
Rainer Ronnie Pereira Couto

Compressão Adaptativa de Arquivos HTML em

Ambientes de Comunicação Sem Fio

Dissertação apresentada ao Curso de Pós-

Graduação em Ciência da Computação

da Universidade Federal de Minas Gerais,

como requisito parcial para a obtenção do

grau de Mestre em Ciência da Computação.

Belo Horizonte
19 de dezembro de 2003

Acknowledgements

As the popular saying goes: “Behind a every great man there is always a great woman”.

Well, I’m not that great yet, but I already have the love of four great women to inspire me:

my mother, my two sisters and my niece. There are no words to describe how important

you are in my life. I love you more than you can imagine.

It would be impossible to get here without the help of my friends. They were my

strength when I wanted to give everything up, so this work is dedicated to all of them,

specially to:

• Ricardo A. Rabelo, it is an honor to have you as my friend and to work with you.

• Linnyer Beatrys Ruiz, my “third” sister. You were always a bright light in my path

during all these years. Thank you for your company and peaceful words.

• Fernanda P. Franciscani, my friend of work, laughs and studies. I wish I could have

someone as special as you in whatever place God takes me to work.

• Ana Paula Silva, thank you for being so loving and so tender.

• Renan Cunha, Wagner Freitas, Vińıcius Rosalen, Fátima and Lidiane Vogel. Thank

you for the companionship during those hot afternoons inside SIAM lab.

• Many thanks also to Cláudia, Camila, Márcia and Luciana. Your friendship along

these past 10 years means a lot to me.

• Antonio A. Loureiro, my advisor and my “academic father”. Thank you for all the

words, patience, time, and knowledge you dedicated me. My only wish is to make

you proud.

• Last, but not least, Wesley Dias Maciel. Words would not be good enough to express

all your companion meant to me over these 4 years. My best friend, you will always

be in my heart.

i

Abstract

The increasing development of mobile computing technologies has allowed users to access

the Internet any time and anywhere. However, as the resources of mobile devices are scarcer

than their counterparts in wired network, there is the need to adapt data documents in

order to provide efficient access to applications and services in wireless environments. In

this work, it is proposed a model which predicts how and when a file should be compressed

before its transmission over a wireless channel, aiming to minimize the impact on energy

consumption and to improve response time. Experiments in real scenarios and simulations

using ns2 simulator with both IEEE 802.11 and Bluetooth technologies prove the efficiency

of this model when compared with other simplistic approaches adopted in literature.

ii

Resumo

O atual desenvolvimento das diversas tecnologias da computação móvel tornou posśıvel

o acesso à Internet de qualquer lugar e a qualquer instante. Entretanto, para se ter um

acesso eficiente em um ambiente de comunicação sem fio, é necessário introduzir algum

processo de adaptação do conteúdo da Web, uma vez que os recursos dos dispositivos

móveis são inerentemente escassos. Este trabalho propõe um modelo para adaptação de

conteúdo HTML que prevê dinamicamente quando um arquivo deve ser comprimido antes

de sua transmissão. Esse método de adaptação permite reduzir o tempo de transmissão

do arquivo, porém introduz o custo da compressão e descompressão do arquivo. O modelo

proposto aqui tenta justamente distinguir os cenários nos quais o tempo economizado na

transmissão não ultrapassa o custo com o processamento do arquivo. Os experimentos e

simulações com os ambientes Bluetooth e IEEE 802.11 comprovam a eficiência e simplici-

dade desse modelo quando comparado às técnicas atuais de adaptação por compressão.

iii

Contents

List of Figures vi

List of Tables viii

1 Introduction 1

2 Related work 6

3 Compression methods 10

3.1 Compression Algorithms . 12

3.2 Performance Evaluation . 15

3.2.1 Calgary and Canterbury Corpus Collections 16

3.2.2 HTML Files . 22

3.2.3 XML Files . 26

4 Adaptive model 37

5 Experiments 45

5.1 Communication protocols . 45

5.1.1 IEEE 802.11 . 45

5.1.2 Bluetooth . 46

5.2 Scenarios . 47

5.3 Results . 49

5.3.1 An analytical view . 54

5.4 Simulations . 55

6 Proxy experiments 59

6.1 HTTP Trace . 61

6.2 RabbIT 2 Implementation . 65

6.3 Experimental Results . 67

iv

7 Conclusion 69

7.1 Future Works . 69

Bibliography 71

v

List of Figures

1.1 Example of a typical middleware architecture used for adaptation in wireless

environments. 3

1.2 S is a Web server and Ci’s are the requesting clients. 4

3.1 Compressed sizes of Calgary Corpus files. 18

3.2 Compression and decompression times versus Compression Ratio (Calgary

Corpus). 19

3.3 Compression and decompression times for the Calgary collection. 20

3.4 Compressed sizes of Canterbury Corpus files. 21

3.5 Compression and Decompression times versus Compression Ratio (Canter-

bury Corpus). 22

3.6 Compression and decompression times for Canterbury Corpus collection. . 23

3.7 Accumulated distribution for original and compressed files in the HTML

collection. 24

3.8 Compression time versus file size (HTML Collection). 26

3.9 Decompression time versus file size (HTML Collection). 27

3.10 Compression and Decompression times versus Compression Ratio (HTML

Collection). 28

3.11 Compression and decompression times for HTML files and gzip-6 algorithm. 28

3.12 File size distribution of XML files. 30

3.13 Compression and Decompression times versus Compression Ratio (XML

Collection). 31

3.14 File size distribution of XML files. 31

3.15 Compression and Decompression times versus Compression Ratio (XML

Collection). 32

3.16 Compression and decompression times for XML medical Collection. 33

3.17 Compression and decompression times for XML Sigmod Collection. 34

4.1 Predictive model. 38

vi

5.1 File size versus decompression time for files smaller than 15 Kbytes. 48

5.2 Scenario of 802.11 experiments. 48

5.3 Response time for adaptive, compressed and not compressed models. . . . 50

5.4 Percentual gain of adaptive model over compressed and not compressed

models. 51

5.5 Accumulated consumed energy of adaptive, compressed and not compressed

models . 51

5.6 Response time for adaptive, compression and not compression models using

bandwidth of 2 Mbps and processor speed of 66 MHz. 52

5.7 Response time for adaptive, compression and not compression models using

bandwidth of 1 Mbps and processor speed of 33 MHz. 53

5.8 Response time for the Bluetooth protocol. 53

5.9 Response time as a function of file size and bandwidth. 54

5.10 Graphical view of compression of the analytical model. 55

5.11 Comparison of adaptive, compression and not compression models (1 client). 57

5.12 Performance of adaptive over not compression model with varying energy

weight. 58

5.13 Comparison of the adaptive and not compression models in Bluetooth envi-

ronment. 58

6.1 Proxy system. 60

6.2 Distribution of Content Type. 62

6.3 Session view of the trace. 63

6.4 User1 Trace. 64

6.5 Page rank by access (all users). 64

6.6 Page rank by access (User1). 65

6.7 File size distribution (all users). 66

6.8 File size distribution (User1). 66

6.9 Accumulated response time for adaptive and traditional transmissions. . . 68

vii

List of Tables

3.1 Description of the compression algorithms tested. 15

3.2 Description of Calgary Corpus files. 16

3.3 Description of Canterbury Corpus files. 17

3.4 Compressed size of Calgary Corpus files. 35

3.5 Compressed size of Canterbury Corpus files. 36

4.1 Approximate compression ratio as a function of compression method and

original size for HTML files. 42

4.2 Decompression time constant as a function of compression method. 43

5.1 Energy costs for 802.11 experiments. 47

viii

Chapter 1

Introduction

The development of mobile computing technologies has increased rapidly during the last

decade. Mobile devices and wireless communication are already present in our daily activi-

ties such as when using devices like cellular phones, Personal Digital Assistants (PDAs) and

notebooks, or interacting with embedded systems and sensors. Nonetheless, the advances

in wireless and mobile world have not kept pace with their counterparts in wired networks

due to restrictions such as less processing power, limited transmission range, complex man-

agement of energy consumption, limited size and low bandwidth availability [1]. Processing

power in mobile devices is notably inferior when compared to a common desktop computer.

Both transmission range and energy consumption are regulated by communication proto-

cols. For instance, Bluetooth devices are often smaller, have lower transmission range and

less energy consumption than devices designed for a IEEE 802.11 [2] environment.

There is a tendency towards making mobile devices and networking capabilities increas-

ingly powerful. However, no matter how powerful mobile devices become, the design of

applications for wireless communication still have to take into account the characteristics

of this complex environment. Energy is a very important restriction since users demand

carrying light-weight devices and not heavy batteries. Compared to wired data communi-

cation, wireless communications suffers from more interference and more fluctuations on

1

bandwidth as it depends on the user’s physical location, higher bit error ratio and others

features of this environment. Besides, they also have to deal with specific problems such

as seamless communication, hidden node problems, disconnection, etc.

These restrictions present real challenges when developing applications for wireless en-

vironments. One solution to overcome these problems is adaptability [1, 3, 4]. Adaptation

consist in altering or adjusting the application’s behavior according to its awareness of the

environment. Adaptation can be done in several ways depending on the application, the

environment, user or systems goals and communicating devices. It is more effective when

it occurs dynamically, that is, when the adaptation process “polls” the environment and

decides which action should be taken during execution time. The aim is to save or at least

minimize consumption of scarce resources, such as energy and bandwidth, or to optimize

properties that are more visible to users – like response time and data quality. Exam-

ples of adaptability are 1) caching emails or Web pages on the mobile device itself so the

user can access their content even if a wireless connection is not available at the moment,

2) adaptive power control that enables devices to transmit data in a lower transmission

power when they are closer to base stations or other communication points and 3) adaptive

channel allocation, which enables devices to select among several channels the one without

interference of other signals [3]. The adaptation process may be located in different places

such as in the application, in the system, or in a specific middleware. The middleware

approach has the advantage of software reuse since already existing applications, systems

and protocols need little or no modification at all. Usually, a middleware designed for

wireless environment would be divided in two components – one in the device and another

one in a point between the device and its peer on the wired network (for instance, the base

station). An example of middleware architecture is shown in Figure 1.1.

This type of middleware could be used to alter, remove, cache or serve multimedia

content to mobile devices, that is, it is possible to perform different adaptation schemes.

For instance, images can be removed from emails sent to users before transmitting them

2

Figure 1.1: Example of a typical middleware architecture used for adaptation in wireless
environments.

over the wireless channel, video quality can be altered to fit screen size, frequently accessed

data can be cached next to users, location dependent data can be served to users inside a

specific area, etc.

Most applications for handheld device are developed for PalmOS and Windows op-

erating systems (e.g., PocketPC, Windows CE). In both cases, these operating systems

mimic the traditional interaction concepts of desktop computers such as icons, windows,

and menus. As computers and the Internet become more popular, the acceptance of this

interface concept also increases. In fact the World Wide Web, probably the most pop-

ular Internet application, uses the direct manipulation interface based on this concept.

Thus, it is natural to assume that the WWW will become a popular application for mobile

environments as well.

In general, the common format of documents in the Web is HTML and its variants

(ASP, JSP, PHP, XML, DHTML and others). The term variant does not refer to the

functionality of each type of document, but to them being represented as text files using

verbose and similar languages (in this paper, the term HTML will refer to all these for-

mats). Compressing one document prior to its transmission over a wireless environment

seems to be an obvious adaptation solution [5, 6] if the only resource intended to be saved is

bandwidth. Compression can also be applied to images and videos, since different formats

compensate quality for data size. For instance, if a BMP image is detected it can be con-

verted to a JPEG of GIF image before sending it over the wireless interface. On the other

3

hand, compressed files need to be compressed and decompressed which may increase total

response time and may consume more energy than uncompressed transmissions. Suppose

the following scenario: a Web server accessed by different clients through a wireless channel

(figure 1.2). As each device has its own features and these features vary highly in this het-

erogeneous environment, the decision to compress one file is not a simple task and should

be done carefully by the server. For some application/device combination compression can

be worthwhile, while the same application in a different device might perform better with

no compression at all.

S

C1

Ci

Cn

C0

Figure 1.2: S is a Web server and Ci’s are the requesting clients.

This work studies the conditions in which compression should happen and how it should

be done when dealing with HTML file transmissions. The focus is on HTML files, but the

technique developed here could be extended to images and videos as well. So, this work

intends to:

1. study which compression method is more adequate to be used in mobile devices for

HTML file transmission;

2. propose an adaptive model that predicts when compression of HTML files should

happen;

3. evaluate the performance of the proposed model through simulation and experiments

using two different communication protocols: IEEE 802.11 and Bluetooth.

4

The rest of this text is organized as follows: in Chapter 2 related work is briefly de-

scribed. In Chapter 3 the advantages and disadvantages of the most popular compression

methods are analyzed and the most adequate compression algorithm to be used in mobile

devices is selected. The proposed adaptive model is presented in Chapter 4. In Chapter 5

both communication protocols used in this work are presented, namely IEEE 802.11 and

Bluetooth (Section 5.1), the deployed scenario is explained (Section 5.2) and the results of

experiments and simulations are presented (sections 5.3 and 5.4, respectively). Chapter 6

describes the implementation of a proxy which uses the adaptive model. Conclusions and

future work are presented in Chapter 7.

5

Chapter 2

Related work

According to [3], adaptability is the system ability to configure itself dynamically in order

to take advantage of the environment it is inserted in. It is assumed that the system has

means to get information about environmental conditions. When one of these conditions

changes, an adaptation process should take place so the better solution/answer is achieved.

