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Abstract

In this work we develop mathematical programming formulations for location
models, congested network design models and the integration of both. Location
and network design problems arise in several applications of Computer Sci-
ence, Engineering and Economy. Nowadays, these problems can not be solved
efficiently, what is our major motivation. Established the relevance of these
problems, we try to expand their solution frontiers, rewriting them with the
aid of flow formulations and using a Benders decomposition framework. Our
main goal is to deal with large scale mixed integer programming problems as the
Quadratic Assignment Problem, the Uncapacitated Hub Location Problem and
large scale mixed integer nonlinear programming problems. Extensive computa-
tional experiments were carried out. The output data is analyzed and discussed,
becoming possible to evaluate the quality of the proposed approach
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Chapter 1

Problem Context and
Motivation

1.1 The Location of Economic Activities

There are important areas of economic analysis in which progress depends of
methods for solving or analyzing problems for efficient allocation of indivisible
resources. There are practical decision problems that we can cite. For instance,
to determine suitable numbers of machine tools of various kinds within a plant,
or to define the number of channel capacities and frequencies in telecommuni-
cation networks.

Furthermore, indivisibilities in the more highly specialized human or ma-
terial factors of production are always at the root of increasing returns to the
scale of production. They can arise within the plant or firm, or in relation with
a cluster of firms. Strong interest in the effects of indivisibilities comes from the
fact that: if industry increasing returns to scale persist at a production level
that sizes the total demand in the respective market, we do not have perfect
competition and the efficiency of a price system in allocating resources is re-
duced. Summarizing, the location theory of economic activities is dependent on
the indivisibilities of human and material resources to better explain the reality.
This was preconceived by Koopmans and Beckmann [77]. These indivisibilities,
by the way, are responsible for some of the greatest mathematical challenges
that Mathematical Programming and Computer Science have been facing in the
latest 45 years.

It is possible to describe a huge list of practical applications of location
problems. Among them, the best location of producers in a multi-commodity
transportation network, the best location of warehouses and plants, given the
location of his customers and suppliers, the best location of points of inflow
or outflow in transportation networks. On the highly competitive economic
system created by globalization, it is unnecessary to point out that every single
cost component is important: in one side the minimization of production (fixed
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or operational)costs improves any organization survivability, at the other side
improves the quality of the provided services, maximizing social benefits.

All the systems that have ”hub-and-spoke” features are candidates to loca-
tional studies. In a major scale, we can think about the location of private and
public facilities to improve the quality of service, and thus quality of life, for a
given population. In this context, the facility that we are talking about can be
generally called a server, an indivisible resource that is responsible for locally
provide access to some kind of commodity for final customers and which is con-
nected with other facilities by a transportation network. The commodity being
transported from and to these servers can be water, fuel and other petroleum
sub-products, electrical energy in power transmission networks, data and other
signals in telecommunication and computer networks. The servers can be merely
concentrators or complex base stations, depending on the commodity and the
transportation technology associated.

Several researchers are dealing with location problems. The work and re-
search conducted around Assignment Problems, which are some of the simplest
approaches to give answers to location theorists, is intensively increasing. The
work of Koopmans and Beckmann([77] is a landmark for location theory. For
some traditional surveys on this subject, we suggest the work of Motzkin [99],
Losch [82], Kuhn [79], Mills [98], Samuelson [121] and Heflley [61]. On the last
years, deserve attention the work of Beasley [14], Christofides and Beasley [36],
Franca and Luna [45], Mateus and Luna [92], Aikens [2] and Mateus and Thizy
[94]. Assignment problems are being studied more recently by Burkard [23],
Balas and Saltzman[11], Burkard and Cela [27], Burkard, Cela, Pardalos and
Pitsoulis [28], Cela [26], Anstreicher [4], Anstreicher and Brixius [5], Anstreicher,
Brixius, Goux and Linderoth [6].

1.2 The Local Access Network Design

Once defined the location of the servers, the question on how to design the local
access network, that the final customer will use to access a server, naturally
arises. The quality of the local access network, in some cases, is representative
of a great amount of the total cost. Network design problems have found wide
application in computer networks and telecommunication systems, exploring is-
sues of topological design, routing and capacity assignment [21, 47, 93]. The
hierarchical organization of telephone and computer networks plays a major
role, inasmuch as optimized levels of customers concentration enables substan-
tial economies of scale of increasing transmission bandwidth. Cost minimization
is the objective of most of these operations research models, the main difference
among the models being the hierarchical level of network design, typically con-
cerning backbones or local access networks. In this work we have considered
the local access network design problem with congestion costs. The local access
network design problem consists of linking a supply node to its demand nodes
satisfying their demand at minimal total cost. The problem presents heteroge-
neous terminals, and there are also Steiner or transshipment nodes. Each arc
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of the network has three associated costs: a linear variable operational cost de-
pending on the flow through the arc, a fixed cost associated with the installation
of the arc and a non-linear congestion cost that penalize flows close to implicit
capacities. This problem can be viewed as a generalization of the Steiner tree
problem on a directed graph [85]. In fact, if we neglect variable and congestion
costs at the arcs we will have basically the Steiner problem, and in this sense
we are treating a N'P-Hard problem, for which some computational strategies
have been devised [87, 128, 75, 83, 67, 68]. On the other hand, if we neglect
fixed and congestion costs on the arcs we have the single source transshipment
problem, which can be solved easily [40].

As one can see, it is possible to use this approach to deal with any kind of
network flow problem that has a single source tree as optimal solution. The
network design problem associated with centralized computer networks and the
multiparty multicast tree construction problem are good examples. The last one
has been treated with the aid of heuristics [69], but on the two versions pointed
by the literature, the Single Source Tree Networks - where we have a true root
of the multi-party multicasting tree - and the Core Based Tree Networks - where
a single node, the core, is chosen to play a role as the tree root - it is possible
to adjust the data to make the model treatment to accomplish the nature of
the problem. The provision of multi-point connections is one of most important
services that will be required in future broadband communication networks that
support distributed multimedia applications. Multimedia video-conference ap-
plications, for instance, require that audio and video be transmitted to multiple
conference participants simultaneously. This requires that an efficient multi-
cast capability be provided by the underlying network. Beyond problems in
telecommunications and centralized computer networks, this approach is useful
to deal also with petrochemical products distribution networks, water distri-
bution networks, and many other local access networks (distributing energy,
material resources or signals and data) under mild assumptions.

1.3 Facility Location and Network Design

Network location models have been used extensively to analyze and determine
the location of facilities. Classical network models include the location set cov-
ering problem [124], the maximum covering location problem [37] and p-median
and p-center problems [60].

In addition to these, the uncapacitated facility location problem[78] has been
treated in its own right and is also known as simple plant location problem and
warehouse location problem. All these models locate facilities on a given network.
However, the topology of the underlying network may have profound impact on
facility location. Models that integrates the tasks of facility location and network
design has being presented by Melkote and Daskin [97], [96], Berger et. al. [18],
Berman, Ingco and Odoni [19] and Campbell [34]. In this kind of problems, a set
of nodes is given that represents the demand nodes, as well as candidate facility
locations, and a set of uncapacitated links. Each link has a fixed construction
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cost as well as a per unit transportation cost, and each node is associated with
a fixed charge for building an uncapacitated facility at that node. The objective
is to find the network design and the set of facility locations that minimize the
total system cost (fixed + operational). This model is reported to be used in
the design of pipeline distribution systems, inter-modal transportation systems,
power transmission networks and all the hub location problems (that arises in
various transportation contexts, and simultaneously address where to locate the
hubs and how to design the hub-level network and the access level network).

These models, however, deals with problems were the background assign-
ment problem is always a linear one. This means firstly, that no distinction is
made between the links used to interconnect facilities and links used to establish
the local access network. Here, the location does not present interdependency:
the definition of a site for one server does not influence the possible assignments
for the others. As one can see, none of these two features is much realistic. In
many problems involving location of facilities (or servers) and the design of the
two underlying networks: the transportation network (established between fa-
cilities) and the local access network there are hierarchical considerations to be
made. Usually, the technology used to implement the transportation network
(larger link capacities and higher traffic velocity) is even different from that
used for local access network problems (smaller link capacities and lower traffic
velocity).

In this work we present a formulation that solves the integrated network de-
sign/facility location problem adding two features: hierarchical solution, which
constitutes a coherent way to detach the two problems, ensuring mathematical
consistency, enabling the use of parallel /distributed computing as a way to solve
larger instances, and the accomplishment of interdependency in the assignment
of servers to locations. To treat the local access network cost component we
incorporate a non-linear effect: the congestion cost and capacity expansion cost
trade-off, as suggested by Luna and Mahey [84]. The application framework
selected here is the Tree Network Design for Centralized Computer Networks,
Local Access Telecommunication Networks and Multicast Multiparty Tree Net-
works. For the location problem, each server can be viewed as a computational
resource center, a switching center or the different multicast multiparty servers
that are interconnecting the participants.



Chapter 2

Assignment Problems

2.1 Theory and Background

Assignment problems deal with the question of how to assign n items (jobs,students)
to n other items (machines, tasks). Their underlying structure is an assignment
which is nothing else than a bijective mapping ¢ between two finite sets of n
elements. In the optimization problem where we are looking for a best possible
assignment, we have to optimize some objective function which depends on the
assignment ¢. Assignments can be represented in different ways. The bijective
mapping between two finite sets V' and W can be represented in a straightfor-
ward way as a perfect matching in a bipartite graph G = (V, W; E), where the
vertex sets V' and W have, each one, n vertices. Edge (k,i) € E is an edge of
the perfect matching if, and only if, i = ¢(k).

After characterizing the sets V' and W we get a representation of an assign-
ment as a permutation. Every permutation ¢ of the set N =1, ..., n corresponds
in an unique way to a permutation matric Xy = (x;) with xp; = 1 for i = ¢(k)
and zg; = 0 for ¢ # ¢(k). This matrix X, can be viewed as adjacency matrix of
the the bipartite graph G representing the perfect matching, see Figure (2.1).

o= (1234 1 1
24 31

2 2
01 0 0
.= 000 1| 3 3
¢ 0010
1000/ 4 4

Figure 2.1: Different representations of assignments.

The set of all assignments (permutations) of n items will be denoted by S,

5
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and has n! elements. This set can be described by the following constraints
called assignment constraints.

dai = 1, Vi=1l..,n (2.1)
k=1
aw o= 1, Vk=1..n (2.2)
=1

€ {01}, V kji=1,..,n. (2.3)

The set of all matrices X = (xy;) fulfilling the assignment constraints will be
denoted by X,,. When we replace the conditions zx; € {0,1} in (2.3) by ax; > 0,
we get a doubly stochastic matriz [24]. The set of all doubly stochastic matrices
forms the assignment polytope P4. Birkhoff [20] showed that the assignments
correspond uniquely to the vertices of P4. Thus every doubly stochastic matrix
can be written as convex combination of permutation matrices.

Theorem 2.1.1 (Birkhoff [20]) The vertices of the assignment polytope corre-
sponds uniquely to permutation matrices.

Network flows offer another choice of modeling assignments. Let G =
(V,W;E) be a bipartite graph with |V| = |W| = n. We embed G in the
network V' = (N, A, ¢) with node set N, arc set A and arc capacities c. The
node set N consists of a source s, a sink ¢ and the vertices of V. UW, see Figure
(2.2).

1 1
2 2
3 3
4 4

Figure 2.2: Perfect matching in a bipartite graph and corresponding network
flow model.

The source is connected to every node in V by a directed arc of capacity
1, every node in W is connected to the sink by a directed arc of capacity 1,
and every arc in F is directed from V to W and supplied with infinite capacity.
The mazimum network flow problem asks for a flow with maximum value z(f).
Obviously, a maximum integral flow in the special network constructed above
corresponds to a matching with maximum cardinality. A cut in the network N’
is a subset C of the node set N with s € C and t ¢ C. The value of u(C) is
defined as
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u(C) = Z c(z,y) (2.4)

z€C, y¢C, (z,y)€A

where c(z,y) is the capacity of the arc (z,y).

Ford and Fulkerson’s famous Max Flow - Min Cut Theorem [44] states that
the value of a maximum flow equals minimum cut value. Such a theorem can
be directly translated into the Konig Matching Theorem [76]. Given a bipartite
graph G, a vertex cover (cut) in G is a subset of its vertices such that every
edge is incident with at least one vertex in the set.

Theorem 2.1.2 (Konig Matching Theorem [76]) In a bipartite graph, the min-
imum number of vertices in a vertex cover equals the maximum cardinality of a
matching.

Let us now formulate this theorem in terms of 0-1 matrices. Given a bipartite
graph G = (V,W; E) with |V| = |W| = n, we define 0-adjacency matrix ¥ of G
as a (nzn) matrix ¥ = (g;;) by

fo0 (i) eR
g”_{l if (i,/) ¢ E (2:5)

A zero cover is a subset of the rows and columns of matrix ¥ which contains

all 0 elements. A row (column) which is an element of a zero-cover is called a
covered row (covered column). Now we get

Theorem 2.1.3 There exists an assignment ¢ with 45y = 0 for allt =1,...;n,
if and only if the minimum zero cover has n elements.

Since a maximum matching corresponds uniquely to a maximum flow in
the corresponding network N, we can construct a zero-cover in the 0-adjacency
matrix ¥ by means of a minimum cut C in this network: if node ¢ € V of
the network does not belong to the cut C, then the row 7 is an element of the
zero-cover. Analogously, if node j € W of the network belongs to the cut C,
then column j is an element of the zero-cover.

2.2 The Linear Assignment Problem

A relatively simple problem in the allocation of indivisible resources, which is
a direct application of the matching of two sets, is the task of creating a one
to one association of the elements in each set. In the context we present, the
allocations of a set of plants to a set of candidate sites. There are a variety of
practical decision problems for which this is an adequate characterization. Due
to our underlying interest in location theory, we we will discuss the problem here
in terms of assigning facilities to locations. Each facility, still on the drawing
board, is supposed to be capable of achieving a given expected profit in each
location, different locations having different suitabilities for a given economic
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activity. The problem is then to find an assignment that makes the profit
attainable from the location of facilities as large as possible.

It is clear that this problem is fully defined by its mathematical formula-
tion, given below, independently of the locational interpretation. It is useful to
remember that this approach gives an artificial picture of locational problems
when compared with the complexities and degrees of freedom that can be found
in reality. Any kind of rule to subdivide land or allowing the building of more
than one plant is not explored, for instance. Other variables like production
technology and resource availability are also ignored.

The profitability for the n? possible plant location pairs are represented as a
square matrix; the element ay; representing the fixed profit expected from the
assignment of facility k to location ¢. If we choose to use a matrix X = (zy;)
to represent the assignment, a linear integer program for the problem can be
obtained with the aid of equations (2.1) - (2.3), resulting

n n

max p = Z Z ki T (2.6)

k=11=1

subject to (2.1) - (2.3)

This linear integer program has n? integer variables, and would be a very
difficult one, if the linear relaxation of the integrality constraints would not
create a set of doubly stochastic matrices. These matrices satisfy the assignment
constraints, and from Theorem 2.1.1, these assignments correspond uniquely
to the vertices of the associated polytope. This means that, the associated
linear program has the same solution as the former integer program, which is a
very comfortable property. In fact, Burkard [24] shows that linear assignment
problems can be solved by only adding, subtracting and comparing the cost
coefficients (see the Hungarian Method[79]).

However, if one needs a major level of detail, and requires a better description
of reality, it is necessary to improve the model by adding more realistic effects
and relationships.

2.3 The Quadratic Assignment Problem

The assumption that the profit obtainable from an economic activity at some
location does not depend on the uses of other locations is quite inadequate and
unrealistic in most practical situations. There are direct, physical, interactions
between different production processes. The mere fact that scarce resources
need to be utilized for the transportation of intermediate commodities between
facilities appears to be sufficient to indicate the unsuitability of the linear model
to describe the reality. In order to improve our capabilities of modeling the world
of locational decisions, we introduce now the Quadratic Assignment Problem.
Considering two sets of n facilities and n locations, and the installation prof-
itability matrix A = (ag;), as defined for the linear assignment problem, we
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express the intertransportation cost, given a matrix B = (by;) of demands of
intermediate commodities between facilities £ and [, and a matrix C' = (c¢;5) of
costs of transportation per unit of flow between the locations i and j, as

q=>_ > bumkicijr (2.7)

(k1) (3,9)

We must observe that the transportation cost is independent of the facility
assignment and the total demand of intermediate commodities is independent
of location assignment. So, the quadratic assignment problem can be stated (in
the profitability version)as p — ¢:

n n n n n n

max Zzakixki — Zzzzciﬂimbklﬂilj (2.8)

k=1 i=1 i=1 j=1 k=1 I=1

subject to (2.1) - (2.3)

The Quadratic Assignment Problem (QAP) remains among the most com-
plex combinatorial optimization problems. The inherent difficulty for solving
QAP is also reflected by its computational complexity. Sahni and Gonzalez
[120] showed that QAP is N'P — Hard and that even finding an approximate
solution within some constant factor from the optimal value cannot be done in
polynomial time. Recently it has been shown that even local search is hard in
some instances, as can be seen in [29] and [107].

2.3.1 Alternative Problem Formulations, Linearizations and
Bounds

There are different, but equivalent, mathematical formulations for QAP which
stress different structural characteristics of the problem and lead to different
solution approaches. In the form of an integer quadratic program, as stated
above, it is very difficult to devise solution strategies. So it is useful to develop
techniques to rewrite QAP as an integer linear program.

In the last forty-five years, many researchers working on QAP have proposed
methods for linearizing the quadratic term in the objective function by introduc-
ing additional variables. The work of Lawler [80] is a fundamental linearization,
deriving the well known Gilmore-Lawler Bound (GLB) and an entire family of
correlated linearizations. The research of Kaufman and Broeckx [73], Frieze and
Yadegar [46] and more recently Adams and Johnson [1], Hahn and Grant [59)
and Ramakrishnan et al. [115] are extremely important on this matter. For a
more complete survey on QAP affairs, see [24], [29], [11], [25], [27], [61], [13],
[28] and [6]. The linearization of Adams and Johnson is reputed to dominate all
the others [1] (excepting Hahn and Grant [59]), and is a mixed integer program
with n? binary variables, n* — 2n3 + n? continuous variables, and n* — n? + 2n
constraints, as presented here:
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max Z Z ki Thi — Z Z kil Yrilg (2.9)
k=1i=1 k=11=1 i=1 j=1
subject to (2.1) - (2.3) and:

Zykilj = Tki Vz,k,lz 17"'7na 175.]7 k#l (210)

j=1
S yki; = ki, Vi g k=1,.,n, i #j k#I (2.11)

=1
Ykily = Yugki s V4 EI=1..n,i#j k#I, (2.12)
ykilj Z Oa \V/iaj7kal:1a"'an7 Z#]? k#l (213)

Closely related to some linearizations are the polyhedral studies performed
by Barvinok [12], Junger and Kaibel [70],[71] and Padberg and Rijal [106], de-
signed to derive the QAP polytope for use with Branch-and-Cut methods. This
family of linearizations usually produces strong linear programming relaxations,
being on the other hand very difficult to solve. If the good linear programming
lower bounds are desirable to obtain success in a Branch-and-Cut framework,
the excessive computational cost to solve the programs is really a problem.
Even the work of Junger and Kaibel [70],[71], over the linearization of Adams
and Johnson([1] demands considerable computational efforts to attain substan-
tial results.

