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Resumo 
 

 

 

 

 

Os requisitos de tolerância a falhas devem ser incluídos no projeto inicial de sistemas de 

tempo real, contemplando a integração de software, hardware e restrições de tempo. Existem 

muitos casos em que o projeto de tolerância a falhas deve ser incluído estaticamente, devido às 

altas taxas de dados e severas restrições de tempo. Sistemas que exigem alta segurança 

necessitam de técnicas formais de prova para garantir que os requisitos de tolerância a falhas 

serão cumpridos. Novas abordagens onde os sistemas podem prever que as restrições de tempo 

serão violadas permitem que decisões sejam tomadas antes que uma pane ocorra. Priorizar tarefas 

em sistema de tempo real é um problema pertencente à classe NP-Hard. 

Várias alternativas para resolver este problema já foram propostas. Neste trabalho, 

investiga-se a possibilidade de se obter um nível mais alto de tolerância à falhas com a integração 

de alguns trabalhos correlatos. Este trabalho apresenta técnicas para melhorar a capacidade de 

tolerância a falhas de sistemas de tempo real incorporando redundância de tempo, redundância de 

processadores e protocolos de comunicação em tempo real e tolerantes a falhas. A principal meta 

é garantir os requisitos de tolerância a falhas para sistemas de tempo real multiprocessados. As 

ferramentas utilizadas para otimizar estes requisitos de tolerância a falhas são a escalonabilidade 

de tarefas e a redundância de tempo. 

Este trabalho, em complemento a uma abordagem teórica, foi desenvolvido utilizando 

uma implementação composta de um sistema multiprocessado com CPUs DSP interconectadas 

por um barramento CAN. A pesquisa leva em consideração o overhead introduzido pelo 

protocolo de comunicação de tempo real tolerante a falhas. 
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Abstract 
 

 

 

 

 

Fault tolerance must be included in the initial design of real time systems, must 

encompass hardware and software, and must be integrated with timing constraints. In many 

situations, the fault-tolerant design must be static, due to extremely high data rates and severe 

timing constraints. Ultrareliable systems need to employ proof-of-correctness techniques to 

ensure fault tolerance properties. We also see new approaches where the system predicts that 

timing constraints will be missed, enabling early action on such faults. Prioritizing tasks in Hard-

Real-Time Systems is a problem belonging to NP-hard class. 

Various alternatives for solving that problem have already been proposed. In the present 

study, we have investigated the possibility of obtaining a high level of fault-tolerance with the 

integration of some works proposals. This work presents techniques to enhance the fault-tolerance 

capability of hard real-time systems by incorporating time redundancy, processor redundancy and 

fault tolerant real-time communication protocols.  The main goal is to guarantee fault-tolerance 

requisites for multiprocessor hard real-time systems. The resources used to optimize these fault- 

tolerance requisites are task schedulability and time redundancy.  

This work, aside from theoretical concerns, will research the implementation of using a 

DSP multiprocessor system interconnected by a CAN bus. The research will consider the 

overhead introduced by the real-time fault tolerant communication protocol.  
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Resumo em Português 

Introdução 

Sistemas de tempo real são sistemas cuja correta execução depende não só do 

resultado correto da computação, mas também do instante de tempo em que este resultado é 

alcançado. Exemplos de sistemas de tempo real incluem os processadores de sinais, 

controladores de vôos e de processos, aplicações em telecomunicações, sistemas automotivos 

e sistemas médicos de suporte à vida. Sistemas de tempo real críticos (HRTSs), mais 

especificamente, possuem restrições de tempo rígidas, e o não cumprimento dos prazos das 

tarefas pode ser catastrófico. Estes sistemas têm como premissas a confiabilidade, 

disponibilidade, segurança, desempenho, entre outas características. Falhas em tais sistemas 

podem ocasionar perdas humanas, ecológicas e econômicas.  

Escalonamento e alocação de recursos em sistemas de tempo real são problemas 

difíceis em função das restrições de tempo das tarefas envolvidas. Tolerância a falhas é um 

requisito vital no desenvolvimento de sistemas de tempo real críticos. Políticas de 

escalonamento nestes sistemas devem garantir que as tarefas cumprirão seus prazos finais sob 

quaisquer circunstâncias, mesmo na presença de falhas transientes e permanentes. Uma 

característica de sistemas de tempo real está no fato de que estes sistemas devem ser capazes 

de prever que um prazo não será atendido e tomar as ações necessárias antes que uma pane 

ocorra. Os requisitos de tempo e o modelo de falhas dependem do conhecimento preciso da 

aplicações e do ambiente na qual esta está inserida.  

A base de todas as técnicas de tolerância a falhas está relacionada ao conceito de 

redundância. Este conceito era implementado, inicialmente, através da simples replicação de 

componentes. Ao longo do tempo notou-se que outros tipos de redundância levam ao mesmo 

resultado e, muitas vezes, de forma mais eficiente.  

Neste trabalho, uma análise de técnicas de tolerância a falhas no contexto de sistemas 

de tempo real multiprocessados é apresentada, incluindo escalonamento e protocolos de 

comunicação. Uma nova técnica baseada em escalonabilidade de tarefas e incorporando 

redundância de tempo foi proposta, podendo esta ser utilizada em conjunto com redundâncias 

de hardware e software. O trabalho foi desenvolvido sobre o protocolo CAN (Controller Area 
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Network) por se tratar de um protocolo que está presente em mais de 90% das aplicações 

envolvendo microcontroladores e DSPs que incorporam protocolos de tempo real. Um 

problema conhecido do barramento CAN está na entrega de mensagens de baixa prioridade, a 

qual pode ser comprometida caso mensagens de mais alta prioridade ocupem todo o 

bandwidth. Foi proposta assim uma extensão ao protocolo CAN através da aplicação de 

técnicas que buscam melhorar a confiabilidade do protocolo. 

A extensão proposta, denominada RMCAN, provê garantias de falhas no barramento 

CAN serão toleradas. Para tanto, é definida uma taxa máxima de transmissão para cada nó, ao 

invés de utilizarmos slots de tempo pré-definidos (como é feito no TTP/C). Com esta 

condição de contorno, as transmissões de um nó não ficam restritas a um slot de tempo, mas 

podem ocorrer até que a taxa máxima de transmissão seja atingida.  

Outra importante contribuição deste trabalho está na definição de uma arquitetura 

tolerante à falhas de tempo real baseada em DSPs, onde um conjunto de processadores 

executando em paralelo troca informações através de um barramento CAN. 

Trabalhos relacionados 

Um algoritmo de escalonamento consiste em um conjunto de regras que determinam a 

tarefa a ser executada em um momento em particular. A abordagem tradicionalmente adotada 

é aquela onde o escalonamento é preemptivo e baseado em prioridades. Nesta abordagem, as 

tarefas possuem prioridades que lhes são atribuídas dinâmica ou estaticamente. Em um 

determinado momento, se uma tarefa de mais baixa prioridade está sendo executada e uma 

tarefa de maior prioridade entra na fila, a tarefa de menor prioridade é colocada em espera 

enquanto o processador é liberado para a execução da tarefa de maior prioridade. Desta forma, 

a especificação de algoritmos de escalonamento preemptivos baseados em prioridades está 

diretamente relacionado à especificação de algoritmos de atribuição de prioridades. Um 

algoritmo é dito estático se as prioridades são atribuídas uma única vez; da mesma forma, um 

algoritmo é dito dinâmico se as prioridades são alteradas entre uma requisição e outra. 

Existem ainda algoritmos mixtos onde algumas tarefas têm suas prioridades definidas 

estaticamente enquanto outras têm suas prioridades definidas dinamicamente. Caso tenhamos 

as prioridades definidas sistematicamente, utilizando a abordagem rate-monotonic, por 

exemplo, limites de utilização podem ser determinados.  Nesta situação, se um conjunto de 
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tarefas não exceder os limites, podemos dizer que as tarefas poderão ser executadas sem que 

os prazos finais sejam perdidos. 

Teoria Rate-monotonic 

O termo “análise rate-monotonic” surgiu em 1973 através da publicação de um artigo 

denominado "Scheduling Algorithms for Multiprogramming in a Hard Real Time 

Environment" por Liu e Layland [5]. Este artigo propôs o que seria a base para um teste 

simples a ser aplicado em sistemas de tempo real para se determinar se um conjunto de tarefas 

seria executado antes de seus prazos finais. Foram considerados prazos finais das tarefas o 

final de seus períodos, e nenhuma tarefa poderia bloquear o sistema enquanto tivesse sendo 

executada. Além disto, foram atribuídas única e monotonicamente prioridades a cada tarefa do 

conjunto. 

O algoritmo rate-monotonic (RMA) consiste em um algoritmo de escalonamento de 

tarefas que atribui mais altas prioridades a tarefas com menor período; é ótimo se o conjunto 

de tarefas for independente [5]. Assume-se que todas as tarefas no sistema são periódicas, têm 

seus prazos finais no final de seus períodos e são totalmente independentes umas das 

outras[51]. 

Vários trabalhos foram desenvolvidos baseados na teoria RMA: Joseph and 

Pandya[10] demonstraram o Completion Time Test (CTT) para verificar a escalonabilidade 

de um conjunto fixo de tarefas periódicas em um processador. Bertossi e Mancine [15] 

propuseram o Faut-Tolerant Rate-Monotonic First-Fit (FTRMFF) para prover tolerância a 

falhas a um HRTS utilizando um sistema multiprocessado onde cada tarefa tem uma cópia 

ativa ou passiva em outro processador e todo o conjunto de tarefas é escalonado pelo RMFF, 

suportando falhas fail-stop de um ou mais processadores.  

Rate-monotonic e tolerância a falhas 

Em função da natureza crítica das tarefas em sistemas de tempo real, é essencial que 

falhas sejam toleradas. Uma falha em um sistema pode se manifestar de várias formas, 

tornando seu diagnóstico muitas vezes complicado. Buscando reduzir este problema, um 

sistema pode ser projetado de forma a seguir um modelo de falhas, tornando o problema de 

diagnosticá-las simplificado. Nem todas as falhas que ocorrem em um sistema são tratadas 
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pelo modelo de falhas, sendo que existem modelos de falhas que cobrem um grande 

percentual das falhas possíveis. Um modelo genérico é apresentado na figura abaixo: 

FIGURA A. DEFINIÇÃO DO MODELO DE FALHAS 

Falhas transientes são toleradas, geralmente, utilizando-se redundância de tempo, a 

qual involve a re-execução das tarefas que estavam executando durante a falha transiente.  

Ghosh propôs em [48] um algoritmo onde a execução de tarefas de tempo real é 

garantida mesmo na ocorrência de falhas transientes e intermitentes. A abordagem geral para 

se tolerar falhas consiste em reservar tempo suficiente no escalonamento de forma que 

qualquer instância de uma tarefa possa ser re-executada caso uma falha ocorra durante sua 

execução. Se nenhuma falha ocorrer, as tarefas serão executadas seguindo o esquema usual do 

rate-monotonic.  

Ghosh propôs ainda um algoritmo para escalonamento de tarefas tolerante a falhas em 

sistemas multiprocessados. O algoritmo garante a execução de uma tarefa antes do prazo final 

mesmo na presença de falhas no processador.  

Protocolos de comunicação de tempo real tolerantes à falhas 

Um serviço essencial provido por arquiteturas distribuídas de tempo real tolerantes à 

falhas é a troca de informação entre os componentes distribuídos.  Estas arquiteturas têm 

como importante componente o barramento de comunicação e protocolos utilizados no 
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controle e comunicação estão entre seus principais mecanismos. Em sistemas distribuídos de 

tempo real, a comunicação entre diferentes processadores deve ocorrer em um tempo pré-

determinado.  

Barramentos redundantes são utilizados com frequência em ambientes críticos para 

lidar com as falhas nos dispositivos. Existem vários protocolos de comunicação utilizados em 

sistemas de tempo real, cada qual apresentando uma complexidade. Exemplos mais 

representativos são o protocolo TTP/C (Time-Triggered Protocol) [20] FlexRay [10], CAN 

(Controller Area Network) [8] and TTCAN (Time-Triggered CAN) [5][7][15]. Estes 

protocolos têm sido utilizados na indústria da aviação (Airbus e Boeing), na indústria 

automotiva (BMW e a Audi), entre outras.  

Alguns protocolos citados acima são basicamente “time-triggered”, como por exemplo 

o TTP/C. Isto significa que todas as atividades envolvendo o barramento e os componentes 

anexados a ele são baseadas na passagem do tempo. Outros protocolos são basicamente 

“event-triggered”, como por exemplo o CAN; nestes protocolos as atividades envolvendo o 

barramento são baseadas na ocorrência de eventos, respondendo a estímulos externos e 

interagindo com o ambiente. Existem ainda protocolos mistos, como o TTCAN e o FlexRay, 

onde os dois conceitos se misturam. 

Abordagem proposta e desenvolvimento do trabalho 

Sempre que um sistema tolerante à falhas é projetado, uma forma de redundância deve 

ser incorporada. Escalonabilidade de tarefas e redundância de tempo são ferramentas 

importantes para se garantir que os requisitos de tolerãncia a falhas sejam atendidos para um 

determinado sistema. Com o custo de processadores reduzindo gradativamente e o 

desenvolvimento de inúmeros protocolos de comunicação de tempo real, tais como CAN [29], 

TTP/C [26], TTP/A [25] e FlexRay [27], tornou-se importante pesquisar aspectos 

relacionados a sistemas de tempo real multiprocessados, onde testes de escalonabilidade 

devem garantir a execução de todas as tarefas do conjunto antes de seus prazos finais e 

considerando um modelo de falhas. 

O principal objetivo deste trabalho é garantir requisitos de tolerância a falhas em 

sistemas multiprocessados de tempo real crítico. Os recursos utilizados para otimizar estes 

requisitos são a escalonabilidade de tarefas e redundância de tempo. Este trabalho apresenta 
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técnicas para se melhorar a capacidade de tolerar falhas de tais sistemas incorporando ainda 

redundância de processadores e protocolos de comunicação de tempo real.  

A abordagem utilizada consiste em prover tolerância à falhas através do 

escalonamento de tarefas e da adição de slacks de tempo no processamento. Se uma falha for 

detectada pelo sistema operacional durante a execução de uma tarefa, esta tarefa deverá ser re-

executada dentro deste slack de tempo ou uma tarefa backup deve ser ativada para 

recuperação da falha.  

A implementação de um sistema multiprocessado baseado em DSPs interconectado 

por um barramento CAN é apresentada. 

 

 

FIGURA B. BARRAMENTO CAN EM UMA PLANTA DE CONTROLE 

Na figura acima, cada processador executa aplicações de tempo real periódicas 

escalonadas através do RMA com tempo máximo de execução e período de execução pré-

definidos. Por se tratarem de tarefas de controle, consistem em um conjunto de tarefas 

independentes, onde o início de uma tarefa não depende da execução de nenhuma outra tarefa.  

O modelo de falhas foi definido considerando as seguintes características do sistema: 

(F1) Falhas transientes e permanentes podem ocorrer na execução de uma tarefa ou até 

mesmo em um processador; 

(F2) Apenas falhas transientes do barramento de comunicação são toleradas;  

(F3) Processadores livre de falhas podem comunicar entre si; 

(F4) O hardware provê isolamento das falhas no sentido de que uma falha em um 

processador não provocará falhas em outros processadores;  
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(F5) A falha de um processador é detectada pelos demais através da não execução de 

alguma tarefa alocada para o processador que falhou, e é sinalizada pela ausência de 

mensagem no barramento CAN. 

 

O modelo inclui falhas que podem ocorrer no barramento ou no protocolo de 

comunicação, uma vez que estes influenciam o funcionamento do sistema como um todo. 

Considerando o barramento CAN, é necessário garantirmos que um pacote será entregue 

dentro do seu prazo final ou, no pior caso, que o remetente saberá que o envio foi sem sucesso 

e que nova transmissão deverá ser feita. Uma mensagem deve ser retransmitida um número de 

vezes no caso de falha na transmissão e ainda assim cumprir seu prazo final. No barramento 

CAN, uma falha é sinalizada através da ausência de mensagens, isto é, se uma mensagem não 

for recebida pelos processadores dentro de um intervalo de tempo, uma falha no processador 

primário é assumida e a recuperação desta falha é feita através de uma tarefa backup. 

Quaisquer erros nas mensagens podem indicar que uma falha ocorreu, e uma tarefa alternativa 

será executada consequentemente, evitando assim uma pane no sistema. Falhas permanentes 

no barramento CAN não são toleradas, causando uma interrupção no processo de 

comunicação. 

Análise do tempo de transmissão de mensagens no barramento 

CAN 

O algoritmo de escalonamento dinâmico utilizado pelo protocolo CAN é praticamente 

idêntico aos algoritmos de escalonamento comumente utilizados em sistemas de tempo real 

para escalonar tarefas em processadores [18]. A análise do comportamento destes sistemas 

pode ser aplicada quase que sem modificações na solução do problema de se determinar o pior 

caso do tempo de transmissão de uma dada mensagem no barramento CAN.  

Tindell et. al. [19] desenvolveu uma análise sobre o barramento CAN baseada na 

análise rate-monotonic, mostrando como calcular o pior tempo de resposta para mensagens 

transmitidas pelo barramento. 

A ocorrência de erros de transmissão também deve ser considerada. Em um 

barramento CAN, um erro detectado tanto pelo emissor quanto pelo receptor da mensagem é 

sinalizado ao emissor, o qual deve retransmitir a mensagem.  
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Um problema conhecido do protocolo CAN é o fato de não se poder garantir que 

mensagens de mais baixa prioridades serão entregues antes do seu prazo final em caso de 

sobrecarga. Enquanto o protocolo CAN é muito eficiente na transmissão de dados mais 

urgentes, estas mensagens podem sobrecarregar o barramento de tal forma que as mensagens 

de mais baixa prioridade não conseguirão cumprir seus prazos de transmissão [11][12][13].  

Neste sentido, é necessário garantirmos que a sobrecarga não ocorrerá, para que todos 

os prazos finais sejam cumpridos. 

Aplicando conceitos de tolerância à falhas ao protocolo CAN 

Falhas no barramento CAN implicam na re-transmissão de mensagens ou até mesmo 

na execução de ações alternativas para a reconfiguração do barramento. 

Ghosh [6] desenvolveu um esquema para recuperação de uma ou mais falhas que 

garante a re-execução de qualquer tarefa assim que uma falha for detectada. Os mesmos 

conceitos apresentados por Ghosh foram aplicados ao protocolo CAN, buscando garantir que 

uma mensagem seja re-transmitida quando uma falha na transmissão for detectada. Estes 

conceitos, utilizados em escalonamento rate-monotonic, foram aplicados ao barramento CAN 

uma vez que:  

[S1] As mensagens são independentes ou assíncronas.  

[S2] As mensagens têm suas prioridades definidas pelo RMA.  

[S3] Uma mensagem de mais alta prioridade não deve ocupar todo o bandwidth do 

barramento impedindo que mensagens de mais baixa prioridade executem  

Segundo a abordagem apresentada por Ghosh, deve ser mantido um intervalo de tempo 

suficiente para que uma mensagem seja re-transmitida. Caso nenhuma falha ocorra, as 

mensagens são transmitidas normalmente, seguindo o escalonamento rate-monotonic e este 

slack não é utilizado. Caso ocorra algum erro no processo de transmissão da mensagem, esta 

deve ser re-transmitida antes do fim do seu período de transmissão. Para que os conceitos 

apresentados por Ghosh pudessem ser aplicados ao protocolo CAN, as seguintes condições 

devem ser satisfeitas:   

[S1] Deve ser reservado um intervalo de tempo suficiente para que cada instância de cada 

mensagem possa ser re-transmitida.  

[S2] Quando uma instância de uma mensagem é transmitida, uma quantidade suficiente do 

slack disponível dentro do seu período deve estar disponível para que esta mensagem possa 

ser re-transmitida antes do prazo final, caso uma falha seja detectada.  
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[S3] Quando uma mensagem é re-transmitida, esta não deve interferir na transmissão de 

nenhuma outra mensagem, ou seja, a re-transmissão de uma mensagem de mais alta 

prioridade não interferirá no cumprimento dos prazos finais de outras mensagens. 

Limitação da taxa máxima de transferência por nó no 

barramento CAN 

Considerando os resultados obtidos por Tindell em [69], onde mostrou-se ser possível 

determinar o tempo máximo de transmissão para o barramento CAN no pior caso, foi 

demonstrado no Capítulo 6 que as três premissas podem ser atendidas.  

Foi proposta assim uma extensão ao protocolo CAN, denominada Rate Monotonic 

CAN (RMCAN), onde foram definidos slacks de tempo de tamanho suficiente para que, 

mesmo no pior caso, todas as mensagens possam ser transmitidas ou até mesmo re-

transmitidas se necessário. Cada mensagem tem sua transmissão limitada a um tempo máximo 

e um período pré-definido, sendo definido um limite para a taxa máxima de transmissão para 

um nó do barramento CAN. Podemos assim garantir que é possível re-transmitir uma 

mensagem que apresentou falha e ainda cumprir o prazo final. Desta forma, ao invés de 

limitar a transmissão a um período pré-definido, como é feito pelo TTP/C, um nó pode 

distribuir sua transmissão durante vários intervalos de tempo até que seu limite seja atingido.  
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FIGURA C. VISÃO GERAL DA ARQUITETURA 

A independência das mensagens é garantida pelo fato de se tratarem de mensagens 

geradas por tarefas de controle que são independentes. Uma visão geral da arquitetura, 

considerando todos os conceitos apresentados, é mostrada na figura abaixo. 

