EXPLORANDO O APRENDIZADO DE
CARACTERISTICAS ESPACIAIS PARA

SENSORIAMENTO REMOTO

KEILLER NOGUEIRA

EXPLORANDO O APRENDIZADO DE
CARACTERISTICAS ESPACIAIS PARA

SENSORIAMENTO REMOTO

Tese apresentada ao Programa de Pos-
-Graduacao em Ciéncia da Computacao do
Instituto de Ciéncias Exatas da Universi-
dade Federal de Minas Gerais como req-
uisito parcial para a obtencao do grau de
Doutor em Ciéncia da Computacao.

ORIENTADOR: JEFERSSON ALEX DOS SANTOS
COORIENTADOR: WILLIAM ROBSON SCHWARTZ

Belo Horizonte

Maio de 2019

KEILLER NOGUEIRA

GOING DEEP INTO REMOTE SENSING SPATIAL

FEATURE LEARNING

Thesis presented to the Graduate Program
in Ciéncia da Computacao of the Univer-
sidade Federal de Minas Gerais in partial
fulfillment of the requirements for the de-
gree of Doctor in Ciéncia da Computacao.

ADVISOR: JEFERSSON ALEX DOS SANTOS
CO-ADVISOR: WILLIAM ROBSON SCHWARTZ

Belo Horizonte

May 2019

© 2019, Keiller Nogueira.
Todos os direitos reservados.

N778g

Nogueira, Keiller

Going Deep into Remote Sensing Spatial Feature
Learning / Keiller Nogueira — Belo Horizonte, 2019
xxix, 155 p.: il.; 29cm.

Tese (doutorado) — Universidade Federal de Minas
Gerais Departamento de Ciéncia da Computacao.

Orientador: Jefersson Alex dos Santos

Coorientador: William Robson Schwartz

1. Computacao - Teses. 2. Aprendizado do
computador. 3. Classificacao de imagens.
4. Segmentagao de Imagens. 1. Orientador.
I1. Coorientador. III. Titulo.

CDU 519.6%82.10(043)

u S g reeneenety
T

UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE CIENCIAS EXATAS _
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

FOLHA DE APROVACAO

Going Deep into Remote Sensing Spatial Feature Learning

KEILLER NOGUEIRA

Tese defendida e aprovada pela banca examinadora constituida pelos Senhores:

e 5

IEFERSSON ALEX DOS SANTOS - Orientador
Departamento de Ciéncia da Computagio - UFMG

\L/}/Q(ﬂ Jg\m Jgér;[’?

ProF. WILLIAM ROBSON ScHwARTZ - Coorientador
Depa_rtamento de Clencza da Computagio - UFMG

Departame de Ciéncigda Computacao - UFMG

Dep 4mento de Ciéncia da omput io - UFMG
.
Zad
Pror/RauL Queiroz FEITOSA
Departamento de Engenharia Elétrica - PUC-R]
Ki/\/‘—\aw—-.. (74' L

Pror. HEMERSON PISTORI
Engenharia de Computaciao - UCDB

Belo Horizonte, 31 de Maio de 2019.

X

Aos meus pais,
Vander (in memoriam)

e Maria do Carmo.

Acknowledgments

Agradeco...

A toda minha familia, principalmente minha mae, que me apoiou durante o ca-
minho.

A Cristiane, minha namorada, por estar ao meu lado em todos os momentos deste
aprendizado. Mesmo a distancia, vocé me auxiliou bastante, as vezes, sem perceber.

Aos meus orientadores, professores Jefersson dos Santos e William Schwartz, pela
confianca e ensinamentos. Aos pesquisadores franceses que me receberam durante meu
periodo de sanduiche, professores Jocelyn Chanussot e Mauro Dalla Mura.

Aos muitos companheiros que contribuiram para realizacao deste trabalho e que
fizeram os momentos fora do laboratério mais agradaveis além de ajudar com novas
ideias.

A todos aqueles que direta ou indiretamente contribuiram para o desenvolvimento
deste trabalho.

As agéncias de fomento que financiaram este projeto.

x1

Resumo

Informacoes podem ser extraidas da superficie terrestre através de imagens adquiridas
por sensores aéreos. Essa informacao pode auxiliar tarefas de diferentes aplicacoes,
como urbanizacao, manejo de culturas e florestas, etc. Embora muito usadas, é com-
plexo minerar as informagoes sobre essas imagens, ja que o primeiro e mais importante
passo em direcao a tal objetivo é baseado em codificar as caracteristicas das imagens,
uma tarefa desafiadora dadas as propriedades distintas de cada imagem. De fato, in-
dependentemente da tarefa, codificar as caracteristicas espaciais de forma eficiente e
robusta é fundamental para gerar bons modelos discriminativos. Mesmo que muitos
descritores tenham sido propostos e usados com sucesso para codificar caracteristicas
espaciais de imagens de sensoriamento remoto, a maioria das aplicagoes exigem téc-
nicas mais especificas. Aprendizado profundo é capaz de aprender, ao mesmo tempo,
caracteristicas e classificadores especificos e ajustando-os em tempo de processamento
atendendo as necessidades de cada problema. Neste projeto, abordamos duas princi-
pais tarefas, a classificacao de cenas e de pixels, usando aprendizado profundo para

codificar caracteristicas espaciais em imagens de sensoriamento remoto.

Inicialmente, enfrentamos o problema de classificacao de cenas, em que o desem-
penho final do modelo é dependente da qualidade das caracteristicas extraidas. Com
base em obras recentemente publicadas e ap6s um conjunto de experimentos, a primeira
contribui¢ao foi uma arquitetura de rede convolucional, treinada especificamente para
sensoriamento remoto. Experimentos mostraram que a arquitetura proposta superou
algoritmos de ultima geracao, demonstrando a eficacia de métodos de aprendizado pro-
fundo para codificar caracteristicas, mesmo para o dominio de sensoriamento remoto.
Em seguida, numa tentativa de amenizar as adversidades encontradas ao explorar redes
convolucionais, foram avaliadas diferentes estratégias para melhor aproveitar os bene-
ficios dessas técnicas no dominio de sensoriamento remoto. Trés estratégias especificas
foram avaliadas em trés conjuntos distintos de dados. Experimentos mostraram que
treinar a rede a partir de um ponto pré-treinado e ajustar seus filtros para o dominio

especifico é a melhor estratégia para explorar a rede convolucional.

xiil

A segunda tarefa abordada é a classificagao de pixels. Considerando tal tarefa,
a primeira contribuicao é uma nova arquitetura da rede convolucional para realizar a
classificacao de pixels. Essa técnica é baseada em janelas de contexto, ou seja, pequenas
imagens que carregam o contexto dos pixels centralizados e ajudam a entender os
padroes espaciais em torno deles. Experimentos mostraram que a abordagem proposta
proporciona melhorias significativas quando comparada as outros métodos. Com base
nos problemas da técnica anterior e dos métodos existentes, propusemos uma nova
abordagem que emprega uma versao evoluida da rede proposta anteriormente para
executar a classificacao de todos os pixels da imagem de entrada. Esta nova técnica
é capaz de agregar informacao multicontexto sem aumentar o nimero de parametros.
Os resultados mostraram que o algoritmo proposto fornece melhorias na classificacao
de pixel quando comparado aos métodos de estado da arte.

Finalmente, a tultima contribuicdo é um novo método que, quando comparado
a outras abordagens existentes, é capaz de melhor aprender algumas caracteristicas
visuais, como bordas e cantos, tteis para algumas aplicacoes e dominios, incluindo
o sensoriamento remoto. Este método, chamado Rede Morfologica Profunda (De-
epMorphNet), é capaz de realizar e otimizar operagoes morfologicas, que podem
ser capazes de lidar melhor com algumas propriedades visuais dos objetos. Essa
DeepMorphNet pode ser treinada e otimizada de ponta a ponta, utilizando técnicas
tradicionais existentes, comumente empregadas no treinamento de abordagens de
aprendizagem profunda. Uma avaliacao sistemética do algoritmo proposto foi condu-
zida. Resultados mostraram que a DeepMorphNet é uma técnica promissora capaz de
aprender caracteristicas distintas quando comparadas aquelas aprendidas pelos atuais

métodos de aprendizagem profunda.
Palavras-chave: Aprendizado Profundo, Redes Neurais, Morfologia Matema-

tica, Classificacao de Imagens, Classificacao de pixels, Segmentacao Seméantica, Senso-

riamento Remoto, Aprendizado de Maquina.

Xiv

Abstract

A lot of information may be extracted from the Earth’s surface through images acquired
by airborne sensors. Even more, nowadays, enhanced information may be extracted
from high spatial resolution images obtained from new sensor technologies. This infor-
mation may be exploited in several tasks (including, classification and segmentation)
assisting in different applications, such as urban planning, disaster relief, phenolog-
ical studies, etc. Although widely used, the process of distilling this information is
strongly based on efficiently encoding features, a challenging task given the distinct
properties of the images. In fact, independently of the task, encoding the spatial fea-
tures in an efficient and robust fashion is the key to generating good discriminative
models. Even though many descriptors have been proposed and successfully used to
encode spatial features of remote sensing images, most applications demand specific
description techniques. Deep Learning, an emergent machine learning approach based
on neural networks, is capable of learning specific features and classifiers at the same
time and adjust at each step, in processing time, to better fit the need of each prob-
lem. For several tasks, it has achieved very good results, mainly boosted by the feature
learning performed which allows the method to extract specific and adaptable features
depending on the data. In this project, we tackled two main tasks, image and pixel clas-
sification, using Deep Learning to encode spatial features over high-resolution remote
sensing images.

Initially, we faced the scene classification problem, in which the final model per-
formance is highly dependent on the quality of extracted features. Based on recently
published works and after a systematic set of experiments, our first contribution was
a novel Convolutional Network architecture fully trained specifically for the remote
sensing domain. Experiments showed that the proposed architecture outperformed
state-of-the-art algorithms, demonstrating the effectiveness of deep learning methods
to encode features even for remote sensing domain. Then, based on adversities to
explore deep learning-based techniques (such as small data), we proposed to evaluate

different strategies to better exploit Convolutional Networks in the remote sensing do-

XV

main. Specifically, three strategies were evaluated in three very distinctive datasets.
Experiments demonstrate that fine-tuning a network into the specific domain is the
best strategy to exploit Convolutional Networks.

A second task tackled by this project is the pixel classification (also known as
semantic segmentation). This task is of great interest to the remote sensing community
since it involves the automatic creation of thematic maps from labeled samples. Such
maps may help to understand events over a specific region, such as new urban areas,
deforestation, etc. Considering such task, our first contribution is a new Convolutional
Network architecture to perform pixel classification of remote sensing images. This
technique is based on context windows, i.e., overlapping patches that carry the con-
text of the centered pixels and help to understand the spatial patterns around them.
Experiments showed that the proposed approach provides significant improvements
when compared to traditional and state-of-the-art methods. Then, based on the prob-
lems of the previous technique and of other existing methods, we proposed a novel
approach that employs an evolved version of the previously proposed network (as well
as other architectures) to perform pixel labeling of the entire input image (instead of
classifying only the centered pixel). Moreover, this new technique is able to aggregate
multi-context information without increasing the number of parameters, i.e., without
requiring the combination of several networks or layers. Results showed that the pro-
posed algorithm provides improvements in pixel classification accuracy when compared
to state-of-the-art methods.

Finally, our last contribution is a novel method that, when compared to other
existing approaches, is capable of better learning some visual characteristics (such as
edges and corners), which are very useful for some applications and domains, including
the remote sensing one. Precisely, this method, called Deep Morphological Network
(DeepMorphNet), is able to perform and optimize non-linear morphological operations,
that may be able to better cope with some interesting visual properties of the objects.
These DeepMorphNets can be trained and optimized end-to-end using traditional ex-
isting techniques commonly employed in the training of deep learning approaches and
can be used in several applications, such as image and pixel classification, detection,
and so on. A systematic evaluation of the proposed algorithm was conducted. Experi-
mental results showed that the DeepMorphNets is a promising technique that can learn

distinct features when compared to the ones learned by current deep learning methods.

Keywords: Deep Learning, Neural Networks, Mathematical Morphology, Image
Classification, Pixel Classification, Semantic Segmentation, Remote Sensing, Machine

Learning.

Xvi

List of Figures

3.1

3.2

3.3

3.4

3.5

3.6

4.1
4.2
4.3

4.4

Some steps of a 3 x 3 window of a convolutional layer extracting the features
from an image. Figure adapted from [Ng et al., 2011al.
Example of dilated convolutions. Dilation supports expansion of the recep-

tive field without loss of resolution or coverage of the input. The blue dot

represents the pixel that is being considered as reference during the process.

Comparison between dilated and standard convolutions. Top (red) row
presents the feature extraction process using a standard convolution over a
downsampled image and then an upsample in order to recover the input res-
olution (a common procedure performed in ConvNets). Bottom (blue) row
presents the feature extraction process using dilated convolution with rate
r = 2 applied directly to the input (without downsample). The outcomes

clearly show the benefits of dilated convolutions over standard ones.

A pooling layer selecting the max value between the features inside a window
of size 2 x 2. Figure adapted from [Ng et al., 2011b|.

Examples of common structuring elements employed in the literature.

These SEs can be seen as sets that define the activated pixels.

Examples of morphological images generated for the UCMerced Land-use
Dataset. All these images were processed using a 5 x 5 square as structuring

element. L,

Examples of the UCMerced Land Use Dataset.
Examples of the WHU-RS19 Dataset.

Examples of coffee and non-coffee samples in the Brazilian Coffee Scenes
dataset. The similarity among samples of opposite classes is notorious. The
intraclass variance is also perceptive.
The Coffee Dataset. Multispectral images and ground-truths. Legend —
White: Coffee areas. Black: Non Coffee areas.

xvil

23

25

26

27

30

31

44
45

4.5

4.6

4.7

5.1

5.2

2.3

0.4

3.9

2.6

5.7

2.8

2.9

5.10

The GRSS Data Fusion Dataset. Training and test data and their respective
ground-truths. Legend Black: unclassified. Light purple: road. Light
green: trees. Red: red roof. Cyan: gray roof. Dark purple: concrete roof.
Dark green: vegetation. Yellow: bare soil. 46
Examples of the Vaihingen Dataset. Legend White: impervious surfaces.
Blue: buildings. Cyan: low vegetation. Green: trees. Yellow: cars. Red:
clutter, background. Lo oo 47
Examples of the Potsdam Dataset. Legend — White: impervious surfaces.
Blue: buildings. Cyan: low vegetation. Green: trees. Yellow: cars. Red:

clutter, background.o 47

[Mustrative example of a ConvNet being fully trained. Weights from the
whole network are randomly initialized and then trained for the target dataset. 52
[Mlustrative example of two options for the fine-tuning process. In one of
them (highlighted in red), all layers are fine-tuned according to the target
dataset, but final layers have increased learning rates. In the other option
(highlighted in green), weights of initial layers can be frozen and only final
layers are tuned.o 54
[ustrative example of the use of a ConvNet as feature extractor. The final
classification layer is ignored and one should only choose from which layer to
consider the features. The figure shows the use of the features from the last
layer before the classification layer, which is commonly used in the literature. 54
Architectures of different the ConvNets evaluated in this work. Purple boxes
indicate the layers from where features were extracted in the case of using
the ConvNets as feature extractors. 29
Average accuracy of pre-trained ConvNets used as feature extractors and
low- and mid-level descriptors for the UCMerced Land-use Dataset. 64
Average accuracy of pre-trained ConvNets used as feature extractors and
low- and mid-level descriptors for the RS19 Dataset. 65
Average accuracy of pre-trained ConvNets used as feature extractor and
low- and mid-level descriptors for the Brazilian Coffee Scenes Dataset.. . . 65

Average accuracy considering all possible strategies to exploit ConvNets for

the UCMerced Land-use Dataset. 66
Average accuracy considering all possible strategies to exploit ConvNets for
the RS19 Dataset. 67
Average accuracy considering all possible strategies to exploit ConvNets for
the Brazilian Coffee Scenes Dataset. 67

xviil

5.11
0.12

5.13

0.14

5.15

6.1

6.2

6.3
6.4

6.5

Examples of convergence of AlexNet for all datasets, considering Fold 1. . .
Three examples of wrong predictions of each aerial dataset, UCMerced and
RS19, for a fine-tuned AlexNet. (a)-(f) The first image is the misclassified
one, while the second is a sample of the predicted class. Notice the similarity
between the classes. Lo
Comparison between state-of-the-art baselines and the best results of each
strategy to exploit ConvNets for the UCMerced Land-use Dataset. The
Fine-Tuned Descriptors extracted by GooglLeNet achieved the highest ac-
CUracy rates.o e e
Comparison between state-of-the-art baselines and the best results of each
strategy to exploit ConvNets for the RS19 Dataset. The Fine-Tuned De-
scriptors extracted by Googl.eNet achieved the highest accuracy rates.

