
STRATEGIC REASONING IN COMPLEX

ZERO-SUM COMPUTER GAMES

ANDERSON ROCHA TAVARES

STRATEGIC REASONING IN COMPLEX

ZERO-SUM COMPUTER GAMES

Dissertation presented to the Graduate
Program in Computer Science of the Uni-
versidade Federal de Minas Gerais in par-
tial fulfillment of the requirements for the
degree of Doctor in Computer Science.

Advisor: Luiz Chaimowicz

Belo Horizonte

August 2018

ANDERSON ROCHA TAVARES

RACIOCÍNIO ESTRATÉGICO EM JOGOS

DIGITAIS COMPLEXOS DE SOMA ZERO

Tese apresentada ao Programa de Pós-
-Graduação em Ciência da Computação do
Instituto de Ciências Exatas da Universi-
dade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Doutor em Ciência da Computação.

Orientador: Luiz Chaimowicz

Belo Horizonte

Agosto de 2018

c© 2018, Anderson Rocha Tavares.
Todos os direitos reservados.

Rocha Tavares, Anderson

T231s Strategic Reasoning in Complex Zero-Sum Computer
Games / Anderson Rocha Tavares. — Belo Horizonte,
2018

xxvii, 119 f. : il. ; 29cm

Tese (doutorado) — Universidade Federal de Minas
Gerais

Orientador: Luiz Chaimowicz

1. Computação — Teses. 2. Inteligência Artificial.
3. Aprendizado por reforço. 4. Seleção de algoritmos.
5. Jogos digitais. I. Luiz Chaimowicz. II. Strategic
Reasoning in Complex Zero-Sum Computer Games.

CDU 519.6*82(043)

To my family: those in the past, in the present and in the future.

ix

Acknowledgments

The words in this dissertation are the result of a lot of teamwork expressed through
my grateful hands. Every silent moment I recall events and people that had affected
me, in subtle or perceivable ways. I’ll do my best to acknowledge these and I offer my
sincere apologies for potentially not recalling the ones that had such impact on my life
up to the time of this writing. In this case, I hope to have the chance to give a proper
acknowledgment in due time.

I’m a grateful admirer of the beautiful and complex simplicity of the Universal
Intelligence, for it is the roof of us roof tiles, the ocean of us water drops. Its cosmic
perfection inspires us through our ultimate and eternal endeavor: evolution.

I am extremely and continuously in gratitude with mom Dôra, dad Milton (in
memorian), and sis Thaís. You all have wisely shown me the paths of evolution with
your examples, patience, and love. Thanks for lifting me uncountable times and for
being around, even at distance. My appreciation to the Rocha, Tavares and Demaman
families as well, for always having friendly words and hugs to support me. I also thank
my brother-in-law Sandro, for the many entertaining techie conversations.

I consider myself extremely fortunate for having as advisor Luiz Chaimowicz, a
bona fide academic person: one with genuine openness regarding research initiatives
and subjects, true dedication to various aspects of education and a warm cordiality
towards fellow researchers and professors. Thank you for embracing this journey, for
continuously providing kind and supportive feedback and, most importantly, for be-
coming a good friend.

Many thanks to the committee that had carefully read this work, spotting relevant
issues and suggesting a great deal of improvements. In alphabetical order: Anna
Reali, Bruno da Silva, Gisele Pappa, Levi Lelis, and Pedro Olmo: this version of the
dissertation is much better thanks to you. I also thank Ana Bazzan for being part of
the candidacy committee and for guiding my first academic steps during my master’s
degree. I’d like to show my appreciation and wish to be around such great researchers
and nice people as you are. And, of course, the eventual remaining mistakes on this

xi

text are exclusively my doing.
I had the honor to work directly with many brilliant people. My thanks to the

many members of the Y-Rescue team, for all the effort during our RoboCup journey,
and to Héctor, Amanda, Daniel, Tiago, Leandro, Siva and Gianlucca for the great inter-
actions during our works in co-authorship. I also thank Gabriel Ramos for the friendly
advice and nice reminders on being a connected researcher, as well as of important
academic deadlines.

VeRLab/J is a hub of great minds, and I’m honored to be part of this team.
Some of you have directly aided in this dissertation, be it with the computational
resources, or in the great moments at the bandeijão, football or peteca. In alphabetical
order: Balbino, Bernardo, Bruna, Colares, David, Drews, Elerson, Michel, Omar, and
Washington: thank you (and I hope bwapi user doesn’t bother you for a while)!

As a brazilian with “dual citizenship” (mineiro-gaúcho), I have made many good
friends in both states. I’m fortunate to have too many to enumerate, but I hope
to acknowledge you in groups. In alphabetical order: Abençoadinhos, ELM-Doido,
Galerinha, old-school MASLAB friends, Racionalismo Cristão, and Zudos. Thank you!
Your friendship provides the energy that makes me go further.

It would be impossible to conduct this research without the financial support of
the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) -
Finance Code 001” and “Conselho Nacional de Desenvolvimento Científico e Tecnológico
- Brasil (CNPq)”. I also thank AAAI and IEEE for travel grants that allowed me to
present at conferences. I hope I can express my gratitude not only by those words but
by giving back to society as well. I thank the DCC staff for the prompt help when
needed, and for keeping the department up and running with grace and kindness.
I thank the bandeijão for the affordable daily fuel at UFMG and the chill-, synth-,
retro-wave composers and mixers of YouTube, the NAMCO Sound Team and Nobuo
Uematsu for the motivating soundtracks, as well as the Palouse free online course on
mindfulness-based stress reduction.

My final thanks goes to my wife, for her examples of magnificence in many aspects
of life, for her sustained faith in me, for her continuous love and support. Thank you
my joy, my Joyce! You make me the happiest man ever, for all things above, and above
all else, for carrying within you our baby boy, our greatest treasure: Otto. You already
inspire me, little man!

May the Force be with all of you!

xii

“Perception is strong and sight weak. In strategy it is important to see distant things
as if they were close and to take a distanced view of close things.”

(Miyamoto Musashi)

xiii

Abstract

Complex computer games, with high-resolution state representations, a large number
of actions and the need of reasoning in different temporal scales against an opponent,
present many unsolved challenges to artificial intelligence. Those challenges gave rise
to a variety of algorithms, specialized in different aspects of a game.

Human players succeed at such games by resorting to previously trained strate-
gies, or courses of actions, and excel at generalizing responses by analogy between
unforeseen and familiar situations. This dissertation presents a computational version
of the human behavior: first, we replace the human repertoire of strategies by a portfo-
lio of algorithms, modeling game-playing as an adversarial algorithm selection problem
in a reinforcement learning framework. Second, we use known function approximation
schemes to promote similar responses to similar game states. Our hierarchical decision-
making framework uses existing algorithms, aiming to discover the best in each game
situation, potentially resulting in a stronger performance than a single algorithm could
reach.

We demonstrate the advantages of algorithm selection according to the number
of actions in the domain, the portfolio size, and algorithms’ strength, via experiments
in a synthetic problem. Moreover, we instantiate our framework in real-time strategy
games - possibly the most complex type of computer game - where a player must
strategically develop its economy and quickly maneuver its units in combat.

Our framework allows the discussion of game-theoretic aspects of algorithm se-
lection, in the sense of anticipating the choices of an algorithm-selector opponent, and
leverages the performance of artificial intelligence in real-time strategy games by con-
sistently outperforming state-of-the-art search-based approaches.

Palavras-chave: Artificial Intelligence, Reinforcement Learning, Algorithm Selection,
Computer Games.

xv

Resumo

Jogos digitais complexos, com representação de estados em alta resolução, grande
número de ações e necessidade de raciocínio em diferentes escalas temporais contra um
oponente, apresentam muitos desafios não resolvidos em inteligência artificial. Estes
desafios deram surgimento a uma variedade de algoritmos, especializados em diferentes
aspectos de um jogo.

Jogadores humanos prosperam nesses jogos ao recorrerem a um repertório de
estratégias, ou linhas de ação, previamente treinadas e por conseguirem generalizar
respostas por analogia entre situações imprevistas e familiares. Esta tese apresenta uma
versão computacional desse comportamento: primeiramente, substituímos o repertório
humano de estratégias por um portfólio de algoritmos, modelando o jogo como um
problema de seleção de algoritmos com adversário em um arcabouço de aprendizado
por reforço. Em seguida, usamos esquemas conhecidos de aproximação de funções para
promover respostas similares a estados similares do jogo. Nosso arcabouço hierárquico
para tomada de decisão usa algoritmos existentes, buscando descobrir o melhor em
cada situação do jogo, potencialmente resultando em um desempenho melhor que um
algoritmo sozinho poderia atingir.

Demonstramos as vantagens da seleção de algoritmos de acordo com o número de
ações no domínio, o tamanho do portfólio e a competência dos algoritmos, através de
experimentos em um problema sintético. Além disso, instanciamos nosso arcabouço em
jogos de estratégia em tempo real - possivelmente o tipo de jogo digital mais complexo
- no qual um jogador deve estrategicamente desenvolver sua economia e rapidamente
manobrar unidades em combates.

Nosso arcabouço permite a discussão de aspectos de teoria dos jogos em seleção
de algoritmos, no sentido de antecipar as escolhas de um oponente que também sele-
cione algoritmos, além de alavancar o desempenho de inteligência artificial em jogos
de estratégia em tempo real, ao derrotar de maneira consistente o estado da arte em
abordagens baseadas em busca.

xvii

Palavras-chave: Inteligência Artificial, Aprendizado por Reforço, Seleção de Algorit-
mos, Jogos Digitais.

xviii

List of Figures

2.1 Illustration of a Markov Game . 9
2.2 Markov Game associated with a hypothetical real-time strategy game. . . . 17

4.1 The Stochastic game over options is non-markovian 40

5.1 Meeting point of action- and algorithm-selector’s cumulative rewards. . . . 49
5.2 Meeting point of pAa∗ and pΠ

a∗ . 51
5.3 Screenshot of a StarCraft Terran base . 53
5.4 A screenshot of µRTS. 55
5.5 Dominance graph for AIIDE 2015 Protoss bots 58
5.6 Overall win rate in the stationary scenario. 62
5.7 Overall win rate in the non-stationary scenario 63
5.8 MegaBot win rate per tournament progress 65
5.9 MegaBot tournament performance . 66
5.10 New or updated entries in the competitions 67
5.11 MM, MR, QQ and QR policies against the three adversaries 73
5.12 Running average on 100 episodes of mean reward and win rate in the 5

repetitions against each training adversary. 76
5.13 Q-Learning, random and fixed policies over options vs search methods . . . 77
5.14 Algorithm selection with function approximation against state-of-the-art

search approaches. 80
5.15 Consecutive selection of algorithms . 81

C.1 Breakout screenshot. 115
C.2 Frostbite screenshot. 116
C.3 Montezuma’s Revenge screenshot . 117
C.4 Prismata screenshot. 117
C.5 Doom screenshot. 118
C.6 Dota 2 screenshot. 119

xix

List of Tables

4.1 Algorithms’ policies used in our simple example. 32

5.1 Number of units, buildings and technology tree depth of each StarCraft race. 53
5.2 Payoff matrix of AIIDE 2015 Protoss bots on Fortress map 57
5.3 Nash Equilibrium among selected bots. 58
5.4 Characteristics of the algorithm selection tournament agents. 60
5.5 Agents’ parameters. 61
5.6 Win rate of specific agents against groups of opponents 62
5.7 Win rate of reply-matrix versus Skynet in both scenarios. 63

A.1 Win percent among AIIDE 2015 Protoss bots on Fortress map 109
A.2 Pairings of the algorithm selection tournament with stationary payoff matrix110
A.3 Pairings of the algorithm selection tournament with non-stationary payoff

matrix . 110

xxi

List of Symbols

Markov Games and reinforcement learning:

N set of players. In two-player games, N = {1, 2}.
S set of states. States in S are typically represented by s and s′.
A set of joint actions. In two-player games, A = A1×A2, where A1 and A2 are

the set of actions of each player. Typically, a1 and a2 are used to represent
elements in A1 and A2, respectively.

R(s) reward received by reaching state s. It is a vector with one component by
player.

R(s, a1, a2) expected reward when joint action (a1, a2) is taken in state s. It is a vector
with one component per player.

T (s, a1, a2, s
′) transition function: the probability of reaching state s′ by taking joint

action (a1, a2) in state s.
α step-size (or learning rate) parameter.
ω decay rate of the step size.
ε probability of exploration, i.e., taking a random action.

Game-playing:

γ discount factor of future rewards in a Markov Game.
π policy, a function that maps a state to a probability distribution over ac-

tions.
V π(s) state-value function: expected sum of discounted rewards for following pol-

icy π in state s.
Qπ(s, a1, a2) action-value function: expected sum of discounted rewards for taking joint

action (a1, a2) in state s and following policy π thereafter.

xxiii

The strategic reasoning framework:

π a game-playing algorithm (denoted by the policy it defines).
Π portfolio, a set of game-playing algorithms.

TΠ(s, π1, π2, s
′) transition function of the Markov Game over algorithms. Indicates the

probability of reaching state s′ when player 1 chooses algorithm π1 and
player 2 chooses π2 in state s.

TΠ×A(s, π1, a2, s
′) transition function of the Markov Game of algorithms versus actions. Indi-

cates the probability of reaching state s′ when player 1 chooses algorithm
π1 and player 2 chooses action a2 in state s.

T ′Π(s, π1, s
′) transition function of the Markov Decision Process over algorithms. Indi-

cates the probability of reaching state s′ when the agent chooses algorithm
π1 in state s.

S set of abstract states. An abstract state is typically represented as s.
φ state abstraction function. Maps a state s ∈ S to an abstract state s ∈ S.
O set of options (temporally-extended actions). In a two-player setting, the

set of options for each player is denoted as O1 and O2.
TO(s, o1, o2, s′) transition function of the Stochastic game over Options. Indicates the prob-

ability of reaching abstract state s′ when player 1 chooses option o1 and
player 2 chooses o2 in abstract state s.

f(s) feature vector to describe state s.
wπ weight vector for algorithm π. The union of weight vectors for all algorithms

is denoted by w.
Q̃(s, π,w) approximate value of selecting algorithm π in state s, given the weight

vectors in w.

xxiv

Contents

Acknowledgments xi

Abstract xv

Resumo xvii

List of Figures xix

List of Tables xxi

List of Symbols xxiii

1 Introduction 1
1.1 Objectives . 2
1.2 Contributions . 3
1.3 Chapter organization . 4

2 Background 7
2.1 Games . 7
2.2 Formal model . 8
2.3 Playing games . 10

2.3.1 Game-tree search . 11
2.3.2 Reinforcement learning . 12

2.4 The complexity of real-time strategy games 14

3 Related work 19
3.1 Adapted search approaches . 19
3.2 Rule-based approaches . 20
3.3 Reinforcement learning . 21
3.4 Algorithm selection . 24

xxv

3.5 Summary . 27

4 The strategic reasoning framework 29
4.1 The human approach . 29
4.2 Game-playing algorithms . 30
4.3 Strategic reasoning approaches . 33

4.3.1 Algorithms versus algorithms 34
4.3.2 Algorithms vs actions . 35

4.4 Issues with the state space . 36
4.4.1 State aggregation . 37
4.4.2 Linear function approximation 43

4.5 Summary . 44

5 Experiments 47
5.1 Synthetic experiments . 48
5.2 Real-time strategy testbeds . 52

5.2.1 StarCraft . 52
5.2.2 µRTS . 55

5.3 The game of algorithm selection . 56
5.3.1 Methodology . 56
5.3.2 Results . 61
5.3.3 A functional StarCraft bot . 64
5.3.4 Discussion . 67

5.4 Multiple decision points . 70
5.4.1 State aggregation . 71
5.4.2 Linear function approximation 78
5.4.3 Discussion . 82

5.5 Summary . 84

6 Conclusion 87
6.1 Overview . 87
6.2 Contributions . 88

6.2.1 A model-free, lightweight, full-game capable approach 88
6.2.2 A metagame analysis . 89
6.2.3 An investigation of abstract versus low-level actions 90
6.2.4 Advancement in RTS game AI performance 90
6.2.5 Software contributions . 90

6.3 Limitations . 91

xxvi

6.3.1 Rigid architecture . 91
6.3.2 Perfect information . 91

6.4 Directions for future research . 92
6.4.1 Better insights from the experiments 92
6.4.2 More flexible hierarchical architectures 92
6.4.3 Handling imperfect and incomplete information 93

6.5 The purpose of game AI research . 94

Bibliography 97

Appendix A Additional data on the game of algorithm selection 109

Appendix B MegaBot 111

Appendix C Other games mentioned in this dissertation 115
C.1 Breakout . 115
C.2 Frostbite . 116
C.3 Montezuma’s Revenge . 116
C.4 Prismata . 117
C.5 Doom . 117
C.6 Dota 2 . 118

xxvii

Chapter 1

Introduction

Computer games have promoted development in a variety of disciplines. Examples
include: engineering for faster computers, better graphic processors and novel inter-
action devices; arts for increasingly complex plots and game worlds; psychology for
engaging gameplay; computer graphics for better, faster, and more realistic rendering
techniques; and, within our interest, artificial intelligence (AI) for improved behavior
of software-controlled players in terms of realism and/or challenges.

Computer games are especially challenging for AI techniques due to their real-
time nature and large state spaces. Even so, recent advances allowed computers to
play reflex-based games, such as some Atari classics, with super-human performance
[Mnih et al., 2015]. However, many unsolved challenges remain in more complex games,
which, in addition to large state spaces and the need of real-time interaction, have the
following characteristics, which are our research challenges:

• Huge action spaces: in some games, the player controls dozens of elements and an
action is the assignment of a command to each element. The number of possible
actions is huge because each possible combination of commands to the elements
is a distinct action;

• Competition and simultaneous moves: we are interested in games of two players
with opposing goals, where both players’ actions affect the game state;

• Long-term decisions: some games require actions that unfold in the future, such
as grabbing a key to open a distant door, or constructing a defensive structure
to resist a future attack. These require reasoning at different temporal scales.

Real-time strategy games have these characteristics [Buro and Furtak, 2004],
being arguably the most complex type of computer game. In these, a player must

1

2 Chapter 1. Introduction

strategically develop its economy, harvesting resources and constructing buildings; and
quickly maneuver its units in combat.

Professional human players excel in such games by training a repertoire of strate-
gies: they memorize the sequences of actions needed to achieve specific goals. When
a strategy has been successfully trained, the player is able to recall it, performing the
necessary movements with ease, liberating the attention to focus on abstract, strategic
issues: assess the environment situation to decide which strategy to follow. Moreover,
humans excel at generalizing by responding to unforeseen events in analogous ways as
they do to familiar situations.

1.1 Objectives

We propose a strategic reasoning framework for complex computer games inspired by
the human behavior, that is, with an abstract layer of reasoning and learning gen-
eralization capabilities. Our main goal is to create stronger agents to play complex
computer games, adhering to the following guidelines:

(G1) An agent must play without resorting to the game’s forward model:
search algorithms require a game’s forward model (which indicates the state
reached after an action executed in a previous state) to generate successor states
and deliberate which course of action to follow. However, the programming in-
terfaces of commercial computer games do not provide forward models. We want
our approach to play commercial games as well. Moreover, model-free approaches
can be adapted to real-world applications easier;

(G2) The approach must not depend on powerful hardware: much of the
recent advances in computer game AI results from executing machine learning
approaches on extremely large datasets (e.g. hundreds of millions of samples as in
[Mnih et al., 2015]) and/or using a hardware infrastructure many orders of mag-
nitude superior to a desktop computer (e.g. 256 GPUs and 128 thousand CPU
cores as in [OpenAI, 2018a]). Our approach should require minimal hardware
infrastructure beyond what a desktop computer can offer;

(G3) The approach must handle all aspects of the complex game: some meth-
ods target specific aspects of a game (e.g. real-time strategy combats on Usunier
et al. [2016]). Our approach must be able to play a typical complex game match
from start to finish.

1.2. Contributions 3

To handle the challenges imposed by complex computer games adhering to the
stated guidelines, this dissertation presents a computational version of the human
strategic behavior and generalization abilities. We replace the human repertoire of
strategies by a portfolio of algorithms, modeling game-playing as an adversarial algo-
rithm selection problem [Rice, 1976] in a hierarchical, model-free reinforcement learning
framework [Sutton and Barto, 1998]. This satisfies (G1).

We use simple generalization schemes (state aggregation and linear function ap-
proximation [Sutton and Barto, 1998, Chapter 8]) to promote similar responses to
similar game states, without the need for long training sessions, satisfying (G2). Our
decision-making framework makes use of existing game-playing algorithms, satisfying
(G3), aiming to discover the best in each game situation, potentially resulting in a
stronger performance than a single algorithm could reach.

1.2 Contributions

Our algorithm selection framework allows us to observe how algorithms, which en-
code game-playing strategies, interact in real-time strategy games. We analyze game-
theoretic aspects of those games, albeit in a simplified representation.

However, the game-theoretic analysis requires both players to be algorithm se-
lectors with known portfolios of algorithms, in analogy with two human rivals that
know each others’ strategies. In general, a player can train new strategies to surprise
its opponent, and can, in theory, perform any low-level game action. Our experiments
proceed without the known portfolio assumption, and our resulting agents are compet-
itive against some state-of-the-art search approaches when we generalize learning with
state aggregation. Furthermore, our agents consistently defeat the search opponents
when we adopt linear function approximation.

We investigate the advantages of algorithm selection compared to learning directly
over low-level game actions via experiments in a synthetic problem. Our findings
confirm the intuition that it is better to select algorithms when their quality or the
number of low-level actions grows.

We evaluate a simple version of our algorithm selection framework in actual Star-
Craft AI tournaments. Our fully-functional bot succeeded in its debut year, by ranking
among the top 50% competitors, but its success decreased as its portfolio got increas-
ingly outdated with the appearance of newer bots in the following years.

We can summarize our contributions as follows:

4 Chapter 1. Introduction

1. A model-free, lightweight framework for algorithm selection in complex computer
games;

2. A better understanding of algorithm selection versus learning over low-level ac-
tions;

3. Discussion of game-theoretic aspects of algorithm selection in real-time strategy
games;

4. Strong performance in real-time strategy games, trained in relatively small ses-
sions in common hardware;

5. Software contributions, including a tournament-capable StarCraft bot.

The following publications are a result of this dissertation:

• [Tavares et al., 2016]: associated with Contributions 1 and 3 (with a initial frame-
work version);

• [Tavares et al., 2018b]: further investigates the initial framework version and
presents Contribution 5;

• [Tavares and Chaimowicz, 2018]: associated with Contribution 4 (as an initial
step, because the actually strong agents came in the next publication).

• [Tavares et al., 2018a]: associated with Contributions 2 and 4.

1.3 Chapter organization

The remainder of this dissertation is organized as follows:

• Chapter 2: presents basic concepts and terminology used throughout the text;

• Chapter 3: discusses related work, their contributions and differences with this
dissertation;

• Chapter 4: presents a formal definition of algorithm, our strategic reasoning
framework and discusses our learning generalization approaches: state aggrega-
tion and linear function approximation;

1.3. Chapter organization 5

• Chapter 5: presents and discusses experiments on the benefits of learning over
algorithms rather than low-level actions and investigating game-theoretical as-
pects of algorithm selection or game-playing performance over real-time strategy
games;

• Chapter 6: gives a summary of this dissertation, presenting concluding remarks,
as well as reviewing the contributions and discussing directions for future re-
search.

Chapter 2

Background

This chapter presents the theoretical background, terminology and definitions used in
this dissertation.

2.1 Games

Formally, a game is a mathematical formulation of strategic interactions among in-
dependent and self-interested agents, or players. Game theory [Shoham and Leyton-
Brown, 2009; Osborne and Rubinstein, 1994; Nisan et al., 2007] studies such interac-
tions. Strategic interaction refers to the fact that an agent considers the interests and
possible choices of its peers to make its own decision. Such interactions occur in var-
ious contexts, including economy, politics, biology, psychology and computer science.
In special, the formal concept includes the popular understanding of a game as an “en-
tertainment”1 activity; examples including Chess, Go, computer games and a variety
of sports.

The models of game theory usually assume rational agents, which act so as to
bring the best possible situation to themselves, considering that their peers will also
pursue their goals.

A game can be represented in various forms, considering the number of players,
the nature of rewards, sequential or one-shot decisions, simultaneous or alternate ac-
tions, partial or full observation, among others. We focus on the particular class of
two-player, zero-sum, fully-observable, sequential-interaction games. In these, players
compete for the victory, thus having opposite goals. We often identify them as the
agent and the opponent. Moreover, our games of interest are played on a sequence of

1The term is quoted because such games indeed have a playful purpose, but several are seriously
studied and practiced professionally.

7

8 Chapter 2. Background

simultaneous moves. Additionally, we are interested in games with challenging charac-
teristics for current state-of-the-art artificial intelligence techniques, as discussed next.

2.2 Formal model

We adopt Markov Games (also known as Stochastic games [Shapley, 1953]) as our deci-
sion model. The formalism is general enough to encompass multiple players, simultane-
ous moves, chance events, cooperative and competitive scenarios with full observability
(players have perfect state information). Here we restrict our attention to two-player,
finite, zero-sum (purely competitive) games.

Definition 1 A finite, two-player, zero-sum Markov Game is a tuple MG =
(N ,S,A,R,T), where each element is defined as follows:

• N = {1, 2} is the set of players;

• S is the set of game states, with the Markov property2.

• A = A1 ×A2 is the set of joint actions, where Ai is the set of player i’s actions.
When needed, we denote the set of actions available to player i in state s as Ai(s);

• R : S → R2 is the (state-)reward function. R(s) is a vector of two real numbers,
〈R1(s), R2(s)〉, indicating the rewards obtained by player 1 and 2 for reaching
state s;

• T : S×A1×A2×S → [0, 1] is the transition function. T (s, a1, a2, s
′) denotes the

probability of reaching state s′ when player 1 takes action a1 and player 2 takes
action a2 in state s.

It is also useful to define the expected reward function R : S × A1 × A2 → R2.
R(s, a1, a2) is a vector of two real numbers, 〈R1(s, a1, a2),R2(s, a1, a2)〉, indicating the
expected rewards obtained by player 1 and 2 when they take the joint action (a1, a2) in
state s. In a zero-sum game, R1(s, a1, a2) = −R2(s, a1, a2) for all states and actions.
The state- and expected reward functions differ in that the state-reward function R is
perceived upon reaching a state, regardless of the previous state or actions, whereas
the expected reward R is associated with leaving a state via a joint action, considering

2A state with the Markov property has all the relevant information for the agents to make decisions.
More formally, if the state has the Markov property, then the environment’s response to agents’ actions
depends only on the current state and the actions taken, rather than the whole history of states and
actions [Sutton and Barto, 1998, Section 3.5].

2.2. Formal model 9

all possible future states. The two reward functions are associated by the following
relation3: R(s, a1, a2) =

∑
s′∈S T (s, a1, a2, s

′) ·R(s′).

Figure 2.1 illustrates a Markov Game. Players act simultaneously and the tran-
sition is stochastic: many states can be reached from a previous state and a joint
action.

Player 2's actions

P
la

y
er

 1
's

 a
ct

io
n
s

a
b

c

x y z

State s1

s2

s3

s4

s6

s5

a
b

c

x y z

Figure 2.1: Illustration of a Markov Game. Each grid represents a state, rows represent
player 1’s actions and columns represent player 2’s actions. Players take actions jointly
and many successor states can be reached because of the stochastic transition function.
In this example, joint action (b,z) in state s1 can reach three possible successor states
and joint action (b,y) in state s3 can reach two possible successor states.

In this work we model computer games as Markov Games. Computer games
have huge state spaces in general and some genres, such as real-time strategy games,
have huge action spaces in addition. Nevertheless, they are still Markov Games, albeit
large-scale ones. Even the asynchronous, or real-time nature of computer games is
accommodated in Markov Games: each player has a passive no-op action, which is
taken by default when the interval between game frames runs out. For a human player,
it corresponds to not interacting with the game’s graphical interface. For a computer
player, it corresponds to not issuing any command.

3Reinforcement learning literature traditionally presents Markov Games with the expected reward
function, but on this dissertation we use the state-reward function as it resembles the perception of
a player in a computer game, in the sense of knowing whether she is in advantage or not in a given
state. The relationship among both functions expresses that they are exchangeable and either one
can be adopted.

10 Chapter 2. Background

Littman [1994] remarks that Markov Games generalize both normal-form games
[Shoham and Leyton-Brown, 2009, Chapter 3], which are single-state Markov Games
and Markov Decision Processes [Sutton and Barto, 1998, Chapter 3], which are single-
player Markov Games. Additionally, Bošanskỳ et al. [2016] remarks that Markov
Games generalize alternating-move games such as Chess and Go: we can partition
S into subsets “owned” by each player, such that a player has only the no-op action in
the states owned by the opponent.

2.3 Playing games

This section briefly discusses the foundations of techniques used by computers to play
games modeled after the Markov Games formalism (Section 2.2). Advanced variations
are discussed in Chapter 3.

For the purposes of this dissertation, we adopt the infinite discounted horizon
optimality model, where a discount factor γ ∈ [0, 1] goads agents to prefer short-term
rewards more than long-term ones, if set to less than one. If, by interacting with the
environment from time-step t, the agent receives a sequence of rewards rt, rt+1, ..., in the
infinite discounted horizon model it aims to maximize the expected sum of discounted
rewards: E

[∑∞
k=0 γ

k · rt+k
]
.

Games are played by selecting a valid action in the current game state. Formally,
a computer agent plays a Markov Game according to a policy π : S × A → [0, 1],
that is, a mapping from states to probability distribution over actions. Deterministic
policies are special cases, denoted as π : S → A.