Although not restricted to the wireless world, adaptation fits better to this environment

due to its intrinsic characteristics.

Adapting an application means changing its normal behavior in any of its functional

modules, going from higher layers such as user interface to lower layers in the communi-

cation procedures. This last module – communication – plays a key role on distributed

applications and it is one of the most affected modules when a change in the environmen-

tal conditions occurs. In order to react to these changes, adaptation techniques may be

applied/inserted in any of the several layers that compose the network access stack. Next,

some adaptation processes applied to wireless and wired network protocols that attempt

to improve Web-like access experience through compression, which is the object-study

application of this work, are reviewed.

Fox et al. [7, 8] proposed a proxy architecture to apply data-specific distillation (lossy

compression) in a variety of applications. Besides the development of their own Web-

6

proxy – TranSend – and its evaluation, their work has the merit to argue in favor of

proxy architecture as being the most effective and extensible technique to handle client

and server heterogeneity. The programming model presented is based on workers, a set of

task-specific elements specialized in operations such as transformation (distillation, filter-

ing, etc.), aggregation (collecting and collating data from various sources), caching (both

original and transformed content), and customization (change data to user specific needs

and preferences).

Housel, Samaras, and Lindquist [9] presented WebExpress, a split-proxy design trans-

parent to clients and servers, which intercepts HTTP data streams and performs several

optimizations, including file-caching, forms differencing, protocol reduction, and elimina-

tion of redundant HTTP header transmission.

Steinberg and Pasquale [6] proposed a Web middleware architecture – WSC (Web

Stream Customizer) – for mobile devices that allows users to customize their view of the

Web for optimal interaction. Like WebExpress, WSC explores the proxies capabilities of

HTTP to adapt the point-to-point traffic along the client-server path. It uses a simple

adaptive model based solely on network characteristics to compress text data (lossless

compression) and image data (lossy compression).

Jeannot, Knutsson and Björkman [10, 11] proposed an adaptation model that intercepts

an outgoing TCP/IP traffic and applies compression over small chunks of data. By im-

plementing a queue between TCP/IP sockets and the sender application, the interception

process occurs without major changes in the system. The authors showed how their model

can adapt dynamically to the varying network conditions and processor resources through

experiments, yielding especially good results for large amounts of data transmitted over

wired networks. The measurement of the available bandwidth is done by analyzing the

behavior of the queue, that is, how fast it shrinks or grows. Although the model can be

applied to wireless transmissions, it does not consider special features of this environment,

such as energy consumption of client side application. Moreover, their model only yields

7

good results for transmission of large amounts of data, which is not the case for mobile

HTTP browsing.

Mogul et al. [5] used data compression and delta-encoding to minimize the amount

of data transmitted and response time. Delta-encoding is a technique to update cached

documents by sending only the information about portions of the page which have changed.

They propose specific extensions to the HTTP protocol to achieve these goals. [12, 13, 14]

try to reduce the amount of data transmitted to mobile devices by extracting relevant

information of HTML pages. Their goal is to expose the mobile users, whose devices

have screen size limitations, to a minimum but relevant set of information each time it

performs a new request. The techniques applied by them involve removing HTML and

data components such as pop-ups, images and extraneous links, and text summarization,

which means using HTML structure to extract the most relevant data.

On the other hand, there are several proposals that focus on lower layer modifications

to improve response time or energy consumption of mobile devices.

Jung and Burleson demonstrated in [15] the advantages of using compression through

VLSI (very-large-scale integration) hardware components to increase effective bandwidth in

wireless communication systems. They modelled and simulated a real-time, low-area, and

low-power VLSI lossless data compressor based on the first Lempel-Ziv algorithm [16] to

improve the performance of wireless local area networks. Simulations were made with IEEE

802.11 protocol in which only the payload of MAC layer packets were compressed before

transmission. The results showed that the architecture can achieve an average compression

rate of 50 Mbps consuming approximately 70mW in 1.2u CMOS, which is an ideal scenario

for WLAN use. This means this compression scheme can improve throughput and delay

of a network while minimizing average power consumption.

Lilley et al. [17] described a TCP/IP header compression framework. This model in-

cluded a simple, platform-independent header description language and a platform-specific

code generation tool. Kranshinsky and Balakrishnam [18] investigated the interaction be-

8

tween the Power-Saving Mode (PSM) of IEEE 802.11 and the performance of TCP trans-

fers under typical Web browsing workloads. It is proposed another PSM that dynamically

adapts to network activity and simultaneously reduces energy consumption and response

time.

The work presented here differs from those described above in two points: first, it is

being proposed a platform-independent adaptive model that predicts when a HTML file

should be compressed before its transmission. It is not a static application and it could

be used in a proxy-design middleware to achieve better performance, for instance. Second,

both transmission time and decompression time are analyzed and taken into consideration.

Many proposals have ignored this overhead and, as the results will show this is a crucial

factor for determining response time perceived by users and energy consumption in each

mobile device. Third, the compression method used in this work was selected based on

results evaluated over specific HTML collections. Many works have disregarded this step

selecting compression algorithms that are widely known instead of algorithms that yields

the best result for HTML file transmission.

9

Chapter 3

Compression methods

Over the past years, mass storage systems and network transfer rates have increased reg-

ularly. At the same time though the demand for these items has grown proportionally or

even higher as each day more and more data are created and this huge volume of data

needs to be handled efficiently – storing, recovering, and transmitting it. In many cases,

the solution to cope with such an amount of information is to use compression. The ad-

vantage is twofold: it provides both lower transmission times and less storage space, thus

satisfying the needs of users and information providers.

Compression methods can be divided in two main categories: lossless (mainly used for

text compression) and lossy (used for general data compression). Lossless compression

involves changing the representation of a file, yet the original copy can be reconstructed

exactly from the compressed representation [19]. Lossless compression is a specific branch of

the more general lossy compression methods, which are methods that tolerate the insertion

of noise or small changes during the reconstruction of the original data. They are usually

used in images and sound compression or any other digital data that is an approximation

of an analog waveform.

The theory of data compression was formulated by Claude E. Shannon in 1948 [20] when

he established the fundamental limit to lossless data compression. Shannon established

10

that this limit is determined by the statistical nature of the information source and called

it the entropy rate - denoted by H. He then proved mathematically that it is impossible to

compress the information source in a lossless manner with compression rate higher than

H.

Shannon also developed the theory of lossy data compression, also known as rate-

distortion theory. In lossy data compression, the decompressed data does not have to be

exactly the same as the original data, that is, some amount of distortion, D, is tolerated.

Shannon showed that, for a given source (with all its statistical properties previously

known) and a given distortion measure there is a function R(D), called the rate-distortion

function, that gives the best possible compression rate for that source. The theory says

that if D is the tolerable amount of distortion, then R(D) is the best possible compression

rate. If the allowed distortion D is set to 0, then compression becomes lossless and the

best compression rate R(0) is equal to the entropy H (for a finite alphabet source). The

conclusion is that lossless compression (D = 0) is a specialization of the more general lossy

compression (D ≥ 0).

Lossless data compression theory and rate-distortion theory are known collectively as

source coding theory. Source coding theory sets fundamental limits on the performance of

all data compression algorithms. The theory in itself does not specify exactly how to design

and implement these algorithms. It does, however, provide some hints and guidelines on

how to achieve optimal performance.

In the next section some of the best-known compression algorithms used today will be

briefly reviewed. In section 3.2 results of compression methods applied to different data

sets will be shown. In the next chapter these results will be used to create an adaptive

model to predict when a file should be compressed before its transmission over a wireless

channel.

11

3.1 Compression Algorithms

Two strategies are used to design text compression algorithms: statistical or symbolwise

methods and dictionary methods. Symbolwise methods work by estimating the probabilities

of symbols (often characters) occurrences, and then coding one symbol at a time using

shorter codewords for the most likely symbols. Dictionary methods achieve compression

by replacing words and other fragments of text with an index to an entry in a dictionary

[19].

The key distinction between symbolwise and dictionary methods is that symbolwise

methods generally base the coding of a symbol in the context in which it occurs, whereas

dictionary methods group symbols together, creating a kind of implicit context. In the first

scheme, fixed-length blocks of bits are encoded by different codewords; in the second one,

variable-length segments of text are encoded. This second strategy often provides better

compression ratios. Hybrid schemes are also possible, in which a group of symbols is coded

together and the coding is based on the context in which the groups occurs. This does not

necessarily provide better compression but it can improve speed of compression.

Many compression methods have been invented and reinvented over the years. One

of the earliest and best-known methods of text compression for computer storage and

telecommunications is Huffman coding. Huffman coding assigns an output code to each

symbol, with the output codes being as short as 1 bit or considerably longer than the

input symbols, strictly depending on their probabilities. The optimal number of bits to

be used for each symbol is the log2(
1
p
), where p is the probability of a given character

inside the text being compressed. Moreover, Huffman algorithm uses the notion of prefix

code. A prefix code is a set of words containing no word that is a prefix of another word

of the set. The advantage of such code is that decoding is immediate. However, there

are two problems with Huffman coding: first, it relies on the fact that symbols have to

be represented as integral number of bits codes. For example, a character with optimum

number of bits to code equal to 1.6 would be coded with 1 or 2 bits. Either choice leads to

12

a longer compressed data as each code has influence in the other ones. The second problem

is that the probability function generally is not known from the beginning, demanding an

extra pass through the input file to estimate it.

Despite its problems, Huffman code was regarded as one of the best compression meth-

ods from its first publishment (in the early 1950s) until the late 1970s, when adaptive

compression allowed the development of more efficient compressors. Adaptive compression

is a kind of dynamic coding where the input is compressed relative to a model that is

constructed from the text that has just been coded. Both the encoder and decoder start

with their statistical model in the same state. Each of them process a single character at

a time, and update their models after the character is read in. This technique is able to

encode an input file in one single pass over it and it is able to compress effectively a wide

variety of inputs rather than being fine-tuned for one particular type of data. Ziv-Lempel

method and arithmetic coding are examples of adaptive compression.

Ziv-Lempel methods are adaptive compression techniques that have good compression

yet are generally very fast and do not require large amounts of memory. Ziv-Lempel

algorithms compress by building a dictionary of previously seen strings, grouping characters

of varying lengths. The original algorithm did not use probabilities - strings were either

in the dictionary or not, and to all strings the same probability is given. Some variants of

this method, such as gzip, use probabilities to achieve better performance. The algorithm

can be described as follow: given a specific position in a file, look for a previous position

in the file that matches the longest string starting at the current position; output a code

indicating the previous position; move the current header position over the string coded

and start again. Ziv-Lempel algorithms were described in two main papers published in

1977 [16] and 1978 [21] and are often referred to as LZ77 and LZ78. These two version

differ in how far back the match can occur: LZ77 uses the idea of a sliding window; LZ78

uses only the dictionary. Some well known variants of LZ77 are gzip and zip, whereas Unix

compress is based on LZ78. In 1984, Welch [22] proposed a series of improvements over

13

LZ78, creating the so called LZW algorithm, one of the most popular compressors today,

used in formats such as GIF and TIFF and is also part of PostScript Level 2 1.

Arithmetic coding is an enabling technology that makes a whole class of adaptive com-

pression schemes feasible, rather than a compression method of its own. This technique

has made it possible to improve compression ratios, though compression and decompres-

sion processes are slower - several multiplications and divisions for each symbol are needed

- and more memory must be allocated during processing. Arithmetic coding completely

bypasses the idea of replacing an input symbol with a specific code. Instead, the idea is to

represent the input string by one floating-point number n in the range [0..1]. In order to

construct the output number, the symbols being encoded have to have a set of probabilities

assigned to them. Then, to each symbol is assigned an interval with size proportional to

its respective probability. The algorithm works as follow: Starting with the interval [0..1],

the current symbol determines which subinterval of the current interval is to be considered.

The subinterval from the coded symbol is then taken as the interval for the next symbol.

The output is the interval of the last symbol. Implementations write bits of this interval

sequence as soon as they are certain. The longer the input string is, the more numbers

after the floating point are needed to represent it.

Some of the best compression methods available today are variants of a technique called

prediction by partial matching (PPM), which was developed in the early 1980s. PPM relies

on arithmetic coding to obtain good compression performance. Since then there has been

little advance in the amount of compression that can be achieved, other than some fine-

tuning of the basic methods. On the other hand, many techniques have been discovered that

can improve the speed or memory requirements of compression methods. One exception is

Burrows-Wheeler Transform or BWT. BWT method was discovered recently by Burrows

and Wheeler in [24] and it is implemented in bzip, one of the best text compressor available

currently. It can get ratio performance close to PPM, but runs significantly faster. The

1Unisys [23] holds the patent of LZW

14

BWT is an algorithm that takes a block of data and rearranges it using a sorting algorithm.

The resulting output block contains exactly the same data elements that it started with

differing only in their ordering. The transformation is reversible, meaning the original

ordering of the data elements can be restored with no loss of fidelity. At last, the sorted

block is passed to a entropy encoder, typically Huffman or arithmetic encoder.

3.2 Performance Evaluation

This section presents the results of different compression algorithms applied to different

data sets. The goal here is to analyze which compression methods are suitable to be

used on wireless transmissions of Web files. Four different collections are used in these

experiments. The Calgary and Canterbury Collections are well known data sets used to

analyze performance of compression algorithms. In order to have a more realistic measure,

it was formed a new collection by crawling 9513 files from the Web. For the sake of

comparison, it was also measured compression performance for XML collections. The first

XML collection is the National Library of Medicine public collection [25]. The second one

was formed by all XML files hosted in the Sigmod [26] Web site.

