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Abstract

Monitoring events, physical or environmental phenomena in different scenarios like mil-
itary tactics, security, industrial and health, involves several activities such as sensing,
processing, and transmission of data related to temperature, humidity, pressure, move-
ment and so on. Most of the time, collecting and spreading the data requires a huge
planning effort, mainly when covering places with difficult access, like mines, forests,
volcanoes or even highly radioactive sites. Therefore, these characteristics imply in
very costly activities. In consequence of that, the development of efficient approaches
to minimize the rising costs is one challenging issue. This scenario is a prominent
motivation for the design of Wireless Sensor Networks (WSNs) which establish the
main subject of this thesis. Given a limited set of sensors and a single sink, we are
particularly interested in the topological design of WSNs. The optimization problem
considered here consists in clustering the sensors and defining a communication topol-
ogy to gather the sensed information throughout the network. Natural connectivity
and coverage requirements are satisfied assuming an imposition on the number of clus-
ters. Two variants of the problem are studied: p-arborescence star problem (p-ASP)
and p-cycle star problem (p-CSP). p-ASP organizes the network into a fixed number
of p clusters and defines the communication topology as a rooted directed tree, i.e.,
an arborescence, setting direct paths from each sensor to a single sink, the root of
arborescence. In p-CSP, instead of a backbone tree, mobile-sink based networks are
designed replacing the core arborescence by a directed cycle, representing the route
traversed by a mobile sink to visit each of the p predefined cluster-heads. The overall
objective of the problems is to maximize the network lifetime by minimizing the clus-
tering and routing costs. We introduce mixed integer programming formulations based
on directed cutset constraints, compact multicommodity flow formulations and exact
solution approaches. Branch-and-bound, branch-and-cut and column-and-row gener-
ation are the algorithms introduced here. To validate our approaches, computational
experiments are performed on instance sets extended from the literature involving up
to 200 vertices.
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Chapter 1

Introduction

In this Chapter, we place the thesis in the context of wireless sensor networks

(WSNs). We start detaching the main problems in the design of WSNs that we are
about to cover. In section 1.3, we formally define the topological problems addressed
in the thesis. Literature is reviewed in section 1.4. Finally, in the last sections, we
close the chapter reviewing the main ingredients of the work.

1.1 Motivation

Monitoring events, physical or environmental phenomena in different scenarios such as
military tactics, security, industry and health, involves several activities such as sensing,
processing and transmission of data related to temperature, humidity, pressure of gases
or even liquids, movement and so on [Arampatzis et al., 2005; Kuorilehto et al., 2005;
Alemdar and Ersoy, 2010; Rawat et al., 2014; Carrabs et al., 2015]. Most of the time,
collecting and spreading the data requires a huge planning effort, mainly when covering
places with difficult access, such as mines, forests, volcanoes or even highly radioactive
sites. Therefore, these characteristics lead to very costly activities. In consequence
of that, the development of efficient approaches to minimize the arising costs is a
challenging issue.

The above scenario is a prominent motivation for the design of wireless sensor
networks (WSNs) [Morais et al., 2016c], which establish the main subject of this the-
sis: consider a set of autonomous, tiny and compact sensors, capable of performing
activities such as sensing, processing, and transmission, and a set of sinks responsible
for collecting the sensed data and managing the network. A sink has an unlimited or
renewable energy source and it also has the function of processing and aggregating the
information received from sensors. It can be static or mobile, visiting the monitored
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2 Chapter 1. Introduction

site and collecting data [Kim et al., 2003; Basagni et al., 2008]. The sensors are made
up of sensing boards, processor, transmission radio and battery. Because of their pur-
poses, size and low cost, they have serious restrictions of energy, low performance and
small radius of transmission. These characteristics lead to a limited lifetime of sensors
and also the network itself [Anastasi et al., 2009]. In order to overcome such a problem,
the sensors must be organized and a set of routes has to be chosen defining the trans-
mission paths among sensors and sinks. Thereby, we aim to maximize the network
lifetime by minimizing the routing costs. Besides natural connectivity requirements,
in this thesis, we also deal with covering and cardinality constraints in an integrated
manner.

The definition of a WSN topology involves ensuring fundamental requirements,
being coverage probably the central point on the design of a such network. Coverage
refers to the portion of sensing area that is within reach of at least one sensor. The
coverage level can be total or partial, but, in general, coverage of the entire sensing
area is always preferred. Therefore, one has to choose a set of active sensors such
that each demand point is within a range of at least one sensor. Indeed, fulfilling
such a need becomes a crucial problem when placing the sensors: a subset of sensors
must be deployed in order to guarantee connectivity and coverage of the entire sensing
area [Efrat et al., 2005; Castano et al., 2014]

Data transmission is one of the most expensive operations in terms of energy
consumption [Akyildiz et al., 2002]. An alternative to maximize the network lifetime
is to define hierarchical networks and implement efficient routing approaches in order
to avoid premature disconnection due to the energy depletion. In many cases, the
transmission topology is arranged in clusters, each one having a sensor assuming the
role of cluster-head. Through some wireless protocol, the cluster-head is responsible
for collecting and aggregating the data from other sensors within the cluster and trans-
mitting it directly or indirectly to a sink. Regular sensors within a cluster must com-
municate directly with the elected cluster-head, using a single-hop strategy or through
other sensors using a multi-hop protocol [Aioffi et al., 2011]. Classical combinatorial
optimization problems as p-median [Hakimi, 1964, 1965] and k-center [Agarwal and
Sharir, 1998] appear naturally in such a clustering context to efficiently manage the
network energy consumption by reducing the transmission range of the sensors. The
transmission among cluster-heads and sinks is typically multi-hop. Thus, the connec-
tivity requirement is enforced with a two-level sensor-to-sink scheme, intra-cluster and
inter-cluster routes. In both levels, a direct structure is defined to transmit data from
sensors to cluster-heads (intra-cluster routes) and from cluster-heads to sinks (inter-
cluster routes).
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An important requirement that strongly impacts on the design of WSNs and di-
rectly influences on the complexity of meeting data routing as well as other Quality of
Service (QoS)1 parameters, is the cardinality constraint. Knowing that aggregation
and data transmission are the two most expensive activities in terms of energy con-
sumption, the cluster-heads are expected to consume much more energy compared to
regular sensors, that only monitor and transmit data. In general, they deplete their
batteries very quickly becoming isolated from the rest of the network. Thus, in order to
prolong the network lifetime, clustering protocols like the Minimum Transmission En-
ergy Routing protocol, LEACH [Heinzelman et al., 2000], and LEACH-C [Heinzelman
et al., 2002] perform a periodic rotation on a fixed number of preselected cluster-heads.
The cardinality of such a cluster-head set is typically determined as a percentage of
active sensors within each time period. As we will discuss, restricting the cardinality
of a cluster-head set and consequently the number of clusters to be defined is a very
hard requirement on the design of WSNs and, in consequence of that, is an important
design ingredient explored in our work.

Network lifetime is defined as the time span from deployment to the instant in
which the network is considered nonfunctional [Chen and Zhao, 2005]. However, the
moment when a network is considered nonfunctional is specific to the application. Con-
nectivity is an important factor tied to network utility and an essential consideration in
the definition of network lifetime. The connectivity-related network lifetime definitions
include: 1) Time until the first sensor failure [Chen and Zhao, 2005; Kang and Pooven-
dran, 2005]; 2) Time until the failure of a certain percentage of sensor nodes [Raicu
et al., 2005]; 3) Time until all the sensors die [Heinzelman et al., 2000]; 4) Time until
the first cluster-head failure or no communication backbone exists [Chen and Zhao,
2005; Dong, 2005]. The most common lifetime definition is the first one [Hang and
Seah, 2009]. Because of that, in this work, we studied a scenario where lifetime is
based on that definition.

1.2 Objectives

In this thesis, we are particularly interested in two topological WSN problems with car-
dinality constraints: p-arborescence star problem (p-ASP) and p-cycle star problem
(p-CSP). p-ASP organizes the network into a fixed number of p clusters and, in the first
level, it defines a transmission topology as a rooted directed tree, i.e., an arborescence
establishing directed paths from each cluster-head to a single sink, the root of ar-

1QoS usually refers to quality as perceived by the user and/or application.



4 Chapter 1. Introduction

borescence. Intra-cluster routes, in the second level, follow a single-hop protocol while
multi-hop is preferred for inter-cluster routes. On the other hand, in the P-CSP, instead
of a backbone arborescence, a mobile-sink based network is designed to replace the core
arborescence by a directed cycle, representing the trail traversed by the mobile sink to
visit each of the p predefined cluster-heads. This approach prevents the sensor from
spending their limited energy in relaying messages through a long path to the sink.
In the present study, we investigate the application of a mathematical programming
technique to those problems. We decompose the topology structure of the problems in
a way to obtain strong mathematical formulations. In the next section, we present a
detailed description of the problems addressed in this thesis.

1.3 Topological WSN problems

Let D = (V , A) be a connected bidirectional digraph with a set V of n + 1 vertices
(n sensors and one sink) and a set A of m arcs. r ∈ V is a special vertex named
sink. Assume that a positive integer p (1 ≤ p < n) is given and define the vertex
subset W = {r, w1, ..., wp} ⊆ V . |W | = p + 1 and W \ {r} is denoted by cluster-
head set. The p-arborescence star problem (p-ASP) consists in clustering the vertices
into p clusters (disjoint vertex subsets), {Kw1 , ..., Kwp}, each one associated with a
cluster-head, such that: i) V \ {r} =

⋃p
i=1 K

wi ; ii) the sink and all p cluster-heads
are connected with p arcs forming a spanning reverse arborescence rooted at r; iii)
every other vertex j ∈ V \ W is connected by an arc to a cluster-head wi ∈ W .
We introduce the following notation: a backbone is a subdigraph (W , AW ), where
AW ⊆ {(i, j) ∈ A : i, j ∈ W}; an intra-cluster star is a subdigraph (Kwi , Awi

K ),
centered at cluster-head wi ∈ W \ {r}, spanning the vertices within a given cluster
Kwi , such that Awi

K = {(j, wi) ∈ A : j ∈ Kwi}; the objective of p-ASP is to minimize
intra and inter-cluster total costs, given by

∑
a∈AW

ca+
∑p

i=1

∑
a∈Awi

K
ca, where ca > 0

is a positive cost on each arc a ∈ A.
Figure 1.1 illustrates a feasible p-ASP solution involving 10 sensors and 4 cluster-

heads. The arcs of the connected backbone, rooted at the sink, are drawn in bold lines.
Intra-cluster arcs are drawn in dashed lines, connecting each vertex (black dots) v /∈ W
to a cluster-head (white) wi ∈ W \ {r}. The backbone is a reverse arborescence.

Placing p-ASP in the design of ad-hoc WSN, V \{r} represents the sensor set and
r ∈ V the fixed sink. In this kind of network, the positive cost ca, a = (i, j) ∈ A,
corresponds to the energy required to send a packet from sensor i to sensor j, or from
a sensor i to the sink (when j = r), and p is the number of cluster-heads to be placed.
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Figure 1.1: Illustration of a feasible p-ASP solution involving 10 sensors, 4 cluster-heads
and the sink.

Each cluster-head aggregates the packages within a cluster and sends them to the sink
through the backbone. In this context, the aim is to maximize the network lifetime
by minimizing the routing cost, while ensuring coverage constraints. Note that, in the
definitions above, the communication between a cluster-head and the other sensors
within the same cluster must be single-hop, while the communication among cluster-
heads and sink may be multi-hop [Aioffi et al., 2011]. The communication model
assumes that the sensors are randomly distributed in the network field and have the
same transmission range.

The p-cycle star problem (p-CSP) is also defined in terms of D = (V , A) and
the fixed positive integer p > 1 (p < n). r ∈ V represents a higher order vertex, in
this problem, a mobile sink. As for p-ASP, W = {r, w1, ..., wp} ⊆ V is the vertex
subset, where |W | = p+ 1 and W \ {r} is denoted by cluster-head set. Two different
sets of nonnegative fixed costs are considered, cycle cost {c(i,j) > 0 : (i, j) ∈ A} and
assignment cost {d(i,j) > 0 : (i, j) ∈ A}. p-CSP consists in clustering the vertices
into p clusters, {Kw1 , ..., Kwp}, each one associated with a cluster-head, such that: i)
V \ {r} =

⋃p
i=1K

wi ; ii) the sink and all p cluster-heads are connected with p+ 1 arcs
forming a simple directed cycle (W,AW ) of D, where AW = {(i, j) ∈ A : i, j ∈ W}
and |AW | = p+1; iv) every other vertex j ∈ V \W is connected by an arc to a cluster-
head wi ∈ W . As before, intra-cluster star is a subdigraph (Kwi , Awi

K ), centered at
cluster-head wi ∈ W \ {r}, spanning the vertices within a given cluster Kwi , such that
Awi
K = {(j, wi) ∈ A : j ∈ Kwi}. The objective of p-CSP is to minimize inter and

intra-cluster total costs, given by
∑

(i,j)∈AW
ci,j +

∑p
i=1

∑
(i,j)∈Awi

K
di,j.
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Sink Cluster-head Intra-cluster arc

Cycle arc

Figure 1.2: Illustration of a feasible p-CSP solution involving 14 sensors, 5 cluster-heads
and the sink.

Figure 1.2 illustrates a feasible p-CSP solution involving 14 sensors, 5 cluster-
heads and a sink. The arcs of the directed cycle are drawn in bold lines. Intra-cluster
arcs are drawn in dotted lines, connecting each sensor (black dots) v /∈ W to a cluster-
head (white) wi ∈ W \ {r}. The simple directed cycle has exactly p+1 arcs. Besides,
exactly one arc pointing into and other pointing out of a cluster-head there exist.

p-CSP appears in the design of ad-hoc wireless sensor networks (WSN) [Morais
et al., 2016c], where one common strategy to extend the WSN lifetime is to use a mobile
sink to gather sensed data through the sensor network. This approach prevents the
sensors to spend their limited energy in relaying of messages through paths to the sink.
However, in that approach, the message delivery latency can increase significantly due
to the long route traversed by the sink to visit each sensor. In fact, since a WSN is
expected to have a large number of sensors it could be impractical to visit each sensor.
In order to go around of such problem, clustering schemes with a predetermined number
of cluster are considered. Then, p cluster-heads have to be placed over the network
and clusters must be defined connecting sensors to the cluster-heads. In regard of
modelling WSN applications as p-CSP, V \{r} represents the sensor set and r ∈ V the
mobile sink. The assignment cost corresponds to the cost of sending a packet from
sensor i ∈ V to a cluster-head wj ∈ W , such that (i, wj) ∈ A, and the cycle costs
correspond to the cost of the route traversed by the sink to visit all cluster-heads.

In the problems above, the communication model assumes that the sensors are
randomly distributed in the network field and have the same transmission range. The
communication between any pair of sensors is bidirectional, i.e., for any pair of sensors
i and j ∈ V , i is in the transmission range of j only if j is in the transmission range of



1.4. Literature review 7

i. This imply that if there exists an arc (i, j) ∈ A then (j, i) ∈ A.

1.4 Literature review

The class of problems that aims to optimize the energy consumption and extend the
WSN lifetime is known as the maximum lifetime problems (MLPs) [Cardei et al.,
2005; Carrabs et al., 2015]. Typically, problems in that class involve the definition
of topologies and the density control of sensors (DCP). DCP being the problem of
planning the sequence of activation and deactivation of sensors while ensuring WSN
requirements [Aioffi et al., 2011]. Accordingly, MLP variants seek to define sensor sets,
not necessarily disjoint, to cover the sensed area and set their appropriate activation
schedule times in such a way that the sensors in the cover being used in a given moment
are kept in active state while all the other sensors are turned off to save energy. In
the literature, enforcing connectivity among active sensors leads to the study of the
connected maximum network lifetime problem (CMLP) [Raiconi and Gentili, 2011]
when coverage of the entire sensing area is required and α-CMLP [Gentili and Raiconi,
2013; Castano et al., 2014; Carrabs et al., 2015] when partial coverage is preferred.
In both cases, a communication topology connecting active sensors and sink must be
defined. In particular, this is the purpose of topological problems like: p-ASP and
p-CSP.

p-ASP belongs to the vast literature of clustering problems, where some of the
simplest problems are known to be NP-hard [Agarwal. and Procopiuc, 1998], includ-
ing euclidean k-center [Agarwal and Sharir, 1998] and p-median [Hakimi, 1964, 1965]
problems. Introduced in [Matos et al., 2012], p-ASP is motivated from an application in
wireless sensor networks where a clustering protocol to simulate the clusters formation
and data transmission is designed. To solve the problem, a GRASP-based heuristic
was also presented in [Matos et al., 2012]. The good performance of their protocol
were compared with LEACH and LEACH-C. p-ASP is trivial to solve when p = 1:
first compute ci,r+

∑
a∈δi ca for each vertex i ∈ V \{r}, assuming that non-existing arcs

have infinity costs, where δi = {a ∈ A : a = (j, i), j ∈ V \{r}}; then, choose as cluster-
head the vertex that minimizes the total costs. Another polynomially solvable case of
the problem applies when p = n, in which case the problem reduces to the minimum
weight spanning arborescence problem (MSA), which can be solved efficiently [Chu
and Liu, 1965; Edmonds, 1967]. In general, p-ASP is NP-hard, since the p-median
problem can be reduced to it. The p-median problem is a simple uncapacitated facility
location problem where a fixed number p of facilities must be selected. If one imposes
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the sink to be among the selected facilities and conveniently define costs ca > 0, a ∈ A,
to intra-cluster arcs and ca = 0 to backbone arcs, solving the p-median is equivalent
of dropping the backbone arcs from a solution of p-ASP.

Another closely related problem is the tree-star problem (T-SP) [Nguyen and
Knippel, 2007; Lucena et al., 2015]. T-SP is defined as the problem of finding a
minimum cost spanning tree of an undirected graph G = (V , E), assuming different
cost structure for edges connecting leaves and internal vertices. T-SP is related to the
minimum connected dominating set problem (MCDSP) [Gendron et al., 2014], the
problem of finding a connected subset C ⊂ V with smallest cardinality, such that Γ (C)

= V , where Γ (C) = C ∪ {j ∈ V : {i, j} ∈ E, i ∈ C}. Given a dominating set C, a
solution of MCDSP is a subgraph (C,E(C)), where E(C)= {{i, j} ∈ E : i, j ∈ C} plays
the role of backbone. Unlike p-ASP, in T-SP and MCDSP, the backbone is modeled in
terms of an undirected graph and has no fixed cardinality associated to it; moreover,
the sink does not need to be connected to the backbone. Exact algorithms based on
mixed-integer programming (MIP) formulations were developed for T-SP [Nguyen and
Knippel, 2007], in particular a branch-and-cut algorithm that separates generalized
subtour elimination constraints (GSECs) [Lucena et al., 2015]. For MCDSP, MIP
formulations and exact algorithms were proposed in [Gendron et al., 2014; Simonetti
et al., 2011]. Similarly to p-ASP, T-SP and MCDSP are used in the design of ad-hoc
WSN applications where the network topology may change dynamically.

A clustering problem resembling p-ASP is the connected facility location prob-
lem (ConFL) [Gollowitzer and Ljubić, 2011]. In ConFL, it is assumed that the set of
vertices is partitioned into potential facility locations I, customers J and interconnec-
tion points K, where I ∪K is the set of Steiner vertices, while the vertices in J are
named terminals. ConFL consists of selecting a subset of facilities to open, assigning
each customer to an open facility and defining a Steiner tree spanning terminals and
Steiner vertices, using or not interconnection points to enforce connectivity. The ob-
jective is to minimize assignment costs, facility opening costs and Steiner tree costs.
The topological design of ConFL define trees spanning open facilities and customers.
Bardossy and Raghavan [2010]; Leitner et al. [2017] addressed the ConFL and discussed
how their solution methods are also applied to a family of tree-star problems known in
the literature. More precisely, Leitner et al. [2017] described the Steiner tree-star (STS)
[Lee et al., 1993], generalized Steiner tree-star [Khuller and Zhu, 2002] and rent-or-buy
problems [Swamy and Kumar, 2004] in graphs as special cases of the asymmetric ver-
sion of the ConFL. In [Leitner et al., 2017], to solve the problems addressed in their
paper, a sophisticated branch-and-cut based framework was also implemented. Poly-
hedral investigations for ConFL versions were carried out in [Gollowitzer and Ljubić,
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2011; Leitner et al., 2017; Gollowitzer et al., 2013; Leitner et al., 2015], branch-and-cut
algorithms were developed in [Arulselvan et al., 2011]. A branch-and-cut-and-price
algorithm for a variant of ConFL with capacities on facilities (CapConFL) appeared
in [Leitner and Raidl, 2011]. Exact solution methods based on compact formulations
for a ConFL with capacities on the facilities and links of the networks were also in-
vestigated in [Gollowitzer et al., 2013]. Heuristics for connected facility location and
related problems were described in [Bardossy and Raghavan, 2010] and [Ljubić, 2007].

A location-allocation problem also close to p-ASP is the capacitated p-cable
trench problem with covering problem (Cp-CTPC) [Calik et al., 2017]. Cp-CTPC
belongs to the family of cable trench problems (CTP) [Vasko et al., 2002], in which it
is assumed that the set of vertices V is partitioned into clients J and potential primary
S and secondary I servers (i.e., V = I∪S∪J). Each client j ∈ J has a positive demand
qj and each secondary server i ∈ I has positive capacity Qi. Each client j ∈ J must be
supplied by a secondary server i ∈ I respecting capacity and a covering radius r, i.e,
the distance dij ≤ r. In particular, cable trench problems combine the minimum span-
ning tree problem and the path generation problems into a multi-hierarchical topology
where no backbone connecting the multiple primary servers is required. Fixed costs are
associated with cable installation in addition to the cable usage costs that depend on
the number of paths between the primary vertex and any of the other nodes using a ca-
ble. Thus, the cost structure does not depend on the client coverage cost. As a variant
of the CTP, the Cp-CTPC consists in select p primary servers, an arbitrary number of
secondary servers and define a topology connecting secondary servers to the selected
primary ones, respecting covering and capacity constraints. Cp-CTPC also generalizes
the most studied cable trench variants, the p-cable-trench problem (p-CTP) [Marianov
et al., 2012]. This is the problem of locating p primary servers such that each client must
be connected to one such facility. Aside from introducing Cp-CTPC and placing it in
the cable trench literature, Calik et al. [2017] also designed an algorithmic framework
based on Benders decomposition. Contrary to CTP problems, p-ASP incorporates the
design aspect of the well-known p-median problem and the minimum cost arborescence
problem. Its objective is to define a topology rooted into a fixed sink (i.e., |S| = 1),
with a constraint on the number of cluster-heads (open secondary servers), taking into
account the coverage cost over the cost structure. As stated before, in p-ASP there are
neither opening costs nor capacity constraints associated to cluster-heads.

Various related problems appear in the clustering and routing literature. They are
also based on cycle topologies, like p-CSP. For instance, a topological design problem
similar to p-CSP is the travelling circus problem (TCP). TCP consists of defining a
tour with p out of |V | vertices of a network such that the length of the tour and the
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assignment cost to satisfy the demand of all customers from the vertices on the tour are
minimized. Hartmann and Özgür Özlük [1999] extended their results on the p-cycle
(simple directed cycle consisting of p arcs) polytope [Hartmann and Özgür Özlük,
2001] to solve the TCP. A TCP formulation on complete digraphs is given in [Current
and Schilling, 1994]. The undirected version of the p-cycle was investigated by Nguyen
and Maurras [2001], which brought polyhedral analysis to the problem. The study of
all these problems has been supported by contributions for the simple cycle problem
on directed [Balas and Oosten, 2000] and undirected [Fischetti et al., 2007] graphs.
p-CSP is also related to the ring star problem (RSP) [Labbé et al., 2004], the problem
of defining a set of stars and connect them through a ring structure. Likewise the TCP
and p-CSP, RSP is a location-allocation problem but contrary to its counterpart the
simple cycle on its core structure is defined as an undirected subgraph. Moreover, it
has no fixed root (the sink) and no fixed cardinality. Among all the referred problems,
RSP is the only one that like p-CSP imposes a prefixed vertex, the root, to be in the
optimal cycle. This condition is justified by the application requirements, that for the
p-CSP also forbids the direct assignment of a non-cluster-head vertex to the sink.

Except for ConFL and CapConFL, the related problems described above are also
motivated in the WSN context. Furthermore, p-ASP and p-CSP have some similarities
with other location-allocation problems in transportation and telecommunication net-
works. In particular the connected hub location problems, such as the hub line [de Sá
et al., 2015], tree of hubs and cycle hub location problems [Contreras et al., 2010], as
well as the capacitated m-ring-star [Baldacci et al., 2007], median cycles [Labbé et al.,
2005] and minimum cost hop-and-root constrained forest [Pereira and da Cunha, 2018]
problems. Those problems consist of locating a subset of vertices and connecting them
through paths, cycles or trees, considering assignment costs to allocate non-located
vertices to the backbone and capacity/budget constraints.

1.5 Outline and main contributions

The thesis consists of five chapters. Below we outline each of the remain chapters and
highlight the main contributions.

Chapter 2 is dedicated to the p-arborescence star problem. We introduce MIP
formulations and exact solution methods for p-ASP. Contrary to the related problems
found in the literature, our models specify a backbone defined by directed paths from
each vertex to the sink, traversing a set of p cluster-heads. The formulations are based
on directed multicommodity flow models and on directed cutset (DCUT) inequalities.
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We also develop three branch-and-cut algorithms and a combinatorial Benders-based
heuristic, which is used to provide the initial solution to the exact algorithms. Based
on compact multicommodity flow formulations, two algorithms (BCF-T and BCF-
C) exploit different approaches to handle constraints that impose the flow capacity
on the backbone arcs. Based on the DCUT formulation, the third algorithm (BCD)
manages DCUT inequalities in a cutting-plane fashion. The Benders-based heuristic
alternates between two problems: a master problem and a subproblem. The master
problem defines a cluster-head set W , while the subproblem verifies the feasibility of
the cluster-head set provided by the master problem, i.e., it evaluates the backbone
connectivity and the coverage of vertices in V \W . Optimal solutions obtained with
the proposed branch-and-cut algorithms are reported for instances with at most 200
vertices and 60 cluster-heads.

Chapter 3 concerns to the p-cycle star problem. First, a compact formulation
based on a directed multicommodity flow model is given. This formulation is then
strengthened with additional valid inequalities. With the resulting formulations on
hands, we derive cutset based inequalities by projecting out the continuous flow vari-
ables. All of this is described in Section 3.1. Additionally, a branch-and-bound and
two non-standard branch-and-cut algorithms based on the proposed formulations are
given in Section 3.2. Comments over the computational results and the complexity to
solve the problem appear in Section 3.3. We close the chapter in Section 3.4.

Chapter 4 concerns formulations based on configurations for p-ASP and p-CSP.
Essentially, we decompose the topology structure of the refereed topological WSN
problems in such a way to obtain strong mathematical formulations. In order to eval-
uate bounds of the proposed formulations, we also introduce column-and-row genera-
tion (CRG) procedures. The chapter is organized as follows. In Section 4.1, we intro-
duce the mathematical programming formulations. In Section 4.2, the column-and-row
generation algorithms are described. Our computational experiments are presented and
discussed in Section 4.3. Finally, the conclusion and future directions are drawn in the
last section.

The thesis is fundamentally based on the following publications:

• Morais et al. [2015], Formulating and solving the coverage constrained p-tree prob-
lem. Presented at the 2015 CORS/INFORMS International Meeting. This
work concerns to formulation and preliminary results of the BC algorithm for
p-ASP.

• Morais et al. [2016b], The p-cycle star problem: Formulations and cutting-plane
methods. Presented at the 4th International Symposium on Combinatorial Opti-
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mization (2016-ISCO). This work concerns to compact formulation and prelimi-
nary results of cutting plane algorithms for the p-CSP.

• Morais et al. [2019] The p-arborescence star problem: Formulations and exact
solution approaches. Work published in Computer and Operations Research.
In this paper we address the p-ASP. We introduce and compare formulations
based on directed cutset constraints and multicommodity flow variables. Valid
inequalities to strengthen the models are also given. To solve these models, we
develop efficient cutting-plane methods. We carry out extensive computational
experiments and comparisons to illustrate the performance of our methods.

• Morais et al. [2016c], Optimization problems, models, and heuristics in wireless
sensor networks. Book chapter printed in Handbook of Heuristics. This chapter
presents a literature review on optimization problems, models and heuristics in
the context of Wireless Sensor Networks.

• Morais and Mateus [2019] Configuration-based approach for topological prob-
lems in the design of wireless sensor networks. Work published in International
Transactions in Operational Research. In this paper we propose configuration-
based formulations for p-ASP and p-CSP and design a column-and-row genera-
tion (CRG) procedure to evaluate the bounds.

In parallel with his research topic, the student has been participating in other
works related to his research topic: Formulations for optimization problems. As a
result, the following work has been published:

• Morais et al. [2016a], A Branch-and-cut-and-price algorithm for the Stackelberg
Minimum Spanning Tree Game, published in Electronic Notes in Discrete Math-
ematics. This work introduces a reformulation and a Branch-and-cut-and-price
algorithm for the Stackelberg Minimum Spanning Tree Game (StackMST) .



Chapter 2

The p-arborescence star problem

This Chapter is dedicated to the p-arborescence star problem. We introduce MIP
formulations and exact solution approaches for the problem. In Section 2.1, we present
the different p-ASP formulations, namely the multicommodity flow formulation and
the DCUT formulation, as well as valid inequalities to strengthen the models. In
Section 2.2, we present branch-and-cut algorithms and a Benders-based heuristic. The
computational experiments are discussed in Section 2.3. We close the chapter in Section
2.4.

2.1 p-ASP formulations

To present p-ASP formulations, we introduce some notation that will be used through-
out the chapter. Denote by δ+(S) = {(i, j) ∈ A : i ∈ S, j /∈ S} the set of arcs pointing
out from the vertex subset S ⊂ V and by δ−(S) = {(i, j) ∈ A : i /∈ S, j ∈ S} the
set of arcs pointing into the vertex subset S. For simplicity, we use δ+

i and δ−i instead
of δ+({i}) and δ−({i}) when referring to the vertex subset S = {i}. Given a subset
C ⊂ V , we define the subdigraph DC = (C,AC), where AC = {(i, j) ∈ A : i, j ∈ C}.

p-ASP formulations use binary variables {hi ∈ B : i ∈ V }, where B = {0, 1}, to
identify a set of feasible cluster-heads to be located. Accordingly, hi = 1 if vertex i is
selected to be a cluster-head, hi = 0 otherwise. For consistency, since the sink belongs
to the backbone, we let hr = 1.