Comparison between state-of-the-art baselines and the best results of each
strategy to exploit ConvNets for the Brazilian Coffee Scenes Dataset. The
Fine-Tuned Descriptors extracted by CaffeNet achieved the highest accu-

Tacy Tates. e e e e

(a) Example of a context window. The pattern is represented by a large
window that is centered on the pixel of interest in order to include the
context of its neighborhood. (b) The process performed by a pixelwise
network. A set of context windows are generated for each pixel and then
classified by the network. The predicted class for the context window is
actually the label of the centered pixel.
Example showing the importance of multi-context information. In the top
case, while smaller contexts may not provide enough information for the
understanding of the scene, a large context brings more information that
may help the model to identify that it is a road with a car on it. In the
bottom scenario, smaller contexts bring enough information for the identi-
fication of cars, while a large context may confuse the network and lead it
to misclassify a different object asacar.
Dilated Convolutional Network architectures.
Convergence of Dilated6 network for all datasets. For the Coffee Dataset,
only the fold 1 is reported. For Vaihingen and Potsdam Datasets, the
validation set (created according [Volpi and Tuia, 2017]) is reported.
Images of the Coffee Dataset, their respective ground-truths, and the rele-
vance maps generated by the proposed algorithm. Legend — White: True
Positive. Black: True Negative. Red: False Positive. Green: False Negative.

X1X

68

71

72

90

94

6.6

6.7

6.8

6.9

6.10

6.11

7.1

The GRSS Data Fusion test image, the respective ground-truth, and the
prediction maps generated by the proposed algorithm. Legend Black:
unclassified. Light purple: road. Light green: trees. Red: red roof. Cyan:
gray roof. Dark purple: concrete roof. Dark green: vegetation. Yellow:

bare soil.

Example predictions for the validation set of the Vaihingen Dataset. Legend
— White: impervious surfaces. Blue: buildings. Cyan: low vegetation.

Green: trees. Yellow: cars. Red: clutter, background.

Example predictions for the test set of the Vaihingen Dataset. Legend —
White: impervious surfaces. Blue: buildings. Cyan: low vegetation. Green:

trees. Yellow: cars. Red: clutter, background.

Comparison, in terms of overall accuracy and number of trainable param-
eters, between proposed and existing networks for Vaihingen and Potsdam
Datasets. Ideal architectures should be in the top left corner, with fewer
parameters but higher accuracy. Since the x axis is logarithmic, a change
of only 0.3 in this axis is equivalent to more than 1 million new parameters

in the model. L

Example predictions for the validation set of the Potsdam Dataset. Legend
White: impervious surfaces. Blue: buildings. Cyan: low vegetation.

Green: trees. Yellow: cars. Red: clutter, background.

Example predictions for the test set of the Potsdam Dataset. Legend —
White: impervious surfaces. Blue: buildings. Cyan: low vegetation. Green:

trees. Yellow: cars. Red: clutter, background.

[lustration showing an input image (representing what can be seen as an
x-shaped border), some ConvNet filters and the produced outputs gener-
ated by these filters. Note that none of the network outcomes is similar
to the desired output, which was generated using a morphological erosion
with a 3 x 3 filter/structuring element, equal to the first one employed by
the ConvNet. This shows that regardless of the filter, the Convolutional
Network is not able to produce an output as desired due to its fully linear

Operations. e e e e

XX

7.2

7.3

7.4

7.5

7.6

Example of a morphological erosion based on the proposed framework. The
4 filters W (with size 4 x 4) actually represent a unique 4 x 4 SE. Each
filter W is first converted to binary W?° and then used to process each
input channel (step 1, blue dashed rectangle). The output is then processed
via a pixel and depthwise min-pooling to produce the final eroded output
(step 2, green dotted rectangle). Note that the binary filters W?° when
superimposed, retrieve the final SE B. The dotted line shows that the
processing of the input with the superimposed SE B using the standard
morphological erosion results in the same eroded output image produced by

the proposed morphological erosion.

Definition of morphological neurons based on the proposed framework. In
this case, just one type of each neuron is represented. Some neurons have
tied weights to force the network to use the same filters (i.e. SE) in both
operations. Other neurons have skip connections in order to allow an new

operation using the original input and the processed data.

Concept of a morphological layer. Note that a single morphological layer
can have neurons performing different operations. This process is able to

aggregate heterogeneous and complementary information.

The three Deep Morphological Network (DeepMorphNet) architectures pro-
posed and exploited in this work. Note that the number of morphological
neurons of each type in each layer is codified using the Equations of Sec-
tion 7.1.2. Also, observe that the two depthwise convolutions of a same layer
share the kernel size, sometimes differing only in the stride and padding.
Moreover, the padding and stride of each layer are presented as follows: the
value related to the first depthwise convolution is reported separated by a
comma of the value related to the second depthwise convolution. Though
not visually represented, the pointwise convolutions explored in the mor-
phological layers always use the same configuration: kernel 1 x 1, stride 1,

and no padding. L

Learned structuring elements for the synthetic datasets. In both cases, the
learned SEs are exactly as expected, i.e., a square SE larger than 5 x 5 but
smaller than 9 x 9 for the square synthetic dataset, and a rectangle larger
than the rectangles of one class and in the same orientation for the rectangle

synthetic dataset.

poel

7.7

7.8

7.9

7.10

7.11

Examples of the output of the opening neuron for the square synthetic
dataset. The first column represents the input image, the second one is the
output of the erosion, and the last one is the output of the dilation. Since
erosion and dilation have tied weights (i.e., the same structuring element),
they implement an opening. L.
Examples of the output of the opening neuron for the synthetic rectangle
dataset. The first column represents the input image, the second one is the
output of the erosion, and the last one is the output of the dilation. Since
erosion and dilation have tied weights (i.e., the same structuring element),
they implement an opening.
Convergence of the proposed morphological networks and the baselines for
both datasets. Note that only fold 1 is reported.
Input images and some produced (upsampled) feature maps extracted
from all layers of the AlexNet-based networks for the UCMerced Land-
use Dataset. For each input image: the first row presents features from the
AlexNet-based network, the second row presents the feature maps learned
by the Depth-AlexNet-based architecture, and the last row presents the
features of the proposed morphological network.
Input images and some produced (upsampled) feature maps extracted from
all layers of the AlexNet-based networks for the WHU-RS19 Dataset. For
each input image: the first row presents features from the AlexNet-based
network, the second row presents the feature maps learned by the Depth-
AlexNet-based architecture, and the last row presents the features of the

proposed morphological network. 0L

Xx11

127

List of Tables

4.1
4.2

4.3
4.4
4.5

5.1
5.2

6.1
6.2
6.3
6.4

6.5
6.6

6.7
6.8
6.9
6.10

7.1

Overview statistics for the three classification datasets employed in this work. 36

Overview statistics for the two pixel classification datasets employed in this

Number of pixels per class for the GRSS Data Fusion Dataset. 38
Number of pixels per class for ISPRS datasets, i.e., Vaihingen and Potsdam. 39
Confusion matrix in which each z;; represents the number of scenes or pixels
(depending on the task) in the classified (observed) image category i and
the ground truth (reference) cover category j. Adapted from |Liu et al., 2007|. 41

Some statistics about the deep networks evaluated in this work. a8
Parameters utilized in fine-tuning and full-training strategies. 63
Hyperparameters employed in each dataset. 85
Results over different distributions. 86
Results over different score functions. 87

Results of the proposed approach when varying the input range of patch
sizes. For Vaihingen, a validation set (created according [Volpi and Tuia,
2017|) is employed. Bold patch size ranges were selected for all further
eXperiments.o e e 89
Results of the Dilated6 network trained using distinct convolution types. . 90

Comparison between the dilated network trained using the proposed and

the traditional method. oo oL 92
Results for the Coffee dataset. 93
Results for the GRSS Data Fusion Dataset. 95
Official results for the Vaihingen Dataset. 97
Official results for the Potsdam Dataset. 99

Results, in terms of average accuracy, of the proposed method and the

baselines for the square synthetic dataset (Section 7.2.1.1). 123

xxiii

7.2

7.3

7.4

Results, in terms of average accuracy, of the proposed method and the

baselines for the synthetic rectangle dataset (Section 7.2.1.1). 124
Results, in terms of accuracy, of the proposed method and the baselines for
the UCMerced Land-use Dataset. 126
Results, in terms of average accuracy, of the proposed DeepMorphNets and
baselines for the WHU-RS19 dataset. 129

XX1V

Abbreviations

ACC Auto-Correlogram Color

BIC Border/Interior Pizel Classification
BoVW Bag of Visual Words

ConvNet Convolutional Network

CCNN Cascade Convolutional Neural Network
CNN Conwvolutional Network
DeepMorphNet Deep Morphological Network
FCN Fully Convolutional Network

HOG Histogram of Oriented Gradients

LAS Local Activity Spectrum

LCH Local Color Histogram

RSI Remote Sensing Image

SASI Statistical Analysis of Structural Information
SE Structuring Element

SIFT Scale-Invariant Feature Transform

XXV

Contents

Acknowledgments xi
Resumo xiii
Abstract XV
List of Figures xvii
List of Tables xxiii
Abbreviations XXV

1 Introduction

1.1 Research challenges o oL 4
1.2 Hypothesis, objectives, and contributions

1.3 Organization of the text 10

2 Related Work 11

2.1 Scene Classification 11

2.2 Pixel Classification 14

2.3 Morphological-Based Feature Extraction 18

3 Background Concepts 21

3.1 Convolutional Networks 21

3.1.1 Processing Units 22

3.1.2 Layers 23

3.1.3 Trainingo 28

3.2 Mathematical Morphology o0 29

4 General Experimental Setup 35

XXVvii

4.1 Datasets 35
4.1.1 Scene Classification Datasets 35
4.1.2 Pixel Classification Datasets 37

4.2 Protocols 40

4.3 Measures 41

ConvNet-Based Scene Classification 49

5.1 Strategies for Exploiting ConvNets 51
5.1.1 Fully-trained Network o1
5.1.2 Fine-tuned Network 52
5.1.3 ConvNet as a Feature Extractor 53

5.2 Specific Experimental Setupo 0oL 95
5.2.1 Classical Feature Extraction Strategies 55
5.2.2 ConvNets e o8
5.2.3 Protocol 62

5.3 Results and Discussiono 63
5.3.1 Generalization Power Evaluation 63
5.3.2 Comparison of ConvNets Strategies 66
5.3.3 Comparison with Baselines 70

5.4 Conclusions e 72

ConvNet-Based Pixel Classification 75

6.1 Pixel Classification Approach 79
6.1.1 Dynamic Multi-Context Algorithm 79
6.1.2 Architectures 81

6.2 Specific Experimental Setup 83
6.2.1 Baselines. 83
6.2.2 Protocol 84

6.3 Results and Discussiono 85
6.3.1 Patch Distribution Analysis, 85
6.3.2 Score Function Analysis 86
6.3.3 Range Analysis Lo 87
6.3.4 Convolution Operation Analysis 88
6.3.5 Convergence Analysis 90
6.3.6 Performance Analysis 91
6.3.7 State-of-the-art Comparison 93

6.4 Conclusions e 98

XXVviil

7 An Introduction to Deep Morphological Networks
7.1 Deep Morphological Networks
7.1.1 Basic Morphological Framework
7.1.2 Morphological Processing Units
7.1.3 Morphological Layer
7.1.4 Optimization o
7.1.5 DeepMorphNet Architecture
7.2 Experimental Setupo
7.2.1 Specific Datasets o
7.2.2 Baselines.o
7.2.3 Experimental Protocol
7.3 Results and Discussion
7.3.1 Synthetic Datasets 0oL
7.3.2 Image Classification Datasets

7.4 Conclusion

8 Conclusions and Future Work
8.1 Future Work

Appendix A List of Publications

Bibliography

XX1X

103
105
107
110
114
116
118
119
120
121
122
122
122
125
127

131
132

135

139

Chapter 1

Introduction

Earth’s Planet is constantly being modified due to natural and human interference,
including hurricanes, earthquakes, new residential and agricultural areas, landfills, etc.
It is costly and almost impractical to understand all these changes and developments
via on-the-ground observations. Thus, a lot of effort has been employed for obtaining
images from the Earth’s surface, i.e., aerial ones. Although a laborious task, it can be
justified first by the amount of information that may be extracted from these images
and second by the potential usage of this data in several tasks (such as classification
and segmentation) assisting in the understanding of a myriad of events. Based on this
argument, new technologies have been proposed toward acquiring aerial images with
improved quality, resulting in more advanced satellites launched to observe the Earth,
as well as, more recently, in drones and unmanned aerial vehicles. Nowadays, new
sensor technologies give us the capacity of obtaining high spatial resolution images,
with bands beyond the visible ones. These top-notch Remote Sensing Images (RSIs)
may provide useful information that could be employed in several Earth Observation
applications, including urban planning [Tayyebi et al., 2011; Taylor and Lovell, 2012;
Volpi and Ferrari, 2015; Volpi and Tuia, 2017|, crop and forest management [dos Santos
et al., 2012; Nogueira et al., 2015b], disaster relief [Fustes et al., 2014; Nogueira et al.,
2018|, phenological studies [Nogueira et al., 2016b, 2017a, 2019b], oil spill [Fingas and
Brown, 2014|, poverty mapping [Xie et al., 2016/, etc.

In general, all the information distilled by these applications are highly depen-
dent on the creation of high quality thematic maps (to establish precise inventories
about land cover use |Jensen and Lulla, 1987|) as well as on detection and monitor-
ing of events. However, the development of both tasks, by manual efforts (e.g., using
edition tools), is slow and costly, being unfeasible, given the large amount of data.

Therefore, automatic methods appear as an appealing alternative for the community.

1

2 CHAPTER 1. INTRODUCTION

Traditionally, such automatic methods [Huang et al., 2011; Avramovi¢ and Risojevi¢,
2014] perform these tasks by using machine-learning based approaches over features
encoded by some visual description technique. Therefore, efficiently encoding of these
features is one of the most important steps in almost any computer vision problem (as
well as in the remote sensing field) since it is the main key to generate discriminative
models. Given this, through years, substantial efforts have been dedicated to develop
automatic and discriminative feature techniques [Kumar and Bhatia, 2014|, commonly
called (hand-crafted) descriptors. Some of them [Swain and Ballard, 1991; Tao and
Dickinson, 2000; Huang et al., 1997; Lowe, 2004; de O. Stehling et al., 2002| were orig-
inally proposed and successfully employed in the computer vision scenario and then,
experimented into the remote sensing domain, while others [Benediktsson et al., 2005;
Dalla Mura et al., 2010; Yu et al., 2016; Hu et al., 2016| were specifically designed for
Earth Observation applications.

In the first case, successful descriptors proposed to handle everyday pictures,
i.e., RGB images typically acquired by ordinary cameras and commonly used in the
computer vision domain, may not have the same favorable outcome for RSIs given the

distinct characteristics between these images, which include:

(i) Perspective. This comes from the fact that traditional images typically have a
concept of depth and, consequently, a clear definition of fore and background.
Although this concept somehow exists in aerial scenes, it is not useful for remote
sensing applications, being usually handled as noise, which is corrected with a
process called orthorectification |[Leprince et al., 2007|. This difference introduces
nuances when encoding the features, since in aerial images all the pixels should
be managed with the same attention independently of its elementary composition

(color, texture, etc);

(ii) Context. Given that everyday pictures have a specific notion of context related
to the scene (for instance, a car passing far from the region of interest is not
part of the scene) while, in aerial images, there is no such context but there is
the geographic context (a car can not appear in middle of the ocean). This fact

should be leveraged by descriptors in order to improve its feature representation;

(iii) Elementary properties. Given that traditional images usually have more complex
and rich scenes than aerial ones, mainly when considering low-resolution images.
This implies in more information (such as gradient, texture, color, etc) that could

be extracted by hand-crafted descriptors in the former images but that may not

be encoded in the latter ones |Jensen and Lulla, 1987; Campbell and Wynne,
2011];

(iv) Channels (or bands). While traditional images usually encode only visible in-
formation, RSIs may have hundreds or even thousands of bands (including non-
visible ones). Furthermore, visual description techniques proposed for computer
vision images usually rely on a specific color space (RGB, HSI, CieLab, etc) or in
a transformation between these spaces, which also prevents its use in the remote
sensing domain, which may have images with more bands that do not fit in such
color spaces. All of these points should be taken into account to create a robust

and efficient feature representation.

Thus, as introduced, based on these specificities and differences, many of these
techniques, originally proposed and successfully applied for computer vision applica-
tions [Chen et al., 2010], have not the same success in the remote sensing domain [dos
Santos et al., 2010].

In the second case, though successfully proposed and employed into the remote
sensing domain, each descriptor technique is highly dependent of the intrinsic properties
of the image, such as gradient, edges, colors, etc [Jensen and Lulla, 1987; Campbell
and Wynne, 2011|. For instance, a novel descriptor proposed specifically for land-use
scenes may not be a good choice for agricultural images. Thus, the development of
algorithms for spatial extraction information is still a hot research topic in the remote
sensing community [Benediktsson et al., 2013; Ma et al., 2015; Ball et al., 2017].

Besides all this, in a typical scenario, different descriptors may produce distinct
results depending on the data. Therefore, it is imperative to design and evaluate many
descriptor algorithms in order to find the most suitable ones for each application [dos
Santos et al., 2014]. This process is also expensive and, likewise, does not guarantee
an efficient and discriminative representation.

Overcoming aforementioned limitations, a resurgent technique, renamed deep
learning, has become the state-of-the-art solution for pattern recognition. Although
deep learning was initially applied to recognition problems in the early 1990’s [LeCun
et al., 1995, 1998|, it has become a very hot research topic since 2012, with |Krizhevsky
et al., 2012] winning the TmageNet classification challenge [Deng et al., 2009|. Given
its success, deep learning has been intensively used in several distinct tasks of different
domains |Goodfellow et al., 2016; Bengio, 2009|, including remote sensing [Chen et al.,
2014; Firat et al., 2014; Penatti et al., 2015; Xie et al., 2016; Hu et al., 2015; Nogueira
et al., 2016b; Lin, 2016; Cheng et al., 2016; Nogueira et al., 2017a; Volpi and Tuia, 2017|.