Table 3.1 summarizes all different compression algorithms tested.

Table 3.1: Description of the compression algorithms tested.

Algorithm Description
LZW The original LZW algorithm
COMP1 Arithmetic coding
COMP2 Improved Arithmetic coding
HUFF Huffman coding
LZ77 The original LZ77 algorithm
LZARI Improved LZ77
LZSS Improved LZ77
PPMC PPM compressor
GZIP LZSS variant
BZIP2 Burrows-Wheeler algorithm
XMILL XML specific compressor

15

3.2.1 Calgary and Canterbury Corpus Collections

The Calgary Corpus collection was developed in 1987 by Ian Witten, Timothy Bell and

John Cleary for their research paper on text compression modeling [27] at University

of Calgary, Canada. During the 1990s it became the standard benchmark for lossless

compression evaluation. The collection is now rather dated but it is still reasonably reliable.

Table 3.2 has the details.

Table 3.2: Description of Calgary Corpus files.

Index File Category Size (bytes)
1 bib Bibliography (refer format) 111261
2 book1 Fiction book 768771
3 book2 Non-fiction book (troff format) 610856
4 geo Geophysical data 102400
5 news USENET batch file 377109
6 obj1 Object code for VAX 21504
7 obj2 Object code for Apple Mac 246814
8 paper1 Technical paper 53161
9 paper2 Technical paper 82199
10 paper3 Technical paper 46526
11 paper4 Technical paper 13286
12 paper5 Technical paper 11954
13 paper6 Technical paper 38105
14 pic Black and white fax picture 513216
15 progc Source code in ”C” 39611
16 progl Source code in LISP 71646
17 progp Source code in PASCAL 49379
18 trans Transcript of terminal session 93695

Nine different types of text are represented in this collection. For better results some

types have more than one representative file. Normal English, both fiction and non-fiction,

is represented by two books and papers. More unusual styles of English writing are found

in a bibliography and a batch of unedited news articles. Three computer programs rep-

resenting artificial languages and a transcript of a terminal session are included. Some

non-ASCII files are also included: two files of executable code, some geophysical data, and

a bit-map black and white picture. The geophysical file is particularly difficult to compress

because it contains a wide range of data values while the picture file is highly compressible

16

because of large amounts of white space in the picture represented by long runs of zeros.

Developed in 1997, the Canterbury Corpus is an improved replacement for the Calgary

Corpus. Today, this collection is the main benchmark for comparing compression methods.

The main files in the collection are listed on table 3.3.

Table 3.3: Description of Canterbury Corpus files.

Collection Index File Abbrev Category Size
main 1 alice29.txt text English text 152089

2 asyoulik.txt play Shakespeare 125179
3 cp.html html HTML source 24603
4 fields.c Csrc C source 11150
5 grammar.lsp list LISP source 3721
6 kennedy.xls Excl Excel Spreadsheet 1029744
7 lcet10.txt tech Technical writing 426754
8 plrabn12.txt poem Poetry 481861
9 ptt5 fax CCITT test set 513216
10 sum SPRC SPARC Executable 38240
11 xargs.1 man GNU manual page 4227

artificial 12 a.txt a The letter ’a’ 1
13 aaa.txt aaa The letter ’a’,

repeated 100,000 times. 100000
14 alphabet.txt alphabet Enough repetitions

of the alphabet to fill
100,000 characters 100000

15 random.txt random 100,000 characters,
randomly selected from
[a-z—A-Z—0-9—!—] 100000

large 16 E.coli E.coli Complete genome of the
E. Coli bacterium 4638690

17 bible.txt bible The King James version
of the bible 4047392

18 world192.txt world The CIA world fact book 2473400
misc 19 pi.txt pi The first million

digits of pi 1000000

All files were chosen because their results on existing compression algorithms are “typ-

ical”, therefore results should hold true for new methods. Additionally, four different

collections are made available: Calgary Corpus, Artificial Corpus, Large Corpus, and Mis-

cellaneous. The Calgary collection is provided for historic interest. The Artificial collection

contains files for which the compression methods may exhibit pathological or worst-case

17

performance – files containing little or no repetition (e.g. random.txt), files containing

large amounts of repetition (e.g. alphabet.txt), or very small files (e.g. a.txt). The Large

Corpus is a collection of relatively large files. While most compression methods can be

evaluated satisfactorily on smaller files, some require very large amounts of data to get

good compression, and some are so fast that the larger size makes speed measurement

more reliable. The Miscellaneous Corpus is a collection of “miscellaneous” files that is

designed to be added to by researchers and others wishing to publish compression results

using their own files.

Figure 3.1 plots the compressed ratios of Calgary Corpus files. Table 3.4 at the end of

the chapter shows each point individually. As it can seen, PPM, arithmetic (COMP2) and

bzip2 methods had the best performances, followed by gzip and other LZ-like methods.

Huffman had the worst performance. This is an expected behavior, as explained in Section

3.1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

tr
an

s
pr

og
p

pr
og

l
pr

og
c

pi
c

pa
pe

r6
pa

pe
r5

pa
pe

r4
pa

pe
r3

pa
pe

r2
pa

pe
r1

ob
j2

ob
j1

ne
w

s
ge

o
bo

ok
2

bo
ok

1
bi

b

F
ile

 s
iz

e
(%

 o
f t

he
 o

rig
in

al
)

Files

GZIP1
GZIP6
GZIP9
BZIP2

LZW
COMP1
COMP2

HUFF
LZARI
LZSS

PPMC
LZ77

Original

Figure 3.1: Compressed sizes of Calgary Corpus files.

When dealing with compression in wireless environments it is important to assess the

impact of compression and decompression processes over the total response time per-

ceived by users, as these time overheads can overcome the optimization achieved by re-

ducing transfer time. In these systems compression algorithms with the best compression

18

time/compression ratio tradeoff should be used. Figure 3.2(a) plots tradeoff between av-

erage compression time and average compression ratio for all Calgary Corpus files and for

each compression algorithm analyzed. Figure 3.2(b) does the same analysis for average

decompression time.

 0.01

 0.1

 1

 10

 100

 0 0.2 0.4 0.6 0.8 1

C
om

pr
es

si
on

 ti
m

e
(s

)

Compression ratio

LZW
COMP1
COMP2

HUFF
LZ77

LZARI
LZSS

PPMC
GZIP1
GZIP6
GZIP9
BZIP2

(a) Compression

 0.01

 0.1

 1

 10

 0 0.2 0.4 0.6 0.8 1

D
ec

om
pr

es
si

on
 ti

m
e

(s
)

Compression ratio

LZW
COMP1
COMP2

HUFF
LZ77

LZARI
LZSS

PPMC
GZIP1
GZIP6
GZIP9
BZIP2

(b) Decompression

Figure 3.2: Compression and decompression times versus Compression Ratio (Calgary
Corpus).

In both figures, gzip method yields the best time-ratio tradeoff. Gzip receives as input a

factor which determines how much effort should be made to compress a file. This factor may

vary from 1 through 9. In the previous experiments gzip was evaluated with compression

factors of 1 (less effort), 6 (default value) and 9 (more effort). Although decompression time

is approximately the same for these three versions, compression time and ratios show high

variations, from what it can be concluded that demanding less effort on gzip may be the

19

best choice. Although PPM and BZIP2 yields good compression rates, their compression

and decompression times are almost one order of magnitude higher than gzip.

It is important to notice that compression and decompression times grow proportionally

to file size (figures 3.3(a) and 3.3(b)). This is an important aspect of compression once

it can be used to predict, with certain precision, how long it will take to compress or

decompress a file. To make such a prediction, one must perform a linear regression on the

values obtained and create a formula that calculates time according to each file size. This

subject will be explored again on chapter 4.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10 100 1000

C
om

pr
es

si
on

 T
im

e
(s

)

File Size (Kbytes)

LZW
COMP1
COMP2

HUFF
LZ77

LZARI
LZSS

PPMC
GZIP1
GZIP6
GZIP9
BZIP2

(a) Compression time.

 0.001

 0.01

 0.1

 1

 10

 100

 10 100 1000

D
ec

om
pr

es
si

on
 T

im
e

(s
)

File Size (Kbytes)

LZW
COMP1
COMP2

HUFF
LZ77

LZARI
LZSS

PPMC
GZIP1
GZIP6
GZIP9
BZIP2

(b) Decompression time.

Figure 3.3: Compression and decompression times for the Calgary collection.

20

Figure 3.4 show compression ratios for Canterbury Corpus files. Again PPM, arithmetic

and bzip2 methods had the best global performance. Three files presented an anomalous

behavior due to their natural properties: a, aaa and alphabet. They are either too small

or have an enormous amount of repeated information. In both cases some algorithms may

present unexpected behavior. As this is not the case for most files in Internet, these values

can be disregarded. Table 3.5 at the end of the chapter shows all values individually.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

pi
w

or
ld

bi
bl

e
E

.c
ol

i
m

an
S

P
R

C
fa

x
po

emte
ch

E
xc

l
lis

t
C

sr
c

ht
m

l
pl

ayte
xt

ra
nd

om
al

ph
ab

et
aa

aa

F
ile

 s
iz

e
(%

 o
f t

he
 o

rig
in

al
)

Files

GZIP1
GZIP6
GZIP9
BZIP2

LZW
COMP1
COMP2

HUFF
LZARI
LZSS

PPMC
Original

Figure 3.4: Compressed sizes of Canterbury Corpus files.

Figures 3.5(a) and 3.5(b) compare compression and decompression times with compres-

sion ratios and again gzip had the best tradeoff. As said before, files in the Artificial subset

do not have a regular structure when compared to the other files in the collection. When

compressing these files some compression algorithms present anomalous behavior, creating

undesirable outliers. Files that are either too small or present an enormous amount of re-

peated information can lead to such a result. For this reason three different sets of points

were plotted on those figures: first group (to the left) represent all algorithms that yields

compression ratios smaller than 0.1 for files named aaa and alphabet; second group (to the

right) represents all algorithms that yields compression ratios higher than 10 for the file

named a; the third group (center) represents all algorithms that yields compression ratios

between 0.1 and 10 for all files. Each point represents the average of all measures, so it is

21

reasonable to assume that this is the mean compressing ratio of each algorithm.

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

C
om

pr
es

si
on

 ti
m

e
(s

)

Compression ratio

LZW
COMP1
COMP2

HUFF
LZARI
LZSS

PPMC
GZIP1
GZIP6
GZIP9
BZIP2

(a) Compression

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

D
ec

om
pr

es
si

on
 ti

m
e

(s
)

Compression ratio

LZW
COMP1
COMP2

HUFF
LZARI
LZSS

PPMC
GZIP1
GZIP6
GZIP9
BZIP2

(b) Decompression

Figure 3.5: Compression and Decompression times versus Compression Ratio (Canterbury
Corpus).

Figures 3.6(a) and 3.6(b) plot compression and decompression times versus file size. As

Canterbury Corpus has irregular files, the proportion of both compression and decompres-

sion times versus file size are affected by them. However, it is still possible to determine

such proportion by just ignoring or amortizing the effects of these outliers.

3.2.2 HTML Files

The HTML collection was formed by crawling 9513 files from the Web. Although the

files have different types (HTML, DHTML, ASP, JSP, PHP) they all can be described as

text files written in some mark-up language and may contain both natural language text

22

 0.001

 0.01

 0.1

 1

 10

 100

 1 1
0

 1
00

 1
00

0

 1
00

00

 1
00

00
0

 1
e+

06

 1
e+

07

C
om

pr
es

si
on

 T
im

e
(s

)

File Size (Kbytes)

LZW
COMP1
COMP2

HUFF
LZARI
LZSS

PPMC
GZIP1
GZIP6
GZIP9
BZIP2

(a) Compression time.

 0.001

 0.01

 0.1

 1

 10

 100

 1 1
0

 1
00

 1
00

0

 1
00

00

 1
00

00
0

 1
e+

06

 1
e+

07

D
ec

om
pr

es
si

on
 T

im
e

(s
)

File Size (Kbytes)

LZW
COMP1
COMP2

HUFF
LZARI
LZSS

PPMC
GZIP1
GZIP6
GZIP9
BZIP2

(b) Decompression time.

Figure 3.6: Compression and decompression times for Canterbury Corpus collection.

and programming language code. From now on, all these files will be referred as HTML

files. HTML files account for more than 97% of all documents found in the Internet that

are considered as textual information [28]. HTML files are exclusively textual, since their

contents consist of formatting tags and the text itself. This kind of language compensates

easiness of human reading with extremely verbose and large documents.

Performance of 11 algorithms was evaluated for this collection. The goal of this exper-

iment is to measure how much a typical HTML can be compressed and to have an idea of

how fast compression and decompression processes can be performed. The experiments in

23

the previous section gave us an idea of how these metrics are for text collections. As it will

be seen now, HTML have a similar behavior.