Otherwise, many authors have chosen to work with QAP in its original
quadratic form. Writing QAP trace formulation, we have:

max tr(A — CXBT)XT (2.14)
subject to:
X € A&, (2.15)

The trace formulation was used by Finke, Burkard and Rendl [43] to intro-
duce the eigenvalue bounds, a stronger class of lower bounds when compared to
bounds obtained via mixed integer linear programming. The eigenvalue lower
bounds are, however, very expensive in terms of computational time and dete-
riorate quickly when lower levels of the Branch-and-Bound tree are searched.
Requirements for a good bound are not to be so hard to compute, be easily
evaluated for subsets of the problem which occur after some branching, and, of
course, to be tight. Recently, the work of Anstreicher et al. [5] about bounds for
QAP is based on Semi-Definite Programming relaxations, and these new bounds
are reported to be superior to all the other bounds available from QAP litera-
ture. Solutions for large (and hard) QAPLIB instances as ste36a, ste36b and
nug30 to optimality were obtained by Anstreicher et al. using a Computational
Grid [6].
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2.3.2 Flow Formulations for QAP

Starting with the aid of a flow formulation involving the intermediate flows
between facilities and denoting by fikjl the flow from location i to location j sent
from facility k to facility [, one can write:

max Zza’”x’” — ZZZZCU ikjl (2.16)

k=1 i=1 1j=1k=11=1

subject to (2.1) - (2.3) and:

n
ki
briTki + E ;
Jj=1

Heoo_ gy 27/4,1:1,...,71 (2.18)

k22

Koo> 0,V i,5,kl=1,....n (2.19)

)

bklxh+z MOV ik l=1,..n (2.17)

This was the first technique proposed to linearize QAP, due to Koopmans
and Beckmann [77], and it works just like the other ones: introducing addi-
tional variables and constraints. However, this linearization is very weak, since
constraints (2.17) can be satisfied with zero flows between facilities. The linear
programming relaxation yields then a trivial solution, consequently producing
low quality linear programming lower bounds.

Instead of working with the linearized Koopmans and Beckmann formula-
tion, (2.16) - (2.19), we suggest to rewrite constraints (2.17) into two equivalent
sets, representing the flow balance at the source and sink points for each com-
modity kl:

max 2”: 2”: ALiThi — Z Z cijffjl (2.20)

k=11i=1 (i.) i (kD) k£l

subject to (2.1) - (2.3) and:

_Z Moo= —bgaw, Yok =1, om0 £ k#] (2.21)
SO = by Y ogkl =1 ni A k#] (2.22)
i=1

g = 0,V igkil=1..ni#j . k#I (2.23)

The above flow formulation imply nonzero flows and is able to produce bet-
ter linear programming bounds when compared to the original Koopmans and
Beckmann formulation. It is also well suited to the decomposition method pre-
sented in the next section, having n? binary variables, n* — 2n3 +n? continuous
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variables, and n* —n? 4 2n constraints. In fact, this formulation is not so strong
as the formulation of Adams and Johnson [1], and it is possible to observe some
weakness of the linear programming bounds as the problem size increases. On
the other hand, this flow formulation is very easy to solve. The idea here is to
obtain a well balanced mixed integer programming formulation, which sustain
a reasonable linear programming lower bound, being not so difficult to solve as
the other ones.

Pursuing this objective, one can add a new family of constraints to the above
flow formulation that can make it easier. If the facility k is located at the site 4
and the facility [ is placed at the site j, constraints (2.21) and (2.22) ensure that
the flows from ¢ to j and from j to ¢ equal the demands for the intermediate

commodities by and by. So, if zr; = 1 and 2;; = 1 then — i’;-l = —by; and
—f1¥ = —by, or simply, for by # 0:
LY ;o A
— Jis = l,V 17]’]@7[:1’_,_’7’172#],]{'3&1
b
Lo ;o DL
JE— i = l,V 17]’]@7[:1’_,_’7’172#],]{'3&1
bu. 7
yielding:
LY L . a
ok ok oy ik =1, k#1
b " by, 77" " Mgk
and implying:
blk fq,lzl = bklfjlql,C 3 v Za]ak7l:13unvl7éj7k7él (224)

These seemingly innocuous constraints are the key to balance the flow for-
mulation stated above, equations (2.20) - (2.23), ensuring reasonable linear pro-
gramming bounds and yet producing very easy linear programs. In fact, for
the symmetric instances one set of flow balance equations, (2.21) or (2.22) can
be dismissed. In order to try out all these formulations, comparing linear pro-
gramming lower bounds and mixed integer programming solution time, a set of
computational experiments was carried out.

2.3.3 A Brief Computational Experiment

At this point it is useful to discover how the flow formulation will behave, when
up against some well documented instances from the literature, available in
QAPLIB. In this initial experiment, an implementation using ILOG CPLEX
7.0 Concert Technology for Adams and Johnson linearization and our flow for-
mulation was produced. These experiments were carried out in a SUN BLADE
100 workstation, equipped with one 500 MHz processor and 1 Gbyte of RAM
memory. The QAPLIB instances selected to make part of the test, with sizes
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n varying from 6 to 30, are shown in Tables 2.1, 2.2, 2.3 and 2.4. We are also
solving purely pseudo-random instances, in the same range of sizes. These ran-
dom instances are not Koopmans and Beckmann instances, since they do not
sustain the triangular inequality, and are represented by names beginning with
rpqa plus the size of the instance.

In Table 2.1, we show a comparison between linear programming bounds
obtained by the flow formulation and Adams and Johnson linearization. In
despite of the little degeneracy observed in our bounds, they are achieved at
a low computing cost. Checking the instances with the higher bounds, it is
possible to note that the flow formulation bounds improve quality when dealing
with sparse demand matrices. This is not really a surprise, since Heffley [61] has
concluded that the presence of sparse demand matrices could lead to integral
assignments, when using Koopmans and Beckmann linearization. Because the
flow formulation is in some sense derived from Koopmans and Beckmann model,
we may expect that this property must be common to both. At this point, it is
necessary to remark that in real life applications, one can expect sparse demand
matrices instead of dense ones, as the problem size increases. In Figures (2.3)
and (2.4) we have the obtained results in graphical form.

QAPLIB Flow Formulation Bound Adams and Johnson Bound Integer
instance Ip bound | time[s] Quality [ Ip bound time[s] Quality | Optimal
chrl2a 8593.12 1 0.900 9552 725 1.000 9552
chr12b 7184 1 0.737 9742 508 1.000 9742
chrl2c 10042.7 1 0.900 11156 1068 1.000 11156
chrl5a 8621.94 4 0.871 9513 30146 0.961 9896
chrl5c 9504 4 1.000 9504 3622 1.000 9504
hadl2 894 17 0.541 1621.54 2533 0.982 1652
hadl4 1300.5 62 0.477 2666.12 14778 0.979 2724

lipalOa 318.8 4 0.674 473 50 1.000 473
nugl2 348 10 0.602 522.89 6597 0.905 578
nuglb 621 86 0.540 1041 131923 0.905 1150
nugb 49 1 0.980 50 0 1.000 50
nug6 72 0 0.837 86 1 1.000 86
nug? 118 0 0.797 148 3 1.000 148
nug8 154 1 0.720 203.5 17 0.951 214
scrl0 21958 2 0.816 26873.1 269 0.998 26922
scrl2 25474 5 0.811 29827.3 4555 0.950 31410
tailOa 47953.3 3 0.355 131098 160 0.971 135028
tailOb 855788 1 0.723 1176140 248 0.994 1183760
taiba 10747 0 0.833 12902 0 1.000 12902
taiba 21427.8 1 0.728 29432 1 1.000 29432
tai7a 31730.1 0 0.588 53976 1 1.000 53976
tai8a 41952.2 1 0.541 77502 7 1.000 77502
tai9a 41816 2 0.442 93501 37 0.988 94622

Table 2.1: Linear programming bounds for both formulations under comparison
and respective computing times.

It is time now to confront the flow formulation and Adams and Johnson
linearization. To make our tests a little bit more realistic, we are setting prof-
itabilities to install a facility in a given location. These terms are of capital
importance, since they accomplish the heterogeneities of the environment, and
translates the relation of the system under design to the external world (exter-
nal world connections, location of external markets, policy of ground occupa-
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tion, competition for locations and other interferences). They also serve as a
point of connection with the well established location theory, linear by principle.
The idea here is to verify the assumption that, as the p/q ratio increases, our
model becomes more competitive. In this context, and since linear profitabil-
ity matrices are not available on the instances of QAPLIB, we include linear
profitabilities p = (3_, ;) ari) varying from 0 to 10 times the magnitude of the
quadratic transportation cost component ¢ = (35, ;) 224 ¢ij fi7 ), defining the
linear/quadratic ratio p/q. These linear profitabilities were generated randomly
with the aid of the standard pseudo-random number generator implemented on
the GNU C compiler GCC version 3.0. It may also be observed that because
the problems contained in QAPLIB are purely quadratic, there are no difference
established between cost and demand matrices. This is not of real importance
when dealing with formulations based on Lawler’s linearization (since they pre-
multiply bi; and ¢;;), but the flow formulation is not adapted to deal with zero
transportation costs. This was responsible for some additional effort to rebuild
the instances in a coherent way.

Tables 2.2, 2.3 and 2.4 presents the p/q ratio, and the computing times for
the flow formulation and Adams and Johnson [1] linearization (2.9) - (2.13).
The entries on Tables 2.2, 2.3 and 2.4 assigned with * are describing instances
not solved in 24 hours of computation. In order to provide a better insight on
analysis, we have plotted these results on Figures (2.5), (2.6), (2.7) and (2.8),
in logarithmic scale.

Original Problem Variables p/a Flow form. Adams and Johnson
instance size Integer | Continuous | ratio time[s] time[s]
esc8a 0 6 146
esc8b 0 15 710
esc8c 8 64 3136 0 14 207
esc8d 0 6 196
esc8e 0 14 176
esc8f 0 5 202
nugb 6 36 900 0 2 1
nug? 7 49 1764 0 4 6
nug8 8 64 3136 0 15 227
rpqa7 7 49 1764 0 9 2
rpqas B 64 3136 0 55 33
rpqa9 9 81 5184 0 348 166
tai7a 7 49 1764 0 6 1
tai8a 8 64 3136 0 28 9
tai9a 9 81 5184 0 247 178
tailOa 10 100 8100 0 1197 1218

Table 2.2: Problem dimensions for test instances, number of integer and con-
tinuous variables, p/q ratio and a comparison of integer mixed programming
computing times.

From Tables 2.2, 2.3 and 2.4, we can realize that the linear term on the
objective function is responsible for an expressive reduction of the computing
times, sometimes of an order of magnitude. Beyond this, the flow formulation
appears to balance two desirable qualities: a not so poor linear programming
bound, easy to solve.
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Original Problem Variables p/a Flow form. Adams and Johnson
instance size Integer | Continuous | ratio time[s] timels]
chrl2a 0.426 4 584
chrl2a 0.796 3 629
chr12b 12 144 17424 0.383 5 516
chr12b 0.592 3 492
chrl2c 0.314 3 803
chrl2c 0.662 4 1217
chrlba 0.631 16 14209
chrlba 0.856 6 10125
chr15b 15 225 44100 0.726 36 77071
chr15b 1.817 14 60452
chrlbc 0.944 19 3872
chrlbc 0.807 9 3058
chrl8a 0.564 116 *
chrl8a 18 324 93636 1.304 41 *
chr18b 0.455 21 *
chr18b 1.864 7 *
chr20a 1.047 76 *
chr20a 2.028 28 *
chr20b 20 400 144400 0.824 47 *
chr20b 1.702 10 *
chr20c 1.056 108 *
chr22a 0.304 138 *
chr22a 22 484 213444 0.744 19 *
chr22b 0.293 96 *
chr22b 1.341 18 *

Table 2.3: Problem dimensions for test instances, number of integer and con-
tinuous variables, p/q ratio and a comparison of mixed integer programming
computing times.

In fact, for the problems with linear installation profitabilities, for some
instances it is possible to find the integer optimal solution using our flow formu-
lation before the completion of the linear programming solution of Adams and
Johnson [1] formulation. The only class of test instances in which the flow for-
mulation was defeated was for the instances had * *, just those that has some of
the poorest linear programming bounds. In despite of that, the flow formulation
lack of performance decreases as the ratio p/q grows.

These observations clearly suggest the existence of an equilibrium point be-
tween the bound quality and the cost to compute it. The natural conclusion here
is that Adams and Johnson formulation is so hard to solve that his good linear
programming bounds are overcomed by the large computing times required to
obtain them. Even in some purely quadratic instances it is possible to defeat
Adams and Johnson computing times, as observed in Table 2.2.

We must also consider the solution of the modified versions of the instances
nug30 and ste36a, reported until now only by Anstreicher et al. [6], using large
scale parallel computing. For certain conditions of the p/q ratio, these problems
could be solved in computing times not superior to one hour, as reported in
Table 2.4.

Based on the former discussion and on the good solution times acquired
by our flow formulation, we introduce a Benders decomposition scheme for the
problem.
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Original Problem Variables p/a Flow form. Adams and Johnson
instance size Integer | Continuous | ratio time|s] timels]
hadl2 0.585 35 14
had12 12 144 17424 1.5634 2 3
hadl2 4.707 2 3
had1l4 0.464 20 42
had1l4 14 196 33124 1.312 8 7
hadl4 2.592 12 8
hadl6 16 256 57600 0.827 12 16
had1l6 1.036 12 11
had18 18 324 93636 0.689 209 74
had18 1.590 89 49

lipalOa 2.375 2 1
lipalOa 5.770 1 1
lipalOb 10 100 8100 0.693 6 4
lipalOb 1.440 1 1
lipalOb 2.524 1 1
nugl2 2.401 3 110
nugl2 12 144 17424 3.621 3 30
nugl2 8.584 1 9
nuglh 0.990 61 1350
nuglb 15 225 44100 1.113 24 258
nuglh 2.981 5 94
nuglh 5.522 6 126
nug20 0.434 1069 *
nug20 20 400 144400 3.268 42 654
nug20 4.477 80 799
nug30 30 900 756900 0.769 2719 *
nug30 1.358 1779 *
scrl0 10 100 8100 0.221 22 311
scrl0 0.414 7 95
scrl2 12 144 17424 0.188 146 13554
scrl2 0.336 54 6854
ste36a 0.843 2896 *
ste36a 36 1296 1587600 1.199 2801 *
ste36a 1.871 2196 *
tailOb 0.003 197 344
tailOb 10 100 8100 0.013 96 714
tailOb 0.023 95 658

Table 2.4: Problem dimensions for test instances, number of integer and con-
tinuous variables, p/q ratio and a comparison of mixed integer programming
computing times.

2.4 Benders Decomposition of the Problem

Benders partitioning method was published in 1962 [17] and it was initially
developed to solve mixed integer programming problems. The computational
success of the method to solve large scale multi-commodity distribution sys-
tem design models has been confirmed since the pioneering paper of Geoffrion
and Graves [53]. Magnanti and Wong [89] proposed a methodology to improve
Benders decomposition algorithm performance when applied for solving mixed-
integer programs. They introduced a technique for accelerating the algorithm
convergence and developed a theory that distinguishes ”good” formulations for
those problems that have different, but equivalent, possible formulations. We
can also remark the work of Geoffrion, on the generalized Benders method [52],
and Balas and Bergthaller [10] revisiting the cut generation procedure. A Ben-
ders partitioning method essentially relies on a projection problem manipulation,
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Figure 2.3: Comparison of linear programming bounds for both formulations.

that is then followed by the solution strategies of dualization, outer linearization
and relaxation.

Starting with the flow formulation described by equations (2.20) - (2.23),
from the viewpoint of mathematical programming we can conceive a projection
of the problem onto the space of the assignment variables x, thus resulting the
following implicit problem to be solved at a superior level:

min — > Y axwk + tx) (2.25)

k=11i=1

subject to (2.1)-(2.3)
where t(x) is calculated by the following problem to be solved at an inferior



18 CHAPTER 2. ASSIGNMENT PROBLEMS

Comparison of LP computing times
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Figure 2.4: Comparison of Ip computing times for both formulations.
level:

t(z) = min Z Z Z Z Cij ikjl (2.26)

subject to:

n
kl
21
j=1

—bkll‘]ﬂ' y Y i,k,l = 1, ...,n,i 3&] ,k‘ #l (2.27)

ST = by Y Gkl =1 mi £ kAL (2.28)
=1
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Figure 2.5: Comparison of mip computing times for both formulations.

Kkl . . o . .
> 0,V kil=1.,ni#j k£l (2.29)

for x fixed.

The feasibility requirements related to the integer variables x implies that
the facilities for which xx; = 1 are such that the superior level solution is an
assignment between the set of facilities and the set of locations. Thus, there is no
need for further feasibility constraints on the domain of the projected problem
(2.25), and the existence of the minimum in the subproblem (2.26)-(2.29) is
ensured since we are minimizing a convex function in a nonempty set.

Since the subproblem has a linear objective function and linear constraints,
the Karush-Kuhn-Tucker conditions are necessary and sufficient for optimality.
With two associated vectors v5" and uf* of dual variables, and since there is
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Comparison of conputing times for p/q >0
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Figure 2.6: Comparison of mip computing times for both formulations.

no duality gap for any x which forms an assignment, the optimal value of the
subproblem can be written as:

t(xz) = max Zn:zn:zn:bklxljvfl - Zn: . Zn:bkl:z:kiufl (2.30)
k=1 1=1 j=1 k=11=1 i=1
subject to:
oM — < e Y ik =1, n, i # ] k# (2.31)
o e ROV GkiI=1,.n, i#] k#I (2.32)
uft e R,V i kil=1,..n,i#j k#I (2.33)
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Figure 2.7: Comparison of mip computing times for both formulations.

for z fixed.