In fact, the use of deep learning techniques in the remote sensing domain is growing

4 CHAPTER 1. INTRODUCTION

very quickly, since it has a natural ability to effectively encode spectral and spatial
information based mainly on the data itself. Methods based on deep learning have
obtained state-of-the-art results in many different Earth Observation applications, such
as image classification [Chen et al., 2014; Firat et al., 2014; Zhang et al., 2015; Guan
et al., 2015; Penatti et al., 2015; Lin, 2016], semantic segmentation [Paisitkriangkrai
et al., 2015; Nogueira et al., 2015b; Yue et al., 2015; Paisitkriangkrai et al., 2015;
Marmanis et al., 2018; Sherrah, 2016; Chen et al., 2016; Volpi and Tuia, 2017; Nogueira
et al., 2019a], poverty mapping [Xie et al., 2016], phenological studies [Nogueira et al.,
2016b, 2017a, 2019b]|, and so on.

Specifically, deep learning [Goodfellow et al., 2016; Bengio, 2009| is a branch of
machine learning that refers to multi-layered interconnected neural networks that can
learn features and classifiers at once, i.e., a unique network may be able to learn features
and classifiers (in different layers) and adjust the parameters, at running time, based on
accuracy, giving more importance to one layer than another depending on the problem.
End-to-end feature learning (e.g., from image pixels to semantic labels) is the great ad-
vantage of deep learning when compared to previously state-of-the-art methods [LeCun
et al., 2015], such as mid-level (Bag of Visual Words (BoVW) [Sivic and Zisserman,
2003]) and global low-level color and texture descriptors. Among all deep learning-
based networks, a specific type, called Convolutional (Neural) Networks [Goodfellow
et al., 2016; Bengio, 2009|, ConvNets or CNNs, is the most popular for learning fea-
tures in computer vision applications, as well as in remote sensing domain. This sort
of network relies on the natural stationary property of an image, i.e., the statistics of
one part of the image are the same as any other part and information extracted at
one part of the image can also be employed to other parts. Furthermore, ConvNets
usually obtain different levels of abstraction for the data, ranging from local low-level
information in the initial layers (e.g., corners and edges), to more semantic descriptors,
mid-level information (e.g., object parts) in intermediate layers and high level infor-
mation (e.g., whole objects) in the final layers. As stated, overall, this feature learning
step allows the network to extract distinct features in different level of semantics in a

data-driven process, which is the great advantage of deep learning.

1.1 Research challenges

There are several computational research challenges related to pattern recognition ap-
plications in the remote sensing domain. In this thesis, the investigated research chal-

lenges may be arranged into three main components.

1.1. RESEARCH CHALLENGES 5

First, hand-crafted descriptors are created for a specific domain and may fail
when applied in another one. For instance, descriptors created to handle everyday
pictures in the computer vision domain may fail to encode features of aerial images as
well as descriptor techniques conceived to deal with urban aerial scenes may encounter
problems in handling agricultural images. Therefore, a data-driven feature learning
step, as in ConvNets, is essential to extract all feasible information from the data
and create discriminative models. However, ConvNets are hard to train, because of
its high number of parameters, requiring a really large amount of annotated data. In
fact, |Bengio, 2009| suggests that, to efficiently train a new neural network from scratch,
it is necessary, at least, 1,000 annotated images per class. Going in the other direction,
remote sensing domain has huge amount of data but with only few annotations. Even
using data augmentation techniques |Goodfellow et al., 2016; Bengio, 2009]|, the total
amount of images may be still small to allow the convergence of a deep neural network.

This discrepancy creates several challenges, including:

(i) Usage of deep learning-based techniques in scenarios with very small amount of
annotated samples. These comes from the fact that these scenarios, with small
sets of annotated images, are very common in Earth Observation applications
mainly because of the difficulty to validate and annotate aerial images [Tuia et al.,
2011; dos Santos et al., 2013; Almeida et al., 2014|, which are highly dependent of
specialists (such as biologists, agronomists, etc) that may need to access difficult
areas of study (in the middle of the jungle or far away from civilization, for
instance). Thus, strategies capable of extracting all feasible information from the
few available samples are essential to exploit these techniques in such difficult

scenarios.

(ii) Better exploit the feature representation, learned from deep networks on huge
computer vision datasets, into the remote sensing domain. Although remote sens-
ing domain does not have datasets with lots of annotations, the computer vision
area has several datasets (composed of thousands, even millions, of pictures [Deng
et al., 2009]) that fulfill this requirement being better choices when training deep
learning networks. However, as introduced, computer vision and remote sensing
are distinct domains with their images having different properties, which creates
other challenge. In fact, this challenge comes from the notion that deep learn-
ing techniques may converge better with more data (just as in computer vision
datasets) [Bengio, 2009; Goodfellow et al., 2016] but, when converging, they learn
feature representation based specifically on the input data. These features may

not be suitable when used into another domain given that the generalization is

(iif)

CHAPTER 1. INTRODUCTION

not guaranteed because of the intrinsic difference between the images. There-
fore, it is fundamental to investigate the possible generalization of these features
and how to exploit them in order to alleviate the problem of small amount of

annotated data for the remote sensing scenario.

Adjust feature representation learned in huge computer vision datasets for the
remote sensing domain. This also comes from the fact that large datasets, such
as the ones in the computer vision domain |Deng et al., 2009|, are more propitious
to train deep learning models. However, the feature representation learned on this
data may fail when encoding information in a different domain (such as the remote
sensing one), mainly because of the differences between the images. So, it is very
important to efficiently understand this gap between different source of data (with
distinct elementary properties) in order to adjust the feature representation to

fill such breach and improve the final performance of the method.

Second, although a lot of attention has been given to scene classification, one

of the most important application in the remote sensing community is the creation of

thematic maps, which may help in understanding events over a specific region, such

as new urban areas and deforestation. Essentially, this application is modeled in a

supervised manner which should have, as outcome, a class for each and every pixel of

the input image. Based on its outcome, this task is commonly called pixel classifica-

tion (also known, in the computer vision field, as semantic segmentation) [Wilkinson,
2005; Nogueira et al., 2016a; Volpi and Tuia, 2017; Nogueira et al., 2019a]. Though

important, pixel classification is a hard task given that its basic element (the pixel) has

not enough information to allow its classification. This creates several and important

research challenges, such as:

(i)

(if)

Difficulty of performing pixel classification with only the pixel itself. Tradition-
ally, methods use the value of the pixel in each band as a signature to perform
its classification [Wilkinson, 2005|, a process that is only possible because the re-
flectance encoded by the pixels along the spectrum (bands) is usually associated to
the physical properties of the surface materials. However, as aforementioned, the
pixel (signature) itself may not have enough information hindering such methods.
Thus, it might be interesting to explore the context of the pixel in its classifica-
tion in order to create robust and efficient methods improving the final thematic

maps.

Efficiently exploit and classify the pixels of the input images. This is because

the classification of each pixel independently demands a lot of computational

1.1.

(i)

RESEARCH CHALLENGES 7

resources. Therefore, it should be interesting to research an efficient technique
that could perform the classification of multiple pixels of the input images (or
patches) at once. This strategy should be able to efficiently use the context of the
pixels to improve the classification while reducing the time and computational

complexity.

Better exploitation of the context of the pixels. This is because, first, the size
of this context must be somehow defined, whether based on prior knowledge
or experimentally. However, this definition is of vital importance, given that
small contexts could not bring enough information to allow the understanding
of the scene while larger contexts could lead to semantically mixed information.
Therefore, it should be extremely useful to research a method that could analyze
and define the best context. Second, depending on the image, a unique size of
context may not be suitable for all cases. For these scenarios, it is important
to study new strategies to better exploit and extract information from varying

contexts (multi-context scenario).

Third, as introduced, different types of images have distinct elementary proper-

ties, such as borders, corners, colors, etc. These properties are essentially encoded by

the ConvNets using linear filters, i.e., despite the network employs non-linear functions

and pooling layers to bring some non-linearity to the learning process, the filters learned

through convolution layers are fundamentally based on linear operations. However, it

is known in the literature that non-linear operations are able to cope with some image

properties better than the linear ones, being preferable in some applications [Xu et al.,

2016; Liu et al., 2017, Wang et al., 2018a|. In fact, supported by this property, some

non-linear operations, such as the morphological ones, are still very popular being con-

sidered state-of-the-art in some remote sensing scenarios [Dalla Mura et al., 2010; Xia

et al., 2015]. This divergence generates several research challenges, including:

(i)

Combine and exploit morphological operations with deep learning. As introduced,
non-linear transformations, such as the morphological ones, are able to cope better
with some properties of the images, such as borders, corners, and so on. Therefore,
it should be extremely important to research for a deep learning-based technique

capable of performing morphological operations.

Optimize the morphological operations. The network is usually optimized using
partial derivatives. These are commonly obtained using the backpropagation al-
gorithm [Goodfellow et al., 2016], which is strongly supported by the fact that all

operations of the network are easily differentiable, including the convolution one.

8 CHAPTER 1. INTRODUCTION

However, this process can not be directly applied to non-linear operations, such
as the presented morphological ones, because those operations do not have easy,
integrable derivatives. Therefore, it is essential to study and analyze a method
capable of performing the feature learning step, by optimizing the structuring ele-
ments of the morphological operations, in order to extract all feasible information

from the input images and improve its performance.

The work developed in this thesis addresses these important research challenges.

1.2 Hypothesis, objectives, and contributions

In this thesis, we focus on the data representation and feature extraction problems with
the objective of developing effective solutions for classification and semantic segmenta-
tion of remote sensing images. We pursue this objective based on the three validation

hypotheses below:

(i) Tt is possible to exploit a previously learned representation to improve the classi-

fication of small remote sensing scene datasets.

(ii) Without increasing the complexity of the model, it is possible to aggregate multi-

context information and improve the final pixel classification.

(iii) If optimized, morphological operations are able to cope better with distinct image

properties when compared to ConvNets.

The first hypothesis concerns the use of deep learning-based techniques in the
remote sensing scene classification task. Fundamentally, it comes from the fact that
deep learning techniques are usually trained using a large amount of data but, in the
remote sensing domain, commonly, there are only a few annotated labels. The contri-
butions concerning the first hypothesis are related to the proposal of a novel ConvNet
architecture as well as in the analysis of different strategies to exploit ConvNets, both
considering the remote sensing scene classification task. In the first, based on recently
published works and after a systematic set of experiments, we proposed a novel net-
work architecture fully trained specifically for the remote sensing domain. This novel
architecture has fewer layers and parameters, being able to converge using a small
quantity of data, demonstrating the effectiveness of deep learning methods to encode
features even for remote sensing domain. In the second, we proposed to evaluate dif-
ferent strategies to exploit ConvNets for the remote sensing domain. Three strategies

were evaluated in three different datasets. Experiments demonstrate that fine-tuning a

1.2. HYPOTHESIS, OBJECTIVES, AND CONTRIBUTIONS 9

network (pre-trained on huge computer vision datasets, such as ILSVRC |Deng et al.,
2009]) into the specific domain is the best strategy to exploit ConvNets. The novel net-
work architecture was published in the Conference on Graphics, Patterns and Images
(SIBGRAPI) [Nogueira et al., 2015a|. The analysis of strategies to exploit ConvNets
was published in the Pattern Recognition journal (PR) [Nogueira et al., 2017¢|. All
aforementioned contributions are presented in Chapter 5.

The second hypothesis is related to the different possibilities of exploiting the
context of the pixel to improve the pixel classification and create enhanced thematic
maps, that may help in the understanding of land cover use, agricultural production,
etc. Essentially, this comes from the fact that the pixel itself has not enough infor-
mation to allow its classification, but its context could bring useful knowledge capable
of filling this gap of information. However, there are several conditions related to the
exploitation of this context, including the size, the dependence of the size of objects in
the scene, etc. The contributions related to the second hypothesis are a new ConvNet
architecture (based on context windows) as well as a technique that exploits a multi-
context paradigm while defining adaptively the best context size for the inference stage.
In the first, the proposed network aggregates the context of the pixel by using over-
lapping windows, centered on each pixel, that carry the context of the pixel and help
understand the spatial patterns around them. This strategy allows the network to
efficiently understand the context around the pixel and correctly classify it. In the
second, we proposed a novel technique to perform semantic segmentation of remote
sensing images that aggregates information from contexts of multiple sizes (without in-
creasing the number of parameters) while defining the best context size for the testing
phase. This multi-context strategy allows the network to capture distinct information
of the context of the objects, allowing a better understanding of the scene. Experiments
showed that the proposed method is capable of aggregating multi-context information
and improve the pixel classification, mainly of small objects. The novel network was
published in the International Conference on Pattern Recognition (ICPR) [Nogueira
et al., 2016a|. A preliminary version of this network, trained specifically for coffee
recognition, was firstly published in the Iberoamerican Congress on Pattern Recogni-
tion (CTARP) |Nogueira et al., 2015b|. The multi-context technique was published in
the IEEE Transactions on Geoscience and Remote Sensing (TGRS) [Nogueira et al.,
2019a]. Furthermore, this multi-context approach was exploited and considered the
winner [Nogueira et al., 2018| of the 2017 Multimedia Satellite Contest |Bischke et al.,
2017|, which was part of the traditional MediaEval Benchmark. Details of these con-
tributions are presented in Chapter 6.

The third hypothesis is related to the exploitation of morphological filters with

10 CHAPTER 1. INTRODUCTION

deep learning. Specifically, although ConvNets use non-linear functions and pooling
layers to bring some non-linearity to the learning process, the filters learned through
its convolution layers are essentially based on linear operations. However, non-linear
(morphological) operations are able to cope with some visual properties better than
the linear ones, being preferable in some domains, such as the remote sensing one.
Therefore, this hypothesis comes from the fact that a combination of the morpholog-
ical operations and the feature learning strategy (performed by deep learning-based
methods) should produce a method capable of better handle certain types of image
properties. The contribution related to the third hypothesis is a novel method for
deep feature learning, called Deep Morphological Network (DeepMorphNet), which
is capable of doing non-linear morphological operations while performing the feature
learning step (by optimizing the structuring elements). This new approach, strongly
based on the ConvNets (because of the similarity between the operation performed
by the morphological transformations and convolutional layers), would aggregate the
benefits of morphological operations while learning the structuring element during the
training process. Experiments demonstrated that the method is able to better pre-
serve some characteristics of the images (such as borders and corners) when compared

to the ConvNets. Details of this contribution are introduced in Chapter 7.

1.3 Organization of the text

This thesis is organized following the hypotheses. It has eight chapters, including this
introduction. Chapter 2 presents the works related to this thesis. Chapter 3 introduces
some background concepts of the convolutional network, given that this technique was
employed throughout all this work. In Chapter 4, we present remote sensing image
datasets used in the experiments, including some proposed during this work.

The following three chapters are directly related to the hypotheses and have,
aside the proposed technique, also an overview of the works related to the respective
task, the experimental protocol used, baselines, obtained results and conclusions. Fol-
lowing this, Chapter 5 presents our study of remote sensing image classification based
on ConvNets. In Chapter 6, we present out proposed ConvNet-based approach to per-
form pixel classification of remote sensing images. Chapter 7 introduces the proposed
network capable of doing non-linear morphological operations while performing the
feature learning step (by optimizing the structuring elements).

Finally, Chapter 8 presents our conclusions and future perspectives.

Chapter 2

Related Work

In this chapter, we present related work for scene and pixel classification for remote
sensing applications. Section 2.1 presents the related work for scene classification.
Section 2.2 gives a literature review of works related to remote sensing pixel classifica-
tion. Finally, Section 2.3 presents works combining morphological operations and deep

learning for remote sensing image scene classification.

2.1 Scene Classification

Considerable efforts have been dedicated to the development of suitable feature de-
scriptors for remote sensing applications |Kumar and Bhatia, 2014|. Although several
of these descriptors have been proposed or successfully used for remote sensing image
processing [Yang and Newsam, 2008; dos Santos et al., 2010; Bouchiha and Besbes,
2013, as stated in Chapter 1, there are many applications that demand more specific
techniques mainly due to the intrinsic properties of such images, including presence
of non-visible bands, different perspective and context, etc. Towards a robust and
efficient feature representation, ConvNets involve machine learning in the process of
obtaining the best features for a given problem. Despite interesting, deep ConvNets
have several drawbacks, such as impossibility to confirm convergence, “black box” na-
ture, high computational cost, proneness to overfitting and empirical nature of model
development [Goodfellow et al., 2016; Bengio, 2009]. In an attempt to alleviate these
effects, three strategies can be used to better exploit existing ConvNets, which are: (i)
full-trained ConvNets, (ii) fine-tuned ConvNets, and (iii) pre-trained ConvNets used
as feature extractors. As introduced, the objective of this Chapter is to evaluate these
strategies to explore existing deep neural networks. Thus, this section focus on review

and analyze existing works that exploit any of these strategies for the remote sensing

11

12 CHAPTER 2. RELATED WORK

scenario.