Figure 3.7(a) gives the accumulated size distribution of all files in the collection and

the amount of files in each range. As it can be seen, there is a concentration of files in the

range of 10-30Kbytes. Figure 3.7(b) represents accumulated compressed size distribution

for all algorithms tested.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 0.1 1 10 100 1000
 0

 500

 1000

 1500

 2000

 2500

A
cc

um
ul

at
ed

 D
is

tr
ib

ut
io

n

N
um

be
r

of
 fi

le
s

File size (kbytes)

Distribution
No. of files

(a) Accumulated distribution of the original HTML files.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.1 1 10 100 1000

A
cc

um
ul

at
ed

 d
is

tri
bu

tio
n

File size (kbytes)

GZIP1
GZIP6
GZIP9
BZIP2

LZW
COMP1
COMP2

HUFF
LZARI
LZSS

PPMC
Original

(b) Accumulated distribution of compressed HTML files.

Figure 3.7: Accumulated distribution for original and compressed files in the HTML col-
lection.

24

By doing the same experiments with this collection, the following results can be ob-

served. Regarding small files (smaller than 5kbytes), PPM and arithmetic methods perform

better than others. PPM, bzip2, arithmetic and gzip-9 methods achieve almost the same

compression limit for larger files. Finally, although gzip-1 and gzip-6 can not compress

as much as gzip-9, they compress and decompress faster than others, yielding a good

time/ratio tradeoff. Figures 3.8(a) and 3.9(a) show compression and decompression times.

The best way to visualize these results is plotting them using some kind of linear regres-

sion of curve fitting. Although Bezier curves are not used to create a function definition

for the data, this curve fitting method serves the purpose of giving an approximation of

the function line as it would be obtained through linear regression. Figures 3.8(b) and

3.9(b) shows the curve fitting for all algorithms tested and make it easy to observe how

the performance of each compression technique vary according to file size.

Figures 3.10(a) and 3.10(b) illustrate compression and decompression times versus com-

pression ratio, respectively. Instead of a point representing the average of all measures

taken, it was plotted lines representing time versus compression ratio for the several ratios

obtained with each algorithm. This way it is possible to see how compression ratio and

compression/decompression time are related. An algorithm with good time/ratio tradeoff

would generate a line with points concentrated in the lower left corner of the graph.

The time/size proportion for compressing and decompressing a HTML file is not the

same for all sizes, which differs from the results obtained for Corpuses collections. For

example, for gzip-6 algorithm (figure 3.11), it is possible to distinguish two different sets of

points: one for files smaller than 10kbytes and another one for files larger than 10kbytes. In

both cases, it is possible to estimate time/size relation by curve fitting or linear regression

on those two set of points. In this case, two straight lines could be used to represent the

function.

25

BZIP2

 0.01

 0.1

 1

 10

 100

 0.1 1 10 100 1000
C

om
pr

es
si

on
 T

im
e

(s
)

File Size (Kbytes)

LZW
COMP1
COMP2

HUFF
LZARI

LZSS
PPMC
GZIP1
GZIP6
GZIP9

 0.001

(a) Compression time (all points).

BZIP2

 0.01

 0.1

 1

 10

 100

 0.1 1 10 100 1000

C
om

pr
es

si
on

 T
im

e
(s

)

File Size (Kbytes)

LZW
COMP1
COMP2

HUFF
LZARI

LZSS
PPMC
GZIP1
GZIP6
GZIP9

 0.001

(b) Compression time (using a smooth bezier curve to plot all
points).

Figure 3.8: Compression time versus file size (HTML Collection).

3.2.3 XML Files

The XML specification defines a standard way to add markup points to documents con-

taining structured information [29]. Structured information contains both content (words,

pictures, etc.) and some indication of what role that the content plays. XML specifies

neither semantics nor a tag set and it is not a markup language per se. XML is really a

meta-language for describing markup languages. In other words, XML provides a facility

to define tags and the structural relationships between them.

XML was created so that richly structured documents could be used over the web,

what could not be achieved efficiently by other markup language like HTML and SGML.

Although very similar in many concepts, XML differs from these languages in many ways

26

BZIP2

 0.01

 0.1

 1

 10

 100

 0.1 1 10 100 1000
C

om
pr

es
si

on
 T

im
e

(s
)

File Size (Kbytes)

LZW
COMP1
COMP2

HUFF
LZARI

LZSS
PPMC
GZIP1
GZIP6
GZIP9

 0.001

(a) Decompression time (all points).

BZIP2

 0.01

 0.1

 1

 10

 100

 0.1 1 10 100 1000

C
om

pr
es

si
on

 T
im

e
(s

)

File Size (Kbytes)

LZW
COMP1
COMP2

HUFF
LZARI

LZSS
PPMC
GZIP1
GZIP6
GZIP9

 0.001

(b) Decompression time (using a smooth bezier curve to plot
all points).

Figure 3.9: Decompression time versus file size (HTML Collection).

[29]. In HTML, both the tag semantics and the tag set are fixed, that is, no matter

in which context they are, they will always have the same meaning. Moreover, HTML

is not flexible enough to allow users to extend documents in their own way. SGML is

the Standard Generalized Markup Language defined by ISO 8879. SGML has been the

standard, vendor-independent way to maintain repositories of structured documentation.

Although SGML provides arbitrary structure, it is not well suited to serve documents over

the web since it is too hard to implement it on a (supposedly) simple and light web browser.

The most obvious of these hard-to-implement features are the ones that were put into the

standard years ago to minimize keystrokes in manual entry: omitted start- and end-tags,

omitted quotes on attribute values, comments within other markup declarations, multiple

27

BZIP2

 0.01

 0.1

 1

 10

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
C

om
pr

es
si

on
 ti

m
e

(s
)

Compression ratio

LZW
COMP1
COMP2

HUFF
LZARI

LZSS
PPMC
GZIP1
GZIP6
GZIP9

 0.001

(a) Compression

BZIP2

 0.01

 0.1

 1

 10

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

U
nc

om
pr

es
si

on
 ti

m
e

(s
)

Compression ratio

LZW
COMP1
COMP2

HUFF
LZARI

LZSS
PPMC
GZIP1
GZIP6
GZIP9

 0.001

(b) Decompression

Figure 3.10: Compression and Decompression times versus Compression Ratio (HTML
Collection).

Decompression

 0.01

 0.1

 1

 0.1 1 10 100 1000

C
om

pr
es

si
on

 T
im

e
(s

)

File Size (Kbytes)

Compression

 0.001

Figure 3.11: Compression and decompression times for HTML files and gzip-6 algorithm.

comments in a single comment declaration, and public identifiers. Full SGML systems

should be used to solve large and complex problems that justify their expense.

28

Any file that follows the general markup rules can be a valid XML file. Most XML

applications follow a more rigorous set of rules having their structure defined by a Document

Type Definition (DTD) or by a schema, which provides even more information about the

content than a DTD.

As in HTML, XML substantially increases the size of data files over the size when the

same data is represented in raw format. By using compression, the impact of this inherent

inflation can be minimized. Compression of XML files can be greatly increased when the

schema is available. The schema allows the XML tags to be encoded with high efficiency.

In addition to providing high compression of tag data, knowledge of the schema allows the

element data to be encoded efficiently. Because schemas supply the data type information,

compression routines optimized for specific data types can be used, providing extremely

high compression ratios. If a file does not conform to the expected schema, the data is

safely encoded using high-performance general-purpose coders.

For these experiments two different public available XML collections ([25] and [26])

were used. The first one is a medical collection, with articles describing medical procedures,

diagnosis and general research. The later one is formed by the pages hosted in the ACM

Sigmod Web site, all written in XML.

File size distribution of the first collection is represented in figure 3.12, along with size

distribution of the same files compressed by different methods: PPM, gzip-1, gzip-9 and

XMill. XMill is a XML data compressor that can take advantage of XML structure to

provide higher compression ratios. This means XMills uses several compression algorithms

and based on the data type represented in each XML field decides which algorithms should

be used to compress the data. Regarding compression ratios, next experiments prove that

XMill performs as good as PPM and outperforms both gzip versions.

Figures 3.13(a) and 3.13(b) shows that compression time of XMill is slightly better than

gzip with level 9 compression effort. As a matter of fact, XMill uses gzip with compression

level 6 to compress text data type. Besides, XMill takes an extra time to decide which

29

Original 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000
Pe

rc
en

ta
ge

 o
f f

ile
s

in
 th

e
se

t

File size (bytes)

PPMC
GZIP1
GZIP9

XMILL

 0

Figure 3.12: File size distribution of XML files.

algorithms should be used to compress data. Although this is a minimum increase, it

collaborates to make XMill a little slower than gzip-1. PPM expends much more time in

both processes. It achieves the better compression ratios but consumes much more time

to compress and decompress files.

The same measures for the second collection are presented next. As it can be seen on

figure 3.14, most of the files in this collection have size in the 1Kb-10Kbytes range, while

the the majority of files in the previous collection were in the 10Kb-100Kbytes range.

Compression time and compression ratio tradeoff are described in figure 3.15(a). Figure

3.15(b) relates decompression time and compression ratios.

Again gzip had the best compression time performance, although gzip and XMill are

almost equivalent when decompressing those files. It is possible to observe the same be-

havior described for HTML files relating compression and decompression times with file

sizes in these collection, although compressing and decompressing XML files presents a

more regular proportion between file size and time than HTML files. As it can be verified

in figures 3.16(a) and 3.16(b) for the medical collection and in figures 3.17(a) and 3.17(b)

for the Sigmod collection, it is possible to predict, with a certain precision, how long it

will take to compress or decompress an XML file on these collection by making a linear

regression on those data points. This property is valid for all algorithms analyzed.

From all these experiments two conclusions can be drawn: first, the compression method

30

XMILL

 0.01

 0.1

 1

 10

 0 0.2 0.4 0.6 0.8 1
C

om
pr

es
si

on
 ti

m
e

(s
)

Compression ratio

PPMC
GZIP1
GZIP9

 0.001

(a) Compression

XMILL

 0.01

 0.1

 1

 10

 0 0.2 0.4 0.6 0.8 1

U
nc

om
pr

es
si

on
 ti

m
e

(s
)

Compression ratio

PPMC
GZIP1
GZIP9

 0.001

(b) Decompression

Figure 3.13: Compression and Decompression times versus Compression Ratio (XML Col-
lection).

Original 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100 1000

Pe
rc

en
ta

ge
 o

f f
ile

s
in

 th
e

se
t

File size (bytes)

PPMC
GZIP1
GZIP9

XMILL1
XMILL6
XMILL9

 0

Figure 3.14: File size distribution of XML files.

that yields the best compression ratio may not be the most adequate one to be used for

wireless transmission of compressed files. More important than the amount of bytes com-

31

XMILL9

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1
C

om
pr

es
si

on
 ti

m
e

(s
)

Compression ratio

PPMC
GZIP1
GZIP6
GZIP9

XMILL1
XMILL6

 0.001

(a) Compression

XMILL9

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1

U
nc

om
pr

es
si

on
 ti

m
e

(s
)

Compression ratio

PPMC
GZIP1
GZIP6
GZIP9

XMILL1
XMILL6

 0.001

(b) Decompression

Figure 3.15: Compression and Decompression times versus Compression Ratio (XML Col-
lection).

pressed is time spent to compress and decompress the file itself. Decompression may highly

impact total transmission time and power consumption of a portable device. The second

conclusion is that compression and decompression times can be estimated by evaluating

the specific algorithm over a representative set of files no matter which algorithm was used.

As it will be seen in the next chapter, this property plays an important role in the strategy

proposed to transmit HTML files over wireless channels. Another important observation is

that gzip and other LZ variant methods yield good performance in all cases studied: text,

HTML and XML. Consequently it is not necessary to create or adapt the compression

method each time the content type changes. Of course performance will not always be the

best possible, but the results achieved will not be much worse than the best result possible.

32

XMILL6

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 50 100 150 200 250 300 350 400 450

C
om

pr
es

si
on

 T
im

e
(s

)

File Size (Kbytes)

PPMC
GZIP1
GZIP6
GZIP9

 0

(a) Compression time.

XMILL6

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200 250 300 350 400 450

D
ec

om
pr

es
si

on
 T

im
e

(s
)

File Size (Kbytes)

PPMC
GZIP1
GZIP6
GZIP9

 0

(b) Decompression time.

Figure 3.16: Compression and decompression times for XML medical Collection.

33

XMILL9

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100 120

C
om

pr
es

si
on

 T
im

e
(s

)

File Size (Kbytes)

PPMC
GZIP1
GZIP6
GZIP9

XMILL1
XMILL6

 0

(a) Compression time.

XMILL9

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100 120

D
ec

om
pr

es
si

on
 T

im
e

(s
)

File Size (Kbytes)

PPMC
GZIP1
GZIP6
GZIP9

XMILL1
XMILL6

 0

(b) Decompression time.

Figure 3.17: Compression and decompression times for XML Sigmod Collection.

34

T
ab

le
3.

4:
C

om
p
re

ss
ed

si
ze

of
C

al
ga

ry
C

or
p
u
s

fi
le

s.

