment 5 | 0.01 0.48 0.44 0.78
Experiment 6 | 0.11 0.37 0.35 0.80
Experiment 7 | 0.11 0.46 0.42 0.75

Table 7.2: Quality measures: robustness (1(0.10,0.30)), missless error (E,,(0.03)), false-
less recall (Rf(0.01)) and gamma measure (). The best values are highlighted.



Exp Type Cut | Detected | False | Recall | Precision | Error | Threshold

1 Commercial || 778 662 78 85.1% 89.5% 10% 35%
2 Commercial || 778 690 179 | 88.2% 79.4% 23.8% 40%
3 Commercial || 778 598 55 | 76.8% 52.3% 6.9% 4

4 Commercial || 778 697 78 89.6% 90% 10.3% 25%
5 Commercial || 778 699 101 | 89.8% 87.4% 13.6% 25%
6 Commercial || 778 697 78 89.6% 90% 10.3% 65%
7 Commercial || 778 696 125 | 89.8% 85% 15.8% 65%

Table 7.3: Basic quality measures related to the gamma measure.

7.4 Conclusions and discussions

A method for cut detection was proposed. The main contribution of this chapter is
the application of operators of mathematical morphology and digital topology to solve a
problem of video segmentation.

The quality of the results is associated with the choice of good parameters. Two
types of parameters can be distinguished: fixed and variable. The fixed parameters,
like size of structuring elements, can be pre-determined for all applications. The use
of a variable parameter, in our case, the threshold value, is interesting and sometimes
necessary, because it plays an important role in the segmentation process where the user
can adequate it according to the nature of data and type of application. Also, the tuning
of this parameter allows to find a compromise between over-segmentation and under-
segmentation.

To do a comparative analysis between different methods for event detection, we used
four quality measures: robustness, missless error, falseless recall and the gamma measure.
According to these quality measures, we verified that the proposed method for cut detec-
tion has the best values of robustness, missless error and gamma measure, when compared
experimentally to the other methods.

From this method, we observed that the visual rhythm by sub-sampling and by his-
togram present an adequate simplification of the video content, which can constitute the

basis for other developments such as:

1. identify some other video events, like flash, pan and zoom from the detection of



their correspondent patterns;
2. modify the proposed method for cut detection to detect gradual video transitions,
using the multi-scale morphological gradient ([68]) to compute the horizontal gra-

dient (as we will see in Chapter 9).



Chapter 8

Flash detection

The flash presence is very common in digital videos, mainly in television journal videos.
When a flash occurs, an increase of the luminosity in few frames is produced. When we
calculate a dissimilarity measure, we can see that this measure is very high in the frames
affected by a flash. In fact, the presence of flashes often disturbs the cut detection. In this
work, we propose two methods for flash detection without taking into account dissimilarity
measures. The first one is a variant of the proposed method for cut detection and the
second one considers a filtering of the max tree [62] calculated from statistical measures

of each frame (or frame sub-samplings).

8.1 Introduction

The identification of flashes can be considered as an essential step to reduce the number of
false detections when we try to identify shot boundaries, mainly cuts. Another application
concerning the identification of flashes is associated with an important event, like when we
have the President of Brazil making a speech, many photos are taken, and consequently,
many flashes are dispatched. An interesting approach can be found in [78], in which a
flash and a cut are distinguished according to some defined models. In this method, it is
computed the average intensity of each frame. A flash is identified if the relation between
different frames (sliding window) is verified. This method fails when a flash occurs at the
same time of a cut. In Fig. 8.1, we illustrate two different models for a flash: Fig. 8.1(a)

represents a flash that occurs in the middle of a shot; and Fig. 8.1(b) represents a flash
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that occurs in the boundary of a shot.

(a) (b)

Figure 8.1: Flash model: (a) flash occurrence in the middle of the shot and (b) flash

occurrence in the boundary of the shot.

In this work, we propose two different methods to identify flashes, both from visual
rhythm by sub-sampling: top-hat based and max-tree based. The first one can be related
to the method proposed by [78] in the sense of using a neighborhood, but the principles
are different, and we consider the values of the pixels without computing the statistical
values. The second method is more sophisticated in the sense of identifying all types of
flashes.

This chapter is organized as follows: in Sec. 8.2, we propose a method based on top-hat
filtering. In fact, this method is a variant of the cut method. In Sec. 8.3, another method
is proposed, in this case, a filtering of the statistical values is considered. In Sec. 8.4,

some experiments are shown. Finally, some conclusions are given in Sec. 8.5

8.2 Based on top-hat filtering

On the visual rhythm, we can observe that the video flashes are transformed into thin
light vertical lines, as shown in Fig. 8.2. So, we can easily extract these lines from a
white top-hat by reconstruction. The white top-hat by reconstruction is a mathematical
morphology operator and represents the difference between the original image g and the
opening by reconstruction of g [64, 68]. Informally, this operator detects light regions
according to the shape and the size specifications of the structuring element. Our first
method for flash detection is described below and is illustrated as a block diagram in

Fig. 8.3.
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Figure 8.2: Flash video detection: (a) some frames of a sequence with the flash presence;

(b) visual rhythm by Sub—samphng; (c) detected flash.
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Figure 8.3: Flash detection block diagram using top-hat filtering.