Train a (new or existing) network from scratch is preferable since it tends to give
specific feature representation for the dataset. Also, this strategy gives full control
of the architecture and parameters, which tends to yield a more robust and specific
network. However, it requires a considerable amount of data |[Goodfellow et al., 2016;
Bengio, 2009]. During the years, successful ConvNets were the ones fully trained (from
scratch) in large amount of data, such as ImageNet dataset [Deng et al., 2009], which
has been used to train several famous architectures [Krizhevsky et al., 2012; Simonyan
and Zisserman, 2014; Szegedy et al., 2015; He et al., 2016; Huang et al., 2017]. AlexNet,
proposed by [Krizhevsky et al., 2012|, was the winner of ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) |Deng et al., 2009| in 2012. This work is the mainly
responsible for the recent popularity of neural networks, since it introduced several
important concepts to the field, including non-saturating neurons, dropout [Srivastava
et al., 2014|, normalization, etc. VGG ConvNets, presented in [Simonyan and Zisser-
man, 2014], won the ILSVRC-2014 competition (localization and classification) while
GoogLeNet, presented in [Szegedy et al., 2015], is the ConvNet architecture that won
the classification and detection tracks of the same competition. The former network
is strongly based on the AlexNet architecture being a deeper version of it. The lat-
ter is based on the new concept of “Inception” module, which is a set of layers trained
apart and used to composed the final network architecture (that is consistent of several
“Inception” modules). More recently, some architectures were proposed to allow the
deepening of the network while avoiding gradient problems, such as the degradation
problem [He et al., 2016|. Precisely, the idea behind those approaches is to use skip
connections [Goodfellow et al., 2016], that allow the gradients to flow more directly
without much interference. [He et al., 2016] proposed the Residual Networks (ResNets)
which make improvements on the final representation by combining (via skip connec-
tions) the input of a layer with the feature maps learned by this layer. Such networks
have won the ILSVRC-2015 competition (classification track) and are one of the most
advanced techniques in terms of ConvNets. |Huang et al., 2017| proposed the Densely
Connected Networks (DenseNets), an improved version of the ResNet architectures.
The DenseNets allow a layer to have access to the feature maps learned from all previ-
ous layers. Those maps are usually concatenated (via skip connections) and provided
to that layer in order to generate enhanced outcomes and avoid gradient problems.

Although huge annotated remote sensing data are unusual, there are many works,
usually employing reasonable datasets (more than 2,000 images), that achieved promis-
ing results by proposing the full training of new ConvNets [Makantasis et al., 2015; Yu
et al., 2017; Cheng et al., 2018|. [Makantasis et al., 2015] classified hyperspectral images

2.1. SCENE CLASSIFICATION 13

through a fully-trained new ConvNet with only two convolution layers achieving state-
of-the-art in four datasets. In [Yu et al., 2017|, the authors used different techniques
to perform data augmentation in order to improve the feature representation learned
by ConvNets. They fully trained a network in three different datasets and showed that
distinctive data augmentation techniques may really improve representation. [Cheng
et al., 2018| proposed a ConvNet-based technique that is fully trained using a metric
learning concept in order to perform remote sensing scene classification. Aside this,
a myriad of deep learning-based methods (including Restricted Boltzmann Machines,
Autoencoders, Generative Adversarial Networks, etc) were fully-trained for the remote
sensing domain |[Chen et al., 2014; Firat et al., 2014; Zhang et al., 2015; Guan et al.,
2015; Lin, 2016; Lin et al., 2017; Xu et al., 2018].

As introduced, in general, ConvNets have a peculiar property: they all tend to
learn first-layer features that resemble either Gabor filters, edge detectors or color
blobs. Supported by this characteristic, another strategy to exploit ConvNets is to
perform fine-tuning of its parameters using the new data. Several works [Cheng et al.,
2016; Li et al., 2017; Zhang et al., 2019], in the remote sensing community, exploit the
benefits of fine-tuning pre-trained ConvNets. [Cheng et al., 2016] fine-tuned three exist-
ing networks [Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; Szegedy et al.,
2015] to perform remote sensing scene classification. After the tuning process, they
extracted features of each one and used machine learning techniques to perform the
final classification yielding state-of-the-art in the UCMerced Land-use Dataset. In [Li
et al., 2017|, the authors propose a two-stage neural network to perform remote sensing
scene classification. The first stage is composed of a fine-tuned AlexNet |Krizhevsky
et al., 2012|, which results in features that are used as input for a Restricted Boltz-
mann Machine network (the second stage), that is responsible to learn a better feature
representation and classify the scenes. |[Zhang et al., 2019] combined and fine-tuned
several pre-trained ConvNets with Capsule Networks [Sabour et al., 2017]. Their final
architecture is able to encode the properties and spatial information of features in an
image to achieve equivariance.

Based on aforementioned characteristics, ConvNets can also be exploited as a
feature extractor. Specifically, these features, usually called deep features, are ob-
tained by removing the last classification layer and considering the output of previous
layer (or layers). In some recent studies |Penatti et al., 2015; Hu et al., 2015; Cheng
et al., 2016, 2017; Li et al., 2019|, ConvNets have shown to perform well even in
datasets with different characteristics from the ones they were trained with, without
performing any adjustment, using them as feature extractors only and using the fea-

tures according to the application (e.g., classification, retrieval, etc). In remote sensing

14 CHAPTER 2. RELATED WORK

domains, [Penatti et al., 2015] evaluated the use of different ConvNets as feature extrac-
tors, achieving state-of-the-art results in two remote sensing datasets, outperforming
well-known descriptors. [Hu et al., 2015| combined features extracted from several pre-
trained ConvNets to perform classification of high-resolution remote sensing imagery.
[Cheng et al., 2016] extracted features from pre-trained ConvNets and use them to cre-
ate a machine learning model capable of perform classification of land-use scene images.
In [Cheng et al., 2017|, the authors used features extracted from pre-trained ConvNets
to create a BoVW and, then, classify the remote sensing images. |Li et al., 2019] com-
bined pre-trained ConvNets with Attention Maps in order to produce a representation

focused on the salient parts of the scene.

Concerning the evaluation of different practices to exploit deep neural net-
works, |Jarrett et al., 2009| analyzed the best architecture and training protocol to
explore deep neural networks, including unsupervised and supervised feature learning
as well as supervised and fine-tuned classification of the instances. Also, [Larochelle
et al., 2009| studied the best way to train neural networks, including greedy layer-wise
and fine-tuning strategies. Finally, [Donahue et al., 2014] evaluated the generalization
power of deep features extracted from hidden layers of pre-trained ConvNets, but they
did not investigate any other strategy of exploiting ConvNets, such as fine-tuning or
fully-training. Specifically, they analyze if features extracted from pre-trained deep
convolutional network can be repurposed to novel generic tasks, which may differ sig-
nificantly from the originally trained tasks and do not have sufficient labeled data to
conventionally train or adapt a deep architecture to the new tasks.

Contributions related to scene classification (and presented in Chapter 5) distin-
guish from the literature, given that, while some aforementioned works just exploited
distinct training strategies (such as full-training, fine-tuning, and feature extractor),
we evaluate these practices. Furthermore, we investigate multiple ConvNets (six) and
datasets (three), differing from other works that evaluate only one or a few ConvNets

and datasets.

2.2 Pixel Classification

As introduced, deep learning has made its way into the remote sensing community,
mainly due to its success in several computer vision tasks |Krizhevsky et al., 2012; Long
et al., 2015; Zhang et al., 2015, 2016; Du et al., 2017]. Towards a better understanding
of the Earth’s surface, a myriad of techniques |Paisitkriangkrai et al., 2015; Nogueira
et al., 2015b; Marcu and Leordeanu, 2016; Audebert et al., 2016; Maggiori et al., 2017;

2.2. PIXEL CLASSIFICATION 15

Sherrah, 2016; Marmanis et al., 2018; Paisitkriangkrai et al., 2016; Wang et al., 2017,
Peng et al., 2019; Nogueira et al., 2019b| have been proposed to perform semantic
segmentation of RSIs.

In order to aggregate context information about the pixels (helping in their clas-
sification) and to avoid computational problems (possibly caused by the huge size of
the RSIs), all of these methods process the input images using overlapping patches (that
should be superimposed to retrieve the final thematic map). Some of them [Paisitkri-
angkrai et al., 2015; Nogueira et al., 2015b; Paisitkriangkrai et al., 2016; Nogueira
et al., 2019b| consider those patches as context windows (i.e., overlapping images, in
which each one is centered on a specific pixel helping to understand the spatial patterns
around that pixel) and perform the classification of each pixel independently. Other
works [Marcu and Leordeanu, 2016; Audebert et al., 2016; Sherrah, 2016; Maggiori
et al., 2017; Wang et al., 2017; Marmanis et al., 2018; Liu et al., 2018; Peng et al.,
2019| classify the whole input patch producing a dense outcome with all pixels clas-
sified. Although somehow successful, the definition of the best input patch size is of
vital importance for the methods, given that small patches could not bring enough
information to allow the understanding of the scene while larger contexts could lead to
semantically mixed information. Towards a better exploitation of the context and in an
attempt to alleviate such dependence of the patch size, several works [Nogueira et al.,
2015b; Audebert et al., 2016; Sherrah, 2016; Marcu and Leordeanu, 2016; Paisitkri-
angkrai et al., 2016; Maggiori et al., 2017; Wang et al., 2017; Marmanis et al., 2018;
Peng et al., 2019] have proposed to aggregate multi-context information to their learn-
ing process. This procedure allows the methods to extract and capture patterns of
varying granularities, helping the method to aggregate more useful information.

In [Nogueira et al., 2015b|, the authors proposed two multi-context techniques
based on ConvNet to perform semantic segmentation. The first method is based on cas-
cading of networks while the second is established in an iterative process of ConvNet.
They achieve remarkable results in agricultural datasets composed of coffee and non-
coffee crops. In [Audebert et al., 2016|, the authors fine-tuned a deconvolutional net-
work (based on SegNet [Badrinarayanan et al., 2017]) using 256 x 256 fixed size patches.
To incorporate multi-context knowledge into the learning process, they proposed a
multi-kernel technique at the last convolutional layer. Specifically, the last layer is
decomposed into three branches. Each branch processes the same feature maps but
using distinct filter sizes generating different outputs which are combined into the final
dense prediction. They argue that these different scales smooth the final predictions
due to the combination of distinct fields of view and spatial context.

Sherrah |Sherrah, 2016| proposed methods based on fully convolutional net-

16 CHAPTER 2. RELATED WORK

works |Long et al., 2015]. The first architecture was purely based on the fully convolu-
tional paradigm, i.e., the network has several downsampling layers (generating a coarse
map) and a final bilinear interpolation layer, which is responsible to restore the coarse
map into a dense prediction. In the second strategy, the previous network was adapted
by replacing the downsampling layers with dilated convolutions, allowing the network
to maintain the full resolution of the image. Finally, the last strategy evaluated by the
authors was to fine-tune pre-trained networks over the remote sensing datasets. None
of the aforementioned strategies exploit the benefits of the multi-context paradigm.
Furthermore, these techniques were evaluated using several input patch sizes with final
architectures processing patches with 128 x 128 or 256 x 256 pixels depending on the
dataset.

[Marcu and Leordeanu, 2016] combined the outputs of a dual-stream network
in order to aggregate multi-context information for semantic segmentation. Specifi-
cally, each network processes the image using patches of distinct size, i.e., one network
process 256 x 256 patches (in which the global context is considered) while the other
processes 64 x 64 patches (where local context is taken into account). The outputs of
these architectures are combined in a later stage using another network. Although they
can train the network jointly, in an end-to-end process, the number of parameters is
really huge allowing them to use only small values of batch size (10 patches per batch).
In |Paisitkriangkrai et al., 2016|, the authors proposed a multi-context semantic seg-
mentation by combining ConvNets, hand-crafted descriptors, and Conditional Random
Fields [Lafferty et al., 2001; Kréhenbiihl and Koltun, 2011]. Specifically, they trained
three ConvNets, each one with a different patch size (16 x 16, 32 x 32 and 64 x 64 pix-
els). Features extracted from these networks are combined with hand-crafted ones and
classified using random forest classifier. Finally, Conditional Random Fields [Lafferty
et al., 2001; Kriahenbiihl and Koltun, 2011| are used as a post-processing method in an
attempt to improve the final results.

|[Maggiori et al., 2017| proposed a multi-context method that performs labeling
segmentation based on upsampled and concatenated features extracted from distinct
layers of a fully convolutional network [Long et al., 2015|. Specifically, the network,
that receives as input patches of 256 x 256 or 512 x 512 pixels (depending on the
dataset), is composed of several convolutional and pooling layers, which downsample
the input image. Downsampled feature maps extracted from several layers are, then,
upsampled, concatenated and finally classified by another convolutional layer. This
proposed strategy resembles somehow the DenseNets [Huang et al., 2017], with the final
layer having connections to the previous ones. |Wang et al., 2017| proposed to extract

features from distinct layers of the network to capture multi-context low- and high-level

2.2. PIXEL CLASSIFICATION 17

information. They fine-tuned a ResNet-101 |He et al., 2016| to extract salient features
from 600 x 600 patches. Feature maps are then extracted from intermediate layers,

combined with entropy maps, and upsampled to generate the final dense prediction.

In [Marmanis et al., 2018|, the authors proposed multi-context methods that
combine boundary detection with deconvolution networks (specifically, based on Seg-
Net |[Badrinarayanan et al., 2017]). The main contribution of this work is the Class-
Boundary (CB) network, which is responsible to help the proposed methods to give
more attention to the boundaries. Based on this CB network, they proposed several
methods. The first uses three networks that receive as input the same image but
with different resolutions (as well as the output of the corresponding CB network) and
output the label predictions, which are aggregated, in a subsequent fusion stage, gen-
erating the final label. They also experimented fully convolutional architectures |Long
et al., 2015] (with several skip layers in order to aggregate multi-context information)
and an ensemble of several architectures. All aforementioned networks initially receive
256 x 256 fixed size patches. In [Peng et al., 2019|, the authors combined the concepts
of skip and dense connections [He et al., 2016; Huang et al., 2017]. Precisely, they
proposed a basic block composed of several convolutional layers with skip connections
between them. Then, this block is stacked to create a deep architecture that has dense
connections [Huang et al., 2017] between the blocks. In order to aggregate multi-
context information, this network processes the input image using three branches, each

one using different kernel sizes.

Contributions related to pixel classification (and presented in Chapter 6) distin-
guish from the literature in several points. First, as presented, although some works
have already exploited fully convolutional networks, the proposed models explore such
paradigm to the maximum by never downsampling the input data (a common process
performed in the literature works [Long et al., 2015; Yu and Koltun, 2015; Marmanis
et al., 2018]). Second, our proposed technique is capable of exploiting the multi-context
strategy without any modification of the network or combination of several architec-
tures (or layers), a very common approach to exploit multi-context information in the
literature. Finally, our proposed approach is also able to determine the best patch size
adaptively (in training time), instead of evaluating possible patch sizes (to find the
best one) or to use a patch size determined by network constraints (which could not

be the best one), common strategies adopted in the literature.

18 CHAPTER 2. RELATED WORK

2.3 Morphological-Based Feature Extraction

As introduced, non-linear operations, such as the morphological ones [Serra and Soille,
2012|, have the ability to preserve borders and corners, which may be essential proper-
ties in some scenarios, such as the remote sensing one. Supported by such advantages,
since their introduction [Pesaresi and Benediktsson, 2001], morphological operations
have been extensively applied to several Earth Observation applications [Xia et al.,
2015; Mirzapour and Ghassemian, 2015; Gu et al., 2016; Aptoula et al., 2016; Xu
et al., 2016; Liu et al., 2017; Wang et al., 2018a].

Some of these techniques [Xia et al., 2015; Mirzapour and Ghassemian, 2015;
Gu et al., 2016; Liu et al., 2017] use the advantages of morphology to extract robust
features that are employed as input to standard machine learning techniques |Bishop,
2006 (such as Support Vector Machines (SVM), decision trees, and extreme learning
machine) in order to perform image classification and segmentation. |[Xia et al., 2015|
proposed a method based on random subspace ensembles and advanced morphological
operations. The final image classification is performed using several standard machine
learning techniques, including decision trees and extreme learning machine [Bishop,
2006|. They achieved state-of-the-art results in two hyperspectral datasets composed
of more than a hundred bands. [Mirzapour and Ghassemian, 2015] combined texture,
shape and spectral features in order to reduce overall classification error. Particularly,
they used morphological, gabor and grey-level co-occurrence matrices (GLCM) |Haral-
ick et al., 1973| features and achieved state-of-the-art in three hyperspectral datasets.
|Gu et al., 2016| proposed a framework based on multiple kernel learning based on
spatial and spectral features extracted by morphological operations. They achieved
remarkable results, when compared with several state-of-the-art algorithms, in three
hyperspectral datasets. In [Xu et al., 2016|, the authors described the images using
morphological components based on distinct textural features, that are classified using
multinomial logistic regression. Results indicated that their proposed approach can
lead to very good classification performances in two different types of data (hyperspec-
tral and Synthetic Aperture Radar). [Liu et al., 2017] proposed to perform different
morphological operations using structuring elements of varying size to extract distinct
features. These are segmented using the Simple Linear Iterative Clustering (SLIC)
method [Achanta et al., 2012| and then classified using an SVM.

More recently, ConvNets |Goodfellow et al., 2016| started achieving outstanding
results, mainly in applications related to images. Therefore, it would be more than
natural for researchers to propose works combining the benefits of ConvNets and mor-

phological operations. In fact, several works [Masci et al., 2013; Mellouli et al., 2017;

2.3. MORPHOLOGICAL-BASED FEATURE EXTRACTION 19

Aptoula et al., 2016; Wang et al., 2018a| tried to combine these techniques in order
to create a more robust model. Some works [Aptoula et al., 2016; Wang et al., 2018a]
employed morphological operations as a pre-processing step in order to extract the first
set of discriminative features. Specifically, in [Aptoula et al., 2016|, the authors used
attribute profiles [Dalla Mura et al., 2010] to extract discriminative features that are
used as input for a ConvNet. This network classifies each pixel based on the profiles
creating a thematic map for hyperspectral images. [Wang et al., 2018a| employed sev-
eral morphological operations as pre-processing to generate more features, which are
then used as input for a ConvNet responsible to perform the classification. In both
works, the structuring elements of the morphological operations are not learned and
pre-defined structuring elements are employed. Based on the fact that morphology
generates interesting features that are not captured by the convolutional networks,
such works achieved outstanding results on pixel classification.