Comparação de protocolos de tempo real tolerantes à 

falhas 

Podemos dizer que o protocolo TTP/C provê o projeto estático assegurando um tempo 

máximo de transmissão para todas as mensagens, mas ao mesmo tempo ele apresenta baixa 

flexibilidade uma vez que a largura de banda é distribuída em tempo de projeto através da 

atribuição de frames de tamanho específico a cada nó. Em um barramento CAN, por outro 

lado, as prioridades podem ser determinadas em tempo de execução através da atribuição de 

identificadores únicos e um controle completo da aplicação sobre a distribuição da largura de 

banda disponível. O protocolo CAN é um protocolo altamente flexível e largamente 

disponível, apesar de que algumas extensões devem ser feitas para se garantir um mecanismo 

confiável para se construir sistemas tolerante à falhas confiáveis. TTCAN é um compromisso 

e representa a necessidade de evolução do CAN, para que sobrecargas no barramento possam 

ser tratadas corretamente sem prejudicar a transmissão de mensagens. Por outro lado, a 

sincronização de nós exigida pelo TTCAN não é uma tarefa simples, exigindo hardware 

adicional. RMCAN foi desenvolvido com o objetivo de se obter a eficiência do TTCAN, mas 

sem incorporar nenhum hardware adicional ou outras restrições. Tanto o TTCAN quanto o 

RMCAN podem ser implementados utilizando controladores CAN. No caso do RMCAN, o 

controle da taxa de transmissão é feito por software, simplificando a implementação do 

protocolo. O protocolo FlexRay pode ser considerado o estado da arte em se tratando de 

protocolos de tempo real tolerantes a falhas, apesar de ainda não ter sido lançado no mercado. 

É um protocolo que promete uma taxa de transmissão maior do que o TTCAN e maior 

flexibilidade se comparado ao TTP/C.  
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Estudo de caso – Utilização do RMCAN em um sistema 

de alimentação de energia sem interrupções 

Um no-break é um exemplo de sistema de tempo real crítico onde mecanismos de 

tolerância à falhas são essenciais. A função primária de um no-break é garantir continuidade 

de operação especialmente durante falhas de energia ou perturbações no fornecimento de 

energia elétrica.  

Uma aplicação onde o protocolo RMCAN foi utilizado consiste em um no-break 

trifásico de 80kVA, o qual deve fornecer energia sem interrupções às suas cargas mesmo 

quando uma falha no fornecimento de energia pela companhia de energia elétrica ocorrer.  

A operação do no-break é controlada por lógica microprocessada: todas as tarefas são 

executadas por três CPUs independentes (retificador, inversor e chave estática), cada qual 

consistindo de um DSP. A escolha de DSPs para esta aplicação foi feita em função de 

características da própria aplicação. Um número maior de CPUs poderia ser utilizado 

considerando, por exemplo, redundância de hardware.  

Apesar das CPUs operarem de forma autônoma, estas trocam informações entre si 

através de uma interface CAN, permitindo assim a monitoração e controle das informações. O 

protocolo RMCAN foi utilizado internamente para comunicação entre os processadores. 

Falhas de leitura de parâmetros em um dos processadores são repassadas aos outros, que 

tomam as ações devidas.  

 

FIGURA D. OPERAÇÃO DE UM NO-BREAK UTILIZANDO RMCAN 

A figura acima representa o processo de tratamento de uma falha no barramento CAN. 

Como as CPUs do retificador e inversor trocam informações periodicamente, o não 

recebimento de uma mensagem indica uma falha no barramento. Caso a re-execução indique 

que a falha permanece, é executado um algoritmo alternativo de forma que seja possível 

tolerar determinada falha. Falhas permanentes no barramento não são toleradas.  
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A colocação de duas ou mais unidades de fontes de alimentação em paralelo fornece 

ao sistema uma maior tolerância a falhas aumentando substancialmente a confiabilidade. 

Entretanto, como os módulos de potência não são idênticos, as correntes fornecidas por cada 

módulo são diferentes. Alguns dos fatores que contribuem para este desequilíbrio são a 

tolerância dos componentes e a impedância dos circuitos de distribuição da corrente de saída 

de cada módulo. O circuito de controle das fontes de alimentação deve ser capaz de regular a 

tensão de saída das fontes de alimentação e simultaneamente distribuir uniformemente a 

corrente de carga entre os diversos módulo de potência. 

Uma aplicação do método de paralelismo de conversores utilizando a técnica de 

controle do tipo mescre-escravo com comunicação através de interface CAN foi simulada, 

mostrando que é possível utilizarmos o RMCAN como protocolo de comunicação entre dois 

no-breaks em paralelo que utilizam o barramento CAN para sincronização. Foram simuladas 

situações onde ocorriam falhas no no-break mestre e no escravo, bem com falhas no 

barramento CAN. 

Conclusões 

Tarefas em sistemas de tempo real devem cumprir seus prazos sob quaisquer 

circunstâncias, mesmo na presença de falhas transientes e permanentes. Neste trabalho 

utilizou-se conceitos como redundância de tempo e escalonamento de tarefas ao lidarmos com 

falhas em sistemas de tempo real.  

Foram analisados ainda protocolos de comunicação de tempo real, sendo considerado 

o protocolo CAN por estar disponível em mais de 90% das aplicações envolvendo protocolos 

de tempo real. O protocolo CAN possui, muitas vezes, tempo de resposta não-determinístico 

para mensagens de baixa prioridade. O protocolo RMCAN foi proposto neste trabalho como 

uma extensão ao protocolo CAN, buscando assim resolver os problemas de não determinismo 

do protocolo bem com garantir que todas as mensagens serão entregues dentro de seus prazos 

finais ou até mesmo que não serão entregues, caso alguma falha ocorra. Limitou-se a taxa de 

transmissão de cada nó no barramento CAN tornando assim determinístico o tempo de 

transmissão de uma mensagem, mesmo para mensagens de baixa prioridade. Vale ressaltar 

que a transmissão de mensagens por um nó não ficou restrita a um intervalo de tempo, e sim a 

uma taxa máxima de transmissão. É possível assim garantir que haverá tempo suficiente para 

que uma mensagem seja transmitida, ou até mesmo re-transmitida, se necessário. Caso uma 
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mensagem não chegue ao seu destino, o destinatário saberá que uma falha ocorreu e que uma 

ação será executada de acordo com o modelo de falhas definido para a aplicação, como por 

exemplo, reconfiguração do barramento CAN.  

As extensões ao protocolo CAN propostas aumentam a confiabilidade do protocolo 

bem como permitem que seja explorada sua grande presença no mercado. Foi feita ainda a 

verificação formal do RMCAN, garantindo assim que a transmissão das mensagens ocorrerá 

dentro do seu período, mesmo considerando que falhas ocorrerão no sistema.  
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Chapter 1 

Introduction 

1.1 Overview and Motivation 

Real-time systems are different from general purpose computing systems in several 

aspects. The processes in a real-time system have time related attributes such as ready times, 

deadlines, computation times and periods. A real-time system must provide predictable 

response times. Therefore, the worst case behavior of real-time systems is more important 

than the average response time. Real-time systems are systems that depend on the result of 

computation as well on the deadline by which this result is reached.  

Architectures that support real-time applications tend to be specialized.  However, the 

current trend is to develop more generic real-time architectures. The market trend itself, which 

demands an ever-increasing participation of microcontrollers and DSPs (digital signal 

processors), attests to the need for more generic real-time architectures. In 1992, the world 

market for conventional CPUs (Central Processing Units) was estimated at US$ 4.9 billion 

while the market for of micro controllers and DSPs was US$ 5.4 billion [20]. 

Table 1.1 shows the results of microcontrollers sales in 1999, when the number of 

microcontrollers completely outnumbered the desktop chips in terms of units shipped.  

 

TABLE 1.1: 1999 WORLD MARKET FOR MICROPROCESSORS [16] 

Chip Category Number Sold 
Embedded 4-bit 2000 million 

Embedded 8-bit 4700 million 

Embedded 16-bit 700 million 

Embedded 32-bit 400 million 

DSP 600 million 

Desktop 32/64 bits 150 million 
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Only about 2% of the total number of chips used were in desktop and server systems, 

although they represent a much larger share of the revenues, since the processors per-chip 

costs is around two orders of magnitude of microcontrollers cost. 

Most real-time systems are developed to attend a specific and complex need, requiring 

a high degree of fault tolerance, and they are typically embedded in a large system. Real-time 

systems typically include a high knowledge of the application and its environment [19], which 

is included statically in the project phase. The new generation of real-time systems must be 

designed to be dynamic and flexible regarding knowledge of the application and of the 

environment. They also need to guarantee the safety of the components and critical 

characteristics of the system [18].  

Real-time systems can fail due to hardware and/or software faults, as well as by not 

answering within the required time constraints, which are usually imposed by the environment 

[13]. When the specification of a system demands that a certain task is executed by a certain 

deadline, the inability of the system to meet this specified constraint might be seen as a system 

fault, which can cause catastrophic consequences [30]. However, the simple approach of 

assuming the design method of a fault-tolerant system will treat missing a deadline as a 

system time fault; it will not attend to the needs of fault tolerance in real-time systems. The 

fundamental difference is that real-time systems have to be able to predict that the deadline 

will be missed, enabling thus the possibility of taking a certain action before such a fault 

occurs [13][18].  

Fault tolerance is the attribute that systems must have to be able to accomplish tasks 

correctly in the presence of faults. Fault tolerance must be included in real-time system 

specifications, considering the software and hardware integration, and it must be integrated 

with timing constraints. Systems that demand high safety require formal proving techniques 

that will guarantee the characteristics of fault tolerance [19].  

In this sense, fault tolerance and real-time specifications should be considered 

concomitantly in all phases of these types of projects. It is essential to adopt a project 

methodology that considers prediction in all phases, including time for fault detection, 

isolation, reconfiguration of the system, and recovery. Furthermore, requisites of fault 

tolerance can add even greater constraints to the system. For example, frequent tests and 

recovery routines increase the characteristic of fault tolerance; at the same time, however, they 

may increase the possibility of the system missing the specified deadline.  
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Due to the flexibility of the deadlines involved, soft real-time systems (SRTSs) rarely 

require proof that the system meets its real-time performance objective. Their timing 

requirements are often specified in probabilistic terms. Examples of such systems include 

electronic games, multimedia systems and telephone switches. 

Hard real-time systems (HRTSs) have stringent timing constraints, and the 

consequence of missing task deadlines may be catastrophic. Fault tolerance is an especially 

vital requirement for HRTS development. Many embedded systems are hard real-time 

systems, and task deadlines in an embedded system are typically derived from the required 

responsiveness of the sensors and actuators, which are monitored and controlled by the 

embedded system. Examples of such systems are process controls, flight control, automotive 

systems, and life support systems. In this work, only HRTSs are considered. 

Several methods of priority have already been proposed for providing fault-tolerance 

to HRTSs on a uniprocessor or multiprocessor platforms. Problems with task priority in 

HRTSs have already been shown as being NP-hard class problems [1], [2], and [3].  

The base of all fault tolerance techniques is contained in the redundancy concept. 

Initially, in the early projects with fault tolerance requisites, it was thought that redundancy 

was obtained through a simple replication of components. In the course of time, it was noticed 

that, although redundancy was fundamental to acquire this capacity, there were other 

redundancy types which lead to the same result, in a perhaps more efficient way.  

Whenever a fault-tolerant system is designed, a redundancy type must be incorporated 

into the equivalent system, which does not incorporate fault tolerance requisites. Since time is 

the central resource of any fault-tolerant hard real-time system, task schedulability and time 

redundancy become the basic tools to guarantee fault tolerance requisites for a given hard real-

time system.  

With processor costs dropping off and the emergent development of real-time 

communication protocols, such as CAN (Controller Area Network)[29], TTCAN (Time-

Triggered Controller Area Network)[55], TTP/C (Time-Triggered Protocol for Class C)[26], 

TTP/A (Time-Triggered Protocol for Class A)[25] and FlexRay [27], a great need has 

consequently arisen to research multiprocessor hard real-time systems and fault tolerance, 

where the task schedulability needs to be guaranteed for a certain fault model specified. 

Single processor schedulability analysis for fixed priority tasks has received 

considerable attention, and it has been considerably extended by relaxing many of the 
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assumptions of the original computation model. Schedulability analysis for communications is 

much less complete. 

Schedulability analysis of a distributed hard real-time system, where tasks with 

arbitrary deadlines communicate by message passing through a real-time bus, must consider 

not only the processing delays, but also the communications delays and the complications 

introduced by communications costs. The delays for messages being sent between processors 

must be accurately bounded, and the overheads due to communications must be strictly 

bounded.  

Considering the communication issues, the spread adoption of the CAN protocol 

stimulated the development of this work, once it is present in most microcontrollers and DSPs 

incorporating real-time protocols. The sales of CAN nodes increased to a total of 200 million 

nodes (sold in 2001) and the conservative estimate for upcoming years is a continuous growth 

rate of at least 30% (Figure 1.1) [82]. 
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FIGURE 1.1: CAN SALES EVOLUTION 

However, a well-known problem of the CAN protocol is that the delivery of low 

priority messages may be compromised if the bus is flooded with higher priority messages, 

reason why its use is avoided in hard real-time applications. The use of the CAN protocol in 

hard real-time applications would bring an enormous benefit to developers, enlarging the 

possibilities for a hardware choice and simplifying the implementation process as a whole.  

1.2 Thesis Goals 

This work presents an overview, extension and application of techniques to enhance 

the fault tolerance capability of multiprocessor hard real-time systems. An analysis of 
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techniques for fault tolerance in the context of multiprocessor real-time systems is presented, 

including scheduling and communication protocols. 

The main goal of this work is to guarantee fault-tolerance requisites for multiprocessor 

hard real-time systems.  Since time is the central resource of any fault-tolerant hard real-time 

system, task schedulability and time redundancy become the basic tools to guarantee fault 

tolerance requisites for a given hard real-time system.  

We explore how time redundancy can be used in conjunction with hardware and 

software redundancy to tolerate faults in hard real-time systems. The integration of these 

diverse techniques into a fault-tolerant multiprocessor real-time system is shown.  

An holistic analysis on distributed embedded hard real-time systems must consider the 

worst-case response times of each of the tasks and the complications introduced by 

communications costs.  

From the processors point of view, the schedulability analysis for single processor 

systems developed by Liu and Layland [5] needed to be extended to guarantee that no task 

will miss its deadline due to the occurrence of a fault.  

In this work we integrate fault tolerance techniques into a multiprocessor hard real-

time system. This multiprocessor system considered consists of a set of processors 

interconnected by a CAN (Controller Area Network) bus. The basic analysis tool for fault 

tolerant real-time systems is task scheduling; scheduling considers early action on the 

prediction that timing constraints may be missed. We introduce extensions to the rate-

monotonic scheduling algorithm applied to the CAN bus communication protocol. A new 

method to solve the CAN protocol problems is also proposed, allowing its use in hard real-

time applications. The incorporation of time redundancy in conjunction with hardware and 

software redundancy are used to enhance the fault-tolerance capability of the CAN protocol to 

tolerate faults in hard real-time systems.   

1.3 Related Work 

Embedded systems exhibit stringent constraint including physical size, code size, 

timeliness, power and cost constraints. At the same time, if these systems fail, damage to lives 

and/or property can result, thereby requiring a high degree of reliability. The development of 

embedded systems has been one of the important research lines in the Carnegie Mellon 

University, where a Specification and Verification Center [24] was created and projects like 
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IMAGES (Integrated Modeling for Analysis and Generation of Embedded Software) [22], 

MoBIES (Model-Based Integration of Embedded Systems) [23] are going on.  

The variety of metrics suggested for real-time systems indicates the different types of 

real-time systems that exist in the real world as well as the types of requirements imposed on 

them. Tasks can be associated with computation times, resource requirements, importance 

levels (sometimes also called priorities or criticalness), precedence relationships, 

communication requirements, and of course, timing constraints.  

Several methods of priority have already been proposed for providing fault-tolerance 

to HRTSs on a uniprocessor or multiprocessor platform. Problems with task priority in 

HRTSs have already been shown as being NP-hard class problems [1], [2], and [3]. A further 

difficulty that occurs in the NP-hard class of problems is the scheduling of periodic tasks with 

arbitrary deadlines [4]. Many heuristics have been proposed to prioritize periodic tasks. 

Effective scheduling involves allocating resources and time to activities in a way that 

allows a system to meet certain performance requirements. Scheduling is perhaps the most 

widely researched topic in real-time systems because many researchers believe that ensuring 

that tasks will meet deadlines are the key factor that distinguishes real-time systems from non-

real-time systems.  

The traditionally adopted dynamic approach is priority-based preemptive scheduling. 

In this approach, tasks have priorities that may be statically or dynamically assigned. At any 

given time, the task with the highest priority is executed. Preemption is necessary if a low-

priority task is being executed and a higher-priority task arrives. If priorities are assigned 

systematically, - using the rate-monotonic approach [5], for example, - utilization boundaries 

can be derived. If a set of tasks does not exceed the boundaries, they can be scheduled without 

missing any deadlines. 

Liu and Layland [5] introduced the Rate-Monotonic Algorithm (RMA) to prioritize 

periodic tasks in a unique processor. RMA is an algorithm for preemptively scheduling 

periodic tasks that designates the highest priorities to tasks with shorter periods. It is optimum 

when considering independent tasks running on a single processor. 

The problem of scheduling periodic tasks in multiprocessors systems is considered in 

[1], [4], and [7]. In [1], Dhall and Liu showed that RMA is not optimum for scheduling tasks 

in multiprocessor systems. None of the algorithms were shown to be optimum for scheduling 

periodic tasks in multiprocessor systems.  



 

 

34 

Joseph and Pandya [10] demonstrated the Completion Time Test (CTT) in order to 

verify the schedulability of a fixed set of periodic tasks in a processor. RMA was generalized 

for multiprocessor systems by Dhall and Liu [1], who proposed the heuristic Rate-Monotonic 

First-Fit (RMFF).  

Pandya and Malek [14] showed that in a process for re-executing a task that has failed 

in a fault-free instance, as proposed in [11], the priorities should be maintained by RMA. 

Under those conditions, none of the tasks will lose its deadline, even in the presence of faults, 

if the processor utilization factor is not higher than 0.5. 

Bertossi and Mancine [15] proposed the Fault-Tolerant Rate-Monotonic First-Fit 

(FTRMFF) to provide fault-tolerance to a HRTSs. They use a multi-processed system where 

each task has a passive or active copy in another processor, and the whole set of tasks is 

prioritized by RMFF, supporting fail-stop of one or more processors. 

The emergent development of real-time communication protocols stimulated the 

research in multiprocessor hard real-time systems and fault tolerance fields, where the task 

schedulability needs to be guaranteed for a certain fault model specified. 

Tindell and Clark presented in [9] a holistic schedulability analysis for distributed hard 

real-time systems, extending the current analysis associated with static priority preemptive 

based scheduling to address the wider problem of analyzing schedulability of a distributed 

hard real-time system. In their work, a simple Time Division Multiple Access (TDMA) 

protocol is assumed and analysis developed to bound not only the communications delays, but 

also the delays and overheads incurred when messages are processed by the protocol stack at 

the destination processor. 

1.4 Contributions 

In this work, we use task schedulability and time redundancy to optimize fault-

tolerance requisites for multiprocessor hard real-time systems. The schedulability analysis for 

single processor systems developed by Liu and Layland [5] was extended to guarantee that no 

task will miss its deadline due to the occurrence of a fault. This extension, called RMCAN, 

provides guarantees that a CAN bus can tolerate faults. A maximum transmission rate for each 

message instance is defined instead of pre-defining a time-driven slot (as is the main idea of 

TTP/C). With this restriction, a node transmission is not limited to its slot, but it may occur at 

any time if its transmission rate permits. 
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Another important contribution of this thesis is the definition of a Fault Tolerant Hard 

Real-Time (FTHRT) architecture consisting of processors executing in parallel exchanging 

data through a CAN bus. The incorporation of fault tolerance in a scenario with this 

characteristic includes the definition of how a scheduling approach such RMS must be applied 

in the tasks scheduling process and how the communication bus must be adapted to provide a 

guaranteed response time for the CAN bus. These enhancements introduced new possibilities 

for the development of systems and applications. A DSP based FTHRT architecture was 

implemented and a case study shows clearly the application of the concepts and ideas 

developed.  

From the main contribution, other contributions follow: 

• Definition of RMCAN, which is an extension to the CAN protocol where a 

recovery scheme for single or multiple faults is applied to the bus in 

conjunction with Rate Monotonic message scheduling.  

• Application of the Fault-Tolerant Hard Real-Time architecture proposed for 

multiple configurations in the power electronics field. 

• Application of the concepts developed and RMCAN to a real case where an 

Uninterruptible Power Supply is implemented to provide power to its loads. 

• Make it possible to provide guarantees required for fault-tolerant execution in 

real-time systems. 

• Formal integration of time and processor redundancies, based on the Rate 

Monotonic Analysis, to enhance the fault tolerance capability of multiprocessor 

Hard Real-Time Systems. 

1.4.1 Publications and other contributions 

A list o publications related to the thesis is present below: 

• 5th IEEE Latin-American Test Workshop - RMCAN - A protocol for 

multiprocessor fault tolerant architectures. M. P. Oliveira, A. O. Fernandes, 

S. V. A. Campos, A. L. A. P. Zuquim, A. R. Beckler, Cartagena, Colombia, 

2004. 
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• 9th ICC - Guaranteeing fault tolerance through scheduling on a CAN bus. 