Additionally, binary variables {yij ∈ B : (i, j) ∈ A} are used to identify whether
a vertex i ∈ V \{r} is covered (yij = 1) or not (yij = 0) by a cluster with cluster-head
located at j ∈ V \{r}, while binary variables {zij ∈ B : (i, j) ∈ A} are used to identify
backbone arcs, i.e., zij = 1 if (i, j) belongs to the backbone, zij = 0 otherwise. Here,

13
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the backbone is represented as a reverse arborescence rooted at r, i.e., there are no arcs
pointing out from r. Then, the general p-ASP formulation is given by:

min

 ∑
(i,j)∈A

cijyij +
∑

(i,j)∈A

cijzij : (h, y, z) ∈ P ∩ (Bn+1 × Bm × Bm)

 (2.1)

where P = Pc ∩ {(2.9)} denotes the intersection of the polyhedron Pc, given by

∑
j∈δ+i

yij = 1− hi, i ∈ V \{r} (2.2)

∑
i∈V \{r}

hi = p, (2.3)

(zij + zji) + yij ≤ hj, (i, j) ∈ A (2.4)∑
j∈δ+i

zij = hi, i ∈ V \{r} (2.5)

hr = 1, (2.6)∑
i∈V

(zri + yir + yri) = 0, (2.7)∑
i∈δ+r

zir ≥ 1, (2.8)

with the generic connectivity constraint

Backbone(h, z). (2.9)

Constraint (2.9) imposes the connectivity of the backbone induced by h and z.
Backbone(h, z) defines a spanning arborescence polytope considering only the cluster-
heads and the sink. Constraints (2.2)-(2.4) ensure that all vertices are spanned and
enforce the location of p cluster-heads. These constraints define the clustering problem.

Constraints (2.2) determine whether or not an intra-cluster arc (i, j) ∈ A appears
in a feasible cluster. If hi = 0 holds, vertex i is left out of the cluster-head set and
no backbone arc pointing out of it exists. In this case, there must exist a cluster-head
j ∈ W , such that hj = 1, and an intra-cluster arc pointing outward from i towards j
therefore exists, i.e., yij = 1 holds. Otherwise, if hi = 1 applies, no intra-cluster arc
pointing out of it exists, since i ∈ W . Thus, in that case, yij = 0 must apply for all
j ∈ δ+

i .
Constraint (2.3) imposes the cardinality of the cluster-head set. Alongside with
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(2.5) and (2.6), (2.3) also enforces the cardinality of the backbone. Constraints (2.4)
play the role of linking constraints among variables y, z and h. If an arc (i, j) ∈
A is selected to be in the backbone, the same arc cannot be selected as an intra-
cluster arc. Consequently, in the former case, both of its endpoints must be cluster-
heads. Constraints (2.5) force that each cluster-head has an outgoing backbone arc.
Constraints (2.6) and (2.7) are the consistency constraints for the sink. They state
that no vertices in V \W are connected to the sink and no backbone arc pointing out
of it exists. Likewise, we must impose that at least one backbone arc must reach the
sink. This is done by adding constraint (2.8). Finally, the objective function (2.1)
minimizes intra and inter-cluster total cost.

The exact algorithms described in this chapter differ, mainly, in the way they
handle the generic constraint (2.9). Based on that, two different formulations are
considered to represent Backbone(h, z). In Section 2.1.1, we describe a classical multi-
commodity flow formulation involving additional continuous variables. In Section 2.1.2,
we present a directed cutset (DCUT) based formulation where connectivity is ensured
by means of an exponential number of inequalities. Valid inequalities to strengthen
both formulations are given in Section 2.1.3.

2.1.1 Directed multicommodity flow formulation

In this section, we introduce our first approach to model p-ASP. Back bone(h, z) is
modeled in terms of a classical multicommodity flow formulation that introduces ad-
ditional continuous flow variables. The following notation is used. Let Q = V \{r}
be the set of commodities, sharing the same destination r, each one having a single
origin q ∈ V \{r}. Denote by {f qij ∈ R+ : (i, j) ∈ A, q ∈ Q} the set of continuous flow
variables, representing the fraction of flow on each arc (i, j) for each commodity q ∈ Q.
Alongside the decision variables {hi ∈ B : i ∈ V } and {zij ∈ B : (i, j) ∈ A} defined
above, assume that Pf = Pc ∩ {(2.10), (2.11), (2.12)} denotes the set obtained from P
by replacing constraint (2.9) by the following constraints:

∑
(i,j)∈δ+i

f qij −
∑

(j,i)∈δ−i

f qji =

{
0 if i 6= q,

hi if i = q,
i ∈ V \{r}, q ∈ Q, (2.10)

f qij ≤ zij, (i, j) ∈ A, q ∈ Q, (2.11)

f qij ≥ 0, (i, j) ∈ A, q ∈ Q. (2.12)

Constraints (2.10) represent the flow conservation equations for each vertex-
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commodity pair. These constraints ensure that only vertices selected to be cluster-
heads are able to send flow to the sink. The forcing constraints (2.11) imply that
the flow for each commodity only traverses an arc that belongs to the backbone defined
by the z-variables. Finally, (2.12) impose the non-negativity of the flow variables.

Thus, the following compact p-ASP formulation is obtained:

min

∑
(ij)∈A

cijyij +
∑

(ij)∈A

cijzij : (h, y, z, f) ∈ Pf ∩ Ô

 (2.13)

where Ô = (Bn+1 × Bm × Bm × Rm×n).

2.1.2 Directed cutset based formulation

In this section, we introduce our second approach to model p-ASP. Back bone(h, z)
is represented here in terms of exponentially many DCUT inequalities that ensure
solution connectivity and additionally prevent subcycles. Thus, assume that Pd =

Pc ∩ {(2.14)} denotes the set obtained from P by replacing constraint (2.9) by the
following constraints:

∑
(i,j)∈δ+(S)

zij ≥ hv, v ∈ S, S ⊂ V \{r}, 2 ≤ |S| (2.14)

DCUT inequalities (2.14) enforce that for any vertex subset S ⊂ V \{r}, if a
vertex v ∈ S is a cluster-head, there must exist backbone arcs pointing out from S.
This condition applies since r /∈ S, otherwise, p-ASP solutions would not be connected.
Thus, a directed cutset p-ASP formulation is given by:

min

 ∑
(i,j)∈A

cijyij +
∑

(i,j)∈A

cijzij : (h, y, z) ∈ Pd ∩ (Bn+1 × Bm × Bm)

 (2.15)

In what follows, given any polyhedron U obtained from a MIP formulation for
p-ASP, by relaxing the integrality constraints, we denote by v(U) the corresponding
LP relaxation lower bound. Under the spanning arborescence representation, as the
next result indicates, formulations Pf and Pd are equivalent.

Proposition 2.1.1. v(Pf ) = v(Pd)
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Proof. It is well known, from the maximum flow and minimum cut theorem [Mag-
nanti and Wolsey, 1995], that the capacity of the directed cut determined by a subset
S ⊂ V bounds the flow sent from a vertex v ∈ S to the root r ∈ V \S. Thus,∑

(i,j)∈δ+(S) zij ≥ hv is valid for all v ∈ S if and only if the constraint set (2.10)-(2.12)
has a feasible solution.

2.1.3 Strengthening the formulations

Note that, in formulation Pf , the total flow for all commodities is bounded by the total
demand, which is p due to constraint (2.3). This suggests a simple strengthening of
the aggregate version of forcing constraints (2.11) that typically bounds the flow on
the arcs to at most the cardinality of the vertex set. Thus, the formulation can be
strengthened with the following valid inequalities:

∑
q∈Q

f qij ≤ pzij, (i, j) ∈ A. (2.16)

In the remainder, denote by PF = Pf ∩ {(2.16)} the formulation obtained when
appending (2.16) to Pf . Clearly, we have v(PF ) ≥ v(Pf ).

We may also reinforce Pd with the following lifted version of DCUT inequalities
(2.14):

∑
(i,j)∈δ+(S)

zij −
∑

j∈δ+v ∩S

yvj ≥ hv, v ∈ S, S ⊂ V \{r}, 2 ≤ |S| (2.17)

Inequalities (2.17) generalizes the GSEC constraints for MCDSP (see Gendron
et al. [2014] for details), that ensures that any vertex v ∈ V either belongs to S or has a
neighbor vertex in S. To show that (2.17) is a valid inequality for p-ASP formulation,
consider a vertex subset S ⊂ V \{r} and a vertex v ∈ S. Note that, to break circuits
and also enforce solution connectivity, there must exist a backbone arc pointing out
from S. This is true since the sink is the root of the backbone. Thus, we have two
cases to consider: i) v is a cluster-head vertex in S, in which case (2.17) reduces to
(2.14); ii) v is not a cluster-head but it may connect to a cluster-head j ∈ S, in
which case, due to (2.2) and (2.5), inequalities (2.17) hold. After substituting (2.14)
by (2.17), let us denote by PD the strengthened DCUT based formulation obtained.
Since (2.17) dominate (2.14), we have v(PD) ≥ v(Pd).
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It is worth noting that inequalities (2.17) also enforce the linking constraint among
variables y, z and h. Let us take the vertex subset S = {v1, v2} and observe that∑

(i,j)∈δ+(S) zij =
∑

j∈δ+v1
zv1j +

∑
j∈δ+v2

zv2j − zv1v2 − zv2v1 ≥ hv1 + yv1v2 . Now, since∑
j∈δ+v1

zv1j = hv1 and
∑

j∈δ+v2
zv2j = hv2 we have hv1 + hv2 − zv1v2 − zv2v1 ≥ hv1 + yv1v2

or (zij + zji) + yij ≤ hj. This shows that the linking constraints (2.4) are implied by
(2.17) when |S| = 2. It should be noted that inequalities (2.14) and (2.17) are valid for
all subsets S ⊂ V \{r} not containing the sink and not only for those of cardinality at
most p. But, whenever the solution being separated is integer, due to the cardinality
constraint (2.3), we can identify DCUTs in an economical way and append to the model
only those with 2 ≤ |S| ≤ p.

2.2 Algorithms

The most important details of our branch-and-cut (BC) algorithms are described in
this section. We refer to Padberg and Rinaldi [1991] and Wolsey and Nemhauser
[1999] for a detailed description of branch-and-cut solution methods. Here, three BC
algorithms for p-ASP are given: BCF-T, BCF-C and BCD. BCF-T and BCF-C are
based on formulation PF , whereas BCD is based on PD. The CPLEX optimization
package is used to solve linear programs and also to manage the enumeration trees. The
BC algorithms are initialized with a valid upper bound provided by the Benders-based
heuristic, described in Section 2.2.3.

2.2.1 Branch-and-cut algorithm based on PF

In this section, we present the branch-and-cut algorithms based on formulation PF .
Motivated by the observation that the main drawback when solving PF by means of
branch-and-bound (BB) algorithms is due to the large number of forcing constraints
(2.11) and (2.16), the obvious alternative is to relax these constraints and add them in
a dynamic way within a cutting-plane algorithm. By doing so, one may take advantage
of the cutting-plane tools available in a general purpose MIP solver. The benefits of
such approach are also described in [Gendron and Larose, 2014; Chouman et al., 2016].

The separation problems for (2.11) and (2.16) are trivial. Given an LP solution
(h, y, z, f), it is sufficient to check if f qij − zij > 0 for each pair of commodity q ∈ Q
and arc (i, j) ∈ A to identify all violated inequalities (2.11). If

∑
q∈Q f

q

ij > pzij for any
arc (i, j) ∈ A a valid inequality (2.16) is identified. When no violated inequalities are
found for both families, we have computed the LP relaxation lower bound.
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The algorithms BCF-T and BCF-C differ in the way of handling constraints (2.11)
and (2.16) in a cutting-plane fashion. These algorithms try to find the best tradeoff
between the quality of the lower bounds and the CPU time consumed.

BCF-T separates inequalities (2.11) for fractional LP solutions at every node, but
instead of appending to the model all the violated ones, it only adds those for which
the violation exceeds a given threshold α, i.e., f qij − zij > α. Aside from the root node
of the BC enumeration tree, inequalities (2.16) are only separated when an integer
solution is defined, which ensures that a feasible solution is obtained.

BCF-C, on the other hand, is a direct implementation from a state of the art
MIP solver (we use CPLEX 12.6), where a cut-pool with all inequalities (2.11) and
(2.16) is provided beforehand to the solver. It is up to the solver to decide when and
in which node of the enumeration tree the cuts are added.

For the two algorithms, priority was set for branching on h-variables first. In-
deed, when branching on an h-variable, we are “lifting" the corresponding flow

conservation equations (2.10). In this way, forcing constraints are also lifted and
a very small proportion of the cuts are needed.

2.2.2 Branch-and-cut algorithm based on PD

BCD is the branch-and-cut algorithm based on PD. At the root node of its enumeration
tree, lifted DCUT inequalities (2.17) are separated by means of a fractional separation
routine. In the remainder of the nodes, the separation routine is only invoked when
an integer solution is found and 2 ≤ |S| ≤ p, which is much easier than separating
fractional solutions. To enforce solution connectivity of integer solutions only DCUT
inequalities (2.14) are separated. We also experimented separating fractional solutions
throughout the enumeration tree, but this version was outperformed by our approach.

Let us assume that the LP relaxation is computed to optimality, where z ∈
[0, 1]m, y ∈ [0, 1]m and h ∈ [0, 1]n+1 denote its optimal solution. If (z, y, h) is integer
and its corresponding support digraph is connected and circuit-free, then (z, y, h) is an
optimal solution to p-ASP. Otherwise, valid inequalities as (2.17) may be violated by
(z, y, h) and consequently should be appended into the model.

The exact separation for DCUT inequalities (2.14) can be efficiently carried out
by means of solving a minimum cut problem defined over the support digraph D =
(V , A), for A = {(i, j) ∈ A : zij > 0} and arc capacities {zij : (i, j) ∈ A}. Based on
the maximum flow and minimum cut theorem, Dinic’s algorithm is used for defining
the corresponding mincut set. Thus, let S ⊂ V \{r} be the vertex subset defining the
minimum cut (S, V \S) in D. A DCUT inequality is violated whenever the capacity of
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its corresponding cut, i.e.,
∑

(ij)∈(S,V \S) zij, is less than hv, for v ∈ S. We adapted this
procedure to also separate lifted DCUT. A lifted DCUT inequality (2.17) is violated
whenever

∑
(ij)∈(S,V \S) zij is less than hv +

∑
j∈δ+v ∩S yvj, for v ∈ S. The most violated

lifted DCUT (2.17) identified is always added to the model. The others are appended
only if they are orthogonal enough with the most violated one; otherwise, they are
forgotten. An inequality is said to be orthogonal enough if the inner product (evaluated
after normalizing the inequality with Euclidean norm) between that inequality and the
most violated one does not exceed a given factor ε, that was set to 0.7 in our algorithms.
As stated above, whenever (z, y, h) is integer, we identify DCUTs in an economical way
by means of a depth-first search algorithm that identifies connected components over
D.

Likewise for its counterparts, BCF-T and BCF-C, in BCD, priority was also set
for branching on h-variables.

2.2.3 Benders-based heuristic

In this section, we introduce the CB-heuristic used to initialize the upper bound for our
exact BC algorithms. At this point, one may note that, given a feasible cluster-head set
W , the problem becomes easy to solve when fixing h-variables corresponding to that
set. If W is connected, a spanning arborescence (STw) can be computed by means
of a polynomial algorithm [Edmonds, 1967]. Additionally, the problem of defining a
cluster (Ki,AiK) for all i ∈ W , spanning vertices not in W , is a simple assignment
problem (APw), which can be solved efficiently by only comparing the cost cji for each
pair i ∈ W\{r} and j /∈ W . Alongside with the cardinality constraint (2.3), the
CB-heuristic exploits that property in a combinatorial Benders-like fashion. Basically,
the heuristic alternates between two problems: a master problem and a subproblem.
The master problem defines a cluster-head set W , while the subproblem attests the
feasibility of the cluster-head set provided by the master, i.e., it verifies the connectivity
of the backbone and the coverage of vertices in V \W .

Assume the following master problem

(M) min
{
θ : (h, θ) ∈ H ∩ (Bn+1 × R)

}
(2.18)

where H is defined by (2.3), (2.6) and {θ ≥ 0}. The subproblem consists in checking
whether or not the corresponding solution hw, obtained when solving (M), leads to a
feasible solution for STw and APw, whereW = {i ∈ V : hwi = 1}. In case of infeasibility,
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we add a feasibility cut (2.19) to (M):

∑
i∈V :hwi =1

hi ≤ p. (2.19)

Whenever hw is feasible, we add an optimality cut (2.20) to (M):

θs(
∑
i|hwi =0

hi) + θ ≥ vs, (2.20)

where vs is the optimal value for the current subproblem and θs = vs − vl, where vl is
a lower bound on the optimal value of the problem v∗. Since the optimal value (θ) of
the master problem (M) is a lower bound on v∗, inequalities (2.20) become active only
when h=hw and then θ = vs, i.e., hw is optimal. Otherwise, since the master problem
minimizes θ, at least one h value is modified and the constraint becomes redundant.
Inequality (2.20) acts exactly as the classical Benders optimality cut. These cuts have
been introduced in the context of stochastic integer programs [Laporte and Louveaux,
1993].

The initial lower bound vl is computed by solving v(Pc). Given its corresponding
LP optimal value for h-variables, the CB-heuristic selects the p vertices with higher LP
value as the first cluster-head candidate set W . Based on the feasibility of STw and
APw, feasibility or optimality cuts are generated. The CB-heuristic is then given by
rounds of solving the master problem and identifying feasibility (2.19) and optimality
(2.20) cuts.

A drawback of the CB-heuristic is given by the fact that the bounds provided
are weak and since there is nothing more in the master problem than the cardinality
constraint on h-variables, one may enumerate all possible combinations of values for h
and, consequently, generate a huge number of feasibility cuts. In fact, this is an exact
procedure, which we use as heuristic given its limitations: we simply run the procedure
until a given time limit is reached.

2.3 Computational results

In this section, we assess the quality of the LP lower bounds given by our formulations
as well as the efficiency of the exact solution algorithms BCF-T, BCF-C and BCD. All
these algorithms are initialized with a feasible solution and a cut-off value provided by
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the CB-heuristic performed for 5 minutes. In our experiments the threshold parameter
α for BCF-T was set to 0.4.

Computational experiments have been performed on instances with |V | ∈ [30, 200]

and different ranges for the digraph density. Some instances considered in the current
study were adapted from STS instances introduced in [Bardossy and Raghavan, 2010].
These are Euclidean instances with vertices randomly located on a 100 × 100 square
grid. To adapt a STS instance to p-ASP, we set the value of p equal to the cardinality
of cluster-heads set, pick vertex 0 as the sink and for each edge e = {i, j} of a STS
instance, with cost ce, we define two arcs with cost ci,j = cj,i = ce. We consider STS
instances with 100 vertices, |V |= 100, and p ∈ {10, 20, 30, 40, 50, 60}, where p < n.
Additional instances are also introduced here, as we described next.

The proposed p-ASP instances are randomly generated as follows. Given a source
instance defined as a complete digraph H = (V,AH) with costs {ci,j > 0 : (i, j) ∈ A},
we fix p ∈ {4, 5, 8, 10, 15, 20, 30} and n ∈ {29, 50, 75, 98, 100, 126, 151, 179, 199},
such that |V | = n+ 1. We randomly choose with uniform probability a subset W ⊂ V

containing p cluster-heads, such that r ∈ W , |W | = p + 1 and DW=(W,AW ) is a
connected subdigraph. Then, we assign each vertex i /∈ W to a cluster-head j ∈ W \{r}
by enlarging AW with the new complementary arc a = (i, j). At that point, we have
a random solution for p-ASP. Let Â denote the set of arcs in that solution. We then
initialize: A ← Â. Additional arcs are then randomly picked from AH \ Â and added
to A, until a desired graph density d ∈ {30%, 40%, 50%, 60%, 70%, 100%} is obtained.
Each instance name clearly indicates the corresponding values for n, p and d. To
illustrate, for instance n200p10d70, n = 199, p = 10 and d = 70%. The proposed
instance set is made available for download at http://www.dcc.ufmg.br/~vwcmorais/
p_asp_instances/.

The computational results reported were obtained with an Intel R© XEON E5645
Core TM i7-980 hexa-core machine, running at 2.4GHz, with 24 GB of shared RAM
memory. The algorithms were implemented in C++ and compiled with g++. IBM
LOG CPLEX concert libraries (version Optimization Studio 12.6) were used in our
implementation. All algorithms were executed with only one core; no multi-threading
was allowed. All the remaining CPLEX parameters are kept at default values for cut
generation, pre-processing procedures and management of the enumeration tree.

2.3.1 LP relaxation lower bounds

In our first experiment, we evaluate the LP relaxation lower bound provided by each
formulation presented in Section 2.1. In order to compute the bounds, all CPLEX

http://www.dcc.ufmg.br/~vwcmorais/p_asp_instances/
http://www.dcc.ufmg.br/~vwcmorais/p_asp_instances/
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parameters for cut generation and pre-processing procedures were turned off and α set
to 0. The experiments are conducted with an instance subset with 29 ≤ n ≤ 100.
The results are reported in Table 2.1. The first two columns of the table provide the
instance name and the corresponding optimal objective function value (OPT). The next
three columns show, respectively, the lower bound value v(Pf ), the CPU time spent to
compute that bound followed by the relative gap ((OPT - v(Pf ))/OPT). In the other
columns, we present the LP relaxation lower bound for the other formulations, PF ,
Pd and PD, as well as the gap and CPU time to compute the bound. To compute
the bound for Pd and for its strengthened version PD, the separation routines of BCD
are used. It can be seen that the bounds given by PF are slightly better than those
provided by Pf . In general, the evaluation of v(PF ) is more time consuming than
that of v(Pf ). As stated in Proposition 2.1.1, Pf and Pd are equivalent, i.e., the
same bounds are provided for both formulations. However, due to the large number of
violated forcing inequalities (2.11) added to the model, along with the additional set of
flow variables, computing v(Pf ) is more expensive than computing v(Pd). In general,
among all formulations considered here, PD is the strongest one. This shows that the
lifted DCUTs (2.17) significantly improve the bound.

Linear programming lower bounds

Instance OPT v(Pf ) t(s) g(%) v(PF ) t(s) g(%) v(Pd) t(s) g(%) v(PD) t(s) g(%)

n30p4d60 555 540.22 1.28 2.66 540.33 5.94 2.64 540.22 0.04 2.66 551.17 0.03 0.69
n30p5d100 387 379.29 4.58 1.99 379.33 12.86 1.98 379.29 0.10 1.99 387.00 0.05 0.00
n30p8d50 472 463.50 0.86 1.80 463.50 5.07 1.80 463.50 0.07 1.80 472.00 0.04 0.00
n30p8d60 404 395.00 2.40 2.23 395.00 4.87 2.23 395.00 0.04 2.23 400.75 0.05 0.80

n51p5d100 640 628.99 39.87 1.72 629.37 438.12 1.66 628.99 0.88 1.72 633.59 1.16 1.00
n51p8d30 854 831.12 2.73 2.68 831.34 43.79 2.65 831.12 0.08 2.68 836.01 0.07 2.11
n51p8d40 763 750.32 4.90 1.66 750.32 68.93 1.66 750.32 0.48 1.66 753.96 0.19 1.18
n51p10d100 499 477.68 65.03 4.27 477.91 394.04 4.23 477.68 0.90 4.27 486.66 1.43 2.47

n76p5d100 934 912.41 793.78 2.31 915.39 9111.92 1.99 912.41 11.52 2.31 923.69 10.59 1.10
n76p10d50 895 876.43 263.22 2.07 877.26 1875.80 1.98 876.43 9.16 2.07 883.35 5.24 1.30
n76p10d60 833 815.24 683.65 2.13 815.31 6457.66 2.12 815.24 7.36 2.13 824.30 5.46 1.04
n76p10d70 787 770.38 231.89 2.11 770.57 3563.08 2.09 770.38 3.78 2.11 776.19 2.02 1.37

n99p5d50 3719 3428.99 209.68 7.80 3432.84 1764.11 7.69 3428.99 5.29 7.80 3449.33 4.98 7.25
n99p5d60 3582 3279.34 308.63 8.45 3284.39 1086.90 8.31 3279.34 4.21 8.45 3297.79 3.88 7.93
n99p5d100 2678 2631.88 3468.94 1.72 2637.99 17955.20 1.49 2631.88 45.18 1.72 2665.56 93.19 0.46
n99p10d50 2617 2472.23 928.03 5.53 2475.47 13354.00 5.41 2472.23 18.27 5.53 2512.30 15.36 4.00

n101p5d50 1817 1651.88 295.15 9.09 1652.74 15908.70 9.04 1651.88 6.14 9.09 1658.21 1.78 8.74
n101p5d60 1511 1429.75 341.88 5.38 1431.54 729.85 5.26 1429.75 12.88 5.38 1439.15 6.75 4.76
n101p10d40 1336 1243.66 525.31 6.91 1244.88 7167.84 6.82 1243.66 8.72 6.91 1256.47 20.38 5.95
n101p10d50 1176 1112.67 951.77 5.39 1112.93 11401.90 5.36 1112.67 7.88 5.39 1122.38 3.91 4.56

Table 2.1: Linear programming lower bounds for p-ASP formulations.
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2.3.2 Comparison of Branch-and-cut algorithms

In the second set experiments, we assess the efficiency of the exact solution algorithms
described here. Detailed computational results for BCF-C, BCF-T and BCD are pre-
sented in Tables 2.2, 2.3 and 2.4.

Table 2.2 contains results for instances adapted from Bardossy and Raghavan
[2010] aggregated by p (i.e., the cardinality of facilities set). In this table, we report
the value of p, the number of arcs (|A|) and the number of instances (#NS) on each
instance subset, and for each algorithm we show: the number of instances solved to
optimality (#NC) in the set, the average CPU total time (T), the average number of
nodes in the branch-and-bound tree (#N), and the average relative gap (g(%)) (UB -
LB)/UB), computed at the end of the execution of each algorithm, where UB is upper
bound and LB is the average lower bound. Averages are taken over all instances in the
instance set. Specifically, these instances turned out easier to solve with our algorithms.
The overall best performance is obtained by BCD (followed by BCF-T), that is enable
to solve to optimality all the instances considered. In most of the instances, the optimal
solution is found at the root node in the branch-and-bound tree (often within a few
seconds). Detailed computational results with that instance set for BCF-C, BCF-T
and BCD are given in supplementary tables available in the Appendix A.

Instance set BCF-C BCF-T BCD

p |A| #NS #NC T #N g(%) #NC T #N g(%) #NC T #N g(%)

10 1890 80 80 37.5 0.3 0.00 80 24.2 0.1 0.00 80 5.1 0.0 0.00
20 3580 80 80 2600.0 5.8 0.00 80 1616.5 5.2 0.00 80 145.1 2.9 0.00
30 5070 36 36 6930.1 5.2 0.00 34 6400.4 4.2 0.01 36 44.6 0.7 0.00
40 6360 21 21 7565.9 1.6 0.00 21 5230.5 1.5 0.00 21 41.8 0.3 0.00
50 7450 15 13 8182.9 6.1 0.04 15 5928.1 5.9 0.00 15 67.7 0.6 0.00
60 8340 67 66 6371.3 1.4 0.01 67 4325.8 1.5 0.00 67 303.9 0.1 0.00

Table 2.2: Comparison of the aggregated computational results for BCF-C, BCF-T and
BCD when solving STS instances [Bardossy and Raghavan, 2010] adapted to p-ASP.

.

Tables 2.3 and 2.4 contain results for the proposed p-ASP instances. The column
headings are: Name, the instance name; CB, the initial upper bound given by CB-
heuristic; v+, the best upper bound found among all algorithms; h(%), the relative
gap ((CB - v+)/CB) between v+ and the initial primal solution; BUB, the best upper
bound computed over the course of a given algorithm; BLB, the best lower bound;
g(%), the corresponding duality gap ((BUB - BLB)/BUB); #N, the total number of
nodes investigated in the BB enumeration tree; tr, the CPU time (in seconds) at the
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root node; ta, the overall CPU total time. Whenever an instance was not solved to
proven optimality within a time limit of 5 hours, an indication “-” is given.
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Instance BCF-C BCF-T BCD
Name CB v+ h(%) BUB BLB g(%) #nodes tr/ta BUB BLB g(%) #nodes tr/ta BUB BLB g(%) #nodes tr/ta

n30p4d50 626 626 0.0 626 626.0 0.0 2 0.2 /0.4 626 626.0 0.0 2 2.1 /2.3 626 626.0 0.0 1 0.0 /0.1
n30p4d60 578 555 4.0 555 555.0 0.0 7 0.1 /0.3 555 555.0 0.0 3 1.5 /1.7 555 555.0 0.0 1 0.0 /0.1
n30p4d70 486 472 2.9 472 472.0 0.0 3 0.1 /0.3 472 472.0 0.0 3 0.5 /0.7 472 472.0 0.0 1 0.0 /0.0
n30p5d100 395 387 2.0 387 387.0 0.0 15 0.6 /2.7 387 387.0 0.0 12 12.3 /12.8 387 387.0 0.0 1 0.1 /0.1
n30p8d50 532 472 11.3 472 472.0 0.0 42 0.3 /1.2 472 472.0 0.0 16 2.4 /3.2 472 472.0 0.0 1 0.0 /0.0
n30p8d60 478 404 15.5 404 404.0 0.0 50 0.7 /28.5 404 404.0 0.0 43 3.8 /5.6 404 404.0 0.0 3 0.1 /0.1
n30p8d70 429 372 13.3 372 372.0 0.0 1172 2.5 /229.7 372 372.0 0.0 280 6.8 /16.8 372 372.0 0.0 15 0.1 /0.3

n51p4d40 1309 1106 15.5 1106 1106.0 0.0 23 0.8 /6.9 1106 1106.0 0.0 22 2.8 /6.6 1106 1106.0 0.0 29 0.1 /0.8
n51p4d60 971 895 7.8 895 895.0 0.0 24 1.7 /6.6 895 895.0 0.0 29 7.3 /10.2 895 895.0 0.0 33 0.2 /0.9
n51p4d70 929 754 18.8 754 754.0 0.0 2 0.9 /1.5 754 754.0 0.0 2 5.2 /5.6 754 754.0 0.0 1 0.1 /0.2
n51p5d100 664 640 3.6 640 640.0 0.0 20 2.8 /7.4 640 640.0 0.0 16 0.9 /7.2 640 640.0 0.0 12 1.2 /2.5
n51p8d30 1051 854 18.7 854 854.0 0.0 31 1.6 /8.0 854 854.0 0.0 23 7.0 /9.4 854 854.0 0.0 15 0.1 /0.5
n51p8d40 770 763 0.9 763 763.0 0.0 22 1.8 /12.4 763 763.0 0.0 12 15.1 /16.7 763 763.0 0.0 8 0.2 /0.7
n51p8d50 748 699 6.6 699 699.0 0.0 23 2.3 /11.3 699 699.0 0.0 23 8.8 /10.0 699 699.0 0.0 30 0.1 /0.6
n51p10d100 537 499 7.1 499 499.0 0.0 948 4.0 /3956.7 499 499.0 0.0 660 116.8 /389.9 499 499.0 0.0 181 1.4 /7.1

n76p5d60 1207 1176 2.6 1176 1176.0 0.0 40 12.4 /140.3 1176 1176.0 0.0 40 44.1 /72.6 1176 1176.0 0.0 61 3.3 /12.9
n76p5d70 1297 1111 14.3 1111 1111.0 0.0 27 12.7 /107.1 1111 1111.0 0.0 22 67.2 /89.0 1111 1111.0 0.0 55 2.1 /7.7
n76p5d100 1012 934 7.7 934 934.0 0.0 67 13.5 /190.3 934 934.0 0.0 24 133.5 /171.7 934 934.0 0.0 46 10.6 /24.6
n76p10d50 945 895 5.3 895 895.0 0.0 40 14.0 /498.2 895 895.0 0.0 28 121.6 /154.9 895 895.0 0.0 24 5.2 /7.6
n76p10d60 873 833 4.6 833 833.0 0.0 57 14.1 /326.1 833 833.0 0.0 49 176.9 /218.0 833 833.0 0.0 27 5.5 /9.1
n76p10d70 893 787 11.9 787 787.0 0.0 50 12.4 /157.3 787 787.0 0.0 47 120.0 /131.9 787 787.0 0.0 55 2.0 /7.6

n99p5d50 4678 3719 20.5 3719 3719.0 0.0 163 14.5 /421.4 3719 3719.0 0.0 164 339.7 /565.5 3719 3719.0 0.0 232 5.0 /42.8
n99p5d60 4354 3582 17.7 3582 3582.0 0.0 208 27.3 /862.0 3582 3582.0 0.0 208 567.6 /1301.0 3582 3582.0 0.0 498 3.9 /83.6
n99p5d100 3021 2678 11.4 2678 2678.0 0.0 96 19.0 /355.2 2678 2678.0 0.0 33 1049.4 /1098.2 2678 2678.0 0.0 14 93.2 /111.4
n99p10d50 2779 2617 5.8 2809 2589.7 7.8 166 14.3 /- 2617 2617.0 0.0 407 978.2 /7305.6 2617 2617.0 0.0 381 15.4 /84.5
n99p10d60 2562 2517 1.8 2517 2517.0 0.0 508 16.0 /15610.7 2517 2517.0 0.0 552 422.6 /1219.5 2517 2517.0 0.0 336 25.7 /107.7
n99p10d70 2402 2220 7.6 2220 2220.0 0.0 143 20.0 /11616.3 2220 2220.0 0.0 190 605.2 /1745.9 2220 2220.0 0.0 226 43.5 /110.5

n101p5d50 2123 1817 14.4 1817 1817.0 0.0 307 16.2 /1050.4 1817 1817.0 0.0 338 3.2 /424.8 1817 1817.0 0.0 499 1.8 /67.5
n101p5d60 1795 1511 15.8 1511 1511.0 0.0 47 19.6 /134.1 1511 1511.0 0.0 43 440.2 /555.3 1511 1511.0 0.0 142 6.8 /42.7
n101p5d100 1348 1177 12.7 1177 1177.0 0.0 54 17.8 /163.1 1177 1177.0 0.0 61 13.5 /280.3 1177 1177.0 0.0 19 35.3 /50.0
n101p10d40 1495 1336 10.6 1341 1329.0 0.9 450 14.3 /- 1336 1336.0 0.0 668 523.6 /4772.6 1336 1336.0 0.0 798 20.4 /176.4
n101p10d50 1241 1176 5.2 1176 1176.0 0.0 624 14.2 /5538.5 1176 1176.0 0.0 468 879.7 /5233.5 1176 1176.0 0.0 615 3.9 /88.3
n101p10d60 1328 1100 17.2 1134 1088.7 4.0 403 15.7 /- 1119 1088.6 2.7 504 409.4 /- 1100 1100.0 0.0 1220 5.3 /152.2
n101p10d70 1045 1005 3.8 1012 1004.0 0.8 262 20.1 /- 1005 1005.0 0.0 356 1446.4 /3327.8 1005 1005.0 0.0 47 70.0 /111.5