Other works [Masci et al., 2013; Mellouli et al., 2017] combined morphological
operations and neural networks, creating a framework in which the structuring el-
ements are optimized. [Masci et al., 2013] proposed a convolutional network that
aggregates morphological operations, such as pseudo-erosion, pseudo-dilation, pseudo-
opening, pseudo-closing, and pseudo-top-hats. Specifically, their proposed network
uses the counter-harmonic mean [Bullen, 2013|, which allows the convolutional layer
to perform its traditional linear process, or approximations of morphological opera-
tions. They show that the approach produces outcomes very similar to traditional
(not approximate) morphological operations. [Mellouli et al., 2017] performed a more
extensive validation of the previous method, proposing different deeper networks that
are used to perform image classification. In their experiments, the proposed network
achieved promising results for two datasets of digit recognition.

Contributions related to our method that combines morphological operations
and deep learning are presented in Chapter 7. Such contributions distinguish from
the literature in two main points: (i) differently from [Masci et al., 2013; Mellouli
et al., 2017], the proposed technique really carries out morphological operations without
any approximation (except for the geodesic reconstruction), and (ii) to the best of
our knowledge, this is the first approach to implement (approximate) morphological

geodesic reconstruction within deep learning-based models.

Chapter 3

Background Concepts

This chapter presents essential techniques that we employed in this work. Specifically,
Section 3.1 presents the fundamental concepts of Convolutional Networks, including
processing units, layers, and training. Then, Section 3.2 reviews the basics of mathe-

matical morphology.

3.1 Convolutional Networks

This section formally presents some background concepts of Convolutional (Neural)
Networks [Goodfellow et al., 2016; Bengio, 2009], or simply ConvNets or CNNs, a
specific type of deep learning method. These networks are generally presented as
systems of interconnected processing units (neurons) which can compute values from
inputs leading to an output that may be used on further units. These neurons work in
agreement to solve a specific problem, learning by example, i.e., a network is created
for a specific application, such as pattern recognition or data classification, through
a supervised learning process. As introduced, ConvNets were initially proposed to
work over images, since they try to take leverage from the natural stationary property
of an image, i.e., information extracted in one part of the image can also be applied
to another region. Furthermore, ConvNets present several other advantages: (i) they
automatically learn local feature extractors, (ii) they are invariant to small translations
and distortions in the input pattern, and (iii) they implement the principle of weight
sharing which drastically reduces the number of free parameters and increases their

generalization capacity. Next, we present some concept employed in ConvNets.

21

22 CHAPTER 3. BACKGROUND CONCEPTS

3.1.1 Processing Units

Although deep learning-based techniques have been developed trough the years with
different models emerging, the basic component of every model remains the same. In
other words, all networks are basically composed of artificial neurons, which try to
simulate the biological ones in a limited way. Formally, artificial neurons are basi-
cally processing units that compute some operation over several input variables and,
usually, have one output calculated through the activation function. Mathematically,
an artificial neuron has a weight vector W = (wy,ws, -+ ,w,), some input variables
vy = (Y1,Y2, "+ ,Yn), a threshold or bias b and an activation function f(-). These
four main components are processed as stated in Equation 3.1. Making an analogy,
the weights represent the strength of the biological dendritic connections while bias is
considered the value that must be surpassed by the inputs before an artificial neuron

becomes active (i.e., greater than zero).

zzf(ixixﬂ/,-+b> (3.1)

where z, y, w, b, and n represent output, input, weights, bias, and total size, respec-

tively. f(-) : R — R denotes an activation function.

Conventionally, a non-linear function is provided in f(-). There are a lot of alter-
natives for f(-), such as sigmoid, hyperbolic, and rectified linear function. The latter
function is currently the most used in the literature. Neurons with this configuration
have several advantages when compared to others [Nair and Hinton, 2010; Goodfellow
et al., 2016]: (i) they work better to avoid saturation during the learning process, (ii)
they induce the sparsity in the hidden units, and (iii) they do not face the gradient
vanishing problem! as with sigmoid and tanh function. The processing unit that uses
the rectifier as activation function is called Rectified Linear Unit (ReLU) |Nair and
Hinton, 2010]. The first step of the activation function of a ReLU is presented in

Equation 3.1 while the second one is introduced in Equation 3.2.

a= {Z’ z>0 = a= f(z) = maz(0, z) (3.2)

0, otherwise

!The gradient vanishing problem occurs when the propagated errors become too small and the
gradient calculated for the back propagation step vanishes, making it impossible to update the weights
of the layers and to achieve a good solution.

3.1. CONVOLUTIONAL NETWORKS 23

3.1.2 Layers

The aforementioned processing units are grouped forming a component commonly
called layer. There are several types of layers, such as convolutional and variations,
fully-connected, etc. Some of these layers, basis of the ConvNets and extensively ex-

ploited in this work, are presented next.

3.1.2.1 Convolutional Layer

Among the different types of layers, the convolutional one is the responsible for cap-
turing the features from the images. In a deep network, the first convolutional layers
usually extract low-level characteristics (like edges, and lines) while the others capture
high-level features (such as structures, objects and shapes). The process of feature
extraction performed by this type of layer is strongly based on the convolution pro-
cess. Formally, a 2-D convolution procedure, commonly employed in this type of layer,
receives a two-dimension input y and a 2-D weight vector W (in this case, with size

n x n) and processes them according to (the linear) Equation 3.3.

Ak)= ylk+i—1,01+5—)W(i,j) (3.3)

i=1 j=1

110,1111]0 110(111]0
110011010 5 11011100 5|1
011101010 [— 01110100 [—
011111 1]1 o1 (1111
0(1]110]0 0(1(1]0]0
110(1[1]0 110(1[1]0
11001100 51112 110(1(01/0 51112
01110/0]0]——4]|3 01110100 f}——43]|3
011 [1]1/1 011111 3142
0|1{1]0]0 01111100

Figure 3.1: Some steps of a 3 x 3 window of a convolutional layer extracting the features from an image.
Figure adapted from [Ng et al., 2011a].

Intuitively, this process can be decomposed into two phases: (i) the moving step,
where a fixed-size window (in this case, the kernel) runs over the image (with some

stride?) defining a region of interest, and (ii) the processing step, that multiplies the

2Stride is the distance between the centers of each window considering two steps.

24 CHAPTER 3. BACKGROUND CONCEPTS

pixel values inside that region with the filter weights of the neurons, finally extracting
the features from that region and producing the output. As presented in Figure 3.1,
the process performed by this layer results in a new image (commonly called feature

map), generally smaller than the original one, with the visual features extracted.

3.1.2.2 Dilated Convolutional Layer

Although the previous layer has been extensively employed in ConvNet architectures,
several convolutional variant layers have been proposed trying to improve somehow
the process performed by standard layer. An important variant layer is called dilated
convolution [Yu and Koltun, 2015] and has been successfully applied to several appli-
cations [Yu and Koltun, 2015; Chen et al., 2018; Sherrah, 2016; Wang et al., 2018b;
Hamaguchi et al., 2018] and was also exploited in this work. In this type of layers, filter
weights are employed differently when compared to standard convolutions. Specifically,
filters of this layer do not have to be contiguous and may have gaps (or “holes”) between
the parameters. These gaps, inserted according to the dilation rate r € N, enlarge the
convolutional kernel but preserve the number of trainable parameters since the inserted
holes are not considered in the convolution process. Therefore, this dilation rate r can
be seen as a parameter responsible to define the final alignment of the kernel weights,
i.e., it corresponds to the stride with which the input signal is sampled.

Formally a 2-D dilated convolution receives a two-dimension input y, a dilation
rate r, and a 2-D weight vector W (in this case, with size n X n) and processes them
according to Equation 3.4. Note the differences between the dilated and the standard

convolution (presented in Equation 3.3).

n o n
2k)= b+ xil+r x j)W(i,) (3.4)
i=1 j=1

The effect of different diljation rate r are presented in Figure 3.2. As can be
seen smaller rates result in a more clustered filter (in fact, rate 1 generates a kernel
identical to the standard convolution) while larger rates make an expansion of the filter,
producing a larger kernel with several gaps. Since this whole filter dilation process
is independent of the input data, changing the dilation rate does not impact in the
resolution of the outcome, i.e., in a dilated convolution, independent of the rate, input

and output have the same resolution (considering appropriate stride and padding).
By enlarging the filter (with such gaps), the network expands its receptive field
(since the weights will be arranged in a more sparse shape) but preserves the resolution

and no downsampling in the data is performed. Hence, this process has several advan-

3.1. CONVOLUTIONAL NETWORKS 25

(a) Rate 1 (b) Rate 2 (c) Rate 3

Figure 3.2: Example of dilated convolutions. Dilation supports expansion of the receptive field without loss
of resolution or coverage of the input. The blue dot represents the pixel that is being considered as reference
during the process.

tages, such as: (i) supports the expansion of the receptive field without increasing the
number of trainable parameters per layer [Yu and Koltun, 2015], which reduces the
computational burden, and (ii) preserves the feature map resolution, which may help
the network to extract even more useful information from the data, mainly of small
objects.

To better understand the aforementioned advantage, a comparison between di-
lated and standard convolution is presented in Figure 3.3. Given an image, the first
network (in red) performs a downsampling operation (that reduces the resolution by
a factor of 2) and a convolution, using horizontal Gaussian derivative as the kernel.
The obtained low-resolution feature map is then enlarged by an upsampling operation
(with a factor of 2) that restores the original resolution but not the information lost
during the downsampling process. The second network (blue) computes the response
of a dilated convolution on the original image. In this case, the same kernel was used
but rearranged with dilation rate » = 2, making both networks have the same re-
ceptive field. Although the filter size increases, only non-zero values are taken into
account when performing the convolution. Therefore, the number of filter parameters
and of operations per position stay constant. Furthermore, it is possible to observe that
salient features are better represented by the dilated model since no downsampling is

performed over the input data.

3.1.2.3 Pooling Layer

Many of the features extracted by the convolutional layers are very similar, since each
convolution window may have common pixels, generating redundant information. Typ-

ically, after the convolutional layers, there are pooling layers that were created in order

26 CHAPTER 3. BACKGROUND CONCEPTS

i
i]

aqa & }upsample 2X
; m‘* q ® }’//', ‘r‘ :.

standard convolution

g - Vi ¢
10x10 ' /' '\
dilated convolution Vool BADN
dilation rate = 2

Figure 3.3: Comparison between dilated and standard convolutions. Top (red) row presents the feature
extraction process using a standard convolution over a downsampled image and then an upsample in order
to recover the input resolution (a common procedure performed in ConvNets). Bottom (blue) row presents
the feature extraction process using dilated convolution with rate r = 2 applied directly to the input (without
downsample). The outcomes clearly show the benefits of dilated convolutions over standard ones.

to reduce the variance of features by computing some operation of a particular feature
over a region of the image. Specifically, a fixed-size window runs over the features
extracted by the convolutional layer and, at each step, an operation is realized to min-
imize the redundancy and optimize the gain of the features. Typically, two operations
may be realized on the pooling layers: the max or average operation, which select the
maximum or mean value over the feature region, respectively. Figure 3.4 presents an
example of a pooling layer using max operation over the features. This process ensures
that the same result can be obtained, even when image features have small translations
or rotations, being very important for object classification and detection. Thus, the
pooling layer is responsible for sampling the output of the convolutional one preserving
the spatial location of the image, as well as selecting the most useful features for the

next layers.

3.1.2.4 Fully-connected Layer

After several convolutional and pooling layers, the architecture may have fully-
connected ones, which are responsible to generate a general representation of data
creating the feature vectors. Such layers take all neurons in the previous layer and
connect them to every single neuron in its layer. The previous layers can be convolu-
tional, pooling or fully-connected, however the next ones must be fully-connected until
the classifier layer, because the spatial notion of the image is lost in this layer. Since
a fully-connected layer occupies most of the parameters, overfitting can easily happen.

To prevent this, the dropout method |Srivastava et al., 2014| can be employed. This

3.1. CONVOLUTIONAL NETWORKS 27

511] 2 5112
4133 —° 4133 5|3
3042 3042
5112 5112
41332134373 5|3
3142 4 3142 all i

Figure 3.4: A pooling layer selecting the max value between the features inside a window of size 2 x 2. Figure
adapted from [Ng et al., 2011b].

technique randomly drops several neuron outputs, which do not contribute to the for-
ward pass and back propagation anymore. These drops are equivalent to decreasing the
number of neurons of the network, improving the speed of training and making model
combination practical, even for deep networks. Although this method creates networks
with different architectures, those networks share the same weights, permitting model

combination and allowing that only one network is needed at test time.

The last layer of a ConvNet architecture is usually a fully-connected layer with
a specific configuration. Specifically, this layer is actually a fully-connected one but
with number of neurons directly connected to the problem and with specific activation
function (usually depending on the design of the network). A classifier layer may be
used to calculate the class probability of each instance. The most common classifier
layer is the softmax one [Bengio, 2009|, based on the namesake function. The softmax
function, or normalized exponential, is a generalization of the multinomial logistic
function that generates a K-dimensional vector of real values in the range (0,1) which
represents a categorical probability distribution. Equation 3.5 shows how softmax
function predicts the probability for the j class over a sample vector X.

T .
expX Wi

K XTW,
1 €XD k

where j is the current class being evaluated, X is the input vector, and W represent

hwp(X) = Py = j|X; W,b) =

(3.5)

the weights.

In addition to all the aforementioned layers, the network can also have several
normalization ones, such as Local Response [Krizhevsky et al., 2012] and Batch Nor-
malization [loffe and Szegedy, 2015]. These layers are used in specific cases, such as to
preserve certain high-frequency features or to reduce the covariate shift of the internal

layers.

28 CHAPTER 3. BACKGROUND CONCEPTS

3.1.3 Training

The ConvNet needs to adjust its weights and bias usually basing itself on the loss gener-
ated by the output layer, given that these models are based on a supervised procedure.
Specifically, the training process of a network is strongly based upon a differentiable
cost function J (W, b) that is created to minimize the output error (Equation 3.6) mak-
ing the ConvNet to converge to a (local or global) minimum (in terms of cost). Amongst
several functions, the log loss one has become more pervasive because of exciting results
achieved in some problems [Krizhevsky et al., 2012|. Equation 3.7 presents a general
log loss function, without any regularization (or weight decay) term, which is used to

prevent overfitting.

argmin[J (W, b)] (3.6)

Wb

N
TOV0) =~ S x loghurala?) + (1 =) x log(1 by (o)) (37
i=1

where y represents a possible class, x is the data of an instance, W the weights, ¢
is an specific instance, h is the activation of the last layer, and N represents the total
number of instances.

With the cost function defined, the ConvNet can be trained in order to minimize
the loss by using some optimization algorithm, such as Stochastic Gradient Descent

(SGD), to gradually update the weights and bias in search of the optimal solution:

0T (W,b)

w® —w® _ LT (3.8)
ij ij 0
b0 _ 0 _ 0T (W.b) (3.9)
7 1 ab(l)

where « denotes the learning rate, a parameter that determines how much an
updating step influences the current value of the weights, i.e., how much the model
learns in each step.

However, as presented, the partial derivatives of the cost function, for the weights
and bias, are needed. To obtain these derivatives, the back propagation algorithm is
used. Specifically, it must calculate how the error changes as each weight is increased
or decreased slightly. The algorithm computes each error derivative by first computing
the rate at which the error (£) changes as the activity level of a unit is changed. For
classifier layers, this error is calculated considering the predicted and desired output.
For other layers, this error is propagated by considering the weights between each pair

of layers and the error generated in the most advanced layer.

3.2. MATHEMATICAL MORPHOLOGY 29

The training step of a ConvNet occurs in two steps: (i) the feed-forward one,
that passes the information through all the network layers, from the first until the
classifier one, usually with high batch size®, and (ii) the back propagation one, which
calculates the error (£) generated by the ConvNet and propagates this error through
all the layers, from the classifier until the first one. As presented, this step also uses

the errors to calculate the partial derivatives of each layers for the weights and bias.

3.2 Mathematical Morphology

Mathematical morphology, a combination of set and lattice theories, is the foundation
of the morphological operations, commonly employed in the image processing area.
Since its introduction to the remote sensing domain |Pesaresi and Benediktsson, 2001],
these morphological operations have been generalized from the analysis of a single
band image to hyperspectral images made up of hundreds of spectral channels and has
become one of the state-of-the-art techniques for a wide range of applications |Serra
and Soille, 2012]. This study area includes several different operations (such as erosion,
dilation, opening, closing, top-hats, and reconstruction), which can be applied to binary
and grayscale images in any number of dimensions [Serra and Soille, 2012].