At this point, it is interesting to observe that the feasible solution set of
the dual subproblem is always the same, independently of the assignment .
So, for every x, the value of the dual objective function underestimates the
corresponding primal objective cost. If at a certain cycle h the subproblem
has been solved for a given assignment x7, the optimal value t(z") occurs for

kl,h kl,h o
vfl v; " and ukl = 4" and is given by:
n n n n n n
h b, klh b klh
tat) = 32002 buatiuy™ =30 Y bui; (2.34)
k=11=1 j=1 k=11=1 i=1

Using the fact that a supremum is the least upper bound, the problem (2.25)
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is equivalent to the master problem:

subject to (2.1) -

min — Zza’”m’” + n

k=1 1i=1

(2.35)

(2.3) and:

n

Z SN buakiw

11=1 j=1 k=11=1 =1

VR (2.36)
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Figure 2.9: An example of automatic construction of a feasible solution for the
dual subproblem.

2.4.1 Subproblems

For a fixed assignment associated with the matrix 7, the computation of a min-
imal cost flow #(z") can be separated in a series of trivial network flow problems,

one for each pair kl. We remark that, for an optimal solution (z%,, ffjl’h) for the
kih
V..

primal problem, an associated optimal solution ( ’ ,ufl’h) for the dual sub-

problem (2.30) -(2.33) should minimize for each fJ the correspondent parcel of
the associated Lagrangean function.

This dual problem has many feasible solutions, contrarily to the primal prob-
lem that has an unique trivial solution. Since ffjl’h = by if 2}, = 1 and x{; =1
we have from the complementary slackness condition that:

kL,h kL,h . .
S < ¢,V 4,i=1,.,n1#j k#I
vfl’h — ufl’h = ¢y, if 2f; =1 and xZ =1

In such a way that we can obtain the following dual feasible solution, asso-

ciated with the primal solution fikjl’h (see Figure (2.9)). Fixing a single variable
kLh - - .
u,; ", it is possible to construct:

R = s Y =1, i A, kA (2.37)

7 [

kl,h ki,h .
i :

And using the above defined v;", we can define the other variables u,
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urth Mh el Y i=1,n, i, kA (2.38)

=max;  jzi [V

The systematic evaluation of the dual variables with meaningful values is a
clue for an efficient implementation. Here, the two series of dual variables can be
interpreted as price information. Each variable vfl’h represents the commodity
price after flowing from facility k to facility [, if facility [ is placed at location j.
The variables ufl’h represents the commodity price before flowing from facility
k to facility [, if facility & is placed at location 3.

2.4.2 Enhancing the Benders Decomposition Algorithm
with Flow Equilibrium Constraints

Our task now is to modify the above proposed scheme to accomplish constraints
(2.24). It is possible to observe that (2.24) describes a coupling between the flows
of commodities kI and lk. In order to perform the task, it is necessary to point
that, for a fixed z = z”, the primal subproblem for commodities kI and Ik is,
for k #1:

n n

min > N (e [ + ciifji)

i=1 j=1
subject to:
n
_Zfikjl = —bpTr, ¥V i=1,.,ni%#]
j=1
n
_Zf]l‘f = —byxy,V j=1,..ni#]j
i=1
n
Z o= bumy Vo i=1 i #
i=1
n
Z W= bpak, Voi=1,..ni#]
j=1
b fl = buf LV =1 ni#

Kl
ij
Ik
gt

Y

0,V i,j=1,.,ni#j
0,V i,j=1,.,ni#j

Y

The trivial and unique solution of this problem is fi’;-l = by; and f]lf = by,

for z3; = 1 and z;; = 1, and ikjl =0 and jlf = 0 otherwise. This result leads

to the dual subproblem for commodities kl and Ik, for @ = 2", k # I:
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max by ( lej v; lea )+ buk( Zﬂsz lej

j=1

subject to:
Lo Al < ey Y odi=1,0m i #
Ol — b — < e YV =10 i

ﬁl R,V j=1,...,n i#j
R,V i=1,..,n i#j

m Mm

Kl
Uy

Fixing at a reference value a single variable uf and also a single variable

¥, making Al = 0 for i and j such that zj;; = 1 and }; = 1, it is possible to
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Using the above defined v;"" and v}*", we have for uf! and ul¥:
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We must remark that, an enough high value of A¥
klLh

ij can eventually increase

the value of w;" while eventually decreasing the value of uék " The idea here
is to decreabe the value of any component of vector u as far as possible, but
never increasing the value of another component. Constructing a consistent dual
solution we have to fix, for instance, all the components of vector A" > 0 as high
as possible, while maintaining the idea of never increasing of any component of

vector u:
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And determining )\g’h in such way that:
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b
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After this step, we have a way to reduce some values of the origin prices u
for commodity lk:
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k,h
u.

lk,h KL,k . L,
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3

Now, we are ready to try out our decomposition algorithm over a set of
instances, object of the next section.

2.5 Computational Experiments Using Enhanced
Benders Decomposition

These experiments follows the same standards and adopted convention used to
compare the flow formulation and Adams and Johnson formulation [1]. The
tests were carried out in a Sun Blade 100 with one 500 MHz Ultra-SPARC
processor and 1 Gbyte of RAM memory. The operational system is Solaris 5.8.
The Benders decomposition algorithm was implemented in C++ with CPLEX
7.0 application programming interface called ILOG Concert Technology. To
perform the tests, instances from QAPLIB, by Burkard, Karish and Rendl [29],
with sizes from n = 8 to n = 36 were selected. The QAPLIB instances selected
to make part of the test, are shown in Tables 2.5 and 2.6. We have solved
purely pseudo-random instances, in the same range of sizes. These random
instances are not Koopmans and Beckmann instances, since they do not sustain
the triangular inequality, and are represented by names beginning with rpga
plus the size of the instance. We are setting profitabilities to install a facility in
a given location, from p/q = 0 to p/q = 16. Tables 2.5 and 2.6 presents the p/q
ratio, and the computing times for the Benders decomposition algorithm.

Original Problem | Iterations Variables p/a Benders algorithm
instance size h Integer | Continuous ratio timels]
esc8a 8 82 64 3136 0 473
nugb 5 33 25 400 0 11
nug6 6 188 36 900 0 1266
nugl2 12 102 144 17424 1.810 663

23 3.621 11
31 3.621 26
nuglb 15 11 225 44100 4.881 2
15 6.303 5
63 1.258 661
nug20 20 13 400 144400 3.992 11
9 4.477 2
roul2 12 99 144 17424 2.630 199
ste36a 36 108 1296 1587600 3.853 1381
40 5.780 108
taiba 5 45 25 400 0 14
taiba 6 188 36 900 0 1071
tai7a 7 657 49 1764 0 90437

Table 2.5: Problem dimensions for test instances, number of integer and con-
tinuous variables, p/q ratio and computing times for Benders decomposition.

We are able now to compare the decomposition algorithm to the mono-
lithic implementation of the flow formulation, evaluating the decomposition cost,
given by loss of information at the superior level. This is done in Table 2.7.
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Instance Problem Iterations Variables p/a Benders algorithm
name size h Integer | Continuous ratio time[s]
40 2.395 67
37 2.412 56
102 2.490 842
47 2.667 94
53 2.680 136
rpqal6 16 33 256 57600 2.701 53
19 2.752 12
20 4.158 12
15 4.400 6
20 4.508 12
17 4.583 8
74 3.261 821
40 4.483 124
42 4.496 146
36 4.598 101
31 4.731 72
30 4.771 63
rpqa2b 25 21 625 360000 5.194 30
21 5.381 29
11 5.767 6
26 5.801 40
15 5.816 11
20 6.071 22
15 6.377 11
21 3.037 5
rpqa9 9 6 81 5184 7.594 0
5 11.071 0
3 15.189 0

Table 2.6: Problem dimensions for test instances, number of integer and con-
tinuous variables, p/q ratio and computing times for Benders decomposition.

Tables 2.8 and 2.9 presents an evolution of the computing times for Benders
decomposition algorithm and for our monolithic implementation. These results
are plotted in Figures (2.10), (2.11) and (2.12).

As one can see, the computing times for the flow formulation monolithic
implementation are sometimes better than those obtained by Benders decom-
position scheme. The exception occurs on the situations that we deal with the
larger instances, with higher p/q ratios. This effect is due to the master problem
strengthening, that accelerates the lower bound progression.

We can sustain that high p/q ratios better describe the cost structure of
real large scale implementations, and that the linear parcel, that represents the
profitability of a given location, can be considered in some cases more important
than the transportation costs, from the economic point of view. This is specially
true when we think in location theory, since the linear term gives the profitability
of a location for an economic activity. The economic equilibrium condition is
so found for p/q = 1, and all situations where p/q > 1 capture liquid profit for
the considered optimal location for at least one activity. It is necessary to make
clear that our objective, when we start to develop the decomposition scheme,
was to go were no one has gone before: proceed with the solution of larger
instances. This is impossible without decomposition since, for instances of size
beyond 40, CPLEX crashes down due to lack of computer memory.

In fact, for large p/q ratios, it is possible to solve larger instances, without use
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Original Problem Iterations Variables p/a Benders algorithm Flow form.
instance size h Integer | Continuous | ratio time[s] time[s]
chrl2a 55 1.571 196 3
chr12b 12 31 144 17424 2.555 59 4
chrl2c 81 2.374 736 4
chrlba 142 1.383 3349 8
chrl5c 15 76 225 44100 2.191 1283 3
chrl5b 28 3.268 27 4
nuglh 15 9 225 44100 1.894 2 7
nug20 20 30 400 144400 3.267 35 61
nug30 30 44 900 756900 1.889 188 1236
chrl8a 18 68 324 93636 2.407 201 16
chr18b 3 21.40 0 11
chr20a 9 10.82 2 19
chr20a 5 8.948 0 18
chr20a 4 3.871 1 18
chr20a 38 4.266 56 26
chr20a 20 50 400 144400 4.728 99 20
chr20b 4 10.75 0 20
chr20b 4 6.854 1 20
chr20b 15 4.069 6 20
chr20b 45 2.268 65 22
chr22a 22 69 484 213444 2.265 425 34
had12 12 13 144 17424 2.531 4 3
hadl4 14 25 196 33124 2.591 19 13
hadl6 16 9 256 57600 1.035 2 12

Table 2.7: Problem dimensions for test instances, number of integer and contin-
uous variables, p/q ratio and computing times for Benders decomposition and
flow formulation.

of massive parallel computing, as can be seen in Table 2.10 where the computing
where limited to 36 hours.

We are considering these results very expressive, since there is no solution
report in the literature for any instance of size beyond 36, considering any
available formulation or algorithm. Since any extension of a A/P-hard problem
is also NP-hard, the addition of information about the external environment,
trough the linear profitabilities, do not makes Q AP easier, in a theoretical point
of view. This fact is confirmed by the computing times observed for the larger
instances (Table 2.10).

2.6 Concluding Remarks

On the cases where we can define or compute heterogeneous profitabilities, it is
possible to solve large instances of QAP, without an excessive computational
cost or the use of massive parallel computing. This conclusion has its founda-
tions on the pioneer work of Koopmans and Beckmann and also on the work
of HefHley, many years later. The inclusion of heterogeneous profits for location
is a natural step when considering location theory, and can introduce external
environment influence on the location decision process, being more realistic.
Once established this, the new flow formulation has proved to unify desirable
qualities for a good mathematical programming implementation: be easy to
solve, giving good linear programming bounds. These two qualities are directly
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Figure 2.10: Evolution of computing times with p/q ratio.

responsible for the good computing times achieved, and also for the solution of
larger instances at reasonable cost, until now obtainable only trough the use of
computational grids.

For the instances of size beyond 40, the Benders decomposition algorithm
appears to be the best choice to find an exact solution, avoiding excessive space
and time complexity, if we observe some conditions about the cost structure.

For future work, it is necessary to better explore the equilibrium between
bound quality and cost of computation, detecting when and how to merge easy
to compute and stronger and hard to compute formulations for a given problem.
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Figure 2.11: Evolution of computing times with p/q ratio.

p/q ratio 0 1 2 4

Instance Hlow Benders flow Benders flow Benders flow Benders
nugl2 * * 5 101 2 2 1 1
nuglh * * 7 129 7 23 5 0
nug20 * * 139 30751 55 13 52 8
had14 * * 16 4 5 1 5 1
hadl6 * * 12 27781 22 130 11 3
had18 * * 31 3595 39 18 24 1
chrlba * * 6 511 7 32 5 4
chrl5b * * 35 748 6 45 3 22
chrlbc * * 19 469 5 37 2 89
chrl8a * * 40 * 7 16 6 4
ste36a * * 2821 * 2196 * 1971 952

Table 2.8: Evolution of computing times for Benders algorithm and the flow
formulation
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Table 2.9: Evolution of computing times for Benders algorithm and the flow

formulation




32

CHAPTER 2. ASSIGNMENT PROBLEMS

Original Problem Iterations Variables p/a Benders algorithm
instance size h Integer Continuous ratio timel[s]
tho40 40 278 1600 2433600 2.161 43734
sko49 49 268 2401 5531904 8.386 57170
100 10.240 4224
sko64 64 295 4096 16257024 8.303 134236
118 9.707 6859

Table 2.10: Solution of larger instances using the Benders algorithm.




Chapter 3

The Placement of

Electronics with Thermal
Effects

3.1 Introduction

Nowadays, all the electronic and micro-electronic devices are migrating from
controlled environment places (laboratories, offices) to the direct application
ones (our houses, cars, and even clothes). This fact introduces a new element
in the product reliability equation: the capability of maintaining design con-
ditions during operation. The engineers and designers are now facing a new
challenge: how to protect the most vulnerable parts of this kind of component
against damage on the application environments? They are dealing with high
temperatures, atmospheric residues, mechanical interference and vibration. Is
it possible to create products which are just designed for maximum efficiency
and ignore these operational conditions? The answer seems to be no. In fact,
reliability is a well known component of the quality function deployment.

It is important to remark that the heat transfer efficiency is a strong con-
straint when designing more powerful computing machinery. This is a major
reason for the recent efforts on dealing with thermal problems on the micro-
electronic domain, as can be seen in Lorente, Wechsatol and Bejan [81], Zuo,
Hoover and Phillips [131], Visser and Kock [126] and Rocha, Lorente and Bejan
[117]. The work of Wechsatol et al. [127] is a good reference on how network
flow models can be used to design an optimized distribution coolant network for
electronics systems. Several efforts have been done to obtain solutions that com-
promise electronic components placement and temperature profiles, see Huang
et al. [66], [65], [64] for MCM (Multi Chip Modules) design, and Queipo [113],
[112]. For a more complete survey on the electronics cooling matter, we suggest
to read Burmann et al. [30], Boyalakuntla and Murthy [22], Tucker [125], Ros-

33
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ales et al. [118], EYK, Wen and Choo [100], Craig et al. [39] and Queipo et al.
[111].

In order to overcome the problem, we must have a computer optimization
algorithm which is capable of solving combinatorial placement problems in an
efficient manner. It must be powerful enough to deal with the secondary met-
ric — the thermal component. The exact optimization methods are not well
succeeded in dealing with real size instances and the heat transfer associated
problem is nonlinear and non-convex, although. In this work we design a Ben-
ders decomposition based algorithm that is capable to solve exactly the place-
ment problem keeping good solutions for the maximum temperature rising on
the surface board. The proposed algorithm is a heuristic. The models devel-
oped by Queipo [113] and Huang [65] and our approach are very similar, but
instead of dealing with the thermal-placement combined problem with the aid
of metaheuristcs, we are proposing a performance guarantee heuristic.

In section 3.2, the thermal model is developed and the temperature penalty
function is considered, being appreciated aspects involving the use of Finite
Volume Method [108] to solve the Energy Conduction Equation and the con-
cerning boundary conditions. In section 3.3, the computational experiments
and the corresponding results are shown, where the test instances are viewed in
a detailed way, resuming some concluding remarks and giving hints for future
work.

On the placement design of electronic boards, one needs to place n elec-
tronic components to n established locations in a printed circuit card, building
the complete electronic board. As proposed by Steinberg (see [29]), it is inter-
esting to minimize the distance among components which has greater levels of
interactivity and energy or data flow, in order to avoid excessive signal delays.
This is a location problem which can be modeled as an instance of the QA P. On
the other hand, if all the major heat sources are put together, one can create a
so called “hot-spot” on the board: a specific region of high energy dissipation
that causes usual heat sinks to present low efficiency. Then it becomes necessary
to investigate the sensitivity of optimal placement solution, when a new quality
criterion is introduced: the maximal surface temperature.

3.2 Thermal Modeling and Temperature Penalty
Costs

It is necessary to develop the capability to simulate the thermal field behavior
for a given assignment. The main equation for heat transfer phenomena is the
well known Energy Conduction Equation, given here in two-dimensional form:

8T 9T oT
52@ + Iﬂya—y2 +9(z,y,7) = pcpa (3.1)

where T is the temperature [°C], z and y are the spatial coordinates [m],
g(z,y,7) is the heat source volumetric rate discrete distribution [W/m?3], 7 is
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the time [s], x is the thermal conductivity [W/(°C - m)], p is the characteris-
tic density [kg/m3] of the system and ¢, is the constant pressure specific heat
[kJ/(°C - kg)]. This second order partial differential equation is subject in each
lateral side to the following boundary conditions:

8T conv
_K:zAz 82’ |z:z1 - h‘l AZ(T — Too)
oT
—ky Aoz, = WP AL(T — Teo 2
Ay = BEAL(T — To) (32)
8T conv
—ryAy By ly=y, = 5" Ay(T — To)
oT
—Ky Ay ——|y=y, = R A, (T — T
Ky Ay By ly=ys 4 y( )

and to an initial condition like:

T|ory =T (3.3)

Here, h§°™, for each i = 1,2, 3,4, is the convective heat transfer coefficient
[W/(°C -m?)] at each corresponding boundary. The natural and forced convec-
tive heat transfer over the horizontal surface is included as a general negative
source term packed in g(z,y,7), having the same form of (3.2), approximating
the combined heat transfer coefficient by:

onY e = % -0.664 Rel/2 prl/3 (3.4)
where Re is the associated Reynolds Number, Pr is the Prandtl Number and L
is a fluid flow geometry dependent length [m]. To obtain good solutions for this
model, we can use a simple version of the Finite Volume Technique [108]. In our
discretization, we are using a mesh nine times the size of the test instance (Fig-
ure (3.1)). Only the two-dimensional isotropic steady state situation is under
analysis. The Central Difference Interpolating Scheme was adopted, and an av-
erage heat source term in each volume is used to accomplish the discrete nature
of heat source distribution. Since steady state heat conduction usually presents
good solution properties for the associated Finite Volume equation set, we can
not observe numerical diffusion, instabilities or other numerical degradation at
this level of grid resolution. All the thermo-physical properties used to describe
the thermal model are given in Table 3.1 (the boundary convective conditions
was chosen as typical values in electronics equipments [16], [123]).

