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Resumo

O crescente interesse em redes neurais profundas complexas para novas aplicações exige
transparência em suas decisões, o que leva a uma necessidade de explicações confiáveis
das decisões tomadas por esses modelos. Trabalhos recentes propuseram novos métodos
de explicação para apresentar visualizações interpretáveis da relevância das instâncias
de entrada. Esses métodos calculam mapas de relevância que geralmente se concen-
tram em diferentes regiões de pixel e são comumente comparados por inspeção visual.
Isso significa que as avaliações são baseadas na expectativa humana, em vez da real
importância das features. Neste trabalho, propomos uma métrica eficaz para avaliar
a confiabilidade da explicação de modelos. Essa métrica é baseada nas mudanças da
resposta da rede, resultante da perturbação das imagens de entrada de maneira adver-
sarial. Essas perturbações consideram todos os valores de relevância e suas inversões
(irrelevância), de modo que a métrica tenha características de precisão e revocação.
Também propomos uma aplicação direta dessa métrica para filtrar mapas de relevân-
cia, a fim de torná-los mais interpretáveis sem a perda de explicações importantes.

Nós apresentamos uma comparação entre alguns métodos de explicação ampla-
mente conhecidos e seus resultados pela métrica proposta. Também expandimos os
resultados para uma discussão sobre técnicas de visualização e a quantidade de in-
formação que é perdida para torná-las mais interpretáveis e intuitivas. Em seguida,
mostramos os resultados do nosso método de filtragem que aborda esse problema. Além
disso, apresentamos uma análise aprofundada das propriedades da métrica que a tor-
nam apropriada para uma variedade de tarefas. Nela, observamos a importância de
usar a irrelevância, a robustez a valores aleatórios e imagens classificadas incorreta-
mente, e a correlação entre a métrica e a perda do modelo avaliado.

Palavras-chave: Visão Computacional, Aprendizado Profundo, Aprendizado de
Máquina Explicável.
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Abstract

The increasing interest in complex deep neural networks for new applications demands
transparency in their decisions, which leads to the need for reliable explanations of such
models. Recent works have proposed new explanation methods to present interpretable
visualizations of the relevance of input instances. These methods calculate relevance
maps which often focus on different pixel regions and are commonly compared by visual
inspection. This means that evaluations are based on human expectation instead of
actual feature importance. In this work, we propose an effective metric for evaluating
the reliability of the explanation of models. This metric is based on changes in the
network’s outcome resulted from the perturbation of input images in an adversarial
way. These perturbations consider every relevance value and its inversion (irrelevance)
so that the metric has characteristics of precision and recall. We also propose a direct
application of this metric to filter relevance maps in order to create more interpretable
images without any loss in essential explanation.

We present a comparison between some widely-known explanation methods and
their results using the proposed metric. We also expand the results into a discussion
on visualization techniques and the amount of information lost to make them more
interpretable. Then, we show the results of our filtering method which tackles this
problem. In addition, we further present an in-depth analysis of the properties of the
metric which make it appropriate for a variety of tasks. It shows the importance of
using the irrelevance, the robustness to random values and misclassified images, and
the correlation between the metric and the loss of the model evaluated.

Palavras-chave: Computer Vision, Deep Learning, Explainable Machine Learning.
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Chapter 1

Introduction

The success of deep neural networks to model increasingly difficult problems brought
the attention of several areas to these techniques, such as healthcare [Miotto et al., 2018;
Shen and Suk, 2017] and economics [Hartford et al., 2017]. To achieve these results,
the models are constantly evolving and becoming ever more complex. This increase in
assertiveness, though, usually comes at the expense of interpretability. Referred to as
black-boxes, users often avoid such systems in practical applications due to the lack of
explanation in their decisions. This lack of transparency brings distrust to them, who
frequently prefer to use simpler interpretable methods.

The interpretation of simpler models such as decision trees and classification
rules are more straightforward as they explicitly show each consideration made until
it reaches a final decision [Freitas, 2013]. However, the works in these areas commonly
propose deep neural networks as an appropriate solution [Liu et al., 2014; Payan and
Montana, 2015]. These complex models are harder to understand and require more
advanced methods.

In some applications, the reasons considered for a decision are as important as
the decision itself. When using machine learning to diagnose Alzheimer’s disease, for
example, just claiming its occurrence is not enough and can be restricted even by
regulations [Goodman and Flaxman, 2017]. It requires further explanation of what
patterns or region of the brain led to that decision as these predictions have serious
consequences on patients’ lives. Therefore, reliable explanations are essential in such
problems. This reliability in visualizations represents the correct relevance of each
feature the model considers in a classification. Then, it prevents these models to
expose wrong visualizations in which an observer may accept as correct just because
of the presence of expected patterns.

There are several techniques which tackle the problem of finding relevant infor-
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2 Chapter 1. Introduction

mation that can present the reasons for a decision [Simonyan et al., 2013; Ribeiro et al.,
2016; Baehrens et al., 2010; Fong and Vedaldi, 2017]. Both the developer of the model
and the users benefit from understanding this importance given to the features. This
is because unwanted patterns learned by the model, such as biases, can be revealed
while using it to debug the model, which later leads to enhancements and improved
methods [Cadamuro et al., 2016; Lakkaraju et al., 2017].

The models trained on unstructured data, such as multimedia and text, are known
to be more complex to extract useful interpretations than on structured data. This
is because, in most cases, they do not have specific features that are relevant to a
whole dataset. Instead, each instance has its own individual features importance.
For example, when detecting dogs in images, the positions they appear in the image
can change even when the appearances of the dogs are very similar. Therefore, we
will have the same patterns in different regions of images. This work focuses on the
interpretability of these types of problems.

The analysis of the patterns learned by deep neural networks is a topic recently
addressed [Zeiler and Fergus, 2014; Erhan et al., 2009; Le, 2013; Montavon et al.,
2011]. Several works are focused on understanding specific patterns learned by neurons
[Erhan et al., 2009; Le, 2013; Yosinski et al., 2015]. For this, they maximize activation
functions using subsets of data and observe the resulting shapes. Other techniques use
the model’s parameters in order to expand their representations [Dosovitskiy and Brox,
2016; Mahendran and Vedaldi, 2015]. More recent techniques which are important to
the problem discussed in this work focus on understanding the decisions for individual
instances in a model on pixel-level [Ribeiro et al., 2016]. In this case, each prediction is
linked to the importance of each pixel in the input image. There are several approaches
that find this interpretation, which goes from saliency maps [Simonyan et al., 2013;
Smilkov et al., 2017] to contributions from the decomposition of predictions [Bach et al.,
2015; Binder et al., 2016].