Formally, let us consider a grayscale 2D image I(-) as a mapping from the coordi-
nates (Z?) to the pixel-value domain (Z). Most morphological transformations process
this input image [using a structuring element (SE) (usually defined prior to the op-
eration). A SE B(-) can be defined as a function that returns the set of neighbors of a
pixel (i, 7). This neighborhood of pixels is taken into account during the morphological
operation, i.e., while probing the image I. Normally, a SE is defined by two compo-
nents: (i) shape, which is usually a discrete representation of continuous shapes, such
as square, circle, (ii) center, that identifies the pixel on which the SE is superposed
when probing the image. Figure 3.5 presents some examples of common SEs employed
in the literature. As introduced, the definition of the SE is of vital importance for the
process to extract relevant features. However, in literature [Gu et al., 2016; Liu et al.,
2017|, this definition is performed experimentally, an expensive process that does not
guarantee a good descriptive representation.

After its definition, the SE can be then employed in several morphological pro-
cesses. Most of these operations are usually supported by two basic morphological
transformations: erosion £(-) and dilation §(-). Such operations receive basically the

same input: an image [and the structuring element B. While erosion transformations

3Batch size is a parameter that determines the number of images that goes through the network
before the weights and bias are updated.

30 CHAPTER 3. BACKGROUND CONCEPTS

(a) Square (b) Disk (c) Diamond (d) Cross (e) X shape

Figure 3.5: Examples of common structuring elements employed in the literature. These SEs can be seen as
sets that define the activated pixels.

process each pixel (7, j) using the supremum (the smallest upper bound, A) function, as
formally denoted in Equation 3.10, the dilation operations process the pixels using the
infimum (the greatest lower bound, V) function, as presented in Equation 3.11. Intu-
itively, these two operations probe an input image using the SE, i.e., they position the
structuring element at all possible locations in the image and analyze the neighborhood
pixels. This process, very similar to the convolution procedure, outputs another image
with regions compressed or expanded (depending on the operation). Some examples
of erosion and dilation are presented in Figure 3.6, in which it is possible to notice the
behavior of each operation. Precisely, erosion affects brighter structures while dilation

influences darker ones (with respect to the neighborhood defined by the SE).

E(B, 1)) = {N((i,4))1(i,4)" € B(i,j) UI(i,5)} (3.10)

0(B, 1)z = {VI((E,5))I(E,5)" € B(i,) U1I(i, 5)} (3.11)

If we have an ordered set, then the erosion and dilation operations can be simpli-

fied. This is because the infimum and the supremum are respectively equivalent to the
minimum and maximum functions when dealing with ordered sets. In this case, erosion

and dilation can be defined as presented in Equations 3.12 and 3.13, respectively.

E(B.Duy =1, min (1((i.))) (3.12)
S(B. 1)y = { e (1((.5))) (3.13)

Based on these two fundamental transformations, other more complex morpho-
logical operations may be computed. The morphological opening, denoted as v(-) and
defined in Equation 3.14, is simply an erosion operation followed by the dilation (using
the same structuring element) of the eroded output. In contrast, a morphological clos-
ing ¢(-) of an image, formally defined in Equation 3.15, is a dilation followed by the
erosion (using the same SE) of the dilated output. Intuitively, while an erosion would
affect all brighter structures, an opening flattens bright objects that are smaller than

the size of the SE and, because of dilation, mostly preserves the bright large areas.

3.2. MATHEMATICAL MORPHOLOGY 31

A similar conclusion can be drawn for darker structures when closing is performed.
Examples of this behavior can be seen in Figure 3.6. It is important to highlight that
by using erosion and dilation transformations, opening and closing perform geodesic
reconstruction in the image. Operations based on this paradigm belongs to the class of
filters that operate only on connected components (flat regions) and cannot introduce
any new edge to the image. Furthermore, if a segment (or component) in the image is
larger than the SE then it will be unaffected, otherwise, it will be merged to a brighter
or darker adjacent region depending upon whether a closing or opening is applied. This
is crucial because avoids the generation of distorted structures, which is obviously an

undesirable effect.

L §

(f) White Top-(g) Black Top-(h) Closing by(i) Opening by
hat hat Reconstruction Reconstruction

Figure 3.6: Examples of morphological images generated for the UCMerced Land-use Dataset. All these
images were processed using a 5 X 5 square as structuring element.

v(B,I)=0(B,E(B,I)) (3.14)

o(B,I)=E&(B,§(B,1)) (3.15)

Other important morphological operations are the top-hats. Top-hat transform is

an operation that extracts small elements and details from given images. There are two
types of top-hat transformations: (i) the white one 7%(-), defined in Equation 3.16,
in which the difference between the input image and its opening is calculated, and (ii)
the black one, denoted as 7°(:) and defined in Equation 3.17, in which the difference
between the closing and the input image is performed. White top-hat operation pre-
serves elements of the input image brighter than their surroundings but smaller than
the SE. On the other hand, black top-hat maintains objects smaller than the SE with

brighter surroundings. Examples of these two operations can be seen in Figure 3.6.

32 CHAPTER 3. BACKGROUND CONCEPTS

TYB,I)=1—-~(B,I) (3.16)

TYB,I)=¢(B,I)—1 (3.17)

Another important morphological operation based on erosions and dilations is

the geodesic reconstruction. There are two types of geodesic reconstruction: by erosion
and by dilation. For simplicity, only the former one is formally detailed here, however,
the latter one can be obtained, by duality, using the same reasoning. The geodesic
reconstruction by erosion pg(-), mathematically defined in Equation 3.18, receives two
parameters as input: an image I and a SE B. The image I (also referenced in this
operation as mask image) is dilated by the SE B (0(B,I)) creating the marker im-
age Y (Y € I), responsible for delimiting which objects will be reconstructed during
the process. A SE B’ (usually with any elementary composition [Serra and Soille,
2012|) and the marker image Y are provided for the reconstruction operation R%(-).
This transformation, defined in Equation 3.19, reconstructs the marker image Y (with
respect to the mask image I) by recursively employing geodesic erosion (with the el-
ementary SE B’) until idempotence is reached (i.e., EI(")(-) = EI(nH)(-)). In this case,
a geodesic erosion 6'[(1)(-), defined in Equation 3.20, consists of a pixel-wise maximum
operation between an eroded (with elementary SE B’) marker image Y and the mask
image I. As aforementioned, by duality, a geodesic reconstruction by dilation can be
defined, as presented in Equation 3.21. These two crucial operations try to preserve all
large (than the SE) objects of the image removing bright and dark small areas, such

as noises. Some examples of these operations can be seen in Figure 3.6.
p°(B.1) =Rj(B.Y) =Rj(B,4(B.I)) (3.18)

RE(BY) =EM(BY) =

= 51(1) (B', 5}1) (B', . .g}l) (B 51(1>(ij Y)))) (3.19)
n t?rrnes

EV(BY) = max{€(B,Y), I} (3.20)

p°(B, 1) =Ry(B,Y) =R}(B,E(B,I)) (3.21)

Note that geodesic reconstruction operations require an iterative process until
the convergence. This procedure can be expensive, mainly when working with a large
number of images (a common scenario when training neural networks [Goodfellow et al.,

2016|). An approximation of such operations, presented in Equations 3.22 and 3.23 can

3.2. MATHEMATICAL MORPHOLOGY 33

be achieved by performing just one transformation over the marker image with a large
(than the SE used to create the marker image) structuring element. In other words,
suppose that B is the SE used to create the marker image, then B’, the SE used in
the reconstruction step, should be larger than B, i.e., B C B’. This process is faster
since only one iteration is required, but may lead to worse results, given that the use
of a large filter can make the reconstruction join objects that are close in the scene (a

phenomenon known as leaking [Serra and Soille, 2012]).
o5 (B, 1) =&(B',6(B,1)) (3.22)

P°(B, 1) =6;(B,E(B,I)) (3.23)

Although all previously defined morphological operations used a grayscale image

I, they could have employed a binary image or even an image with several channels. In
this case, morphological operations would be applied to each input channel indepen-

dently and separately, generating an outcome with the same number of input channels.

Chapter 4

General Experimental Setup

This chapter describes the distinct datasets, protocol, and measures employed to vali-
date the techniques proposed in this work. Section 4.1 presents several datasets used
in both image and pixel classification. Section 4.2 defines the experimental protocols
employed in this work. Finally, Section 4.3 introduces the measures used to evaluate

the results obtained in the performed experiments.

4.1 Datasets

In order to better analyze the effectiveness and robustness of each proposed technique,
we have selected several remote sensing datasets with very distinctive properties. Next,
we present the datasets used in the scene classification task followed by the ones used

in the semantic segmentation task.

4.1.1 Scene Classification Datasets

As aforementioned, datasets with different visual properties were selected. The first
one, presented in Section 4.1.1.1, is a multi-class land-use dataset that contains aerial
high-resolution scenes in the visible spectrum. Section 4.1.1.2 introduces the second
dataset, which is a multi-class high-resolution dataset with images collected from differ-
ent regions all around the world. Finally, the last one, presented in Section 4.1.1.3, has
multispectral high-resolution scenes of coffee crops and non-coffee areas. An overview
of these datasets is shown in Table 4.1. The datasets are described in details in the

following sections.

35

36 CHAPTER 4. GENERAL EXPERIMENTAL SETUP

Table 4.1: Overview statistics for the three classification datasets employed in this work.

UC-Merced WHU-RS19 Coffee Scenes

Type Land-use Land-use Agricultural
Total Size 2,100 1,005 2,876
Image Dimensions (px.) 256256 600 %600 64 x 64
Band Composition R-G-B R-G-B NIR-R-G
Spatial Resolution 0.3m 0.5m 2.5m
Number of Classes 21 19 2

Average Distribution per Class | 100 52 1,438

41.1.1 UCMerced Land-use Dataset

This publicly available dataset [Yang and Newsam, 2010] is composed of 2,100 aerial
scene images each one with a resolution of 256 x 256 pixels and 0.3-meter resolution
per pixel. These images, composed of bands in the visible spectrum and obtained
from different United States locations (via the US Geological Survey (USGS) National
Map), were manually classified into 21 classes: agricultural, airplane, baseball diamond,
beach, buildings, chaparral, dense residential, forest, freeway, golf course, harbor, in-
tersection, medium density residential, mobile home park, overpass, parking lot, river,
runway, sparse residential, storage tanks, and tennis courts. Samples of all classes are
presented in Figure 4.1. Tt is remarkable the overlapping of some classes, such as “dense
residential”, “medium residential” and “sparse residential”, which mainly differ in the

density of structures.

4.1.1.2 VWHU-RS19 Dataset

This dataset [Xia et al., 2010| contains 1,005 high-spatial resolution images (composed
of bands in the visible spectrum) with 600 x 600 pixels divided into 19 classes, with
approximately 50 images per class. Exported from Google Earth, which provides high-
resolution satellite images up to half a meter (0.5m), this dataset has samples collected
from different regions all around the world, which increases its diversity but creates
challenges due to the changes in resolution, scale, orientation and illumination of the
images. There are 19 classes, including: airport, beach, bridge, river, forest, meadow,
pond, parking, port, viaduct, residential area, industrial area, commercial area, desert,
farmland, football field, mountain, park, and railway station. Figure 4.2 presents

examples of these classes.

4.1. DATASETS 37

Table 4.2: Overview statistics for the two pixel classification datasets employed in this work.

‘ Coffee GRSS Data Fusion Vaihingen Potsdam
Terrain Mountainous Plain Plain Plain
Image Class Agriculture Urban Urban Urban
Number of Images 5 2 (train/test) 33 (16 with ground-truth) 38 (24 with ground-truth)
Image Dimensions (px.) | 500 x 500 2830 x 3989 / 3769 x 4386 2494 x 2064 (average) 6000 x 6000
Band Composition NIR-R-G R-G-B NIR-R-G NIR-R-G-B
Spatial Resolution 2.5m 0.2m 0.9m 0.5m
Number of Classes 2 7 6 6

4.1.1.3 Brazilian Coffee Scenes

This public dataset [Penatti et al., 2015| is composed of 2,876 multi-spectral tiles ex-
tracted from four counties in the State of Minas Gerais, Brazil (Arceburgo, Guaranésia,
Guaxupé, and Monte Santo) and equally divided into 2 classes: coffee and non-coffee.
Each non-overlapping tile, with a spatial resolution of 64 x 64 pixels and pixel resolu-
tion of 2.5m, is composed of near-infrared, red and green bands (in this order), which
are the most useful and representative ones for discriminating vegetation areas. Some

samples of this dataset are presented in Figure 4.3.

It is important to emphasize that this dataset has its own particular challenges,
such as: (i) high intraclass variance, since distinct techniques are used to manage coffee
crops, (ii) high interclass variance, given that coffee is an evergreen culture and there
are plants with different ages, and (iii) images with spectral distortions caused by

shadows, since the South of Minas Gerais is a mountainous region.

4.1.2 Pixel Classification Datasets

As for the classification task, datasets with different properties were selected in order
to evaluate the creation of thematic maps. The first one, named Coffee Dataset and
presented in Section 4.1.2.1, is composed of multispectral high-resolution scenes of
coffee crops and non-coffee areas. Section 4.1.2.2 presents the second dataset, referred
here as GRSS Data Fusion Dataset, which is a very high spatial resolution in the visible
spectrum with the objective of mapping urban targets, such as roads and buildings. The
last two datasets related to the remote sensing pixel classification task are presented
in Section 4.1.2.3 and 4.1.2.4. These datasets, referenced hereafter as Vaihingen and
Potsdam, are composed of multispectral high-resolution urban images. Some statistical
about these datasets are presented in Table 4.2. More details about each dataset are

given in the following sections.

38 CHAPTER 4. GENERAL EXPERIMENTAL SETUP

Table 4.3: Number of pixels per class for the GRSS Data Fusion Dataset.

‘ Train Test

Classes #Pixels % #Pixels %

Road 112,457 19,83 808,490 55,77
Trees 27,700 4,89 100,528 6,93
Red roof 45,739 8,05 136,323 9,40
Grey roof 53,520 9,44 142.710 9,84
Concrete roof 97,821 17,25 109,423 7,55
Vegetation 185,242 32,65 102,948 7,10
Bare soil 44,738 7,89 49,212 3,41
Total 567,217 100,00 | 1,449,634 100,00

4.1.2.1 Coffee Dataset

This dataset is a composition of five images taken by the SPOT sensor in 2005 over
Monte Santo, a coffee grower county in the State of Minas Gerais, Brazil. Each
image has 500 x 500 pixels with near-infrared, red and green bands (in this order),
which are the most useful and representative ones for discriminating vegetation areas.
More specifically, the dataset has 1,250,000 pixels with 637,544 (51%) coffee pixels and
612,456 (49%) non-coffee pixels annotated by specialists. Figure 4.4 shows each image
and the respective ground-truths.

This is a very challenging dataset since intraclass variance is high due to different
crop management techniques. Furthermore, coffee is an evergreen culture and the
South of Minas Gerais is a mountainous region, which means that this dataset includes
scenes with plants at different stages of growth and/or with spectral distortions caused

by shadows.

4.1.2.2 GRSS Data Fusion Dataset

Proposed in the IEEE GRSS Data Fusion Contest 2014, this dataset is composed of a
fine-resolution visible image that covers an urban area near Thetford Mines in Quebec,
Canada, containing seven different classes: trees, vegetation, road, bare soil, red roof,
gray roof, and concrete roof. In this work, we do not consider the hyperspectral data
available in this dataset. Table 4.3 shows pixel class distribution in this dataset. It
is important to highlight that not all pixels are classified into one of these categories,
with some pixels considered as uncategorized or unclassified.

Both training and testing images have 0.2 meter of spatial resolution, with the
former having 2830 x 3989 pixels of resolution while the latter has 3769 x 4386 pixels.

These images, as well as the respective ground-truths, are presented in Figure 4.5.

4.1. DATASETS 39

Table 4.4: Number of pixels per class for ISPRS datasets, i.e., Vaihingen and Potsdam.

‘ Vaihingen Potsdam

Classes #Pixels % #Pixels %

Impervious Surfaces | 21,815,349 27.94 | 245,930,445 28.46
Building 20,417,332 26.15 | 230,875,852 26.72
Low Vegetation 16,272,917 20.84 | 203,358,663 23.54
Tree 18,110,438 23.19 | 126,352,970 14.62
Car 945,687 1.21 14,597,667 1.69
Clutter /Background 926,083 0.67 | 42,884,403 4.96
Total 78,087,806 100.00 | 864,000,000 100.00

4.1.2.3 Vaihingen Dataset

This dataset [ISPRS, 2018a| was released for the 2D semantic labeling contest of the
International Society for Photogrammetry and Remote Sensing (ISPRS). It is composed
by a total of 33 image tiles (with an average size of 2494 x 2064 pixels), that are densely
classified into six possible labels: impervious surfaces, building, low vegetation, tree,
car, clutter/background. Sixteen of these images have ground-truth available while the
remaining ones, considered the test set, do not have available annotation, requiring
submission of the prediction maps in order to be evaluated. The pixel distribution for
the labeled images can be seen in Table 4.4.

Each image of this dataset is composed of near-infrared, red and green channels
(in this order) and has a spatial resolution of 0.9 meter. A Digital Surface Model
(DSM) coregistered to the image data was also provided, allowing the creation of a
normalized DSM (nDSM) [Gerke, 2015]. In this work, we use the spectral information
(NIR-R-G) and the nDSM, i.e., the input data has 4 dimensions: NIR-R-G and nDSM.

Examples of the Vaihingen Dataset can be seen in Figure 4.6.