3.2.1 Maximum Temperature and Penalty Costs

When solved, the thermal model (equations (3.1)-(3.4)) can determine the high-
est temperature over the electronics board under investigation. It is interesting
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Table 3.1: Thermo-physical properties for the thermal model.

Environment Temperature 25 °C
Total Dissipated Power 120 W
Lateral Board Dimension (L) 0.20 m

Thermal Conductivity (Glass Fiber - Epoxy) | 5.9-107! W/(m - K)
Lateral Convective Heat Transfer Coefficients | 1.0 - 107*W/(m? - K)

Finite Volum Grid

0.20 m.

Figure 3.1: QAP instance and Finite Volume Grid representation.

to remark that, for each fixed assignment x given by the master problem (2.35)-
(2.36), see chapter 2, a different temperature field and maximum temperature
must be found. Since the source term g(z,y,7) is given by the power dissipa-
tion of each electronic component being assigned to a given location, it is not
trivial to obtain analytical solution for (3.1)-(3.4), considering the discrete na-
ture of the power source distribution over the board (in fact, this singularity is
the reason for the adoption of a Finite Volume technique). Beyond this, since
the maximum temperature is not obtained explicitly, it is very difficult to es-
tablish a function correlating the maximum temperature and the assignment z,
becoming virtually impossible to ensure mathematical properties like convexity,
discarding approaches via generalized Benders decomposition [52].

It is necessary to point that the maximum temperature over the electronics
board under study is an important design variable, since it determines partially
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the reliability of the project on the application environment. If this tempera-
ture is very high, an entire new cooling system for the electronics board can
be necessary, enhancing costs. Once defined a threshold, based on the design
operational conditions, we can conceive a penalty function. This function would
be responsible for taking into account the costs associated with maximum tem-
peratures beyond the design established threshold, comprehending additional
maintenance, cooling and environmental costs, for instance. In this case, we
choose to use the following function to play this role:

cLemp _ { u 0 y for Thnae < Tinreshold (3.5)

P — 2
raise Tmaw — Tthreshold) , for Tmaw > Tthreshold

Additional Cost [$]
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Figure 3.2: The penalty overheating cost function, for a threshold temperature
of 85 Celsius.

Where cf:;l '? is the cost [$] associated with temperature raising T, q, beyond
the threshold Tipreshold, and p is an estimative of additional cost unit per Celsius
degree [$/°C?] (see Figure (3.2)). Unfortunately, even constructing (3.5) as a
convex function of T},4., we remark that T),,, iS not smooth or continuous,
considering the assignment variables x. But, this also means that the Pareto
optimal solution for the combined problem is always between the following two
bounds: the lower-bound, given by the placement problem optimal solution,
and the upper-bound, given by the placement problem optimal solution added

to the associated thermal cost component.



38CHAPTER 3. THE PLACEMENT OF ELECTRONICS WITH THERMAL EFFECTS

We can conceive now a performance guarantee heuristic to determine good
solutions for the both point of views: thermal performance and placement cost.
On the search for the optimal placement, we can examine the thermal cost
component for each assignment solution, keeping the best upper bound. When
the optimal placement solution is found, we just choose the lowest total cost
(the best upper bound), combining placement and thermal cost components.

Defining the combined thermal-placement problem lower bound as the opti-
mal solution for QAP,

LB = QAP ptimal (3.6)

and the combined thermal-placement problem upper bound as the optimal so-
lution for QAP plus the associated overheating penalty,

UB = QAPO timal T CTemp 3.7
P

raise

we can then pick the best feasible solution found

BEST = (QAP + cIm)yq. (3.8)

raise

At this point we remark that the performance guarantee of a heuristic algo-
rithm for a minimization problem is a (o > 1) if the algorithm is guaranteed to
deliver a solution ¢ whose value is at most « times the optimal value: ¢ < ap*.
Since we do not have the value of the global minimum for the combined thermal-
placement problem (¢*), we can only provide the following indirect relation:

LB < ¢*, BEST < aLB, BEST < ayp* where a« = UB/LB.

This is true because ¢ “"?

raise

define the optimality gap as:

> 0 by construction, and it is now possible to

BEST - LB

GAP = 7z

(3.9)

An illustration of this method is depicted in Figure (3.3).

3.3 Computational Experiments

3.3.1 Experiment Description

When designing our computational experiments, we are interested on making
our test instances realistic. Following this objective, we can observe that the
relationship between the system (the electronic board, in this case) and the
application environment (external world connections, internal space restrictions,
other interferences) has the same importance as the interrelations among the
system components, being even more important sometimes.
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Figure 3.3: Evolution of bounds during the method execution.

In this context, we have chosen to establish linear installation costs p =
(Z(k 0 ax;) varying from near 1 to 4 times the magnitude of the quadratic

cost component ¢ = (3 5y 2o () Cij fi’}l). These linear costs were generated
randomly with the aid of the standard pseudo-random number generator imple-
mented on the GNU C compiler GCC version 3.0. In fact, the addition of the
linear installation costs was directly responsible for the efficiency of the solution
procedure when dealing with larger instances, since this increases the master
problem strength.

The set of test instances can be divided in two subsets. The first subset,
composed by instances available in QAPLIB [29], with instance sizes from 6 to
36. The linear costs were generated randomly as described above. The name
of the instances selected from QAPLIB, their size (number of variables), the
mixed-integer linear program size (number of integer and continuous variables)
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and the Finite Volume grid size are shown in Table 3.2. The second subset
of test instances is also shown in Table 3.2, and it is composed by entirely
randomly generated test instances, with sizes from 9 to 36. It is also possible to
see in Table 3.2 the component disposition over the electronics board surface.
The column for component distribution shows how the n components are being
disposed over the surface board. It is necessary to point that the thermo-physical
properties and the board dimension are not being changed from one instance to
another. In this sense, when the instance size increases, we are just placing a
larger number of smaller components.

Table 3.2: Test instances for computational experiments.

Name Size Integer Variables Continuous Variables Fin. Vol. grid Component Distribution
nug06 6 36 1296 54 3 X2
tail06 6 36 1296 54 3 x 2
nug08 8 64 4096 72 3 x 2
tail08 8 64 4096 72 4 x 2
esc08a 8 64 4096 72 4 x 2
esc08b 8 64 4096 72 4 x 2
esc08c 8 64 4096 72 4 x 2
esc08d 8 64 4096 72 4 x 2
esc08e 8 64 4096 72 4 x 2
escO8f 8 64 4096 72 4 x 2
tail09 9 81 6561 81 3x3
taill0 10 100 10000 90 5% 2
lipalOa 10 100 10000 90 5% 2
lipalOb 10 100 10000 90 5 X 2
roul0 10 100 10000 90 5% 2
scrl0 10 100 10000 90 5% 2
nugl2 12 144 20736 108 4 x 3
taill2a 12 144 20736 108 4 x 3
roul2 12 144 20736 108 4 x 3
scrl2 12 144 20736 108 4 x 3
nug20 20 400 160000 180 5% 4
ste36a 36 1296 1679616 324 6 X 6
ste36b 36 1296 1679616 324 6 X 6
rpqa9 9 81 6561 81 3 x3
rpqal6 16 256 65536 144 4 x4
rpqa2b 25 625 390625 225 5% 5
rpqa36 36 1296 1679616 324 6 X 6

The intensity of each component heat source is a relative inter-activity mea-
surement, defined as having a direct reason with the energy/information flow
matrix given on the instance under analysis, plus a small pseudo-random parcel.
The heat sources were also adjusted to ensure physical consistency, resulting on
temperature ranges typically observed in electronics equipments. As the size of
the instance is increased, the heat sources are redistributed in such way that the
same temperature ranges can be observed. We choose 85° Celsius as threshold,
since we are designing an electronic board. The board under study is probably
used as host for semi-conductive devices as microchips, and over this temper-
ature, must experience some performance loss. Referential values for the heat
source ranges and temperature threshold used here are available in [16] and
[123]. The adopted value for the parameter 4 in equation (3.5) was 5.
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3.3.2 Numerical Results

Our computational experiments were carried out in a Sun Blade 100 Work-
station equipped with a 500 MHz Ultra-SPARC processor and 1 Giga byte of
RAM memory, running Solaris 5.8. The Benders decomposition algorithm was
implemented in C++, using ILOG CPLEX 7.0 Concert Technology application
programming interface, on the solution of the master problem. Table 3.3 shows
the obtained results for the first set of tests, for the linear/quadratic cost ratio
p/q kept between 1 and 2. This table lists instance name, instance size, number
of Benders iterations h, linear/quadratic cost ratio p/q for the optimal solution,
Gap(%) as defined by equation (3.9) and the execution time. Tables 3.4 and
3.5 points, respectively, to the second and the third sets of experiments. For
all these tables, the entries marked by ”*” could not be solved in 24 hours of
computing.

Table 3.3: Results for computational experiments - first set.

Name Size h Optimal p/q cost ratio | Gap (%) | Time [s]
nug06 6 9 1.25 0 10
tail06 6 8 0.95 0 11
nug08 8 12 1.13 8.3 120
tail08 8 10 1.49 2.5 117
esc08a, 8 3 1.36 0 118
esc08b 8 5 1.08 1.5 103
esc08c 8 4 0.99 0.5 115
esc08d 8 4 1.13 4.3 106
esc08e 8 5 1.15 9.7 98
esc08f 8 4 1.33 6.4 123
tail09 9 20 1.18 12.1 305
taill0 10 16 1.45 10.5 419
lipalOa 10 30 1.34 5.4 383
lipalOb 10 31 1.24 0.7 372
roul0 10 32 1.19 8.2 385
scrl0 10 33 1.15 11.8 369
nugl2 12 37 1.45 33.1 521
taill2a 12 26 1.14 25.6 483
roul2 12 40 1.05 18.6 454
scrl2 12 30 1.12 30.5 427
nug20 20 112 1.26 24.3 6019
ste36a 36 * * * *
ste36b 36 * * * *
rpga9 9 42 0.98 12.9 358
rpqal6 16 105 1.61 15.4 464
rpqa2b 25 148 1.18 16.1 3348
rpqa36 36 * * * *

It is possible to note in these three tables that the gap between solutions can
be respounsible for a great amount of the total cost. Remembering that the heat
source distribution is partially randomly generated, we can observe that there
is no relation between the optimality gap and the size of the instance. This is
also true for the ratio p/q. Otherwise, the number of Benders iterations and the
solution time apparently reduces as the ratio p/q increases, as plotted in Figures
(3.4) and (3.5) for the instances nugl2 and nug20. In order to compare the dif-
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Table 3.4: Results for computational experiments - second set.

Name Size h Optimal p/q cost ratio | Gap (%) | Time [g]
nug06 6 7 2.12 1.1 10
tail06 6 8 2.87 0.8 12
nug08 8 9 2.44 0.5 30
tail08 8 5 2.72 0.7 109
esc08a 8 3 2.6 2.1 32
esc08b 8 4 2.94 0.6 64
esc08c 8 2 2.55 0.9 86
esc08d 8 2 2.46 0.7 7
esc08e 8 2 2.24 1.7 42
escO8f 8 4 2.11 1.3 35
tail09 9 11 2.01 0.4 105
taill0 10 12 2.57 0.6 296
lipalOa 10 15 2.62 5.4 374
lipalOb 10 16 2.63 0.3 340
roulO 10 20 2.66 12.5 333
scrl0 10 16 2.05 11.8 298
nugl?2 12 26 2.18 8.8 160
taill2a 12 26 2.82 14.9 282
roul2 12 22 2.64 11.3 351
scrl2 12 13 2.45 4.7 187
nug20 20 60 2.85 8.3 981
ste36a 36 237 2.58 22.1 1876
ste36b 36 213 2.79 19.4 1381
rpqa9 9 19 2.47 2.7 358
rpqal6 16 54 2.23 12.3 464
rpqa25 25 74 2.83 21.1 821
rpqa36 36 348 2.76 28.7 2971

ference between only placement solutions and penalizing overheating solutions,
Figures (3.6) and (3.7) show the temperature field over the board in both situa-
tions. They correspond to the best solution for the instance ste36a considering
overheating cost, and the temperature field for optimal QAP solution of ste36a.
As we can see, the method was capable to find a solution that has a total cost
lower than optimal QAP solution. This solution designs a system that is colder
than the first one.

3.4 Concluding Remarks

In this paper, an approach to solve the electronic board design problem, de-
scribed as a quadratic assignment problem instance, has been presented. An-
other important quality solution criterion was under analysis: the maximal
temperature over the board surface. Methods to study the thermal field be-
havior were discussed. The Benders decomposition algorithm was used as a
solution technique to the proposed problem. The presented results report that
overheating can respond for a great amount of the total cost, when considered.

It is interesting to remark that other quantities — depending on the selected
application — could be used as secondary quality criteria for the solution. Also,
depending on other design parameters, many of other kinds of information could
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Table 3.5: Results for computational experiments - third set.

Name Size h Optimal p/q cost ratio | Gap (%) | Time [s]
nug06 6 2 3.02 0.1 4
tail06 6 3 3.76 1.2 6
nug08 8 3 3.29 9.0 2
tail08 8 5 3.21 12.1 6
esc08a 8 4 3.92 10.1 5
esc08b 8 2 3.07 3.1 15
esc08c 8 3 3.69 3.1 10
esc08d 8 3 3.78 10.1 1
esc08e 8 3 3.43 5.2 23
escO8f 8 2 3.29 8.1 5
tail09 9 5 3.16 7.0 7
taill0 10 12 3.72 11.0 170
lipalOa 10 10 3.42 17.3 124
lipalOb 10 11 3.94 4.3 115
roulO 10 12 3.21 5.6 162
scrl0 10 14 3.86 14.1 187
nugl2 12 16 3.55 3.0 93
taill2a 12 12 3.48 2.2 105
roul2 12 14 3.42 21.2 261
scrl2 12 8 3.84 12.1 119
nug20 20 13 3.26 27.3 195
ste36a 36 118 3.81 15.3 1379
ste36b 36 147 3.99 27.2 1130
rpga9 9 8 3.27 5.4 14
rpqalé | 16 | 34 3.11 17.2 35
rpqa25 25 53 3.75 21.2 379
rpqa36 36 242 3.22 20.1 1234

be considered for this particular problem: for instance, the average and minimal
temperatures over the board.

For future work, it can be noted that a lot of real life problems can be
viewed as instances of quadratic assignment problems and that it is sometimes
possible to propose other quality criteria for the solution. Nowadays, this kind
of solutions is valuable, since the environmental impact of any kind of large
scale human implementation has becoming more important. It is desirable to
have the lower transport cost for intermediate commodities in the design of a
regional industrial complex, and to take into account the dispersion of heavy
industrial atmospheric residues. There is no doubt that air quality is a great
part of quality of life, and that environmental concerns must be in the top of the
list of all modern industrial management. One could still deal with the noise
level of machinery on the low plant layout design.
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Figure 3.6: Temperature field for ste36a placement solution without overheating
penalty.
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Figure 3.7: Temperature field for ste36a placement solution considering over-
heating penalty.
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Chapter 4

The Local Access Network
Design With Congestion
Costs

4.1 Introduction

The tree network design problem consists of linking a supply node to its demand
nodes to satisfy demands at minimal total cost. The problem may include
Steiner or transshipment nodes. Each arc of the network has three associated
costs: a variable operational cost depending on the flow through the arc, a
nonlinear congestion cost that penalizes flows close to implicit capacities and a
fixed cost for setting up the physical connection represented by the arc.

This problem can be viewed as a generalization of the Steiner tree problem
on a directed graph [85]. In fact, if we neglect variable costs at the arcs we
will have basically the Steiner problem, and in this sense we are treating a
NP-hard problem, for which some computational strategies have been devised
[87, 128, 67, 68, 75, 83]. On the other hand, if we neglect fixed costs on the arcs
we have the single source transshipment problem, which can be solved easily
[40].

As one can see, it is possible to use models for this problem to deal with any
network flow problem which has a single source tree as optimal solution. The
network design problem associated with centralized computer networks and the
multi-party multicast tree construction problem are good examples. The last
one has been treated with the aid of heuristics [69], but on the two versions
treated in the literature, the Single Source Tree Networks - where we have a true
root of the multi-party multicasting tree - and the Core Based Tree Networks
- where a single node, the core, is chosen to play a role as the tree root - it is
possible to accomplish the data to make the model faithful to the nature of the
problem. To make a survey on correlated research work, we refer to [58], [122]

47
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and [72]. Congestioned computer networks are studied in the work of Ferreira
and Luna [42].

The provision of multi-point connections is one of most important services
that will be required in future broadband communication networks which sup-
port distributed multimedia applications. Multimedia video-conferencing appli-
cations, for example, requires that audio and video be transmitted to multiple
conference participants simultaneously. This requires that an efficient multi-
cast capability be provided by the underlying network. An illustration of the
problem is depicted in Figure 4.1.

Figure 4.1: The tree network design problem.

An alternative class of tree network design problems is related to the mini-
mal spanning tree, where a central node has to be linked to all the remainder
nodes in the network at minimal cost. These problems have been studied by
authors such as Gavish [47, 48, 49] and Gouveia [57]. This class of problems
includes the capacitated and degree constrained minimal spanning tree prob-
lems, and some routing and scheduling problems. In most of these problems all
the terminals have identical characteristics, and a single line type can be used
for connecting the terminals. When the network has heterogeneous terminals,
in the sense that they generate different amounts of traffic, and line costs that
are dependent of the line capacities we have the Telepak problem. In [48] Gav-
ish proposes one-flow formulations for these problems and applies Lagrangean
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relaxation with the sub-gradient optimization procedure to solve the degree con-
strained minimal spanning tree problem, also solving the capacitated minimal
spanning tree problem by Benders decomposition. In [49] a new formulation of
the capacitated minimal spanning tree problem is presented as a zero-one in-
teger programming problem and a combination of a sub-gradient optimization
procedure and an augmented Lagrangean-based procedure is used to generate
tight lower bounds. The original paper of Rothfarb and Goldstein [119] formu-
lates the Telepak problem as a single commodity flow problem, and Gavish [48]
shows that it can also be considered as a capacitated minimal spanning tree
problem. Several heuristics have been developed for the problem by Goldstein
[56] and Chandy and Russel [35]. Gavish [50] presented a mixed-integer math-
ematical programming formulation of the problem for a general cost structure.
Hochbaum and Segev [63] propose two Lagrangean relaxations for the prob-
lem and apply the sub-gradient optimization algorithm to approximate the best
Lagrangean multipliers.