Although there are approaches that find different types of interpretations for
decisions of trained models, it is important to understand the main objectives of each
one and how to use them in the right way. We must consider that deep neural networks
have special behaviors and can be easily confused [Nguyen et al., 2015; Goodfellow
et al., 2014; Szegedy et al., 2013] . Therefore, techniques that explain these models
must aim to present the real importance of the features in the decision, following the
characteristics of the models. To do this, we should not consider visual interpretations
that make sense to a person who is observing them as the same used by the model in
a prediction. While visualizations that seem to be expected by an observer can have
several advantages in an application, they can be misleading and different from the
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real importance given to features in a trained network.
Adebayo et al. [2018] presents a series of experiments which support the idea

that simple visual inspection is not the proper way to evaluate the relevance maps
generated. In their results, some of the most used techniques create relevance maps
which are independent of the prediction. This means that the explanation is based
solely on the input image. Therefore, it is not an explanation related to the model.
Our work uses this conclusion as a basis and aims to measure how much a relevance
map created for a model and an input image is actually reliable with respect to how
much the calculated values influence a classification.

1.1 Thesis Statement

The explanation of the predictions of Deep Neural Networks is still a complex unsolved
task, resulting in a variety of explanation methods which present different relevance
visualizations, often compared by simple visual inspection. The main hypothesis of this
thesis is that the relevance maps from such methods are algorithmically comparable.
Thereby, the most accurate one represents the actual importance of the features of the
evaluated model. The aim of this thesis is to show an effective use of all relevance
values to perturb the input instances in an adversarial way by aiming to minimize and
maximize their magnitude. It leads to measurable changes in the outcome of the model
which results in a metric of reliability.

1.2 Our Solution

We designed our solution around the reaction of models to when they undergo changes
in input images on the directions presented by the gradients, as shown in [Goodfellow
et al., 2014; Szegedy et al., 2013]. They argue that minimal changes to an image,
even if not noticeable to humans, can completely change the decision of a model. This
shows that changes to low-level features guided by their importance strongly influence
the values presented in higher layers after being calculated. Thus, we exploited this
along with the map of visual relevance of the explanation techniques to measure the
correct direction which is sufficient to create maximum or minimum changes in higher
layers.

The studies on the Selectivity Property [Bach et al., 2015; Samek et al., 2017]
assert that a model must agree with its explanation. Thus, features in the input image
with higher respective relevance score in an ideal relevance map are the ones which
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most influence the output of the model classification. In order to maximize alterations
in the outcome of a model by perturbing the input image, we retain the sign values of
the gradient to use it along with the relevance images.

Then, we make perturbations similarly to an ascending step directly on the im-
age with the values based on the relevance in the positive direction of the gradient,
approaching a maximization in the error with minimal input modification. By mea-
suring the influence of the relevance maps in the images, it is possible to define a
metric which compares the reliability of the visual explanation from the methods for
a given model and an input image. Our proposed metric is thus called Adversarial
Perturbation Explanation Metric (APEM).

It is also important to consider the low scores of relevance to avoid privileging
methods whose maps restrict relevant features to a few concentrated high values. Be-
sides the perturbation from relevance scores, we introduce the same approach to their
opposite values, which we call irrelevance. A correct relevance map implies accurate
irrelevance values which require higher perturbation by the Selectivity Property. This
balances the precision and the recall of the resulting maps, which all relevant values
have to be detected and also be correct.

The particularities of the APEM allow its use as an approach to a variety of other
problems. For instance, we propose a filtering algorithm which makes explanation
methods more interpretable to an observer while keeping all the essential information
in the relevance maps. We use APEM scores for the images as constraints and the
values calculated for the modified maps cannot be lower than the previous ones. This
results in images with minimum noise while ensuring no loss in explanation.

1.3 Contributions

The main contribution of this work is to measure the reliability of methods that explain
decisions of models. The proposed metric exploits the behavior of deep networks when
presenting adversarial examples. We state the following claims and contributions:

• We compare methods that produce visually relevant interpretations of models
and how they actually affect deep networks outputs. Moreover, we debate what
each work proposes. When using their relevance as a guide to perturb the input
images, we show how models are tricked to change their answers.

• We introduce a metric that can relatively show how different techniques, which
create images that look convincing to the human’s knowledge of the world, are
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trading off actual relevance to the model against more understandable shapes.
We also show how visualization techniques can abdicate important information
in order to make images more comprehensible. This metric substitutes visual
inspection when evaluating explanation metrics. It establishes the use of rele-
vance values along with the irrelevance, and we present several experiments of its
properties.

• We present a new approach based on the proposed metric to extract relevance
from images which shows visually understandable shapes and is also relevant to
models in their predictions. It is used as a filter to relevance maps and can be
applied to the results of any explainable method so it becomes more interpretable
without any loss of essential information.

1.4 Organization

The rest of this dissertation is structured as follows. In Chapter 2, we present the works
on understanding neural networks and the explanation metrics. Then, we show their
vulnerability, some unwanted characteristics of the explanation methods and the related
works on evaluating these methods. In Chapter 3, we describe our proposed metric
and how it can be used to filter relevance maps, creating less noisy visualizations. In
Chapter 4, we describe the dataset and the methods that are compared by the metric.
Then, we present the experimental results and some points on the lost of explainability
in visualization techniques. After that, we show some properties of the APEM in other
proposed experiments. Finally, in Chapter 6, we present the concluding remarks and
future work.





Chapter 2

Background and Related Work

In this Chapter, we present an overview of the works that aim to understand neural
networks and the efforts on explaining their outcomes. Then, we introduce the studies
on the properties of them and how deep visualizations can be unreliable in some cases.
Finally, we show the approaches to evaluate the quality of the relevance maps from
explanation methods.

These relevance maps come from visualization methods that calculate relevance
values related to each pixel of the input. So, it creates images with the same dimensions
of the input in which higher values are given to the ones with more importance in the
classification by the analyzed trained model.

2.1 Understanding and Explaining Neural Networks

The rapid progress of Deep Learning techniques made it so focused on achieving better
results in a variety of tasks, such as object detection in images [Girshick et al., 2014;
Girshick, 2015; Ren et al., 2015], that methods to explain models did not keep up at
the same pace. The non-linearity present in these models makes it difficult to really
understand how they are learning and the considerations in each decision.

Some authors worked on understanding the neurons in complex systems of deep
neural networks by visualizing interpretations of higher level features in Autoencoders
[Erhan et al., 2009; Le, 2013] and Deep Belief Networks [Erhan et al., 2009]. These
studies show how models can find patterns that are similar to what human consider
relevant in the domains analyzed. Montavon et al. [2011] approaches this problem of
what is represented in the models’ units by examining the complexity of each layer.
They concluded that higher layers represent the input in simpler and more accurate
forms. All these efforts on interpretable visualizations of features to understand neu-

7
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ral networks culminated in tools that easily displays information about trained layers
[Yosinski et al., 2015], so it could be widely studied.

Understanding what is responsible for the performance of deep models, especially
in Convolutional Neural Networks (CNNs), is essential to improve the current models
and find situations in which they fail to infer correctly. Zeiler and Fergus [2014] proposes
Deconvolutional Networks that map from a higher layer back to the pixels in the input
space in an already trained model. Therefore, for each image presented, the authors
create a visualization that shows the patterns in the input which resulted in a specific
activation in further layers. Other techniques tackle this problem by inverting the
input images representations and analyzing the information which is maintained in
them [Mahendran and Vedaldi, 2015; Dosovitskiy and Brox, 2016]. As a result, many
ideas on the properties of the feature representations of deep models arise.