Marcos Pêgo de Oliveira, Antônio Otávio Fernandes, Sérgio Vale Aguiar 

Campos, Ana Luiza de Almeida Pereira Zuquim, José Monteiro da Mata. 

Proceedings of the 9th International Can Conference, October/2003.  

• WTF2003 – Guaranteeing Fault Tolerance through Scheduling on a CAN 

Bus. Marcos Pêgo de Oliveira, Antônio Otávio Fernandes, Sérgio Vale Aguiar 

Campos, Ana Luiza de Almeida Pereira Zuquim. Proceedings of the IV Tests 

and Fault Tolerant Workshop, May/2003.  

• VIII SCTF - Deadline: Um Núcleo Multi-Tarefas Tolerante a Falhas para 

Sistemas de Tempo Real. Marcos Oliveira, Antônio Otávio Fernandes, 

Claudionor J. N. Coelho Jr.. VIII Simpósio de Computação Tolerante a Falhas 

pp.49-53. Instituto de Computação, Universidade Estadual de Campinas 1999. 

 

An important contribution of this work is the use of the concepts and ideas in the 

development of a Three-phase 80Kva UPS as a fault-tolerant multiprocessor system. The 

concepts and ideas presented here culminated on the development of a fault-tolerant 

multiprocessed UPS and complemented the work developed on several other researches:  

 

• "Desenvolvimento de um sistema de energia ininterrupta monofásica" - 

Leandro Oliveira. Master´s Thesis DELT/EEUFMG 2003. 

• “Controle Digital de Uma Ups Trifásica” - Cláudio Henrique Fortes Felix, 

Master´s Thesis DELT/EEUFMG 2003. 

• “Power Management for Communication Intensive Real-Time Embedded 

Systems” - Ana Luiza de Almeida Pereira Zuquim, Master´s Thesis 

DCC/UFMG 2002. 

• “Desenvolvimento de uma UPS trifásica / monofásica de 6kVA” - Paulo de 

Tarso Paixão Lopes, Master´s Thesis DELT/UFMG 2000. 

• “Agente Proxy Embutido para Gerência de Ups “ - Wilton de Castro Padrão, 

Master´s Thesis DCC/UFMG 1999. 
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• “SupsWeb-Gerenciamento de No-breaks Baseado na Web” - Carlos 

Leonardo Mendes, Master´s Thesis DCC/UFMG 1999. 

 

1.5 Organization 

This work is organized in the following form.  In Chapter 2 real-time systems and the 

main concepts of fault tolerance in real-time systems are introduced. The goals of fault-

tolerance projects are introduced and exemplified. In Chapter 3 the main schedulability 

concepts of periodic and aperiodic tasks in real-time systems are introduced and discussed. In 

Chapter 4 real-time protocols, with fault tolerance requisites are introduced and discussed. In 

Chapter 5 the proposed approaches, models, perspectives and schedule algorithms are shown. 

The developed approach is presented in Chapter 6. In Chapter 7 we presented some 

conclusions and discuss the main contributions of this work. 
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Chapter 2 

Fault Tolerance in Real-Time Systems 

2.1 Overview 

An erroneous concept about real-time computation is that fault tolerance is orthogonal 

to the needs of real-time. It is frequently assumed that the characteristics of availability and of 

reliability of the system are independent of characteristics of time. However, this position does 

not take into consideration an inherent characteristic of real-time systems: that is, correct 

operation of the system is not dependent on only the logical correct result of the computation, 

but also on the deadline by which this logical result is reached. In other words, real-time 

systems can fail due to hardware and/or software faults, as well as by not answering, due to 

characteristics of the system, within the required time constraints, which is usually imposed by 

the environment [13].  

In fact, if the correct logical result is dependent on characteristics of time, then 

separating the functional specifications of the time specifications can be a very difficult task. 

Furthermore, requisites of fault tolerance can add even greater constraints to the system. For 

example, frequent tests and recovery routines increase the characteristic of fault tolerance; at 

the same time, however, they can increase the possibility of the system missing the specified 

deadline. 

When the specification of a system demands a certain service to be attended to by a 

certain deadline, the inability of the system to meet this specified constraint may be seen as a 

fault of the system. However, the simple approach of assuming the project method of a fault-

tolerant system will treat missing a deadline as a time fault of the system; it will not attend to 

the needs of fault tolerance in real-time systems. The fundamental difference is that real-time 

systems have to be able to predict that the deadline will be missed, enabling thus the 

possibility of taking a certain action before such a fault occurs [13][18]. In this way, fault 

tolerance and real-time specifications should be considered concomitantly in all phases of 

these types of projects. The challenge is to include the needs of time and fault tolerance in the 
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specifications of the project on all abstract levels. It is essential to adopt a project 

methodology that considers prediction in all phases, including the time of the fault detection, 

isolation, reconfiguration of the system, and recovery.  

2.2 Real-time Systems 

Typically, a real-time system consists of a controlled system and a driver system. For 

example, in an automated factory the controlled system is the factory floor plus their robots, 

mounting stations and pieces to be mounted. The controller system is the computer and the 

man-machine interface, which manages and coordinates the activities on the factory floor. 

Therefore, the factory itself can be seen as the environment with which the computer must 

interact. 

Real-time systems are characterized by the fact that severe consequences will occur if 

the system’s logical results and time constraints are not reached. As explained, real-time 

systems differ from traditional systems because of the deadline involved and because of other 

characteristics of time, which are linked to the tasks specific constraints. Therefore, the system 

is in a position of attributing an explicit commitment between performance and a correct 

logical result. Faults, including time faults, can cause catastrophic consequences [30]. This 

means that, different from systems that separate a correct result from a deadline, real-time 

systems strongly interlink a correct logical result and performance in accordance with a 

deadline. In this way, real-time systems need to solve the problem of missing the deadline, 

taking into consideration the specific context of the target application. The sooner that the 

system determines that it will miss the deadline, the sooner the system can readjust its 

decision-making based on the new context of the application [18].  

Real-time systems are based on the premise that the worst-case execution time of the 

program is precisely known. The worst-case execution time of the program is dependent on 

the system hardware, the operating system, the compiler and the programming language used 

[18]. Many authors proposed different applications of the worst-case execution-time analysis 

for different processor architectures [83][84][85]. Many characteristics of underlying 

hardware that have been introduced to increase performance affect the problem of finding the 

worst-case execution time [31]. In this way, the omnipresence of caches as well as of 

pipelines, dynamic RAMs, virtual memory, etc., makes the behaviour of the hardware non-

deterministic. Likewise [32], compilers with optimizers that have been implemented targetting 
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to obtain the best performance for a specific architecture can contribute to a poor prediction of 

the execution time of the generated code. These techniques, although useful in other ways, are 

not compatible with the goal of predicting the worst-case execution times. Examples of these 

optimization techniques include “constant folding”, “value propagation”, “redundant-

assignment elimination”, “partial-redundancy elimination”,  “common sub-expression 

elimination”, “flow optimization”, “dead-code removal”, “loop-invariant code motion”, 

“strength reduction”, “induction variable elimination”, and “register allocation by 

coloring”[18][33][34].  System interference in the form of servicing interrupts, referring to 

shared memory and context-switching also complicates the situation. In short, any attempt to 

determine execution time statically in real-time programs reveals a high level of complexity.  

The characteristics of time with regard to a task can be arbitrarily complex, but among 

the most common characteristics is the one of periodicity. A periodic task has a deadline by 

which it should initiate or conclude; it can also have a double characteristic at the beginning 

and at the terminus. This characteristic of periodicity of tasks allows one to separate 

verification of the correct logical operation of the computation from verification of the 

deadline at which this result is reached, as the next chapter explains in detail. 

2.3 Fault Tolerance 

There are a great number of referring concepts, which underly fault-tolerant 

computation. It is important to have these concepts well defined in order to fully understand 

the subject. 

First we will define the concepts of fault, error and failures. A fault corresponds to a 

physical defect in the hardware or in the software. For example, we may have two tracks of a 

printed circuit board connected in a short circuit or a loop that does not change the output 

terms and so does not consequently finish when initiated. An error is a manifestation of a 

fault. In other words, the program does not go out of the loop because there is a fault, which 

does not verify correctly the termination terms. Finally, there is failure, which is the 

manifestation of the error.  Perhaps the computer stops because the program stayed in the loop 

infinitely. Note that, clearly, there is a cause and effect relationship, in sequential order, 

among these three definitions. 

Another definition is for the latency of a fault, which is the time between the 

occurrence of the fault and the occurrence of the error. A latent fault is a fault that is present in 
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the system, but the error associated with it has not yet been manifested. Likewise, error 

latency is the time between the occurrence of the error and of the failure. Thus, the time 

between the occurrence of a fault and the failure in the system is the sum of the latency of the 

fault and the latency of the error. 

An important aspect for a fault-tolerance study consists on describing exactly the 

characteristics of faults. There is a set of attributes that serves this purpose exactly; they are: 

cause, nature, duration, extension and value. Figure 2.1 [21] illustrates this characterization, 

showing the different types for each fault characterization attribute. 

Regarding the cause, a fault can originate in specification problems, implementation 

problems, defects of components (which are not uncommon for electronic devices), or in 

external factors, such as, storms, dust, temperature, etc. 

Regarding its nature, a fault can belong to software or hardware. In the latter, the fault 

can be in the analog part, for example, in transducers and amplifiers, or in the digital part, for 

example, in the arithmetic logic unit. 

 
FIGURE 2.1: ATTRIBUTES OF FAULT CHARACTERISTICS 

Regarding the duration, a fault can be constant, which means that once that it has 

occurred it persists in the system until the adequate maintenance is done. It can still be 

transient, whereby it occurs for a time period and then disappears. This type of fault is usually 

provoked by external causes.  Lightning, for example, can provoke a sudden error in a 

transmission line, but after the lightning, the line will go back to its normal operation. Finally, 

there are faults, which are called “intermittent”; these occur for short periods of time and 

disappear, but then they come back again. It is possible for this process to repeat itself 

indefinitely.  An intermittent fault is the repeated occurrence of a transient fault. This last type 
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can be caused by a project specification that enables a certain component to work on certain 

critical conditions, such as temperature, for example. 

The extent of a fault can be global or local.  That is, a fault may affect the whole 

system or be restricted to a given block. The value of a fault can be certain or not determined.  

That is the relative values of a fault can be constant or not. For example, a fault that always 

provokes a given output in “1” is called a determinate fault. A fault without this characteristic 

is said to be indeterminate. Correlated faults are those, which occur simultaneously in all 

hardware modules.  For example, electromagnetic radiation may simultaneously affect all 

hardware modules in a space shuttle. 

Another important concept is the fault model. A fault in the system can assume several 

forms, and this makes a system’s test process for fault detection extremely complicated. To 

reduce this problem, the faults that occur in the system are suposed to follow a certain 

standard, or a model. Thus, the problem of how to treat the faults becomes much more 

simplified. Although not all faults in a real system occur according to a fault model, there are 

fault models that are able to cover a very large percentage of the faults that do occur.  Like the 

fault-model example, the model known as the Logical Stuck-Fault assumes that a fault is 

always an input or an output of some logic port that becomes stucked in “0” or “1”. This 

model is widespread in the literature, precisely for its simplicity and for the excellent practical 

results obtained by using it even though it does not cover all scenarios [21]. 

Fault tolerance techniques include concepts such as Fault-masking and 

Reconfiguration. Fault-masking is a technique that allows a fault that may occur internally in 

the system to be completely ignored. An example of a situation of this type is the memory 

case with an error correction circuit. Reconfiguration is a process, which eliminates a 

defective unit in a system and restores it to some condition or operational state. If this 

technique is used, the project designer must be concerned with the following: 

• Fault detection is the recognition process of the occurrence of a fault. 

• Fault location is the process of determining where a fault has occurred in the 

system. 

• Fault containment is the process of isolating a fault so that it does not produce 

an error. 
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• Fault recovery is the final process that keeps a system operational or returns it 

to an operational state in the presence of a fault. 

 

The base of all fault tolerance techniques is contained in the redundancy concept. 

Initially, in the early projects with requisites of fault tolerance, it was thought that redundancy 

was implied in a simple replication of components and that, having that, a fault-tolerant 

system would exist. In the course of time, it was noticed that, although hardware redundancy 

was fundamental to acquire this capacity, there were other redundancy types which lead to the 

same result, in a perhaps more efficient way. Therefore, the redundancy concept in the context 

of fault-tolerance does not involve simply duplication, but it also involves increasing any 

resource that is not explicitly necessary to accomplish the task [21]. Therefore, different forms 

of redundancy have been created, such as following: 

• Hardware redundancy is the addition of extra hardware; it is frequently used 

for the purpose of detecting and tolerating faults. 

• Software redundancy is the addition of extra software in addition to what it is 

simply necessary for the execution of the task. 

• Information redundancy is an increase of information in the system besides 

that which is essential data for accomplishment of the desired task. 

• Time redundancy is the utilization of additional operation cycles to obtain 

higher indices of fault tolerance. 

2.4 Hardware redundancy 

There are three hardware redundancy types for utilization in fault tolerance [21]: 

passive, active and hybrid. 

The techniques of passive redundancy are those in which the extra hardware is added 

to provide fault masking. In these methods fault tolerance is obtained by masking, which 

dispenses a detection action, locating the faults and recovery. The faults are just masked and 

the system proceeds with its normal operation. 

Active techniques, also called the dynamic method, implement fault tolerance by 

detecting and performing an action to remove the faulty hardware from the system.  

Retroactive techniques are those in which reconfiguration of the system is necessary. 
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Hybrid techniques combine the advantages of the other two.  Fault masking is used to 

prevent the production of an error, while detection and fault location are used to identify the 

faulty hardware to be replaced by a spare. 

This work is particularly interested in active hardware redundancy because 

improvements in fault tolerance attributes obtained up to now have been based on the 

utilization of specific types of active redundancy hardware: the watchdog timer and processor. 

2.4.1 Watchdog Timer  

The fundamental concept of this technique is that the absence of an action means that 

there is a fault. The circuit is designed so that it periodically signals that it is, indeed, 

operating. If the signal takes longer than the specified time, then the watchdog timer assumes 

that a fault has occurred, and the recovery procedure is activated [21]. 

The watchdog timer should be rebooted periodically in a given frequency. A failure in 

the system is identified by the absence of rebooting of the watchdog timer. The fundamental 

idea is that the system is fault-free if the timer is rebooted in the specified frequency. 

The frequency in which the timer has to be rebooted is a function of the system. In a 

flight control system, for example, a fault needs to be detected by 100 ms from the moment of 

its occurrence [21]. Consequently, the watchdog timer must be rebooted at intervals of 100 ms 

or less to allow a fault to be detected before some catastrophic effect of the fault occurs.  

The watchdog timer provides good fault detection for some fault types. For example, 

the watchdog timer can detect if the processor simply stops working. If the processor is 

overloaded, additional time will be necessary to complete its tasks, and the watchdog timer 

can detect this abnormality. In addition, the watchdog timer is particularly efficient in 

detecting the absence of an answer. 

At present, the use of the watchdog timer concept can be extended because those that 

have already been implemented in modern micro-controllers and DSP’s allow for the 

detection of rebooting of the timer at a frequency higher than what has been specified 

[35][36]. Thus, the system should reboot the watchdog timer within a certain frequency. This 

also enables the detection of a fault in the case in which the processor fails but continues 

rebooting the watchdog timer at a rate greater than the one specified, which means that some 

fault has occurred.  

The example of conventional postal service is similar. If a person stops receiving mail 

for three or four days, he does not know whether there was really any mail for him or if the 
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post office service failed. However, if the person makes an arrangement with the mail carrier 

to leave a piece of blank paper in the box daily, even if there is no mail, then he will know that 

everything is going well when finding a piece of white paper in the box. If nothing is found in 

the box, it means that the postal service failed. Similarly, finding more than one piece of paper 

in the box a day also means that something is wrong because the mail carrier delivers only 

once a day. 

The watchdog timer can be used to detect faults not only in software but also in 

hardware. In many applications, tasks should be run in intervals of specified times. In systems 

with digital control, the tasks are run repetitively at an interval of specified time. If the task is 

suddenly run on a frequency band outside the specification, a fault has probably occurred and 

the watchdog timer will send a signal, which can be treated by a priority interruption, such as 

NMI (non-maskable interrupt) or the RESET of the CPU. 

2.5 Software redundancy 

Software redundancy is very difficult to obtain. It is important to notice that, different 

from hardware, it is not enough that the software be duplicated to obtain fault tolerance since 

the faults would be duplicated as well. 

There are three basic ways to obtain software redundancy that can be applied in order 

to obtain fault tolerance [21]. 

The first is the consistency check. Consistency tests use a priori knowledge about the 

characteristics of information to verify if they are correct. For example, in a given application, 

it is defined that a certain information field never surpasses a certain magnitude. Consistency 

tests can verify if this error type is present. This technique, although simple, is a form of very 

important redundancy. 

There are also capacity checks (operation) to find out whether the memory or the 

arithmetic logical unit (ALU) in a given system is working. In order to do that, it runs an 

operation set (with the memory or with the ALU), and by itself compares the results obtained 

with the expected results (which can be recorded in ROM for the operations case with ALU). 

Thus, it is possible to identify faults that may occur in these units by using software 

redundancy. 

Finally, there is the technique called N-Version Programming, which produces “n” 

versions of the software and compares the obtained results. However, this technique is very 



 

 

46 

difficult to implement in practice because it requires different teams, which can’t 

communicate about software design, its implementation, or the overall project itself. There are 

two main problems with this method. The first one is that programmers tend to make the same 

mistakes; in other words, it is not possible to guarantee that two programs developed entirely 

independently will not contain the same errors [21]. Second, both programs will be produced 

from the same specifications; in other words, errors originated in the specifications will be 

shared by several modules [21]. 

2.6 Information redundancy 

Information redundancy appends information to the data in a way that allows 

detection, masking, and even fault tolerance [21]. The way to do that is through utilization of 

codes for the data, and the simplest example is parity detection codes. 

A code is a way to represent information, following a set of well-defined rules. For 

example, the different whistle combinations of a traffic policeman represent different codes. A 

code word is a collection of symbols that represents particular data; in the previous example, 

one short whistle means, “Proceed”. A code is called binary if there are just two symbols used 

to represent the data. A word is considered valid if it adheres to all the rules specified for the 

code or is otherwise disabled. 

The coding process determines the code word that represents particular given data, and 

the decoding process accomplishes the inverse operation. In other words, a given code 

determines what the given representation is. 

Coding can be used not only for the information that it wishes to represent, but also for 

error detection. This way, a coded piece of information (which also adds a code used to detect 

errors) occupies an extra, redundant space, as shown Figure 2.2. 

 

 
FIGURE 2.2: INFORMATION REDUNDANCY 
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An error detection code is a code where the set of specified rules allows for error 

detection, and an error correction code allows for the given correction to be recovered from a 

word of the wrong code. A fundamental concept for the characterization of these codes is the 

Hamming distance. The Hamming distance between any two binary words is the number of 

bit positions in which the two words differ. The code distance is the minimum Hamming 

distance between any two valid code words. We clearly notice that for a code to allow for the 

fault detection of a single bit, the distance should be two. This way, a bit changed within a 

code word would become an invalid word. In general, a code can correct up to “c” bit errors 

and detect up to “d” additional bit errors if and only if  

2c + d + 1 <=  Hd, 
where Hd is the Hamming distance of the code [37]. 

 

As examples of error detection codes, we can cite the parity code, the checksum and 

the cyclic redundancy check (or CRC).  The latter is much used in packet transfer in computer 

networks [38]. 

2.7 Time Redundancy 

For hardware and information redundancy an extra quantity of hardware must be 

appended to the project so that it can attend the fault tolerance requisites. Hardware has a 

direct impact on project factors such as weight, size, power consumption and cost. Therefore, 

time redundancy has been taken into consideration in more recent projects, mostly with the 

processor performance gain that we have seen in the last few years. 

In Johnson [21], this redundancy type runs a computation more than once and verifies 

the result obtained in each. If a discrepancy occurs, the computation can be run again with the 

goal of verifying whether the discrepancy exists or not. Thus, the system is protected against 

errors of the transient type besides allowing the identification of transient, intermittent and 

constant errors. 

The use of time redundancy decreases the weight and cost of systems while providing 

tolerance for transient, intermittent and correlated faults. Computations shifted in time have 

been used earlier to tolerate correlated faults [40][41]. A motivation for the use of time 

redundancy can also be found in [42]. 
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2.8 Goals of Fault Tolerance Projects 

Among applications where fault tolerance is a particularly important attribute for a 

project, one can highlight applications of long duration, such as implanted systems on board 

spaceships or satellites, which need to remain in orbit or continue their journeys for long 

periods of time. We can also cite applications of critical computation, where an error can 

provoke a disaster, for example, airplane control, dangerous chemical processes, or even 

nuclear plants or military applications. There are also high availability applications, such as 

computers for banks or sale of airline tickets, etc. 

There is still another application class in which faults need to be supported until the 

required maintenance can be accomplished. This class includes telephone systems, which are 

often in distant locations and where the cost of maintenance is high. Incorporating fault 

tolerance in these systems makes scheduling periodic maintenance feasible, and these systems 

will be better able to tolerate the faults that may occur between technicians’ visits. 

Real-time applications demand that the project design encompass certain performance 

characteristics. It is precisely this subset of characteristics that defines the degree of fault 

tolerance demanded by the system. These characteristics, as follows, are designated goals of 

the project [21]. 