In the context of telecommunication systems the local access network de-
sign problem corresponds to setting up a topology on an urban street network
that minimizes the total cost of cables and underground piping infrastructure
necessary to link a switching center and its subscribers. Each subscriber group
has a known demand and it is supposed that the switching center is able to
supply all subscribers demands. For each arc, the fixed cost is represented by
the underground infrastructure and the flow dependent cost is represented by
the cables to be installed in each arc. An optimal solution to this problem is a
tree with root at the switching center. Local access networks with aerial cables
can also be dealt with this formulation, and the fixed cost in such a case can
include pole rents.

In a modern framework of applications, such as the multi-party multicast tree
construction cited above, the fixed cost can be seen as a bandwidth leasing cost,
due to the allocation of large capacity links used by multicasting participants.
The variable costs, in this case, depends on data flow level and congestion
level observed during the operation. The output is a low cost spanning tree
representing the final computer conference configuration.

In Section 4.2 a mathematical programming formulation of the problem will
be presented. In Section 4.3 Benders decomposition is applied to the problem.
The proposed solution was implemented and experimental results are reported
in Section 4.4. Section 4.5 closes this chapter with final remarks and conclusions.

4.2 Multi-commodity Flow Formulation

Consider a directed connected graph G(V, E), where V denotes the set of nodes,
and Fis a collection of arcs representing pairs of nodes between which a direct
transmission link can be installed. Suppose we have an origin node o (the local
hub or switching center) that must be linked to a number of | K| demand nodes
(offices), each of them with a commodity flow requirement of dj where k € K
and K C V. With appropriate structural, operational, leasing and congestion
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costs, the problem is to find a minimal cost arborescence that links the switching
center to all the spatially distributed offices. It should be stressed that all flows
originate at a root node, i.e. the switching center or the server in a computer
network.

4.2.1 Variables and Parameters

Define the variables:

1 if a directed transmission link is placed in arc (i, 7)

Tij = ot
0 if not;

fijr: flow destined to demand node k, passing through arc (4, j);

gij: total flow of all commodities passing through arc (4, j).

And also define the parameters:

bi;: fixed (structural) cost to install a directed transmission link in arc (¢, 5);
we suppose b;; = [d;; where d;; is the distance (in meters) between ¢ and j,
and ( is the linkage structural cost per meter.

ciji: variable (operational) cost to transmit one unit of commodity & through
arc (i,7); we suppose c;jr, =Y d;;, Vk€ K.

The model allows variable costs to be dependent on both the commodity and
the arc. If the variable cost is independent from the commodity, we can make
v* = ~, Yk. We also assume that, for each arc (i,j), is given an increasing
function 7;;(g;;) of the total flow passing through the arc. The leasing and
congestion cost function of the model is assumed to be separable with respect
to arcs, and each parcel 7;;(g;;) is intended to integrate quality of service and
expansion costs on arc (4, 7). Quality of service is typically an increasing function
which measures congestion on the arc where commodities are considered as
competitive users of a limited resource.

4.2.2 Mixed Integer Nonlinear Program

The mathematical model M is:

min > (b + 7 (96) + Y, Cijrfign] (4.1)

(i,5)€EE keK

subject to:

Z fijk —9i; < 0, V(,j)ek (4.2)
keK
— Y for = —di, formnodeoandVke K (4.3)
(0,j)€E
SO fuk = di, VkeEK (4.4)

(i,k)EE
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S fue— > fax = 0, Vi€V —{o}andj# kandVk € K (4.5)
(1,7)€E (5,1)eE
fije < dipxij, V(i,j)€FEandVk € K (4.6)
fije > 0, V(i,j) € EandVk € K (4.7)
gij = 0, V(i,j)ekr (4.8)
z; € {0,1}, VY(i,j)€FE (4.9)

The objective function (4.1) has three terms: the first one accounts for the
total fixed cost of activating the arcs; the second term is a measure of leasing and
congestion costs related with the use of the arcs; and the third term is associated
with the operational cost of sending flows of all commodities from the source
node to the demand nodes through the arcs. Constraints (4.2) account for the
total flow of all the commodities passing through each arc (4,7). Constraints
(4.3) ensure that the total flow of commodity % that originates from the source
node is equal to the demand of node k and constraints (4.4) impose that the
total flow of commodity k arriving at demand node k is equal to its demand,
di,. Constraints (4.5) ensure, for each commodity, the flow conservation for each
Steiner node of that commodity. The x and f coupling constraints (4.6) ensure
that no flow is allowed on arc (4, j) unless the fixed cost b;; is paid. The fact
that the flow of any commodity through an arc is not negative is guaranteed
by constraints (4.7). Finally, constraints (4.9) state that the variables z;; are
binary.

4.2.3 Theoretical Properties of the Linear and the Con-
cave Versions

It is important to note that the continuous relaxation of model M, that we call
here MLin, generates a quasi-integral polytope. A quasi-integral polytope is one
in which the edges of the convex hull of its integer points are also edges of the
polytope itself [62]. This means that there exists a path through extreme integer
points that finds the optimal integer solution, if it exists.

Another important theoretical property is that, for 7;;(g;;) = 0, § = 0 and
dr, = 1,Vk € K the model is reduced to the multi-commodity flow formulation
of the Steiner problem in directed graphs, as presented by Maculan and others
[38, 129, 88, 55]. As a result, the strong formulation given by the objective
function (4.1) and constraints (4.3) to (4.9) also includes as particular case the
linear programming formulation for the shortest directed spanning tree problem,
also introduced by Maculan [86]. All these theoretical properties can help to
understand why, in many instances of this particular case, a linear programming
relaxation of model M can automatically lead to optimal integral solutions.

Another related result concerns to the single source concave cost flow prob-
lem, where 7;;(g;;) is a concave cost function of the flow g;; passing through the
arc (4,7), with b;; = 0 and ¢;5, = 0 for every commodity k. For this particu-
lar problem, it can be shown that a tree topology is associated to an optimal
solution for the problem [114].
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4.2.4 Convexification of Leasing and Congestion Costs

As we can see in [51], to use the generalized Benders decomposition procedure,
the Benders subproblem must be a convex one. The function choosed here to
represent congestion costs is the well known Kleinrock’s delay function, pre-
sented by Gerla and Kleinrock in [54]. The possibility of capacity expansion in
each network link is accomplished with the aid of leasing costs for each capacity,
remembering that the installation cost of first level of capacity is treated as a
fixed cost. In the framework of modern telecommunications systems or Internet
multi-party multicasting applications, the capacity expansion of a link can be
seen as an upgrade of the bandwidth which can be made available for a group
of customers.

To manage this important feature together with the necessity of convexity
in the Benders subproblem, we adopt here a convexification technique proposed
in [84]. The cost function is assumed to be separable with respect to arcs and is
intended to integrate quality of service (on the arc) and expansion cost. Quality
of service is typically an increasing function which measures congestion on the
arc where Commodities are considered as competitive users of a limited resource.

Let wilj and 72 i; be the fixed costs of expandmg the arc, to respectively,
capacities qij and qu, i (g”), T (gu) and 77 (g”) being the correspondent
congestion cost functions before and after expanswns Then, the integrated arc
cost function is defined on [0, ¢7;] by:

05(9i) = min{7;(gi), 735 (935) + 75 75 (935) + 755} (4.10)

The univariate congestion functions T?j (9i5), T, 11] (gi5) and 75 (g”) are increas-

ing, proper convex, differentiable functions and depend, rebpectlvely, on the arc

capacities q?j, q}j and ¢j; (such that ¢ < ¢}; < ¢j;). The derivatives 7} (gm)

Tiljl (9ij) and 73 (gu) are increasing. We assume also the following hypothesm on
these functlons

75(0) = 75(0) = 75(0) = 0 (4.11)

77:(9i5) < 7i5(9i5) < 75(945)s Vgij € (0,43) (4.12)

2 (9i7) < 75 (935) < 75 (97), Vi € (0,4%) (4.13)
T( )>QandT(ll)ZQandT(qw)ZQ (4.14)

Observations:

1. Relation (4.11) trivially says that a null congestion cost results from a null
flow.

2. Relation (4.12) means that the congestion cost decreases when capacity is
added to an arc.

3. Relation (4.13) means that the marginal cost in an arc also decreases with
the addition of capacity.
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4. As the congestion increases with the flow, we force the derivative at the
saturation level to be greater than a given high value Q in relation (4.14).

Figure 4.2 illustrates the integrated arc cost function ¢;;(gi;), as it is con-
structed on the basis of the congestion functions 75 and 7 and 7 and of the
fixed expansion cost 7ri1j and 7ri2j. Remark that, from the properties (4.11-4.12),
when g;; increases from 0, initially 0;;(g;;) assumes the value of Tioj (gij)- Be-
cause of (4.13) the difference between the congestion costs 75(gi;) and 7;(gi;)
increases until reaching the value ﬁ}j, when a break-even point g;; = £ appears
with neither loss nor gain for expanding capacity. For g;; > &1, it becomes more
economical to expand the arc capacity and the integrated function o;;(g;;) as-
sumes the value of Tilj (9ij) + 7ri1j, and for g;; > &, it is more economical to
expand arc capacity for qu and the function assumes the value of Tfj (gi5) + 7ri2j.
The values of the break-even points £; and & are implicit in the solution of
the equations 7} (1) = 7;(61) + 75 and 7;(&2) = 775 (&2) + 7} Figure 4.2 also
shows the convex hull function 7;;(g;;) and the tangent points g;;o and g;j2 of the
unique supporting line of o5 on [0, ¢7;], in such a way that TZQJ-’ (gijo) = Tinl (gij2)-
The idea is that, for each specific class of convex functions satisfying properties
(4.11-4.14), we can determine g;j0, &1, &2 and g;;2, thus characterizing explicitly
the convex hull, 7;;(gs;), of the integrated function of congestion and expansion
costs, 0i;(gij). It results that problem MBend is a convex program for a fixed
network topology, given by x, in such a way that we can conceive a Benders
decomposition strategy to solve it.

4.3 Benders Decomposition of the Problem

Benders partitioning method was published in 1962 [17] and was initially devel-
oped to solve mixed integer programming problems. The computational success
of the method to solve large scale multi-commodity distribution system design
models has been confirmed since the pioneering paper of Geoffrion and Graves
[63]. Magnanti and Wong [89] proposed a methodology to improve Benders
decomposition algorithm performance when applied to solve mixed-integer pro-
grams. They introduced a technique for accelerating the algorithm convergence
and developed a theory that distinguishes ”good” formulations amongst dif-
ferent, but equivalent, possible formulations. In [90] Benders decomposition is
applied to solve the uncapacitated network design problem and adapted to be as
efficient as possible, when solving problems with undirected arcs. Now we spe-
cialize the method to cope with nonlinear congestion costs and discrete capacity
assignment. This is done as an application of generalized Benders decomposition
[51] for an adequate variant of model M.

4.3.1 Problem Manipulations

Benders partitioning method essentially relies on a projection problem manipu-
lation, that is then followed by the solution strategies of dualization, outer lin-
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The Convexified Resulting Integrated Cost Function
11 T T T T

Total Link Cost [dollars]

Total Amount of flow [Gbits/second]

Figure 4.2: An example of convexified integrated leasing and congestion cost
function.

earization and relaxation. From the viewpoint of mathematical programming
we can conceive a projection of problem M onto the space of the topological
variables x, thus resulting in the following implicit problem to be solved at a
superior level:

min Z bij xij + v(z) (4.15)
(i.j)€EE
where X = {x | for z fixed there exist feasible flows satisfying (4.2) — (4.8)}
and where v(x) is calculated by the following problem to be solved at an inferior
level:

v(x) = min Tii(gii) + ei o] subject to (4.6) for « fixed (4.16
(z) (f’g)eG(igE[ nen, ICGZK ik figh] ] (4.6) ( )

where G = {(f,g) | f > 0 and ¢g > 0 satisfying (4.2) — (4.5)}.
The flow feasibility requirement related to a topological variable x € X
implies that the components for which z;; = 1 include an arborescence rooted



4.3. BENDERS DECOMPOSITION OF THE PROBLEM 55

at the origin o and destined to every demand node k£ € K. Thus, there is no
need for further feasibility constraints on the domain of the projected problem
(4.15), and the existence of the minimum in the subproblem (4.16) is assured
since we are minimizing a convex function in a nonempty compact set.

Since the subproblem has a convex differentiable objective function and lin-
ear constraints, the Karush-Kunh-Tucker conditions are necessary and sufficient
for optimality and the problem is amenable to dualization techniques [51]. With
an associated vector A > 0 of dual variables, the idea is to dualize the subprob-
lem with respect to the coupling constraints (4.6). Since there is no duality gap,
for any x € X the optimal value of the subproblem 4.16 can be given by

v(z) = max| min > [mil9i)+ Y cinfint D Mgk (fip—diayg)] (4.17)
20 (£.90€ (i,5)€E keK keEK

or

I;\l;ié( Z Z —Xijediei; + (4.18)

(i,j)EE kEK
minG Z [Tij (gij) + Z (Cijk + )\ijk)fijk]
(F9€C ;er keK

The whole problem (4.15) is then equivalent to

min{ Z bijxi; —|—Inax Z Z —Aijedpzii+ (4.19)

rzeX
(i.J)€E T (hj)EEkEK
min D7 [milgis) + D (Cigr + Aige) figel
(f.9)€ (i,§)EE kEK

or, using the fact that a supremum is the least upper bound, problem (4.1) to
(4.9) is equivalent to the master problem

min > bij i+t (4.20)

subject to:

t> Z Z _/\ijk d, Tij + (4.21)

(i,j)EE kEK
( min > Imiilgis) + Y (Cijre + Niji) fijr] for all A >0
F9)eG e keK

Generalized Benders decomposition solves problem (4.20)-(4.22) by the strat-
egy of relaxation, i. e., ignoring all but a few constraints (4.22). If at a certain
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cycle h the subproblem has been solved for a given network design 2" and the
optimal multiplier vector A" has been recovered, then from (4.19) the optimal
value v(z") occurs for A = A" and is given by

v(zh) = — Z Z )\fjk dy, x?J + (4.22)

(i,j)EE k€K
(m)igc 7 Irigi) + Y (cign + A figr]
F9)eC o eE keK

From (4.22) it follows that, associated with A", one has the constraint

t=- Z Z Nk di xij+(frr;§1610 Z [Tij(gij)+z(Cijk‘f')\?jk)fijk] (4.23)
(4,)EE kEK ’ (4,7)EE keK
and using the value of the minimum given by (4.23) it results the following cut
based on z and \"

t>o@") + > Y My di (al — zi)) (4.24)

(i) €E kEK

We analyze now the subproblem to provide further detail on the choices
made.

4.3.2 Subproblems

For a fixed arborescence A", associated with the vector 2", the computation of
a minimal cost flow v(2") can be separated in a series of trivial network flow
problems. Let ka be the path, from the source node to the demand node k,
that has been defined by the master problem of iteration h. The subproblem to
be solved is

Jmin 37 [ri(g) + Y e S (425)
(i,5)EE keK

subject to the coupling arc flow constraints (4.2), that is

S fik—gi < 0, V(i,j)€E
ek

and the constraints (4.3) to (4.6) for a fixed binary vector x = z".

Since 7;;(g;;) is an increasing function, constraints (4.2) are satisfied with
strict equality in an optimal solution. A unique flow f;;r = di can be assigned
to every arc that belongs to the path C(’}k from the source node o to the demand
node k, thus resulting in a unique optimal solution (f", g") associated with the
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arborescence . The construction of an associated optimal multiplier vector can
be started with the dualization of the subproblem with respect to the coupling
constraints (4.2). With the correspondent dual variables § > 0, the optimal
value v(z") can be computed as

v(zh) = Iglg(})( d(0) (4.26)

where the dual function d(6) is evaluated inducing the inherent separability of
each commodity flows, since

dO) = min > [7iilgi) + Y cigk frl + D 00> fisk — 9i5)

920,f>0

(i,§)EE keEK (i,j)EE kEK
and so
d(0) = min D ek +0) fin+ D gfgglo(ﬂj(gij)—@jgij) (4.27)
keK (i,j)EE (i,J)EE

where each fi refers to the vector of commodity & flows that is feasible in the
correspondent constraints (4.3) to (4.6) for x = z".

We remark that, for an optimal solution (f",g") for the primal problem
(4.25)-(4.2), an associated optimal solution 6" for the dual problem (4.26) should
minimize for each g;; € IV the corresponding parcel of the Lagrangean function

in (4.27), what implies

o) =7'(gly) V(i,j)€E (4.28)

As a consequence of fixing this unique optimal vector 8", we can now state
in detail the primal-dual linear programming pair to be solved separately for
each commodity k € K for any given z".

Primal subproblem for commodity k& when z = 2"
min Z (cijr + 055 £l (4.29)
(i,5)€E
subject to:

— Z fjk = —dj for the root o (4.30)

(0,j)EE
St = d (4.31)

(i,k)eE
- e = 0 VjeV— oandj#k (4.32)

(i,5)€EE (J,l)eE
—fl > —dpaly V(i,j)€E (4.33)
e > 0 V(i,j)eE (4.34)



58CHAPTER 4. THE LOCAL ACCESS NETWORK DESIGN WITH CONGESTION COSTS

The trivial and unique solution of the problem is:

(4.35)

no_ [ de if(i,j) € Ol C AP
ik ™ 1 0 otherwise

Dual subproblem for commodity ¥ when z = "

The dual problem associated with the subproblem given by the objective func-
tion (4.29) and constraints (4.30), (4.31), (4.32), (4.33) and (4.34) is:

max di (Dl — Do — Z x?] )‘?jk) (4.36)
prAT20 (i,))€E
subject to:
ik =Pk = Mjn < cign+ 0 V(j)EE (4.37)

This dual problem has many feasible solutions, contrarily to the primal prob-
lem that has a unique trivial solution. Since f}}; = dp > 0V(4,j) € Cl C A"
we have from the complementary slackness condition that:

p?k — - )‘?jk = cijp + 91"} v(i,j) € Cly, c A" (4.38)

in such a way that we can construct, associated with the primal solution z",

the following dual feasible solution:

pl = 0 Vke K, for the origin node o (4.39)

p?k = pl+eyr+ 9;} V(i,j) € Ch c A" (4.40)

Pl = P, VievV-vh (4.41)

A =0, Y(i,j)eCh cA (4.42)

)‘Z‘k = p?k — Dl — Cijk — G?j, ¥(i,j) € B — A" (4.43)
such that p?k — > e + 91@

,\?jk = 0, Y(i,j) € E— A"such that p?k — i < ciji (4.44)

The systematic evaluation of the dual variables with meaningful commodity
values is a clue for an efficient implementation. Here the two series of dual
variables can be interpreted as price information. Each variable pfk represents
the price of establishing communication k (k € K) from the origin node o until
node ¢ (i € V) in iteration & (h = 1...H). On the other hand, each variable A,
gives for commodity & the value of an additional unit of capacity at arc (¢, j) € E.
The dual variable )\?jk evaluates for commodity & the maximal reduction in the
operational and leasing and congestion costs that could be gained with the
introduction of arc (4, j) in the solution. In the case of transportation systems,
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it can also be understood as a tax to be paid with the use of arc (7, ) in order
to maintain the distribution agents with no positive profit. Remark that the
dual solution set (4.37) represents spatial prices for which there is no positive
profit for any distribution agent that pays the cost c;; + G?j to ship commodity
k through arc (i, 7).