Two policy-related functions indicate the specified behavior quality. Considering
player 1’s point of view, the state-value function V π(s) indicates the expected sum of
discounted rewards she will receive by following policy π from state s. The action-value
function Qπ(s, a1, a2) indicates the expected sum of discounted rewards she will receive
by performing action a1 ∈ A1, while the opponent selects a2 ∈ A2 in state s and player
1 follows π thereafter. The optimal value functions V ∗ and Q∗ are thus associated with
the optimal policy. They are calculated recursively, according to Equations 2.1 and
2.2, which are the Bellman optimality equations for player 1.

V ∗(s) = max
π(s,·)

min
a2∈A2

∑
a1∈A1

Q∗(s, a1, a2) · π(s, a1) (2.1)

Q∗(s, a1, a2) = R1(s, a1, a2) + γ
∑
s′∈S

T (s, a1, a2, s
′) · V ∗(s′) (2.2)

2.3. Playing games 11

In zero-sum Markov Games, the optimal policy, associated with the optimal value
functions, is the maximin policy. It maximizes the agent’s expected reward when the
opponent performs its best action (hence the maxπ(s,·) mina2∈A2 in Eq. 2.1). Moreover,
each Markov Game state s ∈ S is a normal-form game, whose payoffs are Q∗(s, a1, a2)

for all (a1, a2) ∈ A1(s)×A2(s). Determining V ∗(s) and the associated maximin policy
π∗(s, ·) corresponds to solving this zero-sum normal-form game, which can be done via
linear programming [Nisan et al., 2007, Section 1.4.2].

The goal of game-playing computers is to discover the optimal policy, which is
equivalent to solving a game. To solve the entire Markov Game, one needs to determine
the optimal/maximin policy (and/or the value functions) for all states. The challenge
lies on the recursion: values for a state depend on their successors, which depend on
their own successors and so on. In theory, all finite games are solvable. In practice,
increasingly large games were solved due to algorithmic and technology advancements,
including 9 Men’s Morris [Gasser, 1996], Checkers [Schaeffer et al., 2007] and Heads-up
Texas Hold’em Poker [Bowling et al., 2015]. However, in even larger games, a computer
attempts to approximate the optimal policy as close as possible within the available
computational budget.

The next sections present the foundations of two major game AI approaches that
aim at solving games and/or finding feasible game-playing policies: game-tree search
and reinforcement learning.

2.3.1 Game-tree search

Game-tree search approaches operate by traversing or generating a tree induced by the
underlying Markov Game model. In this tree, a node is associated with a game state
and arcs are the actions connecting a state to its successors. The game-tree search
algorithm uses the game’s transition function T , also referred to as the forward model,
to discover the next state, given the current state and players’ actions. By iterating
this process, a terminal node is eventually reached. The value of this node is back-
propagated up to the tree’s root. This is equivalent to expanding the right-hand side of
Equations 2.1 and 2.2 successively until a terminal state (without successors) is found.

The backward induction algorithm (analised in [Bošanskỳ et al., 2016]) is a
prominent game-tree search approach in this framework. The well-known α-β pruning
[Knuth and Moore, 1975] algorithm is a special case of backward induction for games
with alternating moves, which prunes nodes with value provably out of upper- (α) and
lower- (β) bounds, calculated from previously visited nodes. In practice, where most
games have deep game trees, a depth-limited version of the algorithms is employed: the

12 Chapter 2. Background

traversal is interrupted at a certain depth, and a state evaluation function estimates the
value of the reached state. This is equivalent to stopping the expansion of Equations
2.1 and 2.2 and replacing V ∗ by an estimator at the reached state.

Monte Carlo Tree Search [Browne et al., 2012] iteratively grows a game-tree
by expanding previously unvisited nodes, starting from the root. Expansion is done
by simulating the remainder of the match with random movements. The expanded
node receives the reached terminal node’s value, and its predecessors are updated
retroactively up to the tree’s root. MCTS does not require a state evaluation function,
in contrast with the depth-limited version of α-β pruning.

Game-tree search approaches require knowledge of the game’s forward model (its
transition function) to generate successor states and traverse the game tree. In the
real-world and in most commercial games, the transition function is not accessible,
and the application of these approaches becomes limited.

2.3.2 Reinforcement learning

Reinforcement Learning (RL) is a framework for learning to act by successive interac-
tions with the environment [Sutton and Barto, 1998]. In the presence of an adversary,
interaction proceeds as follows: at each time step, agents perceive their current state
and select their actions. In the next time step, agents perceive their new state and re-
ceive a reward signal. Single-agent reinforcement learning tasks are modeled as Markov
Decision Processes [Sutton and Barto, 1998, Chapter 3], which Markov Games gener-
alize to multiagent environments [Littman, 1994].

Even without knowing the transition function, an agent can learn the value func-
tions and the optimal/maximin policy of a Markov Game via the minimax-Q algorithm
of Littman [1994]. In minimax-Q, the agent updates action-value estimates Q at each
interaction with the environment, according to the update rule in Equation 2.3, where
V (s) is given by Equation 2.1, replacing the optimal value functions V ∗ and Q∗ by
their estimates V and Q, respectively. Interaction with the environment is as follows:
in state s ∈ S, the agent performs an action a1 ∈ A1(s) whereas the opponent performs
an action a2 ∈ A2(s). The environment proceeds to state s′ and the agent receives a
reward r = R1(s′).

Q(s, a1, a2)← Q(s, a1, a2) + α [r + γV (s′)−Q(s, a1, a2)] (2.3)

In Equation 2.3, α ∈ [0, 1] is the step size, also known as learning rate, which
indicates how much the estimate moves towards the target (r + γV (s′)).

2.3. Playing games 13

[Littman, 1996, Section 5.6.1] shows that minimax-Q asymptotically converges to
Q∗ with probability 1, given that some conditions are satisfied4:

1. Each pair (state, joint-action) has non-zero probability of being visited;

2. The received reward in each step has finite variance;

3. The step size decays with time, such that
∑∞

t=0 αt =∞ e
∑∞

t=0(αt)
2 <∞.

Algorithm 1 presents a minimax-Q agent situated in a Markov Game MG =
(N ,S,A,R,T) (see Section 2.2), considering itself as agent 1 and the opponent as agent
2. In the Initialize procedure, the minimax-Q agent receives the initial step size
α, the step size decay factor ω ∈ [0, 1], the exploration probability ε ∈ [0, 1], and the
discount factor γ as parameters, which are kept as internal variables for use in the other
procedures. The estimates Q, V and the corresponding policy π are also initialized.
Procedure Act receives the environment state and returns an action according to the
ε-greedy rule. Procedure Learn receives the previous environment state s, the actions
performed by both agents a1 and a2, the received reward r and the reached state s′.
The procedure updates the estimates Q, V , and the policy π, decaying the step size
afterwards. The policy π is determined (in line 18) via the resolution of the normal-form
game related to s5. Agent initialization, action and learning processes are sequenced in
the Train procedure, which receives the agent parameters and the number of training
episodes e from the user.

Algorithm 1 follows the original of Littman [1994]. Q and V initialization is
optimistic (i.e. with maximum reward), which encourages premature exploration. The
policy π is initialized so as to select all actions with equal probability.

In some situations, it is useful to maintain a constant step-size, by making ω = 1.
This violates Condition 3 to convergence, but allows one to track a non-stationary
problem. The discount factor γ can be set to 1 in episodic tasks (as our games). Even
so, lower discount factors goads the agent to win the game sooner.

The minimax-Q algorithm belongs to a class of model-free methods. Model-free
approaches are especially appealing for the broad range of problems they can tackle,
because, in contrast with search approaches, a game’s forward model (its transition
function) is not required for an agent to successfully learn a policy.

4[Littman, 1996, Section 5.6.1] lists more conditions as they serve to generalized Markov Decision
Processes. The conditions omitted here are automatically satisfied by our Markov Game definition.

5The payoff matrix of the normal-form game related to s is filled with the values in Q(s, a1, a2)
for all (a1, a2) ∈ A1(s)× A2(s). The resolution of such normal-form game via linear programming is
described in [Nisan et al., 2007, Section 1.4.2].

14 Chapter 2. Background

Algorithm 1 Minimax-Q
1: procedure Initialize(α, ω, ε, γ)
2: Input: initial step size α, decay factor of the step size ω, exploration probability
ε and discount factor γ

3: Maintain α, ω, ε and γ as internal variables to use in the other procedures.
4: Initialize V (s) optimistically for each s ∈ S
5: Initialize Q(s, a1, a2) optimistically for each s ∈ S, a1 ∈ A1, a2 ∈ A2

6: π(s, a1) = 1
|A1(s)| for each s ∈ S, a1 ∈ A1(s)

7: end procedure
8:
9: procedure Act(s)
10: Input: environment state s
11: if random() < ε then return a random action in A1(s)
12: else return an action according to π(s, ·)
13: end procedure
14:
15: procedure Learn(s, a1, a2, r, s

′)
16: Input: previous state s, players’ actions a1 and a2, reward r and reached state s′.
17: Q(s, a1, a2)← Q(s, a1, a2) + α (r + γV (s′)−Q(s, a1, a2)) . Equation 2.3
18: Determine π(s, ·) = argmaxπ(s,·) mina′2∈A2

∑
a′1∈A1

π(s, a′1)Q(s, a′1, a
′
2)

19: V (s) = mina2∈A2

∑
a1∈A1

π(s, a1)Q(s, a1, a2)
20: α← α · ω
21: end procedure
22:
23: procedure Train(α, ω, ε, γ, e)
24: Input: initial step size α, decay factor of the step size ω, exploration probability

ε, discount factor γ, and number of episodes e
25: Initialize(α, ω, γ, ε)
26: for e episodes do
27: s← initial state in S
28: while s is not terminal do
29: a1 ← Act(s)
30: Observe opponent action a2, the resulting state s′ and reward r.
31: Learn(s, a1, a2, r, s

′)
32: s← s′

33: end while
34: end for
35: end procedure

2.4 The complexity of real-time strategy games

For our purposes, the term “complex computer game” refers to games with all the
following characteristics: huge state and action spaces (we make the term “huge” precise
next), real-time interaction, two players, simultaneous actions and long-term decisions.

2.4. The complexity of real-time strategy games 15

Real-time strategy is our genre of choice because these games present all aforementioned
challenges. We sometimes refer to “complex games” in general to remind that our
approach is suitable to any scenario with the foregoing characteristics.

Real-time strategy games are a class of computer games where players deal with
multiple tasks: resource collection, construction of buildings, technological improve-
ments and battles against enemy armies [Cunha and Chaimowicz, 2010]. Usually,
players start with a base near resource fields and some workers, which are resource-
harvesting and building-construction units. From collected resources, players can train
more workers, strengthening their economy, and/or construct new buildings that allow
military unit production and technological advancements, which unlock abilities and
increase units’ offensive and defensive capabilities. A player wins the game by defeating
enemy armies and/or destroying its buildings. Decisions involving resource manage-
ment, balancing military and economic aspects are referred to as macro-management.
Fast-paced decisions involving unit maneuvers in battle are referred to as micro-
management.

In this dissertation we deal with the practical complexity of real-time strategy
games. To the interested reader, the theoretical complexity of attrition games on
graphs, a simplified version of real-time strategy combats, is discussed in [Furtak and
Buro, 2010].

We start by associating an instance of a real-time strategy game with our Markov
Game model (see Definition 1) in Example 1, and proceed by showing the complexity
of the resulting model.

Example 1 A real-time strategy game modeled as Markov Game. The states, actions,
rewards and transitions are as follows:

• States: the state of a real-time strategy game with the Markov property is a snap-
shot of all current game data (i.e. the game map and all information of resources,
buildings and units, including those under production, plus the elapsed time or
number of frames since the game has started). Terminal states are reached when
the game time runs out or a player is defeated by having all its buildings razed
and/or units killed;

• Actions: each player i controls a set of units Ui. Each unit ui ∈ Ui has a
set of available actions Aui(s) in a given state. The actions Ai of player i are
the possible combinations of all its unit’s actions, plus the passive no-op action:
Ai = {no-op} ∪ Aui × · · · × Au|Ui|

;

16 Chapter 2. Background

• Rewards: the reward signal can be +1, 0 or −1 respectively for the victory, draw
or defeat, perceived when the game reaches a terminal state. Alternatively, in-
game score measuring material advantage can be used as a reward not only in
terminal states, but on non-terminal states as well.

• Transition: advances the game to the state corresponding to the next frame, by
executing all actions issued in the current state. That is, it accounts all damage
received by attacked units and buildings, removing dead units and razed buildings,
counts the cooldown between successive unit attacks, starts or progresses the con-
struction of buildings and the production of units, performs physical movement
calculations and effects of special abilities such as spells. Stochastic effects might
arise, which include the chance of a unit being hit and the amount of hit points
(HP) reduced when a unit is damaged.

Figure 2.2 illustrates the association of a hypothetical real-time strategy (RTS)
game with the Markov Game model. Green squares are resource fields. White squares
are bases, gray circles are workers. Player 1 owns the blue and player 2 the red units.
The states have all game information: all unit attributes and the game time. Figure
2.2 shows some of the attributes of the units: hit points (HP), resources (Res), time
to finish (TTF), and their position in the grid map. Besides, there is a one-to-one
correspondence between Markov Game states and physical RTS game states. From a
given state, the RTS game engine receives players commands (the joint actions) and
computes the next state.

The resulting Markov Game associated with a real-time strategy game has huge
state and action spaces. The difference between two successive states is the smallest
possible (one game frame), such that we have a state for each possible combination of
all game elements and their attributes. A player action in real-time strategy games is
the assignment of a command (or unit action) to each game unit. Some unit actions
are complex as they involve target parameters, which usually are map positions or
other units. In StarCraft, Ontañón et al. [2013] conservatively estimated |S| ≈ 101000

and, for each player i, |Ai(s)| ≥ 1050, on average for each state. As a reference, Chess
has 1050 states and Go has approximately 10170. In each state, Chess has |Ai(s)| ≈ 35

actions and Go has |Ai(s)| < 81.
Additionally, real-time strategy games have imperfect (partial) information, so

that a player can observe objects within its units’ visual range. However, the Markov
Game model assumes perfect information. Hence, in this dissertation we enable perfect
information when necessary.

2.4. The complexity of real-time strategy games 17

Frames: 0

HP: 1
Res: 0

HP: 1
Res: 0

HP: 10
Res: 1

HP: 10
Res: 1

Frames: 1

Player 2's actions

P
la

y
er

 1
's

 a
ct

io
n
s

(no-op)

(n
o
-o

p
)

TTF: 10

TTF: 10

Player 2's actions

P
la

y
er

 1
's

 a
ct

io
n
s

HP: 10
Res: 0

HP: 1
Res: 0

HP: 10
Res: 0

HP: 1
Res: 0

Res: 20 Res: 20

Res: 20Res: 20

Figure 2.2: Markov Game associated with a hypothetical real-time strategy game. The
top part represents the Markov Game states with the available actions of each player
(blue in the rows, red in the columns). The bottom part shows the associated physical
game states. In the example, in frame 0, the action of the blue player was to move
her worker to the right and order her base to train a new worker at its right, whereas
the action of the red player was to move his worker up and order his base to train a
new worker upwards. This joint action resulted in the state shown at frame 1, where
the alive workers moved in the intended directions and the new workers started being
trained.

Chapter 3

Related work

Many landmarks in computer game artificial intelligence (AI) stem from improved
versions of the basic α-β pruning [Knuth and Moore, 1975] or Monte Carlo Tree Search
(MCTS) [Browne et al., 2012] algorithms (see Section 2.3.1 for a brief description).

Approaches based on MCTS and α-β pruning succeed in board games, but cannot
satisfactorily handle the challenges imposed by complex computer games. In special,
the enormous state and action spaces in those games make these algorithms evaluate
insufficient positions to make any reasonable decision in a timely fashion.

This chapter reviews some techniques geared towards computer games, divided in
four groups: adapted search approaches (Section 3.1), rule-based approaches (Section
3.2), reinforcement learning (Section 3.3) and algorithm-selection approaches (Section
3.4). We finish with a summary of approaches, showing how this work differs from
current state-of-the-art (Section 3.5).

3.1 Adapted search approaches

Part of the research effort in large-scale games focuses on using game-tree search algo-
rithms, such as α-β pruning [Knuth and Moore, 1975] or MCTS [Browne et al., 2012]
in abstract representations of game states. Those aim to reduce the game-tree search
branching factor and depth. The branching factor indicates the number of successors
of a state and the tree’s depth indicates the number of needed moves for a game to
finish.

Uriarte and Ontañón [2014] propose an abstract representation to StarCraft, by
grouping map pixels into regions, similar units in squadrons, ignoring economic aspects
and considering only moves and attacks to other regions as actions. Similar ideas are
adopted in [Stanescu et al., 2014; Uriarte and Ontañón, 2016].

19

20 Chapter 3. Related work

Abstract representations allow the use of traditional game-tree search algorithms,
although the abstraction quality is influenced by the designer’s domain knowledge. The
resulting simulations contain imprecisions and might hurt the algorithms’ decisions,
which happens in [Uriarte and Ontañón, 2016], when the algorithm is configured to
look too much ahead.

Recent advances in search approaches to real-time strategy games aggressively
prune the actions to consider. For example, Adversarial Hierarchical Task Network
planning, or AHTN for short [Ontañón and Buro, 2015] extends hierarchical-task net-
work (HTN) planning, which encode domain knowledge via the definition of useful
tasks in the domain, with a minimax-like game-tree search. By encoding domain tasks
with domain knowledge, one narrows the possible choices to consider.

PuppetSearch is a framework that augment the capabilities of game-playing
scripts by means of move choices they expose to so-called tactical search algorithms.
As computational budget allows, more choices can be exposed so the search algorithms
can investigate with a broader perspective. Puppet-αβ [Barriga et al., 2015] uses
a version of the α-β considering durations (ABCD) as the tactical search algorithm
[Churchill et al., 2012], whereas PuppetUCT [Barriga et al., 2017] uses a version of
Upper-Confidence bound for Trees Considering Durations (UCTCD) [Churchill and
Buro, 2013]. StrategyTactics [Barriga et al., 2017] uses a convolutional neural network
to predict the output of PuppetSearch, saving time for the tactical search algorithm.

NaiveMCTS [Ontanón, 2013] builds on Monte Carlo Tree Search, using a sampling
strategy based on combinatorial multi-armed bandits (and thus does not use scripts).

AHTN, Puppet-αβ, PuppetUCT, StrategyTactics and NaiveMCTS are imple-
mented in µRTS and we use them as opponents in our experiments (see Sections 5.4.1
and 5.4.2).

A drawback of adapted search approaches with handcrafted abstract representa-
tions is that they require expert knowledge. Moreover, all search approaches require
the forward model to operate.

3.2 Rule-based approaches

In commercial computer games, non-player characters are usually controlled by sets of
“if [condition] then [action]” rules. The set of rules that dictates an agent’s behavior is
often referred to as a script. Scripts’ advantages are their legibility, easing development
and understanding of behaviors; and speed, which suits computer games where pro-
cessing time is divided between the game’s logic, graphics and agents’ decision making.

3.3. Reinforcement learning 21

On the other hand, scripts lack flexibility: once a player detects patterns on game
agents’ behavior, the challenge goes away and the game becomes less fun. Neverthe-
less, scripts’ rule sets might be useful to compose more sophisticated decision making
methods, which this section reviews.

In General Game Playing (GGP)1, Świechowski and Mańdziuk [2014] use an
heuristic portfolio to guide the simulation stage of a MCTS variant. Authors test
various methods to choose the search-guiding heuristic, concluding that UCB (Upper-
Confidence Bounds [Auer et al., 2002]) is the best. A similar approach is used by
Churchill and Buro [2015] in Prismata, a turn-based strategy game (see Section C.4).
A script portfolio generates valid actions to be investigated by a MCTS variant.

Dynamic scripting [Spronck et al., 2006] aims to dynamically construct scripts
from a rule base. In dynamic scripting, each agent owns a rule base and a number
of slots to receive rules. A mechanism similar to reinforcement learning [Sutton and
Barto, 1998] updates rules’ weights and those with highest weights are favored to fill
the slots. The set of rules filling the slots form the agent-controlling script.

Dynamic scripting applications include Role-Playing Games (RPG) battles2

[Spronck et al., 2006], real-time strategy games [Dahlbom and Niklasson, 2006] and
air combat simulation [Toubman et al., 2016]. Szita and Lõrincz [2007] uses a dynamic
scripting-like technique in Ms. Pac Man, adapted to allow the activation of multiple
rules and the cross-entropy method of Rubinstein [1999] to update the weights, rather
then the reinforcement-learning-like original mechanism.

A drawback of dynamic scripting is the need of prior rule design, which requires
domain knowledge from the designer.

3.3 Reinforcement learning

In complex games, reinforcement learning is usually employed with function approxi-
mation [Sutton and Barto, 1998, Chapter 8], whose basic idea is to generalize a learned
value to similar states.

In board games, remarkable examples include Samuel’s checkers player [Samuel,
1959, 1967], TD-Gammon for backgammon [Tesauro, 1995] and Alpha Go [Silver et al.,
2016] (including follow-ups, discussed next). Those are remarkable because Samuel’s
program was the first with significant use of any kind of learning [Russell and Norvig,

1In General Game Playing (GGP), a single algorithm must handle a multitude of games, which
fosters the development of domain-independent approaches. The games have characteristics of board
games: they are deterministic, multi-player and synchronous [Genesereth and Thielscher, 2014].

2In such turn-based battles, each player controls a small team of agents and each agent has attacks,
spells and skills to harm the opponents or strengthen the allies.

22 Chapter 3. Related work

2003, p. 850]; TD-Gammon matched the best human backgammon players of that
time and Alpha Go defeated one of the currently best human Go players by combining
expert game analysis and self-play. Alpha Go was further surpassed by AlphaGo Zero
[Silver et al., 2017b], which relies solely on self-play, and Alpha Zero [Silver et al.,
2017a], which plays not only Go, but Chess and Shogi (Japanese Chess) as well.

Reinforcement learning reached impressive performance in computer games as
well, with the appearance of the arcade learning environment (ALE) [Bellemare et al.,
2012], which provides a programming platform for classical Atari 2600’s games. In the
ALE, programs receive the screen’s 160× 210 pixels and a score information as input
and must return one of the 18 possible actions allowed by Atari’s joystick.

Mnih et al. [2015] present a deep reinforcement learning architecture, named deep
Q-network (DQN), which uses a convolutional neural network [Le Cun et al., 1990] to
approximate the action-value function (Q). Those are composed by hierarchical layers
of convolutional filters, capable of detecting spatial correlations in images, producing
increasingly abstract representations from input data. In [Mnih et al., 2015], the most
recent game frames are pre-processed to form the network’s input “image”, allowing
the detection of object trajectories. Their approach outperforms other reinforcement
learning methods in 43 out of 49 tested games and reaches at least 75% of a professional
human game tester in 29 games. In some games, DQN’s performance is several times
better than the human’s. However, DQN performs poorly in games requiring longer
planning horizon, such as Frostbite (see Section C.2) and Ms. Pac-Man.

Mnih et al. [2015]’s DQN is a significant contribution to the task of control from
high dimensionality sensory inputs. Liang et al. [2016] analyses DQN’s success factors,
such as the ability to detect space-invariant features, like relative object positions, and
short-term temporal features, such as trajectories. Liang et al. [2016] provide simple
linear approximators to detect those features to replace DQN’s deep learning. In fact,
the performance of the “shallow” architecture of Liang et al. [2016] is comparable to
Mnih et al. [2015], although methodological issues prevented a completely fair com-
parison. For example, Mnih et al. [2015] reports performance on repeated tests of the
best obtained network for each game, rather than the average of multiple train and
tests. Liang et al. [2016] notes that subsequent research may have some obstacles to
reproduce Mnih et al. [2015]’s results.

Hausknecht and Stone [2015] extended DQN with recurrence to consider tem-
poral aspects directly on the network’s architecture. In contrast, Mnih et al. [2015]’s
original DQN “incorporates” temporal aspects through the pre-processed input of the
most recent game frames. Hausknecht and Stone [2015]’s deep recurrent Q-network
(DRQN), even receiving a single game frame, can integrate information along time,

3.3. Reinforcement learning 23

outperforming the original DQN in games such as Frostbite, which require longer-term
planning horizons. Nevertheless, DRQN’s performance is around 50% of the human
tester, reported in [Mnih et al., 2015].

Lample and Chaplot [2016] use DRQN to handle a three-dimensional domain:
the Visual Doom platform [Kempka et al., 2016], which provides screen pixels of the
first-person shooter Doom (see Section C.5) for a program. Authors modify DRQN to
account for extracted game features, such as enemies and items, on training. Besides,
they divide the game in two tasks, navigation and combat, training a separate network
to each one. Kempka et al. [2016] reports that Lample and Chaplot [2016]’s approach
outperforms native game bots and human players, although there is no indication of
their proficiency.

So far, reinforcement learning approaches succeed in reactive games, such as
Breakout (see Section C.1), for example. In such games, an elaborate sequence of
actions is not required to reach a goal: the player just needs to promptly react to
the current elements on screen. Games such as Frostbite (see Section C.2) are more
challenging than reactive ones, as they require longer action sequences to reach a goal.
Reinforcement learning is still behind humans in those games. Montezuma’s Revenge
(see Section C.3) represents the greatest challenge for computers in the ALE. Besides
requiring a long-term planning horizon, the rewards are very sparse, in contrast with
Frostbite, where the agent constantly scores by jumping back and forth on ice blocks.

Long-term planning horizons and sparse rewards are also issues in real-time strat-
egy games: actions might affect the game far away from where they were taken, and
a player is rewarded when the match ends3. For example, shallow [Wender and Wat-
son, 2012] and deep [Usunier et al., 2016; Peng et al., 2017] reinforcement learning
approaches have been successfully applied to combats in real-time strategy games.
Combats are reflex-based tasks, where the player must promptly react to the current
elements on screen as much as ALE’s reflex-based games, successfully played by Mnih
et al. [2015]’s DQN. None of these approaches tackled or succeeded in games requir-
ing reasoning in different temporal scales, which seems to be the next challenge for
reinforcement learning techniques in computer games. Reasoning in different temporal
scales can be achieved by decomposing the task in a hierarchical structure such as in
[Dietterich, 2000], which requires prior knowledge in the form of subgoals and policies to
achieve them, and [Kulkarni et al., 2016], where subgoals are provided, but the policies
to achieve them are learned. In [Kulkarni et al., 2016], the upper layer in a two-level

3Reward shaping, that is, giving agent constant rewards based on its material advantage can
remedy this issue, although in our experiments, the agent adopted a myopic behavior (see Section
5.4.1.2).

24 Chapter 3. Related work

hierarchy observes the environment state and reward, and generates intrinsic reward
signals to the lower layer, which learns the policy to achieve the subgoal. The proposed
approach remedies the deficiency of Mnih et al. [2015] in Montezuma’s Revenge, using
handcrafted goals. Machado et al. [2017] further proposes an approach to discover
goals based on intrinsic reward functions that direct the agent towards traversing the
state space in directions specified by a learned representation. The proposed approach
was able to discover similar policies to the ones achieved via the handcrafted goals of
Kulkarni et al. [2016].

Our approach is similar to Kulkarni et al. [2016]’s in the sense of a two-level hierar-
chical decision-making. However, Kulkarni et al. [2016]’s lower-layer is a reinforcement
learning approach with access to the underlying domain’s low-level actions. As our
underlying domain of interest has huge action spaces, such approach is unfeasible.

Recently, a professional Dota 2 (see Section C.6) player has been defeated on
a 1-vs-1 match by a reinforcement learning agent trained in self-play [OpenAI, 2017],
although little technical information on the approach was released. Besides, usual Dota
2 matches are 5-vs-5, which require a team of coordinating agents.

OpenAI [2018a] presents further technical details on the approach of OpenAI
[2017], as well as results of tests with a team of bots against amateur human players
on 5-vs-5 matches. Each agent receives a high-dimensional input for the state (20
thousand values) and must output an action among a thousand available ones at each
game frame. Reward accounts for in-game performance metrics (kills, assists, etc.) and
a teamwork component. Using a version of Proximal Policy Optimization [Schulman
et al., 2017], the team of agents, named Open AI Five, trained in self-play, is able to
outperform a team of amateur human players. Open AI Five has lost to professional
players in a subsequent test, although it exhibited strong gameplay [OpenAI, 2018b].

The drawback of the approach of OpenAI [2018a] is the necessity of powerful
hardware: the team of agents trains for an equivalent of 180 years a day, on a cloud
infrastructure with 128 thousand CPU cores and 256 GPUs.

3.4 Algorithm selection

The algorithm selection problem consists in defining a mapping from problem instances
(or their features) to algorithms designed for that problem [Rice, 1976]. Algorithm
selection techniques have been applied to complex problems either in theory (NP-
complete) [Xu et al., 2008] or in practice, such as sorting [Lagoudakis and Littman,
2000] and real-time path planning [Sigurdson and Bulitko, 2017]. This section discusses

3.4. Algorithm selection 25

some algorithm selection techniques applied to computer games.

Most works reviewed in this section are not framed as algorithm selection methods
by their authors, but they fit the framework. That is, they are concerned with mapping
game states to algorithms (mostly called scripts or strategies), to maximize game-
playing performance.

An early application of algorithm selection in games appears with machine games
[Abreu and Rubinstein, 1988], where players select finite automata to play the iterated
Prisoner’s Dilemma on their behalf. Players attempt to maximize their payoffs while
reducing the complexity of the selected automata, in terms of the number of the au-
tomata’s internal states.

In General Video Game Playing (GVGP)4, Bontrager et al. [2016] analyze the
behavior of algorithms in various games, extracting game features for classification
and choosing a suitable algorithm. In this dissertation, we consider a similar approach,
tackling an adversarial domain, whereas in GVGP, the agent does not face other game-
playing programs.

Li and Kendall [2015] apply hyper-heuristics, which resembles algorithm selec-
tion, in the repeated prisoner’s dillema, Goofspiel5 and competitive traveling salesman
problem6. In [Li and Kendall, 2015], however, algorithm selection techniques are tested
against non-adaptive opponents. In this case, the opponent uses a single algorithm or
selects randomly.