Simonyan et al. [2013] presents a gradient-based approach, comparable to the
Deconvolutional Networks, to visualize the patterns in the input image. The proposed
saliency maps use the gradient of the calculated classes scores. Moreover, this technique
generates images which represent the notion of the classes learned by the model when
maximizing these scores. Smilkov et al. [2017] makes use of the saliency maps but
tackles the problem of the amount of visual noise produced. In order to do so, they
create a sample of noisy copies from an input image and average the maps calculated
for them. Other works also use the gradient in different ways to achieve contrasting
visualization results [Springenberg et al., 2014; Selvaraju et al., 2016; Sundararajan
et al., 2017]. Ribeiro et al. [2016], on the other hand, explains predictions by learning
an interpretable model locally around them. The authors apply it in a variety of
classification tasks for image and, also, text.

Another group of related works which aims to understand non-linear predictors
are focused on calculating scores of relevance for pixels by applying a technique which
redistributes the relevance from the output back to the input image assuring a con-
servation property layer-wise [Bach et al., 2015; Binder et al., 2016]. Consequently,
neurons that contribute more to the others in the following layers, have higher scores.
In [Lapuschkin et al., 2016], this method is extended to Fisher Vectors and serves as
a tool to show how differently models consider certain regions of images as relevant or
not. In addition, their conclusions come with questions about the reliability of models’
classification which can be, for example, biased by context.
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2.2 Reliability of Deep Visualizations

Deep neural networks are complex systems and a variety of flaws are detected in CNNs
and explored as properties [Nguyen et al., 2015; Goodfellow et al., 2014; Szegedy et al.,
2013]. The works in [Szegedy et al., 2013] and [Goodfellow et al., 2014] investigate the
counter-intuitive property called Adversarial Examples, which we further explore in this
dissertation. They show how susceptible these models are to directed perturbations
imperceptible to humans, which make them misclassify. Furthermore, they present the
linear nature of neural networks as the main cause of such vulnerability.

Nguyen et al. [2015] goes deeper into the subject and questions the differences
actually considered between patterns seen by humans and deep models by creating
images that are simply noise and have extremely high confidence. In our work, we
follow this doubt and ask if visualization methods that are applied in such networks
and considered better than others because they represent patterns that are expected
by humans are really expressing the importance of the features to the model itself. To
properly debug and understand a model, the method of explanation has to show the
true relevance of pixels in an interpretable manner even if noisy and not presented with
an appealing appearance for those who see.

Adebayo et al. [2018] works exactly on this question and proposes a methodology
based on randomization tests in order to evaluate the reliability of explanation methods.
They present two tests which check some characteristics of the explanation approaches,
excluding them of some tasks which require these characteristics, such as debugging
models and revealing unintended effects learned by the model, and are divided into:

• Model Parameter Randomization Test: Compares the relevance maps of a trained
model with the ones of a randomly initialized untrained network of the same
architecture. If the maps depend on the learned parameters of the model, the
results of the two cases should differ significantly. Otherwise, they are insensitive
to the parameters of the model. The authors subdivided this test into two forms:

– Cascading Randomization: randomize the weights of a model starting from
the top layer, successively, all the way to the bottom layer.

– Independent Randomization: independent layer-by-layer randomization
with the goal of isolating the dependence of the explanations by layer.

• Data Randomization Test: Compares the relevance maps of a model trained on a
labeled dataset with the ones of a model with the same architecture but trained
on a copy of the dataset in which they randomly permuted the labels. If the maps
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depend on the labeling of the data, the results of the two cases should differ again.
Otherwise, they are insensitive to the relationship between the input images and
the original labels.

Explanation methods insensitive to randomizing labels are not able to explain
cases in which there is a relationship between the images and labels present in the data
generating process. Furthermore, if insensitive to both cases, the approach does not
present reliable information on tasks which depend on the model parameters or the
relationships between inputs and outputs.

They provide experiments on several methods and analyze the results comparing
them to a simple edge detection algorithm, which does not require a training process
and is dependent only on the image. Moreover, they find widely used methods which
are independent in both tests and conclude that visual inspection is a poor way of
evaluating explanation results. These results imply the need for techniques which
compare methods not simply by visualization, but based on a more effective approach
to show the actual importance of the features to the outcomes of the models.

2.3 Evaluation of Explanation Methods

Comparisons between methods of deep visualization are commonly qualitative and
compare selected examples of maps of relevance which restrict their values to the pixels
that humans focus the most. Samek et al. [2017] tackles the problem proposed here,
providing a quantitative metric that evaluates how the relevant areas affect the correct
prediction of a given model, and is the closest work to ours. Their approach consists
of sequential random perturbations in the sorted relevant regions of the images and
evaluates, for each, when the model starts to misclassify.

While they consider block regions of relevance and apply random changes on it,
we propose that the relevances calculated to a specific class can guide hardly noticeable
perturbations in the whole image and effectively cause failures in the model when the
relevance scores are really representing the importance of the features to the model.

Montavon et al. [2018] discuss the desirable properties of explanations and possi-
ble evaluation metrics by using two of them. They argue that it is important to define
the characteristics of a good explanation at a more abstract level. Then, they support
a quantitative assessment of the Continuity and Selectivity properties, as explained
below.
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2.3.1 Explanation Continuity

The property of continuity ensures that if two data points are nearly equivalent, then
the explanations of their predictions should also be nearly equivalent. They show that
continuity can be quantified by seeking the greatest variation of the explanation R(x)
in the input domain:

maxx6=x′
||R(x)−R(x′)||1
||x− x′||2

2.3.2 Explanation Selectivity

The explanation redistributes relevance to variables that have the strongest impact on
the classification. Then, the property of selectivity states that removing features with
attributed relevance should reduce evidence at the output. The works in [Bach et al.,
2015; Samek et al., 2017] quantify this property by measuring how fast an evaluated
function starts to decrease when removing features with the highest relevance scores
as in Algorithm 1.

Algorithm 1 Explanation Selectivity
1: repeat
2: record current function value f(x)
3: find feature i with highest relevance Ri(x)
4: remove feature i (x← x− {xi})
5: until all features have been removed





Chapter 3

Adversarial Perturbation
Explanation Metric

We tackle the quantitative evaluation of deep visualizations task by using an approach
based on guided perturbations to the original images until the model loses the ability
to correctly classify them. The existing visualization methods generate one relevance
value for each pixel, resulting in images with the same dimensions in width and height,
in which the unit values are the relevances R = [[ri,j|0 ≤ ri,j ≤ 1]]. Thus, ri,j values
where ri,j ' 1 means that they have higher importance in the classification by the
trained model used to create R, and ri,j ' 0 means the opposite.

Each method uses a different framework to create the relevances and they com-
pare their results by presenting qualitative results based on intuition and the clarity
of what is visible in their maps. We propose in our work (i) to compare these visu-
alizations as a matter of importance to the model, and (ii) to use the same line of
work to create simpler and more understandable visualization that can be used on the
visualizations to make it more understandable while keeping their correct importance.
We are also going to discuss the trade-off of creating relevances that are more appealing
but lose explainability, and compare to our approach that retains as much information
as possible.