Table 2.3: Detailed computational results: BCF-C, BCF-T, and BCD when solving p-ASP instances with 29 ≤ n ≤ 100.
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Instance BCF-C BCF-T BCD
Name CB v+ h(%) BUB BLB g(%) #nodes tr/ta BUB BLB g(%) #nodes tr/ta BUB BLB g(%) #nodes tr/ta

n127p10d50 260015 236637 9.0 236637 236637.0 0.0 21 18.8/88.8 236637 236637.0 0.0 20 299.1/416.5 236637 236637.0 0.0 27 5.9/13.2
n127p10d60 252912 228766 9.5 228766 227699.0 0.5 184 22.0/- 228766 228766.0 0.0 445 1791.5/2552.7 228766 228766.0 0.0 663 5.7/90.9
n127p10d70 232963 203322 12.7 203322 203322.0 0.0 74 24.8/5282.3 203322 203322.0 0.0 77 3369.2/3707.9 203322 203322.0 0.0 165 13.2/64.3
n127p10d100 224833 176740 21.4 176740 176740.0 0.0 35 23.1/229.4 176740 176740.0 0.0 34 465.2/660.1 176740 176740.0 0.0 25 11.5/24.4
n127p15d40 223244 212200 4.9 223244 206102.0 7.7 150 20.3/- 212200 212200.0 0.0 187 851.9/1572.2 212200 212200.0 0.0 218 2.2/25.9
n127p15d50 224738 201391 10.4 201391 201391.0 0.0 277 19.5/17594.8 201391 201391.0 0.0 279 1708.1/4704.5 201391 201391.0 0.0 332 7.3/48.0
n127p15d60 182392 179339 1.7 179339 179339.0 0.0 156 19.1/3563.3 179339 179339.0 0.0 133 468.3/1166.2 179339 179339.0 0.0 60 20.5/33.5
n127p15d70 179511 170419 5.1 178731 169475.0 5.2 183 20.1/- 170419 170419.0 0.0 702 3178.9/8406.0 170419 170419.0 0.0 433 35.9/137.2
n127p20d40 199012 192822 3.1 192822 192822.0 0.0 31 26.6/125.9 192822 192822.0 0.0 35 1292.6/1439.9 192822 192822.0 0.0 50 5.6/13.0
n127p20d50 186082 173547 6.7 175881 172180.0 2.1 96 22.1/- 173547 173547.0 0.0 481 1963.6/6763.7 173547 173547.0 0.0 212 23.8/68.2
n127p20d70 159377 148547 6.8 159377 145462.0 8.7 122 20.1/- 148547 148547.0 0.0 199 3961.3/9348.4 148547 148547.0 0.0 48 32.4/61.6

n152p15d40 256089 219134 14.4 294133 207936.0 29.3 241 26.2/- 224267 216447.0 3.5 4080 8696.5/- 219134 219134.0 0.0 4637 236.4/4259.3
n152p15d60 193541 163976 15.3 193541 145044.0 25.1 118 27.2/- 213697 155242.0 27.4 489 8656.0/- 163976 163976.0 0.0 3028 1062.5/6017.1
n152p15d70 172625 143867 16.7 172625 128549.0 25.5 142 28.4/- 152613 137557.0 9.9 2580 6781.4/- 143867 143867.0 0.0 70 2976.0/3772.9
n152p20d30 300977 232151 22.9 300977 207399.0 31.1 123 19.7/- 235753 225793.0 4.2 2392 6954.2/- 232151 232151.0 0.0 8263 147.6/4381.3
n152p20d40 234796 181375 22.8 234796 158540.0 32.5 329 35.4/- 268510 167851.0 37.5 290 8511.2/- 181375 181375.0 0.0 6518 444.5/6624.0
n152p20d70 127293 112631 11.5 127293 95622.4 24.9 121 27.8/- 116029 102506.0 11.7 1863 7947.5/- 112631 112631.0 0.0 103 6672.7/7661.5
n152p30d30 208477 177131 15.0 208477 160867.0 22.8 101 20.8/- 183805 168071.0 8.6 605 3226.9/- 177131 177131.0 0.0 1019 266.0/671.6

n180p5d60 282910 205784 27.3 210671 188056.0 10.7 166 65.3/- 205784 194049.0 5.7 847 44.3/- 205784 205784.0 0.0 5877 81.9/5438.5
n180p5d70 229681 173597 24.4 179197 164793.0 8.0 186 66.8/- 179197 164544.0 8.2 167 36.5/- 173597 173597.0 0.0 3847 72.0/5408.5
n180p10d50 168912 116841 30.8 131484 106170.0 19.3 136 41.5/- 120392 109651.0 8.9 901 11865.2/- 116841 116841.0 0.0 9042 449.7/14364.0
n180p10d70 100395 90532 9.8 100395 77901.1 22.4 155 49.0/- 100395 - - - -/- 90532 90532.0 0.0 4538 701.4/14241.6
n180p15d60 94059 81152 13.7 94059 66532.8 29.3 76 38.8/- 94059 - - - -/- 81152 75892.4 6.5 5289 749.8/-

n200p10d50 190426 146314 23.2 190426 121059.0 36.4 118 62.4/- 190426 - - - -/- 146314 136542.0 6.7 10043 354.5/-
n200p10d70 155915 110072 29.4 155915 90293.3 42.1 103 82.3/- 155915 - - - -/- 110072 101070.0 8.2 4439 932.8/-
n200p15d50 176278 102864 41.6 176278 85274.9 51.6 95 50.1/- 176278 - - - -/- 102864 95837.3 6.8 6701 605.5/-
n200p20d40 139706 101934 27.0 139706 84555.7 39.5 114 40.4/- 139706 84555.7 39.5 2 17858.3/- 101934 95886.4 5.9 12201 650.2/-

Table 2.4: Detailed computational results: BCF-T, BCF-C and BCD when solving p-ASP instances with 126 ≤ n ≤ 199.
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Table 2.3 reports the results for instances with 29 ≤ n ≤ 100, i.e, the small
instances. Comparing only the algorithms based on the multicommodity flow formu-
lations, it is important to note that, in general, BCF-C is faster at the root node than
BCF-T. The reason for this comes from the way the MIP solver is handling the cuts.
BCF-C stops prematurely the separation for valid inequalities (2.11) and (2.16). BCF-
T, on the other hand, attempts to find a better compromise between quality of the lower
bounds and CPU time consumed when handling violated forcing inequalities (2.11) for
fractional solutions. Consequently, BCF-C is expected to enumerate more BC nodes
than BCF-T. Indeed, BCF-T starts the enumeration with a smaller optimality gap in
most instances. As result, we can see from Table 2.3 that 30 out of 34 instances were
solved by BCF-C and 33 by BCF-T. Still, for the small instances, our computational
results suggest that BCD is likely to attain better results than BCF-C and BCF-T.
Overall, thanks to the quality of the LP relaxation lower bound provided by PD and
the CPU time needed to compute that bound, BCD outperforms its counterparts in
terms of CPU time spent and number of instances solved (the 34 instances were solved
by this algorithm to proven optimality). Finally, note that the upper bounds indicated
in CB are usually close to v+.

Table 2.4 reports the results for instances with 126 ≤ n ≤ 199, i.e, the large
instances. It can be observed from Table 2.4 that computing the LP relaxation v(PF )

is a very difficult task with large values of n. Unlike the smallest instances in that
set, BCF-T was not able to compute the LP relaxation for several instances with n

bigger than 180. The other algorithms performed well. In general, BCF-C was the
first algorithm in terms of CPU time at the root node. However, in the course of the
search, BCF-C solves models involving a huge number of forcing constraints. At this
point, the picture turns in favour of BCF-T. BCF-T solved 11 out of 27 instances to
optimality, while BCF-C closed only 6 of the instances evaluated. Additionally, for in-
stances not solved to optimality, BCF-C manages to improve the initial upper bound,
but fails closing the optimality gap. BCF-T, on the other hand, slightly improves the
initial primal bound provided by the heuristic for the largest instances, in some cases
that value remains the same as in CB. Overall, out of the three exact solution algo-
rithms investigated, BCD still remains the best algorithm: BCD solved to optimality
22 instances and for the instances left unsolved provided smaller optimality gaps.

To conclude, it is interesting to remark that during our experiments, we found
out that some sparse instances with the same value of n and d were more difficult to
solve than others. Take for example the instances n127p10d60 and n127p15d60. This
can be explained by the fact that when locating a very small number of cluster-heads
it becomes very difficult to maintain the connectivity of backbone tree and to ensure
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the coverage of non-cluster-head vertices. Thus, it can be pointed out that the main
challenge of p-ASP is to define the optimal location of cluster-heads.

2.4 Concluding remarks

In this chapter, we investigated exact solution approaches for solving p-ASP. The main
aspects of p-ASP are motivated by the design of a hierarchical ad-hoc wireless sensor
network when the vertices (sensors) are organized in groups (clusters), selecting for
each group a cluster-head as the leader and defining a topological structure to dissem-
inate information to a predefined sink node. We placed the problem in the literature
and differentiated its application from the classic problems of determining tree-based
network topologies, like tree-star and cable-trench problems. We considered two formu-
lation approaches for the problem. First, a compact formulation involving additional
continuous variables over a multicommodity directed flow model to enforce the connec-
tivity, while in the second approach, connectivity is ensured by means of an exponential
number of circuit breaking constraints. In addition to the formulations, we also intro-
duced a Benders-based heuristic and three exact solution algorithms: BCF-T, BCF-C
and BCD. BCF-T and BCF-C are based on the compact flow-based formulation while
BCD is based on circuit breaking constraints. The algorithms differ mainly in the way
they handle constraints that ensure the topology connectivity. BCF-C and BCF-T
rely on standard implementation of a cutting-plane algorithm. BCD separates lifted
directed cutset inequalities only for fractional solutions at the root node and integer
solutions in the remainder of the enumeration tree.

An extensive computational study was performed on two set of instances: a
set of randomly generated instances proposed in this paper and a subset of instances
adapted from Steiner tree-star (STS) benchmarks. Assuredly, the instances adapted
from STS turned out to be easily solvable (very often solved within a few seconds using
our algorithms). In each of the instance sets, our computational experiments have
demonstrated that algorithm BCD outperformed BCF-C and BCF-T. Additionally,
the results showed the superiority of the directed cutset based formulation over the
multicommodity flow formulation. They also validated the idea of simplifying the
separation routines in favour of evaluating more BB nodes.

Future works include a branch-and-price-and-cut algorithm based on set covering
reformulation. We also intend to proceed with the characterization of p-ASP valid
inequalities, such as capacity constraints that benefit from the cardinality constraint,
to separate them into our algorithms. Another direction is to extend our formulations
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and algorithms to other related problems such as the median p-cycle problem, where a
cycle connecting p cluster-heads would play the role of backbone instead of a spanning
arborescence.



Chapter 3

The p-cycle star problem

This Chapter is dedicated to the p-cycle star problem. We present mixed integer
formulations for the problem. First, a compact formulation based on a directed multi-
commodity flow model is given. This formulation is then strengthened with additional
valid inequalities. With the resulting formulations on hands, we derive cutset based
inequalities by projecting out the continuous flow variables. All of this is described in
Section 3.1. Additionally, a branch-and-bound and two non-standard branch-and-cut
algorithms based on the proposed formulations are given in Section 3.2. Comments
over the computational results appear in Section 3.3. We close the chapter in Section
3.4.

3.1 p-CSP formulations

To present p-CSP formulations, we introduce some notation that will be used through-
out the chapter. Denote by δ+(S) = {(i, j) ∈ A : i ∈ S, j /∈ S} the set of arcs pointing
out from the vertex subset S ⊂ V and by δ−(S) = {(i, j) ∈ A : i /∈ S, j ∈ S} the set
of arcs pointing into the vertex subset S. For simplicity, we use δ+

i and δ−i instead of
δ+({i}) and δ−({i}) when referring to the vertex subset S = {i}. Given a p-CSP for-
mulation U , denote by v(U) its linear programming (LP) relaxation lower bound and
by x̂ the corresponding LP optimal value for any variable x used in U . Additionally,
assume that projx(U) is the projection of U onto the space of x variables.

The formulations presented in this chapter are based on the fact that a directed
cycle may be decomposed into a set of paths from every vertex of the cycle to a
predefined one. Accordingly, p-CSP asks for paths from each cluster-head to the sink.
Based on that, a multicommodity flow formulation and directed cutset inequalities are
used to model the directed cycle backbone, named here pcorecycle.

31
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Let Q = {q ∈ V \{r}} be the set of commodities, sharing the same destination r
(the sink), each one having a single origin q ∈ V \{r}. Along the sets defined above,
p-CSP formulations use the following variables: {hi ∈ B = {0, 1} : i ∈ V \{r}}, to
identify the selected cluster-head set W and hr = 1; {zij ∈ B : (i, j) ∈ A}, to identify
the arcs in the pcorecycle; {yij ∈ B : (i, j) ∈ A} to identify the intra-cluster arcs.
Accordingly, if (i, j) ∈ A is in the pcorecycle (zij = 1) then both of its endpoints must
be chosen as cluster-heads (hi = 1 and hj = 1) or sink (hr = 1, i = r or j = r).
Likewise, whenever a vertex i ∈ V \{r} is covered by a cluster-head j ∈ W we have
that yij = 1, hi = 0 and hj = 1. Additionally, the formulations also involve continuous
flow variables {f qij ∈ R+ : (i, j) ∈ A, q ∈ Q}, representing the fraction of flow on each
arc (i, j) for each commodity q ∈ Q.

Alongside with variables defined above, define F as a compact set given by {f qij ≥
0, (i, j) ∈ A, q ∈ Q}, {0 ≤ hi ≥ 1, i ∈ V }, {zij ≥ 0, (i, j) ∈ A}, {yij ≥ 0, (i, j) ∈ A}
and:

hi +
∑
j∈δ+i

yij = 1, ∀i ∈ V, (3.1)

∑
i∈V \{r}

hi = p, (3.2)

hr = 1, (3.3)∑
j∈V \{r}

(yrj + yjr) = 0, (3.4)

zij + zji + yij ≤ hj, ∀(i, j) ∈ A, (3.5)∑
j∈δ+(i)

zij = hi ∀i ∈ V, (3.6)∑
j∈δ−(i)

zji = hi, ∀i ∈ V, (3.7)

∑
(i,j)∈δ+i

f qij −
∑

(j,i)∈δ−i

f qji =

{
0 if i 6= q,

hi if i = q,
i ∈ V \{r}, q ∈ Q, (3.8)

f qij ≤ zij, ∀(i, j) ∈ A,∀q ∈ Q. (3.9)

A compact formulation for p-CSP is:

min

 ∑
(i,j)∈A

cijzij +
∑

(i,j)∈A

dijyij : (h, y, z, f) ∈ F ∩ Ô

 , (3.10)
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where Ô = (Bn+1 × B|A| × B|A| × R|A||Q|).
Constraints (3.1) determine whether or not an intra-cluster arc (i, j) ∈ A appears

in a feasible cluster. If hi = 0, vertex i is left out of the cluster-head set. In this case,
there must exist a cluster-head j, such that hj = 1, and an intra-cluster arc pointing
outward from i towards j therefore exists, i.e., yij = 1 holds. Whenever hi = 1, no
intra-cluster arc pointing out of it exists. In this case, yij = 0 must apply for all
j ∈ δ+

i . Constraints (3.1) also guarantee that only one cluster must be centered at a
cluster-head i ∈ W .

Equality (3.2), imposes the cardinality of the cluster-head set. Constraint (3.3)
guarantees that the sink must be in pcorecycle. By the WSN application requirements,
the mobile sink only visits cluster-heads, a connection sensor-sink is not allowed. This
is enforced by constraint (3.4).

Constraints (3.5) play the role of linking constraints among variables y, z and
h. If arc (i, j) ∈ A is in a pcorecycle, the same cannot be selected as an intra-cluster
arc. Consequently, in the former case, both of its endpoints must be cluster-heads. It
is worth noting that inequalities (3.5) are not valid when p = 1, i.e. cycles of size 2 are
not accepted. Let us take vertex i ∈ V as single cluster-head, thus hi = 1 and hr = 1.
Note that (zir + zri) + yir ≤ hr or (zri + zir) + yri ≤ hi does not hold. Therefore, the
strong linking constraints are valid for p-CSP only because p > 1.

Constraints (3.6) enforce that exactly one arc of pcorecycle must be pointing out
from a selected cluster-head. By its turn, constraints (3.7) guarantee that exactly one
arc of pcorecycle must be pointing into a selected cluster-head. Together, (3.6) and
(3.7) are referred to as the flow conservation constraints since they also impose the
equality between in and out degree on any vertex of the pcorecycle.

The three-index flow conservation equations (3.8) ensure that every cluster-
head must send one unit of flow to the sink. The forcing constraints (3.9) impose the
capacity on the flow traversing an arc member of pcorecycle. Together, (3.6)-(3.9) and
{f qij ≥ 0, (i, j) ∈ A, q ∈ Q} define a directed path from each cluster-head to the sink.
Note that we still need to keep equalities (3.7) in the model, even whether constraints
(3.6) and (3.8) are present, that because along with (3.6), (3.7) also enforces that the in
and out degrees on each cluster-head are equal. Finally, the objective function (3.10)
minimizes intra and inter-cluster total cost.

3.1.1 Additional valid inequalities

p-CSP formulations can be strengthened with the addition of valid inequalities. Note
that, in formulation F , the total flow for all commodities is bounded by the number



34 Chapter 3. The p-cycle star problem

of cluster-heads, which is p due to constraint (3.2). Thus, the formulation can be
strengthened with the following valid inequalities:

∑
q∈Q

f qij ≤ pzij, ∀(i, j) ∈ A. (3.11)

Constraints (3.11) suggest a simple strengthening of the aggregate version of
forcing constraints (3.9) that typically bounds the flow on the arcs to at most the
cardinality of V \{r}.

Note that due (3.2), (3.3), (3.6) and (3.7) equation (3.12) can be derived. This
constraint is valid since the defined topology of a pcorecycle must have exactly p+1
arcs.

∑
i∈V

∑
j∈δ+i

zij = p+ 1 (3.12)

One may also reinforce the formulations with additional logic based inequalities.
For instance, inequalities (3.13) impose that there are no directed paths with two arcs
within the same cluster. Inequality (3.14) enforces that if an arc belongs to pcorecycle
both of its endpoints must be cluster-heads. Finally, inequality (3.15) states that if a
vertex is not an endpoint of arcs in pcorecycle at least one of its close neighbors must
be a cluster-head.

yik + ykj ≤ 1, i, j, k ∈ V \{r}, (3.13)

2zij ≤ hi + hj, (i, j) ∈ A, (3.14)

−
∑

j∈δ+(i)

zij −
∑

j:(i,j)∈δ+i

hj ≤ −1, i ∈ V. (3.15)

Equality (3.12) is redundant for the LP relaxation of p-CSP since it is obtained
from a linear combination of constraints (3.2), (3.3), (3.6) and (3.7). Note that due to
the strong linking constraints (3.5), inequalities (3.14) are also redundant. Although
these inequalities are redundant, we observed that their addition generally improves
the computing times.

In the remainder, denote by Fu the intersection of F with (3.11) - (3.15). Clearly,
we have v(Fu) ≥ v(F).
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3.1.2 Projecting out the flow variables

The main drawback when solving Fu by means of branch-and-bound (BB) algorithms
is due to the large number of flow variables and constraints (3.9) and (3.11). It is well
known that by projecting out the flow variables of a multicommodity flow formulation,
one can derive cutset based inequalities from the extreme rays of the corresponding
projection cone [Magnanti and Wolsey, 1995]. These are the projection inequalities (or
Benders feasibility cuts). As formulation Fu provides good bounds, but computed
with a high computational cost, we follow the method described in [Maculan, 1987] to
project out the flow variables and to introduce Benders like inequalities keeping the
quality of the LP bounds.

Let P denote the polytope defined over the variable set {h, z, f} given by con-
straints (3.8), (3.9), {f qij ≥ 0, (i, j) ∈ A, q ∈ Q}, {hi ≥ 0, i ∈ V }, {zij ≥ 0, (i, j) ∈ A}
and (3.11). To project out the flow variables, suppose that the (h, z)-variables are
fixed and consider the following dual of the minimization problem defined over P :

(DP ) max
∑
q∈Q

ĥqu
q
q−
∑
q∈Q

∑
(ij)∈A

wqij ẑij − p
∑

(ij)∈A

πij ẑij (3.16)

uqi − u
q
j − w

q
ij − πij ≤ 0, (i, j) ∈ A, i 6= r, q ∈ Q, (3.17)

− uqj − w
q
rj − πrj ≤ 0, j ∈ Vr, q ∈ Q, (3.18)

where {uqi : i, q ∈ Q}, {wqij ≥ 0 : q ∈ Q, (i, j) ∈ A} and {πij ≥ 0 : (i, j) ∈ A}
are respectively the dual variables associated with constraints (3.8), (3.9) and (3.11).
DP can be either an unbounded or bounded problem. In the former case, there is an
unboundedness direction (u, w, π) such that we may define the following projection
inequality:

∑
q∈Q

ĥqu
q
q −

∑
q∈Q

∑
(ij)∈A

wqij ẑij − p
∑

(ij)∈A

πij ẑij ≤ 0. (3.19)

We evaluated unboundedness cases for DP. In both cases, we identify an extreme
ray of the polyhedral convex cone ending up with valid cut-set based inequalities.

Case 1: πij = 0, ∀(i, j) ∈ A. In this case, DP can be decomposed by commodities defining
a DPq problem for each q ∈ Q. If DPq is unbounded for a given q ∈ Q its
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corresponding primal problem is infeasible. In this matter, it is not possible to
send flow from q to r in the support digraph (V , A) defined by (ĥ, ẑ), where V =

{i ∈ V : ĥi > 0} and A = {(i, j) ∈ A : ẑij > 0}. Let (S, S) ∈ A be the cut defined
over that digraph, such that S ⊂ V \{r}, S = V \S and v ∈ S. Assume that uqi = 1

if i ∈ S and uqi = 0 otherwise, likewise wqij =

0, if i, j ∈ S or i, j ∈ S

1 if i ∈ S, j ∈ S or i ∈ S, j ∈ S.
Now, replacing uqi and w

q
ij in (3.19) by their corresponding value and aggregating

over (S, S) we have:∑
(i,j)∈δ+(S)

zij ≥ hv, v ∈ S, S ⊂ V \{r}, 2 ≤ |S| ≤ p, (3.20)

which is exactly the well defined direct cutset inequality (DCUT) [Magnanti and
Wolsey, 1995]. This case is a well know result extended from [Maculan, 1987].

Case 2: ∃(i, j) ∈ A : πij > 0. In this case, whenever the system defining P is unbounded
when h = ĥ and z = ẑ, we can generate an extreme ray of the referred pro-
jection cone as follows: (i) take a partition (S, S) of V in the support digraph
given by the solution (ĥ, ẑ), such that S = V \S and r ∈ S; (ii) set wqij = 0,
(i, j) ∈ A, and (iii) uqi = 1/p if i ∈ S and uqi = 0 otherwise; (iv) likewise

πij =

0, if i, j ∈ S or i, j ∈ S

1/p if i ∈ S, j ∈ S or i ∈ S, j ∈ S.
Setting the values of uqi , πij and w

q
ij

in (3.19) and aggregating it over the arcs {(i, j) ∈ A, i ∈ S, j ∈ S} we define a
valid inequality: ∑

(ij)∈δ+(S)

zij ≥ 1/p
∑
i∈S

hi, S ⊂ V \{r}, p < |S|. (3.21)

Inequalities (3.21) are violated by LP solutions with p < |S| having a directed
path spanning the vertices in S. Such a path is composed of more than p-1 arcs. Figure
3.1 illustrates the pcorecycle of a solution violated by inequalities (3.11) and (3.21).

Accordingly, we can now define an alternative formulation to F . The so-called
DCUT formulation D is given by the intersection of (3.1)-(3.7), {1 ≥ hi ≥ 0, i ∈ V },
{zij ≥ 0, (i, j) ∈ A}, {yij ≥ 0, (i, j) ∈ A} and (3.20). We know that: proj(h,z,y) (F) =
D [Magnanti and Wolsey, 1995]. Then, the p-CSP direct cutset based formulation is
written as
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Figure 3.1: Illustration of the pcorecycle backbone for a solution with p = 2 that
violates inequalities (3.11) and (3.21).

min

 ∑
(i,j)∈A

ci,jzij +
∑

(ij)∈A

dijyij : (h, y, z) ∈ D ∩ Ĥ

 , (3.22)

where Ĥ = (Bn+1 × B|A| × B|A|).

One may also reinforce D with the following lifted version of DCUT inequalities
(3.20):

∑
(i,j)∈δ+(S)

zij −
∑

j∈δ+v ∩S

yvj ≥ hv, v ∈ S, S ⊂ V \{r}, 2 ≤ |S| ≤ p (3.23)

Inequalities (3.20) and (3.23) are the so-called breaking subcycle constraints.
Given any vertex subset S ⊂ V \{r} and a cluster-head vertex v ∈ S, to break sub-
circuits and also enforce solution connectivity there must exist an arc of pcorecycle
pointing out from S. This is true since the sink must be in pcorecycle. For cases
where v is not a cluster-head, it may be connected to a cluster-head j ∈ S. In this
case, the lifted inequalities (3.23) hold.

Finally, denote by Dd the intersection of D with (3.12)-(3.15) and (3.21). As well,
assume that D+

d denotes the intersection of Dd with (3.23). As result we have: v(D+
d )

≥ v(Dd) ≥ v(D).
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3.2 Algorithms

In this section, we present the most important details of our exact solution proce-
dures for p-CSP. Precisely, a branch-and-bound (BB) and two branch-and-cut (BC)
algorithms. The algorithms were implemented by means of the CPLEX optimization
package. For a detailed description of BB and BC methods, we refer to Padberg and
Rinaldi [1991] and Wolsey and Nemhauser [1999].

Next, we describe a primal heuristic and the separation routines used by our
exact solution procedures.

3.2.1 Primal heuristic

The exact algorithms are initialized with a valid upper bound computed as follows.
Let C = V \ {r} and W = {r} be respectively the initial candidate and cluster-head
sets. Initially pcorecycle is given by r ←→ r, then, at each iteration, a candidate
vertex k ∈ C with smallest score lk is removed from C and added in W until the
desired cardinality |W | = p + 1 is reached, increasing pcorecycle by an arc. With a
feasible cluster-head set on hand we assign every other vertex in V \W to the cheapest
cluster-head in W \ {r}. The score function lk is: lk = (cik + ckj − cij) +

∑
j∈δ−k ∩C

dkj,
for every k ∈ C. The first term of that equation computes the insertion cost of a vertex
k ∈ C between every pair of adjacent vertices {i, j} in the current pcorecycle, while
the second term corresponds to an estimation of the intra-cluster cost if k is chosen
as a cluster-head.

3.2.2 Separation routines

Let us assume that the LP relaxation is computed to optimality, and let ẑ ∈ [0, 1]m, ŷ ∈
[0, 1]m, ĥ ∈ [0, 1]n+1 and f̂ ∈ [0, 1]nm denote the optimal solution. If (ĥ, ŷ, ẑ) is integer
and its corresponding support digraph is connected and subcycle-free, then (ĥ, ŷ, ẑ) is
an optimal solution to p-CSP. Otherwise, valid inequalities may be violated by (ĥ, ŷ, ẑ)
and consequently should be appended into the model.

The separation of (3.9), (3.11), (3.13), (3.14) and (3.15) is trivial. Given an
LP solution (ĥ, ŷ, ẑ), it is sufficient to check whether f̂ qij − ẑij > 0 for each pair of
commodity q ∈ Q and arc (i, j) ∈ A to identify all violated inequalities (3.9). For any
arc (i, j) ∈ A, if

∑
q∈Q f̂

q
ij > pẑij a violated inequality (3.11) is identified. Whereas if

2ẑij ≥ ĥi+ ĥj then a violated inequality (3.14) is identified. Given any triple of vertices
i, k, j ∈ Q, check whether ŷik + ŷkj ≥ 1 to find a violated inequality (3.13). Finally, we
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check whether
∑

j∈δ+(i) ẑij +
∑

j:(i,j)∈δ+i ∪δ
−
i
ĥj ≥ 1 for each i ∈ V to identify all violated

inequalities (3.15).
The exact separation for DCUT inequalities (3.20) can be efficiently carried out

by means of solving a minimum cut problem defined over the support digraph D =
(V , A), for A = {(i, j) ∈ A : ẑij > 0} and arc capacities {ẑij : (i, j) ∈ A}. Based on
the maximum flow and minimum cut theorem, Dinic’s algorithm is used to define
the corresponding mincut set. Thus, let S ⊂ V \{r} be the vertex subset defining the
minimum cut (S, V \S) in D. A DCUT inequality is violated whenever the capacity
of its corresponding cut, i.e.,

∑
(ij)∈(S,V \S) ẑij, is less than ĥv, for v ∈ S. We adapted

this procedure to also separate valid inequalities (3.21) and lifted DCUT (3.23). An
inequality (3.21) is violated whenever

∑
(ij)∈δ+(S) ẑij ≤ 1/p

∑
i∈S ĥi for S ⊂ V \{r} and

p < |S|. Likewise, a lifted DCUT inequality (3.23) is violated whenever
∑

(ij)∈(S,V \S) ẑij

is less than ĥv +
∑

j∈Vv∩S ŷvj, for a v ∈ S. When no violated inequalities are found for
all families, one have computed the LP relaxation lower bound.