4.3.3 Master Problem

With the objective of producing a feasible solution from the master problem of
the Benders decomposition method we have added some redundant constraints
to the model M. We call this extended model MBend. The new constraints try
to impose that the arcs implied by a solution to the master problem constitute
a tree from the origin node o to all the demand nodes k& € K. Nevertheless,
these constraints alone are not sufficient to guarantee this. For some problem
instances, a solution to the master problem can imply cycles in the generated
topology and our algorithm treats this special situation accordingly. The re-
dundant constraints are the following;:

Z Zoj > 1, fornodeo (4.45)
(0,j)EE
Y wk = 1, VkeK (4.46)
(i,k)eE
dowy— > wa > 0, VIeV-K-o (4.47)
(l,j)eE (i,0)eE
> @
(Ly)eE

V

dooawg > He——, VIEV-K-o (4.48)
(i,1)eEE Z 1

(Lj)eE
zijta < 1, V(i j)eE (4.49)

Constraint (4.45) imposes that at least one arc leaves the origin node. Con-
straints (4.46) establish that only one arc arrives at each demand node. Con-
straints (4.47) ensure that the number of arcs leaving a Steiner node is not
smaller than the number of arcs arriving at it. Constraints (4.48) express the
fact that if at least one arc leaves node [, then at least one arc enters node [
Constraints (4.49) avoid the occurrence of cycles involving two arcs.

The master problem consists of searching for x variables with the following
objective function:

min Z bijl’ij +1 (450)
(i,7)€EE

subject to the Benders cut constraints
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t>wv() = > > Aydixy h=0,1,2,.. H (4.51)
(i,j)EE ke K

and the constraints (4.45), (4.46), (4.47), (4.48), (4.49) and (4.9).

We remark that the Benders cut constraint (4.51) results from (4.24) and
from the fact that 35, jcp Do Mjr di 1 = 0, since, by construction, at any
Benders cycle h, for any arc i,j € E, either }; = 0 or, from (4.42), )\?j =0
for x?J = 1. The parameter H + 1 evaluates the number of cuts that can be
taken into account at each Benders iteration. For given h and k the number of
constraints (4.51) provide a lower bound on the cost of the flow that leaves the
origin node to the demand node k. The variable ¢ that appears in the objective
function (4.50) is the best known lower bound on the sum of operational cost

with leasing and congestion costs.

4.3.4 Algorithm

The implemented Benders decomposition algorithm is presented below. First
the shortest path from the origin node to all the demand nodes and the minimum
spanning tree of a reduced graph are computed. These two feasible solutions are
used to initialize the dual variables. Next, in each cycle, one master problem
and a series of subproblems are solved until the difference between the lower
and the upper bound becomes small enough, for a given tolerance parameter.
The steps of the algorithm are the following;:

1. Use Dijkstra’s algorithm to find the shortest path from the origin o to
every node of the network. Let EY be the arcs of the arborescence that
contains the shortest paths to all the nodes and let T'(V? A%) be the
corresponding arborescence that links the origin o to all demand nodes
ke K (x?j =1V(i,j) € A and x?j =0V(i,j) € B — AY). Make

pY, = 0 Vke& K, for the origin node {0}
Pl = Pop+cige+ 0y V(i) €A Vke K
P = P tege V(i,j) e E°—A% Vke K
A = 0 V(i,j) € E°, Vke K

Compute the cost associated with T(V9, A%) (the sum of the fixed cost
of the arcs in A° plus the sum of the variable costs for sending the flow
requirement of each commodity & from the origin o to the demand node
k). This value gives an initial upper bound, UB = Z(i)j)er bijm?j +
> wer dkplhy,, and (29, f°) is an incumbent solution. Also, the shortest
paths solution provides the minimal total variable cost among all possible
arborescences, and thus we can use it to initialize a lower bound, LB =

Zkek dkpgk'
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2. Use Prim’s algorithm to find a minimal spanning tree in a reduced graph
that contains only the origin and the demand nodes k& € K. This re-
duced graph is constructed as proposed by Mehlhorn in [95] using a single
shortest-path computation. Let T(V?!, A) be the associated Steiner ar-
borescence, that is contained in the original graph G(V, E), and that links
the origin o to all demand nodes k € K(x}j = 1V(i,j) € A' and %lj =
0V(i,j) € E— A'). CL, is the set of the arcs in the path from the origin
to the demand node k through A'. Set the iteration counter h = 1.

3. Compute the values of the dual variables as indicated by the equations
(4.39)-(4.44). A new value for the upper bound is calculated and if this
value is less than the current upper bound then the current upper bound
is updated. Add a new cut to the master problem.

4. Solve the master problem. It provides a lower bound for the problem.
If the upper bound is close enough to the lower bound, for the given
tolerance, then stop.

5. Solve the subproblem. To solve it, initially verify if the arcs selected in
the master problem imply an arborescence from the origin to all demand
nodes. If yes, set h = h + 1, let T(V", A") be the arborescence that links
the origin o to all demand nodes k € K, contained in the original graph
G(V,E), let Ch be the set of the arcs in the path from the origin to the
demand node k through A", and go to step 3. Else, the topological solution
of the master problem is infeasible in the subproblem in the sense that it
generates a cycle. In this case, the cycle is identified and a constraints to
avoid it is added to the master problem model and no new lower bound is
generated. To identify the cycle in the path from the origin to a demand
node, a backward search from the demand node is executed until a node
is repeated. Let n be this node. A cycle avoiding constraint is generated
considering the arcs from the demand node to n in both directions. The
sum of the variables x;; corresponding to these arcs must not be greater
than the number of arcs from the demand node to n (considering only one
direction of the arcs and the second time that n is found). After the cycle
avoiding constraints are added, the master problem must again be solved,
then go to step 4.

4.3.5 Avoiding Cycles

As it was explained earlier, the model MBend uses the constraints (4.45 - 4.49) to
accomplish the necessity of computing a feasible solution at the higher (master
problem) level which, in this case, is a tree. We use this redundant constraints
to guarantee the feasibility of flow balance and avoid to use type 2 cuts in
Benders decomposition (extremal rays). However, depending on the demand
vector structure and on the network connectivity level, constraints (4.45 - 4.49)
are not powerful enough to ensure the calculation of a structural solution which
prevents cycles in the source/demand path.
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This explains the use, just in case, of the strategy described on step 5 of the
algorithm given in the last subsection. This strategy is no more but the inclusion
of a type 2 cut, and the consequent loss of one master problem iteration, just
to ensure feasibility. Depending on the instance to be solved, this strategy may
be responsible for unnecessary computational effort.

To deal with this, we devise an alternative strategy, which preserves the flow
balance at the higher level without the necessity of constraints (4.45 - 4.49).
This approach just uses the link between variables f;;r and g;;, as implied by
constraint (4.2), to construct a new master problem. Instead of working only
in the space of topological variables x, in this new formulation we work in the
space of both the x and g variables, in such a way that the model is able to
avoid cycles because it sustains the flow balance. We call this model MMBend,
and the new master problem is plotted below.

(4,J)EE

subject to:

- Z Goj = —de (4.53)

(O,j)EE keK
> ogw— D> gy = dv. VEEK (4.54)
(i,k)EE (k,j)EE
Y gi— >, gi1 = 0, VjieV-K—{o} (4.55)
(i,4)eE (3,))eE
gij < Y dway, V(i,j)€E (4.56)
keK
gij > 0, V(i,j)eE (4.57)
Ti; € {07 ].} s V(L]) el (458)
and the Benders Cut:
t>w() = > > Ajdixy h=0,1,2,.. H (4.59)
(i,j)€EE keK

With this model, we force the flow balance at the master level, with con-
straints (4.53)-(4.57), and guarantee the feasibility on the structural variables x.
On the other hand, the number of variables being treated by the master problem
increases by |E|. This is also onerous, but, for larger amounts of products being
shipped, may justify the alternative decomposition strategy.

4.4 Computational Results

Computational tests were carried out in a Sun Blade 100 with a 500 MHz
Ultra-SPARC processor and 1 Gbyte of RAM memory. The operational system
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is Solaris 5.8. The Benders decomposition algorithm was implemented in C with
GLPK 3.1 [91] application programming interface.

Table 4.1 shows the dimensions of the networks and of the corresponding
mixed integer programming formulations for the tested problems. The test
problems can be divided into three classes: the first class contains problems
that are Euclidean graphs randomly generated using a procedure similar to
that presented in [3]. This procedure has been used extensively for creating
testing instances of the Steiner problem. The second class was based in data
obtained from a geographical information system and uses realistic costs and
distances based on different locations of Brazil. The third class of problems
refers to some of Beasley’s graphs [15] for Steiner Problems. We have chosen as
the origin node the first demand node of each selected Beasley’s graph, and we
have assigned one unit of flow for each of the remainder demand nodes. These
problem instances were selected to perform a direct extension of the work of
Randazzo and Luna [116].

Problem Number of Variables in Model M
Number V| |E| |[K| (/v Integer Continuous

1 12 36 3 1 36 108

2 16 30 4 1 30 120

3 16 60 4 1 60 240

4 20 60 3 1 60 180

5 25 80 4 1 80 320

6 30 90 5 1 90 450

CLASS 7 35 100 6 1 100 600
1 8 40 110 7 1 110 770
9 46 120 8 1 120 960

10 50 130 8 1 130 1040

11 55 140 8 1 140 1120

12 60 150 9 1 150 1350

13 65 170 10 1 170 1700

14 70 200 12 1 200 2400

15 80 220 12 1 220 2640

16 10 21 8 10 21 168

17 12 26 10 10 26 260

18 14 31 12 10 31 372

19 16 36 14 10 36 504

CLASS 20 18 40 16 10 40 640
2 21 20 48 18 10 48 864
22 21 52 19 10 52 988

23 22 55 20 10 55 1 100
24 24 47 22 10 47 1034

25 25 50 20 10 50 1 000

B1 50 126 8 10 126 1 008

B2 50 126 12 10 126 1512

CLASS B5 50 200 12 10 200 2 400
3 B6 50 200 24 10 200 4 800
B16 100 200 16 10 200 3 200

Table 4.1: Network Dimensions for Test Problems.

Six different experiments were conducted to verify the algorithm performance
and to determine the behavior of the solutions founded as the network load
increases. In order to create the arc cost function for the problem instances
presented in Table 4.1, six levels of implicit capacities were proposed (gy;, ---, 4f;),
and five expansion costs also (w}j, ...,7ri5j). The implicit capacity level q?j was
defined ad hoc and capacity levels 1 to 5 were produced just doubling the arc
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capacity at each expansion level. Indexing the implicit capacity level by I,we
have

@i =2q; VijeE,1=0,.5 (4.60)

The capacity expansion costs (7};, ...,7};) were proposed in a non-increasing

realistic way, enabling scale economies for higher capacity levels. Another re-
striction imposed over the expansion costs determines that their sum cannot be
greater than 50% of the fixed arc instalation cost b;;.

The main difficulty in this phase of our work was the unavailability of other
popular methods for solving mixed integer nonlinear programs. This makes
a comparison of optimal methods hard to obtain. We so choose to compare
between linear and nonlinear versions of the test instances. The linear versions
were obtained setting the congestion costs equal to zero. This little exercise is
able to shows us how different are the linear and nonlinear solutions.

The gap between linear and nonlinear solutions was defined by

(4.61)

GAP = 100 <Optimumnonlinear - Optimumlinear)

Optimumlinear

In our first experiment, the demand vector of each instance was chosen
to guarantee a low level of network load, leading to arc flows below the first
implicit capacity level. The computational effort was due to the execution of
the 30 problem instances proposed in Table 4.1 using the formulations MBend,
MMBend and a linear run obtained setting congestion costs equal to zero.

To produce the second experiment, all demand vectors were multiplied by a
factor of two, and this process was repeated six times, in order to generate data
for all the six experiments under focus. With this policy, we have incremented
the total network load beyond a factor of twelve. With each of the 30 problem
instances being tested for six different levels of network load, using formulations
MBend, MMBend and the linear version, we have 540 different runs.

However, the first five experiments has presented an analogous behavior,
always deriving the same optimal structure for linear an nonlinear instances.
Beyond this, the gap observed between linear and nonlinear results was almost
the same for experiments 1 to 5, as well as the numbers of Benders iterations
and the computing times.

For the gap between nonlinear and linear solutions, this can be explained by
the following effect: allowing six levels of expansion for the implicit capacities,
the tangent point g;jo used to define the unique supporting line (convex hull) of
the integrated arc cost function is located very near to zero. In this case, even
small arc flows are computed with the aid of the linear portion of the convex
approximation. Combining the effect described above with the economies of
scale suggested by the existent relationship between parameters G and ~, it
is possible to conclude that we are always obtaining as optimal solution an
arborescence that is very much like the shortest path tree or the minimum
spanning tree. This tendency is repeated until the network load level becomes
closer to the maximum installed capacity q?j, where the congestion costs become
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explosive. Then, we choose to synthesize the results obtained for experiments 1
to 5 in the Tables 4.2 and 4.3.

Problem Original Formulation Cycle Avoiding Formulation
Number | Tterations | For Cycle Avoiding | Time [s] | Tterations Time [s]
1 5 0 3.6 4 3.26
2 5 0 4.28 5 3.54
3 6 0 4.3 4 3.1
4 5 0 12.2 3 6.22
5 5 0 15.5 2 7.68
6 6 0 20.86 3 11.9
7 7 0 25.06 5 19.2
8 5 0 23.06 7 30.72
9 6 0 76.82 4 70.02
10 7 0 324 3 231.8
11 5 0 274.66 4 256.42
12 4 0 479 5 411.88
13 7 0 687.64 3 684.68
14 5 0 690.5 3 713
15 6 0 741 3 773.84
16 39 2 36.68 16 42.28
17 79 4 72.6 17 79.44
18 78 31 136.9 15 134.3
19 62 9 138.06 22 127.56
20 234 14 693.9 115 599.28
21 41 10 456.42 23 435.1
22 31 8 609.18 15 656.5
23 120 6 734.76 76 753.56
24 86 7 753.8 53 717.72
25 112 11 836.18 85 833.28
B1 5 0 18.86 3 19.78
B2 6 0 18.6 4 13.98
B5 3 0 130.7 3 141.24
B6 4 0 370.58 5 355.06
B16 6 0 418.74 5 364.56

Table 4.2: Average computing time, number of Benders iterations and number
of cycle avoiding constraints for experiments 1 to 5.

In these tables (4.2 and 4.3) we have shown the number of Benders iterations
and CPU time for all the test instances. For the original formulation MBend
were also plotted the number of iterations for cycle avoiding. The experiments
are described in this way: Table 4.2 compares the original formulation MBend
and the cycle avoiding formulation MMBend and Table 4.3 compares the results
for the cycle avoiding formulation and the linear formulation results. The ob-
tained results for experiment 6, are presented in tables 4.4 and 4.5 in the same
manner.

Structural differences were observed in many of the instances between linear
and nonlinear optimal solutions, for all the six experiments conducted. For
convenience, we are just trying to report these differences through the number
of different active arcs founded in the optimal solution for linear and nonlinear
cases, as can be seen in the last column of Tables 4.3 and 4.5. This is a direct
evidence that congestion costs can affect network design.

For all the experiments the cycle avoiding formulation has presented very
competitive results, being smoothly superior to the original one (MBend).

As is possible to guess, for experiments belonging to classes 2 and 3, were
we have a relation 3/v equal to 10, there must be some tendency to obtain



66CHAPTER 4. THE LOCAL ACCESS NETWORK DESIGN WITH CONGESTION COSTS

Problem Cycle Avoiding Formulation Linear Results Nonlinear/linear Number of
Number | Iterations Time [s] Tterations | Time [s] GAP (%) Different Arcs
1 4 3.26 5 3.3 24.742 2
2 5 3.54 6 2.92 25.94 4
3 4 3.1 4 3.28 15.386 3
4 3 6.22 5 7.08 26.096 2
5 2 7.68 5 7.86 25.91 3
6 3 11.9 5 14.34 25.25 3
7 5 19.2 7 18.58 24.818 4
8 7 30.72 7 25.42 24.532 3
9 4 70.02 4 72.68 16.912 3
10 3 231.8 5 217.4 24.764 5
11 4 256.42 7 244.12 25.138 3
12 5 411.88 4 432.8 26.65 3
13 3 684.68 7 618.76 25.824 6
14 3 713 5 700.8 24.642 4
15 3 773.84 5 789.4 25.012 2
16 16 42.28 19 45.32 26.23 5
17 17 79.44 18 82.44 24.96 4
18 15 134.3 19 118 25.784 4
19 22 127.56 27 118.48 24.456 2
20 115 599.28 116 573.52 34.728 3
21 23 435.1 28 416.58 25.63 6
22 15 656.5 21 621.88 25.896 5
23 76 753.56 7 799.96 16.188 3
24 53 717.72 56 763 25.558 2
25 85 833.28 93 854.94 24.434 6
B1 3 19.78 5 18.96 25.788 6
B2 4 13.98 6 15.98 14.788 5
B5 3 141.24 3 160.98 24.948 5
B6 5 355.06 3 358.18 34.822 3
B16 5 364.56 3 367.58 25.954 6

Table 4.3: Average computing time, number of Benders iterations, Nonlin-
ear/linear gap and number of different arcs for experiments 1 to 5.

solutions that are essentially the minimum spanning trees (higher fixed costs).
This tendency is reversed only for the last experiment, were the congestion cost
component becomes more expressive, justifying the adoption of solutions that
are more similar to the shortest path tree.