A
R

Q
O

R
IG

B
Z
IP

2
C

O
M

P
2

P
P

M
C

G
Z
IP

9
G

Z
IP

6
G

Z
IP

1
L
Z
A

R
I

L
Z
77

L
Z
W

L
Z
SS

C
O

M
P

1
H

U
F
F

pa
pe

r5
11

95
4

48
37

47
63

45
07

49
95

49
95

54
24

53
21

65
07

70
17

60
69

75
59

76
33

pa
pe

r4
13

28
6

51
88

50
81

48
35

55
34

55
36

60
73

59
79

71
60

74
40

67
98

79
98

80
43

ob
j1

21
50

4
10

78
7

10
81

9
10

13
5

10
32

0
10

32
3

10
70

7
10

71
7

13
12

6
16

92
5

12
24

7
16

03
8

16
58

4
pa

pe
r6

38
10

5
12

29
2

12
45

5
11

68
3

13
21

3
13

23
2

15
28

2
15

52
0

16
86

5
23

30
1

17
60

9
23

83
7

24
23

0
pr

og
c

39
61

1
12

54
4

12
89

6
12

01
8

13
26

1
13

27
5

15
45

5
15

33
3

17
00

7
24

46
4

17
53

1
25

92
2

26
11

1
pa

pe
r3

46
52

6
15

83
7

16
02

8
15

15
4

18
07

4
18

09
7

20
81

9
20

69
3

22
13

0
23

91
6

23
48

5
27

39
1

27
46

9
pr

og
p

49
37

9
10

71
0

11
66

8
10

90
3

11
18

6
11

24
6

13
38

2
12

77
0

15
85

8
23

28
5

15
44

5
30

20
7

30
41

6
pa

pe
r1

53
16

1
16

55
8

16
89

5
15

76
6

18
54

3
18

57
7

21
61

2
21

61
6

23
07

6
31

17
5

24
46

7
33

13
0

33
55

0
pr

og
l

71
64

6
15

57
9

17
35

4
15

86
1

16
16

4
16

27
3

20
03

8
18

69
2

22
75

3
34

91
4

22
52

1
42

61
7

43
18

1
pa

pe
r2

82
19

9
25

04
1

25
45

3
25

87
1

29
66

7
29

75
3

35
07

8
35

09
8

36
65

3
41

66
4

39
70

3
47

54
0

47
83

0
tr

an
s

93
69

5
17

89
9

21
02

3
20

66
8

18
86

2
18

98
5

23
96

6
27

97
9

29
71

0
50

54
3

33
64

1
64

34
0

65
43

4
ge

o
10

24
00

56
92

1
64

59
0

62
67

3
68

41
4

68
49

3
69

81
0

70
38

5
85

92
2

78
75

3
83

18
3

72
40

5
73

08
4

bi
b

11
12

61
27

46
7

29
84

0
29

91
5

34
90

0
35

06
3

43
87

1
46

22
2

46
09

4
53

84
4

52
59

1
72

79
2

72
94

1
ob

j2
24

68
14

76
44

1
85

46
5

80
30

9
81

08
7

81
63

1
93

90
6

90
67

4
10

64
84

30
25

40
10

30
02

18
73

06
19

46
35

ne
w

s
37

71
09

11
86

00
12

80
47

13
60

68
14

44
00

14
48

40
16

41
99

16
51

43
18

78
23

23
28

08
19

44
35

24
44

96
24

66
06

pi
c

51
32

16
49

75
9

55
46

1
53

02
2

52
38

1
56

44
2

65
54

0
61

30
1

12
03

85
70

21
5

10
53

11
75

06
6

10
69

49
bo

ok
2

61
08

56
15

74
43

17
40

85
18

58
83

20
61

58
20

66
87

24
88

46
25

14
51

25
83

39
34

65
29

28
59

42
36

47
88

36
85

21
bo

ok
1

76
87

71
23

25
98

23
73

80
27

36
29

31
22

81
31

33
76

36
50

05
36

75
76

38
64

75
39

08
07

42
41

47
43

69
26

43
85

77

35

T
ab

le
3.

5:
C

om
p
re

ss
ed

si
ze

of
C

an
te

rb
u
ry

C
or

p
u
s

fi
le

s.

A
R

Q
O

R
IG

B
Z
IP

2
C

O
M

P
2

P
P

M
C

G
Z
IP

9
G

Z
IP

6
L
Z
A

R
I

G
Z
IP

1
L
Z
SS

L
Z
W

C
O

M
P

1
H

U
F
F

a.
tx

t
1

37
3

19
27

27
6

27
2

2
3

4
gr

am
m

ar
.ls

p
37

21
12

83
12

09
11

23
12

46
12

46
13

11
13

56
15

37
21

14
22

99
23

44
xa

rg
s.

1
42

27
17

62
16

70
15

88
17

56
17

56
18

37
18

72
21

24
26

88
27

37
27

70
fie

ld
s.

c
11

15
0

30
39

31
06

29
42

31
36

31
43

33
60

36
74

38
41

53
13

71
59

72
24

cp
.h

tm
l

24
60

3
76

24
75

94
70

97
79

81
79

99
91

24
90

54
10

94
1

12
22

5
16

29
9

16
39

1
su

m
38

24
0

12
90

9
14

53
3

13
18

7
12

77
2

12
92

4
15

49
4

14
13

4
17

80
3

30
93

8
24

73
5

26
19

6
aa

a.
tx

t
10

00
00

47
10

4
13

0
14

1
14

1
20

76
48

1
11

80
8

67
1

57
2

12
50

4
al

ph
ab

et
.t

xt
10

00
00

13
1

15
1

22
4

31
5

31
5

21
43

66
0

11
83

4
34

02
59

30
7

60
16

0
ra

nd
om

.t
xt

10
00

00
75

68
4

85
83

0
86

01
1

75
68

9
75

68
9

75
77

3
77

30
1

11
07

13
93

61
5

75
46

8
75

31
5

as
yo

ul
ik

.t
xt

12
51

79
39

56
9

39
65

7
42

44
0

48
82

9
48

95
1

56
91

6
56

81
3

65
55

1
62

97
3

75
73

3
75

96
3

al
ic

e2
9.

tx
t

15
20

89
43

20
2

43
96

4
46

22
0

54
19

1
54

43
5

64
62

5
65

14
4

73
11

7
72

31
8

87
35

8
87

86
4

lc
et

10
.t

xt
42

67
54

10
77

06
11

62
95

12
87

62
14

44
29

14
48

85
17

66
16

17
41

32
19

97
22

22
22

06
24

86
66

25
07

59
pl

ra
bn

12
.t

xt
48

18
61

14
55

77
14

57
25

16
74

86
19

42
77

19
52

08
22

79
33

22
87

78
26

29
43

23
49

30
27

44
78

27
57

87
pt

t5
51

32
16

49
75

9
55

46
1

53
02

2
52

38
2

56
44

3
61

30
1

65
54

1
10

53
11

70
21

5
75

06
6

10
69

49
pi

.t
xt

10
00

00
0

43
16

71
42

08
91

48
74

41
47

04
39

47
04

39
50

10
87

49
72

88
63

09
86

46
65

53
41

92
57

43
73

52
ke

nn
ed

y.
xl

s
10

29
74

4
13

02
80

23
17

50
17

11
60

20
97

33
20

67
79

26
31

68
24

50
37

28
81

23
41

92
35

43
37

43
46

31
29

w
or

ld
19

2.
tx

t
24

73
40

0
48

95
83

65
30

89
74

68
81

72
14

13
72

46
06

11
21

13
7

91
78

96
13

09
27

0
15

69
21

0
15

45
48

1
15

58
81

4
bi

bl
e.

tx
t

40
47

39
2

84
56

23
97

44
96

10
50

93
7

11
76

64
5

11
91

07
1

14
50

58
3

14
90

03
8

16
38

29
7

18
51

17
0

22
02

08
1

22
18

60
4

E
.c

ol
i

46
38

69
0

12
51

00
4

11
32

53
8

12
04

96
8

12
99

06
6

13
41

25
0

13
78

81
4

15
26

47
6

16
13

10
3

12
54

88
8

11
76

94
0

13
02

28
6

36

Chapter 4

Adaptive model

The first step to create the adaptive model was to define in which scenarios compression

should be used. It is easy to conceive at least two ones: when compression yields a reduction

in response time or in power consumption. The second step was selecting the parameters

these properties depends on: bandwidth, transmitted file size, compression ratio, type of

device where decompression is done, power consumption for transmission and processing,

packet error ratio among others. Third, all these parameters were combined together to

achieve the previously described goals – reduce time or power costs.

In order to predict when compression can generate some improvement either in re-

sponse time or power consumption, the model shown in figure 4.1 is proposed. Modules T

(time) and E (energy) have as inputs the many parameters (as described above) and each

one uses its own analytical model to return one value, Vt and Ve respectively, indicating

whether compression is worthy in each case. These values are passed to module C, which is

responsible for making the final decision Dc. A “weight factor” – Wt and We – is associated

to each module representing its reliability.

The values returned by each module are binary: 1 if there is some time/energy im-

provement and 0 if there isn’t. The reliability factor values range from 0 to 1 (1 indicating

37

Figure 4.1: Predictive model.

the most reliable value). Then,

Wt, We ∈ [0, 1]

The final decision, Dc, is made through the use of simple mean formula.

Dc =

0 , if Wt = We = 0

Wt·Vt+We·Ve

2.0
, otherwise

A file is transmitted in its original form when Dc < 0.5 and it it compressed if Dc ≥ 0.5.

This means compression will only be made if both decision modules have high reliability

values and agree about compression or when one reliability value is higher enough to

compensate the other one, in the case of a disagreement.

The next step is feedback. After transmission, data about total transmission time,

decompression time if it is the case, the total energy spent by the receiver device, the

amount of transferred bits, the amount of bits with errors and the amount of grouped

error bits are all collected. All these parameters are used to evaluate the new values of

available bandwidth, packet error ratio and reliability factors.

Available bandwidth is calculated based on past transmissions and its formula is

bwi+1 = α · bwi + (1− α) · Tami

tti

where Tami is the amount of transferred bits and tti is the total transmission time of

38

the last transmission. After running some tests, the value of α was defined as 7
8

in the

experiments.

The packet error ratio is calculated as follows. First, the number of packets between

two consecutive error bursts is evaluated with the formula:

Pac =
[10−(Tx) · Be

8
]

Tm

where Tx is an exponent representing the error bit rate seen on past transmissions (usual

values are around −5, indicating 1 bit with error in 105 transferred bits), Be is the amount

of grouped bits with errors (usual values are between 3 and 10), Tm is the packet size

measured in bytes (that´s why it is divided Be by 8) and Pac is the number of packets

between two consecutive error bursts. This last value is used in the formula

Perr =
1 + Di

Pac

where Di is the probability of two consecutive error packets due to the same error burst

and Perr is the packet error ratio.

The new Wt and We values are recalculated based on real and predicted values of

a transmission. If a gain is observed, either in time or energy, the respective factor is

increased; otherwise the factor is reduced, as described next.

w ←

w + (1−w)

2
, if there is a gain

w − w
2

, otherwise

Determining an expected gain is done as follow. Before transmitting a file, each module

evaluates two expected values for this operation – one using compression and another

one not using it (nc and c indices will refer to not compressed and compressed values

respectively). This way, there are two expected transmission times (TEnc and TEc) and

two expected energy consumptions (EEnc and EEc). The returned value, Ve and Vt, of

39

each module is based on their differences. For instance, if TEc > TEnc, meaning that

transmission time with no compression is higher than the transmission with compression,

then Vt is 1; otherwise Vt is 0. The same idea is applied to energy. After transmitting

the file, whether using compression or not, total time – TT – and total energy – ET – are

compared against the expected time/energy values. For instance, if a file is transmitted

with compression TT would be compared with TEnc and if an improvement was really

achieved, that is, TT < TEnc, then Wt is increased and it means the module is able

to make good predictions. Otherwise Wt is reduced, meaning the module is doing poor

predictions. After a while, depending on how stable the environment is, the reliability

factors will stabilize at some value.

Next it will be presented the description of how the values are evaluated inside each

module. First, response time is analyzed. The total expected time to transmit a file is

the sum of the expected time spent to send all packets, the expected time spent to resend

the ones with errors and the expected time needed to receive all acknowledgments. If

compression is used decompression time has to be added. Compression time is negligible

since servers have much more power than mobile devices and one compressed file copy could

be stored together with the original one, in order to avoid compression at each request.

Thus:

TEnc = Tsendnc + Tresendnc + Tacknc

=
tamnc

bw
+ Perr ·

tamnc

bw
+ (1 + Perr) ·

tamnc

tampkt

· tamack

bw

TEc = Tsendc + Tresendc + Tackc + Tdec

=
tamc

bw
+ Perr ·

tamc

bw
+ (1 + Perr) ·

tamc

tampkt

· tamack

bw
+ Tdec

40

∆TE = (1 + Perr) ·
∆tam

bw
· (1 +

tamack

tampkt

)− Tdec

where tam is the file size, tampkt is the packet size, tamack is the acknowledgment size, and

k is a constant that depends on three factors: decompression method used, receiver device

and file size.

For energy prediction, only the energy spent by the receiver device for receiving all

packets, sending all acknowledgments and decompressing the file should be taken into

consideration. Sending packets and compressing files is done by the server but these values

can be disregarded as is it supposed that the server is connected to a fixed and infinite

power supply.

EEnc = Esendnc + (Ereceivenc + Eacknc)

= 0 + [Pr · (1 + Perr) ·
tamnc

bw
+ Ps · (1 + Perr) ·

tamack

bw
· tamnc

tampkt

]

EEc = Esendc + (Ereceivec + Eackc + Edec)

= 0 + [Pr · (1 + Perr) ·
tamc

bw
+ Ps · (1 + Perr) ·

tamack

bw
· tamc

tampkt

+

Pd · Tdec]

∆EE = Pr · (1 + Perr) ·
∆tam

bw
+ Ps · (1 + Perr) ·

tamack

bw
· ∆tam

tampkt

+Pd · Tdec

Ps and Pr are the power values related to sending and receiving packets by the mobile

device. Pd is the processor power spent to decompress a file in the mobile device.