Aha et al. [2005] studies an algorithm selection approach using case-based reason-
ing [Xu, 1994] in Wargus, a clone of real-time strategy game Warcraft II. They assume
the opponent chooses a strategy at random, which is unrealistic and potentially harm-
ful. In our experiments, a random policy over algorithms performs poorly (see Section
5.4.1.2). In StarCraft, Preuss et al. [2013] adopt fuzzy rules to select a game-playing
strategy, which require expert knowledge to create and adjust the rules.

Still in StarCraft, successful bots usually rely on a portfolio of strategies, com-
monly encoded as build-orders, and choose according to their previous performance
against their opponents [Ontañón et al., 2013]. However, selection mechanisms ignores
opponent’s adaptation and strategic reasoning.

4General Video Game Playing (GVGP) brings the idea of General Game Playing (GGP) to com-
puter games: a single algorithm must handle a multitude of computer games, fostering the development
of generalist approaches. In contrast with GGP, games are real-time and possibly stochastic [Levine
et al., 2013].

5In Goofspiel, at each round a card is revealed and two (or more) players dispute it by playing a
card from their hands. Whoever throws the highest card wins the round and scores the face value of
the table card.

6In the competitive traveling salesman problem, each salesman receives a reward for being the
first to visit a city, but each travel has a cost [Fekete et al., 2004]

26 Chapter 3. Related work

A game-theoretic approach for algorithm selection is studied in [Sailer et al.,
2007] in a synthetic real-time strategy game. Authors use Monte Carlo simulations
from the current state to fill a payoff matrix with the performance among pairs of
algorithms. Nash Equilibrium is calculated and an algorithm is selected according to
the resulting policy. We test reinforcement learning algorithm selection agents against
this approach, which we call Monte Carlo Algorithm Selection (MCAS). MCAS out-
performs our agents trained in self-play, in Section 5.4.1.1. However, our agent out-
performs MCAS when training specifically against it, in Section 5.4.1.2. Moreover,
our approach does not require a game’s forward model to perform simulations, as we
employ reinforcement learning methods.

The creation of SparCraft, a combat simulator for StarCraft, allowed the advance-
ment of script-assignment search approaches. In those, each game unit controlled by
the player receives a script determining a simple behavior, such as attack the closest
enemy, move away from combat, or hit-and-run (also known as kiting). This is a finer-
grained algorithm selection framework, where an algorithm (or script) is assigned to
individual units instead of selecting a player algorithm to control all units at once.
From the joint assignment of scripts, a coordinated behavior may emerge.

Portfolio Greedy Search (PGS) [Churchill and Buro, 2013] uses a hill-climbing
approach to assign the scripts. This is further extended by Stratified Strategy Selection
(SSS) [Lelis, 2017], which groups units and assigns scripts to the groups. Portfolio
Online Evolution [Wang et al., 2016] uses a online evolutionary algorithm to try out
different assignment combinations. Greedy Alpha-Beta (GAB) and Stratified Alpha-
Beta (SAB) [Moraes and Lelis, 2018] build on PGS and SSS, respectively, using the
notion of asymmetric action abstractions7. These algorithms operate in two steps.
The first step fixes moves of the so-called restricted units using the underlying script-
assignment algorithm (PGS or SSS). All enemy units are fixed with a specific script.
The second step uses Alpha-Beta Considering Durations [Churchill et al., 2012] to
determine the moves of remaining allied units. Both GAB and SAB substantially
outperform the previous approaches.

The success of script-assignment approaches demonstrate the usefulness of ab-
stracting from low-level actions, even when individual units are considered. However,
the methods developed so far require the game’s forward model to simulate the as-
signments’ outcome. Our algorithm selection approaches, although being coarser by
selecting an algorithm for the player rather than individual units, dismiss forward
models.

7In the framework of action abstractions [Hawkin et al., 2011], some procedure (e.g. a heuristic
or script) reduces the number of actions considered by the decision-maker.

3.5. Summary 27

3.5 Summary

In this chapter, we divided game-playing approaches in four groups, each one with
some drawbacks:

• Adapted search approaches (Section 3.1): the ones based on hand-crafted ab-
stract representations require expert knowledge to design such representations.
Moreover, all search methods require a game’s forward model;

• Rule-bases approaches (Section 3.2): those methods also require domain knowl-
edge to construct useful rules;

• Reinforcement learning (Section 3.3): such approaches currently succeed in reflex-
based scenarios, facing difficulties when temporal abstraction is required. Ap-
proaches dealing with temporal abstraction were not evaluated in scenarios with
a large number of actions;

• Algorithm selection (Section 3.4): most techniques, when modeling the opponent
as an algorithm selector, present it as a “dummy”: either as a random selector
or as a non-adaptive agent. Strategic reasoning, in the game-theoretic sense, is
not considered. Sailer et al. [2007] and the unit-script approaches are exceptions,
commented below.

Sailer et al. [2007] investigates game-theoretic properties of algorithm selection.
One of our models also focuses on these game-theoretic properties, with the following
differences: (i) we model algorithm selection as a sequential decision process, whereas
Sailer et al. [2007] simulates the remainder of a match without considering possible
algorithm switches; (ii) we go further by removing the assumption that the opponent
is an algorithm selector.

Although unit-script approaches [Churchill and Buro, 2013; Wang et al., 2016;
Lelis, 2017; Moraes and Lelis, 2018] perform algorithm selection in a finer grain (at
unit level) than we do (at player level), they require forward models to evaluate the
assignment’s quality, whereas our approach is model-free.

Chapter 4

The strategic reasoning framework

This chapter presents our strategic reasoning framework for complex computer games.
Our approach is inspired by the human game-playing behavior, which involves recalling
previously trained courses of actions, or strategies, and remarkable generalization skills.
We define a computational version of the term strategy as an algorithm: a method that
specifies a game-playing policy - a mapping from states to actions. We also discuss
the relation of algorithms and options, or temporally-extended actions in reinforcement
learning [Sutton et al., 1999a].

We present different models of interaction, either focusing on game-theoretic as-
pects, assuming that the opponent is an algorithm selector, or on game-playing per-
formance, by removing this assumption, and attempting to learn strong algorithm
selection policies, although recognizing they can be exploitable in theory.

To actually implement the strategic reasoning approach in complex games, we
need to handle their enormous state spaces by generalizing learned values across states.
We discuss state aggregation and linear function approximation as possible ways, and
their implications in our strategic reasoning framework.

We finish the chapter with a summary and a discussion of how our approach
adheres to our guidelines: to be model-free, demand usual hardware and play whole
matches of complex games.

4.1 The human approach

Good performance on a computer game requires specific reasoning methods to handle
the enormous game complexity in terms of possible states and actions. Human players
usually resort to specific “courses of actions”, often referred to as strategies. In real-time
strategy games, they are usually implemented as build orders and their follow-ups. A

29

30 Chapter 4. The strategic reasoning framework

build order is a predefined recipe or script for a player to follow, specifying the sequence
of buildings and units to produce on early game stages. A follow-up is the next sequence
of actions to continue developing the game as it progresses.

A game is actually effected by low-level actions, but these are too many for a
human player to take into account. When playing competitively, a player trains a
repertoire of strategies by memorizing the sequences of actions needed to achieve each
goal. This is associated with motor learning1 and the psychology concept of chunking,
where one groups individual pieces of information together into a meaningful whole
[Verwey and Abrahamse, 2012]. When a strategy has been successfully trained, the
player is able to recall it, so that the limbs perform the necessary movements from
muscular memory, liberating the player’s attention.

Thus, by recalling memorized strategies, human attention is free to reason at an
abstract level with less choices to consider, as if the person is playing the game with a
k-button controller. Each button activates a previously trained strategy, and the player
assesses the environment situation and presses the most appropriate button, enabling
the corresponding strategy, when necessary2.

Humans excel at detecting patterns and associating unfamiliar situations with fa-
miliar ones [Mattson, 2014]. In game-playing, this ability allows one to handle unfore-
seen situations, by comparing them to previously experienced ones and implementing
similar reactions. This way, the enormous state spaces of complex games are mapped
to a simplified mental representation, enabling one to generalize the reaction from one
situation to similar ones.

4.2 Game-playing algorithms

In general, computers play games either by game-tree search or by reinforcement learn-
ing3 (see Section 2.3). Game-tree search requires the game’s transition function, also
regarded as the forward model, to simulate the action effects. However, the transition
function is not available in general. In such cases, which include commercial real-time
strategy games (RTS), the agent must resort to reinforcement learning.

1Motor learning involves improving the accuracy of movements with repetition and feedback. It
is necessary for complicated movements such as speaking, playing the piano and/or computer games.

2This analogy is based on Ben Weber’s 8-button StarCraft video: https://youtu.be/
_XLEdsEFQWE

3Although model-based dynamic programming approaches [Sutton and Barto, 1998, Chapter 4]
are regarded as reinforcement learning, here we use the term in the strict sense of learning without
the environment model.

https://youtu.be/_XLEdsEFQWE
https://youtu.be/_XLEdsEFQWE

4.2. Game-playing algorithms 31

A reinforcement learning agent repeatedly interacts with the environment, ob-
serving the actual results of its actions, so as to maximize the obtained rewards. The
agent must try each action at least once to estimate its value. Hence, domains with
large action sets, such as real-time strategy games, are troublesome for reinforcement
learning agents.

Humans excel in RTS games by training a repertoire of courses of actions, or
game-playing strategies, and then reasoning at a strategic level, assessing which course
of action better suits the current game situation, as discussed in Section 4.1. For our
computational version of this behavior, we adopt a portfolio of algorithms instead of
the human repertoire of strategies.

Algorithms are understood as computational procedures that receive input data
and generate corresponding output data according to a well-defined sequence of steps
[Cormen et al., 2001, Section 1.1]. A game-playing algorithm thus receives an environ-
ment state and outputs a valid action.

From a reinforcement learning point of view, an algorithm specifies a policy4.
A (stochastic) policy, denoted by π : S × A → [0, 1] maps an environment state to
a probability distribution over actions. Deterministic policies are special cases that
assign probability 1 to an action and 0 to the others, and can be denoted as π : S → A.
An algorithm thus mimics the human concept of strategy. The algorithm’s resulting
policy is a specific game-playing behavior, or course of action in human terms. We
refer to the set of algorithms as the portfolio, denoted Π.

We are not concerned with internal details of algorithms, as long as they are real-
time: they can implement a lookup table indexed by the state, a simple game-playing
script that outputs an action based on a set of rules or a fully-featured game-playing
software-controlled player (bot) employing sophisticated heuristics or machine learning
approaches. Technically, algorithms with learning mechanisms define non-stationary
policies, which change over time with accumulated experience. Our discussion in this
Chapter assumes stationary algorithms. Non-stationary ones are discussed in the ex-
periments of Section 5.3.

There are infinite possible stochastic policies for any given game. However, we
consider only a limited amount: the ones determined by a subset of known algorithms
that can operate on the game. The choices of our algorithm selectors are thus algo-
rithms rather than low-level actions. By limiting the choices to consider, we simplify
the resulting reinforcement learning problem: instead of reasoning over the enormous
amount of actions, we only consider a limited set of algorithms to choose.

4From a game-theoretic point of view, an algorithm specifies a behavioral strategy [Nisan et al.,
2007, Section 3.7].

32 Chapter 4. The strategic reasoning framework

When reasoning over algorithms in a reinforcement learning problem, the agent
perceives its state, selects an algorithm, the algorithm selects an action on the agent’s
behalf and the environment transitions to the next state, generating a reward signal.
The agent perceives the next state and the reward signal, and the cycle repeats.

Intuitively, it seems easier to discover the best choice in a limited set of algorithms
than in a large set of actions. However, the algorithm selector’s performance will be
limited by that of the best algorithm in its portfolio. Nevertheless, an action-selector
will always match or outperform an algorithm-selector in the long-run, as reinforcement
learning methods have asymptotic guarantees of convergence to the optimal, reward-
maximizing policy over actions [Sutton and Barto, 1998, Chapter 6]. Example 2 below
illustrates this issue in a multi-armed bandit5.

Example 2 Learning over algorithms versus over actions.
Consider a multi-armed bandit with four arms (actions) A = {a1, a2, a3, a4}, and

two available algorithms, Π = {π1, π2}. We assume that a1 is the optimal action, but
that is not known in advance, and the algorithms’ policies are the distributions shown
in Table 4.1, which results from their internal reasoning procedures.

Algorithm \ Action a1 a2 a3 a4

π1 0.8 0.2 0 0
π2 0.2 0 0.7 0.1

Table 4.1: Algorithms’ policies (probability distribution functions) used in our simple
example.

Consider two reinforcement learning agents: an action-selector PA, and an
algorithm-selector PΠ, which act via an ε-greedy rule with ties broken randomly over
the greedy choices. In the first iteration, PA picks a1 with probability 0.25. PΠ picks π1

with probability 0.5, which selects a1 with probability 0.8. Hence, PΠ selects a1 indirectly
with probability 0.5 · 0.8 = 0.4 > 0.25. Thus PΠ’s expected performance is better than
PA’s in the first iteration. In the next few iterations, PΠ is even more likely to pick π1,
while PA still needs to explore further, until finally playing enough training iterations
for the action-value of a1 be higher than the other actions.

When the number of training iterations becomes sufficiently large, PA learns to al-
ways select a1, and PΠ to always select π1. However, since π1 selects a1 with probability
0.8, PΠ selects a1 with probability 0.8 < 1, and hence is outperformed by PA in the long
run. Therefore, until a certain number of training iterations, a reinforcement learning

5Multi-armed bandits are reviewed on [Sutton and Barto, 1998, Chapter 2].

4.3. Strategic reasoning approaches 33

agent may perform better by learning over algorithms, if the algorithms’ policies are
strong enough. In the long run, however, learning over actions will always perform at
least as good as learning than over algorithms.

In Example 2, the algorithm selector fares better in the short term, but is even-
tually outperformed in the long run by the action selector. We further illustrate this
phenomenon with experiments in synthetic multi-armed bandits (see Section 5.1).

Our notion of algorithms is closely related to the concept of options in Markov
Decision Processes [Sutton et al., 1999a]. Options are temporally-extended actions that
a reinforcement learning agent may execute to pursue specific goals, as formalized in
Definition 2.

Definition 2 An option is a tuple 〈I, π, β〉, where:

• I ⊆ S, where S is the set of environment states, is the initiation set: an option
is available in state s if and only if s ∈ I;

• π is the option’s policy. If the option is active in state s, actions are selected
according to the probability distribution dictated by π(s, ·);

• β : S → [0, 1] is the termination condition. It indicates the probability of an
option terminating in a given state.

Our algorithms are one-step options: they may initiate in any state (I = S), act
according to their internal policies and terminate after one transition (β(s) = 1 ∀s ∈ S).
We use the terms interchangeably throughout this text, although we prefer to mention
options on contexts where the temporally-extended execution is clear.

4.3 Strategic reasoning approaches

This section presents formal models for computers to learn over algorithms to play
games with huge action spaces. The first model we present allows two algorithm-
selection agents to play against each other. The second model pitches an algorithm-
selection vs an action-selection agent. Both models consider the opponent’s presence,
by accounting for its possible choices. We discuss the situation where the agent at-
tempts to find a strong algorithm selection policy by ignoring the possible opponent’s
actions. Each model has different degrees of theoretical guarantees and practical per-
formance issues for the agent.

34 Chapter 4. The strategic reasoning framework

Although the presented models tackle the problem of the action state size by
reasoning over algorithms, the state space remains an issue. Thus, we also discuss
possible approaches to generalize learning across states and their implications with our
models.

4.3.1 Algorithms versus algorithms

This model assumes that both players are algorithm selectors and their portfolios are
of common knowledge. Under these assumptions, solving the resulting game results in
theoretically-guaranteed performance.

The formal model is a two-player zero-sum Markov Game over algorithms, de-
noted MGΠ. It replaces A by Π with proper adaptations, as shown in Definition 3.

Definition 3 A finite, two-player, zero-sum Markov Game over algorithms is a tuple
MGΠ= (MG,Π,TΠ), where:

• MG = (N , S, A, R, T) is the underlying Markov Game (see Definition 1 in
Section 2.2);

• Π = Π1 × Π2 is the collection of both player’s portfolios, where Πi is player i’s
portfolio, or set of algorithms;

• TΠ : S × Π1 × Π2 × S → [0, 1], is an indirect transition function, where
TΠ(s, π1, π2, s

′) denotes the probability of reaching state s′ when player 1 chooses
algorithm π1 and player 2 chooses π2 in state s.

The indirect transition function embeds the algorithms’ policies and the direct
transition function of the game engine T : S×A1×A2×S → [0, 1]. During gameplay,
TΠ obtains the actions a1 and a2 selected by both players’ algorithms and transitions
to the next state according to T (s, a1, a2, ·), implemented by the game engine.

The minimax-Q method (see Section 2.3.2) can be used to learn the maximin
algorithm selection policy. With much fewer choices to consider than if the agent were
reasoning over actions, the method can achieve a better performance faster. Game-tree
search approaches (see Section 2.3.1) could also be used to derive algorithm selection
policies, but they would require the underlying game’s transition function to simulate
the effects of actions selected by the algorithms.

4.3. Strategic reasoning approaches 35

4.3.2 Algorithms vs actions

The model of Markov Game over algorithms, discussed in Section 4.3.1 assumes that
players’ portfolios are of common knowledge. In general, however, the assumption
does not hold neither in human nor computer gameplay, as humans may come up with
unforeseen courses of actions and a programmer can incorporate a novel algorithm
in its program’s portfolio to surprise the opponent. In this situation, the algorithm
selector agent can consider that the opponent can select any action in the underlying
game. The model of two-player, zero-sum Markov Game of algorithms versus actions,
denoted MGΠ×A is then shown on Definition 4.

Definition 4 Without loss of generality, let’s assume that player 1 is the algorithm
selector and player 2 is the action selector. A two-player, zero-sum Markov Game of
algorithms versus actions is a tuple MGΠ×A= (MG,Π1, TΠ×A), where:

• MG = (N ,S,A,R,T) is the underlying Markov game (see Definition 1 in Section
2.2);

• Π1 is player 1’s algorithm portfolio;

• TΠ×A : S × Π1 × A2 × S → [0, 1], is an indirect transition function, where
TΠ×A(s, π1, a2, s

′) denotes the probability of reaching state s′ when player 1 chooses
algorithm π1 ∈ Π1 and player 2 chooses action a2 ∈ A2 in state s.

The indirect transition function embeds the policies of player 1’s algorithms and
the direct transition function of the game engine T : S ×A1×A2× S → [0, 1]. During
gameplay, TΠ×A obtains the action a1 of player 1’s selected algorithm, and transitions
to the next state according to T (s, a1, a2, ·), implemented by the game engine.

Game-tree search or reinforcement learning methods such as the minimax-Q can
also be used to solve the MGΠ×A to determine a safe algorithm selection policy for the
player. However, in practice, |A2| (the number of low-level actions that player 2 can
perform) is large such that computing such solution is unfeasible.

An alternative for the algorithm-selection player is to ignore the opponent’s ac-
tions. From the point of view of this opponent-oblivious agent, the MGΠ×A is reduced
to a Markov Decision Process over algorithms with an embedded opponent, denoted
MDPΠ, formalized in Definition 5.

Definition 5 A Markov Decision Process over algorithms, is a tuple MDPΠ= (MG,
Π, T ′Π), where:

36 Chapter 4. The strategic reasoning framework

• MG = (N,S,A,R, T) is the underlying Markov Game (see Definition 1 in Sec-
tion 2.2);

• Π1 is player 1’s portfolio, or set of algorithms.

• T ′Π : S×Π1×S → [0, 1], is an indirect transition function affected by the opponent.
T ′Π(s, π1, s

′) denotes the probability of reaching state s′ when the agent chooses
algorithm π1 in state s. This probability depends on the hidden opponent action.

The transition function T ′Π is actually theMGΠ×A’s transition function TΠ×A with
the opponent action hidden. The opponent action depends on its policy over actions.
A stationary opponent’s policy determines a stationary T ′Π so that the guarantees of
convergence for single-agent reinforcement learning methods, such as Q-learning, hold.

In general, however, opponents can adapt and change their policies, making the
resulting transition function non-stationary for the opponent-oblivious agent. Thus,
such agents are vulnerable to a devious trick, where a training opponent induces the
player to learn a weak policy, to exploit it afterwards [Littman, 1994]. Nevertheless,
many opponent-oblivious approaches have succeeded in the past [Tesauro, 1995] and
recent [Silver et al., 2016] times. The devious trick is avoided either by training via
self-play, and/or by expert game analysis. The resulting policies can be strong, being
able to match or outperform the best human players in Backgammon [Tesauro, 1995],
or Go [Silver et al., 2016], respectively. These approaches succeed by effective learning
generalization. This involves finding efficient representations for the state space, an
issue we neglected so far, but tackle in the next section.

4.4 Issues with the state space

Our strategic reasoning framework successfully reduces the number of choices to con-
sider in a given state of a complex game, inspired by the human approach of relying on
previously trained strategies. However, large state spaces are also a problem and the
different approaches to tackle this issue have implications with our framework. This
section discusses the approaches we adopt and their implications.

Intuitively, those approaches are also inspired by human behavior: a person tends
to relate the current, possibly novel, game situation to previously experienced ones,
potentially implementing similar reactions.

4.4. Issues with the state space 37

4.4.1 State aggregation

State aggregation is a form of function approximation in which the set S of primitive
states is partitioned into a set S of clusters, or abstract states. A state abstraction
function φ : S → S maps a state in the primitive state space to an abstract state6.
Action-values from states in the same cluster are shared and learning is thus general-
ized: tabular reinforcement learning methods store an entry for each cluster-action pair
rather than each state-action pair. Usually, the state abstraction function is such that
|S| � |S| and the resulting problem becomes manageable by tabular reinforcement
learning approaches.

Our algorithms can be seen as one-step options, as discussed in Section 4.2.
However, combined with state aggregation, we have multi-step options, as we discuss
next. We remark that an option is a tuple 〈I, π, β〉, where I ⊆ S is the initiation set,
indicating where the option can be activated; π is the option’s policy, mapping states to
probability distributions over actions; and β : S → [0, 1] is the termination condition,
indicating the probability of the option terminating in a state (see Definition 2).

Definition 6 Multi-step options via abstract states and algorithms.
Given the set of abstract states S, the corresponding state abstraction function φ

and a portfolio of algorithms Π, for each abstract state s ∈ S and algorithm’s policy
π ∈ Π, there is an option o = 〈I, π, β〉, with elements defined as follows:

• I = {s ∈ S : φ(s) = s};

• π : the option’s policy is exactly the algorithm’s policy;

• β(s) = 0 if s ∈ I and β(s) = 1 otherwise.

For each abstract state s, there are |Π| available options. The agent then selects an
option whose initiation set is s, the option performs actions according to the corre-
sponding policy, passing through various primitive states inside s, and terminates by
reaching a primitive state s′ that maps to a new abstract state: φ(s′) = s′ 6= s.

The original definition of Sutton et al. [1999a] allows the inclusion of primitive
actions a ∈ A in the set of options. However, we do not include those as the action
sets are very large.

We can extend the models discussed in Section 4.4.1 to include our options
scheme. Let O be the set of options, as per Definition 6. The Markov Game over

6We follow the notation of Li et al. [2006] to represent the set of abstract states and the abstraction
function.

38 Chapter 4. The strategic reasoning framework

algorithms (Definition 3), then becomes a Stochastic game over options, denoted SGO,
shown in Definition 7. We do not refer to this model as a Markov Game to remark
that it does not have the Markov property, as we discuss next.

Definition 7 A two-player zero-sum Stochastic game over options is a tuple SGO =
(MG,S,φ,O), where:

• MG = (N,S,A,R, T) is the underlying Markov game (see Definition 1 in Section
2.2);

• S is the set of abstract states, which partitions the primitive set of states S.
That is, for all si ∈ S, the following three conditions hold: (i) si ⊆ S; (ii)
si 6= sj =⇒ si ∩ sj = ∅; (iii) ⋃|S|i=1 si = S.

• φ : S → S is the state abstraction function;

• O = O1 × O2 is the collection of both player’s options, where Oi is player i’s
options, as per Definition 6;

• TO : S × O1 × O1 × S → [0, 1], is an indirect transition function, where
TO(s, o1, o2, s′) denotes the probability of reaching abstract state s′ when player
1 chooses option o1 and player 2 chooses o2 in abstract state s.

The SGO is formalized in Algorithm 2, which shows an episode, or match, in this
model.

Lines 7–11 are the execution of TO(s, o1, o2, ·). It consists of executing both play-
ers’ options until a different abstract state is found. The condition s ∈ I is equivalent
to the option termination β of an option 〈I, π, β〉, since an option terminates when
it reaches a different abstract state. To ensure the real-time nature of the game, an
additional no-op option is executed by default when a player fails to return a valid
option in line 6.

In line 13 we present the experience tuple to the agents. It contains only the
reward obtained in the last transition, whereas in Sutton et al. [1999a]’s original def-
inition, agents accumulate all rewards received in the trajectory determined by the
selected options. This modification suits the idea that the information received upon
reaching a different abstract state is more important, because primitive states in the
same cluster are similar. Nevertheless, the algorithm can be easily changed to ac-
commodate the original definition, by accumulating the rewards received during the
options’ execution (lines 7–11).

4.4. Issues with the state space 39

Algorithm 2 Stochastic game over Options
1: Input: the underlying Markov game (N ,S,A,R,T), the state abstraction function
φ, and both players’ portfolio of algorithms Π1 and Π2

2: Construct the set of multi-step options O1 and O2 according to Definition 6.
3: s← initial state in S.
4: s← φ(s)
5: while s is not terminal do
6: Present s to the players, which respond with their options o1 = 〈I, π1, β〉 ∈ O1

and o2 = 〈I, π2, β〉 ∈ O2, respectively
7: while s ∈ I do . Execution of TO(s, o1, o2, ·)
8: Obtain actions a1 and a2 according to π1(s, ·) and π2(s, ·)
9: Obtain s′ from T (s, a1, a2, ·);
10: s← s′

11: end while
12: s′ ← φ(s′)
13: Present the experience tuple 〈s, o1, o2, Ri(s′), s′〉 to each player i
14: s← s′

15: end while

Algorithm 2 highlights that players’ options might differ in their algorithms poli-
cies, but have the same initiation sets and termination conditions. This means that
both players adopt the same state abstraction function φ. This aspect can be gener-
alized to different state abstraction schemes by presenting the experience tuple to the
player whose option terminated and allowing it to select a new option, while the other
player’s option remains active.

For most state abstraction functions, the SG0 model does not have the Markov
property. This is because TO(s, π1, π2, ·) works differently depending on which primitive
state s was mapped to s, and this information is hidden from the agents. Figure 4.1
shows an example: two different abstract states, sj and sk can be reached from si

when agents jointly select options o1 and ok. The reached state depends on which
primitive state the game is actually in, which depends on the previous choices made
by the players.

Tackling the lack of Markov property can be pursued with ideas from Whitehead
and Lin [1995], but this is out of this dissertation’ scope. Our reinforcement learning
agents act as if the SGO is markovian, although we’re aware that optimal policies over
options might not be attainable.

Nevertheless, an optimal policy over options does not necessarily mean optimal
behavior in the underlying game. Intuitively, this happens because agents are limited
by the options’ policies, as they perform the primitive actions. We investigate this issue
further in a single-state (multi-armed bandit) scenario in Section 5.1. Furthermore,

40 Chapter 4. The strategic reasoning framework

Figure 4.1: The Stochastic game over options is non-markovian. The selected options
determine trajectories in the underlying game’s state space. Selecting the same options
in abstract state si ends in sj or sk depending on which primitive state the agents are.
Dashed arrows indicate other possible, albeit non-followed, trajectories due to options’
stochastic policies.

Theorem 1 of Sutton et al. [1999a] proves this claim for options in single-agent Markov
Decision Processes. However, in complex domains such as real-time strategy games,
sacrificing optimality in exchange for feasibility is a reasonable choice.

Agents playing the Stochastic game over options can resort to traditional tabular
reinforcement learning approaches, given that the set of abstract states and the number
of choices are now manageable.

A stochastic game over options SGO can be played with minimax-Q [Littman,
1994], given that both agents are option-selectors. In our framework, a minimax-
Q agent stores an joint-option-value function Q : S × O1 × O2 → R, where each
Q(s, o1, o2) stores the value, that is, the expected sum of discounted rewards, of the
agent selecting option o1 ∈ O1 whereas the opponent selects option o2 ∈ O2 in state s,
and following the optimal policy over options thereafter. Player i’s policy over options
µi : S × O → [0, 1] is a mapping from an abstract state to a probability distribution
over options. Each game match is an instance of Algorithm 2, where a player i can
select its options (line 6) via an ε-greedy rule: select a random option with probability
ε, or according to the safe policy, given by Eq. 4.1, otherwise.

µi(s, ·) = argmax
µ(s,·)

min
o2∈O2

∑
o1∈O1

µ(s, o1)Q(s, o1, o2) (4.1)

When receiving an experience tuple 〈s, o1, o2, r, s′〉, player i updates its option-
value Q via Eq. 4.2.

4.4. Issues with the state space 41

Q(s, o1, o2) ← Q(s, o1, o2) + α
[
r + γV (s′)−Q(s, o1, o2)

]
V (s′) = mino′2∈O2

∑
o′1∈O1

µi(s, o
′
1)Q(s′, o′1, o

′
2)

(4.2)

In summary, a minimax-Q agent reasoning over options is the same worst-case
reward maximizer of Section 2.3.2, with actions replaced by options, and states by
abstract states.