Among the 30 problems, those who belongs to class 2 were the more difficult
to solve. This can be explained by the use of denser networks and demand
vectors, and by the presence of alternative optimal solutions. In this case,
the Benders decomposition algorithm spends a long time testing equal cost
solutions, before advance for a better upper bound. The solution times for all
the tested instances is acceptable, if we remember that we are solving a mixed
integer nonlinear program. In practice, our approach render a nonlinear problem
with congestion costs as much difficult as the standard linear programming
version [116].

4.5 Conclusions

We have presented a multi-commodity flow formulation for the local access net-
work design problem with congestion costs. We have studied an exact method to
solve the problem, based on generalized Benders decomposition. We have also
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Problem Original Formulation Cycle Avoiding Formulation
Number | Tterations | For Cycle Avoiding | Time [s] | Tterations Time [s]
1 6 0 4.6 7 3.4
2 5 0 4.8 7 4.4
3 11 0 5.5 7 3.4
4 6 0 12.9 4 5.8
5 5 0 16.5 2 7.5
6 10 0 22.4 3 11.8
7 11 0 27 6 19.6
8 4 0 24.2 9 30.9
9 10 0 78.6 4 69.7
10 9 0 325.5 3 231.5
11 7 0 275.7 6 255.5
12 8 0 480.3 5 412.2
13 12 0 687.3 2 685.4
14 6 0 689.3 5 712.7
15 9 0 742.3 6 774.7
16 41 4 37.2 18 41.3
17 82 4 73.7 18 79.4
18 80 40 137.9 16 135
19 65 12 139.7 25 127.8
20 234 16 694.7 117 599.9
21 46 11 457.7 24 438.5
22 34 10 607.3 16 656.1
23 120 8 735.1 7 746
24 85 7 754.4 57 717.6
25 115 1 837.4 89 833.2
B1 6 0 20.1 3 19.5
B2 6 0 20.6 7 14.4
B5 4 0 131.8 5 140.6
B6 9 0 383.2 5 354.2
B16 8 0 420.2 6 365.9

Table 4.4: Computing time, number of Benders iterations, number of cycle
avoiding constraints for experiment 6.

confirmed the possibility of exactly solving such problems with free software
mathematical programming packages, and for this purpose we have a surpris-
ingly good alternative to commercial softwares.

Yet the computational experiments have been limited, our experience sug-
gests that a certain number of these modeling and solution strategies can be
applied to the frequently occurring problems where the congestion cost compo-
nent is important. Our conclusion is that generalized Benders decomposition
emerges as a good method, being enough robust to deal with mixed integer
nonlinear programs of this type. The relevance of this type of model is now
increasing because emerging Internet services requires larger bandwidth in the
local access network and also because applications concerning multi-party mul-
ticasting tree construction should take into account congestion costs.

Another question for investigation is the generation of approximate solutions
by heuristics with the objective of adding cuts to the Benders master problem in
a preprocessing phase (in the current implementation our preprocessing phase
only includes the solution of a shortest path problem and a minimal spanning
tree problem). These new cuts might reduce the total number of Benders cycles,
but the necessary time to solve each master problem might be increased since
the master problem would have more constraints. The trade off between these
two aspects should be better evaluated.
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Problem Cycle Avoiding Formulation Linear Results Nonlinear /linear Number of
Number | Tterations Time [s] Tterations | Time [s] GAP (%) Different Arcs
1 7 3.4 4 3.3 71.32 3
2 7 4.4 8 3 37.57 5
3 7 3.4 3 4.5 55.54 3
4 4 5.8 6 7.7 33.94 3
5 2 7.5 [§ 7.5 57.13 3
6 3 11.8 6 15.3 57.05 3
7 6 19.6 7 19.3 81.2 5
8 9 30.9 9 25.2 60.19 4
9 4 69.7 4 72.9 42.26 3
10 3 231.5 6 218.8 58.68 6
11 6 255.5 8 245.5 32.55 3
12 5 412.2 4 434.1 58.4 3
13 2 685.4 7 619.4 42.55 7
14 5 712.7 4 701.6 35.01 5
15 6 7747 8 790.1 59.89 2
16 18 41.3 21 46.1 57.95 5
17 18 79.4 17 84.1 73.9 5
18 16 135 19 117.3 77.74 4
19 25 127.8 26 119.8 56.3 3
20 117 599.9 117 574.1 77.29 4
21 24 438.5 29 416.9 61.68 7
22 16 656.1 21 622 63.77 5
23 7 746 79 801 37 4
24 57 717.6 58 764 34.91 3
25 89 833.2 95 854.7 76.39 [§
B1 3 19.5 7 20.3 55.25 6
B2 7 14.4 6 15.1 83.27 5
B5 5 140.6 4 162.9 42.75 5
B6 5 354.2 5 357.9 39.59 4
B16 6 365.9 3 369.3 39.3 7

Table 4.5: Computing time, number of Benders iterations, and Nonlinear /linear
gap for experiment 6.



Chapter 5

Integrating Facility
Location and Network
Design

5.1 Problem Description

As already pointed in chapter one, the main goal of this work is to deal with a
combination of local access network design and facility location under a QAP
characterization. Our motivation is the design of a system involving two levels:
the higher level, typically the server-to server network, in which we are dealing
with the task of choosing the optimal location of all servers, and the lower level,
typically the client-server access network, in which we are dealing with the task
of choosing the optimal network design (naturally, including congestion costs).
These two problems cannot be solved in a separated way: the choice of a server
location has impact on the maximum quality of the service provided to the final
customers. On the other hand, the local access network cost can influence the
choice of a location for a server. See Figures (5.3) and (5.4).

Problems that involve network design and facility location arise in very differ-
ent application areas. The design of ”Hub-and-Spoke Systems” is a fundamental
stone for optimized air traffic, and can also be applied in the field of third part
logistic provision. A survey about hub-and-spoke systems must include the work
of O’Kelly [101] [102] [105] [104], O’Kelly and Skorin-Kapov [103], Aykin [7] [8]
[9], Zapfel and Wasner [130], Drezner and Wesolowsky [41], Campbel [32] [33]
[31] and Pirkul et al. [109] [110]. For network design/location models we advice
the work of Daskin and Melkote [97] [96].

We are searching for the best location of servers which minimize the total
system cost. In this first approach we will make the assumption that the server-
to-server network is technologically different of the local access network. This
assumption is consistent with reality if we are talking about telecommunication
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Figure 5.1: Hub-and-spoke system with different kinds of local access networks.

networks, where the the local access network is usually made of coper cable
based electronics, and the server-to-server network is optical. This assumption
is also well applied to transportation networks, where the local access network
is composed by urban streets and avenues and the server-to-server network is
made up of highways. This separation is reasonable since the capacities and
flows associated with each level are different in some orders of magnitude and
are treated in different ways.

In the literature survey discussed above, it is clear that one can have all
kinds of local access networks (star trees, spanning trees, Steiner trees and
rings) as we can see in Figure (5.1) [74]. However, the most commonly used
model for the local access network infra-structure is the star tree. This can be
explained since the first field of application of hub-and-spoke models was for
air traffic optimization. The fundamental assumptions of these models arise
from the special features of this kind of application. For example, a given flow
never passes across more than two hubs, and there is not activation cost for a
given link. These assumptions are well suited for air traffic and even for some
transportation systems, but not for telecommunications systems and for third-
party logistics systems. The first integer-mixed quadratic programming models
for hub-and-spoke systems were proposed by Aykin [8] and O’Kelly [102]. More
recent models (and linearizations) were covered by Campbell in [33]. The best
suited to our former integer programming toolkit are the p-Hub Median Problem,
were the number of hubs to locate is fixed, and the Uncapacitated Hub Location
Problem, were we do not know the number of hubs to locate a priori. We are
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able now to discuss the formulation and the decomposition scheme for several
of these models.

5.2 Mathematical Programming Formulations

To associate the local access network design problem with the quadratic assign-
ment problem, our location model, a first approach is to imagine a city/state/country
to be target of our experiment. Points that are origins or destinations of some
flow of commodities are dispersed over this region, that also contains some can-
didate sites to locate the hubs (or servers) that will concentrate the traffic and
re-route it from its origin to the correct destination. This is depicted in Figure
(5.3).

On the traditional hub-and-spoke models, it is necessary to deal with the
client-server assignment. This task can be done in reasonable time because the
local access network model is as simpler as possible (the star tree structure).
This means that there is no additional costs to route flows from the clients to
the corresponding server as in a multi-connected congested network. For this
kind of models, a pair of clients i,j € I is interconnected by a hub-and-spoke
structure that can contain one or two hubs (servers) k,! € K. The integer-mixed
quadratic programing formulations usually multiply two client-hub assignment
0 — 1 variables to design the interconnection between ¢ and j, and the linearized
versions just replace the product z;;x;; by a variable fi;x; that describes the
flow between origin i and destination j being routed trough the pair of hubs
kl. A cost matrix c;ji; is constructed adding the costs to interconnect client %
and hub k, plus the cost to flow from hub £ to hub ! and finally to client j:
Cijkl = Cik + cx1 + ci;. If the number of hubs to locate is given, we have the
p-Hub Median Problem, that we are writing as close to QAP as possible, as a
flow formulation:

min Z apTg + Z Z Z Z Cijki fijkl (5.1)

ke K icl jel keK IeK
subject to:
a = p (5.2)
ke K
Zfijkl < wya, Vi,jeli#j, leK (5.3)
keK
Zfijkl < wiak, Vi,jeli#Fj, ke K (5.4)
leK
Z Z fight = wyj (5.5)
keK leK

e € {0,1} VkeK (5.7)
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If we just know the maximum number of possible hubs |K|, we have the
Uncapacitated Hub Location Problem:

min Z apTr + Z Z Z Z Cijkl fijkl (5.8)

keK iel jel keK IeK
subject to:
Z xp < K| (5.9)
keK
Zfijkl < wijxl,Vi,jEI,i;éj, le K (5.10)
keEK
S fium < wiae, Vigjelitj, ke K (5.11)
leK
Z Z fijkl = wyj (5.12)
kEK lEK
figw = 0,Vi,jeli#j, kleK (5.13)
z, € {0,1} VkeK (5.14)

As these problems are written close to the Q AP, we can use all the structure
of QAP decomposition to find a Benders decomposition scheme for them. For
P-Hub Median Problem (Equations (5.1)-(5.7)), fixing the structural variables
x at a given iteration h, the primal subproblem in f can be written as:

min Z Z Z Z Cijkl fijhi (5.15)

i€l jel keKleK

subject to:

S fur < wgap  Vijeli#j, €K (5.16)
kEK
Zfijkl < wyap, Vi, jeli#j, keK (5.17)
lEK
szijkl = U)ij (5.18)
kEK IEK
figw = 0, Vi,jeli#j, kleK (5.19)

If a dual variable \;; is associated with constraint (5.18) for each commodity
ij, a set of dual variables v;j, is associated with constraints (5.17) and a set of
dual variables v;;; is associated with constraints (5.16), the dual subproblem for
the commodity %7 is:

§ : h § : h
max wij)\ij — Wi Ty Vigl — Wi T Vijk (520)
leK keK



5.2. MATHEMATICAL PROGRAMMING FORMULATIONS 73

subject to:
Aij — Viji — Vijk < cCijkl, Yk, I EK (5.21)
)\ij e R (5.22)
Vijk > 0 s Vke K (523)
Vijl > 0, Vie K (524)
Implying the master problem:
min Z arTr +n (5.25)
keK
subject to:
n > Z wij)\fj - Zwijyfjlml — Z wijv?jkxk , Vh € H(5.26)
ijel leK keK
o = p (5.27)
keK
zp € {0,1} VkeK (5.28)

To determine the optimal solution for the dual subproblem at iteration h,
remark that the routing of the commodity 75 can pass trough one or two hubs,
as depicted in Figure (5.2).

HUB

IDLE
HUB

Figure 5.2: Possible routes for the commodity ij for a given z = z".

The optimal solution of the primal subproblem for the commodity ij, equa-
tions (5.15)-(5.19), is the costless route, discarding locations that do not host
any hub:
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’LUij -min(m) {Cijkl|y1}€l = ylh = 1} (529)

The dual variables computation with economical interpretation (meaningful
values) is a clue for an efficient implementation. Here, );; is the highest possible
price difference between i and j and v;;;, and v;; are additional taxes paid to
route the flow ¢j trough hubs k£ and [. Using the complementary slackness, the
optimal dual solution for commodity 4j is given by:

Ny = mingy {eguly; =y =1} (5.30)
vl = 0, ifyp=1 (5.31)
U?jk = maz {0, max {/\Z —cijr )}, if yr =0 (5.32)
vy = 0 ifyl =1 (5.33)
Vzhjl = maz {0, maxy {)\Z — ciju )}, if yr =0 (5.34)

To adapt our decomposition scheme to the Uncapacitated Hub Location Prob-
lem, we must observe that the master problem does not have information about
the flow constraints. To determine only feasible solutions when decomposing the
Uncapacitated Hub Location Problem it is necessary to add a single constraint in
x to the master problem ensuring the installation of at least one hub, replacing
the fixed number of hubs to locate by a maximum number of possible hubs:

min Z arTr + 1 (5.35)
keK

subject to:

n > Z wij)\fj - Zwijufﬂxl - Z wijv?jkxk , Yh € H(5.36)

i,j€1 leK keK
a < K| (5.37)
keK
Zxk > 1 (5.38)
keK
. € {0,1} VkeK (5.39)

5.2.1 Improving the Design of the Local Access Network

The former hub-and-spoke formulations deal with the client-server interconnec-
tion cost in a very simple way. This is not interesting in some applications where
the major costs are just in the local access network. In fact, traditional hub-and-
spoke models optimize the client-server assignment while solving a quadratic
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location model. However, to improve the treatment of the local access network
also dealing with the client-hub assignment it is not easy. Our idea here is to
detach the two network levels, optimizing the local access network and solving
the associated quadratic location problem in a separated way.

It is natural to suppose that the city/state/country under study is divided
in a set of regions. This kind of partitioning, as suggested by Figure (5.3), can
be induced by a series of different factors like ground occupation policy, popula-
tional density, geographical interference and other social, politic and economic
criteria. The installation of at least a server per region in ensured and natural.
Inside each region, there exists a set of candidate locations to host the server,
that are interconnected each other and to the final customers by a potential
local access network. The role of the server is to deal with the local access de-
mands an concentrate all the traffic, correctly addressing it to the other regions
in the city /state/country.

We define I, C I as the set of all candidate sites for the location of server k.
To implement this partitioning scheme, we define a binary matrix P that has
pri = 1 if the site i can host the server k£ and pg; = 0, otherwise.

To overcome the local access network design problem, let us consider first
the graph G = (V, E) that represents the potential local access network for a
given region, as suggested in Figure (5.3). We are making the assumption that
each region is self-contained, what means that we are not considering the arcs
of the potential local access network that interconnect one region to another If
inside this particular region we have |Ij| candidate sites to host a server, the
local access network design problem with congestion costs will be solved |[j|
times, each one considering a different candidate site ¢ € I as the origin of
flow. This task will be performed with the aid of the methods and algorithms
treated in chapter 4. Since this is not expensive, and also can be carried out
using parallel computing, we will assume that can be done in reasonable time.

Now, given all the optimal local access network design costs, for each server
candidate location, we will use them to define a linear server installation cost
matrix A = (ay;). This matrix has as many lines as servers and as many columns
as the sum of all the candidate sites of all servers, having the same dimensions
of P. The integration of the two levels of design is ensured by the incorporation
of the local access network costs into ag;.

We are now capable to adapt our models and algorithms for QAP to work on
this problem. Modifying equations (2.20)-(2.23) for our network design/facility
location model, we remember that there are some candidate sites for a facility,
but only one possible facility for each location. We can now re-write the QAP
model as:

min Z Z Ak Tki + Z Z Cij il;-l (5.40)

keK i€l (i,j)EE k€K, l€ K, k#l
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subject to:

daw = 1, VkeK (5.41)

i€l
_ Z ikjl = bz, Viel, kile K, k#I (542)

JEI, i#]

i€l, i#j
ij 2 07 Vu],l@l—l,...,n,z#j,k#l (544)
T € {0, 1} Vk e K, i€ I (5.45)

For the model given by equations (5.40)-(5.45), there is an underlying as-
sumption: the hub-to-hub interconnecting backbone network is already given.
This assumption is consistent with the usual applications, specially if we devise
the air traffic, transportation logistics and telecommunication networks. This
assumption also provides an interesting approach to use Benders method, since
for x fixed, our subproblems are not different from those obtained for QAP
decomposition. We can avoid the development of a new mechanism to evaluate
the dual variables, using the decomposition algorithm developed in chapter 2.
We just need to adapt our master problem, equations(2.35)-(2.36), taking into
account the new set of constraints in . Rewriting the master problem:

min Y Y agizki + 0 (5.46)

keK dinly
subject to:
n = > bt — (5.47)
klEK, k#l jEI
S bl
Kl ki Uy ,Vhe H
kleK, k£l icl
aw = 1, VEkeK (5.48)
i€ly
T € {0, 1} Vk e K, i€ I (5.49)

The dual prices ufl’h

kl,h

i

and vfl’h are evaluated for the pair ki, fixing a single

variable u at the iteration h, using the same scheme developed in chapter 2:

vfl’h =u;" by VjET i # ] k£ (5:50)

and using the above defined vfl’h, we can define the other variables u}"":

™ =maxjes jui )" —eyl V€D, i#j, k#l (5.51)

This model is well suited to improve the local access network design, but we
still have just two hubs between each pair of clients. If we want to generalize our
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model, we must obtain scale-economies when designing this system, sometimes
using alternative routes to address flow for a given origin-destination pair. This
feature can be accomplished if we rewrite the above formulation, in such a way
that becomes possible to route flows trough more than two hubs.

5.2.2 Generalized Model Including Hub Transshipment
and Network Design

The first logical step to generalize our network design location model is to enable
transshipment between servers. Transshipment can be particularly interesting if
we set up congestion costs between hubs. Rewriting constraints (5.42) and (5.43)
as a single transshipment constraint, we can overcome the task. It is necessary
to remark that in this case we will not observe trivial solutions when writing
QAP with a transshipment constraint [77], since each facility is constrained to
its own region:

min Z Z AkiTki + ZZ Z Z’ydij il;l (552)

keK i€l i€l jeI keK IeK
subject to:
Z - Z M= buwpi — buakipr » Vi€ I, k1€ K (5.53)
jeI jel
daw = 1, VkeK (5.54)
i€l
Mo> 0,Vijel kleK (5.55)
z € {0,1}, VkeK, icl, (5.56)

The key for the above formulation is the set of constraints (5.53), that uses
the matrix P to create conditions for nodes and arcs outside regions k and [ to
be used for transshipment of the commodity kl. Here, the matrix D is a distance
matrix established between all the candidate sites of all regions, and +y is a cost
per unit flow per distance for transportation. From our experience on QAP, we
can see that one set of assignment constraints is not necessary, since a server
of a given region can not be located outside this region. We must observe also
that this formulation (that includes transshipment) is derived from the original
Koopmans and Beckmann formulation for QAP, and has o(n?m?)+o(n?)+o(n)
variables and o(nm?) + o(n) constraints. We remark that local access network
contributes with the majority of the cost. Since the existence of linear costs
makes QAP more suitable to solve, once defined the server locations all that
remains is a multicommodity minimum cost flow problem.