It should be noticed that in this analytical model none of the used metrics is bounded to

specific methods of measurement or technological aspects. This means that some metrics

could be replaced or simply ignored without loosing the general idea. The bandwidth, for

41

instance, could be measured by constantly sending ping messages or observing the rate at

which a TCP buffer is flushed. The packet error ratio could be evaluated in a different way

or it could be ignored if it is the case. Energy and time could be evaluated more accurately

by changing their formulas or by doing measurements in the hardware itself.

As discussed in Section 3, tests were performed over a collection of text and Web

documents in order to determine the constants to be used in the model, as the above

formulas assume the use of a predicted compressed file size and a predicted decompression

time. To make predictions for these values, Table 4.1 was built. This table gives an

approximate compression ratio as a function of compression method and original file size

for HTML files.

Table 4.1: Approximate compression ratio as a function of compression method and original
size for HTML files.

Kmt

Size (KB) LZSS LZW GZIP PPM
0–1 0.68 0.72 0.60 0.55
1–2 0.58 0.65 0.56 0.46
2–3 0.52 0.60 0.51 0.41
3–4 0.47 0.56 0.46 0.37
4–5 0.45 0.64 0.41 0.35
5–7 0.42 0.50 0.34 0.31
7–10 0.40 0.48 0.32 0.29
10–15 0.36 0.43 0.29 0.25
15–25 0.33 0.38 0.27 0.22
≥25 0.32 0.33 0.25 0.20

Hence, compressed file size is a function, Fc, that can be calculated using the original

file size, Tamnc, and the compression constant, Kmt, for the respective Method.

Tamc = Fc(Tamnc, Method) = Kmt · Tamnc

In Chapter 3, LZSS was shown to give good results for compression size and decom-

pression time resulting in a good tradeoff between these two metrics. Therefore, LZSS is

a good candidate to be used in the future experiments. If there is the need to change the

42

compression method it suffices to modify the Kmt constant to the new proper value.

The time taken to decompress a file is a function, Fd, of three parameters: compressed

file size – Tamc, compression method – Method, and mobile device to be used – Machine.

Thus:

Tdec = Fd(Tamc, Machine,Method) = K · Tamc

= K ·Kmt · Tamnc

= Kt ·Kcl ·Kmt · Tamnc

where Kcl is a constant related to the mobile device and Kt is related to decompression

method and is obtained through linear regression on the results of compression on the

HTML (more details on Section 5.2). For instance, Table 4.2 represents Kt values for a

notebook with Pentium processor of 133 MHz and 24 Mbytes of memory. Kt is calculated

through linear regression of all measures taken for decompression time versus file size for

the HTML collection (refer to figures 3.9(b) and 3.11) and taking the inclination of the

line obtained. For this device, Kcl could be defined as 1. If for instance processor speed

doubles, Kcl could be defined as 0.5 without the need to reevaluate all metrics again.

Table 4.2: Decompression time constant as a function of compression method.

Method Kt

LZSS 4× 10−6

LZW 6× 10−6

PPM 2× 10−4

GZIP 4× 10−6

It is worth to emphasize the how flexible this model is. Regarding the model’s pa-

rameters, it is easy to add new ones by just changing and/or creating new prediction

formulas (e.g., if server compression time, server energy consumption or bandwidth uti-

lization should be considerer). It is also possible to specify parameter priorities by just

changing maximum reliability factor values (e.g., if a user cares more about the energy

43

consumption rather than response time). It is also possible to modify formulas when there

is no information about some metric (e.g., bits with error) or when its relevance is negligi-

ble. Obviously, in this case, the predicted result would be less accurate. Also, the model´s

idea and its implementation are completely independent which is always a good asset in

designing communication protocols and policies.

44

Chapter 5

Experiments

5.1 Communication protocols

In order to validate the predictive model it is necessary to measure its performance over

different conditions. A truly adaptable model should present good performance no matter

what the environmental conditions are and should not make performance worse than it

would be in a traditional system, that is, with no modifications. In the world of wireless

communications, Medium Access Control – MAC – layer plays an important role on defining

how and when the wireless carrier is used to transmit data. The protocol used in this layer,

in fact, is what distinguish one form of communication from another. For this work, two

different types of MAC communication protocols were used: IEEE 802.11 and Bluetooth.

A brief description of each one is given next.

5.1.1 IEEE 802.11

The IEEE 802.11 standard was created in 1999 to support communication in Wireless Local

Networks (WLANs). The specification defines one MAC layer and several possible physical

layers, making possible to access the medium in three different ways: FHSS (Frequency

Hopping Spread Spectrum), DSSS (Direct Sequence Spread Spectrum) and infrared.

45

In the 802.11 protocol, Basic Service Sets (BSS) are the architectural units. A BSS

is defined as a group of communicating devices under control of a unique coordination

function (Distributed Coordination Function – DCF), which is responsible for determining

when a device can transmit/receive data. Devices can communicate directly (point-to-

point) or with the help of a predefined structure. Networks which communicate like the

former case are known as ad-hoc networks, and like the later case are known as infra-

structured. Infra-structured networks use base points to interconnect devices and to provide

mobility across different areas.

There are two basic communicating rates, 1 Mbps and 2 Mbps. Standards 802.11a and

802.11b altered 802.11 physical layers in order to provide higher rates, such as 5.5 Mbps and

11 Mbps (802.11b). The standard 802.11a can achieve 54 Mbps using its own multiplexing

technique, which makes communication impossible between 802.11b and 802.11a devices.

5.1.2 Bluetooth

Bluetooth’s main goal is to provide a mechanism to interconnect low-power devices using

radio communication. Bluetooth networks allow fast exchange of data and voice among

devices such as PDAs, pagers, modems, cell phones and mobile computers.

Bluetooth operates in the well known ISM 2.4 GHz spectrum and it was specified based

on robustness and low cost, aiming to form networks known as Wireless Personal Networks

(WPANs). Its transmission range can vary from 10 cm to 10 m, but its specification allows

up to 100 m range if transmission power increases. Bluetooth networks are formed when

a device assumes the master condition and starts managing the slaves nodes. Any device

can assume the master and slave role along the time. A difficult challenge of Bluetooth

networks is the configuration and reconfigurations steps, that is, what happens when a

devices leaves or enters the communication area.

46

5.2 Scenarios

For 802.11 experiments, the following scenario was built: an embedded system commu-

nicating through a wireless channel with a file server and retrieving files using HTTP

protocol. This is similar to a mobile user with a PDA browsing an Intranet of a mall

or office. The embedded system used was DIMM-PC/486-I model of Jumptec [30] which

is a 486 processor of 66 MHz speed and 16 Mbytes of memory, and Lucent WaveLan

802.11 [31] as wireless card. The receiving, transmitting, and processing costs are specified

in Table 5.1.

Table 5.1: Energy costs for 802.11 experiments.

Operation Current (mA) Voltage (V) Power (W)
Transmission 330 5 1.65
Reception 280 5 1.40
Decompression 510 5 2.55 (66 Mhz)

267 5 1.33 (33 Mhz)

In order to apply the model, all values for the parameters had to be evaluated again for

this system, as described in Chapter 4. As the only changes happened in the hardware (and

not in the compression algorithms), ratio compression values remained constant. Figure 5.1

shows the linear variation of decompression time versus file size for the HTML collection

for files smaller than 15 Kbytes. The new Kt value, which can be obtained by linear

regression, was defined as 1, 875× 10−5 and Kcl was set to 1 on this new system.

The scenario of Bluetooth experiments is almost the same as the one of 802.11. The

main difference is hardware configuration. Client and server applications run in a 400 Mhz

Pentium II computer, with 256 Mbytes of RAM and running OS Suse Linux 8.1 (kernel

2.4.18). Client’s communicating device was developed by Ericsson [32]; server’s commu-

nicating device was developed by Widcomm [33]. The Affix [34] protocol stack was used

in the application development. Half of the test collection was used in the tests and Kt

47

0

0.05

0.1

0.15

0.2

0.25

0.3

14KB12KB10KB8KB6KB4KB2KB

Ti
m

e
(s

)

Compressed File Size

Figure 5.1: File size versus decompression time for files smaller than 15 Kbytes.

parameter had to be reevaluated for these machine.

The actual implementation of this model required the insertion of new fields on the

HTTP header [35], containing information about the last transfer (figure 5.2). These pieces

of information are piggybacked to the server when a new request is sent. Before answering

the request, the server will pass through the feedback step of the adaptive model with new

data. Many servers already retain information about client interaction through the use of

sessions, hence inserting new data to these structures is trivial.

Figure 5.2: Scenario of 802.11 experiments.

Piggyback model architecture works well in such server and middleware systems since

they demand a small effort from clients (or client middleware side) as they only have

48

to store the information related to the last transfer until the next request. This can be

accomplished by maintaining a set of few variables in the memory while the application is

active. Another option for implementation is putting all intelligence on the clients. This

requires some modifications in the model, since the client cannot guess the requested file

size. A possible solution is to let a client evaluate the range of file sizes that could be

compressed and send this information to the server. This range would be analyzed by the

server and the requested file would be sent with or without compression depending on it.

This would imply more memory/energy costs in the clients with the model’s calculations

but it frees the server of the burden to store information about each client.

5.3 Results

For the 802.11 experiments, 190 Web files were randomly selected from the HTTP collection

for testing. Figures 5.3(a) and 5.3(b) plots response time versus file size for bandwidth of

1 Mbps for each of the three models: no compression at all, always compressing the file

and the adaptive model. Figure 5.3(a) compares the three models for files with size smaller

than 10kbytes and figure 5.3(a) does the same for size larger than 10 kbytes. It is possible

to observe that the adaptive model fits into the best case in both situations, that is, for

files smaller than 10 kbytes adaptive model decides that files should not be compressed; for

the other files, the best case occurs when files are compressed before transmission. Around

10 kbytes both times (transmission with and without compression) are approximately the

same. According to [36], most of the replies are less than 3 Kbytes for online wireless clients

– the ones which demand HTTP pages one by one when they browsing on the Internet

– and less than 6 Kbytes for offline clients – the ones which demands all pages before

browsing through them. Thus, compressing all responses would not be a good policy, even

for a low bandwidth link.

Figure 5.4 plots response time performance of the adaptive model over compressed and

49

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3 4 5 6 7 8 9 10

R
es

po
ns

e
Ti

m
e

(s
)

File Size (Kbytes)

Adaptive
Compressed

Not compressed

(a) File size smaller than 10 Kbytes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 20 30 40 50 60 70

R
es

po
ns

e
Ti

m
e

(s
)

File Size (Kbytes)

Adaptive
Compressed

Not compressed

(b) File size larger than 10 Kbytes.

Figure 5.3: Response time for adaptive, compressed and not compressed models.

not compressed models for all tested files. For the small files, gains are about 60 to 70% for

sizes ranging from 1 to 2 Kbytes, decreasing out of these limits. For large files, there is a

continuous increasingly gain as the size gets bigger. For a size of approximately 50 Kbytes,

gains are about 20 to 30%.

Figure 5.5 plots the accumulated energy consumption calculated as described on the

formulas presented on chapter 4. The three lines represents accumulated energy consump-

tion for each model (always compressing, no compressing at all and adaptive) for all files

in requesting order. As it is implemented, the model applies the same weight to both

50

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

10 20 30 40 50 60 70

P
er

ce
tu

al
 g

ai
n

(%
)

File Size (Kbytes)

Adaptive over Compressed
Adaptive over Not Compressed

Figure 5.4: Percentual gain of adaptive model over compressed and not compressed models.

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180 200

E
ne

rg
y

(J
)

Files in request order

Adaptive
Compressed

Not compressed

Figure 5.5: Accumulated consumed energy of adaptive, compressed and not compressed
models

parameters – time and energy – and compression can happen when either one yields some

gain. For the system deployed in these experiments, the process of decompressing a file

consumes more energy than transmitting it, which explains the behavior of the figure:

adaptive is closer to the worst case. As said before, if a client wishes to give different

parameter priorities he just needs to change the specific weights on the formulas of the

model. Giving more priority to energy means that the adaptive model line would fit the

best case (in this case, not compressing ever); on the other hand, response time probably

51

would not have the behavior as seen before.

Next figures show how compression depends on the device as much as in the file size

and on bandwidth. In Figure 5.6, bandwidth was modified to 2 Mbps and all gains due

to compression disappeared, since then decompressing the file taken much longer than the

time saved in its transmission. The adaptive model was able to adapt to the best case.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10 20 30 40 50 60 70

R
es

po
ns

e
Ti

m
e

(s
)

File Size (Kbytes)

Adaptive
Compressed

Not Compressed

Figure 5.6: Response time for adaptive, compression and not compression models using
bandwidth of 2 Mbps and processor speed of 66 MHz.

Next (figure 5.7), processor speed was changed to 33 MHz and the same experiments

were executed as before using 1 Mbps as bandwidth. As the same device was used – the

only difference was clock speed – it was enough to modify Kcl to 2 and to use the respective

energy consumption values (Table 5.1). Again, time saved with compressed transmission

is not compensated by the time taken to decompress a file in such a slow system.

The conclusion is that even for the same bandwidth channel and for the same device

compression decision should be done individually and a static solution would fail to give

the best performance always.