3.2.3 Exact algorithms

BBF is the branch-and-bound algorithm based on F . Since F is a compact formula-
tion, besides of embedding the corresponding p-CSP model into CPLEX, no significant
implementation work was performed by us. For this reason, no additional details are
provided for that algorithm.

The branch-and-cut algorithm BCF based on Fu is motivated by the observation
that the main drawback when solving the compact formulation Fu is due to the huge
number of capacity constraints (3.9), (3.11), (3.13) - (3.15). The obvious alternative
to overcome that problem is to relax those constraints and add them in a dynamic
way within a cutting-plane fashion. Accordingly, in BCF a cut-pool with all these
inequalities are provided beforehand to the MIP solver. It is up CPLEX to manage
of the cut-pool. Basically, it must check the violations of inequalities in that pool and
decide when and in which node of the enumeration tree the cuts are added.

BCD is the branch-and-cut algorithm based on D+
d implemented with calls to

CPLEX concert libraries. At the root node of its enumeration tree, inequalities
(3.20), (3.21) and (3.23) are separated by means of a fractional separation routine.
In the remainder of the nodes, the separation routines for those inequalities are only
invoked when an integer solution is defined. Like BCF, BCD also keeps a cut-pool with
inequalities (3.13)-(3.15) handled by the solver.

Whenever a new LP relaxation (ẑ, ŷ, ĥ) of a given BCF or BCD node is evaluated,
we compute a valid upper bound with an adapted version of the heuristic described
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above. In order to provide a new primal solution, LP information is aggregated to
the score equation. The score lk is computed as lk = (cikẑik + ckj ẑkj − cij ẑij)ĥk +∑

j∈Vk∩C dkj ŷkj, for every candidate vertex k ∈ C. A p-CSP solution is iteratively
constructed in order to update the best upper bound.

The exact algorithms implement a best-bound enumeration search, embedded
with callbacks for CPLEX concert libraries to implement separation routines, man-
agement of the cut-pool, search tree, heuristic frequency, and branching strategies. To
all exact algorithms, we set priority to branch first on variable h and then on z.

3.3 Computational results

Computational experiments were conducted on an Intel R© XEON E5645 Core TM i7-980
hexa-core machine with 2.4GHz of clock and 24 GB of shared RAM, running under
Linux operating system. BBF, BCF and BCD were implemented in C++ and compiled
with g++. IBM ILOG CPLEX concert library (version Optimization Studio 12.6.2)
was used in our implementation. All algorithms were executed with only one core; no
multi-threading was allowed. Finally, in our experiments, we set a maximum time limit
of 3 hours of CPU time.

The experiments were performed on an instance set based on TSP test problems
from the TSPLIB library. We consider a desired integer p ∈ {5, 10, 15, 20}, a number
of n+1 ∈ {51,70, 99, 100, 127, 144, 152, 200} vertices and a constant α ∈ {3, 5, 8}. Let
bij be the distance for each pair of vertices i, j ∈ V in the TSPLIB file. We set cycle
cost cij = dαbije and assignment cost dij = d(10− α)bije for each arc (i, j) ∈ A. Each
instance name (cc_v_α_p) clearly indicates the TSP file name (cc), the cardinality
of the vertex set v = |V | and the corresponding values for α and p. To illustrate,
for instance eil_51_3_5, v = |V | = 51, α = 3 and p = 5. The instance set is made
available for download at http://www.dcc.ufmg.br/~vwcmorais/p_csp_instances/.

In Table 3.1 we present the lower bounds provided by the formulations presented
in Section 3.1. The results were obtained from experiments conducted with an instance
subset with 51 ≤ |V | ≤ 100. In the table, whenever an instance was not solved within
the time limit, an indication “- ” is provided. The first column entries in the table
indicate the instance name. The next columns indicate the lower bound value for a
given formulation and the CPU time (in seconds) spent to compute that bound. Finally,
the last column provides the corresponding optimal objective function value (Opt). As
we can see, since F and D are equivalent those formulations provide the same bound.
However, due to the large number of violated forcing inequalities (3.9) along with the

http://www.dcc.ufmg.br/~vwcmorais/p_csp_instances/
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additional set of flow variables, computing v(F) is more expensive than computing
v(D). In spite of improving the bounds when appending (3.11) to F , we realized
that the computational time to compute that new bound increases considerably. Note
that for some instances it was not possible to compute v(Fu) within the time limit.
Because of that, BBF is based on F resigning the quality of the bound to gain in
processing time. In our experiments, we tried to separate (3.21) together with the
compact formulation Fu but no violated cut was found. We conjecture that F ∩ (3.11)
and D ∩ (3.21) provide the same LP bounds, but a proof and an exact separation
routine for (3.21) remain to be given. The results also indicate that (3.23) dominates
(3.21) since v(D ∩ {(3.12) − (3.15)} ∩ (3.23)) ≥ v(Dd) for all instances evaluated. To
conclude, note that D+

d is the strongest among all formulations considered here.



42
C

h
a
pt

er
3.

T
h
e
p-c

y
c
le

sta
r

pro
blem

Linear programming lower bounds

Instance v(F) t(s) v(D) t(s) v(Fu) t(s) v(Dd) t(s) v(D ∩ {(3.12)− (3.15)} ∩ (3.23)) t(s) v(D+
d ) t(s) Opt

eil_51_3_5 4213.7 47.5 4213.7 0.2 4215.9 3451.6 4214.0 0.7 4225.4 0.7 4225.4 0.7 4253.0
eil_51_5_5 3310.5 50.2 3310.5 0.2 3320.7 3091.2 3310.5 0.6 3338.7 0.7 3338.7 0.7 3421.0
eil_51_8_5 1717.2 60.1 1717.2 0.2 1737.3 3591.6 1731.5 0.6 1915.3 1.7 1916.1 2.1 1990.0
eil_51_3_10 2982.8 106.5 2982.8 0.2 2983.8 3538.8 2982.8 0.5 3013.8 0.7 3013.8 0.7 3060.0
eil_51_5_10 2574.9 100.6 2574.9 0.2 2576.2 5320.8 2575.0 0.5 2606.6 0.6 2606.6 0.6 2719.0
eil_51_8_10 1661.2 259.0 1661.2 0.3 1672.3 5752.0 1665.0 0.6 1846.0 1.7 1852.2 1.6 1872.0
eil_51_3_15 2524.0 129.8 2524.0 0.2 2525.3 7654.5 2524.3 0.5 2565.3 0.6 2567.4 0.7 2608.0
eil_51_5_15 2304.6 236.3 2304.6 0.2 2305.7 6445.9 2304.6 0.5 2379.8 0.9 2387.3 0.8 2461.0
eil_51_8_15 1748.8 206.3 1748.8 0.2 1749.4 3591.7 1748.8 0.5 1886.9 0.9 1889.1 1.0 1898.0
eil_51_3_20 2223.1 190.8 2223.1 0.3 2223.3 2325.1 2223.1 0.5 2263.9 0.8 2264.0 1.0 2287.0
eil_51_5_20 2183.1 227.5 2183.1 0.2 2183.1 1460.1 2183.1 0.5 2270.4 1.1 2271.2 1.1 2292.0
eil_51_8_20 1893.7 180.6 1893.7 0.2 1894.5 1466.7 1893.7 0.4 1990.7 0.8 2001.7 0.7 2011.0
st_70_3_5 8257.5 343.1 8257.5 0.5 8268.5 3560.4 8258.3 1.2 8278.4 1.3 8278.4 1.3 8306.0
st_70_5_5 6426.6 1193.4 6426.6 1.1 6484.1 5096.3 6453.8 2.5 6564.7 3.7 6582.6 3.0 6612.0
st_70_8_5 3213.7 2868.5 3213.7 2.8 3410.6 6930.3 3338.2 4.9 3682.1 8.9 3709.3 7.2 3902.0
st_70_3_10 5633.7 1660.1 5633.7 0.8 5637.4 4053.5 5634.0 1.9 5655.0 2.4 5655.0 2.3 5655.0
st_70_3_15 4490.7 1830.2 4490.7 0.8 4506.4 5036.8 4500.1 2.1 4542.8 2.6 4547.0 2.2 4547.0
st_70_3_20 3828.3 2803.2 3828.3 1.2 - - 3834.3 2.3 3901.4 3.4 3905.2 2.9 3912.0
st_70_5_20 3592.8 3136.3 3592.8 1.7 - - 3607.0 3.2 3808.9 9.4 3816.9 8.0 3820.0
st_70_8_20 2695.8 2453.3 2695.8 1.1 - - 2724.4 2.2 3286.7 12.4 3287.0 12.1 3287.0
eil_76_3_5 6224.7 152.5 6224.7 0.5 6224.7 3590.9 6224.7 1.4 6224.7 1.4 6232.9 1.4 6259.0
eil_76_5_5 4804.1 269.4 4804.1 1.0 4816.4 5959.1 4807.2 2.0 4827.5 2.1 4827.6 2.1 4891.0
eil_76_8_5 2326.0 865.1 2326.0 0.9 2412.7 8121.5 2374.6 3.8 2586.9 7.4 2637.4 11.7 2722.0
eil_76_3_10 4486.7 2267.1 4486.7 3.2 4503.9 8288.4 4498.3 3.3 4556.8 6.0 4557.0 5.7 4557.0
eil_76_8_10 1977.8 1757.4 1977.8 3.6 - - 2006.8 4.3 2361.5 16.2 2370.5 19.5 2468.0
eil_76_8_15 1963.5 3173.9 1963.5 1.9 - - 1991.1 4.4 2315.0 29.0 2339.2 28.5 2384.0
eil_76_8_20 2035.7 1390.0 2035.7 2.3 - - 2048.3 4.4 2332.0 23.6 2339.1 30.0 2345.0
rat_99_3_5 18100.0 2762.2 18100.0 3.3 - - 18127.9 6.4 18314.0 9.6 18314.0 10.2 18314.0
rat_99_3_10 12536.0 3589.8 12536.0 3.0 - - 12548.7 4.9 12649.0 10.9 12649.0 10.4 12649.0
kroD_100_3_5 349514.5 144.9 349514.5 1.4 - - 349514.5 3.6 349559.0 3.7 349559.0 3.6 349559.0
kroD_100_3_10 215398.0 554.0 215398.0 1.4 - - 215398.0 3.5 215398.0 3.4 215398.0 3.5 215398.0

Table 3.1: Linear programming lower bounds for p-CSP formulations.
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In Table 3.2 we compare the aggregated results for BBF, BCF and BCD. Instances
are grouped in terms of their number of vertices and values of α. The three first columns
of the table indicate: the cardinality of vertex set (|V |), the value of α and the number
of instances in the group (#inst). For each algorithm we provide: the number of
instances on a given group solved within the imposed CPU time limit (#solved), the
average number of nodes in the branch-and-bound enumeration tree (applies to all
instances in the group) (#A.nodes), the average of duality gap (A-gap) and the fastest
time to solve an instance among all instances with the same number of vertices and α
(faster). Detailed computational results can be found in the Appendix A.

BBF BCF BCD
|V | α #inst #solved #A.nodes A.gap faster #solved #A.nodes A.gap faster #solved #A.nodes A.gap faster

51
3 4 2 123.0 0.000 886.5 4 558.3 0.000 7.7 4 327.8 0.000 2.6
5 4 1 115.3 0.028 1689.5 3 2513.8 0.007 13 4 540.3 0.000 4.1
8 4 3 330.3 0.016 3152.2 4 3290.0 0.000 97.1 4 49.3 0.000 1.4

70
3 4 2 9.5 0.255 4178.6 4 163.5 0.000 21.6 4 13.8 0.000 2.0
5 4 0 6.3 0.422 - 3 1051.3 0.009 37.6 4 12.3 0.000 4.1
8 4 0 8.8 0.352 - 1 9762.0 0.164 3247.6 4 747.0 0.000 13.9

76
3 4 1 3.0 0.356 2676.9 3 1332.0 0.000 26 4 1689.3 0.000 2.1
5 4 0 1.5 0.416 - 2 2094.0 0.039 27.4 4 2645.0 0.000 7.7
8 4 0 6.0 0.321 - 1 7628.5 0.151 975.9 4 2062.0 0.000 37.2

99
3 4 0 - - - 4 295.3 0.000 241.2 4 14.0 0.000 9.8
5 4 0 - - - 2 2102.0 0.020 805.4 3 7377.0 0.002 71.5
8 4 0 - - - 0 7018.3 0.246 - 1 4228.0 0.021 1527.0

100
3 4 1 3.0 0.000 12021.7 3 380.5 0.006 52.4 4 4.8 0.000 3.7
5 4 0 - - - 2 1669.8 0.055 69.4 4 9.0 0.000 7.0
8 4 0 - - - 0 8284.3 0.249 - 2 9706.5 0.013 9555.7

127
3 4 0 - - - 3 174.0 0.004 203.1 4 23.3 0.000 9.7
5 4 0 - - - 2 1003.3 0.033 163 3 4312.8 0.000 18.5
8 4 0 - - - 1 4593.3 0.195 7445.2 1 3647.5 0.045 2621.5

144
3 4 0 - - - 2 143.8 0.009 562.9 4 0.0 0.000 10.9
5 4 0 - - - 2 907.3 0.027 3114.2 4 21.0 0.000 45.0
8 4 0 - - - 0 7530.8 0.320 - 0 1292.8 0.042 -

152
3 4 0 - - - 1 636.3 0.057 1105.1 3 3286.8 0.000 19.2
5 4 0 - - - 1 740.8 0.164 1911.2 1 1971.8 0.017 62.1
8 4 0 - - - 0 4664.8 0.375 - 1 1166.3 0.106 4592.2

200
3 8 0 - - - 5 62.0 0.089 1249.1 8 15.6 0.000 45.2
5 8 0 - - - 1 337.0 0.258 5730.2 6 93.0 0.002 115.3
8 8 0 - - - 0 839.9 0.284 - 0 251.4 0.082 -

Table 3.2: Comparison of the aggregated computational results for BBF, BCF and
BCD when solving p-CSP instances.

The results suggest that the most difficult instances are those with a higher value
of α, i.e, instances where cycle cost is more costly than assignment cost. One may also
expect that the instances become more difficult to solve with the increase of p, but we
remark that this is not always true. This is due to the fact that when locating a very
small number of cluster-heads it becomes very difficult to maintain the connectivity.
This indicates that the main challenge of p-CSP is to define the pcorecycle.
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In general, it can be observed that BCD outperformed BCF and BBF. As shown
in Table 3.1, computing the LP relaxation v(F) is a very difficult task with the increase
of n and p. Consequently, BBF performs very poorly. Unlike the small instances, BBF
was not able to compute the LP relaxation for no more than one instance with |V | bigger
than 99. The other algorithms perform quite well. BCD and BCF always improve the
initial primal bound provided by the heuristic, while for BBF that value remains the
same for |V | bigger than 51. Measured by the number of BB nodes evaluated, BCF
was the first algorithm while BCD the second. BBF, in its turn, spent too much time
solving each BB node, consequently, fewer nodes are opened by that algorithm. To
count, BCD solves 89 out of 120 instances evaluated to proven optimality, while its
counterpart BCF and BBF solve respectively 54 and 10 instances.

It is worth mentioning that BCD and BCF outperform BBF due to the way
those algorithms handle constraints (3.9), (3.11), (3.13) - (3.15). BBF manages to
solve a compact formulation involving a huge number of flow variables and forcing

constraints at every node of its enumeration tree. On the other hand, BCF handles
such constraints in a cutting-plane fashion. In its turn, BCD is a non-standard cutting-
plane method, in the sense that fractional points are only separated at the root node of
its enumeration tree. These different approaches result in a huge variation of solution
quality and CPU time. Consequently, BCF and BCD procedures manage to compute
the LP bounds on each BB node in a very efficient way translating into more effective
exact algorithms.

On the WSN application side, the clustering scheme modeled as p-CSP has a
drawback. In particular, any given cluster-head may be overloaded since the models
do not restrict the assignments of vertices (sensors) to cluster-heads. One possible
alternative to overcome such a problem is to impose an upper bound on the total
assignment cost. The problem with this approach is how to define such tight upper
bound in order to keep feasibility. To avoid measuring such value one may impose a
penalty {θ ∈ R+} on the cluster with higher assignment cost. This could be done by
adding valid inequalities imposing an upper bound on the assignment cost to at most
the penalty. Ultimately, we observed that thanks to that penalty, the bounds provided
by the resulting formulation can be very poor. Thus, an avenue of research would be
to investigate optimality cuts to be handled into a cutting-plane framework.
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3.4 Concluding remarks

In this Chapter we have presented formulations and exact solution procedures for the
p-cycle star problem (p-CSP). We first introduced a compact multicommodity directed
flow formulation strengthened with additional inequalities. After that, we derived cut-
set based formulations by projecting out the continuous flow variables. In this scheme,
we identified two classes of valid inequalities that are separated into branch-and-cut
algorithms. Computational results obtained with a branch-and-bound algorithm based
on the compact flow formulation were compared with branch-and-cut algorithms based
on both flow and cutset based formulations. In light of our computational study, we
can conclude that the algorithm based on cutset models achieves better results than
the algorithms based on the multicommodity flow formulations. We also can point out
that the main challenge of p-CSP is to define the optimal location of cluster-heads and
enforce connectivity of the core simple cycle.

As far as future developments go, it will be interesting to test a Lagrangian re-
laxation approach based on the cutset based formulation. To compute the bounds one
could make use of a relax-and-cut (RC) method. RC would dualize two set of con-
straints: equalities (3.1) in an static way and inequalities (3.23) in a dynamic fashion.
In order to provide the tightest lower bound, subgradient method would be used to
approximately solve the Lagrangian dual problem. In this direction, two different BC
algorithms may be designed: delayed relax-and-cut (DRC) and non-delayed relax-and-
cut (NDRC). The main difference between DRC and NDRC would be basically the
point where the relaxed inequalities are separated and dualized: after computing the
LP or at every subgradient iteration.





Chapter 4

Configuration-based approach for
topological problems in the design
of wireless sensor networks

In this Chapter, we investigate the application of a mathematical programming tech-
nique based on configurations to p-ASP and p-CSP. In the most essential respects,
we decompose the topology structure of the problems in such a way to obtain strong
mathematical formulations. Unfortunately, the configuration-based models developed
here are not tractable with a standard branch-and-bound approach. The evaluation of
bounds provided by those formulations can however be tackled with column-and-row
generation (CRG) techniques, also introduced here. Based on the formal description of
the referred topological WSN problems, in Section 1.3, we introduce the configuration-
based reformulations in Section 4.1. In Section 4.2, the CRG algorithms are described.
Our computational experiments are presented and discussed in Section 4.3. Finally,
the conclusion and future directions are drawn in the last section.

4.1 Configuration-based formulations

Under the cardinality constrained topology representation of p-ASP and p-CSP, each
feasible solution for the problems can be decomposed into p-stars and a backbone
connecting p cluster-heads and the sink. Thus, a common thread of the problems is
to select the core cluster-head set that together with the sink defines a configuration.
Formally, a configuration is a vertex subsetW of cardinality p+1, whereW is given by
the selected p cluster-heads and the predefined sink. Note that for both problems we
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seek for exactly one connected configuration. Figure 4.1 illustrates a decomposition
example of a configuration with the sink and p = 4 cluster-heads.

A P-ASP solution

A P-CSP solution

(a) Topological solutions.

r

1

2

3

4

1 3 42

The configuration set

The p stars

(b) Topological solutions decomposed into a
configuration and p stars, where p = 4.

Figure 4.1: Illustration of decomposition examples for p-ASP and p-CSP solutions in
a configuration with the sink and p = 4 cluster-heads, together with a set of stars
incident to that configuration.

Let Λ be the set of feasible configurations, i.e., the set of vertex subsets in D,
satisfying cardinality constraint on p. Denote by W (λ) the vertex subset defining a
configuration λ ∈ Λ, such that |W (λ)| = p+1, and N = V \{r}. For each configuration
λ ∈ Λ, define a constant ajλ = 1 to indicate whether a vertex j ∈ N is a cluster-head
in λ, j ∈ W (λ), and ajλ = 0 otherwise. To keep the consistency, since the sink belongs
to the configuration, we let arλ = 1. Every other vertex i ∈ N\W (λ) is assigned to a
cluster-head j ∈ W (λ)\{r}, defining a constant bijλ = 1 if (i, j) ∈ A is an intra-cluster
arc incident to configuration λ and bijλ = 0 otherwise. Finally, to each configuration
λ ∈ Λ we could assign a weight dλ =

∑
(i,j)∈A bijλdij, i.e., the total cost of the stars

incident to cluster-heads of λ. Given any linear integer programming formulation U for
p-ASP or p-CSP, denote by v(U) its linear programming (LP) relaxation lower bound.

Let xλ ∈ B = {0, 1}, for each λ belonging to the configuration set, and {zij ∈ B :

(i, j) ∈ A} denote respectively the decision variables used to indicate the configuration
being used and the arcs defining a backbone. If λ is used xλ = 1, otherwise xλ = 0.
Likewise, zij = 1 if (i, j) belongs to the backbone, in this case i and j are cluster-
heads in a configuration, otherwise zij = 0. Denote by C the polytope given by the
intersection of:
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∑
λ∈Λ

xλ ≥ 1, (4.1)∑
λ∈Λ

aiλxλ −
∑

(i,j)∈δ+i

zij = 0, i ∈ N, (4.2)

∑
λ∈Λ

(bijλ − ajλ)xλ + zij + zji ≤ 0, (i, j) ∈ A, (4.3)∑
λ∈Λ

(avλ +
∑

j∈S∩δ+v

bvjλ)xλ −
∑

(i,j)∈δ+(S)

zij ≤ 0, S ⊆ N,S 6= ∅, v ∈ S (4.4)

zij ≥ 0, (i, j) ∈ A, (4.5)

xλ ≥ 0, λ ∈ Λ, (4.6)

where δ+(S) = {(i, j) ∈ A : i ∈ S, j /∈ S} is the set of arcs pointing out from the vertex
subset S ⊂ V and by δ−(S) = {(i, j) ∈ A : i /∈ S, j ∈ S} the set of arcs pointing into
the vertex subset S. For simplicity, we use δ+

i and δ−i instead of δ+({i}) and δ−({i})
when referring to the vertex subset S = {i}.

A constraint (4.1) states that at least one configuration must be selected. In
order to prevent slowing down the convergence when computing the LP relaxation
of our formulations, since the dual multiplier assigned to (4.1) would lead to a free
variable, this constraint is stated in inequality form. Indeed, that can be done since
our models lead to minimization problems. Thus, this would be equivalent as to keep a
set partitioning formulation [Feillet, 2010]. Constraints (4.2) force each cluster-head to
have an outgoing backbone arc. Constraints (4.3) play the role of linking constraints
among variables z and x. If an arc (i, j) ∈ A is selected to be in the backbone,
the same arc cannot be in an intra-cluster star. Consequently, in the former case,
both of its endpoints must be cluster-heads. Inequalities (4.4), named here extended
directed cutset (EDCUTs) constraints, play the role of sub-cycle breaking inequalities.
EDCUTs enforce that for any vertex subset S ⊆ N , if a vertex v ∈ S is a cluster-head
or is connected to a cluster-head in S, there must exist backbone arcs pointing out
from S. Finally, (4.5) and (4.6) impose the non-negativity on the variables. Note that
C is represented in terms of exponentially many variables (columns) and constraints
(the EDCUTs).

A feasible p-ASP solution is defined by a pair (W (λ), Aλ), W (λ), as before, being
a vertex subset defining a connected configuration λ and Aλ = {(i, j) ∈ A : bijλ =

1} the set of arcs defining the p-stars pointing into W (λ)\{r}. Under the spanning
arborescence representation, no backbone arc pointing out of the sink exists. Likewise,
at least one backbone arc must reach the sink. These are imposed respectively by
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constraints (4.7) and (4.8).

∑
(r,i)∈δ+r

zri = 0, (4.7)

∑
(i,r)∈δ−r

zir ≥ 1. (4.8)

The p-ASP can be described with the following configuration-based formulation:

min

∑
λ∈Λ

dλxλ +
∑

(i,j)∈A

cijzij : (x, z) ∈ Pa ∩ (B|Λ| × B|A|)

 , (4.9)

where Pa is the intersection of C, (4.7) and (4.8).

In order to extend the configuration decomposition idea to p-CSP, one may impose
the equality between indegree and outdegree to every cluster-head. Accordingly, exactly
one backbone arc of the simple directed cycle must be pointing out from a selected
cluster-head (or sink) and exactly one backbone arc must be pointing into that cluster-
head. Out-degree and in-degree of a configuration vertex is enforced respectively by:

∑
λ∈Λ

aiλxλ −
∑

(i,j)∈δ+i

zij = 0, i ∈ V, (4.10)

∑
λ∈Λ

aiλxλ −
∑

(j,i)∈δ−i

zji = 0, i ∈ V. (4.11)

Together, (4.10) and (4.11) are referred as the degree conservation constraints.
Thus, a configuration-based formulation for p-CSP is given by:

min

∑
λ∈Λ

dλxλ +
∑

(i,j)∈A

cijzij : (x, z) ∈ Pc ∩ (B|Λ| × B|A|)

 , (4.12)

where Pc is the intersection of C, (4.10) and (4.11).
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4.2 Column-and-row generation algorithms

As previously described, formulations (4.9) and (4.12) involve exponentially many ED-
CUTs and columns, one column for each pair (W (λ), Aλ) associated to a configuration
λ ∈ Λ. Therefore, in order to compute the LP relaxation lower bound v(Pa) and
v(Pc) we devise a column-and-row generation (CRG) algorithm, where columns and
EDCUTs are separated on-the-fly by dynamic column generation and cutting planes
routines. Our procedure, first proceeds with the column generation routine and then,
when no column with attractive reduced cost is found, it separates EDCUTs. Let us
assume that α ≤ 0, {πi : i ∈ V }, {βij ≥ 0 : (i, j) ∈ A}, {µvS ≥ 0 : v ∈ S, S ⊂ N,S 6= ∅}
and {θi : i ∈ V } are the dual variables respectively assigned to (4.1), (4.2) (or 4.10 when
solving p-CSP), (4.3), (4.4) and (4.11). Consider that a subset of columns Λ̄ ⊂ Λ and
EDCUTs is given, then when relaxing the integrability constraints of a configuration-
based formulation we define a restricted linear programming master program (RLMP).
Denote by RLMPa and RLMPc the corresponding master programs associated respec-
tively to formulations (4.9) and (4.12).

Assuming that an optimal basic feasible solution to a given RLMP does exist,
the pricing subproblem associated to that master problem consists of finding a config-
uration λ ∈ Λ that meets the following expression:

α >
∑

(i,j)∈A

ξijbijλ +
∑
i∈N

νiaiλ, (4.13)

where ξij = dij − βij −
∑

S⊂V :i,j∈S µ
i
S, (i, j) ∈ A. Whenever solving RLMPa, νi =∑

j∈δ+i
βji − πi −

∑
S⊂V :i∈S µ

i
S, but when solving RLMPc νi =

∑
j∈δ+i

βji − πi − θi −∑
S⊂V :i∈S µ

i
S, for all i ∈ N . Configurations that meet that expression are named:

configurations with negative reduced cost.

4.2.1 Pricing subproblem

The pricing subproblem behind expression (4.13) is the p-median problem with weights
on arcs and vertices. The goal is to find a vertex subset which plays the role of
medians on D with cardinality equals to p, such that those p median vertices plus the
sink constitute a configuration. From now on, we will also refer to a cluster-head as
a median vertex. Then, the pricing subproblem can be formulated as the following
linear integer program (IP):
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min

∑
(ij)∈A

ξijyij +
∑
i∈N

νihi : (h, y) ∈ Ps ∩ (Bn+1 × B|A|)

 (4.14)

where {hi ∈ B = {0, 1} : i ∈ V } and {yij ∈ B : (i, j) ∈ A} are respectively the binary
variables used to identify the median vertices and the arcs connecting non-median
vertices to the median ones - defining the p stars - and Ps is the intersection of the
well-know p-median constraint set:

∑
j∈δ+i

yij = 1− hi, i ∈ N (4.15)

∑
i∈N

hi = p, (4.16)

yji ≤ hi, (j, i) ∈ A (4.17)

and

hr = 1, (4.18)∑
i∈V

(yir + yri) = 0. (4.19)

Where (4.18) and (4.19) are only used to keep the consistency with sink.

There is a rich literature concerning this well-known problem. Advanced so-
lution techniques based on Lagrangian heuristic [Cornuejols and Nemhauser, 1977;
F.Senne and Lorena, 2000], metaheuristics [Resende and Werneck, 2004] and exact
algorithm [Avella et al., 2006] have been proposed in the last decades to solve this
location-allocation problem. Different variants of Lagrangian relaxation based on Ps
are proposed in the literature. Recently, the best results have been obtained by dual-
izing constraints (4.15). By doing so, the Lagrangian dual problem is written as:

max
γ

min
y,h

∑
(i,j)∈A

qijyij +
∑
j∈N

νjhj +
∑
i∈N

γi, (4.20)

subject to (4.16)-(4.19), {hj ∈ B = {0, 1} : j ∈ V } and {yij ∈ B : (i, j) ∈ A}, where
lagrangian multipliers γ ∈ R|N | are assigned to (4.15) defining the lagrangian costs

{qij = ξij − γi : i, j ∈ N}. The cost of selecting a given j ∈ N as a median vertex may
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be defined as τj = γj + νj +
∑

i∈N min{0, qij}, named here as auxiliary cost. Thus,
the Lagrangian subproblem can be defined as:

L(γ) = min

{∑
j∈N

τjhj +
∑
i∈N

γi : (h, γ) ∈ (4.16) ∩ (4.18) ∩ (Bn+1 × R|N |)

}
(4.21)

For a given fixed γ ∈ R|N |, L(γ) is computed by the simple enumeration of the p
vertices with the smallest value of τj plus

∑
i∈N γi. In order to provide the tightest lower

bound on (4.14), lagrangian multipliers γ are typically computed with the subgradient
method.

4.2.1.1 Algorithms for solving the pricing subproblem

In order to price out non-basic configurations to enter the RLMP, we use heuristic and
exact methods adapted from p-median’s solution methods found in the literature. The
main idea is to feed the CRG routine with a diverse set of configurations generated by
heuristics and invoke the exact procedure in just a few iterations to ensure that the
optimality requirement is met. Based on that, we first resort to a Lagrangian heuristic
based on (4.21). Whenever that method fails we call a branch-and-cut algorithm,
implemented on MIP solver (CPLEX) to solve (4.14). Independently of the iteration on
our pricing scheme, whenever a configuration with negative reduced cost is found it is
appended to the corresponding RLMP and a new iteration takes place. The algorithms
for solving the pricing subproblem are:

• Lagrangian heuristic: The Lagrangian heuristic for solving the pricing sub-
problem is based on the Lagrangian relaxation (4.20). In this sense, the La-
grangian subproblem (4.21) corresponds to a simple enumeration of p vertices
with smallest auxiliary cost. This relaxation was proposed by Narula et al. [1977]
and has been successfully used in the literature providing good quality lower
bounds. To evaluate the lower bound of (4.14) the subgradient method [Held
and Karp, 1970] is used to compute the lagrangian multipliers γ.