4.1.2.4 Potsdam Dataset

Also proposed for the 2D semantic labeling contest, this dataset [ISPRS, 2018b| has 38
tiles of the same size (6000 x 6000 pixels), with a spatial resolution of 0.5 meter. From
the available patches, 24 are densely annotated (with same classes as for the Vaihingen
dataset), in which the pixel distribution is presented in Table 4.4. Analogously to
the Vaihingen dataset, the remaining images are considered the test set and do not
have available annotation, requiring submission of the prediction maps in order to be
evaluated. This dataset consists of 4-channel images (near-infrared, red, green and
blue), Digital Surface Model (DSM), and normalized DSM (nDSM). In this work, all

40 CHAPTER 4. GENERAL EXPERIMENTAL SETUP

spectral channels plus the nDSM are used as input, resulting in a 5-dimensional input

data. Some samples of these images are presented in Figure 4.7,

4.2 Protocols

Some of the experiments presented in this thesis were carried out using a traditional
k-fold cross-validation protocol while others were performed using the simple train-
ing/test protocol.

In the former protocol, a dataset is randomly split into & mutually exclusive
subsets (folds) of almost the same size. Usually, k& — 2 subsets are chosen as the
training set, one fold is used as test-set, and the remaining one is the validation-set.
However, sometimes, the validation set is not necessary (when there is no parameter
to tune or evaluate, etc). In these cases, k — 1 subsets are chosen as the training set,
and the remaining one is the test set. In order to work with the whole dataset, the
cross-validation process is repeated k times, and at each time a subset is chosen to
be the test set (and another one is selected as validation set when needed) without
repetition. In the end, results are reported using an average of different measures in
terms of the £k runs.

Specifically, this protocol was used, considering k = 5, in all classification datasets
and in the Coffee dataset. For the UCMerced and WHU-RS19 datasets, each fold has
an equal size (i.e., 420 and 201 images per fold, respectively) and is fully balanced in
terms of the number of classes per fold. For the Brazilian Coffee Scenes dataset, 4 folds
have 600 images each and the 5" has 476 images. In this case, all folds are balanced
with coffee and non-coffee samples (50% each). For the Coffee dataset, each image
is considered as a unique fold. So, there are 5 images/folds, which are combined as

aforesaid.

In the training/test protocol, the dataset is divided into train and test. This
is the most simple protocol, in which the training subset is used to train the model
which is then evaluated in the test subset. When necessary, this protocol may become
a training/validation/test one, in which the dataset is divided into three distinct sets:
the first is used to train the model, the second to tune or evaluate the parameters, and
the last one to analyze the generalization power of the trained model. In both cases, the
final results are reported based on the performance on the test set. This protocol was
employed in three remaining pixel classification datasets. Precisely, the GRSS Data
Fusion dataset is experimented using this protocol, given its clear definition of training
and test subsets. For Vaihingen [ISPRS, 2018a| and Potsdam |[[SPRS, 2018b| datasets,

4.3. MEASURES 41

Table 4.5: Confusion matrix in which each z;; represents the number of scenes or pixels (depending on the
task) in the classified (observed) image category i and the ground truth (reference) cover category j. Adapted
from [Liu et al., 2007].

‘ Reference
‘ 1 2 ceeC Total
1 T11 X120 T1e L1y
To1 X2 . T2 Loy
Observed
C Ll T2 e Lee Lot
Total Ty1 Tyo - Tye

the training/validation /test protocol was employed based on the literature [Marmanis
et al., 2018; Volpi and Tuia, 2017|. In this case, for the Vaihingen dataset, 11 out of
the 16 annotated images were used as training set. The 5 remaining images (with IDs
11, 15, 28, 30, 34) were employed to validate the model. For the Potsdam dataset, 18
(out of 24) annotated images were used as training set while the remaining 6 (with IDs
02 12,03 12,04 12,05 12,06 12, 07_12) were employed to validate the method.

In both cases, a separated test set is used to evaluate the trained model.

4.3 Measures

In our experiments, results are reported using measures in terms of values stored in
confusion matrices |Liu et al., 2007|. Table 4.5 presents a confusion matrix for ¢ classes
constructed with both reference and the classified data, which may be pixels or image
scenes. Based on this matrix, four evaluation measures were employed throughout this
thesis: overall and average accuracy, kappa index (x), and F1 score. These metrics were
selected based on their diversity: overall accuracy and kappa are biased toward classes
with more samples (relevance of classes with small amount of samples are canceled out
by those with large amount) while average accuracy and F1 are calculated specifically
for each class and, therefore, are independent of class size [Volpi and Tuia, 2017|. A
comparison of these, and other measures, can be found in |Ferri et al., 2009|.

The first metric, overall accuracy |[Congalton, 1991], is the most popular accu-
racy measure. This metric, formally presented in Equation 4.1, considers the global
aspects of the classification by averaging all correctly classified pixels indistinctly. As
aforementioned, this process can lead to several problems if the dataset is unbalanced,
i.e., if the number of instances per class is significantly different. In these cases, the

overall accuracy may give a distorted impression of the results, because the class with

42 CHAPTER 4. GENERAL EXPERIMENTAL SETUP

more examples may dominate the statistic.

i Lij
OA = % x 100 (4.1)
where x;; is the number of observations in row ¢ and column ¢; and N is the total
number of observations.

Overcoming this problem, the average accuracy |Congalton, 1991] reports the
average (per-class) ratio of correctly classified samples, i.e., it outputs an average of
the accuracy of each class. Though not so common than overall accuracy, this measure
is more robust mainly when the dataset is unbalanced, given that each class has the
average calculated separately. In general, when there are different numbers of samples
per class, the average accuracy, presented in Equation 4.2, will be different from the

overall accuracy.

C
>
i=1
AA == x 100 (4.2)
c
where x;; is the number of observations in row ¢ and column ¢; and z; are the marginal

totals of column 1.

Kappa index (k) |[Congalton, 1991] measures the agreement between the reference
data and the classified result. This measures, computed as in Equation 4.3, has values
that varies from —1 to 1. In general, negative Kappa means that there is no agreement
at all between classified data and reference data. Kappa value closer to one means a
better result, with k = 1 being “perfect agreement”. Experiments in different areas
show that Kappa could have various interpretations and these guidelines could be
different depending on the application. Similar to the overall accuracy, this metric can

be biased to classes with more samples [Volpi and Tuia, 2017]|.

NZJZ” — Z(ZEH_ X [E_H‘)
K = i =1 (43)

C
N? = > (@ig X 244)
i=1
where z;; is the number of observations in row ¢ and column ¢; z;; and z; are the

marginal totals of row ¢ and column %, respectively; and N is the total number of
observations.

The last measure employed in this work is the F1 score |Ferri et al., 2009|. This
metric, formally presented in Section 4.4, is defined as the harmonic mean of precision
and recall. Note that, similarly to the average accuracy, the F1 score calculates an

average of the harmonic mean of each class. Hence, again, this metric is more robust

4.3. MEASURES 43

to imbalanced datasets.

1 [Tii Lii

Ti4 T4g

Fl==) (2. g (4.4)

C 17 + 7
=1 Ti+ Tti

where x;; is the number of observations in row ¢ and column %; x;, and x,,; are the

marginal totals of row ¢ and column 4, respectively.

44 CHAPTER 4. GENERAL EXPERIMENTAL SETUP

ST
(b) Airplane (c) Baseball Diamond

(e) Buildings

(g) Dense Residential (h) Forest

e | BT Ry s

Medium Residential

(s) Sparse Residential (t) Storage Tanks (u) Tennis Court

Figure 4.1: Examples of the UCMerced Land Use Dataset.

4.3. MEASURES 45

(f) Farmland Football Fleld (h) Forest

(j) Meadow (k) Mountaln

(r) River (s) Vladuct

Figure 4.2: Examples of the WHU-RS19 Dataset.

46 CHAPTER 4. GENERAL EXPERIMENTAL SETUP

1
__—_.l_r"" Ei i I -n‘ 1
(b) Non-coffee

Figure 4.3: Examples of coffee and non-coffee samples in the Brazilian Coffee Scenes dataset. The similarity
among samples of opposite classes is notorious. The intraclass variance is also perceptive.

7 N \\,A \\,,
(b) Ground-Truth

Figure 4.4: The Coffee Dataset. Multispectral images and ground-truths. Legend — White: Coffee areas.
Black: Non Coffee areas.

(a) Training (b) Test

Figure 4.5: The GRSS Data Fusion Dataset. Training and test data and their respective ground-truths.
Legend — Black: unclassified. Light purple: road. Light green: trees. Red: red roof. Cyan: gray roof. Dark
purple: concrete roof. Dark green: vegetation. Yellow: bare soil.

4.3. MEASURES 47

(b) Area 7

Figure 4.6: Examples of the Vaihingen Dataset. Legend — White: impervious surfaces. Blue: buildings.
Cyan: low vegetation. Green: trees. Yellow: cars. Red: clutter, background.

(b) Area 6 8
Figure 4.7: Examples of the Potsdam Dataset. Legend — White: impervious surfaces. Blue: buildings.
Cyan: low vegetation. Green: trees. Yellow: cars. Red: clutter, background.

Chapter 5

ConvNet-Based Scene Classification

ConvNets are the most propitious network to be used with images (including RSIs),
given its natural process of learning features with different levels of abstraction di-
rectly from the input data, exploring its stationary property |Goodfellow et al., 2016].
Although powerful, the exploration of the potential of deep ConvNets can be a com-
plex task because of several challenges [Bengio, 2009; Goodfellow et al., 2016], such
as: (i) high computational burden, since it needs a lot of data and computational re-
sources, (ii) complex tuning, since convergence cannot be totally confirmed, (iii) “black
box” nature, since there is no mathematical model that explains the whole network,
(iv) proneness to overfitting, given the high number of parameters, and (v) empirical
nature of model development, which is over parameterized. However, through years,
researchers have developed strategies to explore the potential of deep ConvNets in
different domains and scenarios. In this chapter, we evaluate and analyze possible

strategies of exploiting ConvNets for remote sensing scene classification.

Definition 1. Scene Classification. Let D and T be the training and testing sets,

respectively. The training set D consists of tuples of the form {I;,¢;}, where I; is

an image and c; its respective class. Note that i € {1,---,|D|} and ¢; € C, where
C ={C1,Cy, -+ ,Cy} is the set of the k possible classes. Distinctly, the testing set T
is only composed of images I; (with j € {1,--- ,|T|}).

D is used to perform a supervised training of a function F that receives as input
an image 1; and outputs a membership probability p(c|l;) for each class ¢ € C. This
probability is used to define the final predicted class (the one with higher score), which
is employed, with the ground-truth c;, to estimate the error and optimize F. After the
optimization process, we use F to predict classes for images in T. Therefore, the final

goal of the scene classification task is to predict, as accurately as possible, a class for

49

50 CHAPTER 5. CONVNET-BASED SCENE CLASSIFICATION

each image of T using the trained function F.

In fact, the objective of the proposed analysis is to elucidate and discuss some
aspects of ConvNets which are necessary to take the most advantage of their bene-
fits. Specifically, considering the remote sensing scene classification task, we carried
out a systematic set of experiments to evaluate three different strategies: (i) fully-
train ConvNets, (ii) fine-tuning ConvNets, and (iii) use pre-trained ConvNets as feature
extractors.

In the first strategy, a (new or existing) network is trained from scratch obtaining
specific features for the dataset. This approach is preferable since it gives full control
of the architecture and parameters, which tends to yield a more robust and efficient
network. However, as aforesaid, it requires a considerable amount of data |Bengio,
2009; Goodfellow et al., 2016|, given its high number of parameters and proneness
to overfitting. These drawbacks make almost impracticable to fully design and train
efficient networks from scratch for most remote sensing problems, since large datasets
in this domain are unusual given that training data may require high costs and complex
logistics [Tuia et al., 2011; dos Santos et al., 2013; Almeida et al., 2014]. In an attempt
to overcome the issue of few labeled data to train the network, data augmentation’
techniques [Krizhevsky et al., 2012] can be employed. However, for small datasets even
data augmentation is not enough to avoid overfitting |[Bengio, 2009; Goodfellow et al.,
2016].

Although remote sensing datasets have few labeled data, the computer vision
area has several datasets composed of thousands, even millions, of pictures [Deng et al.,
2009|, being an intuitive choice when working with such techniques. Thus, the other
two strategies rely on using pre-trained ConvNets on huge computer vision datasets
to encode the features of remote sensing scenes. In spite of the aforementioned gap
between this and the remote sensing domain (given its different image properties), these
strategies benefit from the property that initial layers of ConvNets tend to be generic
filters, like edge or color blob detectors, which are less dependent on the application and
could be used in a myriad of tasks. In fact, [Razavian et al., 2014 suggest that features
obtained from deep learning should be the primary candidate in most recognition tasks.
Therefore, the second strategy uses a pre-trained ConvNet and performs fine-tuning of
its parameters (filter weights) using the remote sensing data of interest. Particularly,
this transfer-learning strategy tries to efficiently understand the difference between

domains in order to adjust the feature representation to fill such gap and improve

!Data augmentation is a technique that artificially enlarges the training set with the addition of
replicas of the training samples under certain types of transformations that preserve the class labels.

5.1. STRATEGIES FOR EXPLOITING CONVNETS 51

the final performance of the method. Commonly, in this case, the earlier layers are
preserved, as they encode more generic features, and final layers are adjusted to encode
specific features of the data of interest [Hinton et al., 2006; Larochelle et al., 2009|. The
third strategy simply uses a pre-trained ConvNet as a feature extractor, by removing
the last classification layer and considering its previous layer (or layers) as feature
vector of the input data. In this case, an external machine learning algorithm (such
as Support Vector Machine — SVM) is trained over these features and used in the
classification process. In this strategy, it is assumed that the gap between domains is
not so relevant and that the learned feature representation generalize for both domains,

which is not guaranteed in the case of computer vision and remote sensing field.

5.1 Strategies for Exploiting ConvNets

This section aims at explaining the most common strategies of employing exist-
ing ConvNets in different scenarios from the ones they were trained for. As introduced,
training a deep network from scratch requires a considerable amount of data as well
as a lot of computational power. In many problems, few labeled data is available,
therefore training a new network is a challenging task. Hence, it is common to use a
pre-trained network either as a fixed feature extractor for the task of interest or as an
initialization for fine-tuning the parameters. We describe these strategies, including
their advantages and disadvantages, in the next subsections. Specifically, Section 5.1.1
describes about the full training of a new network while Section 5.1.2 presents the
fine-tuning process. Finally, Section 5.1.3 explains the use of deep ConvNets as a fixed

feature extractor.

5.1.1 Fully-trained Network

The strategy to train a network from scratch (with random initialization of the filter
weights), which is illustrated in Figure 5.1, is the most common one, mainly in the
computer vision domain. This may be justified by the fact that this process is use-
ful when the dataset is large enough to make a network converge, presenting several
advantages, including: (i) extractors tuned specifically for the dataset, which tend to
generate more accurate features, and (ii) full control of the architecture. Therefore,
fully training a ConvNet is expected to achieve better results when compared to other
strategies, since the deep network learns specific features for the dataset of interest.
However, this strategy requires a lot of computational and data resources [Bengio, 2009;

Goodfellow et al., 2016|, given its high number of parameters and convergence pruned

52 CHAPTER 5. CONVNET-BASED SCENE CLASSIFICATION

Random Initialized ConvNet Fully Trained on
the Target Dataset

o et taset

Figure 5.1: Illustrative example of a ConvNet being fully trained. Weights from the whole network are
randomly initialized and then trained for the target dataset.

to overfitting. Also, the convergence of a ConvNet can not be totally confirmed (given
its highly non-convex property) making tuning not so trivial.

In spite of these drawbacks, fully training is the first strategy to be considered
when training ConvNets. There are basically two options for training a deep network
that we can fit in the case of fully training. The first one is by fully designing and
training a new architecture, including the number of layers, neurons, and type of ac-
tivations, the number of iterations, weight decay, learning rate, etc. The other option
is by using an existing architecture and fully training its weights to the target dataset.
In this last case, the architecture and parameters (weight decay, learning rate, etc) are
not modified at all. In this thesis, we evaluated both options. Specifically, we proposed
and fully-trained a novel ConvNet architecture (PatreoNet) as well as consider the fully

training of existing architectures in new (remote sensing) datasets.

5.1.2 Fine-tuned Network

When the new dataset is reasonably large, but not enough to fully train a new network,
fine-tuning is a good option to extract the maximum effectiveness from pre-trained
deep ConvNets, since it can significantly improve the performance of the final classifier.
Fine-tuning is based on a curious property of modern deep neural network: they all
tend to learn first-layer features that resemble either Gabor filters, edge or color blob
detectors, independently of the training data. More specifically, earlier layers of a
network contain generic features that should be useful to many tasks, but later layers
become progressively more specific to the details of the classes contained in the original
dataset (i.e., the dataset in which the deep ConvNet was originally trained). Supported
by this property, the initial layers can be preserved while the final ones should be
adjusted to suit the dataset of interest.

Fine-tuning is a transfer-learning technique that performs a fine adjustment in

the parameters of a pre-trained network by resuming the training of the network from

5.1. STRATEGIES FOR EXPLOITING CONVNETS 53

a current set of parameters but considering a new dataset, aiming at accuracy im-
provements. In other words, fine-tuning uses the parameters learned from a previous
training of the network on a specific dataset and, then, adjusts the parameters from the
current state for the new dataset, improving the performance of the final classifier. It
is expected that this adjustment process efficiently understands the difference between
the dataset domains making the initial feature representation more close to the new
dataset, filling the gap naturally created by different types of images.