Bluetooth protocol minimizes channel interference using its own model of frequency

hopping, which puts a limit of 723 kbps as the maximum achievable bandwidth. With

such a limited bandwidth and powerful devices, Bluetooth offers the perfect scenario under

52

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50 60 70

R
es

po
ns

e
Ti

m
e

(s
)

File Size (Kbytes)

Adaptive
Compressed

Not Compressed

Figure 5.7: Response time for adaptive, compression and not compression models using
bandwidth of 1 Mbps and processor speed of 33 MHz.

which compression could be used. The graph in Figure 5.8 shows the large difference in

response time for adaptive and not compression models.

0

0.5

1

1.5

2

2.5

3

3.5

10 20 30 40 50 60 70

R
es

po
ns

e
Ti

m
e

(s
)

File Size (Kbytes)

Adaptive
Not compressed

Figure 5.8: Response time for the Bluetooth protocol.

As Bluetooth’s main goal is to form personal networks by interconnecting embedded

systems, it is expected that devices for this scenario are less powerful than the devices used

in the previous experiment. In that case, compressing all files might not be a good choice

as decompression could take too long.

53

5.3.1 An analytical view

It is possible to plot response time as a function of file size, bandwidth, and processor speed

using the time formulas of the analytical model (Chapter 4). By making some assumptions

like null packet error rate, graphs like the ones shown in Figures 5.9(a) and 5.9(b) can be

obtained. These graphs offer an analytical view of the model, which is summarized in

Figure 5.10.

Compression
Not compression

50 40 30 20 10

File Size (Kbytes)

1Mb

1.5MbBandwidth (Mbs)

0.2

0.4

0.6

0.8

1

Response Time

(a) Bandwidth 1 Mbps; Processor speed 66 MHz.

Compression
Not compression

50 40 30 20 10

File Size (Kbytes)

1Mb

1.5MbBandwidth (Mbs)

0.2

0.4

0.6

0.8

1

Response Time

(b) Bandwidth 1 Mbps; Processor speed 33 MHz.

Figure 5.9: Response time as a function of file size and bandwidth.

In Figure 5.10, the area limited by the model´s parameters defines where compression

should be used. The area is shaped mostly by the compression method used and the media

54

type being compressed, that is, the Kmt parameter. The offset is given mainly by mobile

device characteristics – Kt×Kcl. Packet error rate, packet and acknowledgment sizes may

alter both offset and shape in a smaller scale. Power consumption values have a similar

behavior.

Figure 5.10: Graphical view of compression of the analytical model.

This representation could be used to create a simplified model that runs in the device

itself, as mentioned before. Suppose an embedded system for instance. If several bandwidth

values bwi are stipulated, different file size points fsi would be obtained beyond which

compression should be performed. In this manner, a table indexed by bwi whose entries

would be fsi could be used to decide when compression pays off. Thus, another way to

get an adaptive compression method is when clients monitor bandwidth and transmit the

specific limit to servers.

5.4 Simulations

In the previous section, response time and energy consumption for the proposed adaptive

model were analyzed for one device only. This section presents results for several devices

communicating to a server. This is an important analysis since real scenarios may envolve

55

many clients and the available bandwidth may vary a lot during the course of application

execution.

ns-2 [37] was used as the simulation tool and the following parameters were analyzed:

communication protocol (Bluetooth and 802.11), number of clients, bandwidth and trans-

mission mode (compressed, not compressed and adaptive). In the simulated scenario, static

clients (Ci) made continuous requests to server S (Figure 1.2) through a wireless channel.

Both request intervals and file sizes followed exponential distributions with means of 30 s

and 3 Kbytes, respectively [36].

The Compression module was implemented based on experimental results (Section 5.3).

A packet is transmitted only after the arrival of the acknowledgment of the previous packet

(window size of 1). Besides flow control, this module uses the proposed adaptive model to

decide when a file should be compressed before transmission.

First, results for the IEEE 802.11 protocol are presented. For this scenario it was

stipulated a 0.5% channel error rate, 3600 s of simulation time, bandwidth varied from

600 kbps up to 10 Mbps and the number of clients simulated were 1, 5, 10 and 50. Each

simulation was run 33 times.

Figures 5.11(a) and 5.11(b) show performance of adaptive model over other models

both as relative performance and real time measured in a scenario with only one client and

different bandwidths. In figure 5.11(a) line 1 represents the transmission of files with no

compression at all. Predictive model adapts well in very low and very high bandwidths

environments, a result similar to the one obtained in the last section.

Figure 5.12 shows a different analysis of the model. The prediction formula was modified

so it would consider the remaining energy in the device to make its decision. Remaining

energy was divided into five classes (80–100%, 60–80%, 40–60%, 20–40%, 0–20%) and for

each one an increasing weight was given to the energy parameter, while proportionally

decreasing the relevance of time parameter. All nodes (in a 50-node scenario) started with

100% of energy. Figure 5.12 shows that as the remaining energy in the devices become

56

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 1 2 3 4 5 6 7 8 9 10

R
es

po
ns

e
tim

e
ra

tio
 (m

s)

Bandwidth(Mbps)

Not compressed
Adaptive

Compressed

(a) Performance comparison.

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(m

s)

Bandwidth (Mbps)

Not compressed
Compressed

Adaptive

(b) Time comparison.

Figure 5.11: Comparison of adaptive, compression and not compression models (1 client).

scarce, compression turns into a rare event and overall response time performance decays.

For this scenario, devices consumes more energy decompressing files than transmitting

them, so it is expected that when energy plays a major role compressing files is no longer

a desirable choice and clearly the response time is affected by this choice.

Next, Bluetooth performance is analyzed. Bandwidth was defined as 750 kbps, which

is a typical value for class 2 Bluetooth devices (10 m range), and the number of nodes

inside the piconet varied from 1 to 7. The file server was hosted in the master node and all

slaves acted as requesting clients. Under these conditions, compression is performed for all

57

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ua
l g

ai
n

on
 re

sp
on

se
 ti

m
e(

%
)

Bandwidth (Mbps)

80−100%
60−100%
40−100%
20−100%
00−100%

ncomp

Figure 5.12: Performance of adaptive over not compression model with varying energy
weight.

file sizes as transmitting data on Bluetooth takes too long even for small files. Figure 5.13

shows response times for adaptive and not compression model.

60

70

80

90

100

110

120

130

1 2 3 4 5 6 7

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(m

s)

Number of elements in the piconet

Not compressed
Adaptive

Figure 5.13: Comparison of the adaptive and not compression models in Bluetooth envi-
ronment.

58

Chapter 6

Proxy experiments

This chapter presents the results for the proxy system implemented using the adaptive com-

pression model. Figure 6.1 illustrates how the system works. RabbIT2 Web Proxy Cache

[38] was modified in order to support compression with adaptive model. This server-proxy-

client perfectly suits the proposed model: first, this proxy (which could be replaced by a

middleware) doesn’t need to be restrained only to compressing files prior to their trans-

missions; it could be used for several other adaptation techniques developed for wireless

networks; second, leaving the intelligence on the server could possibly overload it and there

would be a demand to implement the adaptive model on any possible server that could be

accessible by mobile clients. Using the proxy alternative, companies and owners of wireless

centers could offer this alternative solution to their users and maintain a local control of

what happens on their networks. On the client side, there is the need to modify how the

HTTP request is formed adding new headers to the actual request. Decompressing files is

already a feature present in most browsers today, the only change would be implementing

the proper decompressing algorithm chosen for the experiment.

In its original form, RabbIT2 intercepts requests from Web clients and performs the

proper HTTP operation in their behalf. It also works as a cache, so new requests can get

the copy directly from the proxy instead of going through the Internet. Before transmitting

59

Server

802.11 BSBluetooth BS

Internet

Bluetooth Device
802.11 Device

LAN
100 Mbps

Proxy

Figure 6.1: Proxy system.

the actual response to clients, the modified version of RabbIT2 uses the proposed adaptive

model to check whether the file should be compressed. The proxy was modified so it can

store both original and compressed copy of the file. This optimization improves response

time, since compression needs to be executed only once. The many parameters analyzed

in these experiments includes bandwidth, file size and client device power, as explained in

chapter 4.

Next it is explained how the data set was formed (section 6.1), how the proxy has been

modified (section 6.2), and how good is the performance of the model in this environment

(section 6.3).

60

6.1 HTTP Trace

From December 1st to December 5th, all HTTP requests and responses transmitted over

the fixed network installed on SIAM laboratory at DCC/UFMG were monitored. The staff

on this lab is composed mainly by students and technicians and the trace can be considered

to be close enough to the traffic that would be obtained in a wireless indoor network

covering the same space. In fact, if we only change cables and maintain all machines in the

same place, the behavior of all users would be the same. A difference would appear when

mobility is inserted in this environment because some users would probably move during

certain periods of time causing movements out and into the wireless cell. As this would

change the behavior of the trace, mobility was disregarded for these tests. From this trace

it is possible to extract the following parameters to be used in the experiments:

• Content type distribution: Content type distribution of HTTP responses follows

distribution given on figure 6.2. This plot also gives an idea of how many of these

files are cacheable (cacheable and non-cacheable files are distinguished by a tag of

HTTP responses). GIF and JPEG images add up more than 58% of all traffic. As

these documents are not modified constantly during their lifetime (almost all files

are cacheable), caching them close to the clients are a good solution to improve their

response time. Moreover, lossy compression can be applied on them to reduce even

more their size and impact on transmission time and bandwidth consumption. HTML

type files has a higher percentage of non-cacheable files than other types. Moreover,

most of the static HTML pages (cacheable) have lifetime of only a few seconds, so

just caching files doesn’t solve all problems in this case (lifetime of pages is also

described by a tag on HTML responses). When caching is not possible, compression

turns out to be the best solution to minimize response time.

• Session times: Session time is important in the model to indicate when parameters

should be reset to initial conditions, that is, when a user finishes her interaction with

61

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

IM
AGE/G

IF

TEXT/H
TM

L

IM
AGE/JP

EG

APPLIC
ATIO

N/X
-JA

VASCRIP
T

TEXT/P
LA

IN

APPLIC
ATIO

N/X
-W

W
W

-F
ORM

-U
RLE

NCODED

TEXT/C
SS

APPLIC
ATIO

N/O
CTET-S

TREAM

APPLIC
ATIO

N/X
-S

HOCKW
AVE-F

LA
SH

IM
AGE/P

NG

OUTROS

Content-Type

N
u

m
b

er
 o

f
an

sw
er

s

Non-cacheable Cacheable

Figure 6.2: Distribution of Content Type.

the proxy. Figure 6.3 shows all sessions seen during the period. As in the laboratory

each user has its own machine and each machine has a fixed address, each session can

be identified by its IP number. In many real cases, there are no guarantee that this

number is always associated with the same user (for instance, when using DHCP),

that’s why it is important to establish an upper limit indicating when a user session

is over or not. A user session is defined as a sequence of request done by the same

user during a period of time. The duration of user session time was not used in the

experiments since this wouldn’t cause a big impact on the results, although resetting

the model’s value frequently to the initial state may turn the model obsolete, which

is why it is so important to define a session time long enough so the user can take

advantage of the model but no longer than the period of time the same user is

62

browsing the Internet.

User 10
User 9
User 8
User 7
User 6
User 5
User 4
User 3
User 2
User 1

F
ri

14
:0

0h

T
hu

 1
4:

00
h

W
ed

 1
4:

00
h

T
ue

 1
4:

00
h

M
on

 1
4:

00
h

S
iz

e

Figure 6.3: Session view of the trace.

Time interval between consecutive requests are also important in order to create a real

traffic demand on the proxy. If the intention is to simulate a real scenario, requests

would have to be done following a certain time interval distribution. This statistical

distribution can be obtained from the trace analyzing user’s requests intervals and

obtaining the inverse function of the accumulated distribution. Despite the relevance

of this parameter to assess performance of proxies and servers systems, it was not

used in the experiments as it doesn’t impact the adaptive decision model.

Due to hardware limitations, there was only one device with wireless interface avail-

able for testing, so we selected User1 trace as testbench. Figure 6.4 represents User1

trace, plotting time and file size of each request.

• Requests distribution: It is known that requests for resources on the Web follows

a specific distribution, namely the Zipf distribution [39]: usually, a small set of files

corresponds to almost all accesses while a large group of files are requested no more

than once. A similar behavior can be observed in the trace (figure 6.5), although

the distribution it not exactly Zipf. This indicates that caching is effective for pages

accessed frequently and that caching both original and compressed versions of a file

63

 1

 10

 100

 1000

 10000

 100000

 1e+06

F
ri

14
:0

0h

T
hu

 1
4:

00
h

W
ed

 1
4:

00
h

T
ue

 1
4:

00
h

M
on

 1
4:

00
h

S
iz

e
(b

yt
es

)

User 1

Figure 6.4: User1 Trace.

may highly reduce response time for wireless communicating devices. Since the effect

of caching is not the focus of this work this feature was ignored, which means each

request necessarily goes to the server. By doing this, measures of response time when

compression is applied is more accurate. Caching plus compression is part of future

works. As User1 trace is going to be used as the source of data, it is interesting to

observe if the same Zipf behavior holds for a single user. Figure 6.6 shows this is

true.

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000

N
um

be
r o

f a
cc

es
s

Accessed pages

Figure 6.5: Page rank by access (all users).

64

0

5

10

15

20

25

30

35

40

1 10 100 1000 10000

N
um

be
r o

f a
cc

es
s

Accessed pages

Figure 6.6: Page rank by access (User1).

• File size distribution: All packets in the trace were collected and grouped in order

to form the original HTTP responses. The resulting files were then stored on a

server in the laboratory network. For the experiments, all requests are forwarded to

the server which answers accordingly reproducing the original sequence of requests.