Figure 4.2 shows the pseudo-code of the Lagrangian heuristic implemented in this
work. At each subgradient iteration k, multipliers γk are found and the auxiliary
cost τ kj computed in Lines 2-3. The lower bound LBk = L(γk) is evaluated with
the following steps: In Line 4, sort {τ kj : j ∈ N} in non-decreasing order; In Line
5, select p vertices with the smallest value of τ kj as medians and set hj = 1, every
other non median vertex i ∈ N (hi = 0) is connected (setted out yij = 1) to a
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median j whenever qkij < 0 and hj = 1 (those arcs added to the solution have
associated negative lagrangian costs already computed on τ kj ); In Line 6, sum
up
∑

j∈N τjhj +
∑

i∈N γi to compute the bound. This scheme also gives rise to a
feasible configuration λ in Lines 7-8. With the sink and p cluster-heads j ∈ N
with the smallest cost τ kj , select in Line 7, connect all the remaining |N | − p

vertices to the closest cluster-heads defining the value of bijλ for (i, j) ∈ A in Line
8. The upper bound UBk assigned To λ is also computed at each subgradient
iteration k. This is a straightforward way to find primal solutions based on the
Lagrangian relaxation (4.21).

begin LagrangianHeuristic()
1. for each subgradient iteration k do
2. Get multipliers γk ;
3. Compute auxiliary cost τ kj ;
4. Sort {τ kj : j ∈ N} in non-decreasing order;
5. Select p vertices with the smallest value of τ kj as cluster-heads (set hj = 1 and ajλ = 1);
6. Compute LBk by summing up

∑
j∈N τjhj +

∑
i∈N γi;

7. Define a backbone with the sink and p cluster-heads in N (those with ajλ = 1);
8. Connect vertices {i ∈ N : hi = 0} to the closest cluster-heads {j ∈ N : ajλ = 1} to define bijλ for (i, j) ∈ A;
9. end-for
end

Figure 4.2: Pseudo-code of Lagrangian heuristic to solve the pricing subproblem im-
plemented in the CRG procedure.

• Branch-and-cut algorithm: BCS algorithm based on (4.14) relies on a branch-
and-cut method to solve the pricing subproblem to optimality. BCS is imple-
mented with calls to CPLEX concert library (CPLEX, version 12.6). In order
to avoid spending too much time at solving the pricing subproblems by the exact
procedure, BCS is always aborted right after finding the first configuration with
negative reduced cost, no matter which node, the root or its descendants, is being
investigated. The BCS algorithm is embedded with a pre-processing phase where
we resort to reduction tests derived from the p-median literature to fix in advance
a subset of variables and thus reduce the size of the problem to be solved. The
reduction tests used here are adapted from [Avella et al., 2006].

We refer to [Barbaros C. Tansel, 1983; Tansel et al., 1983; Mladenović et al., 2007]
for surveys on methods to solve p-median problem and its variants that may also be
incorporated to the framework described in this section.
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4.2.2 EDCUTs separation routine

To separate EDCUTs (4.4) we adapt the separation routine for cutset inequality
(DCUT), described in Chapter 2. Given an LP solution (x z), the separation can be
efficiently carried out by means of solving a minimum cut problem defined over the sup-
port digraph D = (V , A), for V = {i ∈ V :

∑
λ∈Λ̄ aiλxλ > 0}, A = {(i, j) ∈ A : zij > 0}

and arc capacities {zij : (i, j) ∈ A}. Based on the maximum flow and minimum cut

theorem, Dinic’s algorithm is used for defining the corresponding mincut set. Thus, let
S ⊂ N be the vertex subset defining the minimum cut (S, V \S) in D. An EDCUT in-
equality is violated whenever the capacity of its corresponding cut, i.e.,

∑
(ij)∈δ+(S) zij,

is less than
∑

λ∈Λ(avλ +
∑

j∈Vv∩S bvjλ)xλ, for S ⊂ N,S 6= ∅, v ∈ S.

4.2.3 CRG miscellanea

The main drawback of our CRG approach comes from the degeneracy in the associated
RLMPs. Take for instance the p-ASP, when solving RLMPa to compute v(Pa). Figure
4.3 exemplifies an anomaly that has damaged considerably the algorithm convergence.
Observe in (a) that for a given connected feasible configuration, weighted with the dual
information, different p-median solutions can be defined as shown in (b).

(a) A connected configuration.
(b) Two different p-ASP solutions based on

the same configuration.

Figure 4.3: Illustration of two different solutions based on the same configuration.

A possible remedy to overcome such a problem is to use a rule to avoid considering
columns with different assignments associated to the same configuration. By doing so,
consider two different assignments {b1

ijλ : (i, j) ∈ A} and {b2
ijλ : (i, j) ∈ A} with the
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respectively weights d1
λ and d2

λ based on the configuration λ. The rule remarks that
the second priced out column is only appended to the corresponding RLMP if d2

λ < d1
λ.

In order to reduce the total time spent to evaluate the bounds with CRG al-
gorithm, due to degeneracy and convergence difficulties, we resort to a stabilization
method. Among many stabilization methods found in the literature, e.g. [du Merle
et al., 1999; Desrosiers and Lübbecke, 2005; Rousseau et al., 2007; Amor et al., 2009],
we use the dual stabilization procedure described in Pessoa et al. [2010]. The procedure
interacts over a model penalized with dual variables, where artificial variables bounded
by a single parameter ε are appended to RLMP introducing positive and negative
terms. The penalties change in the course of the algorithm until the dual multiplier
converge to an optimal dual solution. In practice, to avoid the need of estimating a
proper value of ε, the parameter is decreased at every round of the column-and-row
generation algorithm. The complete algorithm runs four rounds with ε = (0.1, 0.01,
0.001, 0.0). When ε = 0.0, the stabilized model is equivalent to desired restricted
master problem. The columns generated on each round of the algorithm must be kept
in the model.

4.2.3.1 CRG algorithms and the primal bounds

Figure 4.4 shows the pseudo-code of the overall CRG algorithm described in this work.
It starts from the initial configuration λ, generated with the constructive heuristics
described at the end of this subsection, and an empty EDCUT set. The loop in Lines
4-18 is performed until no configurations with negative reduced cost nor EDCUTs
are found. The column generation steps are implemented in Lines 5-11. Based on
the current Λ̄ and EDCUT sets, the RLMP is defined in Line 5. After solving the
corresponding RLMP (we used CPLEX, version 12.6 for that) in Line 6, the dual and
primal LP solutions are computed. The best lower bound (LB) is updated in Line
7. A new configuration λ′ is obtained when performing a pricing procedure in Line
8. Algorithms for solving the pricing subproblems are given in subsection 4.2.1. The
feasibility of the primal solution based on λ′ is tested to update the best upper bounds
(UB) in Line 9. When no column with attractive reduced cost is found, with the primal
solution (x, z) on hand, EDCUTs are separated in Line 13. The current configuration
and EDCUT s sets are augmented in Lines 11 and 15, respectively. The best known
LB and UB are returned in Line 19.

CRG-A and CRG-C are the implementation of the column-and-row generation
algorithms described above, based on Pa and Pc, to evaluate respectively v(Pa) and
v(Pc). In the course of these algorithms, no matter which iteration is running, when-
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begin CRG()
1. Generate a configuration λ;
2. Λ̄← {λ};
3. EDCUT ← ∅;
4. while configurations with negative reduced cost or EDCUTs are found do
5. Define RLMP with Λ̄ and EDCUT;
6. Solve the RLMP model and compute (α, ξ, ν, x, z);
7. Update the best LB;
8. λ′ ← PricingSubproblem(α, ξ, ν);
9. Update the best UB;
10. if λ′ is a configuration with negative reduced cost then
11. Λ̄ ← Λ̄ ∪ {λ′};
12. else
13. CUTs ← SeparateEDCUTs(x, z);
14. if CUTs is not empty then
15. EDCUT ← EDCUT ∪ CUTs;
16. end-if
17. end-if
18. end-while;
19. return LB and UB;
end

Figure 4.4: Pseudo-code of the overall column-and-row (CRG) generation for p-ASP
and p-CSP. In the CRG, the PricingSubproblem procedure (Line 8) uses algorithms
for solving the pricing subproblems given in subsection 4.2.1.

ever a configuration with negative reduced cost is priced out, say λ̄ ∈ Λ, we test the
connectivity of its corresponding cluster-heads and sink components in order to com-
pute a feasible solution to the problem being solved and then update the best primal
bound.

In CRG-A, to obtain a p-ASP solution, a depth-first search algorithm is used
to test the connectivity of a configuration. If (W (λ), Aλ) is connected we have a valid
p-ASP upper bound. Note that, when λ̄ is a non-connected configuration, instead of
achieving a primal solution we may end up with a violated EDCUT inequality. Such a
cut, when found, is appended to the model in advance in order to speed up the method.

CRG-C is initialized with a valid upper bound computed as following. Let C =
V \{r} andW = {r} be respectively the initial candidate and cluster-head set. Initially,
the core cycle is given by r ←→ r, then, at each iteration, a candidate vertex k ∈ C
with smallest score lk is removed from C and added in W until a desire cardinality |W |
= p+ 1 is reached, increasing the cycle by one arc. With a feasible cluster-head set on
hand, we assign every other vertex in V \W to the cheapest cluster-head in W \ {r}.
The score function lk is: lk = (cik + ckj − cij) +

∑
j∈Vk∩C dkj, for every k ∈ C. The first

term of that equation computes the insertion cost of a vertex k ∈ C between every pair
of adjacent vertices {i, j} in the current cycle, while the second term corresponds to an
estimation on the intra-cluster cost if k is chosen as a cluster-head. In order to update
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the best upper bound, whenever a new configuration is defined, a p-CSP solution is
iteratively constructed by simply testing the connectivity of the core cycle using the
same steps as before.

In the next section, we will present the results and discussion regarding our
configuration-based formulations and the procedure to evaluate their corresponding
bounds.

4.3 Computational results

In this section, we detail the computational experiments with the column-and-row
generation algorithms implemented for p-ASP and p-CSP. We also present the LP
relaxations provided by our configuration-based formulations and compare against
formulations based on directed multicommodity flow models and on directed cutset
(DCUT) inequalities. The experiments were performed on a subset of instances with
LP relaxations available, given in Chapters 2 and 3. For p-ASP, we consider instances
with p ∈ {4, 5, 8, 10}, n + 1 ∈ {30,51, 76, 99, 101} and graph density ∈ {30%,
40%, 50%, 60%, 70%, 100%}. For p-CSP, we consider instances with p ∈ {5, 10,
15, 20}, n + 1 ∈ {51,70, 76, 99, 100}. All instances considered here are available
at http://www.dcc.ufmg.br/~vwcmorais/instances/. Details of how the instances
were generated can be obtained on the cited chapters.

For the results that follow, CRG-A and CRG-C are coded in C++ and run under
the Linux operational system. The compiler used is GNU g++ with optimization flag
-O3 turned on. An Intel R© XEON E5645 Core TM i7-980 hexa-core machine, running
at 2.4GHz, with 24 GB of shared RAM is used in the experiments. No multi-threading
is allowed and the algorithms relied on the LP and MIP solvers of IBM ILOG CPLEX

concert library (version Optimization Studio 12.6) with all of their preprocessing, cut
generation and primal heuristic modules being turned off when performing with the
BCS and solving the RLMPs.

In the first experiment, the quality of the bounds provided by the p-ASP
configuration-based formulation Pa is compared with formulations PF and PD in Chap-
ter 2. PF is a compact multicommodity flow formulation involving continuous variables,
flow conservation and forcing constraints to ensure connectivity among cluster-heads
and sink. PD is a directed cutset (DCUT) formulation that enforces the connectivity
by means of an exponential number of breaking sub-cycles constraints. The stopping
criterion of CRG-A was set to 5 hours of CPU time, following the experiments settings
in Chapter 2. The results obtained by evaluating the bound v(Pa) with CRG-A are

http://www.dcc.ufmg.br/~vwcmorais/instances/
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detailed in Table 4.1. The first column in that table identifies the test instances. The
lower bounds provided by formulations PF and PD and CPU time (quoted in seconds)
to compute their bounds are presented in columns 2 to 5, respectively. The next five
columns display results obtained by CRG-A, we report: the number of cuts (EDCUT),
the number of columns, the value of v(Pa), the best rounded up upper bounds (UB)
achieved over the course of the algorithm and the time taken to compute the bounds.
Finally, the last column provides the corresponding known optimal objective function
value (OPT) provided in the reference cited above. It can be observed that Pa strictly
dominates the other two formulations, since the lower bound v(Pa) is stronger than
those provided by PD and PF . PD is slightly better than PF . The results confirm
that Pa ⊂ PD ⊂ PF . However, computing v(Pa) is more expensive than v(PD). The
evaluation of v(PF ) is more time consuming than both of its counterpart formulations.
One can also observe that CRG-A provides upper bounds that are very close to the
optimal solution, that shows the effectiveness of our heuristic to generate primal solu-
tions. This was observed in all the instances tested. CRG-A manages to provide the
optimality certificate on 12 out of 20 instances.
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CRG-A algorithm

Instance v(PF ) t(s) v(PD) t(s) #cuts #cols v(Pa) UB t(s) OPT

n30p4d60 540.33 5.94 551.17 0.03 72 119 555.00 555 3.31 555 (*)
n30p5d100 379.33 12.86 387.00 0.05 176 298 387.00 387 6.27 387 (*)
n30p8d50 463.50 5.07 472.00 0.04 213 504 472.00 472 10.72 472 (*)
n30p8d60 395.00 4.87 400.75 0.05 236 252 404.00 404 6.98 404 (*)

Avg. 444.54 7.19 452.73 0.04 174.25 293.25 454.50 454.50 6.82 454.50

n51p5d100 629.37 438.12 633.59 1.16 374 1043 637.37 640 131.69 640 (+)
n51p8d30 831.34 43.79 836.01 0.07 308 783 851.00 854 152.19 854 (+)
n51p8d40 750.32 68.93 753.96 0.19 319 880 762.14 763 55.87 763 (+)
n51p10d100 477.91 394.04 486.66 1.43 415 952 490.99 504 142.03 499 (+)

Avg. 672.24 236.22 677.56 0.71 354.00 914.5 685.45 690.25 120.44 689.00

n76p5d100 915.39 9111.92 923.69 10.59 1046 4547 928.86 935 3357.42 934
n76p10d50 877.26 1875.80 883.35 5.24 1024 2551 895.00 895 1593.03 895 (+)
n76p10d60 815.31 6457.66 824.30 5.46 1381 3163 833.00 833 1612.26 833 (+)
n76p10d70 770.57 3563.08 776.19 2.02 696 2377 786.65 787 1065.15 787 (+)

Avg. 844.63 5252.12 851.88 5.83 1036.75 3159.50 860.88 862.50 1906.96 862.25

n99p5d50 3432.84 1764.11 3449.33 4.98 476 1707 3661.01 3719 517.92 3719 (+)
n99p5d60 3284.39 1086.90 3297.79 3.88 590 2058 3582.00 3582 746.19 3582 (+)
n99p5d100 2637.99 17955.20 2665.56 93.19 903 4446 2670.37 2685 1874.65 2678
n99p10d50 2475.47 13354.00 2512.30 15.36 2754 4220 2586.28 2623 5428.33 2617

Avg. 2957.67 8540.05 2981.25 29.35 1180.75 3107.75 3124.92 3152.25 2141.77 3149.00

n101p5d50 1652.74 15908.70 1658.21 1.78 227 5110 1799.96 1817 967.60 1817 (+)
n101p5d60 1431.54 729.85 1439.15 6.75 218 1214 1511.00 1511 527.42 1511 (+)
n101p10d40 1244.88 7167.84 1256.47 20.38 1965 2097 1291.04 1347 584,41 1336
n101p10d50 1112.93 11401.90 1122.38 3.91 1197 2153 1169.27 1183 424.18 1176

Avg. 1360.52 8802.07 1369.05 8.21 901.75 2643.50 1442.82 1464.50 639.73 1460.00

Table 4.1: Comparison of formulations PF , PD and Pa for p-ASP. Instances on which the procedure finds certified optimal
values are indicated with (*) and instances on which the procedure finds an optimal solution but fails in providing an optimality
certificate are indicated with (+).
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In the second experiment, we assess the quality of the bounds provided by the
p-CSP configuration based formulation Pc and compare with formulations Fu, Dd and
D+
d in Chapter 3. Fu is a compact multicommodity flow formulation strengthened with

additional capacity and linking inequalities. Dd is a DCUT formulation strengthened
with capacity constraints; On the other hand, D+

d is a formulation that comes from the
intersection of Dd with a lifted version of DCUT inequalities. The stopping criterion
of the algorithm CRG-C was set to 3 hours of CPU time, following the experiments
settings in Chapter 3.
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CRG-C algorithm

Instance v(Fu) t(s) v(Dd) t(s) v(D+
d ) t(s) #cuts #cols v(Pc) UB t(s) OPT

eil51_3_5 4215.90 3451.60 4214.00 0.70 4225.40 0.70 159 108 4248.98 6202.00 8.24 4253
eil51_5_5 3320.70 3091.20 3310.50 0.60 3338.70 0.70 114 857 3378.41 4604.00 165.15 3421
eil51_8_5 1737.30 3591.60 1731.50 0.60 1916.10 2.10 732 5322 1917.07 2182.00 220.78 1990
eil51_3_10 2983.80 3538.80 2982.80 0.50 3013.80 0.70 450 147 3033.86 4945.00 18.39 3060
eil51_5_10 2576.20 5320.80 2575.00 0.50 2606.60 0.60 408 1240 2653.68 3782.00 430.30 2719
eil51_8_10 1672.30 5752.00 1665.00 0.60 1852.20 1.60 89 1360 1858.01 2026.00 209.92 1872
eil51_3_15 2525.30 7654.50 2524.30 0.50 2567.40 0.70 1497 280 2586.98 3887.00 118.22 2608
eil51_5_15 2305.70 6445.90 2304.60 0.50 2387.30 0.80 1059 1519 2423.06 3158.00 392.42 2461
eil51_8_15 1749.40 3591.70 1748.80 0.50 1889.10 1.00 148 1493 1898.00 2061.00 166.94 1898 (+)
eil51_3_20 2223.30 2325.10 2223.10 0.50 2264.00 1.00 978 256 2269.45 3263.00 100.99 2287
eil51_5_20 2183.10 1460.10 2183.10 0.50 2271.20 1.10 1784 1426 2273.73 2843.00 449.92 2292
eil51_8_20 1894.50 1466.70 1893.70 0.40 2001.70 0.70 1446 4768 2011.00 2223.00 889.88 2011 (+)

Avg. 2448.96 3974.17 2446.37 0.53 2527.79 0.98 738.67 1564.67 2546.02 3431.33 264.26 2572.67

st70_3_5 8268.50 3560.40 8258.30 1.20 8278.40 1.30 96 125 8305.00 13702.00 23.32 8306
st70_5_5 6484.10 5096.30 6453.80 2.50 6582.60 3.00 603 2709 6586.11 10183.00 1021.49 6612
st70_8_5 3410.60 6930.30 3338.20 4.90 3709.30 7.20 2118 5036 3726.40 4893.00 1225.92 3902
st70_3_10 5637.40 4053.50 5634.00 1.90 5655.00 2.30 1232 253 5655.00 11456.00 63.83 5655 (+)
st70_3_15 4506.40 5036.80 4500.10 2.10 4547.00 2.20 4254 401 4547.00 4556.00 108.88 4547 (+)
st70_3_20 - - 3834.30 2.30 3905.20 2.90 6453 358 3908.80 7821.00 370.20 3912
st70_5_20 - - 3607.00 3.20 3816.90 8.00 4795 2464 3818.40 4031.00 1223.50 3820
st70_8_20 - - 2724.40 2.20 3287.00 12.10 6808 3152 3287.00 4031.00 2145.90 3287 (+)

Avg. - - 4793.76 2.54 4972.68 4.88 3294.88 1812.25 4979.21 7584.13 772.88 5005.13

eil76_3_5 6224.70 3590.90 6224.70 1.40 6232.90 1.40 0 11 6259.00 10579.00 4.84 6259 (+)
eil76_5_5 4816.40 5959.10 4807.20 2.00 4827.60 2.10 7688 1028 4872.81 7688.00 598.73 4891
eil76_8_5 2412.70 8121.50 2374.60 3.80 2637.40 11.70 756 5504 2641.38 3475.00 1349.19 2722
eil76_3_10 4503.90 8288.40 4498.30 3.30 4557.00 5.70 4053 385 4557.00 8417.00 671.32 4557 (+)
eil76_8_10 - - 2006.80 4.30 2370.50 19.50 4116 3423 2387.35 3122.00 1420.64 2468
eil76_8_15 - - 1991.10 4.40 2339.20 28.50 4854 3245 2339.89 2905.00 2265.70 2384
eil76_8_20 - - 2048.30 4.40 2339.10 30.00 28 4181 2339.18 2837.00 1987.24 2345

Avg. - - 3421.57 3.37 3614.81 14.13 3070.71 2539.57 3628.09 5574.71 1185.38 3660.86

rat99_3_5 - - 18127.90 6.40 18314.00 10.20 969 578 18314.00 35012.00 581.75 18314 (+)
rat99_3_10 - - 12548.70 4.90 12649.00 10.40 2341 474 12649.00 28731.00 301.57 12649 (+)

Avg. - - 15338.30 5.65 15481.50 10.30 1655.00 526.00 15481.50 31871.50 441.66 15481.50

kroD100_3_5 - - 349514.50 3.60 349559.00 3.60 12480 2 349559.00 349559.00 14.84 349559 (*)
kroD100_3_10 - - 215398.00 3.50 215398.00 3.50 15853 2 215398.00 593700.00 83.48 215398 (+)

Avg. - - 282456.25 3.55 282478.50 3.55 14166.50 2.00 282478.50 471629.50 49.16 282478.50

Table 4.2: Comparison of formulations Fu, Dd, D+
d and Pc for p-CSP. Instances on which the procedure finds certified optimal

values are indicated with (*) and instances on which the procedure finds an optimal solution but fails in providing an optimality
certificate are indicated with (+).
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The results obtained by evaluating the bound v(Pc) with CRG-C are detailed in
Table 4.2. In more detail, the first column in that table identifies the test instances. The
lower bounds provided by formulations Fu, Dd and D+

d and the CPU times to compute
their bounds are presented in columns 2 to 7, respectively. Whenever the bounds are
not evaluated within the time limit for a given instance, an indication “- ” is given.
The next five columns display results attained with CRG-A, we report: the number of
cuts, the number of columns, the value of v(Pc), the best rounded up (UB) achieved
over the course of algorithm and the time taken to compute the bounds. Finally, the
last column provides the corresponding known optimal objective function value (OPT).
Analyzing the bounds provided by the formulations, it can be observed that the bounds
provided by Pc are frequently much closer to the optimal solution than its counterparts.
One important observation regarding the lower bounds discussed here is the following:
EDCUTs inequalities are the counterpart of the lifted DCUT inequalities of D+

d (see
Chapter 3), because of that Pc and D+

d dominate Dd. Such constraints significantly
improved on bounds. In fact, among all models considered here, Dd is the weakest.
On the other hand, computing v(Pc) is more expensive than computing the bounds
of all DCUT based formulation. As it could be observed, for most of the comparisons
carried out, computing v(Pc) is only faster than evaluating the bound of the compact
formulation Fu.

The results show that the proposed configuration-based formulations provide very
sharp lower bounds. Very often, our column-and-row generation algorithms manage to
find the optimal solution, but fail in providing an optimality certificate. This suggests
that our approach is promising, but there is still room for improvements. For instance,
note that the upper bound, and consequently the optimality gaps, found for CRG-C
are significantly worse than the ones for CRG-A. The reason for that is how the primal
solutions are defined for p-ASP and p-CSP. Whenever a new configuration is found,
the connectivity of its corresponding backbone is tested. In p-ASP the connectivity is
guaranteed by defining an arborescence while for p-CSP a directed cycle. To define an
arborescence efficient algorithms are used and basically, only the connectivity of paths
is verified. To build a directed cycle our procedures resort to constructive heuristics. It
is important to highlight that the time to compute the lower bound for some instances
are still high. The main issues to deal with are the considerable amount of the time
spent at solving subproblems and separating the EDCUT inequalities. Convergence
problems due to degeneracy is also an issue of our algorithms, several columns are
priced out but few are effectively appended to the models due to dominance rules. An
additional observation is that, as far as CPU times are concerned and in spite of the
difficulties on setting dual stabilization parameters properly, without dual stabilization
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the large instances could not be solved in reasonable time. This was observed mainly
when solving p-CSP instances.

4.4 Concluding remarks

In this chapter, we dealt with routing problems that integrate coverage and cardinal-
ity constraints to optimize the wireless sensor networks lifetime. Problems based on
arborescence and cycle topologies are defined in the design of that kind of networks.
We also proposed configurations-based formulations and column-and-row generation
algorithms to evaluate the corresponding bounds.

Computational experiments showed that configuration-based formulations domi-
nate compact multicommodity flow and directed cutset based formulations in the liter-
ature. We also observe that the proposed column-and-row generation algorithms man-
age to find near-optimal solutions. We remark that the proposed configuration-based
formulation could also be used to model related location-allocation problems, such as:
tree-star problems, facility location problem, hub location problems, and median cycles
problems. The results could be improved by tighter mathematical formulations and
also improving heuristics used to speed up the algorithms.

We intend to investigate stabilization methods, other than the one already ex-
plored, and improve the algorithms to solve the column generation subproblem. We
also plan to investigate whether our algorithms could benefit from using local search
procedures.



Chapter 5

Epilogue

The final remarks and future work are presented in this chapter. Section 5.1 concludes
the thesis with a summary of the accomplished work and addresses the possible future
works.

5.1 Final Remarks

In this Thesis, we studied how to apply optimization techniques to the topological
design of wireless sensor network. The optimization problems considered here consist
of clustering the sensors and defining a communication topology to gather the sensed
information throughout the network. Natural connectivity and coverage requirements
are satisfied assuming an imposition on the number of clusters. The first problem
investigated, named p-arborescence star problem (p-ASP), organizes the network into
a fixed number of p clusters and defines a communication topology as a rooted directed
tree, i.e., an arborescence, setting directed paths from each cluster-head to the sink,
the root of an arborescence. We also investigated solutions to the p-cycle star problem
(p-CSP), the cycle analogue to the p-ASP. In p-CSP, instead of a backbone tree, mobile-
sink based networks are designed replacing the core arborescence by a directed cycle,
representing the route traversed by a mobile sink to visit each of the p predefined
cluster-heads. The overall objective of the problems is to maximize the network lifetime
by minimizing the clustering and transmission (routing) costs.

Two mathematical formulations were proposed for p-ASP. First, a compact for-
mulation involving additional continuous variables over a multicommodity directed flow
model to enforce the connectivity, while in the second approach, connectivity is ensured
by means of an exponential number of circuit breaking constraints. In addition to the
formulations, we also introduced a Benders-based heuristic and three exact solution
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algorithms: BCF-T, BCF-C, and BCD. BCF-T and BCF-C were based on the com-
pact flow-based formulation while BCD was based on circuit breaking constraints. The
algorithms differ mainly in the way they handle constraints that ensure the topology
connectivity. BCF-C and BCF-T rely on the standard implementation of a cutting-
plane algorithm. BCD separates lifted directed cutset inequalities only for fractional
solutions at the root node and integer solutions in the remainder of the enumeration
tree. Through our computational experiments, it was demonstrated that BCD out-
performed BCF-C and BCF-T. Additionally, the results showed the superiority of the
directed cutset based formulation over the multicommodity flow formulation. They
also validated the idea of simplifying the separation routines in favor of evaluating
more BB nodes.

For p-CSP, we first introduced a compact multicommodity directed flow formu-
lation strengthened with additional inequalities. With such formulation on hands, we
derived cutset based formulations by projecting out the continuous flow variables. In
this scheme, we identified two classes of valid inequalities that were separated in a
branch-and-cut algorithm. Computational results obtained with a branch-and-bound
algorithm based on the compact flow formulation were compared with branch-and-cut
algorithms based on both flow and cutset based formulations. In light of our compu-
tational study, we concluded that the algorithm based on cutset models achieve better
results than the algorithms based on the multicommodity flow formulations. We also
pointed out that the main challenge of p-CSP is to define the optimal location of
cluster-heads and enforce connectivity of the core simple cycle.

Under the cardinality constrained topology representation, p-ASP and p-CSP
topologies can be decomposed into p-stars and a backbone connecting p cluster-heads
and the sink. A common thread of the problems is to select the core cluster-head
set and the sink. This structure is named configuration. The configurations were
explored in such a way to obtain strong mathematical formulations. Thus, we pro-
posed configuration-based linear Integer Programming (IP) formulations and devise
column-and-row generation (CRG) algorithms to evaluate the bounds. Through our
computational experiments, it was shown that configuration-based formulations dom-
inate any the other p-ASP and p-CSP formulations. The proposed CRG was also
indicated as an alternative to solve related location-allocation problems in transporta-
tion and telecommunication networks.

In general, the end user is interested in ensuring a fair utilization of the WSN
resources such that no cluster-head suffers an early energy depletion. Through this
work, we showed that the moment in which a network is considered nonfunctional is
specific to the application and heavily depends on the definition of network lifetime
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being implemented by a protocol. Based on the connectivity requirement, we placed the
problems cited above to design WSN topologies with two network lifetime definitions
in mind: time until the first sensor failure and time until the first cluster-head failure or
no communication backbone exists. The problems presented were based on protocols
that aim to enhance the network lifetime by performing a periodic rotation on a fixed
number of preselected cluster-heads. Therefore, exploring the cardinality constraints
of this cluster-head set was the central focus of the thesis.

Future works include a Lagrangian relaxation approach based on the cutset based
formulation for p-ASP and p-CSP. To compute the bounds one could make use of a
relax-and-cut (RC) method. RC would dualize two set of constraints: assignment
equalities in a static way and DCUT inequalities in a dynamic fashion. In order to
provide a tightest lower bound, the subgradient method would be used to approxi-
mately solve the lagrangian dual problem. In this direction, two different BC algo-
rithms may be drawn: delayed relax-and-cut (DRC) and non-delayed relax-and-cut
(NDRC). The main difference between DRC and NDRC would be basically the point
where the relaxed inequalities are separated and dualized: after computing the LP or at
every subgradient iteration. As a further research step, one could also investigate sta-
bilization methods for the CRG procedure, other than the one already explored in this
work, and improve the algorithms to solve the pricing subproblem. This would enable
the implementation of branch-and-price-and-cut algorithms that take advantage of the
limits obtained with the configuration-based formulations. It will also be important to
proceed with the characterization valid inequalities, such as capacity constraints that
benefit from the cardinality constraint, to separate them into our algorithms.