3.1 Comparing Relevances

Once a model is pre-trained, the relevance images can be extracted from a set of input
images and used in the evaluation. Therefore, the quality of the explanations depends
on the classification ability of the model, since they are calculated based on the learned
parameters and its prediction capacity. Our method, however, does not create a general

13
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measure that can be used to compare different models with diverse capacities. It ranks
the explanation for a given network, giving higher priorities to the ones that most
depicted the information used in the classification.

Analyzing the extracted relevances, we assume that the higher values are the
most important to the correct prediction and their absence would result in the greatest
impact in the output. The lack of these features would be enough to make the model
misclassify. On the other hand, removing the given irrelevant features should result in
less impact on the model. It does not prevent the model from misclassification, but
the required perturbation on these features are higher when compared to the previous.
Previous works have applied perturbations in the image regions randomly [Samek et al.,
2017] but, here, we propose to change the whole input image so we consider relevance
pixel-wise. These perturbations are hardly noticeable and follow the studies of directed
changes on pixels to harness networks in [Goodfellow et al., 2014].

First of all, we recall that smaller changes in high relevances should deviate the
decision, and these values are the ones that most influenced the outcome of the model.
Additionally, they are positive values that do not have a sense of direction in which
they should follow to effectively trick the model. To approach this problem, we propose
a Directed Relevance Rdir, which attributes the direction of the relevances by using the
sign of the gradients given by the model when predicting the same class the relevances
are representing. To make it fair among the methods that vary the total relevance
distributed in the image, we normalize the values in R by the l1-norm. Then, for a
network with parameters θ, an input image x and the target y associated to x, we
use the sign of the gradients from a loss function J(θ, x, y) to direct the relevances, as
shown in:

Rnorm =
R

norm(R)

Rdir = Rnorm � sign(∇xJ(θ, x, y))

Accordingly, the Rdir which correctly represents the model would need the mini-
mum perturbation to maximize the deviation from the correct answer, as it is correlated
to one gradient ascent step in the pixels instead of in θ. Therefore, there is a mini-
mum ε− value which makes the model change its prediction for the perturbed image
x′ created from x as seen in:

x′ = x+Rdir × ε−

Expanding this thought, we extract the values of irrelevance from R by making
R− = 1−R. Moreover, the best R−dir calculated from R− is the one the takes longer
to create doubts in the predictions, as changes in pixels which are not important do
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not cause significant changes in the output. This results in a maximum ε+ value and,
consequently, a gap between it and ε−.

The Adversarial Perturbation Explanation Metric (APEM) proposed here is the
average of all the gaps for a given model and the explanations extracted from a set of
images. Given this, our metric has the purpose of comparing which applied explanation
method most represents the importance of the features for the same model and set.
Then, it is not a global metric for the methods, but relative to the exact analyzed
situation. We can express the APEM for n instances as:

APEM =

∑n
i=1 (ε

+
i − ε−i )
n

3.2 Making Relevance Interpretable

Since we can now measure the reliability of a relevance map, the APEM presents the
amount of useful explanation lost when simplifying the relevance map to make it more
interpretable. A good simplification is the one which does not reduce the APEM value
of the original map. The pixels which are less relevant to a prediction have smaller
values in the map and, in most cases, no ability to cause changes in the outcome of a
prediction when not considered as relevant to the APEM. By zeroing these relevance
values, their irrelevance values become one and the APEM score changes to the new
map. If the metric remains unchanged, the pixels are considered to have no influence in
the prediction by themselves and can be excluded from the visualization so it is more
understandable and still holds the same explanation.

We propose here an algorithm to filter relevance maps, removing the noise in it
so humans can easily interpret. It zeroes the least relevant non-zero values iteratively
until any change in the relevance map causes a reduction in the metric, as seen in
Algorithm 2.

This method is applicable in any relevance map calculated for an image and a
trained model. While other methods have to deal with the trade-off of losing informa-
tion to make deep visualizations more interpretable, the one presented here works as
a way to enhance interpretation while keeping the same explanation of features con-
sidered by the model. Therefore, we have more reliable visualizations which are also
understandable by users of some application using it.
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Algorithm 2 Explanation Filter
1: function explanationFilter(relevance_map, image)
2: apem← APEM(relevance_map, image)
3: repeat
4: best_relevance_map← relevance_map
5: best_apem← apem
6: min_val← get_minimum_positive_value(best_relevance_map)
7: relevance_map← zero_where_equal(best_relevance_map,min_val)
8: apem← APEM(relevance_map, image)
9: until apem < best_apem

10: return best_relevance_map

Figure 3.1: Diagram of the APEM flow for an input image. The transitions are enu-
merated sequentially from the first step to the last and the ε values are stored and
modified throughout the process.

3.3 Overview

This section presents an overview of the proposed metric. We also show a step-by-step
example following the stages of the diagram in Figure 3.1. The diagram divides the
process into seven main steps, which are:

1. The evaluated explanation method calculates the relevance map R from the orig-
inal image.

2. The proposed irrelevance map R− is then created by inverting the values of the
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Figure 3.2: Example of the relevance map (middle) and its irrelevance map (right) for
a sampled input image (left).

first map using the formulation R− = 1−R.

3. Both the relevance and irrelevance maps are used to perturb the original image
in the positive direction of the gradient, controlled by a minimum perturbation
value ε, creating their respective input images to the model. A human observer
hardly notices the difference between these perturbed images and the original
ones.

4. The model receives the perturbed image as input.

5. The model outputs a prediction, which can be correct when compared to the
ground truth or a misclassification. A correct prediction means that the minimum
ε in step 3 is not great enough to make the model misclassify while the other case
means that the input image caused a change in the original decision of the model.

6. Every correct classification makes the value of ε increase so new perturbed images
can be calculated and used to make the model misclassify.

7. Wrong predictions define the minimum correct value for ε which sets the metric
score.

As an example, Figure 3.2 shows the relevance and irrelevance maps for a sampled
image. The gradient was used as the method to create the relevance image and the
irrelevance calculated from it. Then, the next steps consist of perturbing the original
image by using the maps presented in the figure until the model changes its output.
Figure 3.3 concludes the example showing each applied perturbation and the resulting
images for the relevance (3.3a) and irrelevance (3.3b) maps presented and their respec-
tive ε values until they become the minimum values which affect the outcome of the
model. Even though the perturbation is minimal and the resulting images look the
same compared to the original, the model misclassifies them with low ε values.
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(a) Perturbation and resulting image from the relevance map with ε = 1 and ε = 2 from the
left to the right. The model has a correct prediction when ε = 1 and misclassifies when ε = 2.

(b) Perturbation and resulting image from the irrelevance map with ε = 3 and ε = 4 from the
left to the right. The model has a correct prediction when ε = 3 and misclassifies when ε = 4.