In general, however, the opponent will not be an option-selector, or will not select
options from a known portfolio. That is, the opponent can virtually select any low-
level game action. However, as remarked in Example 2, it is impractical to consider all
opponent actions and a common practice is to use an opponent-oblivious Q-learning
agent, which, in our case, would store an option-value function Q : S × O1 → R.
Each Q(s, o1) stores the value, that is, the expected sum of discounted rewards, of
the agent selecting option o1 ∈ O1 in state s, and following the optimal policy over
options thereafter. Player i’s policy over options µi : S × O → [0, 1] is a mapping
from an abstract state to a probability distribution over options. Each game match
is an instance of Algorithm 2. Let’s assume that player 1 is our opponent-oblivious
Q-learning agent. This agent can select an option (line 6) via an ε-greedy rule: select a
random option with probability ε, or according to the greedy policy, given by Eq. 4.3,
otherwise.

µi(s, ·) = argmax
o∈O1

Q(s, o) (4.3)

When receiving an experience tuple 〈s, o1, o2, r, s′〉, player 1 ignores the opponent
components and updates its option-value Q via Eq. 4.4.

Q(s, o1) ← Q(s, o1) + α [r + γV (s)−Q(s, o1)]

V (s′) = maxo′1∈O1
Q(s′, o1)

(4.4)

In summary, an opponent-oblivious Q-learning agent reasoning over options is the
same optimistic reward-maximizer Q-learning agent [Watkins and Dayan, 1992], with
actions replaced by options, and states by abstract states. The same caveats discussed
in Example 2 apply: such agent is vulnerable to exploitation, although it can still learn
strong policies via self-play or expert game analysis.

The state abstraction function φ directly interferes on the attainable performance
and on the training time required to reach it: finer abstraction functions, that is, where
more abstract states are generated, result in optimal policies closer to those of the full-
state Markov Game over algorithms (MGΠ in Section 4.3.1). An extreme case is a
one-to-one correspondence, where S = S. An optimal policy in our stochastic game

42 Chapter 4. The strategic reasoning framework

over options corresponds exactly to the optimal policy over algorithms of the MGΠ.
On the other hand, agents will need more training time to visit the higher number

of abstract state-option pairs to produce precise estimates, so that coarser abstractions
are preferred in this sense. An extreme case is shown in Example 3.

Example 3 An extremely coarse state abstraction scheme.
Let S = {s0, st}. Let φ be such that, for each s ∈ S, φ(s) = s0 if s is non-terminal

and φ(s) = st, otherwise.
In such abstraction scheme, agents have a one-shot interaction with the environ-

ment: each agent chooses an option when the game begins and their options act until
the game finishes, as the next abstract state corresponds to a terminal state in the
underlying game.

The aggregation scheme of Example 3 induces a normal-form game, henceforth
referred to as the game of algorithm selection, defined as follows:

Definition 8 The game of algorithm selection is a two-player zero-sum normal-form
game, defined by a tuple (MG, Π, R), where:

• MG = (N,S,A,R, T) is the underlying Markov Game (see Definition 1 in Sec-
tion 2.2);

• Π = Π1 × Π2 is the collection of both players’ portfolio of algorithms;

• R : Π1×Π2 → R2 is the payoff matrix. Ri(π1, π2) indicates player i’s payoff when
player 1 selects algorithm π1 and player 2 selects π2. It is the expected reward of
π1 versus π2 playing an entire match in the underlying game. Let Z ⊂ S be the
set of underlying game’s terminal states: Ri(π1, π2) =

∑
s′∈Z Ri(s

′)·Pr(s′|π1, π2),
where Pr(s′|π1, π2) is the probability of reaching terminal state s’ given that π1

played against π2.

The probability of reaching each terminal state s′ ∈ Z, Pr(s′|π1, π2) is influenced by
the possible trajectories determined by the policies in the underlying game.

The game of algorithm selection is the stochastic game over options (SGO in
Definition 7) with the state abstraction scheme defined as in Example 3. The game of
algorithm selection allows us to draw important conclusions on how algorithms interact
in a given underlying game. Moreover, Nash Equilibrium over the game of algorithm
selection specifies a safe policy over algorithms: a policy with guaranteed performance
over a sequence of matches. Experiments over these aspects are discussed in Section

4.4. Issues with the state space 43

5.3, alongside approaches to handle non-stationary algorithms, which specify different
policies as they learn from experience.

On the other hand, performance guarantees on the game of algorithm selection
do not hold on the much more complex underlying game. Richer behaviors can arise
when players can switch algorithms during a match, which is allowed by the more
general, multiple-decision-point model of stochastic game over options. Experiments
in this richer model are performed in Section 5.4.1.1 for an opponent-aware agent and
in Section 5.4.1.2 for an opponent-oblivious agent.

4.4.2 Linear function approximation

State aggregation, discussed in Section 4.4.1 is a specific form of function approxima-
tion, which generalizes learning by sharing the values in primitive states belonging to
the same abstract state. State aggregation defines a sharp frontier where possibly simi-
lar states will not share values if they belong to different abstract states. Moreover, the
state abstraction scheme must be carefully designed so that the number of resulting
abstract states is not too high to require too many training episodes nor too low so
that the resulting policies perform poorly on the underlying game.

This section discusses linear function approximation as an approach to handle
the state space complexity. It allows a smoother learning generalization than state
aggregation: similar states tend to have similar values as there is no sharp frontier to
divide the states. The similarity depends only on the values assumed by the identified
features used to describe the state.

Here we discuss linear function approximation on the Markov Decision Process
over algorithms (MDPΠ in Definition 5). To briefly recall, this model assumes an
opponent-oblivious agent, which observes the primitive state s ∈ S, selects an algorithm
π ∈ Π, and the algorithm outputs an action a1 ∈ A. The transition function processes
a1 alongside the opponent’s hidden action a2 ∈ A and generates the next state s′ ∈ S
according to the probability T (s, a1, a2, s

′) specified by the game engine. The agent
then observes s′ and the received reward R(s′) for reaching it, repeating the decision
cycle.

With linear function approximation, the state is described by a feature vector with
n features: f(s) = 〈f1(s), . . . , fn(s)〉. Each algorithm π ∈ Π has an associated weight
vector wπ = 〈wπ1 , . . . , wπn〉. Then, instead of storing the algorithm value associated
with every state, Q(s, π), in tabular form, we approximate it with Q̃(s, π,w) via Eq.

44 Chapter 4. The strategic reasoning framework

4.5, where w =
⋃
π∈Π{wπ} is the set of all weight vectors.

Q̃(s, π,w) = f(s) ·wπ =
n∑
i=1

fi(s) · wπi (4.5)

Hence, we store |w| = |f| instead of |S| values for each algorithm. Usually,
|f| � |S|, resulting in a compact representation. Moreover, the value of an algorithm
π for a given state s, Q̃(s, π,w) is propagated to other states, according to their
similarity with s regarding their feature values. Thus, algorithms in unvisited states
can also have precise estimates of Q̃, if similar states have been visited.

As before, a policy over algorithms µ : S×Π→ [0, 1] maps a state to a probability
distribution over algorithms. For a given state s, an ε-greedy policy selects a random
algorithm with probability ε, or the best known algorithm, i.e. argmaxπ∈Π Q̃(s, π,w),
otherwise.

When the agent interacts with the environment, selecting an algorithm π in state
s, reaching state s′ and receiving reward R(s′), it receives a sample of Q(s, π), which
is the target of Q̃(s, π,w). This sample is R(s′) + γQ̃(s′, π′,w), where π’ is some
algorithm chosen in s′. On-policy control methods such as Sarsa use π’ as the one
actually returned by µ(s′, ·). Weights are thus updated to reduce the prediction error,
δ. Equation 4.6 shows the update rule of Sarsa(0), a specific version of Sarsa(λ)
[Rummery and Niranjan, 1994], which does not use eligibility traces7.

δ = R(s′) + γQ̃(s′, π′,w)− Q̃(s, π,w)

wπi ← wπi + αδfi(s)
(4.6)

Our state aggregation model forces the agent to stick with an algorithm until the
primitive state maps to a new abstract state, whereas our linear function approximation
model does not. In other words, the agent can select a new algorithm in every game
state. However, as algorithm-values are generalized across similar states, it is likely
that the best algorithm in a given state remains the best in its neighbors, so that the
agent can maintain an algorithm executing for extended periods.

4.5 Summary

This chapter discussed a strategic reasoning framework that attempts to mimic the
human approach on complex games. As human players usually rely on previously

7Eligibility traces allow updating the value not only of the current, but of past choices as well
with the most recent reward.

4.5. Summary 45

trained courses of actions, or strategies, a computer could rely on off-the-shelf game-
playing algorithms. We analyzed how our concept of algorithms relates to options, or
temporally-extended actions, in reinforcement learning.

We presented formal models of interaction when both players are algorithm selec-
tors, focusing on game-theoretic aspects, and a more general one where the opponent
can virtually select any action, where we focus on underlying game performance. In the
latter case, we argued that ignoring opponent’s actions can be necessary, as it is unfea-
sible to evaluate how an algorithm performs against each possible opponent’s action.
We are aware, however, that the resulting policies of training an opponent-oblivious
agent have no game-theoretic guarantees and could be exploited. Nevertheless, the
stronger the resulting policy, the harder it would be to exploit it.

Algorithms reduce the number of choices to consider in complex domains, but
oftentimes huge state spaces are also an issue. We proceeded by discussing two pos-
sible approaches to handle the state space: state-aggregation, where similar states
are grouped into clusters, and linear function approximation, where state values are
propagated to similar ones, by representing these states using features. We showed
that algorithm selection with state aggregation results in multi-step options, whereas
function approximation virtually results in one-step options. We further discussed an
extreme case of state aggregation, with a single decision point, and framed it as a
normal-form game: the game of algorithm selection, which may aid in an initial anal-
ysis of interactions among algorithms and game-theoretical implications in a complex
underlying game.

In summary, our models focus either on game-theoretic aspects or attainable per-
formance in the underlying game: the opponent-aware models focus on game-theoretic
aspects, although restricting the types of opponents considered. In other words, the
resulting policies might perform poorly against opponents that do not behave as as-
sumed. The opponent-oblivious models focus on performance, disregarding the possible
opponent types.

Our algorithm selection framework satisfies the guidelines outlined in Section 1.1:

(G1) An agent must play without resorting to the game’s forward model: we
model algorithm selection within a reinforcement learning framework, such that
model-free approaches can be used;

(G2) The approach must not depend on powerful hardware: the hierarchical
reasoning provided by our algorithm selection framework aims to avoid reasoning
at raw state and action representations, which would require long training ses-
sions on distributed systems to reach a reasonable performance. Moreover, state

46 Chapter 4. The strategic reasoning framework

aggregation and linear function approximation are computationally fast as they
do not involve convolutions often required by deep learning approaches operating
on raw state/action representations [LeCun et al., 1998]. This guideline is further
verified in our experiments (Chapter 5);

(G3) The approach must handle all aspects of the underlying game: as we
are not concerned with implementation details of algorithms, we can use game-
playing programs or scripts, which are typically able to play entire matches of
complex games. This guideline is further verified in our experiments (Chapter 5)
as well.

Chapter 5

Experiments

This chapter presents experiments with our strategic reasoning framework for complex
computer games. We start by illustrating how one benefits by learning over algorithms
rather than over low-level actions via synthetic experiments in a multi-armed bandit
(Section 5.1). We then describe StarCraft and µRTS, the real-time strategy games
used as testbeds for our strategic reasoning framework (Section 5.2).

We instantiate the game of algorithm selection, a one-shot algorithm selection
problem, in Section 5.3, using StarCraft as our underlying game. We illustrate game-
theoretic properties in a stationary scenario, approaches to track non-stationarity and
results of tournament participations of a functional StarCraft bot.

We analyze our framework in scenarios with multiple decision points in Section
5.4, using µRTS as our underlying game. We evaluate two approaches to generalize
learning across µRTS states: state aggregation and linear function approximation.

State aggregation (Section 5.4.1), allows us to instantiate the Stochastic Game
over Options (defined in Section 4.3.1) and investigate a multiagent reinforcement
learning method, for seemingly the first time in real-time strategy games. We also
evaluate a Q-learning agent reasoning over options for the more general case, when an
opponent is not an algorithm selector. Our Q-learning agent achieves competitive per-
formance against state-of-the-art search-based approaches, but is unable to consistently
outperform them.

Linear function approximation (Section 5.4.2) promotes a smoother learning gen-
eralization than state aggregation. Our Sarsa agent using this method consistently
outperforms the search approaches.

Section 5.5 closes the chapter, analyzing overall aspects of all experiments.

47

48 Chapter 5. Experiments

5.1 Synthetic experiments

When presenting our model of algorithms (Section 4.2), we argued that, intuitively, it is
easier to find the best choice in a reduced set of algorithms than in a large set of actions,
but the performance of the algorithm selector is restricted to that of its best algorithm.
In other words, an algorithm selector will eventually be surpassed by an action selector.
Experiments in this section illustrate this situation in a simplified scenario: a single-
agent, single-state problem: a multi-armed bandit [Sutton and Barto, 1998, Chapter
2]. We generate synthetic multi-armed bandits and portfolios of algorithms, varying
the number of actions (arms), the algorithms’ strength (the likelihood of selecting the
best action) and the number of algorithms (the portfolio size). We denote the set of
multi-armed bandit actions as A and the portfolio of algorithms as Π.

We compare an action-selection reinforcement learning agent, denoted PA, and an
algorithm-selection reinforcement learning agent, denoted PΠ. We use the term choice
when referring to either algorithms or actions. Whether the choice is an algorithm
or action depends on the type of agent under consideration. Both PΠ and PA are Q-
learning [Watkins and Dayan, 1992] agents with ε-greedy choice selection. For both,
we considered α and ε starting as 1, and decaying with rate 0.999 after each trial.
Choice-values (Q) are initialized with zeros.

We denote an algorithm by the policy π it specifies, which is a probability dis-
tribution over actions (π : A→ [0, 1]). We artificially generate algorithms to compose
the portfolio of the algorithm selector as follows: all generated algorithms prune 95%
of non-optimal actions, by assigning probability 0 to them. The optimal action, a∗,
is assigned a certain probability π(a∗) and the remaining actions’ probabilities are
uniformly selected from 1 − π(a∗) and normalized. We generate π(a∗) according to
Gaussian and Uniform distributions:

1. Gaussian: π(a∗) is drawn from N(µ, σ) and truncated to the interval [0, 1], where
µ is the mean (a parameter we vary) and σ is fixed as 0.2;

2. Uniform: π(a∗) is drawn from U(0, u), where u is a upper-bound (a parameter
we vary).

The portfolio strength is thus related to µ and u, as higher values will generate
stronger algorithms.

Agents interact with a multi-armed bandit in 10000 trials, or iterations. We
measure the meeting points, that is, the number of iterations needed for the cumulative
reward of the action-selector PA to meet that of the algorithm selector PΠ, and for the

5.1. Synthetic experiments 49

probability of selecting the best action by PA to meet1 that of PΠ according to the
number of actions (|A|), the algorithms’ strength (µ or u) and the portfolio size (|Π|).
When changing one parameter, we fix the others as |A| = 100, µ = 0.4, u = 0.5 and
|Π| = 25. Each parameter combination is simulated in 1000 experiments. In each
experiment, the multi-armed bandit is created with mean reward ra sampled from
N(0, 1) for each action a ∈ A. When selecting a, the actual reward is sampled from
N(ra, 0.25).

Figure 5.1 shows the meeting point (τ), where the cumulative reward of PA meets
that of PΠ as |A|, u or µ, and |Π| vary. The figure shows average results of 5 repetitions
of the whole procedure, and error bars show the 95% confidence interval.

200 400 600
Problem Size (|A|)

2000

2250

2500

0.2 0.4
Mean ()

200

1000

2000

3000

0 100 200 300
Algorithm Set Size (|Π|)

1300

2000

3000

4000

(a) Gaussian

200 400 600
Problem Size (|A|)

700

750

0.3 0.5 0.7 0.9
Upper Bound (u)

300
1000

2000

3000

0 100 200 300
Algorithm Set Size (|Π|)

625

650

675

700

(b) Uniform

Figure 5.1: Meeting point (τ) of cumulative rewards regarding the number of actions
(|A|), algorithms strength (µ or u), and portfolio size (|Π|). π(a∗) of algorithms in (a)
are generated with the Gaussian process, whereas π(a∗) of those in (b) are generated
with the Uniform process. A point beyond the y axis means that τ > 10000 iterations.

The meeting point τ grows with |A| because the action-selection agent must
explore a larger action space to discover the best action. The algorithms’ strength,
determined by µ or u, does not affect how long PA takes to find the best action. How-
ever, stronger algorithms make PΠ accrue more rewards whereas PA is still exploring
to discover the best action.

1We assume that the algorithm selector initially performs better than the action selector, which
is usually the case (see Example 2 in Section 4.2).

50 Chapter 5. Experiments

The seemingly surprising result is τ growing with the portfolio size |Π| in
Gaussian-generated algorithms (Fig. 5.1a), as PΠ should take more time to find the
best algorithm. However, although it might take time to find the best algorithm, the
sub-optimal algorithms might be strong enough, as their chance of selecting the best
action is always non-zero in our experiments. For the Uniform-generated algorithms
(Fig. 5.1b), τ initially grows, but tends to decrease after |Π| > 100, which does not hap-
pen with the Gaussian-generated algorithms, because the Gaussian generation process
with π(a∗) ∼ N(0.4, 0.2) can generate stronger algorithms than the Uniform process
with π(a∗) ∼ U(0, 0.5).

We now compare the meeting point of PA and PΠ regarding the probability of
selecting the best action (a∗). The algorithm-selection agent, PΠ, selects a∗ with prob-
ability pΠ

a∗ , given by Equation 5.1, where ε is the probability of exploration, that is,
selecting a random algorithm, and Q is the algorithm-value function. Q(π) denotes the
expected reward of selecting algorithm π ∈ Π. Equation 5.1 is the ε-greedy policy over
algorithms weighted by the probability of the algorithms select a∗: the left component
is the greedy choice, where π+ = argmaxπ∈ΠQ(π) and the right component is the ran-
dom choice. The probability of PΠ selecting a∗, therefore, depends on the probability
of its algorithms selecting a∗.

pΠ
a∗ = (1− ε) · π+(a∗) +

ε

|Π|
∑
π∈Π

π(a∗) (5.1)

The action-selection agent, PA, selects a∗ with probability pAa∗ given by Equation
5.2, which is the usual ε-greedy selection over actions. Q is the action-value function,
such that Q(a) denotes the expected reward of selecting action a ∈ A.

pAa∗ =

(1− ε), if argmaxa∈AQ(a) = a∗

ε
|A| , otherwise

(5.2)

Figure 5.2 shows the meeting point τ , where pAa∗ meets pΠ
a∗ as |A|, u or µ, and |Π|

vary. As before, the error bars show the 95% confidence interval on 5 repetitions.

The meeting point τ grows with statistical significance, under all parameters con-
sidered, for both algorithm generation processes. Similarly to the cumulative rewards
(Fig. 5.1), the more actions, the more PA has to explore to find the best one. Like-
wise, greater µ or u generate stronger algorithms. For these, the curves tend to grow
exponentially. The meeting point τ also grows with |Π|. This happens because all
algorithms have non-zero π(a∗), and the likelihood of having strong algorithms in the
portfolio increases with its size. Propositions 1 and 2 in [Tavares et al., 2018a] prove

5.1. Synthetic experiments 51

100 150 200 250
Problem Size (|A|)

700

1000

1500

2000
τ

0.1 0.3 0.5
Mean (µ)

200

1000

2000

3000

τ

0 100 200 300
Algorithm Set Size (|Π|)

600

1000

1500

2000

τ

(a) Gaussian

200 400 600
Problem Size (|A|)

500

1000

1500

2000

τ

0.3 0.5 0.7 0.9
Upper Bound (u)

200

500

1000

1500
τ

0 100 200 300

360

380

400

420

τ

Algorithm Set Size (|Π|)

(b) Uniform

Figure 5.2: Meeting point (τ) of pAa∗ and pΠ
a∗ regarding the number of actions (|A|),

algorithms strength (µ or u), and portfolio size (|Π|). π(a∗) of algorithms in (a) are
generated with the Gaussian process, whereas π(a∗) of those in (b) are generated with
the Uniform process. A point beyond the y axis means that τ > 10000 iterations.

this claim for the Uniform and Gaussian algorithm generation processes, respectively.

In our analysis, we assume that π(a∗) comes from certain probability distribu-
tions. In practice, however, this does not happen because if the optimal action was
known, one would just create an algorithm with π(a∗) = 1 rather than sampling it
from a certain distribution.

Our algorithm generation processes attempt to model possible ways the algo-
rithms, scripts and/or domain-specific heuristics are created. The uniform distribution
could model the case where there is not yet an established framework for developing
strong algorithms, such that a designer is unable to develop an algorithm whose π(a∗)
is greater than a certain upper bound. The Gaussian distribution, on the other hand,
could model a situation with common knowledge or an established framework to de-
velop strong algorithms (e.g., Monte Carlo Tree Search for computer Go [Browne et al.,
2012]). Then, in a set of algorithms, we could expect that there will be a mean and
a variance over π(a∗), which might vary with different design decisions or parameter
configurations.

To extend the multi-armed bandit analysis to multi-state scenarios, we might
think of each state as a multi-armed bandit, and the best arm as the one with the

52 Chapter 5. Experiments

highest expected sum of discounted rewards.
In general, one works with a fixed algorithm portfolio, so that |Π| is fixed. More-

over, the optimal action is unknown, as is the probability of an algorithm selecting it.
However, the increase in the meeting point with the number of actions does not de-
pend on these factors: the more actions available, the more advantageous it is to learn
over algorithms, regardless of the criteria (cumulative rewards or probability of select-
ing the best action). In scenarios with huge action spaces, such as real-time strategy
games, the number of actions is usually greater than the training iterations, so that it
is unlikely for an agent to find the optimal action. Trading optimality for shorter-term
performance is reasonable in this domain and that’s the main idea pursued in this
dissertation, now illustrated with synthetic experiments.

Experiments in this section were performed in cooperation with Siva Anbalagan
and Leandro Marcolino, appearing in [Tavares et al., 2018a], alongside further the-
oretical analysis and the experiments with linear function approximation of Section
5.4.2.

5.2 Real-time strategy testbeds

5.2.1 StarCraft

StarCraft: Brood War, or simply StarCraft is a real-time strategy game released in
1998 by Blizzard Entertainment, which became a reference in the genre. The game is
placed in a futuristic world, where three races, with distinct characteristics, battle in
a science fiction plot [Blizzard, 2016]. In terms of gameplay, the three races can be
described as follows [Liquipedia, 2012]:

• Zerg : a insectoid savage race, which attacks with large amounts of cheap and
weak units;

• Protoss : an alien race with advanced technology, characterized by powerful and
expensive units;

• Terran: representing the future of human race, with units of intermediate cost
and power.

Players harvest mineral and gas resources to train units and construct buildings.
More advanced and/or powerful units or buildings require more resources. In real-time
strategy games, the technology tree lists the dependencies required to create certain

5.2. Real-time strategy testbeds 53

entities or unlock certain abilities. The more powerful units, buildings and abilities are
usually located deeper in the technology tree. Table 5.1 shows the number of units,
buildings2 and the technology tree depth of each race and Figure 5.3 presents a game
screenshot, with a Terran base.

Race #units #buildings Tech. tree depth

Zerg 13 17 6
Protoss 14 16 6
Terran 13 18 7

Table 5.1: Number of units, buildings and technology tree depth of each StarCraft
race.

Figure 5.3: Screenshot of a StarCraft Terran base, highlighting specific units and build-
ings.

StarCraft gameplay has many challenging details, such as:

• Special abilities: some units can become invisible, others can burrow themselves
on ground, others have splash damage, whose attacks have an area of effect, and
so on;

• Spells: there are many spells available, which include healing or shielding allies,
area damages, sight reduction, etc.;

• Air and ground units: air units are not affected by ground obstacles. Besides,
some maps have isolated terrain, reachable only by air. Air units increase combat

2Counting Terran add-ons, that is, small construction attached to other buildings, as buildings
themselves.

54 Chapter 5. Experiments

complexity, as some units are anti-air specialists whereas others cannot attack
air units. Moreover, air transport units can carry ground units either to cut
distances or to reach isolated terrain;

• High and low ground: units in high ground can see units in low ground, but the
opposite only happens when the unit in high ground attacks. Moreover, units in
low ground can miss attacks to units in high ground.

To win a match, a player has to destroy all enemy buildings. Each race has unique
units and buildings, generating distinct gameplay styles and yet the game is balanced
such that there’s no better race than the other: good use of the race’s abilities is up
to the players. An example match of StarCraft can be seen in https://youtu.be/

CLSlqG9f4AQ.

StarCraft has a programming interface called BWAPI, aimed at the development
of software-controlled players (bots). BWAPI allows a program to retrieve information
on the game state and send commands to control its units [BWAPI, 2015]. Its advent
and evolution allowed the incremental adoption of StarCraft as an artificial intelligence
research platform [Ontañón et al., 2013]. In StarCraft, there is no forward model
available: one cannot query the game engine for the next state given the current
state and performed actions. The only way to discover the next state is from actual
experience: issue the actions and observe the state generated by the game engine,
without the possibility of backtracking.

The rising interest in StarCraft as a research platform resulted in the appearance
of tournaments, in which academics and enthusiasts send their bots to compete. The
appearance of Churchill [2014]’s tournament manager allowed for a significant increase
in the number of matches played in tournaments, reducing the effect of randomness, by
automating the match configuration and result collection. In the present days, three
tournaments happen each year:

• CIG StarCraft AI Competition, promoted by the IEEE Computational Intelli-
gence in Games conference;

• AIIDE StarCraft Competition, promoted by the Artificial Intelligence and Inter-
active Digital Entertainment conference.

• SSCAIT (Student StarCraft AI Tournament), hosted in the Czech Technical Uni-
versity, in Prague and in the Comenius University, in Bratislava.

https://youtu.be/CLSlqG9f4AQ
https://youtu.be/CLSlqG9f4AQ

5.2. Real-time strategy testbeds 55

5.2.2 µRTS

The µRTS platform, illustrated in Figure 5.4, is a real-time strategy (RTS) game de-
signed to facilitate artificial intelligence research [Ontanón, 2013], especially for search-
based approaches. It simplifies RTS games by having a single race, fewer types of units
and buildings (six in total, detailed next), a shallow technology tree (with three levels),
and a simpler combat model (with no special abilities, spells, different terrain heights
or air units).

The significant simplifications, compared to StarCraft, aim to provide a simpler
and cleaner experiment testbed to perform initial validation of approaches, without
the need to handle all the details of a complete commercial game [Ontanón, 2013].
Moreover, µRTS provides a forward model to foster the development of search and
planning methods: it is possible to query the game engine for the next state given a
state and the performed actions, without having to actually perform the actions and
experience the resulting state.

Figure 5.4: A screenshot of µRTS.

In µRTS, there are two types of buildings: Bases and Barracks. Bases produce
Workers and Barracks produce military units. Workers construct buildings, harvest
resources (needed to construct buildings and produce units) and have limited melee
combat ability. Military units are either Heavy, Light or Ranged. Heavy is a strong
but slow melee combat unit. Light is a weak but fast melee combat unit. Ranged are
weak combat units, but can attack from distance. To win a µRTS match, a player
must destroy all buildings and kill all adversary units.

Since 2017, a µRTS tournament is promoted by the CIG (IEEE Computational
Intelligence in Games) conference.

56 Chapter 5. Experiments

5.3 The game of algorithm selection

Experiments in this section evaluate the game of algorithm selection, stated in Defini-
tion 8 in Section 4.4.1.

In this model, at the beginning of an underlying game match, agents select an
algorithm to play on their behalf. Selected algorithms play the entire match and agents
observe the final outcome. Thus, the game is modeled as a normal-form game, whose
payoff matrix displays the relative performance among algorithms. In this section, we
are more interested in game-theoretic aspects of algorithm selection, namely, equilib-
rium selection policies and safe opponent exploitation.

Our experiments were performed with StarCraft (See Section 5.2.1) as the un-
derlying game, using StarCraft software-controlled players (bots) as algorithms. A
StarCraft bot defines a game-playing policy, mapping states to actions, satisfying our
definition of algorithm. Hence, in this section’s experiments, agents select a bot to play
a StarCraft match on their behalf. The agent outcome is that of its selected bot. We
use the terms bot and algorithm interchangeably hereafter.

5.3.1 Methodology

Our experiments are round-robin tournaments among various agents, each implement-
ing an algorithm selection method. Each agent faces every other for 1000 matches.
Tournaments are executed in stationary and non-stationary scenarios. In the station-
ary scenario, algorithms do not learn, whereas in the non-stationary scenario, they
can employ learning mechanisms. An algorithm employing a learning mechanism de-
fines different policies as it gains experience. Its performance against other algorithms
may vary, and this causes non-stationarity in the game of algorithm selection’s payoff
matrix.

In StarCraft, bots usually learn by updating scores of their hard-coded strategies,
such as build-orders, based on match results against each specific opponent. This is
called intergame learning in [Ontañón et al., 2013]. Bots with a wider range of strategies
and/or more efficient scoring mechanisms perform better in the long run than their
more limited counterparts3.

The portfolio of algorithms in our experiments is the same for both stationary and
non-stationary scenarios, although it was determined under stationary conditions, as
follows: we built a payoff matrix, shown in Table 5.2, by simulating 100 matches among

3For an example of how bots performance vary as they learn, one can refer to the AIIDE 2017
tournament learning curve at https://www.cs.mun.ca/~dchurchill/starcraftaicomp/2017/win_
percentage_graph.html.

https://www.cs.mun.ca/~dchurchill/starcraftaicomp/2017/win_percentage_graph.html
https://www.cs.mun.ca/~dchurchill/starcraftaicomp/2017/win_percentage_graph.html

5.3. The game of algorithm selection 57

eight Protoss bots of AIIDE 2015 tournament [Churchill et al., 2015]: UAlbertaBot,
Ximp, Xelnaga, CruzBot, NUSBot, Aiur, Skynet and SusanooTricks, with learning
capabilities disabled - which ensures stationarity. All matches were played on a single
map, Fortress4, to avoid variability due to different maps. We then estimated the
payoffs of all pairs of bots by the rate of victories minus the rate of defeats5. A positive
value means that row bot dominates the column bot, winning more than 50% matches.
This is enough for a rational agent to prefer one bot over the other.