Appendix A

Supplementary results

The detailed computational results for instances from Bardossy and Raghavan [2010]
for BCF-C, BCF-T and BCD, when solving the p-ASP, are given in supplementary
Tables A.1, A.2, A.3 and A.4. The first two columns of the tables provide respectively
the instance name, the corresponding value of p and the number of arcs on instances of
subset being considered. Columns 4 to 10 show respectively the lower bounds (RLB)
found at root node, best lower (BLB) and upper (BUB) bounds found during the
search, the CPU time (in seconds) at the root node (t_r) of the enumeration tree,
the overall CPU total time (t_a), the number of branch-and-bound nodes evaluated
(#nodes) and the corresponding duality gap (BUB - BLB / BUB) provided by BCF-C.
Columns 11 to 17 show the same data for BCF-T. Finally, the results obtained by BCD
are displayed in columns 18 to 24.
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Instance BCF-C BCF-T BCD
Name p |A| RUB BUB LUB tr ta #nodes g(%) RUB BUB LUB tr ta #nodes g(%) RUB BUB LUB tr ta a #nodes g(%)
STS_M3_81 10 1890 1797.00 1797 1797.00 6.04 6.04 0 0.00 1797.00 1797 1797.00 4.39 4.39 0 0.00 1797.00 1797 1797.00 0.13 0.13 0 0.00
STS_M3_82 10 1890 1861.00 1861 1861.00 29.86 29.86 0 0.00 1861.00 1861 1861.00 20.23 20.24 0 0.00 1861.00 1861 1861.00 9.67 9.67 0 0.00
STS_M3_83 10 1890 1827.00 1827 1827.00 14.95 14.96 0 0.00 1827.00 1827 1827.00 12.47 12.49 0 0.00 1827.00 1827 1827.00 7.12 7.12 0 0.00
STS_M3_84 10 1890 1958.00 1958 1958.00 10.00 10.01 0 0.00 1958.00 1958 1958.00 8.88 8.88 0 0.00 1958.00 1958 1958.00 0.10 0.10 0 0.00
STS_M3_85 10 1890 2133.00 2133 2133.00 7.00 7.01 0 0.00 2133.00 2133 2133.00 4.54 4.55 0 0.00 2133.00 2133 2133.00 0.23 0.23 0 0.00
STS_M3_86 10 1890 2032.33 2033 2033.00 102.91 112.52 3 0.00 2033.00 2033 2033.00 76.76 76.76 0 0.00 2033.00 2033 2033.00 6.65 6.65 0 0.00
STS_M3_87 10 1890 2317.00 2317 2317.00 17.32 17.33 0 0.00 2317.00 2317 2317.00 5.97 5.97 0 0.00 2317.00 2317 2317.00 0.17 0.17 0 0.00
STS_M3_88 10 1890 2011.00 2011 2011.00 16.10 16.10 0 0.00 2011.00 2011 2011.00 11.52 11.53 0 0.00 2011.00 2011 2011.00 0.12 0.12 0 0.00
STS_M3_261 10 1890 1797.00 1797 1797.00 6.13 6.13 0 0.00 1797.00 1797 1797.00 4.19 4.20 0 0.00 1797.00 1797 1797.00 0.12 0.12 0 0.00
STS_M3_262 10 1890 1861.00 1861 1861.00 19.96 19.96 0 0.00 1861.00 1861 1861.00 18.37 18.38 0 0.00 1861.00 1861 1861.00 14.38 14.38 0 0.00
STS_M3_263 10 1890 1827.00 1827 1827.00 14.95 14.95 0 0.00 1827.00 1827 1827.00 12.33 12.33 0 0.00 1827.00 1827 1827.00 10.80 10.80 0 0.00
STS_M3_264 10 1890 1958.00 1958 1958.00 12.85 12.86 0 0.00 1958.00 1958 1958.00 9.18 9.18 0 0.00 1958.00 1958 1958.00 0.23 0.23 0 0.00
STS_M3_265 10 1890 2133.00 2133 2133.00 9.38 9.39 0 0.00 2133.00 2133 2133.00 6.46 6.47 0 0.00 2133.00 2133 2133.00 0.64 0.64 0 0.00
STS_M3_266 10 1890 2032.33 2033 2033.00 153.65 153.66 3 0.00 2033.00 2033 2033.00 106.75 122.26 0 0.00 2033.00 2033 2033.00 26.31 26.31 0 0.00
STS_M3_267 10 1890 2317.00 2317 2317.00 72.12 72.12 0 0.00 2317.00 2317 2317.00 19.75 19.75 0 0.00 2317.00 2317 2317.00 0.43 0.43 0 0.00
STS_M3_268 10 1890 2011.00 2011 2011.00 40.12 40.12 0 0.00 2011.00 2011 2011.00 17.65 17.66 0 0.00 2011.00 2011 2011.00 0.24 0.24 0 0.00
STS_M3_269 10 1890 1879.00 1879 1879.00 13.85 13.85 0 0.00 1879.00 1879 1879.00 10.06 10.06 0 0.00 1879.00 1879 1879.00 0.77 0.77 0 0.00
STS_M3_270 10 1890 1782.00 1782 1782.00 15.69 15.70 0 0.00 1782.00 1782 1782.00 10.70 10.70 0 0.00 1782.00 1782 1782.00 0.49 0.49 0 0.00
STS_M3_441 10 1890 1797.00 1797 1797.00 4.21 4.22 0 0.00 1797.00 1797 1797.00 3.67 3.67 0 0.00 1797.00 1797 1797.00 0.10 0.10 0 0.00
STS_M3_442 10 1890 1861.00 1861 1861.00 15.03 15.04 0 0.00 1861.00 1861 1861.00 12.52 12.52 0 0.00 1861.00 1861 1861.00 4.93 4.93 0 0.00
STS_M3_443 10 1890 1827.00 1827 1827.00 9.74 9.74 0 0.00 1827.00 1827 1827.00 8.13 8.13 0 0.00 1827.00 1827 1827.00 5.59 5.59 0 0.00
STS_M3_444 10 1890 1958.00 1958 1958.00 6.96 6.97 0 0.00 1958.00 1958 1958.00 5.48 5.48 0 0.00 1958.00 1958 1958.00 0.10 0.10 0 0.00
STS_M3_445 10 1890 2133.00 2133 2133.00 4.92 4.93 0 0.00 2133.00 2133 2133.00 3.58 3.58 0 0.00 2133.00 2133 2133.00 0.40 0.40 0 0.00
STS_M3_446 10 1890 2032.33 2033 2033.00 52.63 55.48 3 0.00 2033.00 2033 2033.00 38.32 38.32 0 0.00 2033.00 2033 2033.00 21.38 21.38 0 0.00
STS_M3_447 10 1890 2317.00 2317 2317.00 22.37 22.37 0 0.00 2317.00 2317 2317.00 11.60 11.60 0 0.00 2317.00 2317 2317.00 0.20 0.20 0 0.00
STS_M3_448 10 1890 2011.00 2011 2011.00 7.99 7.99 0 0.00 2011.00 2011 2011.00 7.93 7.93 0 0.00 2011.00 2011 2011.00 0.11 0.11 0 0.00
STS_M3_449 10 1890 1879.00 1879 1879.00 5.66 5.66 0 0.00 1879.00 1879 1879.00 5.05 5.05 0 0.00 1879.00 1879 1879.00 0.38 0.38 0 0.00
STS_M3_450 10 1890 1782.00 1782 1782.00 6.43 6.43 0 0.00 1782.00 1782 1782.00 6.09 6.09 0 0.00 1782.00 1782 1782.00 0.24 0.24 0 0.00
STS_M3_89 10 1890 1879.00 1879 1879.00 5.16 5.16 0 0.00 1879.00 1879 1879.00 3.64 3.64 0 0.00 1879.00 1879 1879.00 0.26 0.26 0 0.00
STS_M3_90 10 1890 1782.00 1782 1782.00 6.61 6.62 0 0.00 1782.00 1782 1782.00 6.12 6.13 0 0.00 1782.00 1782 1782.00 0.19 0.19 0 0.00
STS_M3_621 10 1890 1797.00 1797 1797.00 10.92 10.92 0 0.00 1797.00 1797 1797.00 10.25 10.25 0 0.00 1797.00 1797 1797.00 0.24 0.24 0 0.00
STS_M3_622 10 1890 1861.00 1861 1861.00 75.13 75.14 0 0.00 1861.00 1861 1861.00 53.01 53.01 0 0.00 1861.00 1861 1861.00 22.57 22.57 0 0.00
STS_M3_623 10 1890 1827.00 1827 1827.00 55.45 55.46 0 0.00 1827.00 1827 1827.00 47.77 47.78 0 0.00 1827.00 1827 1827.00 5.96 5.96 0 0.00
STS_M3_624 10 1890 1958.00 1958 1958.00 51.24 51.25 0 0.00 1958.00 1958 1958.00 30.38 30.38 0 0.00 1958.00 1958 1958.00 0.10 0.10 0 0.00
STS_M3_625 10 1890 2133.00 2133 2133.00 8.56 8.57 0 0.00 2133.00 2133 2133.00 7.38 7.38 0 0.00 2133.00 2133 2133.00 0.20 0.20 0 0.00
STS_M3_626 10 1890 2032.33 2033 2033.00 377.17 383.50 3 0.00 2033.00 2033 2033.00 339.11 339.12 0 0.00 2033.00 2033 2033.00 118.02 118.03 0 0.00
STS_M3_627 10 1890 2317.00 2317 2317.00 63.24 63.25 0 0.00 2317.00 2317 2317.00 43.29 43.33 0 0.00 2317.00 2317 2317.00 0.29 0.29 0 0.00
STS_M3_628 10 1890 2011.00 2011 2011.00 58.12 58.13 0 0.00 2011.00 2011 2011.00 35.28 35.29 0 0.00 2011.00 2011 2011.00 0.12 0.13 0 0.00
STS_M3_629 10 1890 1879.00 1879 1879.00 45.03 45.04 0 0.00 1879.00 1879 1879.00 9.34 9.34 0 0.00 1879.00 1879 1879.00 0.62 0.62 0 0.00
STS_M3_630 10 1890 1782.00 1782 1782.00 53.55 53.56 0 0.00 1782.00 1782 1782.00 49.63 49.63 0 0.00 1782.00 1782 1782.00 0.37 0.37 0 0.00
STS_w30_171 10 1890 1797.00 1797 1797.00 8.68 8.70 0 0.00 1797.00 1797 1797.00 4.77 4.78 0 0.00 1797.00 1797 1797.00 0.12 0.12 0 0.00
STS_w30_172 10 1890 1861.00 1861 1861.00 21.90 21.91 0 0.00 1861.00 1861 1861.00 21.83 21.83 0 0.00 1861.00 1861 1861.00 13.44 13.44 0 0.00
STS_w30_173 10 1890 1827.00 1827 1827.00 13.37 13.38 0 0.00 1827.00 1827 1827.00 10.51 10.52 0 0.00 1827.00 1827 1827.00 9.72 9.72 0 0.00
STS_w30_174 10 1890 1958.00 1958 1958.00 8.16 8.16 0 0.00 1958.00 1958 1958.00 7.39 7.40 0 0.00 1958.00 1958 1958.00 0.17 0.17 0 0.00
STS_w30_175 10 1890 2133.00 2133 2133.00 5.79 5.79 0 0.00 2133.00 2133 2133.00 3.50 3.51 0 0.00 2133.00 2133 2133.00 0.48 0.48 0 0.00
STS_w30_81 10 1890 1682.00 1682 1682.00 6.67 6.67 0 0.00 1682.00 1682 1682.00 5.06 5.07 0 0.00 1682.00 1682 1682.00 0.17 0.17 0 0.00
STS_w30_82 10 1890 1835.00 1835 1835.00 16.02 16.03 0 0.00 1835.00 1835 1835.00 13.86 13.86 0 0.00 1835.00 1835 1835.00 7.60 7.60 0 0.00
STS_w30_83 10 1890 1771.00 1771 1771.00 12.61 12.62 0 0.00 1771.00 1771 1771.00 11.94 11.94 0 0.00 1771.00 1771 1771.00 7.21 7.21 0 0.00
STS_w30_84 10 1890 1880.00 1880 1880.00 8.18 8.18 0 0.00 1880.00 1880 1880.00 7.08 7.08 0 0.00 1880.00 1880 1880.00 0.20 0.20 0 0.00
STS_w30_85 10 1890 2101.00 2101 2101.00 5.42 5.42 0 0.00 2101.00 2101 2101.00 5.38 5.38 0 0.00 2101.00 2101 2101.00 0.35 0.35 0 0.00
STS_w30_86 10 1890 1943.00 1943 1943.00 12.30 12.31 0 0.00 1943.00 1943 1943.00 10.14 10.14 0 0.00 1943.00 1943 1943.00 8.42 8.42 0 0.00
STS_w30_87 10 1890 2266.00 2266 2266.00 7.47 7.48 0 0.00 2266.00 2266 2266.00 5.50 5.51 0 0.00 2266.00 2266 2266.00 0.28 0.28 0 0.00
STS_w30_88 10 1890 1962.00 1962 1962.00 12.86 12.86 0 0.00 1962.00 1962 1962.00 10.38 10.38 0 0.00 1962.00 1962 1962.00 0.60 0.60 0 0.00
STS_w30_89 10 1890 1866.00 1866 1866.00 7.44 7.44 0 0.00 1866.00 1866 1866.00 4.96 4.96 0 0.00 1866.00 1866 1866.00 0.91 0.91 0 0.00
STS_w30_90 10 1890 1734.00 1734 1734.00 10.12 10.12 0 0.00 1734.00 1734 1734.00 6.52 6.52 0 0.00 1734.00 1734 1734.00 2.38 2.38 0 0.00
STS_w30_176 10 1890 2032.33 2033 2033.00 326.80 333.46 3 0.00 2033.00 2033 2033.00 125.88 125.89 0 0.00 2033.00 2033 2033.00 22.94 22.94 0 0.00
STS_w30_177 10 1890 2317.00 2317 2317.00 110.20 110.21 0 0.00 2317.00 2317 2317.00 101.31 101.31 0 0.00 2317.00 2317 2317.00 0.50 0.50 0 0.00
STS_w30_178 10 1890 2011.00 2011 2011.00 58.61 58.61 0 0.00 2011.00 2011 2011.00 34.65 34.75 0 0.00 2011.00 2011 2011.00 0.22 0.22 0 0.00
STS_w30_179 10 1890 1879.00 1879 1879.00 42.52 42.53 0 0.00 1879.00 1879 1879.00 32.50 32.52 0 0.00 1879.00 1879 1879.00 0.76 0.76 0 0.00
STS_w30_180 10 1890 1782.00 1782 1782.00 30.82 30.86 0 0.00 1782.00 1782 1782.00 24.72 24.73 0 0.00 1782.00 1782 1782.00 0.59 0.59 0 0.00
STS_w30_261 10 1890 1797.00 1797 1797.00 17.10 17.12 0 0.00 1797.00 1797 1797.00 6.47 6.48 0 0.00 1797.00 1797 1797.00 0.19 0.19 0 0.00
STS_w30_262 10 1890 1866.00 1866 1866.00 97.98 97.99 0 0.00 1866.00 1866 1866.00 24.95 24.96 0 0.00 1866.00 1866 1866.00 12.22 12.22 0 0.00
STS_w30_263 10 1890 1827.00 1827 1827.00 50.19 50.20 0 0.00 1827.00 1827 1827.00 23.87 23.88 0 0.00 1827.00 1827 1827.00 4.25 4.25 0 0.00
STS_w30_264 10 1890 1966.00 1966 1966.00 18.32 18.33 0 0.00 1966.00 1966 1966.00 14.12 14.12 0 0.00 1966.00 1966 1966.00 0.11 0.11 0 0.00
STS_w30_265 10 1890 2133.00 2133 2133.00 7.72 7.73 0 0.00 2133.00 2133 2133.00 6.26 6.27 0 0.00 2133.00 2133 2133.00 0.42 0.42 0 0.00
STS_w30_266 10 1890 2033.00 2033 2033.00 183.57 183.57 0 0.00 2033.00 2033 2033.00 85.20 85.21 0 0.00 2033.00 2033 2033.00 36.37 36.37 0 0.00
STS_w30_267 10 1890 2323.50 2325 2325.00 60.16 112.61 2 0.00 2323.00 2325 2325.00 46.00 60.69 2 0.00 2325.00 2325 2325.00 0.20 0.20 0 0.00
STS_w30_268 10 1890 2011.00 2011 2011.00 9.52 9.52 0 0.00 2011.00 2011 2011.00 5.85 5.86 0 0.00 2011.00 2011 2011.00 0.10 0.10 0 0.00
STS_w30_269 10 1890 1879.00 1879 1879.00 45.38 45.39 0 0.00 1879.00 1879 1879.00 11.70 11.71 0 0.00 1879.00 1879 1879.00 0.46 0.46 0 0.00
STS_w30_270 10 1890 1786.00 1786 1786.00 63.32 63.32 0 0.00 1786.00 1786 1786.00 20.23 20.24 0 0.00 1786.00 1786 1786.00 0.73 0.73 0 0.00
STS_w30_351 10 1890 1797.00 1797 1797.00 5.05 5.05 0 0.00 1797.00 1797 1797.00 4.10 4.10 0 0.00 1797.00 1797 1797.00 0.09 0.09 0 0.00
STS_w30_352 10 1890 1870.00 1870 1870.00 12.38 12.38 0 0.00 1870.00 1870 1870.00 11.06 11.07 0 0.00 1870.00 1870 1870.00 4.28 4.28 0 0.00
STS_w30_353 10 1890 1827.00 1827 1827.00 19.96 19.96 0 0.00 1827.00 1827 1827.00 17.58 17.58 0 0.00 1827.00 1827 1827.00 4.92 4.92 0 0.00
STS_w30_354 10 1890 1966.00 1966 1966.00 5.80 5.81 0 0.00 1966.00 1966 1966.00 4.40 4.40 0 0.00 1966.00 1966 1966.00 0.08 0.08 0 0.00
STS_w30_355 10 1890 2133.00 2133 2133.00 5.32 5.32 0 0.00 2133.00 2133 2133.00 4.86 4.86 0 0.00 2133.00 2133 2133.00 0.14 0.14 0 0.00
STS_w30_356 10 1890 2033.00 2033 2033.00 29.76 29.76 0 0.00 2033.00 2033 2033.00 22.95 22.95 0 0.00 2033.00 2033 2033.00 7.54 7.54 0 0.00
STS_w30_357 10 1890 2329.25 2332 2332.00 20.08 32.29 5 0.00 2330.00 2332 2332.00 12.44 30.57 3 0.00 2332.00 2332 2332.00 0.25 0.25 0 0.00
STS_w30_358 10 1890 2011.00 2011 2011.00 7.47 7.47 0 0.00 2011.00 2011 2011.00 5.53 5.53 0 0.00 2011.00 2011 2011.00 0.09 0.09 0 0.00
STS_w30_359 10 1890 1879.00 1879 1879.00 6.98 6.98 0 0.00 1879.00 1879 1879.00 6.62 6.62 0 0.00 1879.00 1879 1879.00 0.20 0.20 0 0.00
STS_w30_360 10 1890 1786.00 1786 1786.00 10.00 10.00 0 0.00 1786.00 1786 1786.00 9.88 9.88 0 0.00 1786.00 1786 1786.00 0.28 0.28 0 0.00

Table A.1: Detailed computational results for instances adapted from Bardossy and Raghavan [2010] : BCF-C, BCF-T and BCD
when solving p-ASP instances with |V | = 100 and p = 10.
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Instance BCF-C BCF-T BCD
Name p |A| RUB BUB LUB tr ta #nodes g(%) RUB BUB LUB tr ta #nodes g(%) RUB BUB LUB tr ta a #nodes g(%)
STS_M3_71 20 3580 1189.54 1192 1192.00 311.31 523.76 5 0.00 1189.54 1192 1192.00 181.45 318.43 5 0.00 1192.00 1192 1192.00 0.91 0.91 0 0.00
STS_M3_72 20 3580 1383.50 1387 1387.00 4564.03 10240.20 11 0.00 1383.15 1387 1387.00 5957.85 8138.66 9 0.00 1386.50 1387 1387.00 252.82 282.95 3 0.00
STS_M3_73 20 3580 1303.50 1306 1306.00 1165.30 3685.64 5 0.00 1303.50 1306 1306.00 590.17 2699.12 5 0.00 1303.25 1306 1306.00 68.33 113.85 13 0.00
STS_M3_74 20 3580 1315.71 1316 1316.00 4009.38 7747.98 5 0.00 1313.59 1316 1316.00 2761.21 3290.42 5 0.00 1316.00 1316 1316.00 6.64 9.02 1 0.00
STS_M3_75 20 3580 1523.89 1526 1526.00 3984.31 6906.59 3 0.00 1522.93 1526 1526.00 3522.33 4869.41 3 0.00 1526.00 1526 1526.00 46.76 46.76 0 0.00
STS_M3_76 20 3580 1357.52 1362 1362.00 1255.41 5855.28 28 0.00 1357.71 1362 1362.00 657.67 3367.43 29 0.00 1361.00 1362 1362.00 2.01 2.32 4 0.00
STS_M3_77 20 3580 1501.00 1501 1501.00 297.51 297.52 0 0.00 1501.00 1501 1501.00 153.60 153.60 0 0.00 1501.00 1501 1501.00 1.90 1.90 0 0.00
STS_M3_78 20 3580 1399.00 1400 1400.00 1619.32 1812.35 3 0.00 1399.00 1400 1400.00 1239.10 1359.68 3 0.00 1399.00 1400 1400.00 521.83 611.98 13 0.00
STS_M3_79 20 3580 1457.15 1459 1459.00 997.59 3347.56 8 0.00 1456.60 1459 1459.00 655.32 782.33 3 0.00 1459.00 1459 1459.00 8.08 8.08 0 0.00
STS_M3_80 20 3580 1440.00 1440 1440.00 406.77 406.78 0 0.00 1440.00 1440 1440.00 220.16 220.16 0 0.00 1440.00 1440 1440.00 4.73 4.73 0 0.00
STS_M3_251 20 3580 1189.54 1192 1192.00 396.03 680.30 5 0.00 1189.54 1192 1192.00 321.13 439.15 5 0.00 1192.00 1192 1192.00 0.91 0.91 0 0.00
STS_M3_252 20 3580 1383.50 1387 1387.00 5483.82 11353.20 11 0.00 1383.15 1387 1387.00 5672.63 7537.14 9 0.00 1386.50 1387 1387.00 237.73 246.40 3 0.00
STS_M3_253 20 3580 1303.50 1306 1306.00 1407.29 4335.33 5 0.00 1303.50 1306 1306.00 1013.51 3619.93 5 0.00 1303.25 1306 1306.00 63.15 117.18 13 0.00
STS_M3_254 20 3580 1315.71 1316 1316.00 3349.31 6895.26 5 0.00 1313.59 1316 1316.00 2990.08 3498.63 5 0.00 1316.00 1316 1316.00 12.93 16.17 1 0.00
STS_M3_255 20 3580 1523.89 1526 1526.00 3751.04 6328.72 3 0.00 1522.93 1526 1526.00 4107.40 5535.44 3 0.00 1526.00 1526 1526.00 41.13 41.13 0 0.00
STS_M3_256 20 3580 1357.52 1362 1362.00 947.66 5640.89 28 0.00 1357.71 1362 1362.00 821.61 3804.58 29 0.00 1361.00 1362 1362.00 2.22 2.63 4 0.00
STS_M3_257 20 3580 1501.00 1501 1501.00 296.24 296.25 0 0.00 1501.00 1501 1501.00 282.92 282.92 0 0.00 1501.00 1501 1501.00 2.40 2.40 0 0.00
STS_M3_258 20 3580 1399.00 1400 1400.00 1541.76 1683.45 3 0.00 1399.00 1400 1400.00 1096.11 1206.20 3 0.00 1399.00 1400 1400.00 495.40 593.95 13 0.00
STS_M3_259 20 3580 1457.15 1459 1459.00 890.99 2570.72 8 0.00 1456.60 1459 1459.00 580.49 708.94 3 0.00 1459.00 1459 1459.00 3.13 3.13 0 0.00
STS_M3_260 20 3580 1440.00 1440 1440.00 397.74 397.75 0 0.00 1440.00 1440 1440.00 224.05 224.06 0 0.00 1440.00 1440 1440.00 3.01 3.01 0 0.00
STS_M3_431 20 3580 1189.54 1192 1192.00 314.91 490.45 5 0.00 1189.54 1192 1192.00 212.37 319.49 5 0.00 1192.00 1192 1192.00 2.61 2.61 0 0.00
STS_M3_432 20 3580 1383.50 1387 1387.00 3107.07 6428.72 11 0.00 1383.15 1387 1387.00 3133.15 4385.90 9 0.00 1386.50 1387 1387.00 759.11 794.19 3 0.00
STS_M3_433 20 3580 1303.50 1306 1306.00 679.60 2054.40 5 0.00 1303.50 1306 1306.00 365.02 1049.62 5 0.00 1303.25 1306 1306.00 92.42 149.24 13 0.00
STS_M3_434 20 3580 1315.71 1316 1316.00 1791.15 2792.89 5 0.00 1313.59 1316 1316.00 742.23 888.58 5 0.00 1316.00 1316 1316.00 4.74 6.52 1 0.00
STS_M3_435 20 3580 1523.89 1526 1526.00 1167.46 2120.73 3 0.00 1522.93 1526 1526.00 1210.53 1608.91 3 0.00 1526.00 1526 1526.00 47.50 47.51 0 0.00
STS_M3_436 20 3580 1357.52 1362 1362.00 198.33 1410.42 28 0.00 1357.71 1362 1362.00 138.24 787.92 29 0.00 1361.00 1362 1362.00 4.13 4.85 4 0.00
STS_M3_437 20 3580 1501.00 1501 1501.00 79.04 79.05 0 0.00 1501.00 1501 1501.00 58.97 58.98 0 0.00 1501.00 1501 1501.00 3.67 3.67 0 0.00
STS_M3_438 20 3580 1399.00 1400 1400.00 391.80 446.87 3 0.00 1399.00 1400 1400.00 357.21 408.30 3 0.00 1399.00 1400 1400.00 624.54 735.22 13 0.00
STS_M3_439 20 3580 1457.15 1459 1459.00 218.34 912.10 8 0.00 1456.60 1459 1459.00 165.82 201.38 3 0.00 1459.00 1459 1459.00 5.37 5.37 0 0.00
STS_M3_440 20 3580 1440.00 1440 1440.00 87.61 87.61 0 0.00 1440.00 1440 1440.00 71.51 71.51 0 0.00 1440.00 1440 1440.00 2.83 2.83 0 0.00
STS_M3_611 20 3580 1189.54 1192 1192.00 60.71 92.34 5 0.00 1189.54 1192 1192.00 51.70 73.20 5 0.00 1192.00 1192 1192.00 1.54 1.54 0 0.00
STS_M3_612 20 3580 1383.50 1387 1387.00 895.36 2242.46 11 0.00 1383.15 1387 1387.00 914.74 1434.78 9 0.00 1386.50 1387 1387.00 544.64 576.14 3 0.00
STS_M3_613 20 3580 1303.50 1306 1306.00 255.81 896.17 5 0.00 1303.50 1306 1306.00 203.63 706.83 5 0.00 1303.25 1306 1306.00 25.13 69.65 13 0.00
STS_M3_614 20 3580 1315.71 1316 1316.00 766.42 1683.14 5 0.00 1313.59 1316 1316.00 532.80 644.68 5 0.00 1316.00 1316 1316.00 3.57 4.52 1 0.00
STS_M3_615 20 3580 1523.89 1526 1526.00 899.51 1659.80 3 0.00 1522.93 1526 1526.00 803.44 1159.21 3 0.00 1526.00 1526 1526.00 9.88 9.88 0 0.00
STS_M3_616 20 3580 1357.52 1362 1362.00 200.09 1521.51 28 0.00 1357.71 1362 1362.00 136.70 771.41 29 0.00 1361.00 1362 1362.00 1.61 1.88 4 0.00
STS_M3_617 20 3580 1501.00 1501 1501.00 77.87 77.88 0 0.00 1501.00 1501 1501.00 58.12 58.12 0 0.00 1501.00 1501 1501.00 1.87 1.87 0 0.00
STS_M3_618 20 3580 1399.00 1400 1400.00 381.29 435.32 3 0.00 1399.00 1400 1400.00 361.45 412.04 3 0.00 1399.00 1400 1400.00 291.51 345.35 13 0.00
STS_M3_619 20 3580 1457.15 1459 1459.00 1695.48 5892.92 8 0.00 1456.60 1459 1459.00 850.80 1165.08 3 0.00 1459.00 1459 1459.00 18.20 18.20 0 0.00
STS_M3_620 20 3580 1440.00 1440 1440.00 563.76 563.83 0 0.00 1440.00 1440 1440.00 495.48 495.48 0 0.00 1440.00 1440 1440.00 12.32 12.32 0 0.00
STS_w30_161 20 3580 1189.54 1192 1192.00 394.66 627.00 5 0.00 1189.54 1192 1192.00 421.21 579.16 5 0.00 1192.00 1192 1192.00 5.25 5.25 0 0.00
STS_w30_162 20 3580 1383.50 1387 1387.00 4183.50 9991.60 11 0.00 1383.15 1387 1387.00 4728.93 6813.93 9 0.00 1386.50 1387 1387.00 579.51 596.63 3 0.00
STS_w30_163 20 3580 1303.50 1306 1306.00 1556.60 5345.12 5 0.00 1303.50 1306 1306.00 1023.34 3298.97 5 0.00 1303.25 1306 1306.00 66.52 133.96 13 0.00
STS_w30_164 20 3580 1315.71 1316 1316.00 3419.04 6641.57 5 0.00 1313.59 1316 1316.00 3020.76 3515.17 5 0.00 1316.00 1316 1316.00 5.24 6.76 1 0.00
STS_w30_165 20 3580 1523.89 1526 1526.00 3765.32 6606.46 3 0.00 1522.93 1526 1526.00 3609.09 4819.75 3 0.00 1526.00 1526 1526.00 37.80 37.80 0 0.00
STS_w30_166 20 3580 1357.52 1362 1362.00 940.47 4974.26 28 0.00 1357.71 1362 1362.00 609.67 2434.71 29 0.00 1361.00 1362 1362.00 7.85 9.80 4 0.00
STS_w30_167 20 3580 1501.00 1501 1501.00 263.52 263.53 0 0.00 1501.00 1501 1501.00 170.06 170.07 0 0.00 1501.00 1501 1501.00 7.51 7.51 0 0.00
STS_w30_168 20 3580 1399.00 1400 1400.00 1636.19 1744.65 3 0.00 1399.00 1400 1400.00 817.07 943.46 3 0.00 1399.00 1400 1400.00 510.47 624.53 13 0.00
STS_w30_169 20 3580 1457.15 1459 1459.00 337.92 1429.93 8 0.00 1456.60 1459 1459.00 400.14 513.93 3 0.00 1459.00 1459 1459.00 3.54 3.54 0 0.00
STS_w30_170 20 3580 1440.00 1440 1440.00 132.24 132.25 0 0.00 1440.00 1440 1440.00 82.26 82.26 0 0.00 1440.00 1440 1440.00 2.94 2.94 0 0.00
STS_w30_71 20 3580 1148.91 1154 1154.00 76.50 84.99 3 0.00 1149.90 1154 1154.00 36.60 61.66 3 0.00 1151.50 1154 1154.00 4.38 5.20 4 0.00
STS_w30_72 20 3580 1326.33 1328 1328.00 1499.00 4732.18 10 0.00 1326.29 1328 1328.00 1891.31 2479.31 3 0.00 1328.00 1328 1328.00 1473.60 1473.60 0 0.00
STS_w30_73 20 3580 1261.00 1261 1261.00 376.87 376.88 0 0.00 1261.00 1261 1261.00 186.64 186.65 0 0.00 1261.00 1261 1261.00 142.40 142.40 0 0.00
STS_w30_74 20 3580 1262.00 1262 1262.00 129.14 129.14 0 0.00 1262.00 1262 1262.00 92.01 92.01 0 0.00 1262.00 1262 1262.00 3.04 3.12 0 0.00
STS_w30_75 20 3580 1440.00 1440 1440.00 362.32 362.33 0 0.00 1440.00 1440 1440.00 105.32 105.33 0 0.00 1440.00 1440 1440.00 59.17 59.17 0 0.00
STS_w30_76 20 3580 1321.00 1321 1321.00 133.30 133.30 0 0.00 1321.00 1321 1321.00 42.18 42.18 0 0.00 1321.00 1321 1321.00 0.92 0.92 0 0.00
STS_w30_77 20 3580 1458.00 1458 1458.00 126.29 126.29 0 0.00 1458.00 1458 1458.00 76.23 76.23 0 0.00 1458.00 1458 1458.00 26.26 26.26 0 0.00
STS_w30_78 20 3580 1342.07 1343 1343.00 619.29 1190.61 3 0.00 1341.00 1343 1343.00 507.73 530.85 4 0.00 1343.00 1343 1343.00 2.72 2.72 0 0.00
STS_w30_79 20 3580 1409.05 1410 1410.00 1626.20 1676.65 9 0.00 1410.00 1410 1410.00 375.29 966.44 2 0.00 1410.00 1410 1410.00 10.51 10.51 0 0.00
STS_w30_80 20 3580 1402.00 1402 1402.00 205.20 205.21 0 0.00 1402.00 1402 1402.00 82.01 82.02 0 0.00 1402.00 1402 1402.00 35.64 35.64 0 0.00
STS_w30_251 20 3580 1196.72 1199 1199.00 1922.34 2782.29 5 0.00 1196.70 1199 1199.00 700.34 1225.36 4 0.00 1197.50 1199 1199.00 2.10 2.59 2 0.00
STS_w30_252 20 3580 1390.24 1392 1392.00 8917.10 10693.50 5 0.00 1390.74 1392 1392.00 4710.34 6437.58 5 0.00 1391.50 1392 1392.00 1302.06 1323.14 2 0.00
STS_w30_253 20 3580 1303.75 1306 1306.00 2344.09 4758.81 3 0.00 1303.75 1306 1306.00 1805.34 3930.00 3 0.00 1303.50 1306 1306.00 72.00 138.54 13 0.00
STS_w30_254 20 3580 1317.64 1321 1321.00 2399.28 2707.51 3 0.00 1317.64 1321 1321.00 2061.80 2132.24 3 0.00 1321.00 1321 1321.00 16.34 16.34 0 0.00
STS_w30_255 20 3580 1523.50 1529 1529.00 883.27 2372.06 7 0.00 1523.50 1529 1529.00 940.77 1673.93 9 0.00 1528.20 1529 1529.00 63.26 80.68 2 0.00
STS_w30_256 20 3580 1359.30 1362 1362.00 1514.38 6755.66 30 0.00 1357.94 1362 1362.00 1599.75 6084.36 32 0.00 1361.00 1362 1362.00 20.05 20.65 4 0.00
STS_w30_257 20 3580 1507.00 1507 1507.00 222.09 222.11 0 0.00 1507.00 1507 1507.00 183.79 183.80 0 0.00 1507.00 1507 1507.00 2.81 2.81 0 0.00
STS_w30_258 20 3580 1400.00 1400 1400.00 1344.78 1344.80 0 0.00 1400.00 1400 1400.00 1042.76 1042.76 0 0.00 1400.00 1400 1400.00 29.82 29.82 0 0.00
STS_w30_259 20 3580 1466.39 1467 1467.00 1614.06 1933.10 3 0.00 1466.18 1467 1467.00 1035.86 1085.01 3 0.00 1467.00 1467 1467.00 13.67 13.68 0 0.00
STS_w30_260 20 3580 1440.00 1440 1440.00 686.73 686.73 0 0.00 1440.00 1440 1440.00 247.24 247.25 0 0.00 1440.00 1440 1440.00 10.04 10.04 0 0.00
STS_w30_341 20 3580 1201.48 1205 1205.00 627.07 1445.39 5 0.00 1201.00 1205 1205.00 250.57 275.64 5 0.00 1203.50 1205 1205.00 16.95 19.93 2 0.00
STS_w30_342 20 3580 1390.63 1392 1392.00 2559.41 2628.49 3 0.00 1391.23 1392 1392.00 2275.33 2381.66 3 0.00 1392.00 1392 1392.00 1642.16 1642.16 0 0.00
STS_w30_343 20 3580 1303.75 1306 1306.00 2000.97 4394.02 3 0.00 1303.75 1306 1306.00 1134.05 2163.93 3 0.00 1303.50 1306 1306.00 51.84 108.35 28 0.00
STS_w30_344 20 3580 1321.00 1321 1321.00 731.03 731.04 0 0.00 1321.00 1321 1321.00 411.82 411.85 0 0.00 1321.00 1321 1321.00 6.41 6.41 0 0.00
STS_w30_345 20 3580 1523.50 1529 1529.00 398.63 1181.60 7 0.00 1523.50 1529 1529.00 288.52 607.13 7 0.00 1527.00 1529 1529.00 49.80 55.22 3 0.00
STS_w30_346 20 3580 1357.00 1362 1362.00 533.00 2715.32 23 0.00 1357.40 1362 1362.00 475.55 2423.81 19 0.00 1361.00 1362 1362.00 1.34 1.65 4 0.00
STS_w30_347 20 3580 1510.00 1510 1510.00 133.56 133.57 0 0.00 1510.00 1510 1510.00 43.22 43.23 0 0.00 1510.00 1510 1510.00 1.08 1.08 0 0.00
STS_w30_348 20 3580 1400.00 1400 1400.00 277.24 277.24 0 0.00 1400.00 1400 1400.00 178.89 178.90 0 0.00 1400.00 1400 1400.00 38.46 38.46 0 0.00
STS_w30_349 20 3580 1467.00 1467 1467.00 255.79 255.79 0 0.00 1467.00 1467 1467.00 101.93 101.94 0 0.00 1467.00 1467 1467.00 1.30 1.30 0 0.00
STS_w30_350 20 3580 1440.00 1440 1440.00 314.51 314.52 0 0.00 1440.00 1440 1440.00 135.36 135.36 0 0.00 1440.00 1440 1440.00 3.75 3.75 0 0.00