• Reliability is a function of time R(t), and it represents the probability of the 

system working correctly in the time interval [t0, t] given that the system is 

operating correctly in the time instant t0. It is important to point out the 

difference between fault tolerance and reliability. A system with low reliability 

can have this characteristic improved by fault tolerance; the faults will still 

occur with a certain probability but, because of the tolerance, the system will 

not fail. In addition, a system with high reliability may not be fault tolerant, 

since even though the probability that a fault occurs is low, there will be a 

failure in the system when the fault occurs. 

• Availability is another function of time, A (t), which defines the probability of 

the system working correctly in the time instant t.  Although faults can occur 

with a high frequency, if the intervals of non-operation are short enough, the 

availability of the system could still be high. This characteristic is particularly 
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significant in applications where it is important for the system to be available 

when it is requested to do so. 

• Safety is the probability of the system either running the operation correctly or 

discontinuing its functions in a manner that does not disrupt the operation of 

other systems or compromise the safety of any people associated with the 

system. In other words, if the system is going to fail, it should at least fail in a 

safe situation; for example, if the automatic pilot of a plane fails, then the 

system must not lock the pilot's commands. 

• Performability is a function P (L,t) that defines the probability of a system 

being at a level L of performance in the instant t of time. This characteristic is 

classic for multiprocessor systems. When a processor of the system fails, the 

system simply decreases its performance, but it continues running its tasks 

correctly. That is called graceful degradation of the system. 

• Maintainability is a function M(t) that is the probability of a system with a 

fault coming back to a functional state within the period t of time. The 

restoration process includes the location of the problem, the repair and the 

return of the system to a functional state. 

• Testability is the capacity of testing some attributes of a system. Testing is a 

way to determine the existence and the quality of some system attributes. 

• Dependability (global robustness dependence) encompasses all the previous 

concepts. This characteristic determines the quality of the service provided by a 

certain system while the others are ways to quantify the dependability of a 

system. 

 

The design of a system is often conducted with a set of goals to be reached. For many 

of these goals, principally those cited above, fault tolerance techniques can be very helpful. 

Figure 2.3 [21] shows a top-level view of a system project. Note that several goals that the 

project is intended to reach are verified in two ways: the design itself and the evaluation of the 

system. 

Within the design of the system, there are basically two ways of fulfilling the requisites 

of the design. They are fault prevention and fault tolerance. These two ways, used together, 
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enable the attainability of high reliability indices, availability, or whatever goal is sought for 

the system. Fault prevention involves techniques such as a rigorous selection of devices and 

utilization of project rules. Tolerance techniques involve various levels of redundancy.  

 
FIGURE 2.3: A TOP-LEVEL VIEW OF THE SYSTEM DESIGN PROCESS. 

Evaluation of the system must be conducted along with the project in order to be 

successful. In the evaluation, including critical analysis that follows the recommendations of 

ISO9001 [43], many problems can be discovered and corrected before the system is 

implemented.



 

 

Chapter 3 

Real-Time Fault Tolerance Scheduling 

3.1 Overview 

A scheduling algorithm is a set of rules that determine the task to be executed at a 

particular moment. The traditionally adopted dynamic approach is priority-based preemptive 

scheduling. In this approach, tasks have priorities that may be statically or dynamically 

assigned. At any given time, the task with the highest priority is executed, and preemption is 

thus necessary: if a low-priority task is being executed and a higher-priority task arrives, the 

former is preempted and the processor is given to the new arrival. Thus, the specification of 

priority-based preemptive scheduling algorithms amounts to the specification of the method of 

assigning priorities to tasks. A scheduling algorithm is said to be static if priorities are 

assigned to tasks once and for all. A static scheduling algorithm is also called a fixed-priority 

scheduling algorithm. A scheduling algorithm is said to be dynamic if priorities of task might 

change from request to request. A scheduling algorithm is said to be a mixed scheduling 

algorithm if the priorities of some of the tasks are fixed, yet the priorities of the remaining 

tasks vary from request to request. If priorities are assigned systematically, using the rate-

monotonic approach [5], for example, utilization boundaries can be derived. If a set of tasks 

does not exceed the boundaries, they can be scheduled without missing any deadlines. 

Scheduling policies in real-time systems need to ensure that tasks will meet their 

deadlines under all circumstances, even in the presence of faults. These real-time scheduling 

schema may be used for the processor, as well as for tasks, communication and other 

resources that are used by real-time systems, including I/O in general. The tasks in a real-time 

system have time constraints, such as arrival times, ready times, deadlines, periods and 

execution times. A real-time system must provide predictable response times. Therefore, the 

worst-case behaviour of real-time systems is of primary importance, as opposed to average 

response time and user convenience, for example, which are important issues in general-

purpose computing systems [17].  
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Scheduling and resource allocation in real-time systems are difficult problems due to 

the timing constraints of the tasks involved. The order in which the tasks are scheduled or 

dispatched is very important in order to determine if the tasks set will meet their deadlines. 

Many real-time scheduling problems are known to be NP complete [3][44]. 

Fault tolerance requirements make a real-time system even more complicated to 

implement, since faults must be detected and tolerated within the system timing constraints. If 

a fault triggers a backup task for recovery purposes, the backup task must also be executed 

before the task deadlines. Due to these complexities, most present days real-time systems only 

deal with timing constraints, and not with the catastrophic consequences that a system failure 

might cause. 

Effective scheduling involves allocating resources and time to activities in a way that 

allows a system to meet certain performance requirements. Scheduling is perhaps the most 

widely researched topic in real-time systems, because many researchers believe that deadlines 

are the key factor that distinguishes real-time systems from non-real-time systems. Thus, they 

reason that the basic problem in real-time systems is to ensure that tasks meet their deadlines.  

The metrics that guide scheduling decisions depend on the application areas. The need 

for minimizing schedule length pervades static non-real-time systems, while minimizing 

response times and increasing throughput are the primary metrics in dynamic non-real-time 

systems. In static and dynamic real-time systems, however, the main goal is to achieve 

timeliness, what introduces quite different metrics according to the type of real time system 

and the requirements imposed on them.  

Consequently it is, sometimes, hard to compare different scheduling algorithms, once 

different types of real time systems and task characteristics occur in practice. Tasks can be 

associated with computation times, resource requirements, importance levels (sometimes also 

called priorities or criticalness), precedence relationships, communication requirements, and 

of course, timing constraints. If a task is periodic, its period becomes important; if it is 

aperiodic, its deadline becomes important. Both periodic and aperiodic tasks may have start 

time constraints.  

3.2 Rate Monotonic Theory 

The term rate monotonic analysis was born in 1973 with the publishing of "Scheduling 

Algorithms for Multiprogramming in a Hard Real Time Environment" by Liu and Layland 
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[5]. Their paper laid out the basis for a simple test to be applied to a real-time system to 

determine if a set of periodic tasks would be guaranteed to meet their deadlines. Tasks 

deadlines are taken to be at the end of the periods of the tasks, and tasks are not permitted to 

block at run-time. Furthermore, each task is assigned a unique priority monotonically with 

task period, and hence the name rate monotonic scheduling (RMS).  

Rate monotonic scheduling systems use rate monotonic (RM) theory for scheduling 

sets of tasks. Rate monotonic analysis can be used on tasks scheduled by many different 

systems to reason about schedulability. A task is schedulable if the sum of its blocking, 

preemption and execution time is less than its deadline [47]. A set of tasks is schedulable if all 

tasks meet their deadlines. Rate monotonic analysis provides a mathematical model to check 

the schedulability of a set of tasks. 

The rate-monotonic algorithm (RMA) is a task schedule algorithm that assigns higher 

priorities to the tasks with shorter periods, and the RMA is optimum when the tasks are 

independent [5]. It assumes that all processes in the system are periodic, have deadlines at the 

end of their periods, and are totally independent of each other [51]. 

These premises allow the complete characterization of a task by its period and its run-

time, which is the maximum processing time for that task. A set of periodic tasks is called 

schedulable if every periodic task finishes its execution before the end of its period. This way, 

any set of independent periodic tasks is schedulable by the rate-monotonic algorithm if the 

condition of Theorem 1 is met [5]. 

Theorem 1: A set of n independent periodic tasks scheduled by the rate-monotonic 

algorithm will always meet its deadlines, for all task instances if: 
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Where:  

Ci – Worst-case run-time of a given task i; 

Ti – Period of a given task τi. 

Proof: See Liu and Layland [5]. 

 

Theorem 1 offers sufficient conditions (worse case) to characterize schedulability by 

RMA. At its limit, the theorem converges to 69.3% when the number of tasks tends towards 
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an infinite number [6]. The analysis provides a schedulability test by giving a utilization 

bound. In common practice, the rate monotonic algorithm can often successfully schedule task 

sets having total utilization higher than 0.693. The utilization bound of Theorem 1 is very 

pessimistic because the worst-case task set is contrived and rather unlikely to be encountered 

in practice. For a randomly chosen task set, the likely bound is 88% [6]. This suggests that the 

average case behaviour is substantially better than the worst-case behaviour. The behaviour is 

strongly dependent upon the relative values of the periods of the tasks comprising the task set.  

Lehoczky presents in [45][46] a stochastic analysis that gives the probability 

distribution of the utilization boundary of randomly generated task sets. Specifically, a task set 

is generated randomly, and the computation times are scaled to the point at which a deadline 

is first missed. Theorem 2 provides an exact criterion to test for schedulability of independent 

and periodic tasks using RMA. In fact, the theorem checks if each task can complete its 

execution before its first deadline by checking all the scheduling points. 

Theorem 2: A set of n independent periodic tasks scheduled by the rate-monotonic 

algorithm will always meet its deadlines, for all task instances, if and only if: 
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Where:  

Cj – Execution time; 

Tj – The period of task τj. 
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Proof: It can be found in [45][46]. 

 

To know if a set of given tasks with utilization greater than the bound of Theorem 1 

can meet its deadlines, the conditions of Theorem 2 can be checked [6][45][46]. 

An important improvement in the theory was made by including aperiodic events. Sha 

et al [50][52] contributed with a number of strategies, ranging from the simple casting of 

aperiodic events into a pessimistic periodic framework to the more elaborate strategy of 

involving implementation in the careful rationing of time to incoming aperiodic events [52].  
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Another important enhancement was made by Sha et al [52] to take care of inter-task 

cooperation. The most common case of inter-task cooperation is the situation in which more 

than one process must use a single resource, requiring some kind of resource allocation policy. 

One major problem with the state-of-the-art resource allocation up to this point had been 

priority inversion, once it can prevent a highest priority task from meeting its deadline. Sha et 

al [52] derived a run-time algorithm to permit tasks to lock and unlock semaphores according 

a protocol, termed the Priority Ceiling Protocol. With this protocol, a system is guaranteed to 

be free of deadlock (on single processor systems), and a given task can be blocked at most 

once by a lower priority task. Sha et al [52] extended the rate monotonic analysis to account 

for the behaviour of this protocol, adding a blocking factor – worst-case time a given task can 

be blocked - to the schedulability equations. 

These three works provide the basis for an exact schedulability test for sets of 

independent periodic tasks under the rate monotonic algorithm. 

Pandya and Malek [14] analyzed the schedulability of a set of periodic tasks that is 

scheduled by the RMS policy and is susceptible to a single fault. The recovery action is the re-

execution of all uncompleted tasks. They showed that in a process for re-executing a task that 

has failed in a fault-free instance, the priorities should be maintained by RMA. Under those 

conditions, none of the tasks will lose its deadline, even in the presence of faults, if the 

processor utilization factor is not higher than 0.5. 

Tindell [8] derived analysis for static priority pre-emptive systems that permit tasks to 

have arbitrary deadlines, release jitter, and behave as sporadically periodic tasks. The 

derivation of his analysis illustrated how a window approach to finding worst-case response 

times for these tasks is an appropriate way of obtaining an analysis tailored to the behaviour of 

real-time tasks. 

The priority pre-emptive dispatching algorithm has also been analyzed by Joseph and 

Pandya [10] to find the worst-case response time of a given task. Analysis is derived that finds 

the worst-case time between a task being released and completing the execution or a worst-

case required computation time. This permits tasks deadlines to be less than task periods. 

Joseph and Pandya showed also that the Completion Time Test (CTT) can be used in order to 

verify the schedulability of a fixed set of periodic tasks in a processor. 

Dhall and Liu [1] proposed, among others, the Rate-Monotonic First-Fit (RMFF) 

heuristic. It is a partitioning algorithm, where tasks are first assigned to processors following 

the RM priority order and then all the tasks assigned to the same processor are scheduled with 
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the RM algorithm. The problem of scheduling periodic tasks in multiprocessor systems is also 

considered [4], [7], and [49]. RMA was generalized for multiprocessor systems by Dhall and 

Liu [1], and it was also shown that RMA is not optimum for scheduling tasks in 

multiprocessor systems. None of the algorithms were shown to be optimum for scheduling 

periodic tasks in multiprocessor systems.  

Bertossi et al [15] extended the Completion Time Test so as to check the 

schedulability on a single processor of a task set including backup copies. They used a multi-

processed system where each task has an active and a passive copy in another processor, and 

the whole set of tasks is prioritized by Rate-Monotonic First-Fit (RMFF). Fail-stop of one 

processor is thus supported. Bertossi et al proposed the Fault-Tolerant Rate-Monotonic First-

Fit algorithm to provide fault-tolerance to a Hard Real Time System where all the task copies, 

including the backup copies, are considered by Rate-Monotonic priority order and assigned to 

the first processor in which they fit. 

De Oliveira and Fernandes [11][12] proposed the Deadline, a portable multitasking 

kernel and fault tolerant for hard real-time systems applications. In their work, a processor and 

RMA are used to designate priorities and to schedule tasks, providing fault tolerance to the 

system through the inclusion of only one hardware redundancy, a “watchdog timer”. 

3.3 Fault Tolerance and Rate Monotonic Scheduling 

Due to the critical nature of the tasks in hard real-time systems, it is essential that 

faults be tolerated. Several studies have shown that space applications, which have very high 

reliability requirements, also have very high fault frequencies [17]. Therefore, tolerance of 

transient faults is essential in such applications.  

Transient faults in real-time systems are generally tolerated using time redundancy, 

which involves the re-execution of any task running during the occurrence of a transient fault 

[53]. Ghosh et al presented in [48] a scheme to guarantee that the execution of real-time tasks 

can tolerate transient and intermittent faults assuming any queue-based scheduling technique.  

The general approach to fault tolerance is to maintain enough slack (backup time) in 

the schedule, so that any task instance can be re-executed if a fault occurs during its execution. 

If no faults occur, tasks are executed following the usual RMS scheme and the slack is not 

used. If a fault occurs in a task, a recovery scheme is used to re-execute that task. The ratio of 

slack S available over an interval of time L is thus constant and can be imagined to be the 
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utilization of a backup task B, where S/L is the backup utilization. If the backup utilization is 

UB, and the slack available during an interval L is denoted by BL, then BL=UBL. 

A backup task can be seen as occupying a slack time slot between every two 

consecutive period boundaries, where a period boundary is the beginning of any period. 

Therefore, the length of the backup slot between the kth period of τi and lth period of τj is given 

by UB(lTj - kTi), where there is no period boundary of any other task in the system between 

times kTi and lTj. It is important to note that the backup slot is merely an abstraction to help  

reason about slack in the processor. 

In [17] Ghosh showed a recovery scheme for single and multiple faults that ensures the 

re-execution of any task after a fault has been detected. The following conditions must be 

satisfied:  

 

[Sl]: There should be sufficient slack for every instance of each task to re-execute. 

That is, the slack between kTi and (k + 1 )Ti should be at least Ci for any value of k and i. 

[S2]: When any instance of τi finishes executing, all the slack available within its 

period (at least Ci if [Sl] holds) should be available for the re-execution of τi. 

[S3]: When a task re-executes, it should not cause any other task to miss its deadline.  

 

[Sl] ensures the availability of sufficient slack for a task to re-execute, and [S2] 

ensures that this slack can be used after a task finishes executing to re-execute that task before 

its deadline if a fault is detected. [S3] allows all tasks to meet their deadlines even when a 

high priority task needs to re-execute.  

Proof: For single and multiple faults, it can be found in [17]. 

 

If these three conditions are met, then it is possible to re-execute a faulty task and meet 

its deadline. However, a recovery scheme must define also how the slack should be used and a 

very straightforward scheme consists on the faulty task simply being re-executed at its own 

priority.   

This approach to distribute slack in the schedule can be applied to any non-fault-

tolerant scheduling scheme for preemptive, periodic tasks where the RMS assumptions hold. 

As shown by Ghosh, any computation time Ci in the non-fault-tolerant scheme can be split 

into two parts for the fault-tolerant scheme: a new computation time Ci’ = Ci(l - UB) (where 

UB is the backup utilization) and a slack equal to CiUB. To ensure that in the worst case 
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scenario each task τi can re-execute before its deadline, τi's critical instance - defined as the 

time at which τi's response time is maximized - is considered. The critical instance of a task τi 

happens when τi arrives simultaneously with all higher priority tasks [5]. The total slack 

available for any task τi at its critical instance is equal to the total slack available within a 

period boundary, which is defined as the beginning of a period. Ghosh showed also that, by 

splitting up each transmission time Ci into a new transmission time Ci’ and slack, as described 

above, the utilization of each task τ i is reduced to Ui (l - UB), and thus the following general 

fault tolerance boundary for an RMS (UG-FT-RMS) is obtained: 

UG-FT-RMS = n (21/n - 1) (1 - UB) = ULL-RMS(l - UB) (3.3) 

The above equation is a general one applicable to a RMS for any value of UB. If 

UB=max{Ui} , i = 1,..., n, then any task instance in the system can tolerate a single fault. Any 

number of faults can be tolerated if [S1] holds.  

Multiple faults within two consecutive period boundaries are also guaranteed to be 

tolerated using the scheme described above. If several backups are provided in the system, and 

the total backup utilization is UBT, then a general boundary for the task set can be derived by 

replacing UB with UBT in (3.1); that is, the new boundary is ULL-RMS(l- UBT).  

The hyperperiod is the least common multiplier of tasks periods. The release pattern 

will be repeated at every hyperperiod. We may define the hyperperiod of a task as the least 

common multiplier of the periods of the tasks of higher or equal priority than that task from 

the point of view of a task at level the pattern of invocations of higher priority tasks is 

repeated every time units. Hyperperiod is the minimum time interval after which the schedule 

repeats itself. 

If [S1], [S2], and [S3] holds, Equation 3.1 will also apply for the hyperperiod of a task 

as well as for the hyperperiod of a task set. 

3.4 Multiprocessor Systems 

The easiest way to provide fault tolerance in a multiprocessor system is to use spare 

processors. The well-known RMS techniques for uniprocessor systems can be used to 

schedule tasks on individual processors, and spare processors can be added to tolerate 

permanent processor faults.  
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The approach of adding slack to a schedule of real-time tasks is not appropriate for 

tolerating permanent processor faults in multiprocessor systems. Slack can be used only to 

tolerate transient faults. To tolerate permanent faults, multiple copies of each task must be 

scheduled on different processors. 

Any critical real-time system must tolerate permanent faults in addition to transient 

faults, and transient faults need to be detected before they can be tolerated. A combination of 

time and space redundancy can be used to detect and tolerate both transient and permanent 

faults. For example, two processors can be used to execute the tasks, and at the end of the 

tasks' execution, their results can be compared. If their results do not match, then a transient 

fault has occurred. Using the slack reserved when the tasks were scheduled, the faulty task is 

re-executed on both processors, and the results compared again. If the fault is transient, then 

the re-execution will allow a correct result to be generated before the task's deadline. During 

the comparison, if one of the processors does not generate a result, then a permanent fault has 

occurred and the results from the non-faulty processor can be used. A spare processor can be 

used to replace the faulty processor, if desired.  

A new algorithm for fault-tolerant scheduling on multiprocessor systems is proposed 

by Ghosh et al in [48]. The algorithm guarantees the completion of a scheduled task before its 

deadline in the presence of processor failures. It schedules several backup tasks overlapping 

one another and dynamically deallocates the backups as soon as the original tasks complete 

executions, thus increasing the utilization of processors.  

As an abstraction we can assume that preemption and fault detection costs are 

negligible. In practice, however, these costs are not negligible. The fault detection cost for the 

fault tolerant scheme will include the communication cost between the processors and the 

comparison time. The comparison time is constant and has to be significantly lower than the 

task computation times in order to be cost effective. The communication time is dependent on 

how many faults have occurred in the communication protocol layers. This additional time 

can be added to the computation time of each task a priori, so that fault detection times are 

taken into account.  

3.4.1 Fault tolerance in multiprocessor real-time systems 

The problem of scheduling periodic tasks in multiprocessor systems is considered in 

[4], [7], and [49]. It was shown that RMA is not optimum for scheduling tasks in 
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multiprocessor systems. No algorithms were shown to be optimum for scheduling periodic 

tasks in multiprocessor systems.  

Joseph and Pandya [10] demonstrated the Completion Time Test (CTT) in order to 

verify the schedulability of a fixed set of periodic tasks in a processor. RMA was generalized 

for multiprocessor systems by Dhall and Liu [1], who proposed the heuristic Rate-Monotonic 

First-Fit (RMFF), where first, the tasks are designated to the processors as per priority 

designated by RMA and second, all tasks designated to the same processor are scheduled by 

RMA. 

Pandya e Malek [14] showed that in a process for executing again a task that has failed 

in a fault-free instance, as proposed in [11], the priorities should be maintained by RMA and, 

under those conditions, none of the tasks will lose its deadline, even in the presence of faults, 

if the processor utilization factor is not higher than 0.5. 