Visual rhythm computation. The visual rhythm by sub-sampling is computed from

the principal diagonal of each frame. In Fig. 8.4, we illustrate the visual rhythm by

principal diagonal sub-sampling computed between the frames 740 and 800 from the

video “0600.mpg”.

White top-hat filtering. Applying the white top-hat by reconstruction with a linear

horizontal structuring element of size A = 5. This size is associated with the potential

duration of a flash. In Fig. 8.5, we illustrate the white top-hat and the result of the

histogram equalization of the white top-hat to facilitate its visualization.
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Figure 8.4: Visual rhythm by principal diagonal sub-sampling computed for video
“0600.mpg”.

() (b)

Figure 8.5: White top-hat filtering: (a) result of the white top-hat and (b) result of the

histogram equalization of (a).

Thinning. Apply a 1D thinning to each horizontal line to identify the center of each
event. In Fig. 8.6, we illustrate the result of the thinning and the result of the histogram

equalization of the thinning to facilitate its visualization.

(a) (b)
Figure 8.6: Thinning: (a) result of the thinning and (b) result of the histogram equaliza-

tion of (a).

Detection of local maximum points. Considering that we have a thinned image,

the computation of the maximum points is very trivial. We need to detect these points
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to verify if they are vertically aligned. In Fig. 8.7, we illustrate the result of this step in

which the maximum points are detected.

Figure 8.7: Detection of maximum points

Maxima image filtering. Apply an opening by reconstruction with vertical structur-
ing element of size A = 7, defined empirically. If the maximum points are not aligned,
then they do not represent a flash, and consequently they are eliminated. In Fig. 8.8, we

illustrate the result of the maximum points filtering.

Figure 8.8: Maxima image filtering.

Detection of flashes. Depending on the number of maximum points that are present
in the maxima image filtering, a flash must be identified. For that, we must calculate the
number of maximum points in each vertical line, followed by application of thresholding.
In Fig. 8.9, we illustrate the flashes detected, that are represented by white vertical bars.

We can observe that this method is very similar to the proposed method for cut
detection (Chapter 7). The difference here is the substitution of the morphological filter
and horizontal gradient by the white top-hat by reconstruction. As the method for cut
detection, this methodology detects the center of the regions in matter, in this case, regions
with peak luminosity. Thus, we can have false detection in regions of high luminosity
change that do not represent a flash. Usually, this method produces good results when
the flash appears in the middle of the shot. The problem of this method is its noise

sensitivity, and due to features of the used operators, we can not apply any filtering.
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(a) (b)

Figure 8.9: Detection of flashes in which the flashes are represented by white vertical

column bars: (a) original image with 4 flashes and (b) result of the flash detection.

8.3 Based on max tree filtering

Usually, the frames affected by a flash are visually similar to their neighbors but with
a higher luminosity. Here, the analysis of flash presence can be given by the computa-
tion of some statistical measures like mean or median, because the frames affected by a
flash present higher mean and median values in regarding to their neighbors. From the
computation of these statistical measures for all frames of the video, we can create a 1D
image from the visual rhythm, or preferably from the original video data. From this 1D
image, we need to find the “peaks” which the “height” is greater than a certain value h,
and a “basis area” less than or equal to a value S that corresponds to the duration of the
flash. Fig. 8.1 illustrates the peaks which must be identified jointly with their features. In
Fig. 8.10 is illustrated a block diagram for this flash detection method. Next, we describe

the main steps of this method.

Visual rhythm computation. The visual rhythm by sub-sampling is computed from
the principal diagonal of each frame. In Fig. 8.11, we illustrate the visual rhythm by
principal diagonal sub-sampling computed between the frames 740 and 800 from the

video “0600.mpg”.

Average. For each column of the visual rhythm, we compute its average value producing
a 1D signal. This computation is very important because a frame that is affected by a
flash has a higher average value than its neighbors. In Fig. 8.12, we illustrate the average

computation and the and result of the histogram equalization of the average image to
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Figure 8.10: Flash detection block diagram using max-tree filtering.

Figure 8.11: Visual rhythm by principal diagonal sub-sampling computed from video
“0600.mpg”.

facilitate its visualization.

Figure 8.12: Average computation: result of the average of the elements for each column.

Max-tree filtering The notions of peak, height and basis area can be precisely defined
thanks to a data structure called maz-tree [62] (refer to this paper for more details). The
parameter h influences the sensitivity of the method and has a role similar to the threshold

in Chapter 7. In Fig. 8.13, we illustrate the result of the max-tree filtering.

Detection of flashes In this work, we consider that the maximum flash duration is 5

frames, i.e. S = 5. Thus, for each flash candidate we need to verify if the size is smaller
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Figure 8.13: Result of the max-tree filtering.

than S. In Fig. 8.14, we illustrate the flashes detected, that are represented by white

(a) (b)

vertical bars.

Figure 8.14: Detection of flashes in which the flashes are represented by white vertical

column bars: (a) original image with 4 flashes and (b) result of the flash detection.

Differently from the first method, this one does not identify the center, but the problem
is quite the same, mainly when there is high luminosity change that does not represent
a true flash. Regarding other methods, this one identifies very well all types of flashes

thanks to the data structure used to model the peak values.

8.4 Experiments

In these experiments, we apply the methods described in Sec. 8.2 and in Sec. 8.3 to the
Corpus 2 illustrated in Table 8.1. In Fig. 8.15, we illustrate some experimental results.
The quality measures of the filtering of the max tree and the top-hat fil