Table A.2: Detailed computational results for instances adapted from Bardossy and Raghavan [2010] : BCF-C, BCF-T and BCD
when solving p-ASP instances with |V | = 100 and p = 20.
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Instance BCF-C BCF-T BCD
Name p |A| RUB BUB LUB tr ta #nodes g(%) RUB BUB LUB tr ta #nodes g(%) RUB BUB LUB tr ta a #nodes g(%)
STS_M3_241 30 5070 1020.09 1029 1029.00 9878.19 13947.90 19 0.00 1017.69 1030 1027.16 1849.58 9742.70 13 0.28 1028.00 1029 1029.00 27.60 43.76 6 0.00
STS_M3_242 30 5070 1054.13 1059 1059.00 3418.20 9845.00 9 0.00 1053.82 1059 1059.00 1518.30 7188.50 7 0.00 1059.00 1059 1059.00 17.41 17.41 0 0.00
STS_M3_243 30 5070 1098.00 1099 1099.00 5969.83 9218.50 9 0.00 1098.00 1099 1099.00 1537.41 8552.40 9 0.00 1099.00 1099 1099.00 29.00 29.00 0 0.00
STS_M3_244 30 5070 1056.50 1057 1057.00 1396.27 14847.80 5 0.00 1056.50 1057 1057.00 763.66 10603.70 5 0.00 1056.50 1057 1057.00 13.14 19.48 3 0.00
STS_M3_245 30 5070 1122.95 1124 1124.00 1563.80 2657.14 5 0.00 1124.00 1124 1124.00 2239.48 2239.49 0 0.00 1124.00 1124 1124.00 3.23 3.23 0 0.00
STS_M3_246 30 5070 1181.00 1181 1181.00 4714.66 4714.74 0 0.00 1181.00 1181 1181.00 3703.24 3703.25 0 0.00 1181.00 1181 1181.00 11.32 11.32 0 0.00
STS_M3_247 30 5070 1156.00 1158 1158.00 4718.78 15592.20 7 0.00 1157.69 1158 1158.00 7892.02 8055.87 3 0.00 1158.00 1158 1158.00 115.56 115.56 0 0.00
STS_M3_248 30 5070 1168.00 1168 1168.00 999.01 999.19 0 0.00 1168.00 1168 1168.00 1180.50 1180.52 0 0.00 1168.00 1168 1168.00 21.97 21.97 0 0.00
STS_M3_249 30 5070 1198.60 1203 1203.00 2303.42 2517.49 3 0.00 1198.60 1203 1203.00 1606.65 1821.49 3 0.00 1203.00 1203 1203.00 6.31 6.31 0 0.00
STS_M3_250 30 5070 1175.92 1179 1179.00 3769.01 10737.40 16 0.00 1176.65 1179 1179.00 1066.84 16656.50 9 0.00 1179.00 1179 1179.00 33.24 33.24 0 0.00
STS_M3_421 30 5070 1020.09 1029 1029.00 6368.31 11703.80 19 0.00 1017.69 1029 1029.00 4819.62 17831.80 27 0.00 1028.00 1029 1029.00 74.83 107.17 6 0.00
STS_M3_422 30 5070 1054.13 1059 1059.00 6789.50 12666.20 9 0.00 1053.82 1059 1059.00 1000.10 1788.40 7 0.00 1059.00 1059 1059.00 43.57 43.57 0 0.00
STS_M3_423 30 5070 1098.00 1099 1099.00 7995.80 12192.00 9 0.00 1098.00 1099 1098.69 1975.64 13871.40 7 0.03 1099.00 1099 1099.00 50.67 50.67 0 0.00
STS_M3_424 30 5070 1056.50 1057 1057.00 1600.52 16415.30 5 0.00 1056.50 1057 1057.00 944.39 13489.30 5 0.00 1056.50 1057 1057.00 34.18 41.64 3 0.00
STS_M3_425 30 5070 1122.95 1124 1124.00 1969.19 3577.84 5 0.00 1124.00 1124 1124.00 2816.19 2816.20 0 0.00 1124.00 1124 1124.00 3.67 3.67 0 0.00
STS_M3_426 30 5070 1181.00 1181 1181.00 6521.13 6521.15 0 0.00 1181.00 1181 1181.00 4285.16 4285.18 0 0.00 1181.00 1181 1181.00 33.22 33.22 0 0.00
STS_M3_427 30 5070 1156.00 1158 1158.00 5467.93 22190.80 7 0.00 1157.69 1158 1158.00 11117.90 11377.30 3 0.00 1158.00 1158 1158.00 180.89 180.89 0 0.00
STS_M3_428 30 5070 1168.00 1168 1168.00 1526.01 1526.04 0 0.00 1168.00 1168 1168.00 1314.12 1314.15 0 0.00 1168.00 1168 1168.00 51.89 51.89 0 0.00
STS_M3_429 30 5070 1198.60 1203 1203.00 3339.50 3660.27 3 0.00 1198.60 1203 1203.00 2294.74 2566.45 3 0.00 1203.00 1203 1203.00 6.78 6.78 0 0.00
STS_M3_430 30 5070 1175.92 1179 1179.00 6396.23 12665.70 16 0.00 1176.65 1179 1179.00 5965.75 33483.80 9 0.00 1179.00 1179 1179.00 46.76 46.76 0 0.00
STS_M3_605 30 5070 1122.95 1124 1124.00 2053.22 3543.63 5 0.00 1124.00 1124 1124.00 2702.44 2702.58 0 0.00 1124.00 1124 1124.00 3.42 3.42 0 0.00
STS_M3_606 30 5070 1181.00 1181 1181.00 6933.83 6933.85 0 0.00 1181.00 1181 1181.00 4050.43 4050.45 0 0.00 1181.00 1181 1181.00 20.32 20.32 0 0.00
STS_M3_608 30 5070 1168.00 1168 1168.00 1423.47 1423.50 0 0.00 1168.00 1168 1168.00 1568.96 1568.99 0 0.00 1168.00 1168 1168.00 56.35 56.35 0 0.00
STS_M3_609 30 5070 1198.60 1203 1203.00 3084.89 3376.05 3 0.00 1198.60 1203 1203.00 2264.80 2548.21 3 0.00 1203.00 1203 1203.00 5.72 5.72 0 0.00
STS_w30_151 30 5070 1020.09 1029 1029.00 9863.40 12156.80 19 0.00 1017.69 1029 1029.00 1305.38 11315.00 27 0.00 1028.00 1029 1029.00 114.42 170.35 6 0.00
STS_w30_152 30 5070 1054.13 1059 1059.00 5881.80 7769.30 7 0.00 1053.81 1059 1059.00 5894.30 10283.10 7 0.00 1059.00 1059 1059.00 49.69 49.69 0 0.00
STS_w30_155 30 5070 1122.95 1124 1124.00 2049.31 3775.95 5 0.00 1124.00 1124 1124.00 2472.71 2472.73 0 0.00 1124.00 1124 1124.00 3.21 3.22 0 0.00
STS_w30_156 30 5070 1181.00 1181 1181.00 5182.58 5182.59 0 0.00 1181.00 1181 1181.00 3515.53 3515.55 0 0.00 1181.00 1181 1181.00 11.44 11.44 0 0.00
STS_w30_158 30 5070 1168.00 1168 1168.00 1298.44 1298.46 0 0.00 1168.00 1168 1168.00 1439.39 1439.41 0 0.00 1168.00 1168 1168.00 53.76 53.76 0 0.00
STS_w30_159 30 5070 1198.60 1203 1203.00 2446.34 2720.03 3 0.00 1198.60 1203 1203.00 2042.78 2322.16 3 0.00 1203.00 1203 1203.00 6.51 6.51 0 0.00
STS_w30_244 30 5070 1057.00 1057 1057.00 1345.07 1345.14 0 0.00 1057.00 1057 1057.00 728.46 728.48 0 0.00 1057.00 1057 1057.00 31.76 31.76 0 0.00
STS_w30_245 30 5070 1124.00 1124 1124.00 812.69 812.71 0 0.00 1124.00 1124 1124.00 1241.34 1241.35 0 0.00 1124.00 1124 1124.00 6.08 6.08 0 0.00
STS_w30_246 30 5070 1181.00 1181 1181.00 3945.22 3945.24 0 0.00 1181.00 1181 1181.00 6546.03 6546.04 0 0.00 1181.00 1181 1181.00 10.88 10.88 0 0.00
STS_w30_247 30 5070 1161.00 1161 1161.00 4316.44 4316.46 0 0.00 1161.00 1161 1161.00 4037.04 4037.06 0 0.00 1161.00 1161 1161.00 218.56 218.56 0 0.00
STS_w30_248 30 5070 1170.00 1170 1170.00 1139.64 1139.70 0 0.00 1170.00 1170 1170.00 1155.03 1155.05 0 0.00 1170.00 1170 1170.00 68.33 68.33 0 0.00
STS_w30_249 30 5070 1209.00 1209 1209.00 1549.41 1549.42 0 0.00 1209.00 1209 1209.00 1867.85 1919.98 2 0.00 1209.00 1209 1209.00 23.44 23.44 0 0.00
STS_M3_232 40 6360 921.67 922 922.00 12216.40 12389.60 2 0.00 921.67 922 922.00 9945.30 10256.60 3 0.00 922.00 922 922.00 30.04 30.04 0 0.00
STS_M3_234 40 6360 957.00 957 957.00 1374.62 1475.67 2 0.00 957.00 957 957.00 1337.24 1337.27 0 0.00 957.00 957 957.00 2.59 4.00 2 0.00
STS_M3_235 40 6360 1053.22 1054 1054.00 2245.88 2341.66 3 0.00 1050.82 1054 1054.00 2170.61 2215.34 3 0.00 1054.00 1054 1054.00 20.24 21.09 0 0.00
STS_M3_236 40 6360 1025.86 1027 1027.00 8383.25 10450.80 3 0.00 1025.28 1027 1027.00 6725.78 8206.74 4 0.00 1027.00 1027 1027.00 6.53 6.53 0 0.00
STS_M3_237 40 6360 949.75 950 950.00 7796.00 12538.40 3 0.00 950.00 950 950.00 2652.50 11820.10 2 0.00 950.00 950 950.00 253.94 253.94 0 0.00
STS_M3_238 40 6360 1089.00 1089 1089.00 3540.66 3540.68 0 0.00 1089.00 1089 1089.00 3082.88 3082.90 0 0.00 1089.00 1089 1089.00 3.55 3.55 0 0.00
STS_M3_239 40 6360 1093.00 1093 1093.00 5071.36 5071.38 0 0.00 1093.00 1093 1093.00 3353.98 3354.00 0 0.00 1093.00 1093 1093.00 2.74 2.74 0 0.00
STS_M3_240 40 6360 1038.00 1038 1038.00 3520.27 3520.30 0 0.00 1038.00 1038 1038.00 2248.79 2248.81 0 0.00 1038.00 1038 1038.00 34.98 34.98 0 0.00
STS_M3_412 40 6360 921.67 922 922.00 10511.30 10721.90 2 0.00 921.67 922 922.00 8510.25 8621.35 3 0.00 922.00 922 922.00 47.47 47.47 0 0.00
STS_M3_414 40 6360 957.00 957 957.00 1424.78 1532.71 2 0.00 957.00 957 957.00 1386.74 1386.76 0 0.00 957.00 957 957.00 2.62 4.20 2 0.00
STS_M3_415 40 6360 1053.22 1054 1054.00 2681.20 2698.08 3 0.00 1050.82 1054 1054.00 2372.42 2470.06 3 0.00 1054.00 1054 1054.00 45.38 45.99 0 0.00
STS_M3_416 40 6360 1025.86 1027 1027.00 9418.46 12390.30 3 0.00 1025.28 1027 1027.00 8410.70 10170.60 4 0.00 1027.00 1027 1027.00 5.36 5.36 0 0.00
STS_M3_417 40 6360 949.75 950 950.00 34707.00 34875.00 3 0.00 950.00 950 950.00 4064.50 7156.20 2 0.00 950.00 950 950.00 281.23 281.23 0 0.00
STS_M3_418 40 6360 1089.00 1089 1089.00 5040.03 5040.06 0 0.00 1089.00 1089 1089.00 4157.11 4157.35 0 0.00 1089.00 1089 1089.00 16.80 16.80 0 0.00
STS_M3_419 40 6360 1093.00 1093 1093.00 5223.82 5223.84 0 0.00 1093.00 1093 1093.00 4523.84 4523.86 0 0.00 1093.00 1093 1093.00 15.11 15.11 0 0.00
STS_M3_420 40 6360 1038.00 1038 1038.00 4486.76 4486.80 0 0.00 1038.00 1038 1038.00 2622.23 2622.27 0 0.00 1038.00 1038 1038.00 24.51 24.51 0 0.00
STS_M3_54 40 6360 957.00 957 957.00 1872.86 1872.90 2 0.00 957.00 957 957.00 1669.06 1816.90 0 0.00 957.00 957 957.00 2.47 4.01 2 0.00
STS_M3_55 40 6360 1053.22 1054 1054.00 3455.04 3502.44 3 0.00 1050.82 1054 1054.00 2817.00 2912.80 3 0.00 1054.00 1054 1054.00 58.79 59.67 0 0.00
STS_M3_56 40 6360 1024.86 1027 1027.00 10762.80 13728.70 3 0.00 1025.28 1027 1027.00 10594.60 12556.40 4 0.00 1027.00 1027 1027.00 6.92 6.92 0 0.00
STS_M3_58 40 6360 1089.00 1089 1089.00 5180.43 5180.46 0 0.00 1089.00 1089 1089.00 4344.06 4344.09 0 0.00 1089.00 1089 1089.00 5.48 5.48 0 0.00
STS_M3_59 40 6360 1093.00 1093 1093.00 6301.35 6301.37 0 0.00 1093.00 1093 1093.00 4580.11 4580.11 0 0.00 1093.00 1093 1093.00 3.47 3.47 0 0.00

Table A.3: Detailed computational results for instances adapted from Bardossy and Raghavan [2010] : BCF-C, BCF-T and BCD
when solving p-ASP instances with |V | = 100 and p ∈ {30, 40}
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Instance BCF-C BCF-T BCD
Name p |A| RUB BUB LUB tr ta #nodes g(%) RUB BUB LUB tr ta #nodes g(%) RUB BUB LUB tr ta a #nodes g(%)
STS_M3_221 50 7450 926.53 931 927.63 1555.30 15720.30 24 0.36 928.60 931 931.00 4339.40 10230.30 20 0.00 931.00 931 931.00 11.70 11.70 0 0.00
STS_M3_223 50 7450 938.00 938 938.00 13943.40 13943.40 0 0.00 937.73 938 938.00 1749.90 3918.80 4 0.00 938.00 938 938.00 14.35 14.35 0 0.00
STS_M3_224 50 7450 922.00 922 922.00 13828.90 13955.90 2 0.00 922.00 922 922.00 12801.90 12952.30 2 0.00 922.00 922 922.00 264.30 264.30 0 0.00
STS_M3_225 50 7450 981.79 985 985.00 3004.74 3262.90 3 0.00 981.80 985 985.00 2003.74 2261.30 3 0.00 985.00 985 985.00 7.41 7.41 0 0.00
STS_M3_226 50 7450 938.00 938 938.00 677.87 677.90 0 0.00 938.00 938 938.00 574.81 574.81 0 0.00 938.00 938 938.00 3.98 3.98 0 0.00
STS_M3_228 50 7450 973.43 975 975.00 2829.10 9619.10 13 0.00 974.41 975 975.00 961.50 7481.90 25 0.00 974.50 975 975.00 3.15 3.95 3 0.00
STS_M3_229 50 7450 1027.00 1027 1027.00 1679.72 1679.77 0 0.00 1027.00 1027 1027.00 1349.82 1349.82 0 0.00 1027.00 1027 1027.00 16.36 16.37 0 0.00
STS_M3_230 50 7450 993.60 994 994.00 6534.10 9797.94 3 0.00 993.60 994 994.00 5855.63 8459.20 3 0.00 993.67 994 994.00 21.29 23.93 3 0.00
STS_M3_401 50 7450 926.53 931 928.28 3154.20 15045.90 39 0.29 928.60 931 931.00 1727.54 9233.10 20 0.00 931.00 931 931.00 15.97 15.97 0 0.00
STS_M3_403 50 7450 938.00 938 938.00 11711.30 11711.30 0 0.00 937.73 938 938.00 9562.90 11600.70 4 0.00 938.00 938 938.00 14.36 14.36 0 0.00
STS_M3_404 50 7450 922.00 922 922.00 11309.80 11482.10 2 0.00 922.00 922 922.00 10309.80 10482.10 2 0.00 922.00 922 922.00 569.38 569.38 0 0.00
STS_M3_405 50 7450 981.79 985 985.00 2103.72 2394.82 3 0.00 981.80 985 985.00 2003.72 2003.72 3 0.00 985.00 985 985.00 17.07 17.07 0 0.00
STS_M3_406 50 7450 938.00 938 938.00 900.91 900.94 0 0.00 938.00 938 938.00 869.64 869.64 0 0.00 938.00 938 938.00 20.67 20.67 0 0.00
STS_M3_409 50 7450 1027.00 1027 1027.00 2819.60 2819.63 0 0.00 1027.00 1027 1027.00 2357.45 2357.55 0 0.00 1027.00 1027 1027.00 5.94 5.94 0 0.00
STS_M3_410 50 7450 993.60 994 994.00 5869.19 9731.76 3 0.00 993.60 994 994.00 5146.00 5146.00 3 0.00 993.67 994 994.00 23.17 25.93 3 0.00
STS_M3_211 60 8340 870.67 871 871.00 5337.26 7069.77 4 0.00 870.67 871 871.00 2118.86 4878.33 4 0.00 871.00 871 871.00 4.09 4.09 0 0.00
STS_M3_212 60 8340 828.00 828 828.00 5172.77 5172.79 0 0.00 828.00 828 828.00 2649.62 2649.70 0 0.00 828.00 828 828.00 23.94 23.94 0 0.00
STS_M3_213 60 8340 954.00 956 956.00 6876.86 8982.94 7 0.00 954.00 956 956.00 1301.79 7201.80 13 0.00 956.00 956 956.00 15.86 15.86 0 0.00
STS_M3_214 60 8340 894.00 894 894.00 1765.28 1765.30 0 0.00 894.00 894 894.00 1115.58 1115.58 0 0.00 894.00 894 894.00 4.03 4.03 0 0.00
STS_M3_215 60 8340 990.00 990 990.00 7549.84 7549.87 0 0.00 990.00 990 990.00 3432.67 6200.90 3 0.00 990.00 990 990.00 49.31 52.25 2 0.00
STS_M3_216 60 8340 925.00 925 925.00 6619.02 6619.05 0 0.00 925.00 925 925.00 3300.12 3300.21 0 0.00 925.00 925 925.00 220.81 220.81 0 0.00
STS_M3_217 60 8340 911.00 911 911.00 1454.05 1454.09 0 0.00 911.00 911 911.00 1238.53 1238.62 0 0.00 911.00 911 911.00 3.63 3.63 0 0.00
STS_M3_218 60 8340 895.00 895 895.00 17381.60 17381.60 0 0.00 895.00 895 895.00 13623.60 13623.60 0 0.00 895.00 895 895.00 2819.46 2819.46 0 0.00
STS_M3_219 60 8340 1049.00 1049 1049.00 8805.75 8805.79 0 0.00 1049.00 1049 1049.00 6126.71 6126.82 0 0.00 1049.00 1049 1049.00 52.59 52.60 0 0.00
STS_M3_220 60 8340 973.00 973 973.00 6716.99 6717.03 0 0.00 973.00 973 973.00 6637.10 6637.10 0 0.00 973.00 973 973.00 102.59 102.59 0 0.00
STS_M3_31 60 8340 870.67 871 871.00 5534.87 7194.32 4 0.00 870.67 871 871.00 4762.50 6177.36 4 0.00 871.00 871 871.00 12.66 12.66 0 0.00
STS_M3_32 60 8340 828.00 828 828.00 7104.25 7104.28 0 0.00 828.00 828 828.00 2029.04 2029.07 0 0.00 828.00 828 828.00 64.15 64.15 0 0.00
STS_M3_33 60 8340 954.00 956 956.00 5382.98 7224.48 7 0.00 954.00 956 956.00 2822.75 7220.80 13 0.00 956.00 956 956.00 58.61 58.61 0 0.00
STS_M3_34 60 8340 894.00 894 894.00 1725.89 1725.92 0 0.00 894.00 894 894.00 1582.88 1582.90 0 0.00 894.00 894 894.00 15.75 15.75 0 0.00
STS_M3_35 60 8340 990.00 990 990.00 6081.09 6081.12 0 0.00 990.00 990 990.00 3544.55 5116.68 3 0.00 990.00 990 990.00 158.05 182.63 2 0.00
STS_M3_36 60 8340 925.00 925 925.00 6102.47 6102.51 0 0.00 925.00 925 925.00 3016.84 3016.95 0 0.00 925.00 925 925.00 355.62 355.62 0 0.00
STS_M3_37 60 8340 911.00 911 911.00 1311.56 1311.59 0 0.00 911.00 911 911.00 1042.16 1042.19 0 0.00 911.00 911 911.00 14.20 14.20 0 0.00
STS_M3_38 60 8340 895.00 895 895.00 14048.10 14048.10 0 0.00 895.00 895 895.00 11298.30 11298.30 0 0.00 895.00 895 895.00 2794.82 2794.82 0 0.00
STS_M3_39 60 8340 1049.00 1049 1049.00 8042.32 8042.59 0 0.00 1049.00 1049 1049.00 5763.06 5763.12 0 0.00 1049.00 1049 1049.00 15.38 15.38 0 0.00
STS_M3_391 60 8340 870.67 871 871.00 4674.21 5837.79 4 0.00 870.67 871 871.00 3728.26 4839.37 4 0.00 871.00 871 871.00 6.71 6.72 0 0.00
STS_M3_392 60 8340 828.00 828 828.00 6358.24 6358.27 0 0.00 828.00 828 828.00 1709.56 1709.58 0 0.00 828.00 828 828.00 49.73 49.73 0 0.00
STS_M3_393 60 8340 954.00 956 956.00 4883.50 6511.97 7 0.00 954.00 956 956.00 917.46 5038.00 13 0.00 956.00 956 956.00 46.89 46.89 0 0.00
STS_M3_394 60 8340 894.00 894 894.00 1556.90 1556.93 0 0.00 894.00 894 894.00 918.40 918.40 0 0.00 894.00 894 894.00 4.55 4.55 0 0.00
STS_M3_395 60 8340 990.00 990 990.00 6394.19 6394.49 0 0.00 990.00 990 990.00 3700.27 4419.37 3 0.00 990.00 990 990.00 122.95 126.74 2 0.00
STS_M3_396 60 8340 925.00 925 925.00 5651.62 5651.65 0 0.00 925.00 925 925.00 1543.92 1543.94 0 0.00 925.00 925 925.00 304.76 304.76 0 0.00
STS_M3_397 60 8340 911.00 911 911.00 1204.85 1204.88 0 0.00 911.00 911 911.00 503.17 503.19 0 0.00 911.00 911 911.00 5.34 5.34 0 0.00
STS_M3_398 60 8340 895.00 895 895.00 13953.10 13953.40 0 0.00 895.00 895 895.00 7484.54 7484.68 0 0.00 895.00 895 895.00 2616.66 2616.66 0 0.00
STS_M3_399 60 8340 1049.00 1049 1049.00 7151.24 7151.51 0 0.00 1049.00 1049 1049.00 2829.06 2829.15 0 0.00 1049.00 1049 1049.00 30.40 30.40 0 0.00
STS_M3_40 60 8340 973.00 973 973.00 4903.33 4903.36 0 0.00 973.00 973 973.00 2426.71 2426.71 0 0.00 973.00 973 973.00 71.01 71.01 0 0.00
STS_M3_400 60 8340 973.00 973 973.00 5537.22 5537.25 0 0.00 973.00 973 973.00 5266.88 5266.97 0 0.00 973.00 973 973.00 70.37 70.38 0 0.00
STS_M3_571 60 8340 870.67 871 871.00 4396.77 5789.64 4 0.00 870.67 871 871.00 2311.76 3225.11 4 0.00 871.00 871 871.00 4.17 4.17 0 0.00
STS_M3_572 60 8340 828.00 828 828.00 5921.92 5921.95 0 0.00 828.00 828 828.00 857.74 857.76 0 0.00 828.00 828 828.00 56.35 56.35 0 0.00
STS_M3_573 60 8340 954.00 956 956.00 5092.70 6433.32 7 0.00 954.00 956 956.00 1430.63 5601.80 13 0.00 956.00 956 956.00 15.98 15.98 0 0.00
STS_M3_574 60 8340 894.00 894 894.00 1665.04 1665.07 0 0.00 894.00 894 894.00 1044.45 1044.52 0 0.00 894.00 894 894.00 3.86 3.86 0 0.00
STS_M3_575 60 8340 990.00 990 990.00 6610.77 6610.80 0 0.00 990.00 990 990.00 4970.44 6054.08 3 0.00 990.00 990 990.00 107.03 110.14 2 0.00
STS_M3_576 60 8340 925.00 925 925.00 5984.75 5984.78 0 0.00 925.00 925 925.00 1824.07 1824.10 0 0.00 925.00 925 925.00 240.19 240.19 0 0.00
STS_M3_577 60 8340 911.00 911 911.00 1321.18 1321.43 0 0.00 911.00 911 911.00 671.70 671.72 0 0.00 911.00 911 911.00 2.59 2.59 0 0.00
STS_M3_578 60 8340 895.00 895 895.00 17177.10 17177.20 0 0.00 895.00 895 895.00 8060.61 8060.63 0 0.00 895.00 895 895.00 2267.64 2267.64 0 0.00
STS_M3_579 60 8340 1049.00 1049 1049.00 6222.24 6222.52 0 0.00 1049.00 1049 1049.00 3261.90 3261.94 0 0.00 1049.00 1049 1049.00 13.14 13.14 0 0.00
STS_M3_580 60 8340 973.00 973 973.00 5669.23 5669.27 0 0.00 973.00 973 973.00 3161.30 3161.30 0 0.00 973.00 973 973.00 59.60 59.60 0 0.00
STS_w30_121 60 8340 870.67 871 871.00 2998.94 3986.10 4 0.00 870.67 871 871.00 2596.44 3866.74 4 0.00 871.00 871 871.00 2.96 2.96 0 0.00
STS_w30_122 60 8340 828.00 828 828.00 5576.68 5576.71 0 0.00 828.00 828 828.00 1631.92 1631.94 0 0.00 828.00 828 828.00 52.98 52.98 0 0.00
STS_w30_123 60 8340 954.00 956 956.00 5868.44 7750.66 7 0.00 954.00 956 956.00 931.99 5899.40 13 0.00 956.00 956 956.00 23.09 23.09 0 0.00
STS_w30_124 60 8340 894.00 894 894.00 1835.01 1835.04 0 0.00 894.00 894 894.00 1713.95 1713.97 0 0.00 894.00 894 894.00 5.10 5.10 0 0.00
STS_w30_125 60 8340 990.00 990 990.00 5766.78 5766.92 0 0.00 990.00 990 990.00 2966.76 4340.79 3 0.00 990.00 990 990.00 99.12 102.19 2 0.00
STS_w30_126 60 8340 925.00 925 925.00 6246.06 6246.08 0 0.00 925.00 925 925.00 3032.56 3032.86 0 0.00 925.00 925 925.00 286.92 286.92 0 0.00
STS_w30_127 60 8340 911.00 911 911.00 1328.23 1328.24 0 0.00 911.00 911 911.00 1207.59 1207.62 0 0.00 911.00 911 911.00 4.92 4.92 0 0.00
STS_w30_128 60 8340 895.00 895 895.00 15445.30 15445.50 0 0.00 895.00 895 895.00 12323.90 12324.00 0 0.00 895.00 895 895.00 3029.41 3029.41 0 0.00
STS_w30_129 60 8340 1049.00 1049 1049.00 8070.27 8070.30 0 0.00 1049.00 1049 1049.00 6488.12 6488.15 0 0.00 1049.00 1049 1049.00 48.15 48.15 0 0.00
STS_w30_130 60 8340 973.00 973 973.00 6961.30 6961.33 0 0.00 973.00 973 973.00 3541.30 3541.30 0 0.00 973.00 973 973.00 77.57 77.57 0 0.00
STS_w30_211 60 8340 895.00 895 895.00 2789.55 2789.64 0 0.00 895.00 895 895.00 2509.38 2509.38 0 0.00 895.00 895 895.00 3.20 3.20 0 0.00
STS_w30_212 60 8340 842.00 842 842.00 3356.96 3357.04 0 0.00 842.00 842 842.00 2043.00 2043.00 0 0.00 842.00 842 842.00 44.32 44.32 0 0.00
STS_w30_213 60 8340 964.00 966 966.00 7332.12 9735.54 10 0.00 966.00 966 966.00 7302.36 7302.37 0 0.00 966.00 966 966.00 15.58 15.58 0 0.00
STS_w30_214 60 8340 902.00 902 902.00 2765.50 2765.54 0 0.00 902.00 902 902.00 2002.73 2002.73 0 0.00 902.00 902 902.00 3.97 3.97 0 0.00
STS_w30_215 60 8340 1017.00 1017 1017.00 9352.05 9352.07 0 0.00 1017.00 1017 1017.00 6038.71 6038.74 0 0.00 1017.00 1017 1017.00 10.66 10.66 0 0.00
STS_w30_216 60 8340 936.00 936 936.00 7528.81 8143.52 2 0.00 936.00 936 936.00 5986.32 5986.35 0 0.00 936.00 936 936.00 42.38 42.38 0 0.00
STS_w30_217 60 8340 924.00 924 924.00 2211.75 2211.78 0 0.00 924.00 924 924.00 1877.84 1877.86 0 0.00 924.00 924 924.00 11.53 11.53 0 0.00
STS_w30_218 60 8340 905.33 906 905.33 2027.80 15914.10 15 0.07 906.00 906 906.00 15837.90 15837.90 0 0.00 906.00 906 906.00 3291.27 3291.27 0 0.00
STS_w30_219 60 8340 1076.00 1076 1076.00 7636.18 7636.22 0 0.00 1076.00 1076 1076.00 6614.12 6614.16 0 0.00 1076.00 1076 1076.00 173.32 173.32 0 0.00
STS_w30_220 60 8340 989.00 989 989.00 6340.44 6340.46 0 0.00 989.00 989 989.00 2102.36 2102.36 0 0.00 989.00 989 989.00 15.26 15.27 0 0.00
STS_w30_301 60 8340 899.00 899 899.00 1953.95 1954.25 0 0.00 899.00 899 899.00 1615.85 1615.85 0 0.00 899.00 899 899.00 2.99 2.99 0 0.00
STS_w30_303 60 8340 969.75 970 970.00 6118.07 9851.55 9 0.00 970.00 970 970.00 6667.75 6667.78 0 0.00 970.00 970 970.00 8.38 8.38 0 0.00
STS_w30_304 60 8340 902.00 902 902.00 3146.73 3146.77 0 0.00 902.00 902 902.00 2915.81 2915.85 0 0.00 902.00 902 902.00 2.45 2.45 0 0.00
STS_w30_305 60 8340 1021.00 1021 1021.00 6661.16 7331.62 2 0.00 1021.00 1021 1021.00 2314.00 2314.00 0 0.00 1021.00 1021 1021.00 44.40 44.40 0 0.00
STS_w30_306 60 8340 936.00 936 936.00 4246.44 4246.87 0 0.00 936.00 936 936.00 4085.28 4085.32 0 0.00 936.00 936 936.00 99.01 99.01 0 0.00
STS_w30_307 60 8340 928.00 928 928.00 2370.42 2370.47 0 0.00 928.00 928 928.00 1392.25 1392.25 0 0.00 928.00 928 928.00 5.49 5.49 0 0.00
STS_w30_309 60 8340 1083.00 1083 1083.00 8550.32 8550.36 0 0.00 1083.00 1083 1083.00 7459.18 7513.59 2 0.00 1083.00 1083 1083.00 35.00 35.00 0 0.00