Bertossi and Mancine [15] proposed the Fault-Tolerant Rate-Monotonic First-Fit 

(FTRMFF) to provide fault-tolerance to a HRTS, by using a multiprocessor system where 

each task has a passive or active copy in another processor and the whole set of tasks is 

prioritized by RMFF, supporting fail-stop of one or more processors. 

Oliveira and Fernandes[11],[12] proposed the Deadline, where a processor and the 

RMA are used to designate the priorities and to schedule the tasks, providing fault-tolerance 

to the system with the inclusion of only one hardware redundancy, the watchdog timer. An 

improvement to the Deadline was further proposed in order to apply it to multiprocessor 

systems, resulting in a system capable of supporting transient faults and processors fail-stop. 

3.4.1.1 The Deadline – a multiprocessor real-time kernel with fault 

tolerance 

The Deadline, as it was proposed, is a multitask, fault-tolerant core system for 

applications in HRTS with only one processor. The objective of the system is to expand 

directly the availability, reliability, maintainability, testability and indirectly the safety, 

performability and dependability of the introduced tasks and of the system as a whole. A 

complete description of Deadline can be found in [11] and summarized descriptions in [12]. 
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FIGURE 3.1: PROCESSOR FAULT AND RECOVERY IN THE DEADLINE. 

Figure 3.1 [11] shows an example on how watchdog timer detects a fault and triggers 

the recovery process after a loss of consistency in the operational system layer or in a 

processor fault occurs. On that example, after occurrence of a more severe electromagnetic 

disturbance (example: lightning affecting the local electric installation) at the clock time= 2, 

all the tasks of the system, including the ones that implement the fault-tolerance attributes in 

the Deadline, are not executed. 

The processor is out of routines, which should be in process or even in an undefined 

status, under a condition of abnormal hardware created by the electromagnetic disturbance. In 

that case, after two consecutive clock ticks, without the watchdog timer receiving signaling 

from the operating system that everything is fine, an electrical signal is emitted via its WO 

physical port. That output signal is connected to the RESET entry of the processor. It 

reinitializes the whole system, placing the CPU in valid status. Thus, the CPU starts the 

operating system layer, which finally introduces again all the tasks of the target application. 

One Deadline restriction is that it works with only one processor, what limits the 

specific fault-tolerance of the processor exclusively to transient faults and still leads to a 

restriction of the processor recovery time, operational system and application layer. To 

eliminate this restriction,  Oliveira and Fernandes [11], [12] showed also how the Deadline 
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could be complemented by FTRMFF - Fault-Tolerant Rate-Monotonic First-Fit [15] - in order 

to tolerate faults in HRTS. In the FTRMFF, proposed by Bertossi and Mancini [15], faults are 

implemented in a multiprocessor system by using a technique where each task scheduled in a 

processor has a passive or active copy in another processor. The active copy is always 

executed while the passive one is only executed in case of occurrence of faults in the primary 

task processor. With RMFF, all tasks and their active copies can be assigned to processors and 

scheduled with no loss of deadlines. Passive copies are chosen whenever possible, the active 

ones being used only in cases where the schedule time of primary task is near its deadline, not 

being possible the inclusion of synchronization time required between the primary copy and 

the passive copy. Passive copies can share the same interval of time in a same processor since 

they do not need to be executed. They are always utilized in detriment of active copies, thus 

reducing the total number of processors required for supporting the HRTS.  

As example of fault recovery, consider the set of tasks shown in Figure 3.2 [15], which 

is in a fault-free status. In processor P1, we verify the existence of 3 primary tasks being 

executed (τ1,τ2 e τ4). In processor P3, there are two tasks being executed: one primary (τ3) and 

one active copy (β4). The processor P2 is available for executing the passive copies (β1,β2 e 

β3), in case a failure occurs with P1 or P3. 

Figure 3.3 [15] shows the occurrence of a fail-stop failure in processor P1 at the period 

of time 0. Processor P2 detects that fault at the period of time 2. At that moment, passive 

copies of primary tasks that were executing in P1, begin to be executed in P2. On that example, 

it can be observed that this proposal complements the Deadline, since in case of transient 

fault, as shown in Figure 3.1, tasks are not executed during several periods of time until the 

processor, the operational system and the applications are again under execution in a fault-free 

instance. With that proposal, tasks begin to execute in processor P2, thus not losing their 

deadlines, what may occur in a system with only one processor. 

In figure 3.4 [15], Ps represents an available backup processor that starts the operation 

in order to replace the processor lost due to permanent fault P1. As the faults model proposed 

by [15] only permits fail-stop, we can verify that the Deadline complements this proposal 

since it permits that transients faults in the processor can be also tolerated. The advantage is to 

recovery the processor, as shown in Figure 3.5, where the processor P1 is recovered from a 

transient fault at period of time t = 12, returning to be available for processing. 
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FIGURE 3.2: FAULT-FREE SYSTEM STATUS 

 

 

FIGURE 3.3: FAULT RECOVERY FROM P1 EXECUTED BY P2 

 

 

FIGURE 3.4: PROCESSOR P1 REPLACED BY PS. 

 

FIGURE 3.5: DEADLINE RECOVERS P1. 

The Fault-Tolerant Rate-Monotonic First-Fit concept, first introduced by Bertossi and 

Mancini in [15], complements the Deadline and represents an evolution, since it covers a 

higher number of types of faults, makes processors with transient faults available again for 

processing and avoids interruption of tasks when a transient or permanent fault occurs in a 

certain processor. 



 

 

Chapter 4 

Real-Time Fault-Tolerant 

Communication Protocols  

4.1 Overview 

One of the essential services provided by real-time fault-tolerant distributed 

architecture is communication of information from one distributed component to another, so a 

communication bus is one of its principal components, and the protocols used for control and 

communication on the bus are among its principal mechanisms. In reality, these architectures 

are the safety-critical core of the applications built above them, and the choice of services to 

provide to those applications, and the mechanisms of their implementation, are issues of 

major importance in the construction and certification of safety critical embedded systems 

[58][59].  

Digital communication busses are frequently used to connect mission critical 

components. The failure of such a bus is not tolerable; therefore redundant busses are often 

used in safety-critical environments to handle device faults. Besides fault tolerance, many 

applications require real-time guarantees such as bounded message latency. There are various 

protocols for such purposes, with different complexities, which are used by the avionics 

industry, such as Airbus and Boeing, and automobile industry, such BMW and Audi. Boeing 

is using the ARINC 629 bus for the new fly-by-wire aircraft, such as the Boeing 777 

(http://www.boeing.com). Other protocols for this domain are the Time Triggered 

Architecture (TTA) protocols [25] (adopted by Audi for automobile applications), FlexRay 

[27] (which is being developed by a consortium of BMW, DaimlerChrysler, Motorola, and 

Philips), Controller Area Network CAN [29], TTCAN [55][56][57], Honeywell SAFEbus 

[54] (the backplane data bus used in the Boeing 777 Airplane Information Management 

System). Some of the busses considered here are primarily time triggered, which means that 

all activities involving the bus, and often those involving components attached to the bus, are 

http://www.boeing.com/
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driven by the passage of time. In event-triggered busses, the activities are driven by the 

occurrence of events. A time-triggered system interacts with the world according to an internal 

schedule, whereas an event-triggered system responds to stimuli. The time-triggered and 

event-triggered approaches to systems design find favor in different application areas, and 

each has strong advocates [59]. 

4.2 Medium access protocol classes 

More than one hundred real-time communication protocols have been implemented in 

the last twenty years [60]. The main concern of all these protocols is the same: how to assign 

the bandwidth of the single communication medium for short intervals of time exclusively to 

a node of the distributed system such that certain system properties can be maintained. One 

important issue in a real-time communication protocol is thus the medium access control [60]. 

The known protocols can be assigned to one of six protocol classes on the basis of the 

medium access control: carrier sense multiple access with collision detection (CSMA/CD), 

carrier sense multiple access with collision avoidance (CSMA/CA), token control, mini-

slotting, central control, and time division multiple access (TDMA). The medium access 

strategy of a communication protocol determines which node is allowed access to the bus at a 

particular point in time. 

Carrier Sense Multiple Access Collision Detection Protocols (CSMA/CD classical 

example ETHERNET) are distributed medium access protocols that do not require any central 

locus of control. Although it is not a real-time protocol, a good example for a protocol from 

this class that is targeted for real-time systems in building automation is the LON Protocol 

from Echelon [65].  

Carrier Sense Multiple Access Collision Avoidance Protocols (CSMA/CA) are 

distributed medium access protocols that avoid the occurrence of collisions, e.g., by bit 

arbitration. A good example of a CSMA/CA protocol is the CAN Protocol developed by 

Bosch targeted for automotive real-time applications [62].  

In a token bus system the right to transmit is contained in a special control message, 

the token message. Whoever is in possession of this token message is allowed to transmit. A 

serious error in any token system is the loss of the token, e.g., if the station that possesses the 

token fails. An example of a token bus protocol proposed for real-time systems is the 

Profibus[66] .  



 

 

66 

Minislotting is a time-controlled medium access strategy, where the time is partitioned 

into a sequence of minislots; each one being the length of the propagation delay of the 

channel. Every node has to wait a different number of minislots before it is allowed to 

transmit. A good example of a protocol based on mini-slotting is the ARINC 629 used by the 

aircraft industry for real-time communication [61]. 

A central masterProtocol relies on a central master to control the access to the bus. In 

case the central master node fails, another node can take over the role of the central master 

(multi-master systems). A good example for a central master protocol is the FIP protocol [63]. 

TDMA is a distributed static medium access strategy where the right to transmit is 

controlled by the progression of real-time. This requires that a (fault-tolerant) global time base 

be available at all nodes. An example of a TDMA protocol proposed for real-time applications 

is the Time-Triggered Protocol TTP [64].  

4.3 Model for Hard Real-Time communication 

In a distributed hard real-time system, communications between tasks on different 

processors must occur in bounded time. The inevitable communication delay is composed of 

both the delay in transmitting a message on the communications media, and also the delay in 

delivering the data to the destination task. 

In [71] Tindell derives schedulability analysis bounding the media access delay and the 

delivery delay. Tindell considered two access protocols: a simple timed token passing 

approach, and a real-time priority broadcast bus. Some of concepts that he described we are 

going to introduce in this section.  

A hard real-time system is often composed from a number of periodic and sporadic 

tasks, which communicate their results by passing messages; in a distributed system these 

messages are sent between processors across a communications device. In order to guarantee 

that the timing requirements of all tasks are met, the communications delay between a sending 

task queuing a message, and a receiving task being able to access that message, must be 

bounded. This total delay is termed the end-to-end communications delay. Tindell defines the 

end-to-end communications delay to be made up of four major components:  

• The generation delay: the time taken for the application task to generate and 

queue the message.  
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• The queuing delay: the time taken by the message to gain access to the 

communications device after being queued  

• The transmission delay: the time taken by the message to be transmitted on the 

communications device  

• The delivery delay: the time taken to process the message at the destination 

processor before finally delivering it to the destination task  

 

The generation delay is the worst-case time taken between the arrival of the sender 

task and the queuing of the message. This represents some element of application processing 

to generate the contents of the message, and the time taken to queue the message. The queuing 

delay is the time the message spends waiting to be removed from the queue by the 

communications device. With a point-to-point communication link, the message must contend 

with other messages sent from the same processor; with a shared communications link, the 

message must also contend with messages sent from other processors. The transmission delay 

is the time taken for the message to be sent once it has been removed from the queue. The 

delivery delay is the amount of time taken to process the incoming data and deliver it to 

destination tasks. The Tindell work [71] includes such functions as decoding packet headers, 

re-assembling multi-packet messages, copying message data between buffers, and notifying 

the dispatcher of the arrival of a message. This latter function is important, since the 

destination task may be blocked awaiting the arrival of the message. In practice the delivery 

delay can form a significant part of the end-to-end communications delay. 

Shared 
Broadcast Bus

1)Application 
Tasks

Host System

Communication 
Adapter

6) Interrupt for 
arrival Pkt

Shared Memory

3) Priority-
ordered outgoing 

Packet queue

2)Semaphore

5) Incoming 
Packet (FIFO 
queue)

4) C.Adp. transmit 
Packet on to the bus

 
FIGURE 4.1: SHARED BROADCAST BUS 
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Figure 4.1 shows one typical arrangement for the transmission and reception of packets 

in a shared broadcast bus. One complete end-to-end sequence can be seen following the 

numbers steps in the figure.  For this typical architecture the packet queue is stored in shared 

memory. Shared memory can be accessed by normal read and write instruction in application 

software, except that extra 'wait states' are incurred. The communications adapter is a single 

reader of packets. Writes to the queue are atomic - a packet can be written to a spare slot in 

the buffer; when complete it can be atomically inserted into the queue by simple pointer 

manipulation. According to project constraints, a node will not insert packets in the bus in a 

higher load than the bus throughput. Thus, one can assume that there is always sufficient 

space to store these packets. A protected object (semaphore) ensures concurrency control 

between application tasks queuing packets. The communications adapter removes the packet 

at the head of the queue (by simple pointer manipulation) and transmits it on to the bus. In the 

worst-case there is time p between subsequent packet transmissions. For each packet removal 

the communications adapter may be blocked in the worst case for a few processor cycles 

while the host processor completes pointer manipulation (and vice versa). This time is 

included in p. Incoming packets are stored in a FIFO queue. An interrupt is raised for each 

arrival of a packet, requiring computation time Cpacket to process (the costs of copying the 

packet from the shared network buffer, stripping headers, etc.). The interrupt handler on the 

host processor removes the packet from the buffer; when all the packets of a message have 

arrived the interrupt handler releases the task blocked awaiting the message. This approach 

avoids the need for direct memory access (DMA) to transfer the data.  

4.4 Time-Trigged Protocol TTP/C 

The Time Triggered Architecture (TTA) was developed by Hermann Kopetz and 

colleagues at the Technical University of Vienna [64]. Commercial development of the 

architecture is undertaken by TTTech and it is being deployed for safety-critical applications 

in cars by Audi and Volkswagen, and for flight-critical functions in aircraft and aircraft 

engines by Honeywell.  

In a Time-Triggered Architecture the communication system decides autonomously 

and according to a static schedule when to transmit a message. Every station contains its own 

control data that specifies at which instant a message must be transmitted by the controller. A 
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TTP/C network consists of a set of electronic modules that are connected by two replicated 

channels as shown in Figure 4.2 [25]. 

Time-triggered architectures are driven by the progression of the global time. All tasks 

and communication action are periodic, and external state variable are sampled at predefined 

points in time. 

The Communication Network Interfaces implement the TTP/C protocol [26], 

providing clock synchronization, and message sequencing and transmission functions. The 

interconnect bus is duplicated and each controller drives both of them through partially 

independent bus guardians. The bus guardian is an autonomous subsystem of the controller 

that protects the communication channels from temporal transmission failures. Physically, the 

bus guardian may reside on the same silicon die as the TTP/C protocol controller; it can also 

be implemented as an independent device. In any case, a TTP/C controller must have a bus 

guardian to achieve fail-silence in the temporal domain [26]. The guardians, which have 

independent clocks, therefore rely on their controllers for a "start of frame" signal. This 

compromises their independence somewhat (they also share the power supply and some other 

resources with their controllers), so forthcoming implementations of TTA use a star 

interconnect. In this case, the guardian functionality is implemented in the central hub, which 

is fully independent of the controllers: the hubs and controllers comprise separate fault 

containment units in this implementation. Hubs are duplicated for fault tolerance and located 

apart to withstand spatial proximity faults.  

TTA employs algorithms for group membership and clique avoidance [67], what 

enables its clock synchronization algorithm to tolerate multiple faults, by reconfiguring to 

exclude faulty members, and combine with its use of checksums to provide a form of 

interactively consistent message broadcasts [58]. 

The TTP/C protocol has been designed to tolerate any single internal physical fault in 

any one its constituent parts without an impact on the operation of a properly configured 

cluster. As long as an external fault impacts only a single TTP/C subsystem, the TTP/C 

system will tolerate such a fault. 
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FIGURE 4.2: TTP/C ARCHITECTURE  

4.5 FlexRay Protocol 

FlexRay is a new real-time protocol, not yet released to the public, being developed by 

a consortium of companies (BMW, DaimlerChrysler, Motorola, and Philips). Although used 

primarily for automotive applications, it is representative of state-of-the-art safety critical real-

time protocols. 

FlexRay aims to be more flexible than TTP/C, introducing some dynamism through 

the combination of time-triggered and event-triggered operation. FlexRay partitions each time 

cycle into a "static" time-triggered portion, and a "dynamic" event-triggered portion. The 

division between the two portions is set at design time and loaded into the controllers and bus 

guardians. Communication during the event-driven portion of the cycle uses the Byteflight 

protocol [28]. Unlike TTA, FlexRay does not install the full schedule for the time-triggered 

portion in each controller. Each time-triggered portion of the cycle in each controller is 

divided into a number of slots of fixed size and each controller and its bus guardians are 

informed only of those slots allocated to their transmissions. Controllers learn the full 

schedule only when the bus starts up. Each node includes its identity in the messages that it 

sends; during startup, nodes use these identifiers to label their input buffers as the schedule 

reveals itself [58]. FlexRay does not use a membership algorithm to exclude faulty nodes. 

FlexRay provides no services to its applications beyond best-efforts message delivery; in 

particular, it does not provide interactively consistent message broadcasts. This means that all 
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mechanisms for fault-tolerant applications must be provided by the applications programs 

themselves [58]. 

FlexRay is more flexible because of its mixture of time-triggered and event-triggered 

operation, and potentially important because of the industrial clout of its developers [58]. 

There is a conflict between Safety and Flexibility. FlexRay puts available the option of to 

work between these two concepts that TTP/C does not. The designer can take care of safety 

and still have enough flexibility. 

4.6 Controller Area Network Protocol CAN  

The controller area network (CAN) uses a serial multimaster communication protocol 

that efficiently supports distributed real-time control with a very high level of data integrity, 

and communication speeds of up to 1 Mbps. The CAN bus is ideal for applications operating 

in noisy and harsh environments, such as in the automotive and other industrial fields that 

require reliable communication.  

Prioritized messages of up to eight bytes in data length can be sent on a multimaster 

serial bus using an arbitration protocol and an error-detection mechanism for a high level of 

data integrity.  

The CAN protocol supports four different frame types for communication:  

• Data frames that carry data from a transmitter node to receiver node(s)  

• Remote frames that are transmitted by a node to request the transmission of a 

data frame with the same identifier  

• Error frames that are transmitted by any node on a bus error detection  

• Overload frames that provide an extra delay between the preceding and the 

succeeding data frames or remote frames  

 

In addition, CAN specification version 2.08 defines two different formats that differ in 

the length of the identifier field: standard frames with an 11-bit identifier and extended frames 

with a 29-bit identifier.  

CAN standard data frames contain from 44 to 108 bits, and CAN extended data frames 

contain 64 to 128 bits. Furthermore, up to 23 stuff bits can be inserted in a standard data frame 

and up to 28 stuff bits in an extended data frame, depending on the data-stream coding. The 
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overall maximum data frame length is 131 bits for a standard frame and 156 bits for an 

extended frame. Figure 4.3 [36] shows the CAN Data Frame, bit fields within the data frame 

identify:  

• Start of the frame  

• Arbitration field containing the identifier and the type of message being sent  

• Control field containing the number of data  

• Up to 8 bytes of data  

• Cyclic redundancy check (CAC)  

• Acknowledgment End-of-frame bits  

 

 
FIGURE 4.3: CAN DATA FRAME 

A perceived problem with CAN for use in distributed real-time control applications its 

inability to bound the response times of messages. While CAN is very good at transmitting the 

most urgent data, it is unable to provide guarantees that deadlines are met for less urgent data 

[60][64][68], once the most urgent data may flood the bus avoiding the transmission of the 

less urgent data. As presented by Kopetz and Griinsteidl [64], the CAN protocol may have a 

unbounded response time for an arbitrary low priority packet, what does not happen with 

TTP/C; nevertheless, the dynamic scheduling algorithm used by CAN is virtually identical to 

scheduling algorithms commonly used in real-time systems to schedule computation on 

processors [70]. In fact, the analysis of the timing behaviour of such systems can be applied 

almost without change to the problem of determining the worst-case latency of a given 

message queued for transmission on CAN.  

In [69], Tindell, Burns and Wellings developed a CAN analysis based on RMA 

showing how to find the response time for messages being transmitted in a CAN bus. Since 
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CAN is primarily a priority-based bus, much of the analysis for systems where activities are 

dispatched according to fixed priorities can be applied directly. 

4.7 TTCAN - Time Triggered Communication on CAN 

A new development in CAN technology is the TTCAN protocol [72], a higher-layer 

protocol above the unchanged standard CAN protocol that synchronizes the communication 

schedules of all CAN nodes in a network and that provides a global system time. When the 

nodes are synchronized, any message can be transmitted at a specific time slot, without 

competing with other messages for the bus. Thus the loss of arbitration is avoided, the latency 

time becomes predictable.  

The goal of time triggered operation on CAN is to avoid the usual latency jitters and to 

guarantee a deterministic communication pattern on the bus. One advantage of TTCAN 

compared to classic scheduled systems is the possibility to transmit event-triggered messages 

in certain “arbitrating” time windows as well. 

TTCAN protocol specifies a time-slot based communication mechanism avoiding the 

transmission collisions commonly found in standard CAN networks [57]. In TTCAN, all the 

message instances are transmitted only on previously allocated time-slots, just like the TTP/C 

protocol. Before transmitting over a CAN bus, it is necessary to create a valid scheduling table 

that specifies how the time is discretized into time-slots and how the messages are allocated 

into those time-slots. The communication is based on the periodic transmission of a reference 

message by a time master. Based on this time the different messages are assigned to time 

windows within a basic cycle. However, it is necessary to use some quality criterion to select 

among distinct scheduling tables that may be built for the same message set.  