Figure 3.3: Example of the process iteration for a sampled image. It presents the
applied perturbation values and the resulting perturbed images which are forwarded
through the model in the relevance (a) and irrelevance (b) steps until the model mis-
classifies (perturbation images shown here are normalized by scaling between 0 and 1
to make it easier to see). This example has a final value of ε− = 2 and ε+ = 4.



Chapter 4

Experiments

In this chapter, we present the techniques applied to extract the relevance from the
datasets and their results on the APEM. We also show how more interpretable visu-
alizations may affect the real explanation of the features and how our technique can
effectively tackle this problem, creating more understandable images while keeping the
same APEM value of the gradient.

4.1 Dataset and Framework

The relevance images were calculated from the ImageNet Large Scale Visual Recogni-
tion Challenge 2012 dataset (ILSVRC2012 ) [Russakovsky et al., 2015]. It is a compe-
tition whose goal is to estimate the content of photographs for the purpose of retrieval
and automatic annotation using a subset of the large hand-labeled ImageNet dataset
as training. The challenge aims to identify the main objects in test images labeled
especially for this competition and are not part of the previously published ImageNet
dataset. The role of the algorithms is to produce the respective labels of the objects
in these images.

The training data from the ImageNet contains 1.2 million images and 1000 cate-
gories. The validation and test data for this competition consist of 150,000 photographs
without duplicates. They were collected from search engines, hand-labeled with the
1000 categories of objects, and are not among the ImageNet training data. In addition,
the validation set contains a random subset of 50,000 of these labeled images, and the
remaining images are in the evaluation test set.

We used sets of 5,000 random images from the validation set to create the rele-
vances for each explanation method evaluated, one set of correctly classified images and
another of misclassified ones. The methods were implemented using PyTorch [Paszke
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et al., 2017], which provides a VGG-16 model [Simonyan and Zisserman, 2014] trained
on the ILSVRC2012 training set.

4.2 Explanation Methods

The visualization function is standardized for all explanation methods. For each rele-
vance matrix, we apply the modulus of the values and clamp them to an upper-bound
of the ninety-ninth percentile of the resulting absolute values. Then, we multiply the
new values by their respective original pixel values, resulting in a cleaner visualiza-
tion as proposed in [Smilkov et al., 2017]. By doing this multiplication, we go back
to the debate of how much alteration in the explanation we make when simplifying
the relevance map to make it more appealing. This stage brings shapes even easier to
understand to the map. However, it can also create side effects, such as false relevance
values as a result of the multiplication itself, which we thoroughly analyzed in Section
4.4. As we are using RGB images, we reduce the final number of channels to just one
by summing the three values along the dimensions, and we normalize it to the range
(0, 1).

Besides the use of the gradient directly interpreted as a relevance image, we
compared two distinct techniques: Smooth Grad and Layer-wise Relevance Propagation
(LRP). We further explained them below.

4.2.1 Smooth Grad

Smooth Grad [Smilkov et al., 2017], like other techniques based on interpreting the
gradient as a sensitivity map, uses the gradient of a class score function with respect to
an input image to explain the output of deep networks. For the image classifier in our
experiments, it shows the importance of the pixels to the calculated outcome. Mainly,
the technique averages the sensitivity maps generated to a sample of images created by
adding noise to a selected initial image. As its objective is to reduce noise in the deep
visualization, it is applicable to other methods which also create sensitivity maps.

More specifically, for a given input image x and a model which classifies an image
into class(x) by calculating the highest score of an activation function Sc, for a class
set C where each class c ∈ C. It can be expressed as

class(x) = argmaxc∈C(Sc(x))

Then, for each image x and the proposed model, the sensitivity map Mc(x) can
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be calculated from the result of the differentiation Mc with respect to the input image
x. Representing the gradient of Sc as ∂Sc, the sensitivity map can be defined as

Mc(x) =
∂Sc(x)

∂x

Smooth Grad takes into consideration the characteristics of the map Mc to cal-
culate important regions and proposes the use of a smoothing of the gradient ∂Sc, by
applying a Gaussian kernel, instead of the raw gradient ∂Sc. As a result, the algorithm
averages the sensitivity maps of the random samples calculated in a neighborhood of
x, formulated as

M̂c(x) =
1

n

n∑
1

Mc(x+N (0, σ2))

where n is the number of samples to average over, and N (0, σ2) the Gaussian
perturbation with standard deviation σ. The variation of the hyperparameters controls:

• σ: balance the sharpness of the sensitivity map and maintain the structure of the
original image

• n: make the estimated gradient smoother as n increases

4.2.2 Layer-wise Relevance Propagation

The Layer-wise Relevance Propagation (LRP) [Binder et al., 2016] computes the rel-
evance of the pixels of a selected image by considering their impact on the output of
the model. To create a framework for the calculation of the contribution values in the
input image, this method takes into consideration the characteristics of the general
function of neurons in the feed-forward deep networks, expressed as

x
(l+1)
j = g

(
0,
∑
i

x
(l)
i w

(l,l+1)
ij + b

(l+1)
j

)
, e.g. g(z) = max(0, z)

where x are values of the neurons, w and b the weights and the biases connected to
the neurons respectively, and where i represents the index in a layer (l) which connects
to a next layer (l + 1) indexed by j and forwards their values. The model learns the
parameters w and b in the training phase.

LRP proposes the use of the graph structure presented with trained parameters
to redistribute the relevance value at the output of the network back to the pixels. The
relevance is propagated until it reaches the input, generating the pixel scores R(1)

p , by
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applying in each layer the redistribution rule

R
(l)
i =

∑
j

zij∑
i′ zi′j

R
(l+1)
j with zij = x

(l)
i w

(l,l+1)
ij

where each neuron relevance value Ri in layer l is calculated based on its contri-
bution to all neurons in the next layer (l+ 1). Thus, it is applied in every layer so the
input will be related to a relevance map R(1)

p in which the value of
∑

pR
(1)
p is equal to

the relevance value in the output f(x), satisfying the conservation property.
The LRP formulation extends to two other variants:

• ε-variant

Although the standard method conserves the relevance in the propagation pro-
cess, the explanation can become sensitive to noise. This is because the denom-
inator in the expression can become very small due to canceling out of positive
and negative values, resulting in high values on the scores. Therefore, the rule
is altered to accept an ε > 0 so it gains better numerical properties, as defined
bellow.

R
(l)
i =

∑
j

zij∑
i′ zi′j + ε sign(

∑
i′ zi′j)

R
(l+1)
j

• β-variant

This variant sets a β value which regulates the impact of negative contribu-
tions when backwarded in the relevance. These negative values are considered
inhibitors and its increase results in relevance maps restricted to only the most
important regions. The equation, then, is given as

R
(l)
i =

∑
j

(
α×

z+ij∑
i′ z

+
i′j

+ β ×
z−ij∑
i′ z
−
i′j

)
R

(l+1)
j

where z+ij are the positive and z−ij the negative contributions of zij, such that
z+ij + z−ij = zij. It requires that α + β = 1, α > 0, β ≤ 0 to ensure that the
equation keeps it property of conservation layer-wise.