Bot UAlb Ximp Xeln Cruz NUSB Aiur Skyn Susa
UAlberta 0.94 0.96 1.00 1.00 0.94 0.84 1.00
Ximp -0.94 1.00 0.94 0.94 0.72 0.50 1.00

Xelnaga -0.96 -1.00 -0.48 0.72 0.46 0.46 1.00
CruzBot -1.00 -0.94 0.48 0.60 0.34 -0.68 0.98
NUSBot -1.00 -0.94 -0.72 -0.60 0.48 0.94 0.88
Aiur -0.94 -0.72 -0.46 -0.34 -0.48 0.58 1.00

Skynet -0.84 -0.50 -0.46 0.68 -0.94 -0.58 1.00
Susanoo -1.00 -1.00 -1.00 -0.98 -0.88 -1.00 -1.00

Table 5.2: Payoff matrix of AIIDE 2015 Protoss bots on Fortress map. Values in bold
indicate that the row bot dominates the column adversary.

UAlbertaBot and Ximp dominate all bots6 and SusanooTricks is dominated by
all others. Thus, for the algorithm portfolio, we removed UAlbertaBot and Ximp,
because dominant bots are obvious choices (Nash Equilibrium in pure strategies) and
SusanooTricks, because dominated bots would never be chosen by rational agents.
Thus, the portfolio of algorithms in our experiments contains Xelnaga, CruzBot, NUS-
Bot, Aiur and Skynet. Figure 5.5 illustrates the dominance among the remaining bots,
based on the payoff matrix in Table 5.2. The fact that all bots have incoming edges
means that any bot is dominated by at least another bot, and the outgoing edges in-
dicate that any bot dominates at least another bot. Moreover, the figure indicates the
many cyclical interactions among bots.

In this situation, Nash Equilibrium exists only in mixed strategies, i.e., a prob-
ability distribution over bots. Table 5.3 shows the calculated Nash Equilibrium for
our portfolio. This equilibrium - valid for the stationary scenario - was calculated via
Game Theory Explorer [Savani and von Stengel, 2015]. To calculate the equilibrium,
we filled the matrix diagonals with zeros. This means that a bot would draw against
itself, or win and lose an equal amount of matches.

4Fortress is symmetric map with 4 starting locations, each with the same amount of resources
(http://liquipedia.net/starcraft/Fortress).

5Table A.1 in the Appendix A shows the win rate.
6Ximp becomes dominant after we remove UAlbertaBot.

http://liquipedia.net/starcraft/Fortress

58 Chapter 5. Experiments

Figure 5.5: Dominance graph for AIIDE 2015 Protoss bots on Fortress map, learning
disabled.

Table 5.3: Nash Equilibrium among selected bots.

Strategy Probability

Xelnaga 41.97%
CruzBot 28.40%
NUSBot 0%
Aiur 0%

Skynet 29.63%
Total 100%

Expected payoff 0

In equilibrium, NUSBot and Aiur have zero probability because, although they
dominate other bots, Xelnaga dominates them and their dominated bots (see Fig. 5.5).
The expected payoff of zero means that an agent selecting algorithms according to the
equilibrium policy is expected to win and lose an equal number of matches.

For both stationary and non-stationary algorithm selection tournaments, the fol-
lowing agents, or algorithm selection methods, competed:

• Skynet: always select Skynet;

• Xelnaga: always select Xelnaga.

• Reply-matrix: select the best response against the opponent’s last choice, by
looking at the payoff matrix;

• Freq-matrix: same as reply-matrix, but select the best response against the op-
ponent’s most frequent choice;

5.3. The game of algorithm selection 59

• Reply-hist: same as reply-matrix, but the best response is computed by looking
at the history of past matches, simply by counting which option has beaten the
opponent’s last choice more times;

• Freq-hist: same as reply-hist, but counters the opponent’s most frequent choice;

• ε-greedy: select a random algorithm with probability ε, and its most victorious
algorithm with probability (1− ε);

• UCB (Upper-Confidence Bound): selects the algorithm with highest mean reward
+ upper-confidence bound, calculated via the UCB1-tuned formula of Auer et al.
[2002];

• Exp3: the Exp3 algorithm of Auer et al. [1995] (described below);

• Nash: plays according to the Nash Equilibrium policy in Table 5.3;

• ε-Nash: attempts to exploit opponent with probability ε (by playing freq-matrix)
and plays the safe strategy (Nash Equilibrium) with probability 1 - ε.

• minimax-Q: the minimax-Q algorithm of Littman [1994] (see Section 2.3.2).

Reply-matrix, freq-matrix, reply-hist and freq-hist are variations of Fictitious
play [Brown, 1951]7. Freq-matrix is the most similar to fictitious play, except that
it initializes the opponent’s move count with zeros and counters the opponent’s most
frequent choice rather than the mixed strategy induced by its empirical frequencies.
The other methods become increasingly different: freq-hist does not query the payoff
matrix to calculate the best-response; reply-matrix counters only the opponent’s last
move, as a myopic freq-matrix; and reply-hist is a myopic freq-hist.

Exp3 is a method for adversarial multi-armed bandits8. Each choice (arm) has
an associated weight, which is initialized as zero and increases as the respective arm
gives rewards. A factor κ > 0 determines how much the probability of selecting an
arm increases in proportion to the weights. The probability of choosing an arm has
two elements, balanced by a factor β ∈ [0, 1]: a greedy element, proportional to each
choice weight, and a uniform element, to bring randomness and confuse the adversary.

7Fictitious play calculates a best response against its opponent by assuming it will play according
to the distribution induced by the empirical frequency of past choices. It turns out that the empirical
frequencies of two players using this method converges to the Nash Equilibrium of a zero-sum game
[Shoham and Leyton-Brown, 2009, Chapter 7].

8In adversarial multi-armed bandits, at each round, the opponent selects the payoff of each bandit’s
arm [Auer et al., 1995].

60 Chapter 5. Experiments

Exp3 has theoretical performance guarantees without assumptions on the opponent,
given that κ and β are initialized properly.

The characteristics of algorithm selector agents is summarized in Table 5.4.
Dummy refer to weak agents, that select the same choices regardless of the oppo-
nent behavior. Repeaters usually need a number of trials to detect that an option is no
longer the best, thus they are likely to repeat choices. GT stands for game-theoretic:
agents that explicitly account for the opponent and have theoretical performance guar-
antees. Adaptive agents use match outcomes to update their internal structures, so
their algorithm selection policies might change. Reply-matrix does not have any of
those characteristics, thus its row is empty.

Dummy Repeater GT Adaptive

Skynet X
Xelnaga X
Reply-matrix
Freq-matrix X
Reply-hist X
Freq-hist X X
ε-greedy X X
UCB X X
Exp3 X X
Nash X
ε-Nash X
minimax-Q X X

Table 5.4: Characteristics of the algorithm selection tournament agents.

In the algorithm selection tournament, agents that need to calculate best re-
sponses (freq-matrix and reply-matrix) do so via Table 5.2, whereas Table 5.3 guides
agents based on Nash Equilibrium (Nash and ε-Nash). In the non-stationary scenario,
the best responses and equilibrium calculated that way might refer to a situation that
is no longer valid, because these methods do not update the payoff matrix.

We built pools of StarCraft matches to speed up the algorithm selection tourna-
ment. When two agents select their algorithms, instead of starting an actual StarCraft
match with the corresponding bots, we draw a previously recorded result from the pool.
The pool has no records of a bot playing against itself, so when contestants select the
same bot, victory is randomly awarded. The result is fed back to the contestants,
which update their internal structures if necessary and the match is removed from the
pool. For a new contest between other algorithm selectors, the pool is restored.

5.3. The game of algorithm selection 61

Agent Parameter Value Meaning

ε-greedy ε 0.2 Exploration probability

ε-Nash ε 0.4 Exploitation probability

minimax-Q α 0.1 Step size
ε 0.1 Exploration probability

Exp3 β 0.1 Uniform and greedy balance factor
κ 1.0 Weight update factor

Table 5.5: Agents’ parameters.

The pool of matches for the stationary scenario was generated with bots’ learning
capabilities disabled. When two agents choose their algorithms, we randomly draw
a previously recorded result from the pool. The match pool for the non-stationary
scenario was generated with bots’ learning capabilities enabled. When two algorithm
selection methods choose their algorithms, unlike the stationary case, we sequentially
draw results from the pool because consecutive records from a pair of bots in the pool
reflect their updated knowledge as they played against each other.

All matches among StarCraft bots (Table 5.2 and match pool generation) were
executed with the StarCraft AI Tournament Manager9. The algorithm selection tourna-
ments were executed with the StarCraft Nash engine10, which implements the described
agents and mechanisms to use the match pool.

5.3.2 Results

We ran algorithm selection tournaments to test each scenario: stationary and non-
stationary. In each repetition of a tournament, each agent plays 1000 matches against
every other agent. Results are averaged over 30 repetitions. Agents’ parameters are
shown in Table 5.5.

Values in Table 5.5 were determined in prior experiments and ensured a good
tradeoff between exploration and exploitation for ε-greedy, exploitation vs exploitability
for ε-Nash and a good overall performance for minimax-Q and Exp311. Moreover, the
payoff matrix for minimax-Q is initialized optimistically with ones.

9We added the option to disable bots’ learning capabilities in a fork of the old tournament manager
in http://github.com/andertavares/StarcraftAITournamentManager. An updated version of the
original software now integrates this feature.

10https://github.com/DanielKneipp/StarcraftNash
11The results of those prior experiments appear in https://github.com/DanielKneipp/

StarcraftNash/wiki/Test-Results.

http://github.com/andertavares/StarcraftAITournamentManager
https://github.com/DanielKneipp/StarcraftNash
https://github.com/DanielKneipp/StarcraftNash/wiki/Test-Results
https://github.com/DanielKneipp/StarcraftNash/wiki/Test-Results

62 Chapter 5. Experiments

Figure 5.6 shows the overall win rate of each agent across all adversaries in the
stationary scenario, ordered from left to right.

62.0
57.5 57.1

55.4 53.3 53.2 53.0 52.2 49.9 49.9

35.2

21.4

0

10

20

30

40

50

60

70

A
ve

ra
ge

 W
in

 R
at

e

Figure 5.6: Overall win rate in the stationary scenario.

Reply-matrix was the most successful agent in the stationary scenario, followed by
minimax-Q. Nash reached the expected accumulated payoff of zero by winning roughly
50% of its matches in the stationary scenario. ε-Nash’s overall performance is slightly
better than Nash’s. Table 5.6 details the performance of these agents against other
ones grouped by their characteristics (see Table 5.4).

Dummy Repeaters Game-theoretic

Reply-matrix 87.35 64.87 49.24
Nash 50.20 49.05 50.05
ε-Nash 65.32 51.32 50.39

Table 5.6: Win rate of specific agents against groups of opponents

Reply-matrix performs well against dummy and repeater opponents. This hap-
pens because countering the opponent’s last choice is a good policy against those who
tend to choose the same option repeatedly. Countering the last choice had no effect
on the methods with theoretical guarantees, against which reply-matrix breaks even.
Nash breaks even against all groups of opponents. The equilibrium policy is safe and
its theoretical performance guarantee holds regardless of the opponent’s strength. ε-
Nash successfully exploits the dummy opponents and breaks even against the others,
suggesting that deviating from the safe policy is useful. Table A.2 in Appendix A
details the pairings among all agents in the stationary scenario.

Figure 5.7 shows the overall win rate of each agent across all adversaries in the
non-stationary scenario, ordered from left to right. The figure also shows the perfor-
mance of each agent in the stationary scenario for an easy visualization of improvement
or degradation.

5.3. The game of algorithm selection 63

65.3 63.5 63.5 63.0 62.4 60.9

52.4 48.7

40.6 37.0

24.1
18.4

57.5 57.1 53.3
49.9 55.4 52.2

21.4

35.2

49.9 53.0

62.0

53.2

0
10
20
30
40
50
60
70

A
ve

ra
ge

 W
in

 R
at

e

Non-stationary Stationary

Figure 5.7: Overall win rate in the non-stationary scenario, with stationary perfor-
mance shown for comparison.

The performance of non-adaptive agents degrades in the non-stationary scenario.
This happens because the non-adaptive agents rely on a previously estimated payoff
matrix (Table 5.2). However, as algorithms learn, that payoff matrix becomes outdated
because the relative performance between algorithms changes. Table 5.7 illustrates this,
by showing the win rate of reply-matrix versus Skynet in stationary and non-stationary
scenarios.

Scenario Win rate (%)

Stationary 93.92
Non-stationary 31.80

Table 5.7: Win rate of reply-matrix versus Skynet in both scenarios.

Reply-matrix would always choose NUSBot, as it is the best response for Skynet
as per Table 5.2. In the stationary scenario, reply-matrix wins 93.92% of matches
against Skynet, which, rounded-up, is exactly the win rate of NUSBot versus Skynet
in Table 5.2. In the non-stationary scenario, reply-matrix would still select NUSBot
versus Skynet as it relies in Table 5.2. However, Skynet learns how to defeat NUSBot
and reply-matrix does not adapt by selecting another bot against Skynet: reply-matrix
(selecting NUSBot) wins only 31.80% of matches against Skynet. The numbers in Table
5.7 were extracted from Tables A.2 and A.3 in Appendix A.

The performance of all adaptive agents improves in the non-stationary tourna-
ment. Paired t-tests between agents’ performances in both scenarios showed that, for
all agents, the difference (degradation or improvement) in performance from stationary
to non-stationary is significant, with p-values much smaller than 0.0001.

Reply-hist and freq-hist perform much better than reply-matrix and freq-matrix
- their non-adaptive counterparts. The multi-armed bandit methods (UCB, Exp3 and

64 Chapter 5. Experiments

ε-greedy) perform similarly: their overall win rate in both scenarios and their increase
in performance from stationary to non-stationary is similar.

Methods that respond to opponent’s last choice - reply-matrix and reply-hist -
were among the most successful in the stationary and non-stationary scenarios, respec-
tively. Those methods resemble human behavior in rock, paper, scissors [Wang et al.,
2014]. Although it is easy to second-guess the idea of countering the last choice, no
agent has a second-guess mechanism. More generally, opponents that act cyclically or
answer deterministically to the agent based on a finite history of interactions are prone
to exploitation if modeled as finite automata, as in [Carmel and Markovitch, 1996].

The minimax-Q agent performed well in both stationary and non-stationary sce-
narios. Its win rate is the highest on the non-stationary scenario. This suggests that,
although convergence guarantees are no longer valid, a fixed step size is useful to track
non-stationarity. The minimax-Q agent can be seen as the counterpart of Nash for non-
stationary scenarios. Whereas our Nash agent relies on an equilibrium policy of a fixed
payoff matrix, minimax-Q iteratively updates the matrix and calculates a new equilib-
rium. Its policy makes use of all historical information, weighting recent experiences
more than past ones.

5.3.3 A functional StarCraft bot

This section presents a brief description of MegaBot and results of its participation in
StarCraft AI Tournaments. A detailed description is given in Appendix B. MegaBot is
a fully-capable StarCraft bot we designed to test the one-shot version of our algorithm
selection framework in StarCraft AI Tournaments. It is composed of a meta-reasoning
module, implementing minimax-Q, and a portfolio of three other bots: the AIIDE 2015
versions of Skynet, Xelnaga and NUSBot. They are not the strongest competitors, so
that a good performance of MegaBot is due to its meta-reasoning mechanism rather
than to a strong portfolio.

The meta-reasoning module maintains a matrix with a line per portfolio member
and a column per tournament opponent (as each opponent is a bot, which is treated
as an algorithm). MegaBot does not know all opponents beforehand, but columns are
added as new opponents are faced.

MegaBot’s parameters are α, the step size for the payoff matrix updates and
ε, the exploration probability in the ε-greedy selection method. In all tournaments,
MegaBot competes with α = 0.2 and ε = 0.1. The payoff matrix entries are initialized
optimistically with ones to encourage premature exploration of all choices.

In StarCraft tournaments, crashes and timeouts are punished with defeats. The

5.3. The game of algorithm selection 65

2016 version of MegaBot did not have a mechanism to account for crashes, but the
2017 version was improved with a crash discount mechanism.

MegaBot competed in 2016 and 2017 AI tournaments hosted in CIG and AIIDE
conferences as well as in the Student StarCraft AI Tournament (SSCAIT) organized
by the Games & Simulations Research Group, Czech Technical University. In CIG
and AIIDE tournaments, all competitors face each other during several rounds and the
winner is determined by the highest win rate. CIG 2016 was divided in two stages
with all entries in the first stage and the top 50% passing to the second stage. CIG
2017, AIIDE 2016 and 2017 followed a single-stage format. In SSCAIT, there is a pre-
tournament stage, where bots play along the year, with matches broadcast live. Bots
can accumulate knowledge during this stage. Next, in the tournament’s round-robin
stage, each bot plays against all others for two rounds. There is a follow-up stage where
the top 16 bots play a knockout tournament. However, we focus on the round-robin
stage, because MegaBot has not made into the follow-up stage.

Figure 5.8 shows MegaBot’s win rate per tournament progress, which is shown in
percentage because each tournament has a different number of rounds12. Blue lines are
from 2016 tournaments, red lines from 2017. Solid lines are from AIIDE and dashed
lines are from CIG. We show the results of each stage in CIG 2016 separately. Labels at
the right show the final win rate. SSCAIT results are not shown in this graph because
we do not have direct access to the win rate of each round separately.

0% 20% 40% 60% 80% 100%
Tournament progress

0%

20%

40%

60%

80%

Cu
m

ul
at

iv
e

wi
n

ra
te 70.1%

38.0%

58.6%
54.9%
42.8%

CIG2016_1
CIG2016_2
AIIDE2016

CIG2017
AIIDE2017

Figure 5.8: MegaBot win rate per tournament progress. Markers help identify each
tournament, they do not correspond to data points.

12Each bot played the following number of rounds and matches per round in the tournaments: CIG
2016 first stage: 100 rounds of 15 matches each; CIG 2016 second stage: 100 rounds of 7 matches
each; CIG 2017: 125 rounds of 19 matches each; AIIDE 2016: 90 rounds of 20 matches each; AIIDE
2017: 110 rounds of 27 matches each.

66 Chapter 5. Experiments

The minimax-Q learning mechanism implemented in MegaBot was effective as the
win rate increases in all tournaments. The less noticeable increase is in AIIDE 2017,
where the initial win rate was 37.0% and the final was 42.8%, an increase of 5.8%. The
most noticeable increase is in the second stage of CIG 2016, where the initial win rate
was 0.0% and the final was 38.0%. MegaBot has performed well against the weaker
adversaries of CIG 2016, as the win rate of the first stage is the highest (70.3%). On
the other hand, MegaBot did not perform well against the stronger adversaries, as the
win rate of the second stage is the lowest (38.0%). All curves in Fig. 5.8 stabilize.
Lower settling points indicates that there are more entries stronger than any portfolio
member of MegaBot as it is unable to find an algorithm to defeat those adversaries,
as it happened in the second stage of CIG 2016.

To compare the performance of MegaBot along the years, Fig. 5.9 shows: (a) the
final victory rate and (b) the number of opponents left behind in the rankings. The
number of opponents left behind is reported in percentage as each tournament has a
different number of participants. We aggregate the two rounds of CIG 2016 with a
weighted average from each stage’s number of matches and the victory rate.

20%

30%

40%

50%

60%

70%

W
in

 r
a
te

59.9% 58.4%

50.0%
54.3%

42.8%

49.4%

CIG AIIDE SSCAIT

2016

2017

(a)

20%

30%

40%

50%

60%

70%

O
p
p
o
n
e
n
ts

 b
e
h
in

d

CIG AIIDE SSCAIT

60.0% 60.0%

47.7%47.4%

33.3%

45.5%

2016

2017

(b)

Figure 5.9: MegaBot tournament performance: (a) victory rate and (b) opponents left
behind in ranking.

From 2016 to 2017, both the win rates and the percentage of opponents behind
MegaBot dropped, despite the introduction of the crash discounting mechanism. As
MegaBot’s portfolio and selection mechanisms have not changed, this indicates that
it faced stronger opponents. Every year, researchers and StarCraft programming en-
thusiasts observe the new techniques and build on them, preparing stronger entries for
the competitions to come. MegaBot has a portfolio of algorithms from 2015 and as
time passes, they get increasingly outdated. Figure 5.10 shows the percent of new and
updated opponents. SSCAIT 2016 is not shown because the data on bots’ updates is

5.3. The game of algorithm selection 67

not available13. From 2016 to 2017, the number of new and updated entries increased
in CIG and in AIIDE.

20%

40%

60%

80%
N

e
w

e
r

e
n
tr

ie
s

50.0%
42.9%

60.0%

75.0%
78.2%

CIG AIIDE SSCAIT

2016

2017

Figure 5.10: New or updated entries in the competitions

Even with the portfolio limitation, the participation of MegaBot in StarCraft
tournaments has shown that algorithm selection is a promising approach. In its debut
year (2016), MegaBot placed in the top half of all competitions. Moreover, in all
tournaments but AIIDE 2017, MegaBot had a noticeable increase in performance from
initial to final tournament rounds.

5.3.4 Discussion

The results of our experiments in the stationary game of algorithm selection are consis-
tent with computer rock-paper-scissors tournaments [Billlings, 1999]: deviating from
the safe policy in equilibrium was useful against weak opponents, just as much as pro-
tecting against exploitation from strong adversaries. Human behavior in rock-paper-
scissors contests also exhibit deviation from equilibrium to obtain higher payoffs [Wang
et al., 2014]. In our tournament, ε-Nash combines Nash’s safety with freq-matrix’s ex-
ploitation of weak opponents. This is aligned with [McCracken and Bowling, 2004],
where previously weak rock-paper-scissors agents performed better when enhanced with
safe exploitation techniques. Those experiments aimed at bringing game-theoretic rea-
soning to real-time strategy games, discussing aspects such as Nash Equilibrium and
safe opponent exploitation. This was possible with the game of algorithm selection
under stationary conditions.

The non-stationary scenario is more realistic, as we enable algorithms’ learning
mechanisms. In this setting, non-adaptive methods did not perform well. On the
other hand, adaptive methods were able to cope with the evolving nature of the non-

13https://sscaitournament.com/index.php?action=2016

https://sscaitournament.com/index.php?action=2016

68 Chapter 5. Experiments

stationary game. Among these, minimax-Q had the best performance and was selected
for the meta-reasoning of MegaBot, our StarCraft AI Tournament competitor.

In principle, minimax-Q would require a great number of matches to achieve a
good performance. In fact, each agent played 1000 games against each other in our
experiments, which is an order of magnitude more matches than in actual StarCraft
tournaments (see, for example Churchill et al. [2015]). Nevertheless, MegaBot’s per-
formance suggest that algorithm selection via minimax-Q is a promising approach in
StarCraft tournaments as well. As MegaBot’s portfolio members are not the strongest
competitors, its learning curves indicate the effectiveness of its meta-reasoning module.
The increased learning rate (0.2 for MegaBot in the tournaments compared to 0.1 in
the experiments) helped mitigating the effect of a smaller number of matches in the
learning process.

A limitation of our formal model is the assumption of common knowledge of
agents’ algorithm portfolio, which in general might not happen. Without the oppo-
nent’s portfolio, there is no payoff matrix to work with. MegaBot works around this
issue by adding new columns to the payoff matrix as it faces new opponent algorithms.
It does so by identifying the opponent’s algorithm by its name. However, this method
overlooks a characteristic of many StarCraft bots: they have hard-coded behaviors,
such as build-orders and follow-ups and switch among those behaviors from match to
match according to experience. That is, StarCraft bots are already algorithm selectors
themselves14, but MegaBot’s method considers the opponent as a single algorithm.

By treating each opponent as a single algorithm and thus as a single column
in its payoff matrix, MegaBot reduces the game-theoretic reasoning of minimax-Q to
an ε-greedy selection method against each opponent. To use the full game-theoretic
capabilities of minimax-Q, MegaBot must recognize which algorithm the opponent has
selected to update its score accordingly. To accomplish this, MegaBot must label the
algorithms according to the actions it can observe, rather than by the name of its
selector. Then, with an effective opponent modeler, MegaBot could narrow the equi-
librium calculation to consider algorithms with likelihood above certain thresholds,
given the observed actions. However, existing opening prediction and opponent model-
ing approaches (e.g. Weber and Mateas [2009]; Synnaeve and Bessiere [2011]; Stanescu
and Čertickỳ [2016]) are based on replay analysis, requiring extensions to work on live
matches.

14Although disabling learning for the stationary experiments can harm the performance of some
bots (making them select a single build-order or randomly switch them between matches), this is not
important from the point of view of the algorithm selector, as it is only interested on the algorithm’s
performance, rather than on its internal mechanisms.

5.3. The game of algorithm selection 69

Another limitation of this section’s experiments is that our game of algorithm
selection is a one-shot decision problem, where agents select algorithms to play an entire
match in the underlying game on their behalf. However, minimax-Q is general enough
to tackle multi-stage settings, where decision points are associated with world states.
Here we use a simplified, single-stage version of the method. Section 5.4 explores multi-
stage algorithm selection, albeit not in StarCraft. This happens because the current
bots incorporated in MegaBot’s portfolio are unable to continue a game started by a
different bot. This happens mostly because of unsatisfied preconditions: the portfolio
member requires certain data created only by itself in previous match stages. When
another portfolio member plays those previous stages, the required data is missing.
This can be seen as the lack the Markov property from the portfolio members: the
state information they have access is not enough to make a decision.

Experiments in this section required the following computational infrastructure:

• Match pool construction: we ran a StarCraft tournament using 8 Virtual Ma-
chines, each with 1 core of Intel Xeon E52650 v3 @ 2.30 GHz CPU and 1GB of
RAM. Each machine hosts a StarCraft instance, loaded with a bot, and plays
via network against a bot hosted in other machine. That is, we ran at most 4
matches in parallel.

• Algorithm selection tournament: the algorithm selection tournament was exe-
cuted in a notebook with 2 cores of Intel(R) Core(TM) i7-5500U @ 2.40GHz
CPU and 8GB of RAM.

The most computationally expensive part is the match pool construction, not
because of our strategic reasoning framework, but because the bots are pitched against
each other in actual StarCraft matches. The algorithm selection tournament demands
simple hardware, as there is no actual execution of StarCraft matches: results are
loaded from the pool. The reasoning procedure of agents is simple, involving updates
to the value of a choice given the received outcome and a fast calculation or lookup for
the next choice. Minimax-Q is an exception, as it requires solving a linear program to
determine the selection policy.

Experiments of this section were presented in [Tavares et al., 2016] (stationary)
and [Tavares et al., 2018b] (stationary, non-stationary and MegaBot’s performance).

70 Chapter 5. Experiments

5.4 Multiple decision points

This section presents experiments evaluating the strategic reasoning framework in sce-
narios with multiple decision points. Experiments were performed in µRTS, a sim-
plified real-time strategy (RTS) game designed to facilitate AI research (see Section
5.2.2). µRTS has various state-of-the-art adversarial search approaches implemented,
and it would be interesting to compare reinforcement learning approaches against them.
Moreover, µRTS has simple scripts that are able to produce valid actions regardless of
the state they are in, as opposed to some StarCraft bots, which are unable to resume
a match started by a different bot. In this work, µRTS is configured with full visibility
(perfect information) for the players.

µRTS has four simple built-in scripts: Worker, Ranged, Heavy and Light rushes.
We implemented two in addition to these: Expand and BuildBarracks. They work as
follows:

• Worker rush: trains workers continuously, make one of them gather resources,
and send all others to attack the nearest enemy unit;

• Light rush: trains one worker and make it gather resources. Then builds a
barracks, which trains Light units constantly, sending them to attack the nearest
enemy unit;

• Heavy rush: same as Light rush, but the barracks trains Heavy units;

• Ranged rush: same as Light rush, but the barracks train Ranged units;

• Expand: send a worker to construct a new base close to a resource location;

• BuildBarracks: send a worker to construct a new barracks.

Expand and BuildBarracks do not perform combat actions themselves. Instead,
Expand increases resource collection and worker production rate, whereas BuildBar-
racks increases the military units production rate.

Our strategic reasoning framework simplifies the number of choices to consider in
each state, but the number of states in real-time strategy games remains too large for
traditional reinforcement learning techniques (see Section 2.4 for a discussion on the
complexity if real-time strategy games). In this section we investigate two approaches
to generalize learning across states: state aggregation (Section 4.4.1) and linear function
approximation (Section 4.4.2).

5.4. Multiple decision points 71

5.4.1 State aggregation

This section presents experiments with our strategic reasoning framework with multiple
decision points in µRTS, using state aggregation to generalize learning across states.

As discussed in Section 4.4.1, in state aggregation, a state abstraction function
φ : S → S groups several primitive states from S into an abstract state in the set S
of abstract states. More precisely, the set S is a partition of S induced by φ. Tabular
reinforcement learning methods then store entries for choices in each abstract state
instead of for each primitive state.

Our set S of abstract states is constructed by identifying eight simple features
in µRTS. First, we divide the game duration equally into five intervals, related to the
match stage: opening, early, mid, late and end. The other seven features account
for material advantage between player and opponent in each type of entity: resources,
bases, barracks, workers, heavy, light and ranged units. As a simplification, the material
advantage features, for each entity type, are discretized in three values:

• Ahead: if the player controls two or more entities than the opponent;

• Even: if the difference between entities controlled by the player and its opponent
is between +1 and -1;

• Behind: if the opponent controls two or more entities than the player.