TTCAN can be implemented using a regular CAN microcontroller, although it is also 

necessary an extra hardware for the time-triggered portion of the protocol. Synchronizing 

nodes is not a simple task, and brings a new complexity to the CAN bus. The cyclic message 

transfer of TTCAN used in the synchronization process may be implemented in software but, 

depending on the CAN bit rate and on the number of messages in the system matrix, it may 

result in a high CPU load. A hardware approach is usually chosen, but it introduces an extra 

cost and also increases the system complexity. The development of proprietary modules 

implementing TTCAN helps optimizing the system structure. 
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Chapter 5 

The Thesis Goals and Approaches 

5.1 Overview 

Whenever a fault-tolerant system is designed, a redundancy type must be incorporated 

into the equivalent system, which does not incorporate fault tolerance requisites. Since time is 

the central resource of any fault-tolerant hard real-time system, task schedulability and time 

redundancy become the basic tools to guarantee fault tolerance requisites for a given hard real-

time system. With processor costs dropping off and the emergent development of real-time 

communication protocols, such as CAN [29], TTP/C [26], TTP/A [25] and FlexRay [27], a 

great need has consequently arisen to research multiprocessor hard real-time systems and fault 

tolerance, where the task schedulability needs to be guaranteed for a certain specified fault 

model. 

5.2 Summary of Goals 

The main goal of this work is to guarantee fault-tolerance requisites for multiprocessor 

hard real-time systems.  The resources used to optimize these fault- tolerance requisites are 

task schedulability and time redundancy. 

This work presents techniques to enhance the fault-tolerance capability of hard real-

time systems by incorporating time redundancy, processor redundancy and fault tolerant real-

time communication protocols.   

Time redundancy is essential in ultrareliable real-time systems where correlated faults 

must be tolerated. It can also be used to detect and tolerate transient faults, which comprise the 

majority of faults in computing systems. This work shows how time redundancy can be used 

in conjunction with hardware and software redundancy to tolerate faults in hard real-time 

systems.  
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It was uncertain whether this work would research a schedulability test, a utilization 

boundary or a set of conditions.  Working with this approach guaranteed that all tasks in the 

system would satisfy their timing constraints even in the presence of faults. 

This work, aside from theoretical concerns, researched the implementation of a DSP-

based multiprocessor system interconnected by a CAN bus. The research considered the 

overhead introduced by the real-time fault tolerant communication protocol. For those cases in 

which the implementation was not appropriate, simulation tests were done. 

5.3 Goals and Approaches 

5.3.1 Enhance the fault tolerance capabilities of multiprocessor 

hard real-time systems  

The basic approach that we are going to use in this work for providing fault tolerance 

through scheduling in multiprocessor hard real-time systems is to add slack or backup slots 

into the schedule. If a fault is detected by the operating system during the execution of a task, 

that task is either re-executed or a backup for that task is activated as part of the fault 

recovery. For the uniprocessor models, a certain amount of slack is added to the schedule. If a 

task does not generate correct results due to transient faults, then this slack is used to re-

execute it.  

For multiprocessor systems, permanent processor faults must also be tolerated. 

Therefore, if a task is scheduled on one processor, the slack needed for re-execution is 

scheduled on a different processor. The scheduling algorithm could ensure that the task can 

complete its re-execution using the slack on a different processor before its deadline.  

The general approach of scheduling two copies of each task in the system is called the 

primary/backup approach, and the two copies are called the primary and the backup. The 

backup is executed only if the primary fails. Note that this scheme of adding time redundancy 

also allows different versions of the task to be executed as primary and backup, thus 

facilitating the provision of software fault tolerance. In Chapter 6, a case study consisting of a 

Uninterruptible Power Supply (UPS) is presented. In this example, there are two different 

processors executing the Inverter and the Static Switch algorithms. The schemes of running a 

backup version of these processors and algorithms was used. When a fault is detected, a 

recovery scheme is needed to determine the steps to tolerate the fault. The recovery scheme to 
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be used in this work is simply the re-execution of faulty tasks. The task is re-executed on the 

same or other processor to tolerate transient faults, and on a different processor to tolerate 

permanent faults.  

There are four classifications relevant to this work: preemptive versus non-preemptive 

tasks, periodic versus aperiodic tasks, transient versus permanent processor faults, and 

uniprocessor versus multiprocessors systems. A fault-tolerant real-time scheduling algorithm 

might have to deal with any combination of tasks, fault models and processor sets. This work 

will focus on models for multiprocessor, transient and permanent faults, and periodic 

preemptive tasks. Figure 5.1 shows the classification of real-time scheduling algorithms based 

on the task, fault models and processor set.  

Real-time Task Scheduling

Preemptive tasks Non-Preemptive tasks

Periodic Aperiodic Periodic Aperiodic

Transient
Faults

Permanent
Faults

Transient
Faults

Permanent
Faults

Uniprocessor Multiprocessor
Uniprocessor Multiprocessor

Real-time FT Task Scheduling Problems

 
FIGURE 5.1: SCHEDULING PROBLEMS  

5.3.2 Guarantees required for fault-tolerant execution in real-

time systems  

Given a task and fault model, it is possible to prove properties about the fault tolerance 

capabilities of the system. For example, it may be possible to prove that if certain assumptions 

or conditions hold, then one fault can be tolerated within a specific interval of time. When a 

new task is being considered for addition into the system, a set of conditions is tested to check 

whether the fault tolerance guarantees can be provided. If the conditions are met, then the task 

is accepted, otherwise it is rejected. Thus, these conditions constitute the schedulability tests 

for new tasks.  
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In the preemptive task model, the total task utilization is compared with fault- tolerant 

utilization bounds, as described in Section 3.3. If the total task utilization is lower than the 

bound, then the task set is schedulable. The number of transient faults tolerated per task is a 

function of the amount of slack reserved. The type and frequency of faults that can be 

tolerated depends on the system and fault model. Figure 5.2 shows the classification of 

permanent, transient and correlated faults. 

Fault Classification
Fault

Transient Permanent

Task Processor Task Processor

UniprocessorCorrelated
Multiprocessor

Uniprocessor Correlated
Multiprocessor

 
FIGURE 5.2: FAULT CLASSIFICATION 

5.3.3 Study the tradeoff between fault tolerance capability and 

resource utilization of hard real-time systems  

The capability of a system to tolerate faults is based on the number and frequency of 

faults it can tolerate. If a system includes more redundancy to tolerate a larger number of 

faults, its fault tolerance capability increases. However, the fault tolerance capability is 

achieved at the cost of system utilization, which is the percentage of system resources used for 

actual operations. If there is a large amount of redundancy in the system, the percentage of 

resources being used for actual computing purposes is small, and thus the system utilization is 

low. The goal of a hard real-time system is to be as fault-tolerant as possible, while providing 

high utilization and thus being cost effective.  

The utilization of a preemptive system can be measured by the total utilization of the 

scheduled task set because that determines the percentage of available processing time used 

for task execution. 

To determine how the fault-tolerant schemes perform in terms of system utilization, 

they can be compared with an equivalent scheme where no fault tolerance is provided. Such a 
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scheme is called the No-FT scheme. For example, in the preemptive task model, the rate 

monotonic scheme introduced by Liu and Layland [5] is used as the No-FT scheme. 

To measure the fault tolerance capability of the FT scheme, faults are injected into the 

system, and the number of lost tasks is measured. A task that cannot meet its deadline because 

of a fault is called a lost task. This happens only if there are more faults in the system than the 

provisions made by the fault tolerance approach, i.e., if the fault assumptions are violated. To 

avoid losing tasks because of faults, the time redundancy of the system must be increased. 

This increase lowers the total number of tasks scheduled in the system.  

5.3.4 Use techniques to improve system utilization 

To make sure that the backup slots or backup capacity does not cause a large drop in 

processor utilization, some techniques, like overloading and deallocation can be used. 

Overloading is the provision of a certain amount of time redundancy for a set of tasks which is 

less than that required to re-execute all the tasks in that set. This can be done if it is assumed 

that faults will not occur during the execution of each task in the set, and thus only a subset of 

the tasks will need to be re-executed. Figure 5.3 [17] shows one example of overloading. The 

processor P2 can run the Backup tasks Bk1 or Bk3. 

 

FIGURE 5.3 OVERLOADING TECHNIQUES 

In a preemptive system, overloading is the provision of an amount of slack smaller 

than that required to re-execute all the task instances scheduled at any given time. Overloading 

effectiveness increases by overlapping more backups or by reducing the amount of slack 

available for a set of tasks. The system utilization increases if more overloading is achieved, at 
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the cost of reducing the fault tolerance capability. Thus, overloading can be increased or 

decreased according to the frequency of faults in the system. If faults occur less frequently, 

more overloading should be used, and vice versa.  

Another technique that can be used is deallocation, which is the reallocation of 

resources reserved for backup tasks when the corresponding primaries complete successfully. 

Deallocation is not useful if all tasks are periodic since the deallocated backup of a single task 

instance cannot be used to guarantee all instances of another periodic task. However, a 

deallocated backup can be used to guarantee new aperiodic tasks.  

5.3.5 Define resiliency of the systems 

A recovery scheme determines the time taken by the system to recover from a fault. 

Resiliency is the ability of a system to tolerate a second fault after recovering from the first 

one.  

The resiliency can be measured in terms of the minimum separation between two 

successive faults that can be tolerated. The smaller this separation is, the higher the resiliency 

of the system. In static systems, the resiliency of the system can be measured exactly, because 

the static schedule determines how far apart two successive faults can be tolerated. On the 

other hand, in dynamic systems, the average resiliency of the system can be determined by 

fault injection and simulations.  

Since we are working with a preemptive model, the schedulability tests can be 

executed statically, and thus the resiliency can be measured accurately.  

5.3.6 Estimate the overhead introduced by the real-time fault-

tolerant communication protocol 

This work, aside from theoretical concerns, researched the implementation of a DSP-

based multiprocessor system interconnected by a CAN bus. Figure 5.4 shows the real 

implementation of an architecture developed based on Texas Instruments TMS320LF2407A 

microcontroller. This implementation is sponsored by Engetron Ltda and has been used in the 

current work and also on other projects developed at the Electrical Department of the Federal 

University of Minas Gerais. Other microprocessors than DSPs can also be used interconnected 

by a CAN bus. 
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The TMS320 family consists of fixed-point, floating-point, multiprocessor digital 

signal processors, and fixed-point DSP controllers. TMS320 DSPs have an architecture 

designed specifically for real-time signal processing. The '240x series of DSP controllers 

combines this real-time processing capability with controller peripherals to create solutions 

for control system applications.  

 

 

FIGURE 5.4: HARDWARE IMPLEMENTATION 

In 1982, Texas Instruments introduced the TMS32010, the first fixed-point DSP in the 

TMS320 family. Today, the TMS320 family consists of these generations: 'C1 x, 'C2x, 'C20x, 

'C24x, 'C5x, 'C54x, and 'C6x fixed-point DSPs; 'C3x and 'C4x floating-point DSPs; and 'C8x 

multiprocessor DSPs. The '240x devices are considered part of the '24x generation of fixed-

point DSPs, and members of the 'C2000 platform.  

Devices within a generation of a TMS320 platform have the same CPU structure but 

different on-chip memory and peripheral configurations. Spin-off devices use new 

combinations of on-chip memory and peripherals to satisfy a wide range of needs in the 

worldwide electronics market. By integrating memory and peripherals onto a single chip, 
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TMS320 devices reduce system costs and save circuit board space. Figure 5.5 shows the block 

diagram of TMS2407 used in this work. 
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FIGURE 5.5: TMS320LF2407 BLOCK DIAGRAM 

 The Controller Area Network (CAN) is a well-designed communications bus for 

sending and receiving short real-time control messages. The bus is designed to connect control 

systems over a small area (such as automobiles), operating in a noise environment at speeds of 

up to 1 Mbit/sec. One the perceived problems of CAN is the inability to bound the response 

times of messages. To show how this problem can in fact be easily solved, the analysis 

developed for fixed priority preemptive real-time processor scheduling applied to a CAN bus 

is shown in the next Chapter.   

5.4 Summary  

This work researched techniques to enhance the fault-tolerance capability of hard real-

time systems by incorporating time redundancy, processor redundancy and fault tolerant real-

time communication protocols.  The main goal was to guarantee fault-tolerance requisites for 

multiprocessor hard real-time systems.  The resources used to optimize these fault- tolerance 



 

 

82 

requisites were task schedulability and time redundancy. The implementation of a DSP-based 

multiprocessor system interconnected by a CAN bus was also presented.  



 

 

Chapter 6 

Improving Fault Tolerance in HRTSs 

6.1 Overview 

Scheduling policies in real-time systems need to ensure that tasks will meet their 

deadlines under all circumstances, even in the presence of faults. These real-time scheduling 

schemata may be used for the processor, as well as for tasks, communication and other 

resources that are used by real-time systems, including I/O in general.  

Hard real-time systems (HRTSs) have stringent timing constraints, and the 

consequence of missing task deadlines may be catastrophic. Many real-time systems are 

embedded in sensors and actuators and function as digital controllers. HRTSs are mostly used 

in the development of control applications due to their characteristics, and task deadlines are 

typically derived from the required responsiveness of the sensors and actuators, which are 

monitored and controlled by it.  

Whenever a fault-tolerant system is designed, a redundancy type must be incorporated 

into the equivalent system, which does not incorporate fault tolerance requisites. If the system 

belongs to real-time, one of the most important resources of such systems is time. Since time 

is the central resource of any fault-tolerant hard real-time system, task schedulability and time 

redundancy become the basic tools to guarantee fault tolerance requisites for a given hard real-

time system. Most real-time systems are developed to attend to a specific and complex need, 

requiring a high degree of fault tolerance. Fault tolerance is an especially vital requirement for 

HRTS development. 

A fault in a system can assume several forms, what makes a system test process for 

fault detection extremely complicated. To reduce this problem, a system is usually designed in 

a way that the faults that occur in a system follow a certain standard, or model. Thus, the 

problem of how to treat the faults becomes much more simplified. Although the faults that can 

occur in a real system are not necessarily modeled faults, there are fault models that are able to 

cover a very large percentage of the faults that do occur.  



 

 

84 

All designers rely on an abstract fault model of the system when building a fault-

tolerant system. An abstract fault model may be defined as: 

• The set of component types. 

• The interfaces for each component. 

• The interactions between components. 

• The set of possible faults. 

• A set of symptoms, or observable fault-detection events. 

• The component behavior during faults. 

 

In a higher abstraction level, these components may be grouped in a set of states, as 

presented in Figure 6.1.  

 

FIGURE 6.1: FAULT MODEL DEFINITION 

In general, it is expected that the system works mostly in a set of states called correct 

states. Moreover, it is also expected that a set of faults may occur, and will be treated by the 

system without causing a failure. A set of unexpected faults can also occur, but once these rare 

events are unexpected, they will take the system to an unrecoverable state, where a more 

serious action may be taken.  
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6.2 System, Task and Fault Models 

In the present work, it is assumed that the processors belong to a distributed system 

and are connected through a CAN bus, as shown in Figure 6.2. Each processor executes 

applications consisting of real-time periodic control tasks scheduled through RMA, within 

well-known maximum execution times and frequency rates. An intrinsic characteristic of 

control tasks is the independency, which means that requests for a certain task do not depend 

on the initiation or the completion of requests or other tasks and synchronizing tasks 

execution is not necessary. Another characteristic of control tasks is the fact that they 

converge to a stable control state. 

 

 
FIGURE 6.2: CAN BUS IN A CONTROL PLANT 

The failure characteristics of the hardware and software are the following: 

(F1) Transient and fail-stop faults may occur in a processor or even, more specifically, 

in a task execution process; 

(F2) Only transient faults may occur in the bus; 

(F3) All nonfaulty processors can communicate with each other; 

(F4) Hardware provides fault isolation in the sense that a faulty processor cannot cause 

incorrect behaviour in a nonfaulty processor; in other words, processors are independent in 

regard to failures; 

(F5) The failure of a processor Pf is detected by the remaining nonfaulty processors as 

the absence of a message right after the failure, but within the instant corresponding to the 

closest task completion time of a task scheduled on Pf. 
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6.3 Fault Tolerance and Rate Monotonic Scheduling in 

multiprocessor systems 

Any critical real-time system must tolerate permanent faults in addition to transient 

faults, and transient faults need to be detected before they can be tolerated. A combination of 

time and hardware redundancy is used to detect and tolerate both transient and permanent 

faults.  

A simple approach to avoid the occurrence of faults in a processor consists of using 

time redundancy, which allows repeated execution of tasks inside their execution period. The 

fault will not be perceived by the backup processor since it is processed before the deadline is 

reached.  

Transients and fail-stop faults that may occur in a processor are tolerated in such 

system. Transient faults are resultant from temporary conditions, such as electromagnetic 

interferences in hardware or processes abnormal termination. In our fault model, if a transient 

fault has occurred in a task, the faulty task is re-executed using a slack that was reserved when 

the tasks were scheduled. 

The occurrence of a transient fault in a processor may be caused by a fault in a task 

that could not be recovered or even by a fault in the operating system execution. In both cases, 

the processor triggers the execution of a backup task in another processor, while the faulty 

processor reestablishes its state to a nonfaulty condition. If the fault is transient, then the re-

execution allows a correct result to be generated before the deadline of the task. 

Fail-stop faults always cause a stop in hardware functioning and end processes 

execution where they occur. In order to achieve fault tolerance, two or more copies of each 

task set are used, called primary and backup copies. A backup copy is not necessarily an 

identical copy of its respective primary copy, once an alternative copy may be used as backup 

to obtain the desired result using even a different hardware in its execution. All backup copies 

are passive copies, what means that a backup copy will be executed only if a fault prevents the 

corresponding primary copy from completing its execution. 

Tolerating fail-stop faults is done through hardware reconfiguration, which is also used 

on recovering from hardware and software permanent faults. Software permanent faults are 

usually a result of errors in project. In our fault model, if a fault in hardware prevents a task 

from executing, a backup copy of the task will be executed on another processor or even in the 
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same processor, assuming it can continue its operation despite the hardware fault. In the 

second case, an alternative hardware must be used by the processor to execute the backup 

task. From a processor point of view, a permanent fault is signaled if the primary processor 

does not generate a result, and the backup processor starts executing. Reconfiguration implies 

in one CPU assuming the failed CPU’s tasks while the latest is taken out of the bus.  

It was also included in the fault model errors that may occur in the bus/protocol, once 

they influence the hole system functioning. In the CAN bus, more specifically, we need to 

guarantee that a deterministic packet response time can be achieved. A message must be 

retransmitted a finite number of times in the case of a transmission fault, and still meet its 

deadline. The occurrence of a transient fault is signaled by the absence of any message, i.e., if 

a message is not received by the other processors by a certain due time, a fault on the primary 

processor is assumed and the fault is tolerated through the execution of a backup copy. Any 

message corruption or further errors indicate that a fault occurred, and an alternative process is 

executed in another processor to prevent a global failure. Permanent faults in the CAN 

bus/protocol are not tolerated, causing an interruption in the communication between the 

processors. 

The most important aspect of integrating processors and communications 

schedulability analysis is to bound the overheads due to packet handling on a given processor. 

The worst-case number of packets arriving at a given processor in a given time window can be 

used to bound the worst-case response time of the delivery task.  

As shown by Tindell in [9], the scheduling equations for worst-case response time of a 

processor and worst-case transmission time of a message are mutually dependent. The release 

jitter of a receiver task depends on the arrival time of a message, which in turn depends on the 

interference from higher priority messages, which in turn depends on the release jitter of the 

sender tasks. This way, it is possible to form a recurrence relation where in the first iteration 

of the scheduling equations we set the inherited release jitter for all tasks to zero. On the nth 

iteration the inherited release jitter values can be set according to the results of solving the 

scheduling equations in the (n-1)th iteration and so on. 

6.4 Rate Monotonic Scheduling applied to the CAN bus 

The Rate-Monotonic analysis provides a schedulability test by giving a utilization 

bound. The Rate-Monotonic Algorithm (RMA), introduced by Liu and Layland [5], is an 
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algorithm for preemptively scheduling periodic tasks that designates the highest priorities to 

the tasks with shorter periods, and the RMA is optimum when the tasks are independent.  

In [69], Tindell et. al. developed a CAN analysis based on RMA showing how to find 

the response time for messages being transmitted in a CAN bus. In fact, the dynamic 

scheduling algorithm used by the CAN protocol is virtually identical to scheduling algorithms 

commonly used in real-time systems to schedule computation on processors [70], and the 

analysis of the timing behavior of such systems can be applied almost without change to the 

problem of determining the worst-case latency of a given message queued for transmission on 

CAN. Since CAN is primarily a priority-based bus, much of the analysis for systems where 

activities are dispatched according to fixed priorities can be applied directly. 

A CAN message consists of between 1 and 8 bytes of data and is uniquely addressed to 

a CAN node. A given message is assumed to be queued cyclically (i.e. at intervals, the source 

of the message queues messages of the same size and with the same identifier). A given 

message is queued at a station within a queuing window, with a minimum interval between 

subsequent queuing windows (messages do not have to be strictly periodic: a message can be 

sporadic, but there must be a minimum time between the queuing of the message). The period 

of a given message m is denoted as Tm. The worst-case response time of a given message m 

is the longest time between the queuing of a message and the time the message arrives at 

destination stations, and is denoted Rm. A message is said to be schedulable if and only if its 

worst-case response time, given by the longest time between the queuing of the message and 

the time it arrives at destination stations, is less or equal to the deadline of the message. 