The applied hyper-parameters behave differently for each trained network. A
comparison of the properties of the three approaches is seen in Table 4.1.
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naive (ε = 0) ε-variant β-variant

numerically stable no yes yes
consistent with linear mapping yes yes no
conserves relevance yes no yes

Table 4.1: Comparison of LRP variants

Average Median

Gradient 127.79 81.00
Smooth Grad 44.38 16.00
LRP 66.07 41.00

Table 4.2: Average and Median of the APEM values calculated for each of the expla-
nation methods. The relevance maps based on the Gradient result in the best scores.

4.3 APEM Results

First of all, we analyze the APEM scores for the different methods presented. We used
the same 5000 random images in each explanation method and the generated relevance
maps, following the visualization techniques presented in Section 4.2. The final hyper-
parameters used in the Smooth Grad were n = 100 and σ = 0.2, and in the LRP the
ε-variant were used with ε = 1 based on the qualitative analyse of the relevance maps
created in experimentation.

Figure 4.1 compares some examples of the final map for the Gradient, Smooth
Grad and LRP. Although the relevance images are similar and easily interpretable,
there are some particularities in each method. They present higher values in close
regions but each one focus in a different part of this region. These differences in focus
may result in misunderstandings in a classification explanation.

Then, we calculated and compared their APEM values. In Figure 4.2 we see
the boxplots of the APEM for each method and the sets. Also, Table 4.2 presents a
summary of the average and median of the applied metric.

Even though the Smooth Grad is directly related to the gradient, it has lower
APEM results than the LRP. This might happen because the approach used in the
Smooth Grad, which creates less noisy images than the gradient itself, does not consider
the input image as a single input but a set of perturbed images with different pixel
values. On the other hand, the LRP calculates the relevances to one image and its
respective output by considering the parameters and the contributions forwarded in
each layer.

The values of ε− and ε+ are also compared separately in the boxplots of Figure
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Figure 4.1: Examples of the visualization of relevance maps from the explanation
methods. Each row is a different example and each column represents a visualization:
original image and the maps calculated from the Gradient, SmoothGrad and LRP
(from the left to the right).

4.3. This shows that the methods with the best APEM also have both the minimum
and maximum values of ε since a correct relevance means a correct irrelevance as well.

We extended the results to a pairwise comparison in Figure 4.4, in which we
compared each instance and analyzed the number of times one explanation method
beats the other. Once again, it shows that the technique which has a higher total
APEM will also be higher for each specific image.

We notice a rare situation in which the Gradient has a lower score than the LRP.
Then, we analyzed these examples along with the cases in which the Smooth Grad
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Figure 4.2: Boxplot of the APEM values for each explanation method in the same
set of images. Higher values mean better results. The left one is calculated from the
Gradient visualization, the SmoothGrad in the middle, and LRP on the right.

Figure 4.3: Boxplot of the ε− (left) and ε+ (right) values for each explanation method.
ε− are expected to have lower values and ε+ higher ones. It shows the results for the
Gradient, SmoothGrad, and LRP from the left to the right.

beats the LRP. Table 4.3 shows the values calculated to the APEM of some of the
examples in which the dominant method has lower scores. To further analyze these
results, Figure 4.5 presents the images relative to the ones in the Table 4.3.

First, by looking specifically at Table 4.3a, the uncommon cases with higher
LRP metric scores than with the gradient happens in similar situations. The APEM
values calculated to them are slightly different, reaching a maximum distance of 1 in
the examples, and the real change is present only in the ε−, keeping the ε+ equal.
Moreover, the APEM for these cases are very low and, if compared to their respective
images and relevance maps in Figure 4.5, some patterns in the shapes are evident:
(i) they are all explained by a concise small object centered in the input image, and
(ii) the map calculated from the gradient is just a little noisier in the region around
this object. As both are showing the same regions and the gradient contains just a
little more noise, the normalization of the relevance map in the APEM formulation
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Figure 4.4: Pairwise comparison between explanation methods. It shows the fraction
of the total number of compared images in which one technique has a better, equal or
worse APEM result than the others for each image in the set.

Gradient LRP

ε− ε+ APEM ε− ε+ APEM

Image 1 2 4 2 1 4 3
Image 2 2 3 1 1 3 2
Image 3 2 6 4 1 6 5

(a) Gradient vs LRP

Smooth Grad LRP

ε− ε+ APEM ε− ε+ APEM

Image 4 275 444 169 297 433 136
Image 5 392 470 78 455 467 12
Image 6 458 515 57 482 510 28

(b) Smooth Grad vs LRP

Table 4.3: Comparison of the APEM, ε− and ε+ values of some examples in which the
dominant method loses. Recall that the Gradient is the greatest one, followed by the
LRP and, lastly, by the SmoothGrad.

makes the pixels perturbation in the correct areas chosen by the LRP a little bit more
abrupt. The LRP, then, has a minimal ε− difference with no noticeable changes in the
irrelevance, consequently in the ε+. Finally, this oscillation makes the LRP beats the
Gradient map in these cases.

Secondly, Table 4.3b shows no apparent pattern and the Smooth Grad beats both
in ε− and ε+ in different ways for the examples, which indicates that the relevance maps
are actually better for these situations. Comparing these same examples in Figure 4.5,
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Figure 4.5: Examples of unexpected results. The group of images in the left presents
the instances in which the LRP beats the Gradient and each column from the left to
the right represents the original images, the relevance maps from the Gradient and the
ones from the LRP. On the group on the right, the cases in which the SmoothGrad
beats the LRP and the columns continue in the same order with the original image,
the maps from the SmoothGrad, LRP and, lastly, the Gradient to serve as a basis for
comparison.

we notice that both methods found similar regions in their relevance. However, while
smooth grad considered the whole regions as important to the prediction, LRP focused
more on the contours and borders of these regions. When compared to the gradient
map, it also points to the same regions, agreeing with the other ones, but evidencing
the inside of the objects. This supports that, for the cases in which the Smooth Grad
beats the LRP, the relevance maps are truly better. This can be a consequence of the
model prediction for such cases in which the noise is actually important to the correct
output and the LRP might remove some of it.

4.4 Interpretable Visualization vs Explanation

In this section, we extend the debate of the trade-off of human interpretability in
visualizations and the actual explainability of a trained model. We address this problem
by presenting the relevance raw values of a correct prediction and steps that simplify
it until the shapes present in it become more comprehensible. First, the relevance
values are summed in the channels dimension so it becomes a relevance map and, then,
multiplied by the image so it fits better the shapes in the original image (see [Smilkov
et al., 2017]). Figure 4.6 shows some examples of the relevances in each stage of the
visualization technique for each method presented here. It is clear that each method
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Figure 4.6: Example of the relevance maps for each step in a visualization technique.
Each line shows the method being used, which are the Gradient, SmoothGrad and
LRP from top to bottom. The visualization steps are presented in each column and
can be divided into: (left) relevance in three channels, (middle) mapping into a single
channel, and (right) the map multiplied by the original image.

is benefited differently from the processing. Some present great changes in each step,
and others, minimal changes.