In total, we have 5 × 37 = 10935 non-terminal abstract states. A terminal is
created as an additional abstract state. It is reached whenever a player wins the
game or time runs out. That is, all primitive terminal states in µRTS are mapped to
the abstract terminal state. Our state abstraction function φ then maps a primitive
µRTS state to an abstract state by checking the game termination conditions, and then
determining the stage from the current game time and counting the entities of each
type owned by the player and its opponent to determine the values of the features15.

Our reward signal is the player score minus the opponent’s. The score function
counts the material a player has. The function is provided by µRTS, being used as
a state evaluation function by some search approaches. The score of a player i is
calculated according to Eq. 5.3, where Bi is the amount of resources owned by the
player, Wi is the amount of resources being carried by player i’s workers, Ui are the

15The options induced by out state aggregation scheme and portfolio of algorithms (see Definition
6) are guaranteed to terminate. Even though the material advantage may not change due to the lack
of combats or production of units, the game time always goes forward and will eventually reach a
posterior game stage. This guarantees that players will always have multiple decision points within a
match.

72 Chapter 5. Experiments

units player i controls, c(u) is the cost to produce a unit, hp(u) are the current hit
points of a unit and hpmax(u) are the maximum hit points of a unit.

scorei = 20 ·Bi + 10 ·Wi +
∑
u∈Ui

40 · c(u) ·
√

hp(u)

hpmax(u)
(5.3)

In Section 5.4.1.1, we evaluate minimax-Q, which shows robustness when its as-
sumptions are satisfied. As far as we know, this is the first time a multiagent reinforce-
ment learning method is employed in a real-time strategy game. In Section 5.4.1.2, we
perform experiments with an opponent-oblivious algorithm selector.

Unless otherwise stated, experiments in this section were executed with µRTS
configured with 3000 frames of timeout on the map “basesWorkers24x24”.

5.4.1.1 Opponent-aware

This section presents experiments evaluating algorithm selection with multiple states:
the stochastic game over options (SGO in Definition 7). We use a multiagent re-
inforcement learning approach with game-theoretic foundations, namely, minimax-Q
[Littman, 1994], hence, our agent is aware of the opponent’s presence. In our model,
the decision points are the abstract states, which group primitive states as discussed
in Section 5.4.1, and the players’ actions are the algorithms/options they can choose
(we use the terms algorithms and options interchangeably). The formalism requires
complete information, so that all players know each other’s portfolio of algorithms.

Littman [1994] introduces minimax-Q and performs experiments on a simplified
soccer game with 22 states, where 2 are terminals, and 5 possible actions for each non-
terminal state. Experiments in this section aim to reproduce those of Littman [1994]
in a much more complex domain, namely µRTS, thanks to our algorithm selection
framework.

We follow the same methodology of Littman [1994]: we train minimax-Q in self-
play and against a random algorithm selection policy. The resulting policies are named
MM and MR, respectively. Similarly, as a reference, we also train Q-learning in self-play
and against a random policy, naming the resulting policies as QQ and QR.

Training was performed in 120 thousand episodes (or µRTS matches), with ε = 0.1

and α starting at 1 and decaying at rate 0.999961624 per episode to reach 0.01 in 120
thousand episodes. All matches were executed in the map “basesWorkers24x24” to
reduce the variability due to different maps.

To test robustness, we train a new instance of Q-learning against each resulting
policy held fixed (α = ε = 0). Q-learning considers the opponent as part of the

5.4. Multiple decision points 73

environment and attempts to learn an optimal policy in that augmented environment.
A stationary environment augmented with a stationary adversary remains stationary.
Thus, the best policy found by Q-learning is one that maximally exploits that opponent.
Hence, the resulting policies of this training process are the “nemesis” of each MM, MR,
QQ and QR.

Additionally, we test the resulting policies against the Monte Carlo Algorithm
Selection (MCAS) approach of [Sailer et al., 2007], which is an algorithm selector (see
Section 3.4). MCAS uses Monte Carlo simulations among algorithms (or scripts) to
fill a normal-form game payoff matrix at each decision point. Then, an equilibrium
policy is calculated and an algorithm is selected accordingly. For a fair comparison,
we restrict MCAS to decide in the same decision points of our learning approaches,
namely, when the abstract state changes. We configure MCAS to simulate the match
for up to 200 frames ahead, using a state evaluation function to indicate the reached
state value with a total time limit of 5 seconds for each decision. MCAS uses the
four combat-capable scripts of µRTS: Worker, Heavy, Light and Ranged rushes (see
Section 5.4 for a description). The other two (Expand and BuildBarracks) are out of
MCAS’s portfolio because they do not perform combat actions and would thus lose all
simulations.

Our tests consist of 100 matches of MM, MR, QQ and QR policies against each
adversary: a random algorithm selection policy, their nemeses and Sailer et al. [2007]’s
MCAS. Figure 5.11 shows the result of each test, averaged over 5 repetitions. Each
repetition is the training of a policy and its respective test, rather than 5 tests of a
single trained policy.

W
in

 ra
te

 (%
)

68
58 61

67

41
31 33

24

37
48

20

34

10

30

50

70

Random Nemesis MCAS

MM MR QQ QR

Figure 5.11: MM, MR, QQ and QR policies against the three adversaries

In general, the minimax-Q’s resulting policies (MM and MR) were more robust
against the range of opponents than the Q-learning’s resulting policies (QQ and QR).
For the ones trained in self-play, MM fares better than QQ against MCAS and the

74 Chapter 5. Experiments

respective nemesis. Similarly, MR fares better than QR against MCAS and the respec-
tive nemesis, although QR fares better than MR against the random opponent. This
is expected because Q-learning finds a policy against the specific training adversary,
whereas minimax-Q reasons strategically by considering not only what the opponent
does, but what it could do.

The results in Fig. 5.11 suggest that minimax-Q has not converged to the equi-
librium policy in 120 thousand training episodes. Otherwise, the performance of MM
and MR would not vary on the same test opponent: prior to convergence, the training
opponent can have an impact as different parts of the state space and joint-actions are
sampled [Littman, 1994]. In the limit, MM and MR would be policies in equilibrium,
performing equally against the same test opponent. In our experiments, MM fared bet-
ter than MR against random and its respective nemesis, but MR fared better against
MCAS.

5.4.1.2 Opponent-oblivious

Previous sections presented experiments where both players were algorithm selectors
and their portfolio of algorithms was of common knowledge. This assumption, albeit
unrealistic in general, is required in the stochastic game over options (Definition 7).

Experiments in this section were performed with an opponent-oblivious agent,
namely, a Q-learning agent that considers the opponent as part of the environment,
following the approach described in Section 4.3.2. With our abstract state representa-
tion (described in Section 5.4.1), the agent must map abstract states to algorithms in
its portfolio. This is an instance of learning over options in a Markov Decision Process
[Sutton et al., 1999a].

Each run of our approach consists of 5000 training episodes against an adversary,
where each episode is a µRTS match. We then extract the resulting policies and
run 100 test matches against the same adversary. Parameters were determined from
preliminary experiments as follows: α decays exponentially from 1 to 0.01 in the 5000
episodes (that is, with decay rate of 0.99907939), γ = 0.9 and ε = 0.1. The search
methods (our adversaries) were executed with their default parameters in µRTS. For
example, the think time is 100 milliseconds per game frame. For stability, we run 5
repetitions of each experiment and report the average.

We use the following state-of-the-art search methods as our opponents to evaluate
our learning over options approach:

• Monte Carlo Algorithm Selection, or MCAS for short [Sailer et al., 2007]: at
each decision point, it fills a normal-form game payoff matrix with Monte Carlo

5.4. Multiple decision points 75

simulations between pairs of algorithms. It was also tested in the opponent-aware
experiments (Section 5.4.1.1);

• Adversarial Hierarchical Task Network, or AHTN for short [Ontañón and Buro,
2015]: this approach extends the use of hierarchical-task network (HTN) plan-
ning, which encode domain knowledge via the definition of useful tasks in the
domain, with a minimax-like game-tree search;

• Puppet-αβ [Barriga et al., 2015]: PuppetSearch is a framework that augments
the capabilities of game-playing scripts by means of move choices they expose
to search procedures. By exposing a restricted set of actions, the search meth-
ods can look further ahead, finding potentially better solutions. Moreover, as
the computational budget allows, more choices can be exposed so the search al-
gorithms can investigate with a broader perspective. In [Barriga et al., 2015],
StarCraft playing scripts are combined with a version of the α-β considering du-
rations (ABCD) algorithm [Churchill et al., 2012]. This approach was ported to
µRTS as well;

• PuppetUCT [Barriga et al., 2017]: this is a variant of Puppet-αβ, which replaces
the ABCD algorithm with a version of the upper-confidence bound for trees
considering durations (UCTCD) algorithm of Churchill and Buro [2013].

As in the previous experiments, the reward function measures material advantage:
the player’s scores minus the opponent’s. Score is calculated via Eq. 5.3.

Figure 5.12 shows the training performance of Q-learning over options against
each adversary, in terms of mean reward (a) and win rate (b) on the 5 repetitions. We
show the running average on 100 episodes to display the overall trend of the training
process. The baseline for the reward is zero: a superior value means that the player
had more material than its opponent throughout the match. The baseline for the win
rate is 0.5: a superior value means that the learning agent has defeated its adversary
in most repetitions.

Rewards (Fig. 5.12a) become positive after a number of episodes against all
opponents. As the reward function reflects material advantage, the agent is being
able to maintain more units than its opponents during parts of the game. However,
the plot shows rewards accumulated for an entire episode. It might be the case that
the agent maintain material advantage for a period in the game but loses the match
near its end. In such case, the reward accumulated in that episode might still be
positive. Moreover, the rewards oscillate through the entire training period, even with
the running averages. This might be due to actions of the adversary: the agent might

76 Chapter 5. Experiments

0 1000 2000 3000 4000 5000

Episode

−2000

−1000

0

1000

2000

3000

4000

R
ew

ar
d

MCAS AHTN PuppetUCT Puppet-αβ

(a) Reward

0 1000 2000 3000 4000 5000

Episode

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

W
in

ra
te

MCAS AHTN PuppetUCT Puppet-αβ

(b) Win rate

Figure 5.12: Running average on 100 episodes of mean reward and win rate in the 5
repetitions against each training adversary.

learn a policy that reaches states where the search opponent performs well, reducing the
agent reward, and forcing it to change its policy again. It is also possible that the agent
could learn more stable and stronger policies by training for more episodes. However,
training against search methods consumes considerable time because the game speed
is limited by the time those approaches need to calculate their actions16.

The win rate during training (Fig. 5.12b) increases against all opponents, al-
though the increment and final performances are weaker against PuppetUCT and
Puppet-αβ than against AHTN and MCAS. The learning agent was able to win the
majority of matches against AHTN and MCAS, getting above the baseline (0.5), but
has not succeeded against PuppetUCT and Puppet-αβ, remaining below the baseline
during the entire training. This suggests that our approach was able to learn strong
policies against AHTN and MCAS, but was unable to do the same against PuppetUCT
and Puppet-αβ. Moreover, this indicates that the reward function is not directing the
agent towards victories. The agent is likely acting myopically: even if it loses a match
in the end, receiving a few negative rewards, it might be taking decisions that maximize
its immediate reward in earlier game stages, ending up with a positive reward balance.

To evaluate resulting policies’ strength, we run 100 test matches against the
same training opponents. In the tests, ε and α are set to zero, to ensure the agent acts
greedily according to the learned policy, without further updates. As a baseline, we
also tested random and fixed policies over options against each adversary. Each fixed
policy always chooses a single option. We tested a fixed policy for each available option
with combat capabilities: Light, Heavy, Worker and Ranged rushes. Figure 5.13 shows
the results. Heavy rush is omitted because it did not win any match in the tests.

16Training against AHTN takes about one day, whereas against PuppetUCT takes about a week.

5.4. Multiple decision points 77

W
in

 ra
te

 (%
)

0
20
40
60
80

100
 81

 18

100

 49

 0

 57

 12

 47

100100

 49

 12

 87

 10
 0

 33

 11

100

 0 0

MCAS AHTN PuppetUCT Puppet-αβ

Q-learning Random Light Ranged Worker

Figure 5.13: Victory rate of Q-Learning resulting policy, plus random and fixed policies
(Light, Ranged, Worker) over options vs each search method. A policy with missing
bar has zero victories against the specific adversary.

The resulting policy of Q-learning outperforms a random policy over options
against all adversaries. Interestingly, however, for each adversary, there is a fixed
policy over options that outperforms the Q-learning resulting policy. This means that
each adversary can be defeated by a simple script. Nevertheless, learning is useful,
because no fixed policy defeated all search approaches. Thus, an agent must learn
which option (or combination of options) defeats each adversary.

Our approach learned a strong policy against MCAS, competitive policies against
AHTN and PuppetUCT, and a poor policy against Puppet-αβ. Chronologically,
MCAS [Sailer et al., 2007] was proposed earlier, followed by AHTN [Ontañón and
Buro, 2015] and then by Puppet-αβ [Barriga et al., 2015] and PuppetUCT [Barriga
et al., 2017]. Our approach fared better against older approaches rather than newer
ones, except by Puppet-αβ which is older than PuppetUCT and imposed more diffi-
culties to our approach.

Our Q-learning over abstract states for algorithm selection in real-time strat-
egy games showed limited performance against some of the state-of-the-art search ap-
proaches, even though the agent tried to learn a specialized policy. The presented
state aggregation model, although enabling the adoption of tabular Q-learning, still
has a large number of abstract states (10935 as discussed in Section 5.4.1) compared
to the number of training episodes (5000, in Section 5.4.1.2). Although many states
will never be reached in real games, the number of possible states is large compared to
the number of training episodes, so that some state-action pairs will have only a few
visits to produce precise estimates. Training for more episodes would require a long
time, as the search approaches are slow compared to Q-learning decision procedure.
Another point of improvement is the reward function, which directs the agent to a

78 Chapter 5. Experiments

myopic behavior regarding material advantage.
The identified limitations are tackled via the linear function approximation for

better learning generalization, as well as a victory-oriented reward function in Section
5.4.2.

5.4.2 Linear function approximation

Previous sections have investigated tabular reinforcement learning methods with state
aggregation. An opponent-aware minimax-Q agent (Section 5.4.1.1) showed robustness
against a nemesis policy, but requires enumeration of opponent actions to estimate the
joint-action-values. An opponent-oblivious Q-learning agent (Section 5.4.1.2) achieved
competitive performance against some search approaches, but could not consistently
defeat all of them. It showed limitations regarding the required training time due to
the lack of effectiveness of generalization under state aggregation.

In this section we also evaluate an opponent-oblivious agent, so that we do not
require enumerating the opponent’s actions, but with a linear function approximation
approach instead of state aggregation, to reduce the required training time to achieve
strong game-playing performance. Experiments in this section were performed in co-
operation with Siva Anbalagan and Leandro Marcolino, appearing in [Tavares et al.,
2018a].

In our linear function approximation approach, a state s ∈ S is represented by a
feature vector with n features: f(s) = 〈f1(s), . . . , fn(s)〉. We associate each algorithm
π in the portfolio Π with a weight vector: wπ = 〈wπ1 , . . . , wπn〉.

As we’re selecting algorithms, the action-value function Q(s, a) is replaced by an
algorithm-value function Q(s, π), which is approximated by Q̃(s, π,w) = f(s) · wπ =∑n

i=1 fi(s) · wπi .
For the weight update, we use the Sarsa(0) method of Rummery and Niranjan

[1994] with their neural network replaced by our linear function approximator. Each
time the agent selects an algorithm π in state s, observes the next state s′, the reward
r and chooses the next algorithm π′, Sarsa(0) updates each weight wπi ∈ wπ with:
wπi ← wπi + α

[
R(s′) + γQ̃(s′, π′,w)− Q̃(s, π,w)

]
fi(s), where α is the step size, or

learning rate (see Eq. 4.6 and related discussion).
Our feature vector f is organized in four groups of components: unit count per

quadrant, average unit health per quadrant, resources and game time. Except for the
game time, the components are associated with a player p ∈ {1, 2}. Given a map with q
square regions, or quadrants, y unit types and 2 players, the feature vector components
are given as:

5.4. Multiple decision points 79

• Unit count per quadrant (ρ). For each player p: ρp =

{pu1
1, . . . ,

pu1
y, . . . ,

puq1, . . . ,
puqy}, where puji is the number of units of type i

in quadrant j owned by player p. With 2 players, y unit types and q quadrants,
there are 2yq features in this group;

• Average unit health per quadrant (η). For each player p, ηp = {h1
p, . . . , h

q
p}, where

hjp is the average health of all units in quadrant j owned by player p. With 2
players and q quadrants, there are 2q features in this group;

• Resources (B): Bp denotes the amount of resources owned by player p. This
group has 2 features, one for each player;

• Game time (t): t denotes the current game time (number of frames since the
beginning). This group has a single feature.

Hence, our feature vector is f = 〈1, ρ1, ρ2, η1, η2, B1, B2, t〉, where the constant 1 is
the bias term used in linear regression. In total, there are 1+2yq+2q+2+1 = 2yq+2q+4

features. µRTS has y = 6 unit types17 and we divided the map (basesWorkers24x24)
in q = 9 quadrants in our experiments, yielding: 2 · 6 · 9 + 2 · 9 + 4 = 130 features.

Our algorithm portfolio contains the rush scripts (Worker, Light, Ranged and
Heavy) plus the production rate boosters (Expand and BuildBarracks – Section 5.4 has
a detailed description). As each algorithm has its set of weights, we have 130 · 6 = 780

weights to adjust. We select an algorithm in the portfolio using exponentially decaying
ε-greedy (decayed after every training game).

We compare our linear function approximation approach for learning over algo-
rithms (henceforth named FA) against the following state-of-the-art search approaches
in µRTS: AHTN, PuppetUCT, Puppet-αβ, NaiveMCTS and StrategyTactics. AHTN,
PuppetUCT and Puppet-αβ are described in Section 5.4.1. StrategyTactics [Barriga
et al., 2017] uses a convolutional neural network to predict the output of PuppetSearch,
allowing more time to be used by the tactical search algorithm. NaiveMCTS [Ontañón,
2017] employs Monte Carlo Tree Search, but uses a sampling strategy based on combi-
natorial multi-armed bandits. StrategyTactics won the CIG 2017 µRTS competition18,
and NaiveMCTS was used as a baseline.

We used the map “basesWorkers24x24”, and the best parametrization we found:
α = 10−4, γ = 0.9, ε exponentially decaying from 0.2 against Puppet-αβ, PuppetUCT
and AHTN; and decaying from 0.1 for NaiveMCTS and StrategyTactics, after every

17The unit types are in µRTS are: Heavy, Light, Ranged, Worker, Base, Barracks and Resource,
but we disregard Resource as a unit type.

18https://sites.google.com/site/micrortsaicompetition/competition-results

https://sites.google.com/site/micrortsaicompetition/competition-results

80 Chapter 5. Experiments

game (decay rate ≈ 0.9984). Rewards are -1, 0 or 1 for defeat, draw and victory,
respectively.

We perform two evaluations:

1. Specific: we trained FA in 500 games against Puppet-αβ, PuppetUCT and
AHTN; and in 100 games against NaiveMCTS and StrategyTactics. The re-
sulting policy is tested against the same training adversary. All games have
maximum duration of 3000 frames, declared a draw on timeout;

2. Generic: we trained a new instance of FA in 500 games versus the specific policy
obtained against PuppetUCT. The single resulting policy of this new FA instance
is tested against all adversaries.

We report the test results, consisting of 100 matches between the given policy
(specific or generic) and the adversary. Experiments were repeated 5 times for stability,
and error bars show the 99% confidence interval, unless otherwise stated. We consider
statistical significance as p ≤ 0.01. Figure 5.14 shows the results of specific and generic
policies (2 first bars of each group), alongside the individual combat-capable algorithms
in the portfolio (4 remaining bars of each group) against each adversary. Results of
individual algorithms against AHTN, PuppetUCT and Puppet-αβ were obtained from
Fig. 5.1319.

W
in

 r
at

e
(%

)

0

20

40

60

80

100

AHTN Puppet
UCT

Puppet
αβ

Naive
MCTS

Strategy
Tactics

Specific Generic Light Ranged Heavy Worker

Figure 5.14: Algorithm selection with function approximation against state-of-the-art
search approaches.

The generic and all specific policies significantly defeat all opponents, with win
rates higher than 80%. These policies have similar win rates among themselves, but
the generic is significantly better against StrategyTactics. This might happen because
the generic further elaborates on a policy that was already strong (the specific trained
against PuppetUCT).

19In Fig. 5.13, Heavy rush was omitted because it did not win matches, but it is added in Fig.
5.14 because it wins some matches against NaiveMCTS and StrategyTactics.

5.4. Multiple decision points 81

There is at least one single algorithm that defeats each adversary. However,
unlike the Q-learning agent with state aggregation, here our performance with function
approximation is either significantly better than all individual algorithms, as against
PuppetUCT and NaiveMCTS, or statistically similar to the best algorithm, except for
StrategyTactics, where LightRush is stronger than the specific policy. Moreover, in
a subsequent test we further verified that the generic policy wins all matches against
each individual algorithm.

Our function approximation approach for algorithm selection does not prevent the
learning agent from switching among algorithms at every game frame. Thus, the agent
must learn to repeatedly select algorithms to follow a course of action, potentially
improving game-playing performance. Figure 5.15 shows the number of frames, on
average, the specific policies choose an algorithm consecutively against each adversary.
Error bars show the standard deviation. For example, the specific policy against AHTN
selects RangedRush for about 10 frames in a row before switching to a new algorithm.
If RangedRush is selected back again, it would be maintained for about another 10
frames.

M
ea

n
co

ns
ec

ut
iv

e

0

5

10

15

AHTN Puppet
UCT

Puppet
αβ

Naive
MCTS

Strategy
Tactics

Light
Ranged

Heavy
Worker

BuildBarracks
Expand

Figure 5.15: Consecutive selection of algorithms by the specific policies against each
adversary.

The Light-, Ranged- or HeavyRush, which are “combat” scripts, are maintained
longer than BuildBarracks, which is a “supporting” script. The FA agent maintains
combat pressure and, from time to time, activates BuildBarracks briefly to have a
worker start the barracks construction, changing to another combat script (they do
not interrupt the construction). Expand is called rarely (only against AHTN) and
WorkerRush is never called. WorkerRush is weak against the search approaches, except
AHTN (see Fig. 5.14), so the FA agent learns to leave it unused. BuildBarracks
supports the military scripts, whereas Expand supports WorkerRush and the harvest
of additional resource fields. However, the map (basesWorkers24x24) has a single

82 Chapter 5. Experiments

resource field for each player, and WorkerRush is not used, such that the creation of
new bases or additional workers is unnecessary.

Although our model does not enforce repeated selections, the time feature might
induce the FA agent to repeatedly select an algorithm. It has a similar effect of the
time discretization in stages, used with state aggregation (Section 5.4.1). However, with
function approximation, the agent learns the importance of the time feature for each
algorithm, whereas in state aggregation, time was discretized prior to the experiments
and has the same importance for all algorithms.

The most repeated algorithm is among the strongest against AHTN, PuppetUCT
and Puppet-αβ. However, against NaiveMCTS and StrategyTactics the agent combines
different algorithms (Ranged and Heavy), instead of favoring the strongest (LightRush).
This suggests that previously weak scripts alone (see Ranged and Heavy in Fig. 5.14)
can be combined to achieve a strong gameplay behavior.

5.4.3 Discussion

Our algorithm selection framework combined with state aggregation allowed the use of
Q-learning and minimax-Q, two traditional, tabular reinforcement learning methods,
in a real-time strategy game. Our opponent-aware experiments showed that explicitly
accounting for the opponent is useful, as the resulting policies of Q-learning were less
robust against their nemeses than those resulting from minimax-Q. On the other hand,
the resulting policy of Q-learning obtained in 120 thousand episodes of self-play (QQ
in Fig. 5.11) is not as strong against MCAS as the specialized policy obtained in 5
thousand episodes (Fig. 5.13). We noticed in Section 5.4.1.2 that our reward function
might be directing the learning agents towards a myopic behavior, not necessarily
correlated with victories in matches. This reward function is used in both opponent-
oblivious and opponent-aware experiments.

Moreover, in the opponent-aware experiments, MCAS - an online search approach
- imposed more difficulties to the four resulting policies than their nemeses, which were
generated with 120 thousand training episodes against each fixed policy. This suggests
that either the reward function or the proposed state aggregation scheme are not paying
off in terms of achieved performance. Moreover, in the opponent-oblivious experiments,
our Q-learning agent was not able to consistently defeat all state-of-the-art search-based
approaches, despite attempting to obtain a specialized policy against each opponent.

Experiments with linear function approximation (Section 5.4.2) address such lim-
itations: the reward function is directly based on the match result and the linear ap-
proximation scheme yields a smoother generalization of values across states than the

5.4. Multiple decision points 83

proposed state abstraction.
With multiple decision points, function approximation achieved superior perfor-

mance with less training episodes than state aggregation. With function approxima-
tion, the importance of the features was decided by the agent, in form of their weights,
whereas our state aggregation scheme did not allow the agent to decide the impor-
tance of the features, because we manually constructed the abstraction scheme. Thus,
performance with state aggregation could improve if we automate the state abstrac-
tion scheme using, for example, unsupervised state clustering techniques. This way,
we could have better insights on the trade-off between the granularity of the abstract
states and the learning effort of the agent. With automated state aggregation, we
could also employ more features to construct the aggregate states, allowing a fairer
comparison with function approximation: our experiments with function approxima-
tion had an order of magnitude more features than state aggregation, allowing a richer
representation of game states.

In our experiments with linear function approximation, the agent can select a
different algorithm every game frame, but learns to commit to an algorithm (especially
the combat-centered ones). In contrast, in [Sutton et al., 1999b], the agent commits
to an option up to its termination by design, but can interrupt the option if there’s
an advantage on switching to a different option. These are complementary ways to
learn the termination condition of options: our agent learns to commit until it is
advantageous to switch, whereas the agent of Sutton et al. [1999b] commits by design
and learns to interrupt when it is advantageous.

In terms of computational requirements, the decision procedures of the opponent-
oblivious Q-learning and Sarsa is a fast ε-greedy over the Q-function. The Q-function
is a constant-time lookup for tabular Q-learning and a fast linear combination for Sarsa
with linear function approximation. Minimax-Q requires solving a linear programming
to determine the safe policy prior to the ε-greedy procedure. To estimate the memory
requirements, we focus on storing the relevant information for decision-making, which
are the components of the Q-function. We disregard the storage of µRTS-related struc-
tures, as those are common to all approaches that play the game. Moreover, we consider
floating point numbers with four bytes, as the methods are implemented in Java20 to
play µRTS. We then estimate the memory requirements of our implementations as
follows:

• Minimax-Q (opponent-aware with state aggregation): it stores a 6×6 algorithm-
value table for each of the 10935 non-terminal states (the number of states is

20https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

84 Chapter 5. Experiments

calculated in Section 5.4.1). In total, it stores 36×10935 = 393660 floating-point
numbers, corresponding to approximately 1.50 megabytes;

• Q-learning (opponent-oblivious with state aggregation): it stores 6 algorithm-
value entries for each of the 10935 non-terminal states. In total, it stores
6× 10935 = 65610 floating-point values, corresponding to approximately 256.29

kilobytes;

• Sarsa (opponent-oblivious with linear function approximation): it stores 130

weights for each of the 6 algorithms, plus 130 feature values for the current
state. In total, it stores 6× 130 + 130 = 910 floating-point values, corresponding
to approximately 3.55 kilobytes.

Experiments in this section were executed in a 40-core computer with 256GB
of RAM memory. Each core is a Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz.
Our methods are not CPU-intensive nor require large amounts of memory, but this
infrastructure allowed the execution of many experiments in parallel, speeding up the
collection of results. Moreover, this infrastructure benefited the search approaches, as
they are CPU-intensive and require considerable memory to store the search trees. As
an example in terms of processing, training our approaches with state aggregation in
self-play for 120 thousand episodes takes about the same period as training against
AHTN for 5 thousand episodes (about 24 hours).

The opponent-oblivious experiments with state aggregation are published in
[Tavares and Chaimowicz, 2018] and the ones with linear function approximation are
published in [Tavares et al., 2018a].

5.5 Summary

This chapter presented experiments investigating various aspects of our strategic rea-
soning framework.

First, we illustrated the benefits of learning over algorithms with limited training
iterations in synthetic problems (Section 5.1). We proceeded with the simplest, one-
shot algorithm selection model in Section 5.3, focusing on game-theoretic aspects and
the implementation of a functional StarCraft bot (MegaBot). We analyzed safe algo-
rithm selection policies and safe opponent exploitation techniques applied to real-time
strategy games. However, these aspects hold if the opponent is an algorithm selector
with known portfolio, respecting the one-shot decision process. In general, a player
tends to switch its course of action to improve its situation during the game.

5.5. Summary 85

The one-shot decision model is an extreme simplification of the underlying game’s
state space (i.e. the primitive states): all non-terminal primitive states are mapped
to a single abstract state. To enable richer behaviors, we considered multiple decision
points, that is, more abstract states in Section 5.4. We first tested state aggregation
(Section 5.4.1), selecting features and discretizing their values. In this model, our agent
becomes an option-selection [Sutton et al., 1999a] agent, where each option starts in an
abstract state, follows the corresponding algorithm’s policy, and finishes on a different
abstract state.

We tested opponent-aware and opponent-oblivious agents. The opponent-aware
minimax-Q agent was outperformed by the search opponent, albeit showing more ro-
bustness than the opponent-oblivious agent, that is, better performance when trained
against one opponent and tested against another. However, when tested against the
specific training opponent, the opponent-oblivious Q-learning was competitive against
some state-of-the-art search methods in µRTS, although it showed limitations suggest-
ing the need of more training episodes, or a better learning generalization scheme.