As defined by Tindell, the worst-case response time (Rm) is composed of two delays: 

the queuing delay and the transmission delay. The queuing delay, denoted by tm, is the longest 

time that a message can be queued in a station and be delayed because other higher and lower 

priority messages are being sent on the bus. The transmission delay, denoted by Cm, is the 

time taken to actually send the message on the bus.  

The queuing delay is itself composed of two times: the longest time that any lower 

priority message can occupy the bus, known as blocking time B, and the longest time that all 

higher priority messages can be queued and occupy the bus before the message m is finally 

transmitted, termed the interference. From earlier scheduling theory [1], the interference from 

higher priority messages over an interval of duration t is: 
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Where Tj is the period of a given message m; Jj is the jitter on the queuing of message 

m; and Cj is the worst-case time taken to physically transmit the message on the bus.  

The set hp(m) is composed of all the messages in the system of higher priority than 

message m. The term τbit is the time taken to transmit a bit on CAN. Note that the set hp(m) 

defines a priority ordering. In fact, in the presence of queuing jitter, the optimal ordering is to 

select priorities on the basis of: Dm - Jm, where Dm represents the deadline of message m. 

That is, the smaller the value of D - J the higher the message priority. From the above 

description we can see that the queuing delay is given by: 
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A recurrence relation can be formed: 
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(6.3) 

A model for error handling must also be included, once it is important in a fault 

tolerant scenario. 

In a CAN bus, an error detected by either the sender of a message or a receiver station 

is signaled to the sender station, which must re-transmit that message. The costs of error 

handling E(t) are given as the most probable bound on the overheads due to errors in an 

interval of duration t, and it includes the cost of re-transmission. Given a configuration of 

CAN in a given environment, the cost of error handling can be defined using statistical 

analysis based on the error characteristics. In general, a given message m would be delayed by 

lower priority messages for up to time (n + 1)B, where n is the number of re-transmissions of 

message m. A probable bound on the error recovery overheads before a message m arrives at 

the destination is clearly given by E(Rm), which can be re-written as E(tm+ Cm). Including the 

overheads due to error handling for the transmission of a given message m leads to: 
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(6.4) 

Tindell [69] has shown how to find the worst-case response time of a given message 

queued for transmission across a CAN bus. An extended analysis can also be found in [69], 

which also includes remote transmission request messages. 



 

 

90 

6.5 Improving Reliability in a CAN bus 

Scheduling policies in real-time systems need to ensure that tasks will meet their 

deadlines under all circumstances, even in the presence of faults. These real-time scheduling 

schemata may be used for the processor, as well as for tasks, communication and other 

resources that are used by real-time systems, including I/O in general.  

Whenever a fault-tolerant system is designed, a redundancy type must be incorporated 

into the equivalent system, which does not incorporate fault tolerance requisites. Since time is 

the central resource of any fault-tolerant hard real-time system, task schedulability and time 

redundancy become the basic tools to guarantee fault tolerance requisites for a given hard real-

time system. 

In the CAN bus, more specifically, the delivery of low priority messages may be 

compromised if the bus is flooded with higher priority messages. In this sense, we need to 

guarantee that an overload in the bus will not occur and a bounded packet response time can 

be achieved.  

6.5.1 Applying Fault tolerance requisites to a CAN bus 

Fault tolerance requirements make a real-time system even more complicated because 

faults must be detected and tolerated within the timing constraints of the tasks. If faults trigger 

backup tasks for recovery purposes, the backup tasks must also be executed before the task 

deadlines.  

Thanks to the critical nature of the tasks in hard real-time systems, it is essential that 

faults be tolerated. Transient faults in real-time systems are generally tolerated using time 

redundancy, which involves the re-execution of any task running during the occurrence of a 

transient fault [53]. In this context, the approach is to maintain enough slack (backup time) in 

the schedule so that any message instance can be re-transmitted if a fault occurs during its 

transmission. If no faults occur, messages are transmitted just following the usual RMS 

scheme and the slack is not used. If a fault occurs in the transmission process of a message, a 

recovery scheme is used to re-transmit that message. The ratio of slack S available over an 

interval of time L is thus constant and can be imagined to be the utilization of a backup 

message B. If the backup utilization is UB, then the slack available during an interval L, 

denoted by BL, is BL=UBL. 
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Ghosh [17] showed a recovery scheme for single and multiple faults that ensures the 

re-execution of any task after a fault has been detected. Once the dynamic scheduling 

algorithm used by the CAN protocol is virtually identical to scheduling algorithms commonly 

used in real-time systems to schedule tasks, this recovery scheme may be also used to ensure 

the re-transmission of any message in a CAN bus, and the following conditions must be 

satisfied:  

  

[Sl]: There should be sufficient slack for every instance of each message to be re-

transmitted. That is, the slack between kTi and (k + 1) Ti should be at least Ci for any 

value of k and i, what ensures the availability of sufficient slack for a message to be re-

transmitted. 

 

[S2]: When any instance of τi finishes executing, all the slack available within its 

period (at least Ci if [Sl] holds) should be available for the re-transmission of τi. This 

slack can be used after a message finishes transmitting to re-transmit that message 

before its deadline, if a fault is detected. 

 

[S3]: When a message re-transmits, it should not cause any other message transmission 

to miss its deadline, allowing all tasks to meet their deadlines even when a high 

priority task needs to re-execute.  

 

If these three conditions are met, then it is possible to re-transmit a faulty message and 

meet its deadline. However, a recovery scheme must define also how the slack should be used 

and a very straightforward scheme consists on the faulty message simply being re-transmitted 

at its own priority.  

This approach to distribute slack in the schedule can be applied to any non-fault-

tolerant scheduling scheme for preemptive, periodic tasks where the RMS assumptions hold. 

As shown by Ghosh [17], any transmission time Ci in the non-fault-tolerant scheme can be 

split into two parts for the fault-tolerant scheme: a new transmission time Ci’ = Ci(l - UB) 

(where UB is the backup utilization) and a slack equal to CiUB. To guarantee the re-

transmission of a message before its deadline, its critical instance is considered, which is 

defined as the time at which the message’s transmission is maximized - it happens when the 

message starts its transmission process simultaneously with all higher priority messages [5]. 
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The total slack available for any message at its critical instance is equal to the total slack 

available within a period boundary, which is defined as the beginning of a period. 

By splitting up each transmission time Ci into a new transmission time Ci’ and slack, 

as described above, the utilization of each task τi is reduced to Ui(l- UB), and thus the 

following general fault tolerance boundary for an RMS (UG-FT-RMS) is obtained:  

UG-FT-RMS = n(21/n - 1) (1 - UB) = ULL-RMS(l - UB) (6.5) 

The above equation is a general one applicable to an RMS for any value of UB. If 

UB=max{Ui}, i = 1,..., n, then any message transmission in the system can tolerate a single 

fault. Any number of faults can be tolerated if [S1] holds.  

Multiple faults within two consecutive period boundaries are also guaranteed to be 

tolerated using the scheme described above. If several backups are provided in the system, and 

the total backup utilization is UBT, then a general boundary for the message set can be derived 

by replacing UB with UBT in UG-FT-RMS; that is, the new boundary is ULL-RMS(l- UBT). 

6.5.2 Limiting the maximum transfer rate of the CAN bus 

Considering the CAN protocol, the absence of a message is identified by the CPUs 

connected to the bus as a fault. In this case, a fault model is applied, implying in the re-

transmission of the message that failed in its transmission or even in the execution of an 

alternative action such as the reconfiguration of the bus.  

In this scenario, we can say that RMA applies since we are dealing with periodic 

control tasks and the following conditions hold: 

• Each message has a maximum transmission time, as presented in Section 3.1, 

and deterministic period.  

• The messages are independent, which means in other words that they are 

asynchronous to each other. 

• The messages will have their priority ascertained by RMA. 

 
In order to apply the RMS scheme proposed by Ghosh in the CAN bus, we must 

guarantee that [S1], [S2] and [S3] are satisfied.  

With the worst-case transmission time presented above, it is possible to define the 

backup slack size and ensure the availability of sufficient slack for a message to be re-
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transmitted. This slack can be used after a message finishes transmitting to re-transmit that 

message before its deadline, if a fault is detected. This means that [S1] and [S2] hold for the 

CAN protocol.  

The third condition [S3] may not hold for a CAN bus, once a higher priority message 

re-transmission may prevent the transmission of a lower priority message, causing the latest to 

miss its deadline. In truth, a higher priority message re-transmission can flood the bus 

compromising the delivery of low priority messages. 

Thus, to guarantee that a CAN bus can tolerate faults according to Section 6.5.1, we 

define a maximum transmission rate for each message instance; instead of pre-defining a 

time-driven slot as is the main idea of TTP/C. With this idea in mind, we will not limit a node 

transmission to its slot, but allow it to transmit at any time if its transmission rate allows. We 

will call this extension of the CAN bus as RMCAN, which means Rate Monotonic CAN. 

From the protocol point of view, the retransmission of a finite number of messages in 

the case of a transmission failure may not compromise the bus bandwidth and the RMS may 

be applied deterministically.  

This way, any message corruption or further errors indicate that a fault occurred, and 

the message must be re-transmitted and also meet its deadline. Moreover, if the fault persists, 

a failure is detected and an alternative process must be executed in another processor to 

prevent a global failure.  

The following example shows how RMCAN can be used to determine whether a 

message can be re-transmitted before its deadline with guarantees in a CAN bus. Consider a 

set of 10 processors, N = 10 - sending 5 periodic messages with utilizations Ui = 1% for each 

message i. Each processor is also limited to a maximum data transmission volume of 10% of 

the bus bandwidth. Once this limit is reached, the processor that is sending messages stops 

sending messages and higher layers of the processor that should be receiving the messages 

will tolerate the fault taking the appropriate action in the context of the specific application. 

If we assume that a message fault needs to be tolerated and re-transmitted up to 5 

times, then    UB = 5%. Equation (6.6) gives us a bound of 66% while the sum of utilizations 

of the task is 50%.  

100 (21/100 – 1) * (1 – 0,05) = 0,66 (6.6) 

Since Σ Ui < UG-FT-RMS, the messages are schedulable. 
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6.6 Formal Verification of RMCAN 

Techniques of formal verification represent the functioning of a circuit or the 

execution of an algorithm through mathematical models. Mathematical operations on these 

models are accomplished in a precise and non-ambiguous form, in order to verify if a specific 

property is satisfied or not. 

Diverse research projects are based on the development of automatic verification tools, 

which are frequently based on techniques of symbolic model checking [73][74].  

Tools for formal verification of real time systems must include constructions for the 

time representation. An example of a tool developed for this purpose is VERUS [75], which 

was used for the formal verification of RMCAN. A brief explanation of the RMCAN formal 

verification process is shown below. The detailed description can be found in [72] 

6.6.1 Modeling Premises 

RMCAN assumes, but does not implement, a clock synchronization mechanism 

between the nodes that make use of the CAN bus. It assumes that the time constants in the 

control domain are orders of magnitude bigger than the differences of clock between the fault 

tolerant nodes. Thus, the devices must be built from similar microcontrollers, so that the 

smallest difference between the view of time passage each one have can be achieved.  

The formal verification of RMCAN was evaluated over two aspects: evaluation of its 

capability to provide guarantees over the delivery of messages and evaluation of its capability 

on detecting, recovering and tolerating faults.  

6.6.2 Formal verification of the capability to guarantee message 

delivery and of the recovery and fault tolerance capability of the 

protocol 

All the possible combinations of message transmission had been modeled in VERUS, 

in order to guarantee that all messages will reach their destination inside a maximum time 

despite the collisions that may occur in a CAN bus. 
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6.6.2.1 Modeling Characteristics - capability to guarantee message 

delivery 

The message transmission of an implementation instance of RMCAN consisting of 3 

nodes was modeled (Figure 6.3). Consider nodes A, B and C, with transmission rates of two 

messages per time unit for nodes A and B and one message per time unit for node C. Thus, 

node C has the highest priority among all nodes. According to RMCAN, the transmission rate 

of the CAN bus must be therefore of five messages per time unit. 

The basic time unit in the modeling was a NTU – Network Time Unit – which it is the 

latency for the delivery of a message over the CAN bus. 

 

 

 

FIGURE 6.3:  RMCAN REPRESENTATION 

The messages sent by the system inside a period must follow some temporal 

restrictions.  There must be an order for the messages sent by a node, for example, for node A, 

message a1 must be sent before message a2.   

The generation and control of all possible executions of the protocol had been 

implemented from a VERUS command (SELECT).  

The control of the priorities of each message was implemented during the verification 

of a message collision. A comparison between the possible message collisions was 

implemented to guarantee that the message of higher priority will be delivered while the one 

with lower priority will be re-sent in the next NTU.  

Node A Node B 

2 messages/time unit 2 messages/time unit 

Maximum Transmission Frequencies: 

Node C 

1 messages/time unit 

A 

B 

C
Time Unit NTU
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Messages from node C have the highest priority. Once the nodes A and B have the 

same number of messages per period, it was defined arbitrarily that the messages of node B 

are of higher priority than the messages of the node A.  

In case of a concurrent transmission of message a1 and any higher priority message, it 

will be re-sent it the next NTU, otherwise, it will not be sent before the next 5 NTUs. 

The protocol verification aims to guarantee that the messages sent during a period will 

be delivered inside of the same period. All the possible executions of the protocol were 

implemented and verified, in order to guarantee that the protocol premises follow. 

Example of properties that were verified are: (1) a property that guarantees that the 

higher priority message will be retransmitted only in a new protocol execution period; (2) a 

property that guarantees that the messages will be sent in at most 5 NTUs; (3) a property that 

guarantees that, if node A starts sending messages in instant 1, an instant where no collisions 

will occur happens before the fifth NTU. 

6.6.2.2 Modeling Characteristics - recovery and fault tolerance 

capability of the protocol 

An instance of a fault tolerant cluster composed by three nodes (A, B and C) was 

modeled. The three nodes are responsible for executing periodically one specifically task. 

Each node must execute its task and send a message to the other nodes of the cluster, 

informing its execution up to a time unit before the expiration of the period.   

The execution period of node A, for example, is of five time units, which means that 

task A is executed by the original node in, at most, four time units. If the confirmation of the 

fulfillment of the task is not sent by node A, the backup task is executed in the time unit left.  

In order to simplify the modeling process, we assume that the execution of the backup 

task will take only one time unit. This premise can be extended for any number of time units. 

All nodes of the cluster have the same notion of what a time unit is for RMCAN, which is the 

time limit for the delivery of the messages of a node. 

As a consequence of the execution flexibility of RMCAN, the execution of a task can 

occur in any instant of time before the deadline, and it must be modeled by the tool. VERUS 

generates all the possible executions of the protocol for all instants of a task completion and 

for the occurrence or not of a failure in each of the original tasks.   

To guarantee the fault tolerance requisites, a backup task for each relevant task of the 

system must be implemented. In case of a missing confirmation message (indicating that a 
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task execution was completed sent by the original node) before the pre-defined time limit, 

another node will detect the fault and re-execute the task. Figure 6.4 shows properties that aim 

to define the maximum time for the execution of a task, which can be carried through by the 

original node or even by the backup task. 

 

 

 

FIGURE 6.4: PROPERTIES CHECKED FOR THE RECOVERY AND FAULT TOLERANCE CAPABILITY OF 

THE PROTOCOL 

From the verification of RMCAN it is possible to guarantee that all the messages of a 

node will be delivered inside the protocol execution period, which will be used by the fault 

recovery mechanism as a time unit. In a fault scenario, the receiving nodes can, after this time 

unit, detect the failure in the message transmission and initiate the system recovery process. 

This time unit is known by all cluster nodes and it sets the time-triggered portion of the 

protocol for a fault recovery. 

6.7 Comparison of Real-Time Fault-Tolerant 

Communication Protocols – advantages of the proposed 

method 

This comparison does not reiterate the common design decisions, but focuses on the 

differences between TTP/C, CAN, TTCAN and FlexRay protocols and shows the advantages 

of the adaptation proposed over the CAN protocol in this work (RMCAN). 

From the buses considered previously, only TTP/C is solely time-triggered while the 

CAN bus is event-triggered. TTCAN and FlexRay combine time-triggered and event-triggered 

operation aiming to be more flexible than TTP/C and safer than CAN protocol. This time-

triggered versus event-triggered decision is a fundamental design choice that influences many 

aspects of their architectures and mechanisms. The mechanism adopted by each protocol to 

resolve transmission concurrency between nodes is decisive to indicate if collisions or 

concurrency occur during runtime.  

spec 
MAX(!pA.tarefa, (pA.tarefa || pABackup.tarefa)); 
MAX(!pB.tarefa, (pB.tarefa || pBBackup.tarefa)); 
MAX(!pC.tarefa, (pC.tarefa || pCBackup.tarefa)); 
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Analyzing the performance of these protocols, we may see that latency is constant and 

known at design time for TTP/C, while it may increase with load in a CAN bus. The main 

problem with the CAN bus is that it cannot prevent an overload of the communication system, 

which may cause a disastrous result when the delivery of low priority messages is prejudiced 

by higher priority messages re-transmission. RMCAN solves this problem by limiting the 

transmission rate of a node to a maximum value. In this case, the worst-case and latency are 

precisely known.  

In this sense, little is known about the FlexRay protocol, which has not been released 

yet. All that is known is that FlexRay provides no services to its applications beyond best 

efforts message delivery. A never give up strategy inside FlexRay leaves the control of the 

communication system with the application, and latency will be constant and precisely known 

at design time for the TDMA window. 

Resuming, we may say that TTP/C provides an off-line communication design 

yielding guaranteed latency for all messages in the system, but presents low flexibility once 

bandwidth is distributed at design time by assigning frames of specific length to each node. In 

a CAN bus, otherwise, priorities are distributed at design time by assigning unique identifiers 

and a full control by the application over the bandwidth distribution. The CAN protocol is 

highly flexible and widely available, although some extensions must be done to guarantee a 

reliable mechanism to build fault-tolerant safe-critical systems. TTCAN is a compromise and 

represents the necessary evolution of CAN for dealing with heavier loads on the bus. 

However, synchronizing nodes is not a simple task, and brings a new complexity to the CAN 

bus. RMCAN was developed to be as efficient as TTCAN without incorporating extra 

hardware or difficulties. Both protocols can be implemented using a regular CAN 

microcontroller, although for TTCAN it is also necessary an extra hardware for the time-

triggered portion of the protocol. Implementing RMCAN is much easier, and does not require 

any extra hardware. The transmission rate of each message set can be controlled through 

software.  

FlexRay can be considered the state-of-art in the real-time fault-tolerant 

communication protocols area, although it has not been released yet. It promises a higher bit 

rate than TTCAN an increase in flexibility when compared to TTP/C.  
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TABLE 6.1: COMPARISON BETWEEN TTP/C, CAN, TTCAN, RMCAN AND FLEXRAY 

PROTOCOLS 

 TTP/C CAN TTCAN RMCAN FlexRay 
Media access 
strategy 

Time-triggered Event-triggered Time and Event-
triggered 

Event-triggered 
and transmission 
rate directed 

Time and Event-
triggered 

Amount of 
application data 
transmitted per 
packet 

1-16 bytes per 
frame 

1-8 bytes per 
message 

1-8 bytes per 
message 

1-8 bytes per 
message 

1-12 bytes per 
frame 

Dynamic 
bandwidth 
sharing among 
nodes 

No Yes Yes Yes Yes 

Market presence < 1% > 99% May explore the CAN protocol 
market presence 

Not available 

Data Efficiency 
vs. Latency 

Constant and 
known at design 
time 

Increases with 
load 

Constant Constant Constant and 
known at design 
time 

Response Time Bounded Unbounded Bounded Bounded Bounded 
 

The use of the CAN protocol in the development of applications is favored by the high 

availability of microcontrollers incorporating the bus. Today, the biggest advantages of CAN 

compared to other networks are the costs and the price/performance ratio. The enhancements 

proposed by TTCAN and RMCAN are examples of how CAN problems can be circumvented 

and its spread presence in the market can be explored. 

6.8 Target Application: Design of an Uninterruptible 

Power Supply 

6.8.1 UPS Functionality 

An example where RMCAN was applied consists of an 80KVA Three-Phase Double 

Way UPS system, which must provide uninterruptible power supply to the loads connected to 

it even when there is a fault in the commercial energy supply. It can be used with either 

redundant or parallel configuration, including small units (10kVA), amplifying their reliability 

and increasing their capacity.  

An UPS system is an example of a hard real-time system where fault tolerance is 

essential. The primary function of an UPS (Uninterruptible Power Supply) is to ensure 

continuity of an alternating power source, especially during a fault or disturbance in the 
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commercial electric energy supply. It may also serve to improve the quality of the power 

source by keeping it within defined limits.  

The input/output voltages have to be monitored continuously (or at very small discrete 

time intervals) and reaction to variations has to be done within a few nanoseconds; this way an 

UPS can be classified as a hard real-time system. Figure 6.5 shows the functionality of an 

UPS. 

 
FIGURE 6.5: UPS FUNCTIONALITY – INPUT AND OUTPUT VOLTAGES 

6.8.2 UPS Architecture and Operating Modes 

The full UPS operation is provided through the use of microprocessor controlled logic. 