Table A.4: Detailed computational results for instances adapted from Bardossy and Raghavan [2010] : BCF-C, BCF-T and BCD
when solving p-ASP instances with |V | = 100 and p ∈ {50, 60}

.



74 Appendix A. Supplementary results

Detailed computational results for algorithms BBF, BCF and BCD, when solving
the p-CSP, are given in Tables A.5 and A.6. The first two columns of the tables
provide respectively the instance name and the corresponding upper bound provided
by heuristic. Columns 3 to 8 show respectively the best lower (BLB) and upper (BUB)
bounds found during the search, the corresponding duality gap (BUB - BLB / BUB),
the CPU time (in seconds) at the root node (t_r) of the enumeration tree, the overall
CPU total time (t_a) and the number of branch-and-bound nodes evaluated (#nodes)
provided by BBF. Columns 9 to 14 show the same data for BCF. Finally, the results
obtained by BCD are displayed in columns 15 to 20. Whenever an instance was not
solved to proven optimality within the time limit, an indication “-” is provided.
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BBF BCF BCD
Instance primal BLB BUB g(%) tr ta #nodes BLB BUB g(%) tr ta #nodes BLB BUB g(%) tr ta #nodes
eil_51_3_5 6202 4253 4253.0 0.00 24.7 886.5 35 4253.0 4253.0 0.00 3.2 7.7 5.0 4253.0 4253.0 0.00 0.8 2.6 32
eil_51_5_5 4604 3421 3421.0 0.00 27.7 1689.5 73 3421.0 3421.0 0.00 3.0 13.0 54.0 3421.0 3421.0 0.00 0.9 4.1 53
eil_51_8_5 2182 1990 1990.0 0.00 45.9 3152.2 394 1990.0 1990.0 0.00 2.9 97.1 868.0 1990.0 1990.0 0.00 2.6 10.4 77
eil_51_3_10 4945 3060 3060.0 0.00 50.7 6734.0 124 3060.0 3060.0 0.00 4.4 18.9 90.0 3060.0 3060.0 0.00 0.8 3.2 82
eil_51_5_10 3782 2700.3 2797.0 0.03 77.5 - 163 2719.0 2719.0 0.00 4.9 51.1 351.0 2719.0 2719.0 0.00 0.7 17.2 488
eil_51_8_10 2026 1848.2 1971.0 0.06 280.8 - 419 1872.0 1872.0 0.00 4.9 1879.7 6661.0 1872.0 1872.0 0.00 1.9 5.0 51
eil_51_3_15 3887 2596.3 2633.0 0.01 116.1 - 176 2608.0 2608.0 0.00 7.0 228.7 623.0 2608.0 2608.0 0.00 0.8 29.1 674
eil_51_5_15 3158 2361.1 2488.0 0.05 165.1 - 89 2461.0 2461.0 0.00 5.8 6381.0 6657.0 2461.0 2461.0 0.00 0.9 34.7 1418
eil_51_8_15 2061 1898 1898.0 0.00 166.8 9687.0 300 1898.0 1898.0 0.00 7.2 2119.4 3323.0 1898.0 1898.0 0.00 1.3 1.4 5
eil_51_3_20 3263 2276.7 2335.0 0.02 107 - 157 2287.0 2287.0 0.00 10.3 2608.9 1515.0 2287.0 2287.0 0.00 1.2 7.5 523
eil_51_5_20 2843 2252.3 2313.0 0.03 139.2 - 136 2277.1 2340.0 0.03 9.3 - 2993.0 2292.0 2292.0 0.00 1.3 6.8 202
eil_51_8_20 2223 2011 2011.0 0.00 120.1 6262.6 208 2011.0 2011.0 0.00 10.0 4146.1 2308.0 2011.0 2011.0 0.00 1.0 2.1 64

st_70_3_5 13702 8306 8306.0 0.00 1751.1 4178.6 17 8306.0 8306.0 0.00 8.8 21.6 6.0 8306.0 8306.0 0.00 1.5 2.0 11
st_70_5_5 10183 6456.8 10183.0 0.37 3007.3 - 17 6612.0 6612.0 0.00 7.6 37.6 40.0 6612.0 6612.0 0.00 3.1 7.3 23
st_70_8_5 4893 3233.3 4893.0 0.34 1917.2 - 20 3902.0 3902.0 0.00 7.5 3247.6 5424.0 3902.0 3902.0 0.00 6.9 309.5 1452
st_70_3_10 11456 5655 5655.0 0.00 3471.2 13397.8 13 5655.0 5655.0 0.00 15.9 44.8 19.0 5655.0 5655.0 0.00 2.5 2.5 0
st_70_5_10 8673 4699 8673.0 0.46 6796.1 - 2 4845.0 4845.0 0.00 12.5 145.8 168.0 4845.0 4845.0 0.00 8.8 9.5 3
st_70_8_10 4495 2737.4 4495.0 0.39 4101.4 - 5 3082.2 3582.0 0.14 11.1 - 19890.0 3459.0 3459.0 0.00 17.5 298.2 1477
st_70_3_15 9247 4523 9247.0 0.51 2836.5 - 5 4547.0 4547.0 0.00 25.9 50.5 34.0 4547.0 4547.0 0.00 2.4 2.6 3
st_70_5_15 7143 3965.5 7143.0 0.44 4444 - 3 4133.0 4133.0 0.00 25.4 597.2 477.0 4133.0 4133.0 0.00 4.1 4.1 0
st_70_8_15 4103 2657.4 4103.0 0.35 3876.5 - 4 2856.8 3754.0 0.24 25.2 - 9444.0 3329.0 3329.0 0.00 16.1 34.2 59
st_70_3_20 7821 3841.3 7821.0 0.51 5253.7 - 3 3912.0 3912.0 0.00 33.1 2163.9 595.0 3912.0 3912.0 0.00 3.0 3.9 41
st_70_5_20 6248 3618.4 6248.0 0.42 3514.1 - 3 3767.5 3911.0 0.04 33.2 - 3520.0 3820.0 3820.0 0.00 8.0 10.5 23
st_70_8_20 4031 2721.8 4031.0 0.32 3254.9 - 6 2847.2 3934.0 0.28 35.0 - 4290.0 3287.0 3287.0 0.00 13.9 13.9 0

eil_76_3_5 10579 6259 6259.0 0.00 72.1 2676.9 9 6259.0 6259.0 0.00 12.6 26.0 6.0 6259.0 6259.0 0.00 1.8 2.1 5
eil_76_5_5 7688 4825.1 7688.0 0.37 288.1 - 5 4891.0 4891.0 0.00 13.9 27.4 21.0 4891.0 4891.0 0.00 2.4 7.7 35
eil_76_8_5 3475 2352.8 3475.0 0.32 351.8 - 16 2722.0 2722.0 0.00 14.4 975.9 3812.0 2722.0 2722.0 0.00 12.2 97.3 283
eil_76_3_10 8417 4487 8417.0 0.47 1767.9 - 1 4557.0 4557.0 0.00 23.8 98.0 46.0 4557.0 4557.0 0.00 6.1 6.1 0
eil_76_5_10 6328 3592.1 6328.0 0.43 3021.4 - 0 3808.0 3808.0 0.00 22.1 795.1 785.0 3808.0 3808.0 0.00 8.3 36.4 163
eil_76_8_10 3122 1984.5 3122.0 0.36 2152.7 - 3 2226.2 2705.0 0.18 19.4 - 17485.0 2468.0 2468.0 0.00 19.8 1511.2 7062
eil_76_3_15 7359 3759.5 7359.0 0.49 2020.7 - 0 3898.0 3898.0 0.00 39.7 6961.9 2289.0 3898.0 3898.0 0.00 4.8 367.6 3424
eil_76_5_15 5794 3173.4 5794.0 0.45 2953.8 - 1 3329.9 3583.0 0.07 36.2 - 4101.0 3411.0 3411.0 0.00 9.0 1238.3 8714
eil_76_8_15 2905 1967.4 2905.0 0.32 1625.9 - 2 2097.3 2546.0 0.18 32.8 - 5768.0 2384.0 2384.0 0.00 26.6 203.2 889
eil_76_3_20 6256 3318.9 6256.0 0.47 1721.1 - 2 3412.1 3415.0 0.00 51.3 - 2987.0 3415.0 3415.0 0.00 2.8 223.1 3328
eil_76_5_20 4977 2949.2 4977.0 0.41 2342.2 - 0 3053.6 3333.0 0.08 51.4 - 3469.0 3136.0 3136.0 0.00 9.9 183.0 1668
eil_76_8_20 2837 2057 2837.0 0.27 1001.8 - 3 2120.6 2837.0 0.25 44.0 - 3449.0 2345.0 2345.0 0.00 28.8 37.2 14

rat_99_3_5 35012 - 35012.0 - - - - 18314.0 18314.0 0.00 33.0 241.2 50.0 18314.0 18314.0 0.00 9.9 9.9 0
rat_99_5_5 25800 - 25800.0 - - - - 14273.0 14273.0 0.00 34.3 805.4 381.0 14273.0 14273.0 0.00 17.7 71.5 58
rat_99_8_5 11983 - 11983.0 - - - - 7440.0 8320.0 0.11 32.1 - 2414.0 8065.8 8082.0 0.00 46.6 - 9331
rat_99_3_10 28731 - 28731.0 - - - - 12649.0 12649.0 0.00 57.0 579.6 81.0 12649.0 12649.0 0.00 9.8 9.8 0
rat_99_5_10 21451 - 21451.0 - - - - 10399.9 10400.0 0.00 63.2 4691.7 1762.0 10400.0 10400.0 0.00 26.0 74.0 37
rat_99_8_10 10501 - 10501.0 - - - - 5829.1 7652.0 0.24 59.9 - 18046.0 6706.3 6950.0 0.04 148.4 - 3118
rat_99_3_15 25832 - 25832.0 - - - - 10469.0 10469.0 0.00 96.1 870.1 196.0 10469.0 10469.0 0.00 38.9 65.8 21
rat_99_5_15 19533 - 19533.0 - - - - 8932.8 9166.0 0.03 96.6 - 4452.0 8989.9 8990.0 0.00 55.8 495.7 745
rat_99_8_15 10093 - 10093.0 - - - - 5222.2 7619.0 0.31 99.0 - 6005.0 6258.7 6554.0 0.05 157.5 - 3069
rat_99_3_20 21370 - 21370.0 - - - - 9151.9 9152.0 0.00 151.0 1879.7 854.0 9152.0 9152.0 0.00 47.0 86.9 35
rat_99_5_20 16550 - 16550.0 - - - - 8014.9 8473.0 0.05 151.2 - 1813.0 8199.1 8259.0 0.01 45.0 - 28668
rat_99_8_20 9329 - 9329.0 - - - - 5096.8 7557.0 0.33 154.6 - 1608.0 6183.0 6183.0 0.00 180.5 1527.0 1394

kroD_100_3_5 766012 349559.0 349559.0 0.00 5297.9 12021.7 3 349559.0 349559.0 0.00 30.9 52.4 3.0 349559.0 349559.0 0.00 3.8 3.8 0
kroD_100_5_5 556225 - 556225.0 - - - - 269666.0 269666.0 0.00 33.4 69.4 14.0 269666.0 269666.0 0.00 7.0 7.0 0
kroD_100_8_5 241541 - 241541.0 - - - - 139157.5 149830.0 0.07 35.6 - 2607.0 147945.7 147947.0 0.00 28.8 9555.7 12181
kroD_100_3_10 593700 - 593700.0 - - - - 215398.0 215398.0 0.00 73.1 302.7 35.0 215398.0 215398.0 0.00 3.7 3.7 0
kroD_100_5_10 436403 - 436403.0 - - - - 180871.0 180872.0 0.00 74.5 397.9 262.0 180872.0 180872.0 0.00 15.0 15.0 0
kroD_100_8_10 201149 - 201149.0 - - - - 106262.8 141210.0 0.25 62.9 - 16536.0 121327.5 124356.0 0.02 111.6 - 5390
kroD_100_3_15 510305 - 510305.0 - - - - 174626.5 174627.0 0.00 112.0 1622.9 354.0 174627.0 174627.0 0.00 6.2 7.7 12
kroD_100_5_15 379178 - 379178.0 - - - - 153105.2 158568.0 0.03 112.1 - 3288.0 154934.0 154934.0 0.00 35.7 53.5 21
kroD_100_8_15 183771 - 183771.0 - - - - 91263.9 133966.0 0.32 108.2 - 9098.0 115099.0 118299.0 0.03 86.7 - 7840
kroD_100_3_20 395130 - 395130.0 - - - - 150829.7 154482.0 0.02 167.4 - 1130.0 151676.0 151676.0 0.00 19.2 20.5 7
kroD_100_5_20 302514 - 302514.0 - - - - 132486.8 162275.0 0.18 167.6 - 3115.0 140866.0 140866.0 0.00 74.8 116.6 15
kroD_100_8_20 162454 - 162454.0 - - - - 83839.2 130567.0 0.36 164.7 - 4896.0 113260.9 113262.0 0.00 98.5 9634.5 13415

Table A.5: Detailed computational results: BBF, BCF and BCD when solving p-CSP instances with 51 ≤ |V | ≤ 100.
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BBF BCF BCD
Instance primal BLB BUB g(%) tr ta #nodes BLB BUB g(%) tr ta #nodes BLB BUB g(%) tr ta #nodes
bier_127_3_5 2768641 - 2768641.0 - - - - 1690451.0 1690451.0 0.00 75.4 203.1 7.0 1690451.0 1690451.0 0.00 8.2 9.7 9
bier_127_5_5 1984368 - 1984368.0 - - - - 1263301.0 1263301.0 0.00 80.3 163.0 13.0 1263301.0 1263301.0 0.00 15.0 18.5 7
bier_127_8_5 808902 - 808902.0 - - - - 609468.0 609474.0 0.00 80.5 7445.2 5535.0 609473.3 609474.0 0.00 54.9 2621.5 1574
bier_127_3_10 2577837 - 2577837.0 - - - - 1172745.0 1172745.0 0.00 120.9 519.9 77.0 1172745.0 1172745.0 0.00 10.4 22.8 17
bier_127_5_10 1852111 - 1852111.0 - - - - 935812.0 935812.0 0.00 122.5 628.7 237.0 935812.0 935812.0 0.00 29.7 58.4 9
bier_127_8_10 764527 - 764527.0 - - - - 483848.5 582574.0 0.17 154.3 - 6805.0 533801.5 551532.0 0.03 87.3 - 5007
bier_127_3_15 2368431 - 2368431.0 - - - - 962328.0 962328.0 0.00 198.2 5516.3 212.0 962328.0 962328.0 0.00 18.1 49.9 56
bier_127_5_15 1708178 - 1708178.0 - - - - 809200.9 834945.0 0.03 198.4 - 2305.0 818690.9 818699.0 0.00 27.0 3741.4 6915
bier_127_8_15 715936 - 715936.0 - - - - 424992.9 586877.0 0.28 238.3 - 4442.0 505463.8 532419.0 0.05 127.5 - 4605
bier_127_3_20 2269802 - 2269802.0 - - - - 821014.8 833527.0 0.02 280.7 - 400.0 822096.0 822096.0 0.00 23.1 43.2 11
bier_127_5_20 1643040 - 1643040.0 - - - - 710487.3 788767.0 0.10 280.3 - 1458.0 743183.0 743380.0 0.00 47.3 - 10320
bier_127_8_20 702891 - 702891.0 - - - - 393646.4 591690.0 0.33 308.8 - 1591.0 486846.5 538296.0 0.10 87.7 - 3404

pr_144_3_5 2924779 - 2924779.0 - - - - 1702915.0 1702915.0 0.00 325.7 1632.7 84.0 1702915.0 1702915.0 0.00 21.3 21.3 0
pr_144_5_5 2156556 - 2156556.0 - - - - 1293815.0 1293815.0 0.00 111.7 7844.0 574.0 1293815.0 1293815.0 0.00 62.4 122.1 35
pr_144_8_5 1164663 - 1164663.0 - - - - 638263.4 673512.0 0.05 81.6 - 2423.0 657927.1 670852.0 0.02 225.6 - 1906
pr_144_3_10 2784193 - 2784193.0 - - - - 902171.0 902171.0 0.00 230.5 562.9 6.0 902171.0 902171.0 0.00 10.9 10.9 0
pr_144_5_10 2038872 - 2038872.0 - - - - 732864.1 732871.0 0.00 232.7 3114.2 1112.0 732871.0 732871.0 0.00 45.0 45.0 0
pr_144_8_10 921228 - 921228.0 - - - - 393184.7 517958.0 0.24 200.3 - 13041.0 471827.5 480702.0 0.02 754.5 - 1275
pr_144_3_15 2717290 - 2717290.0 - - - - 609657.9 617702.0 0.01 368.7 - 270.0 615032.0 615032.0 0.00 139.8 139.8 0
pr_144_5_15 1992450 - 1992450.0 - - - - 539021.2 562377.0 0.04 371.7 - 1477.0 555013.0 555013.0 0.00 492.5 824.8 46
pr_144_8_15 905728 - 905728.0 - - - - 289806.2 553525.0 0.48 432.0 - 7994.0 427124.4 443994.0 0.04 3084.3 - 1216
pr_144_3_20 2490532 - 2490532.0 - - - - 411294.0 421157.0 0.02 671.4 - 215.0 415692.0 415692.0 0.00 91.3 91.3 0
pr_144_5_20 1835488 - 1835488.0 - - - - 409034.2 438922.0 0.07 671.1 - 466.0 427859.0 427859.0 0.00 319.1 322.7 3
pr_144_8_20 854771 - 854771.0 - - - - 240015.5 491098.0 0.51 597.4 - 6665.0 397361.4 437117.0 0.09 1709.0 - 774

pr_152_3_5 4632811 - 4632811.0 - - - - 1882459.0 1882459.0 0.00 143.4 1105.1 31.0 1882459.0 1882459.0 0.00 19.2 19.2 0
pr_152_5_5 3361830 - 3361830.0 - - - - 1443588.0 1443588.0 0.00 144.9 1911.2 219.0 1443588.0 1443588.0 0.00 55.8 62.1 3
pr_152_8_5 1463518 - 1463518.0 - - - - 748742.1 787490.0 0.05 159.3 - 1665.0 783240.0 783240.0 0.00 337.4 4592.2 3120
pr_152_3_10 4494755 - 4494755.0 - - - - 963581.0 991130.0 0.03 300.7 - 489.0 974102.5 974108.0 0.00 98.7 201.1 93
pr_152_5_10 3265838 - 3265838.0 - - - - 783581.7 887271.0 0.12 302.8 - 1333.0 821654.3 825922.0 0.01 267.3 - 3289
pr_152_8_10 1423810 - 1423810.0 - - - - 433308.8 675043.0 0.36 326.7 - 8396.0 548777.1 608041.0 0.10 1217.4 - 609
pr_152_3_15 4200063 - 4200063.0 - - - - 646986.4 676917.0 0.04 506.1 - 1049.0 669536.0 669542.0 0.00 632.5 2990.8 5119
pr_152_5_15 3059092 - 3059092.0 - - - - 528984.6 693289.0 0.24 508.0 - 727.0 619129.0 621703.0 0.00 2127.6 - 3629
pr_152_8_15 1348442 - 1348442.0 - - - - 298917.3 609630.0 0.51 472.5 - 5171.0 464448.0 561314.0 0.17 2325.9 - 549
pr_152_3_20 4089773 - 4089773.0 - - - - 496045.4 588270.0 0.16 777.5 - 976.0 542574.0 543445.0 0.00 1799.2 - 7935
pr_152_5_20 2984140 - 2984140.0 - - - - 418155.5 599146.0 0.30 777.5 - 684.0 517424.1 548678.0 0.06 1829.9 - 966
pr_152_8_20 1326516 - 1326516.0 - - - - 236807.4 570363.0 0.58 822.5 - 3427.0 459175.2 541622.0 0.15 4791.5 - 387

kroA_200_3_5 1492771 - 1492771.0 - - - - 694029.0 694029.0 0.00 433.1 1249.1 10.0 694029.0 694029.0 0.00 45.2 45.2 0
kroA_200_5_5 1074419 - 1074419.0 - - - - 516310.0 516310.0 0.00 576.7 5730.2 82.0 516310.0 516310.0 0.00 115.3 115.3 0
kroA_200_8_5 446888 - 446888.0 - - - - 237745.1 251186.0 0.05 595.4 - 858.0 245617.4 247854.0 0.01 628.1 - 740
kroA_200_3_10 1251453 - 1251453.0 - - - - 471995.0 471995.0 0.00 1061.6 8160.3 59.0 471995.0 471995.0 0.00 68.6 68.6 0
kroA_200_5_10 905398 - 905398.0 - - - - 362434.8 363596.0 0.00 1098.0 - 868.0 362896.0 362896.0 0.00 755.1 1585.3 22
kroA_200_8_10 365790 - 365790.0 - - - - 169724.6 215061.0 0.21 1194.8 - 1590.0 187635.9 205523.0 0.09 2305.0 - 189
kroA_200_3_15 1030113 - 1030113.0 - - - - 377193.0 377193.0 0.00 1849.6 4447.7 26.0 377193.0 377193.0 0.00 206.9 207.0 0
kroA_200_5_15 749054 - 749054.0 - - - - 295281.6 306016.0 0.04 2012.0 - 309.0 299091.0 299091.0 0.00 1799.9 7736.5 151
kroA_200_8_15 330063 - 330063.0 - - - - 142023.4 207553.0 0.32 1708.3 - 1473.0 167553.2 180090.0 0.07 6694.5 - 89
kroA_200_3_20 977096 - 977096.0 - - - - 318514.8 321301.0 0.01 2705.7 - 225.0 318570.0 318570.0 0.00 326.2 972.7 74

kroA_200_5_20 713529 - 713529.0 - - - - 252180.5 713529.0 0.65 2724.5 - 73.0 260471.5 261708.0 0.00 4851.7 - 247
kroA_200_8_20 318185 - 318185.0 - - - - 126092.2 318185.0 0.60 2676.3 - 219.0 155716.2 178156.0 0.13 8275.5 - 130
kroB_200_3_5 1469901 - 1469901.0 - - - - 703482.0 703482.0 0.00 324.4 2358.9 32.0 703482.0 703482.0 0.00 73.9 73.9 0
kroB_200_5_5 1058267 - 1058267.0 - - - - 520735.5 526056.0 0.01 466.6 - 130.0 524549.0 524549.0 0.00 154.3 426.2 71
kroB_200_8_5 440817 - 440817.0 - - - - 225975.4 258529.0 0.13 422.6 - 413.0 240819.8 251822.0 0.04 691.3 - 339
kroB_200_3_10 1357248 - 1357248.0 - - - - 461675.0 461675.0 0.00 845.0 6830.6 52.0 461675.0 461675.0 0.00 55.1 55.1 0
kroB_200_5_10 978965 - 978965.0 - - - - 355837.0 357783.0 0.01 1018.8 - 1108.0 356950.0 356950.0 0.00 798.7 798.7 0
kroB_200_8_10 411534 - 411534.0 - - - - 168473.2 211306.0 0.20 1116.7 - 1488.0 187424.4 203009.0 0.08 2443.1 - 107
kroB_200_3_15 1236600 - 1236600.0 - - - - 365038.5 365586.0 0.00 1652.0 - 65.0 365309.0 365309.0 0.00 47.6 47.6 0
kroB_200_5_15 895132 - 895132.0 - - - - 283077.0 895132.0 0.68 1963.9 - 57.0 292266.0 292266.0 0.00 946.8 1857.8 48
kroB_200_8_15 382918 - 382918.0 - - - - 135518.8 217669.0 0.38 1759.1 - 354.0 165996.3 184084.0 0.10 4990.1 - 150
kroB_200_3_20 1054984 - 1054984.0 - - - - 311067.2 1054984.0 0.71 2599.6 - 27.0 314410.0 314410.0 0.00 533.8 967.2 51
kroB_200_5_20 767863 - 767863.0 - - - - 245623.6 767863.0 0.68 2826.9 - 69.0 257113.7 259763.0 0.01 3261.4 - 205
kroB_200_8_20 337180 - 337180.0 - - - - 122731.0 199722.0 0.39 2790.7 - 324.0 156651.0 183635.0 0.15 9415.6 - 267

Table A.6: Detailed computational results: BBF, BCF and BCD when solving p-CSP instances with 127 ≤ |V | ≤ 200.
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