We proceeded by testing linear function approximation in Section 5.4.2, which
allows a smoother generalization of learning across primitive states than state aggrega-
tion. With less training episodes, function approximation achieved better performance
than state aggregation: our Sarsa(0) agent consistently outperforms the state-of-the-art
search approaches in µRTS. Moreover, the resulting policies are more robust, consis-
tently winning opponents the agent has not trained against.

The better performance of function approximation is probably due to better gen-
eralization and a more flexible decision process. For example, state aggregation forces
the agent to hold its current algorithm until the abstract state changes. With function
approximation, the switching point is up to the agent, according to the value estimates
it has for the current primitive state. In other words, the agent can “interrupt” the
option execution, having a better control of its behavior. This is specially useful in
adversarial scenarios, where the opponent might demand a quick player reaction, which
could be stuck, unable to act, in a state aggregation scheme.

Our experiments allows us to verify the adherence of the framework to the guide-
lines (Section 1.1): we tested Q-learning, minimax-Q and Sarsa, which are model-free
reinforcement learning approaches, satisfying guideline (G1); Q-learning, minimax-
Q and Sarsa’s decision procedures is fast in comparison with the search opponents
and require low memory with our state aggregation and linear function approxima-
tion schemes, satisfying guideline (G2); and are able to play entire matches of either
StarCraft or µRTS, rather than specific parts such as combats, satisfying guideline
(G3).

86 Chapter 5. Experiments

Results of this chapter were published as follows:

• Single decision point: [Tavares et al., 2016] (stationary) and [Tavares et al., 2018b]
(stationary, non-stationary and MegaBot’s performance);

• Multiple decision points:

– State-aggregation: [Tavares and Chaimowicz, 2018]21 (opponent-oblivious);

– Function approximation: [Tavares et al., 2018a].

Overall, reasoning over algorithms/options instead of primitive actions greatly
simplifies the number of choices to consider in each state. However, to succeed in
complex domains with huge state spaces, such as real-time strategy games, an effi-
cient learning generalization scheme is essential. In our experiments, linear function
approximation showed the best results. Thus, learning over algorithms with a function
approximation scheme has an interesting potential in real-time strategy games.

21In this paper, Monte Carlo Algorithm Selection (MCAS) is referred to as Strategy Simulation
(SS).

Chapter 6

Conclusion

This chapter presents an overview of the dissertation and discusses contributions, lim-
itations, directions for future research and a reflection about the purpose of artificial
intelligence research on games.

6.1 Overview

This dissertation addressed research challenges posed by complex computer games:
huge action and state spaces, real-time interaction, competition, simultaneous actions,
and long-term decision effects. Real-time strategy games are a prominent representa-
tive of such games. We proposed three guidelines: (G1) play the game without its
forward model (in contrast with search-based approaches); (G2) do not rely on mas-
sive hardware infrastructure (e.g. hundreds of GPU and thousand of CPU cores used
in recent deep learning approaches); and (G3) play entire matches of the game, not
only specific portions such as combats.

We propose a strategic reasoning framework, which is basically a two-level hierar-
chical architecture coupled with a reinforcement learning framework, where the upper
layer assesses the game situation and selects an algorithm in the lower layer to per-
form low-level game actions. The algorithm’s performance is used to update its value
and improve future selections. We use two known learning generalization schemes to
promote similar responses to similar game states: state aggregation and linear func-
tion approximation. Our approach is inspired by human behavior, where previously
trained courses of actions are recalled and responses to familiar situations are adapted
to similar, albeit unfamiliar ones.

We investigate whether it is better to select algorithms or low-level actions, ac-
cording to the number of actions in the domain, the number of algorithms in the

87

88 Chapter 6. Conclusion

portfolio, and their strength, via experiments in a synthetic problem. Our findings
confirm the intuition that it is better to select algorithms when their quality or the
number of low-level actions grow. That is, the action selector takes time to explore
the action space, whereas the algorithm selector accumulates rewards in the meantime.
However, once the action selector discover the best action, it eventually outperforms
the algorithm selector as it is limited to its best algorithm (which might not always
select the best action).

We instantiate our framework in two real-time strategy games: StarCraft and
µRTS, first to evaluate game-theoretic aspects of algorithm selection and, second, to
evaluate our performance against state-of-the-art search-based approaches. Regard-
ing the game-theoretic aspects, we observed that insights from computer rock-paper-
scissors tournaments also apply in real-time strategy games: deviating from pessimistic
algorithm selection policies in equilibrium is useful to exploit weak opponents, although
one must resort to equilibrium policies to avoid being exploited by a stronger oppo-
nent. Regarding game-playing performance, a state aggregation scheme for learning
generalization for a Q-learning agent achieved competitive performance against some
state-of-the-art search-based opponents, whereas a Sarsa agent with a linear function
approximation scheme consistently defeated all of them.

6.2 Contributions

6.2.1 A model-free, lightweight, full-game capable approach

Our algorithm selection framework is a hierarchical architecture that leverages the
performance of reinforcement learning approaches, when combined with linear function
approximation. Besides, our framework does not require a game’s forward model,
demands low computational resources and is able to play entire matches of complex
computer games, satisfying our design guidelines, as detailed next:

(G1) An agent must play without resorting to the game’s forward model:
we model algorithm selection within a reinforcement learning framework, using
Q-learning, minimax-Q and Sarsa, which are model-free approaches. Our agents
discover the value of the choices by actually interacting with the game, instead
of simulating the outcomes by querying the game’s engine. In this sense, it is
easier to instantiate our approach in a broader range of games: our approach
requires existing game-playing algorithms and a programming interface to read
the game state and issue the commands. Search-based approaches require more

6.2. Contributions 89

complex programming infrastructure: either the programming interface has to
support the generation of “fictitious” states to simulate the action outcomes and
then effect the current game state with the actually issued actions, or the game’s
source code must be available so that the search approach designer can copy the
game instance and simulate the remaining match from the current state.

(G2) The approach must not depend on powerful hardware: the decision proce-
dures of Q-learning, minimax-Q and Sarsa is orders of magnitude faster than that
of the search-based opponents. Besides, the state aggregation and linear function
approximation schemes have low memory requirements. State aggregation stores
the Q-function in tabular form, albeit with few entries as the number of abstract
states is much less than the number of primitive states. Function approxima-
tion requires even less memory to store the feature’s values and their respective
weights. Moreover, with linear function approximation, relatively small training
sessions, with hundreds of episodes, were enough to outperform the state-of-the-
art search-based opponents.

(G3) The approach must handle all aspects of the underlying game: we used
full-game-playing algorithms in our portfolio to play either StarCraft or µRTS
matches, rather than specific (e.g. combat-centered) ones. This way, our ap-
proach plays entire matches of those games, being able to participate in artificial
intelligence tournaments.

6.2.2 A metagame analysis

In gaming terminology, metagame refers to reasoning over aspects beyond the game1.
It usually involves the study of how strategies (courses of actions) interact or a player’s
preferred style. An example is to look for past games of a specific player, detect his/her
usual opening strategies and prepare a counter-strategy in the next match.

Our game of algorithm selection, instantiated in Section 4.4.1 and tested in Sec-
tion 5.3, allowed us to observe how StarCraft game-playing algorithms interact. Our
competition bot, tested in Section 5.3.3, made use of this mechanism, by attempting
to discover the best algorithm in its portfolio to defeat its opponent.

Metagame analysis is useful not only to derive game-playing policies, but in game-
balancing as well. For example, Liu and Marschner [2017] balance games by assigning
advantages or handicaps to previously weak or strong strategies, respectively.

1https://liquipedia.net/starcraft/Metagame

https://liquipedia.net/starcraft/Metagame

90 Chapter 6. Conclusion

6.2.3 An investigation of abstract versus low-level actions

Reinforcement learning methods have asymptotic guarantees of convergence to the
optimal action-selection policy. However, in practice, it is often unfeasible to satisfy
the required conditions (see Section 2.3.2).

On the other hand, hierarchical decision-making frameworks are useful to achieve
a reasonable performance faster at the potential sacrifice of optimality.

In this dissertation we shed more light on the dilemma of learning over abstract
versus low-level actions. In our case the abstract actions are our algorithms. Our
findings in synthetic experiments (see Section 5.1) confirm the intuition that it is better
to select algorithms when their quality or the number of low-level actions grow.

In our experiments with real-time strategy games, the number of actions is far
greater than the number of training episodes, further justifying the adoption of our
learning over algorithms approach.

6.2.4 Advancement in RTS game AI performance

Recent advances in computer games have been achieved through deep reinforcement
learning architectures, which require long training sessions (hundreds of millions of
episodes [Mnih et al., 2015]), sometimes in clusters with hundreds of GPU and thou-
sands of CPU [OpenAI, 2018a].

Our strategic reasoning framework combined with linear function approxima-
tion, a well-known learning generalization scheme, consistently defeated state-of-the-
art search approaches in µRTS (see Section 5.4.2), training for at most 500 episodes in
much more accessible hardware infrastructure.

6.2.5 Software contributions

Our main software contribution is a tournament-capable StarCraft bot, MegaBot2.
It implements our game of algorithm selection and uses a portfolio of three StarCraft
bots. MegaBot succeeded in its debut year, by ranking among the top 50% competitors,
but its success decreased in the following years. Nevertheless, it exhibited interesting
learning curves, suggesting that its victories decreased because none of its portfolio
members could defeat the newer and stronger bots that appeared. Those results appear
in Section 5.3.3 and MegaBot’s implementation details are shown in Appendix B.

2https://github.com/andertavares/MegaBot

https://github.com/andertavares/MegaBot

6.3. Limitations 91

Other software contributions include: our game of algorithm selection tourna-
ment engine3, the engine for synthetic experiments on learning over algorithms versus
actions4, and our µRTS implementations with state aggregation5 and linear function
approximation6.

We have also provided a modified version of the old StarCraft AI Tournament
manager, which disables bots’ learning capabilities7. Newer versions of the software8

now provide this feature.

6.3 Limitations

6.3.1 Rigid architecture

Our strategic reasoning framework is rigid as it depends on existing algorithms. We do
not consider the idea of creating a new sequence of actions to achieve a specific goal,
or to modify an existing algorithm to potentially improve its performance.

Our architecture is also rigid in the number of layers. It is possible that multi-layer
architectures achieve even more abstract representations to handle strategic, tactical
and reactive aspects of real-time strategy games naturally.

6.3.2 Perfect information

An important aspect of most complex computer games, including real-time strategy
games, is the fog-of-war: a player has access to information within its units visual
range. In our StarCraft experiments (Section 5.3), we do not deal with fog-of-war,
as our algorithm selection process is one-shot, without context, so that our agents do
not look at the game state to make choices. Imperfect information is handled by the
selected algorithms, which were programmed to do so.

However, in our µRTS experiments, the agents can switch algorithms during a
game, based on the current state. Our approach and the test opponents require perfect
information, and we enable it in the game.

3https://github.com/DanielKneipp/StarcraftNash
4https://github.com/andertavares/syntheticmdps
5https://github.com/amandaccsantos/microrts
6https://github.com/SivaAnbalagan1/micrortsFA
7https://github.com/andertavares/StarcraftAITournamentManager
8https://github.com/davechurchill/StarcraftAITournamentManager

https://github.com/DanielKneipp/StarcraftNash
https://github.com/andertavares/syntheticmdps
https://github.com/amandaccsantos/microrts
https://github.com/SivaAnbalagan1/micrortsFA
https://github.com/andertavares/StarcraftAITournamentManager
https://github.com/davechurchill/StarcraftAITournamentManager

92 Chapter 6. Conclusion

6.4 Directions for future research

Future research could deepen our understanding on some aspects we identified in our
experiments as well as address some of the limitations of our approach in this disser-
tation.

6.4.1 Better insights from the experiments

In our experiments with linear function approximation (Section 5.4.2), the agent
learned when to activate and switch between algorithms. In other words, it learned
the initiation and termination conditions of the options [Sutton et al., 1999b]. A fur-
ther investigation can draw interesting insights on how the initiation and termination
conditions of options in complex tasks can be learned.

The experiments with state aggregation could also provide insights in this direc-
tion. Our state aggregation scheme is handcrafted as we partition the state space by
hand to generate the abstract states. Moreover, we forced the option to terminate when
the agent reaches a new abstract state. An automatic or adaptive state aggregation
scheme could result in a better partitioning of the state space, generating more useful
options with better termination conditions. A research challenge in this sense is to
derive metrics to evaluate the quality of the state aggregation scheme.

State aggregation is a form of non-linear function approximation. Learning can
diverge when function approximation is combined with an off-policy methods such as
Q-learning [Sutton and Barto, 1998, Section 8.5]. It might be interesting to investigate
under which conditions, regarding either the state aggregation scheme, the character-
istics of the scenario (e.g. map type and size) or the learning algorithm, are “safe” in
terms of learning convergence.

Our experiments with multiple decision points (Section 5.4) were executed in a
single µRTS map. It would be interesting to evaluate the robustness of the approach
in different maps. Moreover, our experiments have human bias in the construction of
the state aggregation scheme and in the definition of the features for linear function
approximation. Deep reinforcement learning techniques [Mnih et al., 2015] could be
employed to handle raw state representations and remove human bias, although they
would require more hardware infrastructure for training.

6.4.2 More flexible hierarchical architectures

Learning or improving low-level behaviors is desirable. In this sense, Kulkarni et al.
[2016] presents a two-level hierarchical framework, where the upper layer observes the

6.4. Directions for future research 93

environment state and chooses a goal, generating intrinsic rewards for the lower layer to
learn a policy to achieve that goal. Later, Machado et al. [2017] presents an approach
to discover the goals, rather than having them handcrafted.

However, in complex computer games, learning a low-level behavior means to
handle the large action spaces of such games - a problem our strategic reasoning frame-
work does not touch. Learning low-level behaviors in complex games is an open re-
search problem, with OpenAI [2018a] showing some advances with a multi-step action
selection: first select a type (e.g. attack or move), then a parameter (e.g. target or di-
rection), for example. Low-level behavior could also be learned through the extraction
of patterns in human gameplay.

A promising line of research is to use action abstractions [Hawkin et al., 2011], as
in Moraes and Lelis [2018], where scripts filter out the actions to be considered by their
search algorithm in each state. With reinforcement learning, the scripts or heuristics
could be used to filter the actions whose values would be learned.

A dynamic approach to instantiate layers of reasoning in a task might lead to
richer behaviors and a better understanding of the structure of the problem. Dynam-
ically instantiating new layers of reasoning besides determining their behavior is an
ongoing topic or research. See, for example, Digney [1998]; Barto and Mahadevan
[2003]; Barry et al. [2011].

6.4.3 Handling imperfect and incomplete information

Dealing with partial observation or imperfect information (uncertainty regarding the
current state) requires inferring the attributes of entities out of sight. Although there
is a large body of research on reinforcement learning on partially observable domains9,
and games with imperfect information such as poker are being successfully tackled
by AI techniques [Bowling et al., 2015], this topic has not gained much attention in
real-time strategy games, with the exception of Weber et al. [2011].

Our algorithm selection model against general opponents (Section 4.3.2) enumer-
ates all possible opponent actions, and we acknowledge that such enumeration is not
feasible in practice. In our experiments (Section 5.4.1.2 and Section 5.4.2), we adopt
an opponent-oblivious agent, which embeds the opponent in the environment.

A possible way of modeling the opponent without enumerating its actions would
be to classify him into a pool of known behaviors and to react properly, as in the µRTS
bot of Silva et al. [2018]. In StarCraft, game actions are classified into behaviors via
replay analysis in [Weber and Mateas, 2009; Synnaeve and Bessiere, 2011; Stanescu and

9A highly cited survey on the topic dates back to 1982 [Monahan, 1982].

94 Chapter 6. Conclusion

Čertickỳ, 2016]. A possible extension of those approaches would incorporate them in
a StarCraft bot to work on live matches rather than performing offline replay analysis.

Modeling the problem as a game of incomplete information allows considering
the opponent without enumerating its actions. In this model, the agent is aware of the
opponent’s presence, but does not know its actions, nor how it affects the environment
transitions and rewards (hence the incomplete information). A possible approach would
be to extend the adversarial multi-armed bandit model [Auer et al., 1995] to multi-
stage decision problems. In the adversarial multi-armed bandit, the agent is aware
that an opponent can shuffle the bandit’s rewards and, without further assumptions
on the opponent, the Exp3 method of Auer et al. [1995] is able to derive theoretically
guaranteed arm-selection policies. We tested the Exp3 method in our one-shot decision
experiments (Section 5.3), with interesting results. However, it is not clear on how the
method could be extended to accommodate the values of future states while keeping
its performance guarantees.

Another possible approach to consider the opponent without enumerating its
actions is to model the problem as a Markov Decision Process with combined transition
and reward functions. An example would be the additive reward, additive transition
(AR-AT) games of Filar and Vrieze [2012], where each agent has its component to
the functions. For example, the transition function is written as: T (s, a1, a2, s

′) =

T1(s, a1, s
′) +T2(s, a2, s

′), where Ti is the component of player i. However, the additive
models are not general. As the components are probabilities, they cannot be negative,
so that the resulting transition can never be smaller than its individual components.

In general, the opponent’s action can reduce the chance of a state being encoun-
tered and increase the chance of another one happening, and a perhaps more general
model would include a “disturbed transition function” T (s, a1, s

′) = T1(s, a1, s
′) + ξ,

from the point of view of player 1. In this function, the opponent’s part is a “noise”,
which can assume any value. Modeling this noise implies modeling the opponent’s
behavior, and that could be an interesting research direction.

6.5 The purpose of game AI research

The recognition of games as a legitimate research subject has grown in recent years.
The field has witnessed the growth of papers about AI in games on major AI research
venues, such as the IJCAI, AAAI and NeurIPS conferences, as well as the growth of
dedicated conferences such as the IEEE Conference on Computational Intelligence and
Games (CIG) and the AAAI Artificial Intelligence and Interactive Digital Entertain-

6.5. The purpose of game AI research 95

ment (AIIDE), and the establishment of a dedicated journal, the IEEE Transactions on
Games (ToG - former Transactions on Computational Intelligence and AI in Games)
[Yannakakis and Togelius, 2015]. Occasionally, however, the validity of doing research
in games as a means of advancing science is questioned. Arguments sometimes men-
tion that games are too distant from the real world, or that games are an entertaining
activity, such that research on games is a purposeless rather than a serious activity.

Games may indeed be simplified or idealized representations of the real world.
However, the empirical evaluation of many traditional algorithms (e.g. [Littman, 1994;
Dietterich, 2000]) is performed on synthetic environments, often simpler than tradi-
tional games, created in the specific paper that presented the algorithm. This fact
does not diminish the contributions that the algorithms present to the advancement
of science, for they are the materialization of novel ideas, approaching theoretical or
practical matters that were not touched before. Moreover, an algorithm that succeeds
when tested on a game can be considered even more “solid”: games, although being
simpler than the real world, were built for humans, rather than machines, to play. That
is, instead of building a synthetic testbed to validate the algorithm, an existing testbed
is used; one where, initially, an algorithm was not supposed to tackle. In the words of
Richard Sutton: “in practice, games end up being more real than anything we make
up”10.

It is true that doing research on games can be as enjoyable as playing a game. A
book chapter on computers and games co-authored by Alan Turing even mentions that
“it would be disingenuous of us to disguise the fact that the principal motive which
prompted the work was the sheer fun of the thing” [Bates et al., 1953]. However, the
enjoyment on game research does not impoverish the scientific contributions presented
on the subject. For example, the increasingly complex and realistic game scenarios are
benefiting the research on autonomous vehicles [Knight, 2016]. Besides, algorithmic
advances in research on games as a general framework for multiagent decision-making
can have serious implications in the areas of security, medical decision support and
even war politics [Bowling et al., 2015]. Ultimately, the very book chapter co-authored
by Alan Turing mentions that the research on games could be justified as a means
to, among other things, tackle “the incompetence of the machine at taking an overall
view of the problem which it is analysing” [Bates et al., 1953]. The work on this
dissertation has the same spirit of that book chapter. It was performed with a keen

10Sutton is one of the pioneers of reinforcement learning, co-authoring the essential book on
the field [Sutton and Barto, 1998]. The cited phrase was Sutton’s response to a question posed
during Gerry Tesauro’s talk on reinforcement learning and games at the 2009 Multidisciplinary
Symposium on Reinforcement Learning. The question starts at about 58 minutes of the video:
http://videolectures.net/icml09_tesauro_itfyrlg/

http://videolectures.net/icml09_tesauro_itfyrlg/

96 Chapter 6. Conclusion

interest and engagement towards the subject, and also with the noble goal of reducing
the “incompetence of the machine”, because what we named “strategic reasoning” is a
form of taking “an overall view of the problem” under analysis.

Bibliography

Abreu, D. and Rubinstein, A. (1988). The structure of Nash equilibrium in repeated
games with finite automata. Econometrica, 56(6):1259--1281.

Aha, D. W., Molineaux, M., and Ponsen, M. (2005). Learning to win: Case-based
plan selection in a real-time strategy game. In Case-based reasoning research and
development, pages 5--20. Springer.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multi-
armed bandit problem. Machine learning, 47(2-3):235--256.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. (1995). Gambling in
a rigged casino: The adversarial multi-armed bandit problem. In Foundations of
Computer Science. Proceedings, 36th Annual Symposium on, pages 322--331. IEEE.

Barriga, N. A., Stanescu, M., and Buro, M. (2015). Puppet Search: Enhancing Scripted
Behavior by Look-Ahead Search with Applications to Real-Time Strategy Games.
In AAAI Conference on Artificial Intelligence in Interactive Digital Entertainment
(AIIDE).

Barriga, N. A., Stanescu, M., and Buro, M. (2017). Game Tree Search Based on Non-
Deterministic Action Scripts in Real-Time Strategy Games. IEEE Transactions on
Computational Intelligence and AI in Games (TCIAIG).

Barry, J. L., Kaelbling, L. P., and Lozano-Pérez, T. (2011). DetH*: Approximate
Hierarchical Solution of Large Markov Decision Processes. In International Joint
Conference on Artificial Intelligence (IJCAI), pages 1928--1935.

Barto, A. G. and Mahadevan, S. (2003). Recent advances in hierarchical reinforcement
learning. Discrete Event Dynamic Systems, 13(4):341--379. ISSN 0924-6703.

Bates, A. M., Bowden, B. V., Strachey, C., and Turing, A. M. (1953). Digital computers
applied to games. In Bowden, B. V., editor, Faster Than Thought, chapter 25, pages
286--290. Sir Isaac Pittman & Sons, London.

97

98 Bibliography

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2012). The arcade learn-
ing environment: An evaluation platform for general agents. Journal of Artificial
Intelligence Research.

Billlings, D. (1999). First International RoShamBo programming competition. Avail-
able at: https://webdocs.cs.ualberta.ca/~darse/rsbpc1.html. Accessed in
15/11/2016.

Blizzard (2016). Blizzard Entertainment: StarCraft. http://us.blizzard.com/

en-us/games/sc/.

Bontrager, P., Khalifa, A., Mendes, A., and Togelius, J. (2016). Matching Games
and Algorithms for General Video Game Playing. In AAAI Conference on Artificial
Intelligence in Interactive Digital Entertainment (AIIDE), pages 122--128.

Bošanskỳ, B., Lisỳ, V., Lanctot, M., Čermák, J., and Winands, M. H. (2016). Algo-
rithms for computing strategies in two-player simultaneous move games. Artificial
Intelligence, 237:1--40.

Bowling, M., Burch, N., Johanson, M., and Tammelin, O. (2015). Heads-up limit
hold’em poker is solved. Science, 347(6218):145--149.

Brown, G. W. (1951). Iterative Solutions of Games by Fictitious Play. In Koopmans,
T. C., editor, Activity Analysis of Production and Allocation. Wiley.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S. (2012). A Survey of Monte
Carlo Tree Search Methods. IEEE Transactions on Computational Intelligence and
AI in Games (TCIAIG), 4(1):1--43.

Buro, M. and Furtak, T. (2004). RTS games and real-time AI research. In Proceedings
of the Behavior Representation in Modeling and Simulation Conference (BRIMS),
volume 6370.

BWAPI (2015). BWAPI: An API for interacting with Starcraft: Broodwar. http:

//bwapi.github.io.

Carmel, D. and Markovitch, S. (1996). Learning Models of Intelligent Agents. In AAAI
Conference on Artificial Intelligence (AAAI), pages 62--67.

Churchill, D. (2014). StarCraft AI Competition - Tournament Manager Software.
Available at: http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/tm.

shtml. Accessed in 25/11/2016.

https://webdocs.cs.ualberta.ca/~darse/rsbpc1.html
http://us.blizzard.com/en-us/games/sc/
http://us.blizzard.com/en-us/games/sc/
http://bwapi.github.io
http://bwapi.github.io
http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/tm.shtml
http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/tm.shtml

Bibliography 99

Churchill, D. and Buro, M. (2013). Portfolio Greedy Search and Simulation for Large-
Scale Combat in StarCraft. In IEEE Conference on Computational Intelligence and
Games (CIG), pages 1--8. IEEE.

Churchill, D. and Buro, M. (2015). Hierarchical Portfolio Search: Prismata’s Robust AI
Architecture for Games with Large Search Spaces. In AAAI Conference on Artificial
Intelligence in Interactive Digital Entertainment (AIIDE), pages 16--22.

Churchill, D., Buro, M., and Barriga, N. (2015). StarCraft AI Competition Results.
Available at: http://www.cs.mun.ca/~dchurchill/starcraftaicomp/2015/. Ac-
cessed in 25/10/2016.

Churchill, D., Saffidine, A., and Buro, M. (2012). Fast Heuristic Search for RTS Game
Combat Scenarios. In AIIDE.

Cormen, T. H., Stein, C., Rivest, R. L., and Leiserson, C. E. (2001). Introduction to
Algorithms. MIT Press, Cambridge, Mass. ISBN 0070131511.

Cunha, R. L. de. F. and Chaimowicz, L. (2010). An Artificial Intelligence System to
Help the Player of Real-Time Strategy Games. In Proceedings of the 2010 Brazilian
Symposium on Games and Digital Entertainment (SBGAMES), pages 71 –81. ISSN
2159-6654.

Dahlbom, A. and Niklasson, L. (2006). Goal-Directed Hierarchical Dynamic Scripting
for RTS Games. In AAAI Conference on Artificial Intelligence in Interactive Digital
Entertainment (AIIDE), pages 21--28.

Dietterich, T. G. (2000). Hierarchical Reinforcement Learning with the MAXQ Value
Function Decomposition. Journal of Artificial Intelligence Research, 13:227--303.
ISSN 10769757.

Digney, B. L. (1998). Learning Hierarchical Control Structures for Multiple Tasks
and Changing Environments. From Animals to Animats 5: Proceedings of the Fifth
International Conference on the Simulation of Adaptive Behavior, 5:321--330.

Fekete, S. P., Fleischer, R., Fraenkel, A., and Schmitt, M. (2004). Traveling salesmen
in the presence of competition. Theoretical Computer Science, 313(3):377--392.

Filar, J. and Vrieze, K. (2012). Competitive Markov decision processes. Springer Science
& Business Media.

http://www.cs.mun.ca/~dchurchill/starcraftaicomp/2015/

100 Bibliography

Furtak, T. and Buro, M. (2010). On the Complexity of Two-Player Attrition Games
Played on Graphs. In AAAI Conference on Artificial Intelligence in Interactive
Digital Entertainment (AIIDE), pages 113--119.

Gasser, R. (1996). Solving nine men’s morris. Computational Intelligence, 12(1):24--41.

Genesereth, M. and Thielscher, M. (2014). General game playing. Synthesis Lectures
on Artificial Intelligence and Machine Learning, 8(2):1--229.

Hausknecht, M. and Stone, P. (2015). Deep Recurrent Q-learning for Partially Observ-
able MDPs. arXiv preprint arXiv:1507.06527.

Hawkin, J. A., Holte, R., and Szafron, D. (2011). Automated Action Abstraction of
Imperfect Information Extensive-Form Games. In AAAI Conference on Artificial
Intelligence (AAAI), pages 681--687.

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and Jaśkowski, W. (2016). ViZ-
Doom: A Doom-based AI Research Platform for Visual Reinforcement Learning.
arXiv preprint arXiv:1605.02097.

Knight, W. (2016). Self-Driving Cars Can Learn a Lot by Playing Grand
Theft Auto. Available at: https://www.technologyreview.com/s/602317/

self-driving-cars-can-learn-a-lot-by-playing-grand-theft-auto/. Ac-
cessed in 03/04/2018.

Knuth, D. E. and Moore, R. W. (1975). An analysis of alpha-beta pruning. Artificial
intelligence, 6(4):293--326.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenenbaum, J. (2016). Hierarchi-
cal Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic
Motivation. In Advances in Neural Information Processing Systems (NIPS), pages
3675--3683.

Lagoudakis, M. G. and Littman, M. L. (2000). Algorithm selection using reinforcement
learning. In ICML, pages 511--518.

Lample, G. and Chaplot, D. S. (2016). Playing FPS games with Deep Reinforcement
Learning. arXiv preprint arXiv:1609.05521.

Le Cun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W.,
and Jackel, L. D. (1990). Handwritten digit recognition with a back-propagation
network. In Advances in neural information processing systems.

https://www.technologyreview.com/s/602317/self-driving-cars-can-learn-a-lot-by-playing-grand-theft-auto/
https://www.technologyreview.com/s/602317/self-driving-cars-can-learn-a-lot-by-playing-grand-theft-auto/

Bibliography 101

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278--2324.

Lelis, L. H. (2017). Stratified Strategy Selection for Unit Control in Real-Time Strategy
Games. In International Joint Conference on Artificial Intelligence (IJCAI), pages
3735--3741.

Levine, J., Congdon, C. B., Ebner, M., Kendall, G., Lucas, S. M., Miikkulainen, R.,
Schaul, T., and Thompson, T. (2013). General Video Game Playing. Dagstuhl
Follow-Ups, 6.