The applied simplifications are known to lose information, so it is evident that
a metric of the explanations after such a process would decrease. Thus, we measure
the amount of information that is lost by using the APEM average and median as a
quantitative result, shown in Table 4.4. The results follow what the example in Figure
4.6 presents: methods that drastically change the relevance image in the processing
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Average Median

1 2 3 1 2 3

Gradient 231.76 176.86 127.79 137.00 105.00 81.00
Smooth Grad 93.40 74.61 44.38 41.00 28.00 16.00
LRP 101.65 93.93 66.07 59.0 51.00 41.00

Table 4.4: APEM scores of the relevance maps created in each step of the visualization
technique for each explanation method. It evaluates the first 3-channel relevance image
(1), the mapping to one channel (2) and the resulting image of the multiplication of
this final map with the original input image (3).

also presents the greatest loss of APEM in general while the ones that only produce
minimal change, the lowest loss of metric.

To further investigate the behavior of the APEM in such cases, Figure 4.7 shows
the boxplots of the APEM (4.7a, 4.7b, 4.7c), ε− (4.7d, 4.7e, 4.7f), ε+ (4.7g, 4.7h, 4.7i)
and pairwise (4.7j, 4.7k, 4.7l) comparisons of each method. It is noticeable the same
pattern of improvement: as the APEM increases for a better relevance map, the ε−

decreases and the ε+ increases. Moreover, the greatest APEM beats all others in a
pairwise comparison. The gradient represents it clearly, in which each simplification of
the relevance map makes it have a lower score for every image. On the other hand, even
though the same idea happens to all other methods, they present uncommon cases in
which a simplification stage can actually enhance their results. This is due to the fact
that Smooth Grad and LRP have cases with low APEM score, and a simplification can
remove some causes of this decline in value, making it slightly better.

Therefore, the application of the simplifications should consider the decrease in
APEM scores compared to the amount of visual comprehension that it brings. Com-
pletely noisy images are not as useful as centered clouds of interpretable information,
even if it means a loss in explanation. All these factors are important when applying
an explanation method in an application.

4.5 Filtering Explanation

Since we presented the behavior of the APEM for various situations, this section ex-
pands the use of the metric to filter relevance images to become more interpretable
without any loss of essential information. It calculates the maps following the algo-
rithm presented in Section 3.2. First of all, we assume that the gradient, even after
transformed into a relevance map, brings a robust map. Their higher values are indeed
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(a) APEM Gradient (b) APEM Smooth Grad (c) APEM LRP

(d) ε− Gradient (e) ε− Smooth Grad (f) ε− LRP

(g) ε+ Gradient (h) ε+ Smooth Grad (i) ε+ LRP

(j) Pairwise Gradient (k) Pairwise Smooth Grad (l) Pairwise LRP

Figure 4.7: Results for each step of the visualization technique and explanation meth-
ods. It shows the final APEM, ε−, ε+, and pairwise comparisons for the same set of
images. (1) is the first 3-channel relevance image, (2) the mapping to one channel and
(3) the multiplication of the map with the original input image.

responsible for the classification and the noise created when mapping them into one
channel does not make new relevances, even if the APEM reduces. Thus, we first apply
the filter technique in the mapping created directed from the gradient after clamped in
the 99th percentile. This step is noisier and less interpretable but the APEM is great
enough to be considered as a truthful explanation.
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Figure 4.8: Examples of the final images from the Filtering Algorithm. It presents the
sampled images (top), the relevance maps based on the Gradient before (middle) and
after (bottom) the filtering process. Images processed by the algorithm are easier to
interpret by an observer.

As we remove noise and the APEM does not drop, the image ends up more
understandable and still reliable. Figure 4.8 show some examples of the maps calculated
for the images and the last moment before there is a drop in the APEM value. In the
example, the filter erased from the relevance map regions outside the main object. This
means that the small values attributed to the context, which are often important to
the prediction, were actually noise and are not necessary for the visualization. For
instance, the grass, stones and water present in the examples had relevance values but
they could be removed, leaving only the objects inside it.

The filtering technique can also be used in every other explanation method and
in different stages of the visualization process, as shown in Figure 4.9. In the example
presented, we used different mappings for the methods, each with its particularities.
It resulted in an image which contains only the classified object for every case. Each
image focuses on slightly distinct parts of the boat because of the characteristics of the
explanation techniques, but all of them removed the relevance related to the sea. Thus,
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Figure 4.9: Filtering technique applied in each relevance map in the steps of the visual-
ization technique and explanation methods for an example. The rows are the Gradient,
SmoothGrad and LRP methods and the columns are, from left to right, the relevance
maps and its filtered image, the map multiplied by the original image and its filtered
image.

they do not consider the context for this specific classification. Finally, the outcome of
the filtering algorithm is easier to see and interpret than the original noisy images.
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Further Analysis

This chapter aims to show some properties of the APEM technique that are important
to the reliability of the proposed solution, such as its behavior when using random
relevance maps. The properties can also be extended in future works to create new
applications in which it is suitable.

5.1 Importance of Irrelevance

One of the contributions of this work is to bring the inverse of the relevance to the
metric. This approach prevents the explanation methods from pointing out a few
relevant pixels, not giving importance to others which are also relevant. Then, we
introduce recall to the metric which already considers precision.

Given an input image, consider the following situations and the behavior of the
metric towards them:

• The relevance map calculated results in an image with one small region as im-
portant while both this region and another one are actually important: ε− has
a low value but the ε+ drastically reduces since there are relevant pixels been
considered in its calculation, making the model misclassify the perturbed image
faster. Therefore, the metric is penalized by not considering the other relevant
region.

• The relevance map calculated results in an image with two regions as important
while just one of them is actually important: even though ε+ is not penalized
because there is no relevant pixel in the irrelevance map, ε− increases for con-
sidering irrelevant regions. The metric is also lower than in a correct relevance
map.

33
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Figure 5.1: Histogram and kernel density estimate (KDE) of the difference between
the ε+ of the LRP and the SmoothGrad. It only considers images which have better
ε− for the LRP. It has positive values when the irrelevance of the LRP is better and
negative otherwise. This means that there are considerable cases for both.

To present this property in our experiments, we compared the results of the LRP
with the SmoothGrad. Although LRP beats SmoothGrad in the metric results, we
observed that the generated relevance images from the LRP are often more simplified.
This can result in lower ε+ values even when the metric is better. Figure 5.1 shows the
histogram and the kernel density estimate (KDE) of the difference between the ε+ of
the LRP and the SmoothGrad for each image in which the ε− of the LRP has lower
values. We note that the irrelevance of the LRP has both greater and lower values
than the other one because it also contains relevant pixels in some instances, even if
the metric itself is better and their ε− distributions resemble.