Having a real file size distribution is important so a realistic measure of the model can

be obtained. As it was observed in chapter 5, files of different sizes demand different

treatments. Figure 6.7 shows file size distribution for the whole trace. Figure 6.8

shows the same distribution for User1.

6.2 RabbIT 2 Implementation

RabbIT [38] is a proxy for HTTP and its main goal is to speed up surfing over slow links by

removing unnecessary parts, like background images, while still showing the page mostly

like it is. Since filtering the pages is a heavy process, RabbIT caches the pages it filters

but still tries to respect cache control headers of the old HTTP style, which would be a

header like pragma: no-cache. The whole package of RabbIT is written in java.

RabbIT2 works with handlers to execute services over each of its resources. A resource

65

1

10

100

1000

1k 10k 100k 1M

N
um

be
r o

f a
ns

w
er

s

Answer Size (bytes)

Size distribution

Figure 6.7: File size distribution (all users).

Figure 6.8: File size distribution (User1).

can be any Web object in its cache repository or any object being downloaded from the

Web in behalf of a client. Handlers are implemented as java classes offering specific services

for their input streams. Examples of handlers are FilterHandler and ImageHandler, which

handle HTML page filtering and image conversion, respectively. For the modified version,

we have changed GZIPHandler, which is responsible for GZIP compression over HTML

files, and BaseHandler, the base class for all handlers. BaseHandler has been modified in

order to accept insertion and searching of compressed copies of HTML pages in the cache.

66

For GZIPHandler, the only change was the condition over which compression is made.

In the older version compression would be made for all HTML files if a user configured

parameter had been set. Now, besides looking over this parameter, RabbIT uses adaptive

model to take its decision.

Adaptive model was implemented using several classes. AdaptModel class stores all

active sessions in the proxy and has specific methods for creation, removing and searching

for a session. All sessions are stored in a hash table. An active session is implemented by

a ClientSession class, which has all parameters and methods needed for adaptive model

implementation except the parameters used to predict compression ratio and decompres-

sion time, which are present in ZipModel class. In these experiments, instead of calculating

bandwidth using data sent by clients, bandwidth monitor (class BwMonitor) was imple-

mented. The monitor periodically sends SNMP packets to each monitored base station,

retrieving the amount of data transmitted over the air interface. This information is used

to calculate bandwidth consumption during each monitoring time interval.

6.3 Experimental Results

The setup of the experiment resembles the one shown in figure 6.1: the modified version

of RabbIT2 was placed on a machine (Pentium II, 400Mhz, 256MB, Suse Linux 8.0) in

the local area network and a Web server was placed in another machine (Pentium II,

400Mhz, 256MB, Windows 2000) in the same network. An 802.11b wireless network was

used together with a notebook (Compaq Armada, Pentium II, 365Mhz, 128MB) equipped

with a wireless card.

The server used in this experiment was Jigsaw [40]. This server hosted all files present

in the User1 trace. The program Wget [41] was used as client application and it was

modified so it could transmit all information needed by the model and decompress files

when necessary. Wget is a well known program to fetch pages from the Internet.

67

In this experiment the energy cost part of the model was not evaluated, so the result

below considered only time as a parameter to decide wether or not to compress the file. For

a 1Mb of nominal bandwidth, the results for adaptive and traditional (no compression)

methods of files for User1 trace are shown in figure 6.9. This figure plots accumulated

response time for all files and shows that adaptive method can greatly improve response

time for this scenario (low bandwidth, high processing power).

0

100

200

300

400

500

600

700

800

900

0 500 1000 1500 2000 2500 3000 3500

A
cc

um
ul

at
ed

 R
es

po
ns

e
Ti

m
e

(s
)

Index

Traditional Tranmission
Adaptive Transmission

Figure 6.9: Accumulated response time for adaptive and traditional transmissions.

Response time may present a significant improvement when compared to traditional

ways of transmitting files over the Internet. It is important to notice that improvements

can be even increased with the use of caching mechanisms.

68

Chapter 7

Conclusion

In this work a new model to adapt HTML documents in wireless environments was pre-

sented as long with the associated methodology to apply it. This model dynamically

predicts when a requested file should be compressed before its transmission over a wire-

less channel using parameters such as file size, bandwidth available, energy consumption,

compression method and device´s properties. Through experiments and simulations us-

ing the IEEE 802.11 and Bluetooth protocols, the method proved to efficient and it was

demonstrated how it could be incorporated into existing applications.

Although some present works on adaptive models use compression for data transmis-

sion, they do not take into consideration all features of wireless environments, which in-

trinsically dynamic and heterogeneous. This work is an attempt to develop a model that

covers all major features and besides is flexible enough to be implemented and extended.

A preliminary version of this work was presented in [42].

7.1 Future Works

The use of an adaptive model in proxies comes with a cost: degrading system performance

and consequently reducing the number of requests a system can handle per second. The

time needed to evaluate all parameters and the space needed to store all information about

69

the model deserve deeper studies. Future work includes to assess the real impact of this

adaptive model in the proxy using httperf, a tool for measuring Web server performance.

In order do validate this model there is the need to asses performance with many users.

Although this was done through simulation in this work, an ideal scenario would be to

put the adaptive model in a real proxy system and encourage real users to use it. This

is a difficult task to accomplish without strong support, so the first step will be to collect

information about a real wireless indoor network (the one used by students and professors

of the Computer Science Department of UFMG) and then measure (through simulation)

the performance and improvements achieved by using the adaptive model. The process of

collecting information is already being carried out. If a high improvement is observed, an

adaptive model could be implemented in the Department.

For the experimentes presented here a trace from a fixed network was used. This is an

acceptable assumption for wireless indoor environments but does not hold for larger systems

such as cellular networks. Web traffic in these networks are especially adapted to smaller

devices, so experiments with this type of traffic should be carried out also. Other future

experiments include to measure model’s performance when facing a sudden variations of

available bandwidth or CPU load, which can slow down decompression process.

The mathematical model and analytical part also need more work. After identifying

exactly the impacts of each parameter in the model, a more concise formula could be

proposed to enhance prediction capacity.

70

Bibliography

[1] George H. Forman and John Zahorjan. The Challenges of Mobile Computing. IEEE

Computer, 27(4):38–47, Abril 1994.

[2] Ieee 802.11. http://grouper.ieee.org/groups/802/11/.

[3] R. H. Katz. Adaptation and Mobility in Wireless Information Systems. IEEE Personal

Communications, 1:6–17, 1994.

[4] Malcolm McIlhagga, Ann Light, and Ian Wakeman. Towards a Design Methodology

for Adaptative Applications. In Fourth Annual International Conference on Mobile

Computing and Networking MOBICOM’98, Dallas, Texas, USA, 1998.

[5] Jeffrey C. Mogul, Fred Douglis, Anja Feldmann, and Balachander Krishnamurthy.

Potential Benefits of Delta Encoding and Data Compression for Http. In Conference

on Applications, Technologies, Architectures, and Protocols for Computer Communi-

cation ACM SIGCOMM ’97, Cannes, France, 1997. ACM Press.

[6] Jesse Steinberg and Joseph Pasquale. A Web Middleware Architecture for Dynamic

Customization of Content for Wireless. In WWW2002, Honolulu, Hawaii, USA, 2002.

[7] A. Fox, S. Gribble, Y. Chawathe, and E. Brewer. Adapting to Network and Client

Variation Using Active Proxies: Lessons and Perspectives. Special Issue of IEEE

Personal Communications on Adapation, 1998.

71

[8] Armando Fox, Steven D. Gribble, Eric A. Brewer, and Elan Amir. Adapting to

Network and Client Variability Via On-Demand Dynamic Distillation. In Proceedings

of the Seventh International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 160–170. ACM Press, 1996.

[9] Barron C. Housel, George Samaras, and David B. Lindquist. WebExpress: a

Client/Intercept Based System for Optimizing Web Browsing in a Wireless Envi-

ronment. Mobile Networks and Applications, 3(4):419–431, 1999.

[10] Emmanuel Jeannot and Björn Knutsson. Adaptive Online Data Compression. In 11th

IEEE International Symposium on High Performance Distributed Computing, pages

379–388, Edinburgh, Scotland, July 24–26 2002.

[11] Björn Knutsson and Mats Björkman. Adaptive end-to-end compression for variable-

bandwidth communication. Computer Networks, 31(7):767–779, 1999.

[12] Suhit Gupta, Gail Kaiser, David Neistadt, and Peter Grimm. DOM-Based Content

Extraction of HTML Documents. In Proceedings of the Twelfth International Confer-

ence on World Wide Web, pages 207–214. ACM Press, 2003.

[13] Christopher C. Yang and Fu Lee Wang. Fractal Summarization for Mobile Devices

to Access Large Documents on the Web. In Proceedings of the Twelfth International

Conference on World Wide Web, pages 215–224. ACM Press, 2003.

[14] Yu Chen, Wei-Ying Ma, and Hong-Jiang Zhang. Detecting Web Page Structure for

Adaptive Viewing on Small Form Factor Devices. In Proceedings of the Twelfth In-

ternational Conference on World Wide Web, pages 225–233. ACM Press, 2003.

[15] Bongjin Jung and Wayne P. Burleson. PerformanceOptimization of Wireless Local

Area Networks Through VLSI Data Compression. Wireless Networks, 4(1):27–39,

1998.

72

[16] J. Ziv and A. Lempel. A Universal Algorithm for Sequential data Compression. IEEE

Transactions on Information Theory, 23(3):337–343, 1977.

[17] Jeremy Lilley, Jason Yang, Hari Balakrishnam, and Srinivasan Seshan. A Unified

Header Compression Framework for Low-Bandwidth Links. In Sixth Annual Inter-

national Conference on Mobile Computing and Networking, Boston, Massachusetts,

USA, 2000. ACM Press.

[18] Ronny Kranshinsky and Hari Balakrishnam. Minimizing Energy for Wireless Web

Access with Bounded Slowdown. In Eighth Annual International Conference on Mobile

Computing and Networking MOBICOM’02, Atlanta, Georgia, USA, Setembro 23-28

2002. ACM Press.

[19] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Com-

pressing and Indexing Documents and Images. Morgan Kaufmann Publisers, Inc.,

San Francisco, California, 2nd edition, 1999.

[20] Claude E. Shannon. A Mathematical Theory of Communication. Bell System Tech-

nical Journal, 27:379–423,623–656, 1948.

[21] J. Ziv and A. Lempel. Compression of Individual Sequences via Variable-rate Coding.

IEEE Transactions on Information Theory, 24(5):530–536, 1978.

[22] Terry A. Welch. A Technique for High-Performance Data Compression. IEEE Com-

puters, 17(6):8–19, June 1984.

[23] Unisys. http://www.unisys.com.

[24] M. Burrows and D. J. Wheeler. A Block-Sorting Lossless Data Compression Algo-

rithm. Technical Report 124, Digital Systems Research Center, Palo Alto, California,

May 1994.

73

[25] NLM National Library of Medicine. Medical subject headings.

http://www.nlm.nih.gov/mesh/filelist.html.

[26] ACM Association for Computer Machinery. Acm sigmod online.

http://www.acm.org/sigmod/record/xml/.

[27] Timothy Bell, Ian H. Witten, and John G. Cleary. Modeling for Text Compression.

ACM Computing Surveys (CSUR), 21(4):557–591, 1989.

[28] E. Alonso, E. S. de Moura, P. Golgher, A. Silva, R. Barra, A. Laender, B. Ribeiro-

Neto, and N. Ziviani. Um Retrato da Web Brasileira. In SEMISH’2000, Curitiba,

Paraná, Brazil, July 2000.

[29] XML. http://www.xml.com.

[30] Jumptec. http://www.jumptec.de/.

[31] Lucent technologies. http://www.lucent.com/.

[32] Ericsson. Bluetooth development kit. http://www.ericsson.com/bluetooth/.

[33] Widcomm. http://www.widcom.com/.

[34] Nokia Research Center. Affix homepage. http://affix.sourceforge.net/.

[35] Jeffrey C. Mogul. Clarifying the Fundamentals of Http. In WWW2002, Honolulu,

Hawaii, USA, 2002.

[36] Atul Adya, Paramvir Bahl, and Lili Qiu. Analyzing the Browse Patterns of Mobile

Clients. In Proceedings of the First ACM SIGCOMM Workshop on Internet Measure-

ment Workshop, San Francisco, California, USA, 2001.

[37] Network Simulator. http://www.isi.edu/nsnam/ns.

74

[38] Robert Olofsson and Fredrik Widlert. Rabbit2 homepage.

http://www.khelekore.org/rabbit/.

[39] L. Breslau, Li Fan Pei Cao, G. Phillips, and S. Shenker. Web Caching and Zipf-like

Distributions: Evidence and Implications. In Eighteenth Annual Joint Conference of

the IEEE Computer and Communications Societies (INFOCOM´99), New York, NY,

USA, 1999.

[40] W3C. Jigsaw - w3c’s server. http://www.w3.org/Jigsaw/.

[41] GNU. Wget homepage. http://www.gnu.org/software/wget/wget.html.

[42] R. Couto, R. Rabelo, and A. Loureiro. Compressão Adaptativa de Arquivos HTML

em Ambiente de Comunicação Sem Fio. In Anais do 21o Simposio Brasileiro de Redes

de Computadores - SBRC’2003, Natal, Rio Grande do Norte, Brasil, Maio 2003 (to

appear).

75