Li, J. and Kendall, G. (2015). A hyper-heuristic methodology to generate adaptive
strategies for games. IEEE Transactions on Computational Intelligence and AI in
Games (TCIAIG).

Li, L., Walsh, T. J., and Littman, M. L. (2006). Towards a Unified Theory of State
Abstraction for MDPs. In Proceedings of the Ninth International Symposium on
Artificial Intelligence and Mathematics, pages 531--539.

Liang, Y., Machado, M. C., Talvitie, E., and Bowling, M. H. (2016). State of the Art
Control of Atari Games Using Shallow Reinforcement Learning. In Proceedings of the
International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pages 17--25.

Liquipedia (2012). Portal:Beginners - Liquipedia StarCraft Brood War Wiki. Liqui-
pedia - 16/04/2012. Available at: http://wiki.teamliquid.net/starcraft/

Portal:Beginners. Accessed in 24/11/2016.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement
learning. In International Conference on Machine Learning (ICML), pages 157--163,
New Brunswick, NJ. Morgan Kaufmann.

Littman, M. L. (1996). Algorithms for sequential decision making. PhD dissertation,
Brown University.

Liu, A. and Marschner, S. (2017). Balancing zero-sum games with one variable per
strategy. In AAAI Conference on Artificial Intelligence in Interactive Digital Enter-
tainment (AIIDE), pages 57--65.

Machado, M. C., Bellemare, M. G., and Bowling, M. H. (2017). A Laplacian Framework
for Option Discovery in Reinforcement Learning. In International Conference on
Machine Learning (ICML), pages 2295--2304.

http://wiki.teamliquid.net/starcraft/Portal:Beginners
http://wiki.teamliquid.net/starcraft/Portal:Beginners

102 Bibliography

Mattson, M. P. (2014). Superior pattern processing is the essence of the evolved human
brain. Frontiers in neuroscience, 8:265.

McCracken, P. and Bowling, M. (2004). Safe strategies for agent modelling in games.
AAAI Fall Symposium on Artificial Multi-agent Learning, pages 103--110.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-
level control through deep reinforcement learning. Nature, 518(7540):529--533.

Monahan, G. E. (1982). State of the art - a survey of partially observable Markov
decision processes: theory, models, and algorithms. Management Science, 28(1):1--
16.

Moraes, R. O. and Lelis, L. H. (2018). Asymmetric Action Abstractions for Multi-
Unit Control in Adversarial Real-Time Games. In AAAI Conference on Artificial
Intelligence (AAAI).

Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V. V. (2007). Algorithmic Game
Theory, volume 1. Cambridge University Press Cambridge.

Ontanón, S. (2013). The combinatorial multi-armed bandit problem and its applica-
tion to real-time strategy games. In AAAI Conference on Artificial Intelligence in
Interactive Digital Entertainment (AIIDE).

Ontañón, S. (2017). Combinatorial multi-armed bandits for real-time strategy games.
Journal of Artificial Intelligence Research, 58:665--702.

Ontañón, S. and Buro, M. (2015). Adversarial Hierarchical-Task Network Planning for
Complex Real-Time Games. In International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 1652--1658.

Ontañón, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., and Preuss, M.
(2013). A survey of real-time strategy game AI research and competition in Star-
Craft. IEEE Transactions on Computational Intelligence and AI in Games (TCI-
AIG), 5(4):293--311.

OpenAI (2017). More on Dota 2. OpenAI Blog - 16/aug/2018. Available at: https:

//blog.openai.com/more-on-dota-2/. Accessed in 10/jul/2018.

OpenAI (2018a). OpenAI Five. OpenAI Blog - 25/jun/2018. Available at: https:

//blog.openai.com/openai-five/. Accessed in 06/jul/2018.

https://blog.openai.com/more-on-dota-2/
https://blog.openai.com/more-on-dota-2/
https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/

Bibliography 103

OpenAI (2018b). The International 2018: Results. OpenAI Blog - 23/ago/2018.
Available at: https://blog.openai.com/the-international-2018-results/.
Accessed in 17/dec/2018.

Osborne, M. J. and Rubinstein, A. (1994). A Course in Game Theory. The MIT Press.
ISBN 0262650401.

Peng, P., Yuan, Q., Wen, Y., Yang, Y., Tang, Z., Long, H., Wang, J., and Group, A.
(2017). Multiagent Bidirectionally-Coordinated Nets for Learning to Play StarCraft
Combat Games. Technical report.

Preuss, M., Kozakowski, D., Hagelback, J., and Trautmann, H. (2013). Reactive strat-
egy choice in StarCraft by means of Fuzzy Control. In IEEE Conference on Com-
putational Intelligence and Games (CIG), pages 1--8. IEEE.

Rice, J. R. (1976). The algorithm selection problem. Advances in computers, 15:65--
118.

Rubinstein, R. (1999). The cross-entropy method for combinatorial and continuous
optimization. Methodology and computing in applied probability, 1(2):127--190.

Rummery, G. A. and Niranjan, M. (1994). On-line Q-learning using connectionist
systems. Technical report, University of Cambridge, Department of Engineering.

Russell, S. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach. Prentice-
Hall, Upper Saddle River, N.J, second edition.

Sailer, F., Buro, M., and Lanctot, M. (2007). Adversarial planning through strategy
simulation. In IEEE Conference on Computational Intelligence and Games (CIG),
pages 80--87. IEEE.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers.
IBM Journal of research and development, 3(3):210--229.

Samuel, A. L. (1967). Some studies in machine learning using the game of checkers.
II-recent progress. IBM Journal of research and development, 11(6):601--617.

Savani, R. and von Stengel, B. (2015). Game Theory Explorer: software for the applied
game theorist. Computational Management Science, 12(1):5--33.

Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake, R., Lu, P.,
and Sutphen, S. (2007). Checkers is solved. Science, 317(5844):1518--1522.

https://blog.openai.com/the-international-2018-results/

104 Bibliography

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
Policy Optimization Algorithms. CoRR, abs/1707.06347.

Shapley, L. S. (1953). Stochastic games. Proceedings of the National Academy of
Sciences, 39(10):1095--1100.

Shoham, Y. and Leyton-Brown, K. (2009). Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press.

Sigurdson, D. and Bulitko, V. (2017). Deep Learning for Real-Time Heuristic Search
Algorithm Selection. In AAAI Conference on Artificial Intelligence in Interactive
Digital Entertainment (AIIDE), pages 108--114.

Silva, C. R., Moraes, R. O., Lelis, L. H. S., and Gal, K. (2018). Strategy generation
for multi-unit real-time games via voting. IEEE Transactions on Games. ISSN
2475-1502.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016).
Mastering the game of Go with deep neural networks and tree search. Nature,
529(7587):484--489.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M.,
Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T. P., Simonyan, K., and Hassabis,
D. (2017a). Mastering Chess and Shogi by Self-Play with a General Reinforcement
Learning Algorithm. CoRR, abs/1712.01815.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hu-
bert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., and
Sifre, L. (2017b). Mastering the game of Go without human knowledge. Nature,
550(7676):354--359. ISSN 0028-0836.

Spronck, P., Ponsen, M., Sprinkhuizen-Kuyper, I., and Postma, E. (2006). Adaptive
game AI with dynamic scripting. Machine Learning, 63(3):217--248.

Stanescu, M., Barriga, N. A., and Buro, M. (2014). Hierarchical Adversarial Search
Applied to Real-Time Strategy Games. In AAAI Conference on Artificial Intelligence
in Interactive Digital Entertainment (AIIDE), pages 66--72.

Stanescu, M. and Čertickỳ, M. (2016). Predicting Opponent’s Production in Real-Time
Strategy Games With Answer Set Programming. IEEE Transactions on Computa-
tional Intelligence and AI in Games (TCIAIG), 8(1):89--94.

Bibliography 105

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction,
volume 1. MIT press Cambridge.

Sutton, R. S., Precup, D., and Singh, S. (1999a). Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial Intelligence,
112:181--211.

Sutton, R. S., Singh, S. P., Precup, D., and Ravindran, B. (1999b). Improved Switching
Among Temporally Abstract Actions. In Advances in Neural Information Processing
Systems, pages 1066--1072.

Świechowski, M. and Mańdziuk, J. (2014). Self-adaptation of playing strategies in
general game playing. IEEE Transactions on Computational Intelligence and AI in
Games (TCIAIG), 6(4):367--381.

Synnaeve, G. and Bessiere, P. (2011). A bayesian model for opening prediction in
RTS games with application to StarCraft. In IEEE Conference on Computational
Intelligence and Games (CIG), pages 281--288. IEEE.

Szita, I. and Lõrincz, A. (2007). Learning to Play Using Low-Complexity Rule-Based
Policies: Illustrations through Ms. Pac-Man. Journal of Artificial Intelligence Re-
search, 30:659--684.

Tavares, A., Azpúrua, H., Santos, A., and Chaimowicz, L. (2016). Rock, Paper, Star-
Craft: Strategy Selection in Real-Time Strategy Games. In AAAI Conference on
Artificial Intelligence in Interactive Digital Entertainment (AIIDE), pages 93--99.

Tavares, A. R., Anbalagan, S., Marcolino, L. S., and Chaimowicz, L. (2018a). Algo-
rithms or Actions? A Study in Large-Scale Reinforcement Learning. In International
Joint Conference on Artificial Intelligence (IJCAI), pages 2717--2723. International
Joint Conferences on Artificial Intelligence Organization.

Tavares, A. R. and Chaimowicz, L. (2018). Tabular Reinforcement Learning in Real-
Time Strategy Games via Options. In IEEE Conference on Computational Intelli-
gence and Games (CIG), pages 229--236.

Tavares, A. R., Vieira, D. K. S., Negrisoli, T., and Chaimowicz, L. (2018b). Algorithm
Selection in Adversarial Settings: From Experiments to Tournaments in StarCraft.
IEEE Transactions on Games.

Tesauro, G. (1995). Temporal difference learning and TD-Gammon. Communications
of the ACM, 38(3):58--68.

106 Bibliography

Toubman, A., Roessingh, J. J., Spronck, P., Plaat, A., and van den Herik, J. (2016).
Rapid Adaptation of Air Combat Behaviour. In Prestigious Applications of Intelli-
gent Systems (PAIS).

Uriarte, A. and Ontañón, S. (2014). Game-tree Search over High-level Game States
in RTS Games. In AAAI Conference on Artificial Intelligence in Interactive Digital
Entertainment (AIIDE), pages 73--79.

Uriarte, A. and Ontañón, S. (2016). Improving Monte Carlo Tree Search Policies in
StarCraft via Probabilistic Models Learned from Replay Data. In AAAI Conference
on Artificial Intelligence in Interactive Digital Entertainment (AIIDE), pages 100--
106.

Usunier, N., Synnaeve, G., Lin, Z., and Chintala, S. (2016). Episodic Exploration for
Deep Deterministic Policies: An Application to StarCraft Micromanagement Tasks.
Technical report.

Verwey, W. B. and Abrahamse, E. L. (2012). Distinct modes of executing movement
sequences: reacting, associating, and chunking. Acta psychologica, 140(3):274--282.

Wang, C., Chen, P., Li, Y., Holmgård, C., and Togelius, J. (2016). Portfolio Online
Evolution in StarCraft. In AAAI Conference on Artificial Intelligence in Interactive
Digital Entertainment (AIIDE), pages 114--120.

Wang, Z., Xu, B., and Zhou, H.-J. (2014). Social cycling and conditional responses in
the Rock-Paper-Scissors game. Scientific Reports, 4:5830.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Machine Learning, 8(3):279--
292. ISSN 0885-6125.

Weber, B. G. and Mateas, M. (2009). A data mining approach to strategy prediction. In
IEEE Conference on Computational Intelligence and Games (CIG), pages 140--147.
IEEE.

Weber, B. G., Mateas, M., and Jhala, A. (2011). A Particle Model for State Estimation
in Real-Time Strategy Games. In AAAI Conference on Artificial Intelligence in
Interactive Digital Entertainment (AIIDE), pages 103--108.

Wender, S. and Watson, I. (2012). Applying Reinforcement Learning to Small Scale
Combat in the Real-Time Strategy Game StarCraft:Broodwar. In IEEE Conference
on Computational Intelligence and Games (CIG), pages 402--408. ISSN 2325-4270.

Bibliography 107

Whitehead, S. D. and Lin, L.-J. (1995). Reinforcement learning of non-Markov decision
processes. Artificial Intelligence, 73(1-2):271--306.

Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2008). SATzilla: portfolio-
based algorithm selection for SAT. Journal of Artificial Intelligence Research, 32:565-
-606.

Xu, L. D. (1994). Case based reasoning. IEEE Potentials, 13(5):10--13.

Yannakakis, G. N. and Togelius, J. (2015). A Panorama of Artificial and Computational
Intelligence in Games. IEEE Transactions on Computational Intelligence and AI in
Games, 7(4):317--335.

Appendix A

Additional data on the game of
algorithm selection

This chapter presents additional data on the game of algorithm selection experiments.
Table A.1 shows the percent of victories among AIIDE 2015 bots on the Fortress map.

The expected performances of Table 5.2 were extracted from these values, as
follows: 1·probability of victory −1·probability of defeat. The probabilities were esti-
mated from the victory rates in Table A.1.

Bot UAlb Ximp Xeln Cruz NUSB Aiur Skyn Susa
UAlberta - 97 98 100 100 97 92 100
Ximp 3 - 100 97 97 86 75 100

Xelnaga 2 0 - 26 86 73 73 100
CruzBot 0 3 74 - 80 67 16 99
NUSBot 0 3 14 20 - 74 97 94
Aiur 3 14 27 33 26 - 79 100

Skynet 8 25 27 84 3 21 - 100
Susanoo 0 0 0 1 6 0 0 -

Table A.1: Win percent among AIIDE 2015 Protoss bots on Fortress map. Values in
bold indicate that the row bot dominates the column adversary, by winning more than
50% matches.

Table A.2 presents all pairings of algorithm selectors in the stationary algorithm
selection tournament. The averages in the last column were used to generate Figure
5.6.

Table A.3 presents all pairings of algorithm selectors in the non-stationary algo-
rithm selection tournament. The averages in the last column were used to generate
Figure 5.7.

109

110 Appendix A. Additional data on the game of algorithm selection

Exp3 Freq-hist Freq-matrix minimax-Q Nash Reply-matrix Reply-hist Skynet UCB Xelnaga ε-greedy ε-Nash Average

Exp3 51.54 50.99 49.60 49.94 50.28 49.38 85.01 50.63 71.38 50.62 50.15 55.41
Freq-hist 48.46 48.79 45.44 51.82 36.88 50.60 80.49 40.03 50.13 48.47 47.35 49.86

Freq-matrix 49.01 51.21 46.22 51.60 37.05 37.56 93.92 42.62 80.80 48.60 46.94 53.23
minimax-Q 50.40 54.56 53.78 49.24 50.86 49.50 92.21 51.95 78.43 52.08 49.35 57.49

Nash 50.06 48.18 48.40 50.76 52.54 49.53 46.86 49.76 53.55 49.87 49.32 49.89
Reply-matrix 49.72 63.12 62.95 49.14 47.46 50.31 93.97 70.75 80.74 62.66 50.64 61.95
Reply-hist 50.62 49.40 62.44 50.50 50.47 49.69 83.22 62.80 54.46 60.84 53.55 57.09
Skynet 14.99 19.51 6.08 7.79 53.14 6.03 16.78 25.24 31.27 20.41 33.75 21.36
UCB 49.37 59.97 57.38 48.05 50.24 29.25 37.20 74.76 76.28 52.78 50.61 53.26

Xelnaga 28.62 49.87 19.20 21.57 46.45 19.26 45.54 68.73 23.72 28.96 35.61 35.23
ε-greedy 49.38 51.53 51.40 47.92 50.13 37.34 39.16 79.59 47.22 71.04 49.81 52.23
ε-Nash 49.85 52.65 53.06 50.65 50.68 49.36 46.45 66.25 49.39 64.39 50.19 52.99

Table A.2: Pairings of the algorithm selection tournament with stationary payoff matrix

Exp3 Freq-hist Freq-matrix minimax-Q Nash Reply-matrix Reply-hist Skynet UCB Xelnaga ε-greedy ε-Nash Average

Exp3 43.53 85.52 49.50 73.54 82.26 44.58 66.80 45.54 71.80 48.34 74.72 62.37
Freq-hist 56.47 91.12 53.50 73.67 91.59 49.96 49.81 51.39 50.18 56.77 68.81 63.02

Freq-matrix 14.48 8.88 10.18 19.21 34.12 9.09 31.80 28.92 8.30 13.83 24.00 18.44
minimax-Q 50.50 46.50 89.82 74.86 83.30 45.88 73.17 48.35 80.28 50.79 74.58 65.28

Nash 26.46 26.33 80.79 25.14 64.48 27.79 25.63 25.31 45.46 37.17 62.53 40.64
Reply-matrix 17.74 8.41 65.88 16.70 35.52 8.49 31.85 25.51 8.27 17.04 30.13 24.14
Reply-hist 55.42 50.04 90.91 54.12 72.21 91.51 55.20 51.17 49.91 56.03 72.50 63.55
Skynet 33.20 50.19 68.20 26.83 74.37 68.15 44.80 29.62 76.10 33.48 71.76 52.43
UCB 54.46 48.61 71.08 51.65 74.69 74.49 48.83 70.38 75.12 54.53 74.54 63.49

Xelnaga 28.20 49.82 91.70 19.72 54.54 91.73 50.09 23.90 24.88 32.61 68.93 48.74
ε-greedy 51.66 43.23 86.17 49.21 62.83 82.96 43.97 66.52 45.47 67.39 70.52 60.90
ε-Nash 25.28 31.19 76.00 25.42 37.47 69.87 27.50 28.24 25.46 31.07 29.48 37.00

Table A.3: Pairings of the algorithm selection tournament with non-stationary payoff
matrix

Appendix B

MegaBot

This chapter presents a more detailed description of MegaBot, evaluated in Section
5.3.3.

MegaBot is a fully-capable StarCraft bot designed to evaluate our algorithm
selection framework in actual competition environments. The bot is composed of a
meta-reasoning module, implementing the algorithm selection mechanism, and a port-
folio of algorithms. The portfolio of MegaBot is composed by the AIIDE 2015 versions
of Skynet, Xelnaga and NUSBot. They placed 8th, 9th and 13th, respectively, in that
competition [Churchill et al., 2015]. In terms of tournament performance, they were
not the strongest competitors. Thus, a good performance of MegaBot is due to its
meta-reasoning mechanism rather than to a strong portfolio. Moreover, these three
bots interact in a cyclical way: Skynet beats Xelnaga, which beats NUSBot, which
beats Skynet, suggesting complementary abilities. This cycle does not appear in Fig-
ure 5.5 because it is related to a tournament with bots’ learning disabled. The AIIDE
2015 tournament results in [Churchill et al., 2015] (with learning enabled) show the
cyclical interaction.

The meta-reasoning module is basically an implementation of minimax-Q, re-
duced for one-shot decision scenarios (as in Section 5.3). We keep a payoff matrix with
3 lines and a column per opponent bot. The matrix is updated via Eq. 2.3, where we
assign a score of 1 to victory and -1 to defeat. Ties are not considered, because they
are broken by the in-game score in tournament matches.

Our selection mechanism is ε-greedy, as in the original implementation of
minimax-Q [Littman, 1994]: select a random algorithm with probability ε, and se-
lect according to the equilibrium policy with probability 1 − ε. We exploit the fact
that, in StarCraft tournaments, we have access to the name of the current opponent
in a match, so we know the matrix column we are playing against. The equilibrium

111

112 Appendix B. MegaBot

policy in this situation is to select the highest scoring algorithm from that column.
This situation could also be framed as a contextual bandit [Sutton and Barto, 1998,
Section 2.10]. In each match, we face a multi-armed bandit whose payoffs are deter-
mined by the matrix column related to the current opponent. ε-greedy over this bandit
corresponds to our minimax-Q selection policy, which considers a single column in the
payoff matrix.

MegaBot’s source code1 has the meta-reasoning module plus the code of all port-
folio members in a single project. The source code of the members was edited in some
places to handle naming conflicts. When MegaBot compiles, it generates a monolithic
StarCraft AI client module, bundled with the meta-reasoning and the portfolio mem-
bers. This monolithic AI client can be loaded and injected into the game normally via
BWAPI [BWAPI, 2015].

MegaBot’s parameters are α, the step size for the payoff matrix updates and
ε, the exploration probability in the ε-greedy selection method. In all tournaments,
MegaBot competes with α = 0.2 and ε = 0.1. In each tournament, the payoff matrix
is initialized optimistically with ones to encourage initial exploration of all choices.
We use a greater learning rate (α) than that of our experiments (see Section 5.3.1)
because actual StarCraft tournaments have fewer matches than our experiments, thus
we directed MegaBot to learn faster at the potential risk of being more affected by
noisy outcomes, which could happen, for example, if our selected bot is winning but
crashes.

In StarCraft tournaments, crashes and timeouts are punished with defeats. A
crash is a bot malfunction that interrupts the game, and a timeout corresponds to a
delay longer than tolerable to send a command to the game. There is a number of
frames where the bot is allowed to timeout, and it is punished with defeat when it
surpasses a tolerable limit. A disqualification by timeout is detected by a tournament
manager module, which finishes the game normally, and the bot is informed of its
defeat. When an entry crashes, on the other hand, the game ends abnormally and the
entry is not informed of its defeat.

The 2016 version of MegaBot did not have a mechanism to account for crashes,
so that the value in its payoff matrix is not properly updated when a match terminates
abnormally. Thus, the portfolio member that caused the crash remain likely to be
selected in a future match. The 2017 version received a mechanism to account for
crashes via a counter, initialized with zero. When a match starts, we increment the
crash counter of the selected algorithm against the current opponent. If the match ends

1https://github.com/andertavares/MegaBot

https://github.com/andertavares/MegaBot

113

normally, the cleanup function is called, the counter is reset to zero and the selected
algorithm’s score is updated normally. In the next match, if the crash counter is not
zero, we know that a crash happened in the previous match, so we assign a loss to the
crashing algorithm and update its score prior to the selection process.

Appendix C

Other games mentioned in this
dissertation

Throughout the text, we mention several computer games from genres other than real-
time strategy games, which are our testbeds. We centralize their description in this
chapter. Each section has a brief description of the game, alongside a figure and a link
to a gameplay video.

C.1 Breakout

In Breakout (Figure C.1), the player controls a horizontal sliding paddle to bounce a
ball. The upper part of the screen has bricks that disappear and give points to the
player when hit by the ball. Difficulty increases when the paddle size decreases and
the ball speed increases upon specific events.

Figure C.1: Breakout screenshot.

115

116 Appendix C. Other games mentioned in this dissertation

Breakout is mainly a game of reflexes: to succeed, the player must observe the
ball trajectory to intercept it using the paddle. Moreover, it is a game that frequently
rewards the player, as the bricks are hit. The game was first featured in arcades,
then ported to several platforms, including the Atari 2600. Example video: https:

//youtu.be/Up-a5x3coC0.

C.2 Frostbite

Frostbite is an Atari 2600 platform game in which the player controls an Eskimo that
jumps between four lines of moving ice blocks. The Eskimo must deviate from enemies
and collect items to score. By jumping back and forth, an igloo grows at the top of
the screen, and the player can enter it to complete a level.

Figure C.2: Frostbite screenshot.

There is a countdown, based on the Eskimo body temperature, to build the igloo
and pass the level. The Eskimo dies from frostbite if the time runs out. Frostbite is a
game of reflexes with elements of long-term planning: the player must quickly deviate
from enemies and correctly jump to the next ice block, but the ultimate goal is to
build the igloo. The game constantly rewards the player after each successful jump to
a different row of ice blocks. Example video: https://youtu.be/iajqWQjchjY.

C.3 Montezuma’s Revenge

Montezuma’s Revenge (Figure C.3) is an Atari 2600 game, where the player controls
a character named Panama Joe to find the treasure of emperor Montezuma, hidden
deep in his fortress. The player must explore several rooms in the emperor’s fortress,
climbing ropes and ladders, leaping gaps, avoiding enemies and collecting items.

https://youtu.be/Up-a5x3coC0
https://youtu.be/Up-a5x3coC0
https://youtu.be/iajqWQjchjY

C.4. Prismata 117

Figure C.3: Montezuma’s Revenge screenshot

Montezuma’s Revenge requires long-term planning: some items, such as keys,
are useful far away from where they are collected. Moreover, rewards are sparse, as
the player only scores by collecting items, which don’t appear in every fortress room.
Example video: https://youtu.be/Klxxg9JM5tY.

C.4 Prismata

Prismata (Fig. C.4) is a hybrid strategy game, mixing elements from real-time strategy,
card games and tabletop strategy games. Players start with the same units, randomly
chosen from a list of about 100 units. At each turn, players may purchase units, and
use them to attack, block, produce resources or cast their special abilities. The goal of
the game is to eliminate all opponents’ units.

Figure C.4: Prismata screenshot.

Example video: https://youtu.be/aq5_JwDsCgg.

C.5 Doom

Doom (Figure C.5) is a 1993 first-person shooter game, considered a reference in the
genre. The player controls a marine through three episodes of eight mandatory levels,

https://youtu.be/Klxxg9JM5tY
https://youtu.be/aq5_JwDsCgg

118 Appendix C. Other games mentioned in this dissertation

plus a ninth optional hidden one. The player must survive by shooting every enemy in
sight, in a 3D environment.

Figure C.5: Doom screenshot.

Computationally, Doom’s campaign is a difficult game for its large state space
(a 3D world) and the need of long-term planning: although surviving is accomplished
by killing enemies in sight, the player must traverse long distances to pass a level,
activating door-opening switches and look for armor, weapons, ammunition, and health
kits to increase its chances of surviving. Deathmatches reduce the long-term planning
requirements as the only goal is to eliminate the other players. Example video: https:
//youtu.be/8mEP4cflrd4.

C.6 Dota 2

Dota 2 (Figure C.6) is a multiplayer online battle arena (MOBA) game, a genre also
referred to as Action Real-Time Strategy (ARTS), as a derivative of real-time strategy
games. In MOBAs, each player controls a hero. Two teams of heroes battle to destroy
each other’s main structures, named “Ancients” in Dota 2. Before the game, players
select their heroes from a pool of over a hundred characters. Their characteristics
vary greatly, ranging from physically-strong warriors to physically-weak supporting
spellcasters. Dota 2 has a single map, split into three lanes, each with three towers
for each team. Towers must be destroyed in sequence for a team to advance towards
enemy territory.

AI-controlled minion creatures, named creeps, spawn regularly from each base.
Players gain gold and experience by killing enemy creeps. Experience levels up the
hero, enhancing its abilities. Gold can be used to buy items that recover the hero’s
attributes and/or provide special abilities.

https://youtu.be/8mEP4cflrd4
https://youtu.be/8mEP4cflrd4

C.6. Dota 2 119

Figure C.6: Dota 2 screenshot.

Computationally, MOBA games such as Dota 2 are complex: the state space is
enormous (every combination of unit attributes, positions and items forms a different
state) and each hero has various possible actions to perform at every moment. Ac-
tions involve movements, attacks, use of items or spells, some of which have target
parameters. In real-time strategy games, a player controls many units with many pos-
sible actions, such that the combinatorial complexity of actions is superior to MOBAs,
where the player controls a single hero. On the other hand, MOBAs have the ad-
ditional challenge of teamwork: as each player controls a single hero, he/she must
coordinate with its teammates to pursue a good team behavior. Example video:
https://youtu.be/vA7RwB_G1Mk.

https://youtu.be/vA7RwB_G1Mk

	Acknowledgments
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Symbols
	1 Introduction
	1.1 Objectives
	1.2 Contributions
	1.3 Chapter organization

	2 Background
	2.1 Games
	2.2 Formal model
	2.3 Playing games
	2.3.1 Game-tree search
	2.3.2 Reinforcement learning

	2.4 The complexity of real-time strategy games

	3 Related work
	3.1 Adapted search approaches
	3.2 Rule-based approaches
	3.3 Reinforcement learning
	3.4 Algorithm selection
	3.5 Summary

	4 The strategic reasoning framework
	4.1 The human approach
	4.2 Game-playing algorithms
	4.3 Strategic reasoning approaches
	4.3.1 Algorithms versus algorithms
	4.3.2 Algorithms vs actions

	4.4 Issues with the state space
	4.4.1 State aggregation
	4.4.2 Linear function approximation

	4.5 Summary

	5 Experiments
	5.1 Synthetic experiments
	5.2 Real-time strategy testbeds
	5.2.1 StarCraft
	5.2.2 RTS

	5.3 The game of algorithm selection
	5.3.1 Methodology
	5.3.2 Results
	5.3.3 A functional StarCraft bot
	5.3.4 Discussion

	5.4 Multiple decision points
	5.4.1 State aggregation
	5.4.2 Linear function approximation
	5.4.3 Discussion

	5.5 Summary

	6 Conclusion
	6.1 Overview
	6.2 Contributions
	6.2.1 A model-free, lightweight, full-game capable approach
	6.2.2 A metagame analysis
	6.2.3 An investigation of abstract versus low-level actions
	6.2.4 Advancement in RTS game AI performance
	6.2.5 Software contributions

	6.3 Limitations
	6.3.1 Rigid architecture
	6.3.2 Perfect information

	6.4 Directions for future research
	6.4.1 Better insights from the experiments
	6.4.2 More flexible hierarchical architectures
	6.4.3 Handling imperfect and incomplete information

	6.5 The purpose of game AI research

	Bibliography
	A Additional data on the game of algorithm selection
	B MegaBot
	C Other games mentioned in this dissertation
	C.1 Breakout
	C.2 Frostbite
	C.3 Montezuma's Revenge
	C.4 Prismata
	C.5 Doom
	C.6 Dota 2