5.2 Random Relevance Maps

In order to test the robustness of the metric, we use the same 5000 images and their
respective relevance maps evaluated in Section 4.3. However, in this experiment, we
shuffle the relevance and irrelevance images to create random images based on the
same distribution given by the methods. Random relevance maps are supposed to
have the same ε− and ε+, as the relevance values are now high in both true relevant
pixel and in non-relevant. For each image, we created ten shuffled maps and if the
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Figure 5.2: Histogram of APEM values for shuffled relevance maps of different stages of
the visualization technique based on the Gradient. It oscillates around zero, meaning
that bad explanation methods will also have results close to zero.

model misclassifies one of them, it sets the ε− and ε+. First of all, we tested this for
the different stages of the visualization of the Gradient method and Figure 5.2 shows
a histogram of the APEM calculated for them.

Then, we evaluate the average and median using the same process for every
method. The average oscillates around 0, resulting in small values, and the median
is 0 for every case tested. Since the shuffle is presented as reliable, it can be used to
normalize the original APEM values of the images. Therefore, we can calculate the
normalized APEMnorm for the shuffled ε-shuffle+ and ε-shuffle− values as

APEMnorm =

∑n
i=1

(
ε+i

ε-shuffle+i
− ε−i

ε-shuffle−i

)
n

Recalculating the results presented in Section 4.3 with the new normalized
APEMnorm results in the values in Table 5.1. As ε-shuffle+ and ε-shuffle− are
known to be equal or very close, and their values are between the maximum and min-
imum ε, represented by ε− and ε+, the normalization keeps the same properties of
the original APEM but in a space where the values are useful for visualization and
comparisons.

5.3 Misclassified Images

Until now, there was only correctly classified examples. However, we have to under-
stand how the metric deals with misclassified images to properly explain and debug a
model. In order to analyze the wrong classifications, we evaluated the APEM in the
same process for a set of 5000 random misclassified images. In this case, the label we
used to create the relevance maps were the ones predicted by the model.
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1 2 3

Gradient 1.11 0.85 0.66
Smooth Grad 0.39 0.30 0.21
LRP 0.53 0.48 0.40

Table 5.1: APEMnorm calculated from shuffled values of the relevance maps of each
explanation method in the steps of the visualization technique. The steps are the first
3-channel relevance image (1), the mapping to one channel (2) and the resulting image
of the multiplication of this final map with the original input image (3). As the values
are shuffled in the maps, we expect the scores to be as closer to 0 as possible.

Average Average Misclassified Median Median Misclassified

Gradient 127.79 43.58 81.00 25.00
Smooth Grad 44.38 12.65 16.00 4.00
LRP 66.07 20.34 41.00 11.00

Table 5.2: Average and Median of the APEM values for correctly classified and mis-
classified images. Maps are calculated considering the prediction as the ground truth.
Misclassification leads to an overall reduction in the scores.

As the model is mostly uncertain about a decision when it predicts a wrong label,
the model does not need great perturbations to make him change a prediction, resulting
in lower ε values. This reduction leads to a lower APEM score. On the other hand, this
should not influence the quality of the explanation, disregarding the understanding of
the generated relevance map. To put simply, the overall scores reduce but the best
methods have to keep their ranking positions in the comparisons since they are still
explaining an output for a given model and an input instance.

Table 5.2 shows the average and median for their APEM values and compares
with the ones of the correctly classified images. The reduction in the score is evident
and the order is kept unchanged. Figure 5.3 presents the boxplots which support these
results, indicating that their distributions are similar.

5.4 Correlation of APEM and Loss

Another property investigated is the correlation between the APEM and the loss in
the prediction. For this, we used the same datasets of correctly classified images,
misclassified images, and the total set which contain both of them. Recall that the
relevance map calculated for the misclassified images is based on the model prediction
even though the loss uses the ground truth. We also compare the greatest probability



5.4. Correlation of APEM and Loss 37

(a) APEM (b) ε− (c) ε+

Figure 5.3: Boxplot of the values of APEM, ε− and ε+ for misclassified images. The
metric is calculated as if the first prediction was the ground truth and the Gradient,
SmoothGrad and LRP methods are applied. This presents the behavior of the metric
toward images in which the model is not able to classify correctly.

for the class in the prediction to the Loss, which we refer to as confidence.
The correlation method used was the Spearman’s rank correlation coefficient

[Croux and Dehon, 2010] because of the non-linear relationships present in the data.
This correlation is equal to the Pearson correlation between the rank values of the
variables. A correlation close to +1 occurs when the observations have a similar rank
between the variables and to -1 when they have a dissimilar one.

Table 5.3 shows the correlations and the statistical significance of them. We note
some characteristics present in the results:

• Correctly classified images have higher correlations while the misclassified images
have virtually none.

• Observations have a dissimilar rank between the APEM and Loss, resulting in a
negative correlation.

• The methods which give greater APEM values also are the ones with higher
correlation.

To conclude, the best explanation methods in terms of APEM score have a higher
correlation with the Loss. Furthermore, great APEM values mean lower losses. Thus,
good explanations along with the APEM calculation can be used to tell if the output
of a model is reliable.
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Loss (Correctly Classified) Loss (Misclassified) Loss (Total)

Gradient -0.827† 0.069† -0.543†
Smooth Grad -0.470† -0.025 -0.349†
LRP -0.602† 0.001 -0.446†
Confidence -1.000† -0.121† -0.697†

Table 5.3: Spearman correlation between the APEM score for each explanation method
and the loss of the evaluated model († represents statistical significance with ρ <
0.01). The correlation of the confidence of the most probable class and the loss is also
presented for comparison. Both the correctly classified and misclassified images are
evaluated along with the union of them.
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Conclusions

In this work, we proposed the Adversarial Perturbation Explanation Metric (APEM),
a robust metric which evaluates the quality and reliability of explanation methods.
This approach compares such methods quantitatively and qualitatively, avoiding visual
inspection. Moreover, it considers every relevance value for an input image to create
perturbations and the irrelevance map to guarantee that no relevant pixel is left out.

We presented a comparison of some well-known explanation methods using our
metric. Along with it, some characteristics of the methods and how the metric react
to it. Furthermore, we showed some properties which make the metric robust to the
results. First, we showed the importance of using irrelevance as the result varies if the
relevance map is completely precise but it is omitting other relevant pixels. Then, we
analyzed the responses to random relevance maps and misclassified images, showing
that the metric presents a zero value in cases of randomness and the metric drastically
falls when the model is not able to correctly predict an instance. Finally, we correlated
the metric results to the output of the model in different situations.

It was also proposed in this work an study on the techniques of visualization and
the effect of its simplification into the reliability of the resulting images, and a technique
which works around this problem. The technique is one of the applications in which
APEM values serve as a tool. It filters the relevance maps into more interpretable maps
while keeping all the essential information. The proposed algorithm can be used after
every explanation method to create less noisy images and facilitate its understanding
by an observer.

A measure of reliability of the explanation methods allows users to choose the ap-
propriate option for a task. We mainly present a metric constrained to the data set and
the trained model of an application and some primary properties. Many other impor-
tant properties are worth exploring so we can understand more about the metric. After

39
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that, we can investigate the possibility for a global range of the measurement indepen-
dent of the evaluated data set. This brings the possibility of calculating thresholds of
values which assert the overall quality of a metric without the need for comparisons.
The aim of this work is to introduce a way to help in the development and investigation
of the explanation methods.
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