All processing tasks are executed by three independent CPUs (rectifier CPU, inverter CPU 

and static switch CPU), each one consisting of a Texas Instruments DSP model 

TMS320LF2407A [36]. More CPUs could be used as a hardware redundancy, while the use of 

less CPUs is also possible if we have two functions executed by the same processor. Although 

these CPUs can operate autonomously, they communicate through a CAN interface, which 

allows monitoring and control information exchange; each DSP incorporates an on-chip CAN 

module. 

Figure 6.6 shows a piece of the UPS architecture where the rectifier and the inverter 

CPUs execute a data synch operation through a CAN bus. Algorithm 1 executes continuoulsy 

based on the parameters exchanged in the data synchronization between the rectifier and the 

inverter CPUs. This data synch operation is important to provide a high quality output power. 



 

 

101 

If a power fault occurs, for example, the output power level remains in its optimal level , as 

shown in Figure 6.7. 

 

 

FIGURE 6.6: UPS ARCHITECTURE - DATA SYNCH THROUG A CAN BUS 

 

 

FIGURE 6.7: UPS ARCHITECTURE – OPERATION IN A POWER FAULT SCENARIO 

 

A detailed description of the UPS architecture and operating modes is presented in 

Appendix A. 

6.8.3 Fault tolerant support 

An UPS system is subject to diverse failures in its components, which may not cause a 

failure in the whole system. Additional care was taken in order to incorporate fault tolerance 

concepts in the hardware development process, such as use of redundant power supply, 

protection against energy source short-circuits that may occur by a component failure and 

distributed control.  

The UPS control software must also circumvent failures such as consumer overload, 

inverter failure or output voltage variation beyond limits (+ 1%), in order to guarantee fault-
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tolerance requisites and provide an uninterruptible power supply with quality. In case of one 

of these failures, the UPS switches from the double-conversion mode to the automatic bypass 

mode. When in double conversion mode, the UPS inverter shall continuously supply power to 

the critical load. The rectifier/battery charger shall derive power from the utility AC source 

and supply DC power to the inverter while simultaneously charges the batteries. In the Bypass 

mode, the inverter or the power interface is operating to provide output voltage conditioning 

and/or battery charging. The static bypass transfer switch automatically transfer power from 

the bypass back to the rectifier/inverter, once the load current returns to the UPS nominal 

rating or less. 

Fault tolerance requisites must be incorporated in the CAN bus since it will be applied 

to an UPS system, which uses the bus to exchange controlling and monitoring information. In 

such systems, it is essential that the messages reach their destinations according to deadlines, 

and actions should be taken if any fault occurs. 

Figure 6.8 shows how the UPS acts if a fault in the CAN bus occurs concurrently with 

a power fault. If a fault occurs in the CAN bus, the data synch operation is interrupted and an 

action may be taken to provide the best output power possible. Algorithm 2 (Alg.2) is thus 

executed instead of Algorithm 1 (Alg.1), guaranteeing that, in case of a power fault, the output 

quality will not be affected.  

 

FIGURE 6.8: UPS ARCHITECTURE – OCCURRENCE OF A CAN FAULT IN A POWER FAULT 

SCENARIO 

The results obtained in the execution of Algorithm 2 remain optimal when the loads do 

not change abruptly, and they are near the optimal value if a transitory occurs. 
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6.8.3.1 Tests and Results 

An 80KVA three-phase double way UPS was implemented. It can be used with either 

redundant or parallel configuration, amplifying its reliability and increasing capacity. The UPS 

operating modes follows the operating modes presented in Appendix A. It can be used with 

either redundant or parallel configuration, including small units (10kVA), amplifying their 

reliability and increasing their capacity. Perturbations to the electrical system are thus avoided, 

once it filters the disturbances that may occur in the input voltage.  

As a test, the UPS was set to provide stabilized output voltage to a load of around 

70KVA. We had also connected to the UPS output a 4 ton rolling bridge, which causes a 

transitory current of 300 A. The overload is twice the nominal power of the UPS when it 

activates its motors, and the biggest motor consumes 15KVA. In this situation, if the UPS is 

operating in the double-conversion mode, the inverter will not be able to provide all the power 

needed, and the UPS reacts switching to the automatic bypass mode, when the power will be 

supplied by the commercial source. This situation must be considered a fault, which is 

tolerated by the UPS and registered as an alarm in a report. When the transitory is over, the 

UPS goes back to the double-conversion mode, and this event is also registered.  

Statistics were collected during a week and the UPS tolerated all the faults. Table 6.2 

shows the number of mode switchings and their causes. We also show the average quality 

level, which indicates the percentage of faults tolerated. 

 

TABLE 6.2: RESULTS OBTAINED FROM AN 80KVA UPS 

Reason / Mode To Double Conversion Mode To Line-Interactive Mode Average Quality 
Level 

Consumer Overload 924 924 100% 
Inverter failure 0 0 100% 
Undervoltage 224 224 100% 
Overvoltage 35 35 100% 

 

With the results shown above one can notice that the UPS is responding accordingly 

expected and faults are being tolerated avoiding failures in the power supplied by the UPS. 

6.8.4 UPSs’ parallelism 

For expanded system capacity, either a large UPS unit or a multi-unit modular system 

operating in parallel is conceivable. The former approach may not be practical because of high 
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initial cost, site installation difficulties, among other problems that may be present in such 

implementation. By contrast, the latter approach facilitates system expansion and redundancy. 

Putting two or more power supply units in parallel provides an improved fault 

tolerance capacity to the whole system and increases the system reliability. However, each 

unit may be supplied by different currents, since the power modules are not identical and the 

resultant circulating current can result in malfunction and destruction of the UPS system. 

Some factors that contribute to this unbalance are the components tolerance and the circuitry 

impedance of the output current distribution of each module. The power supply control circuit 

must be able to calibrate the output voltage of the power supplies and concomitantly distribute 

uniformly the charge current between the diverse power modules. 

In the last few years, different algorithms on converters parallelism have been 

developed. From the different methods that make use of a communication system we can 

mention the following: 

 

• Master-Slave Control (MSC); 

• Central Limit Control (CLC); 

• Circular Chain Control (3C). 

 

Converters parallelism control using these techniques is done through two feedback 

control systems. The most external system controls the output voltage while the most internal 

controls the current supplied by the converter. A communication system is also present 

between the two power modules. 

In a master-slave control [76][77], the output current of the master module is used as a 

current reference by the slave modules, i.e., it is the current that each slave should supply as a 

result of the correct current partition between modules. The master module is also responsible 

for controlling the output voltage control system. A variant of the master-slave control [79] 

proposes that the reference current should be the largest magnitude current among all units, 

i.e., the unit that supplies the largest current should be the master and the other units would be 

slave units.  

In a Central Limit control [77], the reference current of the most internal system is the 

pondered sum of all parallel output currents divided by the number of converters. A variant of 
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this method [78] proposes that just the units that are necessary to supply the load should be 

turned on, and the others could stay off.  

In a Circular Chain control [80], the reference current of the most internal system is the 

current supplied by the precedent converter in a circular link.  

An Output Voltage Droop control [81] doesn't need a communication system between 

the different control systems. In this method, the frequency and the output voltage are both 

controlled by the converter active and reactive power flows in a similar way to the one that is 

used in the control of electric power systems.  

An application of the converters parallelism method using a master-slave's control 

technique with communication through a CAN interface is described in the following session. 

6.8.4.1 Applying RMCAN to the UPSs’ parallelism problem 

Two or more UPSs can be used in either a redundant or parallel configuration, 

including small units (10kVA), amplifying their reliability and increasing their capacity.  

An application of the converters parallelism method using a master-slave's control 

technique with communication through a CAN interface was used. One UPS is elected the 

master, which will be responsible for informing a reference current to the slave UPSs. The 

master and slaves UPSs inverters parallelism is obtained starting from the communication of 

the load current from the master to all the slaves. Figure 6.9 shows how the slave’s reference 

current is obtained from the master’s load current. An additional term is obtained in the 

proportional controller's output, which guarantees the imposition of the current in the slave's 

inverter capacitor. This control system reduces the master's current controller effort.   

 

 

 

FIGURE 6.9: DETERMINING THE REFERENCE CURRENT OF THE SLAVE UPSS  

Figures 6.10 and 6.11 show the results obtained from the simulation of the parallelism 

of 3 UPS of 4 KVA each. Figure 6.10 shows the output voltage and figure 6.11 shows the 

master's and slaves’ currents, used as a source to a non linear load. Figures 6.12 and 6.13 

show the active and reactive power divisions between the UPS units. A perfect division of the 
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active power can be observed. The error in the division of the reactive power was considered 

acceptable.

FIGURE 6.10: OUTPUT VOLTAGE 

 

 

 

FIGURE 6.11: DISTRIBUTION OF THE 

CURRENT ON THE INVERTERS  

 

 

 

 

 

 

 

FIGURE 6.12: DISTRIBUTION OF THE ACTIVE 

POWERS 

 

FIGURE 6.13: DISTRIBUTION OF THE 

REACTIVE POWERS

6.8.4.2 Algorithm for the case of Failure in the Master Controller 

One of the advantages of UPSs parallelism is the increase in reliability through 

redundancy. For example, in the case of a slave UPS failure, the load current is automatically 

redistributed among the remaining UPSs, without compromising the quality of the energy 

supplied to the load. However, in case of a master UPS failure or a communication failure 

between the master and the slave units, it is necessary that one of the slave UPSs assumes the 

master's function quickly so that a voltage charge interruption does not occur.  

In this work, the communication among the UPSs is accomplished through a CAN 

network. This communication is accomplished in a frequency of 5120Hz, three times slower than 

the sampling and PWM frequencies. An order is established a priori, among the slaves for the 
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master unit substitution. In the occurrence of a communication failure with the master, all the 

slave units maintain their reference current the same as the last value received from the master 

unit (for the first failure period in the communication). If the communication error persists in the 

next communication period, the first slave assumes the master's role control.  

Figures 6.14 and 6.15 show the current and voltage wave forms in the load, obtained in 

simulation, in the instant that a failure in the UPS master happens. The failure happens in the 

positive peak of the current load. In the communication period subsequent to the failure, the 

master does not supply any current to the load and the UPS slave units maintain the same current 

value of the previous period. Soon after, the first slave assumes the master's functions. The total 

voltage harmonic distortion observed was less than 5%, which is considered acceptable to the 

UPS market specifications.  

 

FIGURE 6.14: TOTAL CURRENT IN THE LOAD 

DURING A FAILURE IN THE UPS MASTER 

 

FIGURE 6.15: VOLTAGE IN THE LOAD 

DURING A FAILURE IN THE UPS MASTER 

6.9 Summary 

The inclusion of fault tolerance in the design of real-time systems must consider timing 

constraints imposed by the application. One of the essential services provided by real-time fault 

tolerant distributed architecture is communication of information from one distributed component 

to another. In this sense, the CAN protocol was created and it is nowadays present in 90% of the 

microcontrollers and DSPs incorporating real-time protocols. One problem that might be found in 

a CAN bus is related with the delivery of low priority messages if the bus is flood with higher 

priority messages.  

In this work, we applied the well-known RMS techniques for uniprocessor systems to the 

CAN protocol and used these techniques to schedule messages on the bus. The approach of 

adding slack to a schedule was used to tolerate transient faults in the bus. We also restricted the 
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maximum packet transmission rate for each node to a maximum value and using time redundancy 

we ensured the re-transmission of any message, before its deadline, after a fault has been 

detected. Thus, a bounded response time was achieved making the CAN bus more reliable for 

dealing with heavier loads on the bus. 

This theory is being applied to an UPS as an additional fault tolerance support to be used 

in conjunction with other redundancies already implemented.  
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Chapter 7 

Conclusions 

7.1 Summary 

Tasks in real-time systems must meet their deadlines under all circumstances, even in the 

presence of transient or permanent faults. This work has shown that time redundancy through 

scheduling is a powerful tool to deal with faults in real-time systems. The harmonious integration 

of the available techniques enhance the fault tolerance capability of multiprocessor hard real-time 

systems. 

Relating to real-time communication protocols, the time-triggered and event-triggered 

approaches find favor in different application areas, and each has strong advocates [59]. The 

CAN protocol may have a unbounded response time for an arbitrary low priority message. 

Researchers sometimes say that the CAN protocol is more appropriate for soft real-time systems 

(flexible requirements), while appropriate protocols for hard real-time systems include TTP/C. 

RMCAN, the extension proposed to the CAN protocol, shows that it is possible to bound the 

message transmission time, thus making possible its use on HRTSs.  

In RMCAN there is a limit on the node transmission rate, making the transmission time 

deterministic, even for low priority messages. We do not limit a node transmission to its slot, but 

allow it to transmit at any time if its transmission frequency allows. This way one can guarantee 

that a message will arrive at its deadline or it will not arrive anymore, in which case a backup 

action is taken. 

One advantage of the CAN protocol over time-triggered protocols is the extensibility 

aspect. New nodes can be added to the bus, while in the TTP/C protocol, for example, a slot for a 

new node has to be reserved at design time. Other advantages are the high availability of 

microcontrollers incorporating the CAN bus, and the price/performance ratio. The enhancements 

proposed to the CAN protocol show that its reliability can be increased and its spread presence in 

the market can be further explored. 

Time is the central resource of any fault-tolerant hard real-time system, task schedulability 

and time redundancy become the basic tools to guarantee fault-tolerant requisites for a given hard 
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real-time system. The main approach to fault tolerance is the use of time redundancy in addition 

to software (such as in N version programming) and hardware (processor watchdog timer) 

redundancy to tolerate both transient hardware and software faults. Permanent, transient and 

correlated faults can be tolerated supported by time and processor redundancy when scheduling 

backup tasks in a multiprocessor system. 

The schedulability tests for new tasks provide the guarantees required for fault-tolerant 

execution in real-time systems. When a new task is being considered for addition into the system, 

a set of conditions is tested to check whether the fault tolerance guarantees can be provided. If the 

conditions are met, then the task is accepted, otherwise a backup action can be taken. 

Another aspect in multiprocessor real-time systems relates to the interdependence of task 

execution time and message transmission time. The release jitter of a receiver task depends on the 

arrival time of a message, which in turn depends on the interference from higher priority 

messages, which in turn depends on the release jitter of the sender tasks.  

In RMCAN protocol, which extends the CAN protocol, a fault is identified by the CPUs 

connected to the bus as the absence of a message. In this case, a fault model is applied, implying 

in the re-transmission of the message that failed in its transmission or even in the execution of an 

alternative action such as the reconfiguration of the bus. 

With the worst-case transmission time determined in Chapter 6, it is possible to define the 

backup slack size and ensure the availability of sufficient slack for a message to be re-transmitted. 

This slack can be used after a message finishes transmitting to re-transmit that message before its 

deadline is reached if a fault is detected. 

This way, any message corruption or further errors indicate that a fault occurred, and the 

message must be re-transmitted and also meet its deadline. Moreover, if the fault persists, a 

failure in that system component is detected and an alternative process must be executed in 

another processor to prevent a global failure. 

A holistic schedulability and fault tolerance analysis for distributed hard real-time systems 

conforming to a particular architecture – simple fixed priority scheduling of processors 

communicating through messages on a shared broadcast bus such as CAN – is presented. Periodic 

control tasks are executed in the processors, and fault tolerance is implemented according to a 

pre-defined fault-model. Single processor schedulability analysis is extended to include timing 

analysis for hard real-time messages on a communications system and address the delivery costs 

of messages. 
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7.2 Future Work 

Real-time systems will be, in the future, bigger and more complex than those we have 

nowadays and they are going to be part of distributed systems in dynamic environments. These 

environments will include specialized systems and will integrate complex time characteristics in 

different granularities. Moreover, ecological, human and economic catastrophes will be the result 

of a failure in such systems.  

If the tasks require resources other than the CPU, then the scheduler needs to verify that 

all the resources are available to the primary and backup copies of a task when needed. Each 

resource can be treated in a manner similar to the CPU while reserving it for a task. For example, 

overloading and deallocation can be used for each resource. However, when multiple resources 

need to be reserved simultaneously, then the scheduling is more complicated, and timeline driven 

dispatching techniques are preferred over priority driven dispatching. A timeline can be used to 

ensure that each resource is reserved for the tasks. 

A natural evolution of this work is its applicability in the networks field, where complex 

communication architectures and protocols designed for efficient transactions based on 

temporized messages could be incorporated to the system. Another evolution would be to include 

support for tasks synchronization, not limiting the system’s capabilities to only independent real-

time tasks and non-real-time tasks. 

In the fault-tolerant real-time systems field, other topics are important research topics, 

such as: 

• Scheduling Algorithms: the ability to manipulate complex task structures with 

precedence characteristics, resources and time characteristics in a dynamic and 

integrated environment must be incorporated in scheduling algorithms. 

• Operating Systems: OSs must be designed incorporating negotiating functions, 

allowing time characteristics management in highly integrated and cooperative 

environments, in a quick and predictive way. 

• Error Manipulation: project and analysis in a context that includes performance and 

safety considering error manipulation, which is composed by error detection, fault 

localization, system reconfiguration, and recovery. 

 

Real-time systems constitute an inter-disciplinary research area that includes aspects of 

Control Engineering and Computer Science. A successful implementation of a computer-
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controlled system requires a good understanding of both control theory and real-time systems. 

Ensuring continuity of power supply to critical loads such as life support medical systems, 

Internet nodes, bank transaction systems, computer systems, flight control systems, etc, 

accentuates the need for high reliability uninterruptible power supplies (UPSs). 

For expanding system capacity, either a large UPS unit or a multi-unit modular system 

operated in parallel connection is conceivable. The former approach may not be practical because 

of high initial cost, site installation difficulties, among other problems that may be present in such 

implementation. By contrast, the latter approach facilitates system expansion and redundancy. 

The method of parallel operation to increase the UPS rated capacity is implemented by 

synchronizing each of the units of output voltage frequency and utilizing their voltage magnitude 

and phase angle through a series inductor to control the power distribution of each unit. 

Putting two or more power supply units in parallel provides to the whole system an 

improved capacity of fault tolerance and increases the system reliability. However, each unit may 

be supplied by different currents, since the power modules are not identical. When the parallel 

units are different in output voltage, resultant circulating current can result in malfunction and 

destruction of the UPS system. Some factors that contribute to this unbalance are the components 

tolerance and the circuitry impedance of the output current distribution of each module. The 

power supply control circuit must be able to calibrate the output voltage of the power supplies 

and concomitantly distribute uniformly the charge current between the diverse power modules. 

One of the advantages of UPSs parallelism is the increase in reliability through 

redundancy. For example, in the case of a slave UPS failure, the load current is automatically 

redistributed among the remaining UPSs, without compromising the quality of the energy 

supplied to the load. However, in case of a master UPS failure or a communication failure 

between the master and the slave units, it is necessary that one of the slave UPSs assumes the 

master's function quickly so that a voltage charge interruption does not occur. 

The work developed in this thesis may bring a great support to the development of such 

application and others that may follow. 

 



 

 

113 

Appendix A 

UPS Architecture and Operation Modes 

Figure A1 presents the UPS architecture and its operating principle, with a detailed view 

of its control structure. 

 
FIGURE A1: UPS ARCHITECTURE CONTROL DETAILED VIEW 

An UPS is composed by the following basic blocks: 

• Batteries: the batteries are responsible for supplying energy during a fault in the 

commercial energy supply; 

• Rectifier (AC/DC) / Battery Charger: incoming AC power shall be converted to a 

regulated DC output by a rectifier. The rectifier shall provide high quality DC 

power to the power inverter and also to charge the batteries; 

• Inverter DC/AC: the power deriving from the rectifier or from the batteries shall 

be converted back to AC power, and must be free of the disturbances that are 

usually present in the commercial energy supply. One source of energy can be 
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selected in case of a failure on the other source, allowing uninterruptible power 

supply.  

• Static Switch: the static switch is used to select the energy source, which can be 

the inverter or the commercial energy supply. One source of energy can be selected 

in case of a failure on the other source, allowing uninterruptible power supply. 

• Manual (static) Bypass: the bypass is a power path alternative to the indirect AC 

converter. The bypass transfer switch shall be used to transfer the load to the 

bypass without interruption to the critical power load. This shall be accomplished 

by turning the inverter off. This procedure is commonly used in case of an UPS 

failure or for its maintenance.  

 
The UPS module shall be designed to operate as a double-conversion, on-line reverse 

transfer system working in the following modes: 

• Normal Mode: in this mode, the inverter shall continuously supply power to the 

critical load. The rectifier/battery charger shall derive power from the utility AC 

source and supply DC power to the inverter while simultaneously float charging the 

batteries. 

• Stored Energy Mode (on batteries): the UPS goes to this mode upon failure of 

the utility AC power source, the critical load shall be supplied by the inverter, 

which, without any switching, shall obtain its power from the batteries. 

• Automatic Bypass Mode: the bypass transfer switch shall be used to transfer the 

load to the bypass without the interruption to the critical load. This shall be 

accomplished by turning the inverter off. Automatic re-transfer of the load shall be 

accomplished by turning the inverter back on.  

• Manual Bypass Mode: also called maintenance bypass, in this mode a power path 

that allows isolation of a section or sections of a UPS is used for safety during 

maintenance and/or to maintain continuity of load power. 

• Line Interactive Mode: in this mode, the inverter or the power interface is 

operating to provide output voltage conditioning and/or battery charging. The 

supply frequency is dependent upon the AC input frequency. When the AC input 

supply voltage is out of UPS preset tolerances, the inverter and the battery maintain 
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continuity of load power in stored energy mode and the power interface disconnects 

the AC input supply to prevent back feed from the inverter. The unit runs in stored 

energy mode for the duration of the stored energy time until the AC input supply 

returns with UPS design tolerances. 
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