If it is necessary to design the backbone, we can add network design at the
upper level. Introducing the variables y;; that decide the installation of the arc
ij, it is possible to rewrite Equations (5.52)-(5.56) as:
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min Z Zakiﬂim + ZZﬂdijyij + ZZ Z ZWdij o (5.57)

keK i€l el jel icl jel keKleK
subject to:

Z fjkzl — Z f{;l = byxupy — buzripki , Viel, kle K (5.58)
Jjel jerl

doaw = 1, VkeK (5.59)
i€l

Mo< by VijEeL kleEK (5.60)

Mo> 0,Vijel kleK (5.61)

Yij € {07 ]-} ) VZ,J el (562)

Tri € {0,1} , VkeK, i€l (5.63)

The above formulation appears to be much more complex than its transshipment-
only counterpart. Beyond this, the two above formulations also prepare the
ground to deal with congestion costs when considering flows between hubs. It is
time now to develop computational experience on the use of all the formulations
discussed.

5.3 Computational Experiences

In all the following experiments we are not interested in to solve a lot of differ-
ent instances of a given formulation, making a detailed study of the structure of
each one, but only in to draw the borders, verifying how far each formulation or
decomposition scheme can go with conventional computational resources. All
the implementations were produced using ILOG CPLEX 7.0 Concert Technol-
ogy and were carried out in a SUN BLADE 100 workstation, equipped with one
500 MHz processor and 1 Gbyte of RAM memory.

5.3.1 Benders Decomposition for the p-Hub Median Prob-
lem and the Uncapacitated Hub Location Problem

In this small set of experiments the demand and cost matrices of the original
QAPLIB instances were taken, adding hub installation pseudo-randomic costs.
Table 5.1 shows the experience with the p-Hub Median Problem, plotting the
number of clients and hubs for each instance, the number of Benders iterations,
the p/q ratio and the computing time. As we can see, Benders decomposition
algorithm is capable to solve large instances in reasonable time. In despite of
that, we experience some problems with the larger instances sko49 and sko64,
since the subproblem computation sometimes slows down due to memory lack
of our workstation, what opens opportunity to the successful use of parallel
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5.3. COMPUTATIONAL EXPERIENCES
Original Number of | Number of Number of Benders p/a
instance clients hubs flow variables | iterations | cost ratio | Time[s]
nug7 7 2 2058 8 0.000 0
nug? 2 4 0.252 0
nug? 2 3 0.504 0
nug? 2 3 0.756 0
nug7 5 3 6.784 0
nugl2 12 1 19008 6 0.009 0
nugl2 2 6 0.102 0
nugl2 2 4 0.306 0
nugl2 3 26 0.000 3
nugl2 3 5 0.172 0
nugl2 3 4 0.343 0
nugl2 3 3 0.515 0
nugl2 3 3 0.859 0
nugl2 4 22 0.000 2
nugl2 4 3 0.317 0
nugl2 4 3 0.951 0
nugl2 4 3 1.585 0
nugl2 6 3 5.862 1
nuglh 15 3 47250 72 0.000 24
nuglh 3 12 0.108 1
nuglh 3 8 0.137 0
nuglb 3 7 0.205 0
nuglb 4 7 0.285 1
nuglb 4 5 0.358 0
nuglh 5 6 0.396 0
nuglb 6 3 0.511 0
nug20 20 1 152000 9 0.067 1
nug20 3 8 0.123 1
nug20 4 9 0.220 0
nug20 5 13 0.088 1
nug20 5 9 0.175 1
nug20 5 8 0.263 0
nug20 5 7 0.312 1
nug20 5 7 0.312 0
nug20 6 6 0.406 1
nug20 7 3 0.544 0
nug30 30 3 783000 105 0.013 93
nug30 3 53 0.027 25
nug30 4 45 0.047 19
nug30 4 30 0.071 10
nug30 5 24 0.093 8
ste36a 36 2 1632960 54 0.034 43
sko49 49 6 5647152 133 0.053 482
sko49 6 38 0.107 75
sko64 64 6 16515072 72 3.340 408

Table 5.1: Benders decomposition for the p-Hub Median Problem.

computing. In Table 5.2 we have the experiments with the Uncapacitated Hub
Location Problem, showing the same parameters emphasized in Table 5.1.

We believe that rewrite these classical hub-and-spoke models as flow formu-
lations was decisive when considering the performance of the Benders algorithm.
We also believe that these flow formulations can be enhanced, granting the so-
lution of very large instances with the aid of parallel computing.
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Original Number of | Number of Number of Benders p/a

instance clients hubs flow variables | iterations | cost ratio | Time [s]
had12 12 8 19008 14 0.219 1
hadl4 14 8 35672 5 0.089 0
hadl4 8 3 0.148 1
hadl6 16 12 61440 9 0.051 0
hadl6 12 7 0.062 0
hadl6 12 6 0.071 0
hadl6 12 4 0.109 0
had18 18 12 99144 7 0.056 1
hadl8 12 7 0.058 0
nug? 7 1 2058 5 0.165 2
nug? 2 6 0.252 0
nug? 3 6 0.252 1
nug7? 4 6 0.252 1
nug? 7 7 0.277 0
nugl2 12 2 19008 7 0.102 0
nugl2 6 8 0.172 1
nugl2 7 12 0.190 1
nugl2 8 8 0.172 1
nugl2 9 8 0.172 0
nugl2 10 7 0.053 0
nugl2 10 6 0.071 1
nugl2 10 5 0.080 0
nugl2 10 5 0.106 0
nugl2 10 11 0.136 1
nugl2 10 3 0.150 0
nugl2 10 9 0.205 0
nugl2 10 15 0.399 0
nuglh 15 6 47250 8 0.216 1
nugld 7 6 0.066 0
nugld 7 6 0.070 0
nuglb 10 8 0.062 1
nuglb 10 6 0.079 0
nuglbs 10 6 0.083 0
nuglbs 10 23 0.188 2
nuglbs 10 33 0.296 2
nuglh 10 3 0.413 0
nug30 30 6 783000 6 0.089 2
nug30 6 5 0.118 2
nug30 6 11 0.227 3
nug30 6 7 0.325 2
nug30 10 8 0.101 2
nug30 10 8 0.118 2
nug30 10 6 0.130 1
nug30 10 12 0.358 4
nug30 10 14 0.399 4
nug30 10 12 0.432 3
sko49 49 6 5647152 14 0.250 26
sko49 10 14 0.250 26
sko49 30 112 0.000 341
sko49 30 9 0.169 16
sko49 30 8 0.187 14
sko49 30 13 0.267 24
sko49 30 5 0.312 8
sko49 49 14 0.165 25
sko49 49 13 0.202 24
sko64 64 49 16515072 4 0.396 18
sko64 49 3 0.792 11
ste36a 36 10 1632960 15 0.437 8
ste36a 18 9 0.483 5
ste36a 18 9 0.640 4
ste36a 18 9 0.644 5

Table 5.2: Benders decomposition for the Uncapacitated Hub Location Problem.
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5.3.2 The Integrated Model: QAP + Local Access Net-
work Design With Congestion Costs

We report now our experiences with the integrated model, described in section
5.2.1. The solution of the integrated model must be made in two phases: first
evaluating the local access costs as suggested in chapter 4, and then, embedding
the local access costs on the ag; coefficients, solving the model given by equations
(5.40)-(5.45) in his decomposed form. The solved instances are purely pseudo-
randomic, do not sustaining the triangular inequality, and are represented by
names beginning with net plus the size of K and the size of I. They were
produced in a realistic way, ensuring that costs to install infrastructure are
always equal or superior to operational costs, with the aid of a generator written
in C4++ and compiled with GNU GCC 3.0.

Table 5.3 shows the number of severs (hubs), the total number of possible lo-
cations and consequently the number of flow variables, the number of iterations
of Benders algorithm, the p/q cost ratio and the computing times.

Problem Number of Possible Number of Benders p/a

name servers locations | flow variables | iterations | cost ratio | Time[s]

net624 6 24 17424 7 1.711 0

net824 8 24 32448 30 2.537 3
net1030 10 30 81300 161 1.361 137
net1030 10 30 81300 4 7.843 0
net1236 12 36 171504 7 8.061

net1248 12 48 304704 3 1.835 1
net1260 12 60 475920 26 1.582 6
net1260 12 60 475920 3 15.820 1
net1560 15 60 756900 70 1.668 33
net2060 20 60 1369200 14 2.490 5
net20100 20 100 3802000 114 2.423 181
net20100 20 100 3802000 15 4.847 23
net20100 20 100 3802000 3 121.166 2
net30150 30 150 19579500 54 4.685 391
net40200 40 200 62408000 85 5.316 2177

Table 5.3: Computational results for the integrated model.

As we can see, the computational experiments have been quite limited, but
the Benders decomposition scheme is able to obtain solutions for very large
instances. Since the growing of the flow variables is really explosive in this
formulation, limiting the size of problems that are solvable inside the computer
main memory, parallel computing is a reasonable alternative to the solution of
larger instances.

5.3.3 Testing the Hub Transshipment Network Design Model

The instances solved here are also purely pseudo-randomic. These randomic
instances do not sustain the triangular inequality, and are represented by names
beginning with rnet plus the size of K and the size of I. They were produced
in a realistic way, ensuring that costs to install infrastructure (servers and arcs
interconnecting them) are always superior to operational costs.
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In Table 5.4, we show the obtained results for the experience with model
(5.57)-(5.63). This table shows the numbers of variables (integer and continu-
ous), the quality of the linear programming bound and the solution time. Table
5.4 shows that the linear programming relaxation is very strong. This can be
explained by two reasons: the location problem uses linear installation costs,
what induces indivisible locations (see chapter 2), and for a fixed server loca-
tion, what remains is a multicommodity network design problem, having an
extremely strong formulation (see [116]). On the other hand, the linear pro-
grams generated by this location/network design model are very hard to solve,
what explains the large computing times. It was also not possible to solve prob-
lems beyond 15 severs and 45 candidate sites, since CPLEX always crashes
down due to lack of memory beyond these values. This fact suggests that the
use of Benders decomposition for this problem is straightforward and must add
solution power, if well developed.

problem Number of Variables Bound Install. Network Costs Optimal Computing
name Integer | Continuous | Quality Cost (ND + OC) Cost Timels]

net624.dat 24 20736 0.954 369 17821 18190 6
net824.dat 24 36864 0.977 3744 33207 37113 12
net824.dat 0.955 468 33369 33837 9
net1030.dat 0.959 457 55648 56105 46
net1030.dat 0.997 27609 61438 89047 36
net1030.dat 30 90000 1 218970 80183 326153 19
net1030.dat 0.941 175176 106171 379747 200
net1030.dat 0.926 175176 98798 345974 108
net1030.dat 0.992 109485 90017 252002 644
net1030.dat 0.987 109485 81485 229970 42
net1030.dat 0.96 109485 80183 216668 28
net1030.dat 0.963 31968 65460 117828 882
net1030.dat 0.914 29438 62433 105771 97
net1030.dat 0.98 27609 61503 91352 45
net1030.dat 0.912 27609 61114 89047 37
net1236.dat 36 186624 0.965 252768 165929 563697 20760
net1236.dat 0.929 242112 146485 451597 2967
net1236.dat 0.961 235088 137776 403464 109
net1236.dat 0.925 227632 130608 359054 36
net1236.dat 0.945 35994 110298 146292 265
net1236.dat 0.969 753 94189 94942 537
net1248.dat 48 331776 0.917 71392 81069 152461 70
net1545.dat 45 455625 0.993 44949 100938 145887 292

Table 5.4: Report for a brief experiment using the Hub Transshipment Network
Design model.

5.4 Concluding Remarks

The obtained results concerning location/network design problems with inter-
dependence on the location of serves are very expressive. Future improvements
of the Benders decomposition algorithms of this chapter will make possible to
solve very larger instances at reasonable time, if we use parallel computing,
specially on the field of interacting hub facilities systems design.

The task of integration of the models of local access network design and
facility location with interdependency, using a QAP framework, was well ac-
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complished. The produced flow formulation can handle with large instances at
reasonable cost.

Our Benders decomposition algorithms are robust enough to deal with large
scale hard to solve mixed integer programming problems, designing very com-
plex systems.

It is always important to remember that our local access network is capac-
itated in this case, computing congestion costs, what ensures the quality of
service maintenance for the final customer.
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Chapter 6

Conclusions and Future
Work

6.1 Contributions

6.1.1 The Quadratic Assignment Problem

On the cases where we can define or compute heterogeneous profitabilities, it is
possible to solve large instances of QAP, without an excessive computational
cost or the use of massive parallel computing. This conclusion has its founda-
tions on the pioneer work of Koopmans and Beckmann and also on the work
of Heffley, many years later. The inclusion of heterogeneous profits for location
is a natural step when considering location theory, and can introduce external
environment influence on the location decision process.

Once established this, the new flow formulation has proved to unify desirable
qualities for a good mathematical programming implementation: be easy to
solve and to grant good linear programming bounds. These two qualities are
directly responsible for the good computing times achieved, and also for the
solution of large instances at reasonable cost, until now obtainable only trough
the use of computational grids.

For the instances of size beyond 40, the Benders decomposition algorithm
appears to be a good choice to find an exact solution, avoiding excessive space
and time complexity, if we observe some conditions about the cost structure, as
mentioned in chapter 2.

The new flow formulation and the associated Benders decomposition scheme
are original contributions of this work. There is no solution report for instances
of QAP from n = 30 to 64, without the aid of computational grids, even for
p/q > 0. The current literature of this problem do not address p/q # 0, loosing
the QAP application framework.

87



88 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1.2 The Placement of Electronics With Thermal Effects

As a subproduct of the solution of large QAP instances, we could derive a per-
formance guarantee heuristic for the electronics placement with thermal effects.

The approach of the specific literature for this problem is with the aid of
meta-heuristics, as Genetic Algorithms and Simulated Annealing. This fact
makes the performance guarantee heuristic presented in chapter 3 another orig-
inal contribution of this work.

It is interesting to point that other quantities — depending on the selected
application — could be used as secondary quality criteria for the solution. Also,
depending on other design parameters, a lot of other kinds of information could
be considered for this particular problem. For instance, the maximal temper-
ature over an electronics board or the minimal dispersion of heavy industrial
atmospheric residues.

6.1.3 The Local Access Network Design With Congestion
Costs

We have also presented a multi-commodity flow formulation for the local ac-
cess network design problem with congestion costs. We have studied an exact
method to solve the problem, based on generalized Benders decomposition. We
have also confirmed the possibility of exactly solving such problems with free
software mathematical programming packages, and for this purpose we have a
surprisingly good alternative to commercial softwares.

Yet the computational experiments have been limited in chapter 4, our expe-
rience suggests that a certain number of these modeling and solution strategies
can be applied to the frequently occurring problems where the congestion cost
component is important. Our conclusion is that generalized Benders decompo-
sition emerges as a good method, since it is enough robust to deal with mixed
integer nonlinear programs. The relevance of this type of model is now increas-
ing because emerging Internet services requires larger bandwidth in the local
access network and also because applications concerning multi-party multicast-
ing tree construction should take into account congestion costs.

Once established the importance of the congestion costs, the solution of the
generated nonlinear mixed-integer programs is already an original contribution
of this work.

6.1.4 Integrating Facility Location and Network Design

The obtained results concerning location/network design problems with inter-
dependence on the location of serves are very expressive, as pointed in chapter
5. Future improvements of the Benders decomposition algorithms of chapter 5
will make possible to solve very large instances at reasonable time, if we use
parallel computing, specially on the field of interacting hub facilities systems
design.
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The task of integration of the models of local access network design and
facility location with interdependency, using a QAP framework, was well ac-
complished. The produced flow formulation can handle with large instances at
reasonable cost.

Our Benders decomposition algorithms are robust enough to deal with large
scale hard to solve mixed integer programming problems, designing very com-
plex systems.

It is always important to remember that our local access network is capac-
itated in this case, computing congestion costs, what ensures the quality of
service maintenance for the final customer.

6.2 Hints for Future Work

We are about to obtain expressive results concerning location/network design
problems with interdependency on the location of facilities. The future develop-
ment of a Benders decomposition algorithm of this problem will make possible
to solve large instances at reasonable computational cost.

It is also important to remember that our local access network is capacitated,
and on the solution of network design at this level, we are computing congestion
costs, ensuring the quality of service maintenance for the final customer.

For future work, when considering Q AP, it is necessary to better explore the
equilibrium between bound quality and cost of computation, detecting when and
how to merge easy to compute and stronger and hard to compute formulations
for a given problem.

In the field of QAP applications, it can be noted that a lot of real life
problems can be viewed as instances of quadratic assignment problems and
that it is sometimes possible to propose other quality criteria for the solution.
Nowadays, this kind of solution is valuable, since the environmental impact of
any kind of large scale human implementation has becoming more important. It
is desirable to have the lower transport cost for intermediate commodities in the
design of a regional industrial complex, and to take into account the dispersion
of heavy industrial atmospheric residues. There is no doubt that air quality is
a great part of quality of life, and that environmental concerns must be in the
top of the list of all modern industrial management. One could still deal with
the noise level of machinery on the low plant lay-out design.

About local access network design, another question for investigation is the
generation of approximate solutions by heuristics with the objective of adding
cuts to the Benders master problem in a preprocessing phase (in the current
implementation our preprocessing phase only includes the solution of a shortest
path problem and a minimal spanning tree problem). These new cuts might
reduce the total number of Benders cycles, but the necessary time to solve each
master problem might be increased since the master problem would have more
constraints. The trade off between these two aspects should be better evaluated.

Concerning the formulations and decomposition schemes presented in chap-
ter 5, additional computational experience is necessary. The investigation of
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the cost trade offs for hub-and spoke systems is very important and must add
a comprehensive picture of this complex kind of system. It is also interesting
to compare the monolithic implementation of traditional hub-and-spoke models
and the decomposed versions. The development of a well suited decomposition
scheme for the Hub Transshipment Network Design model can add solution
power, making possible to solve large instances.
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