Based on the aforementioned characteristics, there are two possible approaches of
performing fine-tuning in a pre-trained network, both exploited in this work: (i) fine-
tune all layers, and (ii) fine-tune only higher-level layers keeping some of the earlier
ones fixed (due to overfitting concerns). It is important to emphasize that in both
scenarios, the search space is bounded to just small variations in each step since the
learning rate is initialized with reduced value. Specifically, in the first case, some layers
(usually the final ones, such as the classification layer, since the number of classes tends
to be different) have weights ignored, being randomly initialized. These layers have the
learning rate increased, so they can learn faster and converge, while the other layers
may also change weights by very small variations since they use the reduced value of
the learning rate without any augmentation. By doing this, the first layers can use the
information previously learned with just a few adjustments to the dataset of interest,
and at the same time, the final layers can really learn based only on the new dataset. In
the second case, the initial layers are frozen to keep the generic features already learned,
while the final layers are adjusted using the increased value of the learning rate. Both
strategies of fine-tuning are analyzed and evaluated in this proposal considering the

remote sensing datasets. These two options of fine-tuning are illustrated in Figure 5.2.

5.1.3 ConvNet as a Feature Extractor

A pre-trained network can be used as a feature extractor for any image, as illustrated
in Figure 5.3. This is only possible since the generic features (learned in earlier layers)
are less dependent on the final application and could be used in a myriad of tasks.
Specifically, features (usually, called deep features) can be extracted from any layer of
a pre-trained network and then used in a given task. Deep features trained on Ima-
geNet [Deng et al., 2009| (a dataset of everyday objects) have already shown remarkable
results in applications such as flower categorization |Sunderhauf et al., 2014|, human
attribute detection [Hara et al., 2016], bird sub-categorization [Ge et al., 2015|, image
scene retrieval |[Babenko et al., 2014|, and many others [Chatfield et al., 2014; Girshick
et al., 2014|, including remote sensing |Penatti et al., 2015; Hu et al., 2015; Cheng

54 CHAPTER 5. CONVNET-BASED SCENE CLASSIFICATION

Random Initialized ConvNet

Original Dataset

conv
conv
conv

L

L

L

---}f---

Different number of

classes =no weight
transfer

—

ransfer of
trained weights

Target Dataset

"n

Fine-Tuning ConvNet
Y
Possible Layers to
Freeze

Figure 5.2: Illustrative example of two options for the fine-tuning process. In one of them (highlighted in
red), all layers are fine-tuned according to the target dataset, but final layers have increased learning rates. In
the other option (highlighted in green), weights of initial layers can be frozen and only final layers are tuned.

Pre-trained ConvNet

classification
(SVM)

Figure 5.3: Illustrative example of the use of a ConvNet as feature extractor. The final classification layer
is ignored and one should only choose from which layer to consider the features. The figure shows the use of
the features from the last layer before the classification layer, which is commonly used in the literature.

et al., 2016]. Though successful, the performance of deep features is highly dependent

on its generalization as well as the proximity between the (trained and final) domains.

The strategy of using pre-trained ConvNets as feature extractors is very useful
given its simplicity since no retraining or tuning is necessary. Moreover, one only
needs to select the layer to be used, extract the deep features and use them combined
with some machine learning technique, in case of a classification setup. According to
previous works [Penatti et al., 2015; Razavian et al., 2014; Chatfield et al., 2014; Cheng
et al., 2016], deep features can be extracted from the last layer before the classification
layer (usually, a fully-connected one) and, then, used to train a classifier, which is the

strategy employed in this project.

5.2. SPECIFIC EXPERIMENTAL SETUP 55

5.2 Specific Experimental Setup

In this section, we present the details about the experiments conducted to evaluate and
analyze the different strategies to exploit ConvNets. Section 5.2.1 describes the low-
level (global) and mid-level (BoVW) descriptors used while Section 5.2.2 presents the
evaluated ConvNets. Finally, Section 5.2.3 presents details about the used experimental

protocol.

5.2.1 Classical Feature Extraction Strategies

Several previously state-of-the-art descriptors have been selected to be evaluated, based
on preceding successful works [Yang and Newsam, 2008; dos Santos et al., 2010; van de
Sande et al., 2010; Penatti et al., 2012; Yang and Newsam, 2013; dos Santos et al., 2014],
in which they were evaluated for remote sensing image classification, texture and color
image retrieval /classification, and web image retrieval. Our selection includes simple
global low-level descriptors, like descriptors based on color histograms and variations,
and also descriptors based on Bags of Visual Words (BoVW) [Sivic and Zisserman,
2003|.

5.2.1.1 Low-Level descriptors

There is a myriad of descriptors available in the literature [Penatti et al., 2012| that
can be used to represent image elements. Clearly, different descriptors may provide
distinct information about images producing contrastive results. Thus, we tested a
diverse set of 7 descriptors based on color, texture, and gradient properties, in order
to extract visual features from each image and evaluate the potential of deep features

when compared them. The global low-level descriptors considered are:

e Auto-Correlogram Color (ACC) [Huang et al., 1997], a color descriptor that aims
to encode spatial color distribution in the image. Such information is extracted
by computing the probabilities of having two pixels of color ¢; in a distance d

from each other.

e Border/Interior Pixel Classification (BIC) [de O. Stehling et al., 2002], a color
descriptor that computes two color histograms for an image: one for border pixels
and other for interior pixels. All pixels in an image are classified as border or
interior, depending on the color of their neighbors: interior pixels have all of its
four neighbors with the same color; if any of its neighbors are different, the pixel

is classified as a border. One color histogram is computed for each type of pixel.

56 CHAPTER 5. CONVNET-BASED SCENE CLASSIFICATION

e Local Color Histogram (LCH) [Swain and Ballard, 1991|, a simple color descriptor
computed by dividing an image into tiles. An independent histogram is computed

for each tile and then, they are concatenated to form the image feature vector.

e Local Activity Spectrum (LAS) [Tao and Dickinson, 2000|, which captures tex-
ture spatial activity in four different directions separately: horizontal, vertical,
diagonal, and anti-diagonal. The four activity measures are computed for a spe-

cific pixel by considering the values of neighboring in the four directions.

e Statistical Analysis of Structural Information (SASI) |[Carkacioglu and Yarman-
Vural, 2003|, a texture descriptor based on second order statistics of clique au-
tocorrelation coefficients, which are the autocorrelation coefficients over a set of
moving windows. These windows are covered in different ways varying size and

shape, defining a neighborhood system.

e Histogram of Oriented Gradients (HOG) |Dalal and Triggs, 2005|, which com-
putes histograms of gradient orientations in each position of a sliding window,

i.e., counts occurrences of gradient orientation in localized portions of an image.

e GIST |Oliva and Torralba, 2001| provides a global holistic description represent-
ing the dominant spatial structure of a scene. GIST is popularly used for scene

representation [Douze et al., 2009].

The implementations of ACC, BIC, LCH, SASI, and LAS descriptors follow the
specifications of [Penatti et al., 2012]. GIST implementation is the one used in [Douze
et al., 2009] with the parameters discussed therein?®. The implementation of HOG was
obtained from the VLFeat framework [Vedaldi and Fulkerson, 2010]. We used HOG in
different configurations, varying the cell size in 14 x 14, 20 x 20, 40 x 40 and 80 x 80

pixels, but keeping the orientation binning in 9 bins.

5.2.1.2 Mid-Level descriptors

Although simple to compute and good at providing a general idea of the image content,
low-level global descriptors have some problems to encode details and low effectiveness
in some precise applications, like recognition tasks for cluttered images [Tuytelaars
and Mikolajczyk, 2007]. These have motivated the research community to develop
more efficient and robust extraction algorithms. Towards this goal, researchers have

developed Bag of Visual Words (BoVW), a mid-level feature extraction technique that

’http://lear.inrialpes.fr/software (as of July 24th, 2017).

5.2. SPECIFIC EXPERIMENTAL SETUP 57

aims at transforming low-level local descriptors (such as SIFT |[Lowe, 2004|) into a
global and richer image representation of intermediate complexity [Boureau et al.,
2010].

Specifically, a mid-level representation uses local features built upon low-level
ones creating a new representation for an image, without looking for understanding its
high-level features. According to |Boureau et al., 2010|, in order to get the mid-level
representation, the standard processing follows three steps: (i) low-level local feature
extraction, (ii) coding, which, using a codebook of patches, performs a transformation
of the descriptors into a representation better adapted to the task and (iii) pooling,
which summarizes the coded features. Classification algorithms are then trained on
the obtained mid-level vectors.

In fact, BoVW and their variations |Sivic and Zisserman, 2003; Lazebnik et al.,
2006; Boureau et al., 2010; Perronnin et al., 2010; van Gemert et al., 2010; Penatti
et al., 2014; Avila et al., 2013| are considered mid-level representations because of
the aforementioned codebook of visual discriminating patches (visual words) that is
employed to compute statistics about the visual word occurrences in the test images.
This intermediate process transforms low-level local features into a more high-level and
better-adapted representation, capable of extracting enhanced information about the
images. BoVW descriptors have been state-of-the-art for several years in the computer
vision community and are still important candidates to perform well in many tasks.

We tested BoVW in several different configurations:

Sampling: sparse (Harris-Laplace detector [Mikolajezyk and Schmid, 2005]) or

dense (grid of circles with 6 pixels of radius)

Low-level descriptor: SIFT [Lowe, 2004] and OpponentSIFT [van de Sande et al.,
2010]

Visual codebooks of size: 100, 1000, 5000, and 10000

Coding: hard or soft (with o — 90 or 150)

Pooling: average, max pooling or WSA |Penatti et al., 2014|

To differentiate them in the experiments, we used the following naming: BX[,
where X is S (sparse sampling) or D (dense sampling); w is the codebook size; ¢ refers
to the coding scheme used, h (hard), s (soft); p refers to the pooling technique used, a
(average), m (max), or W (WSA).

The low-level feature extraction of BoVW descriptors was based on the imple-

mentation of [van de Sande et al., 2011|. For BoVW, in UCMerced and RS19 datasets,

H8 CHAPTER 5. CONVNET-BASED SCENE CLASSIFICATION

Table 5.1: Some statistics about the deep networks evaluated in this work.

Networks #par:afneters #conon.ections
(millions) (millions)
OverFeatg 145 2,810
OverFeat 144 5,369
AlexNet 60 630
CaffeNet 60 630
GoogLeNet) >10,000
VGG 138 4,096
PatreoNet 15 200

we used SIFT [Lowe, 2004| to describe each patch, but in the Brazilian Coffee dataset,
we used OpponentSIFT [van de Sande et al., 2010], as color should provide more dis-

criminating power.

5.2.2 ConvNets

We selected some of the most popular ConvNets available nowadays to be evaluated
in order to define a better strategy to exploit existing deep networks. All networks
presented in this section®, except for the OverFeat ones, were implemented in Convo-
lutional Architecture for Fast Feature Embedding |Jia et al., 2014|, or simply Caffe, a
fully open-source framework that affords clear and easy implementations of deep archi-
tectures. The OverFeat ConvNets were proposed and implemented by the namesake
framework |Sermanet et al., 2014|. Furthermore, as aforesaid, all networks exploited
in this work, for fine-tuning and feature extractors, were pre-trained on the ImageNet
training set [Deng et al., 2009].

Some information about the networks evaluated in this work is presented in Ta-
ble 5.1. GoogLeNet [Szegedy et al., 2015| is the biggest network, with higher number
of connections, followed OverFeat; and VGGig. In fact, these networks, OverFeat and
VGG, are also the ones with a higher number of parameters, which require more
memory during the training process. We describe some properties of each ConvNet in

the following subsections.

5.2.2.1 PatreoNet

PatreoNet is a ConvNet that we proposed specifically for the remote sensing domain.

Created based on recently published works and after a systematic set of experiments,

3Part of the code employed in this work has been made publicly available at https://github.
com/keillernogueira/PatreoNet

5.2. SPECIFIC EXPERIMENTAL SETUP 59

G Max Poolin, CaNENIED Max Poolin, CenEiE Max Poolin Full-Connected|

5x5 kernel [—> %2 9 > 5x5kernel [|—> o2 9 2x2 kernel [—> o2 91 > 1024 ReLUs SoftMax

96 RelLUs H 256 RelLUs 256 RelLUs

groreseeedenienecney preseeneedeneneaney : : g
LR normalization LR normalization Dropout Dropout
(a) PatreoNet
Convolution B Convolution B C { C i C 8
11x11 kernel [—> Max;(?Img —>| 5x5kernel Max; %ollng > 3x3kernel |—> 3x3kemel [—> 3x3kemel [—> Max:x (;ollng —DF::;'Q(?;::E‘? T SoftMax
96 ReLUs 256 ReLUs 384 RelUs 384 ReLUs 256 ReLUs H
LR normalization LR normal \zé‘ibﬂ

(b) AlexNet

Convolution 7 Convolution 7 C i C { C { 3
11x11 kemel —= Ma",; 009 L~ sxskemel |~ Ma"; o9 L) 3x3kemel [~ 3cakemel [—~ 3x3kemel || Ma":x %°""g —»F:g;";’e‘:ﬂ:d—;-» = SoftMax
96 ReLUs i | 256 ReLUs i | 384RelUs 384 RelLUs 256 ReLUs i i

tion

LR normalizaf

(c) CaffeNet
Convolution Convolution Max Poolin Convolution Convolution Max Poolin C i C { C { Max Poolin Convolution
3x3 kernel —>{ 3x3 kernel [— 22 9 L >| 3x3kemel |—| 3x3kernel |—| 22 9 | > 3x3kemel |—>| 3x3kemel |—>| 3x3kernel |—=| 252 9 || 3x3kemel
64 ReLUs 64 ReLUs 128 ReLUs 128 ReLUs 256 RelLUs 256 ReLUs 256 ReLUs 512 ReLUs
. C i C i [i . Convolution Convolution
SoftMax T F:g'g(? ;2?3:‘14— Masz)'(020""9 [<— 3x3kernel |«— 3x3kernel [«—| 3x3kernel [=—] Masz)'(ozolmg — 3x3 kernel [=— 3x3kernel
512 ReLUs 512 ReLUs 512 ReLUs 512 ReLUs 512 ReLUs

(d) VGGig

Convolution Max Poolin Convolution Max Poolin C i C i C i Max Poolin Convolution
11x11 kernel —> 22 9 1> 5x5kemel |[—>| 22 9 1> 3x3kemel |—>| 3x3kemel |—>| 3x3kemel |[—> 22 9 || 6x6 kemel SoftMax
96 ReLUs 256 ReLUs 512 ReLUs 1024 ReLUs 1024 ReLUs 3072 ReLUs

(e) OverFeatg

Convolution Max Poolin Convolution Max Poolin C i C i C i C i Max Poolin: Convolution
757 komel [—>) 1 SO0 o 77 kemnel [— M O Lo Bx3kemel [—>| 3@kemel [—>| 3x3kemel [—=| 3x3kemel [—= " 720 (| 545 kemel SoftMax
96 ReLUs 256 ReLUs 512 ReLUs 512 ReLUs 1024 ReLUs 1024 ReLUs 4096 ReLUs

(f) OverFeatp,

(g) GoogLeNet

Figure 5.4: Architectures of different the ConvNets evaluated in this work. Purple boxes indicate the layers
from where features were extracted in the case of using the ConvNets as feature extractors.

this network has fewer layers and parameters being able to converge and learn specific
spatial features using a small quantity of data, demonstrating the effectiveness of deep
learning methods to encode features even for remote sensing scenario. This network,
which architecture can be seen in Figure 5.4a, has 3 convolutional layers, 3 pooling
ones and 3 fully-connected ones (considering the SoftMax), with (Local Response)
normalization following the first and second pooling layers. All layers are composed of
ReLLUs, which were introduced in Section 3.1. PatreoNet was only used in fully-training

strategy since it has no model pre-trained in large datasets.

60 CHAPTER 5. CONVNET-BASED SCENE CLASSIFICATION

5.2.2.2 AlexNet

AlexNet, proposed by [Krizhevsky et al., 2012|, was the winner of ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [Deng et al., 2009] in 2012.
This ConvNet, that has 60 million parameters and 650,000 neurons, consists of five
convolutional layers, some of which are followed by max-pooling layers, and three fully-
connected layers with a final softmax. Its final architecture can be seen in Figure 5.4b.
It was a breakthrough work since it was the first to employ non-saturating neurons,
GPU implementation of the convolution operation and dropout to prevent overfitting.

In the experiments, AlexNet was used as a feature extractor network by extracting
the features from the last fully-connected layer (purple one in Figure 5.4b), which
results in a feature vector of 4,096 dimensions. AlexNet was also fine-tuned for all
the datasets used in the experiments. For UCMerced and RS19 datasets, the network
was fine-tuned by giving more importance to the final softmax layer (without freezing
any layer), while for the Coffee Dataset, the first three layers were frozen and the
final ones participate normally in the learning process. This is due to the similarities
of the former datasets and the difference of the latter dataset when compared to the
ImageNet dataset [Deng et al., 2009]. Finally, AlexNet was fully trained from scratch

for all datasets under the same configurations of the original model [Krizhevsky et al.,
2012|.

5.2.2.3 CaffeNet

CaffeNet |Jia et al., 2014] is almost a replication of AlexNet |Krizhevsky et al., 2012]
with some important differences: (i) training has no relighting data-augmentation, and
(i) the order of pooling and normalization layers is switched (in CaffeNet, pooling
is done before normalization). Thus, this network, which architecture can be seen in
Figure 5.4c, has the same number of parameters, neurons, and layers of the AlexNet.
Given its similarity to the AlexNet architecture, in the experiments, CaffeNet were

exploited in the same way of the aforementioned network.

5.2.2.4 GooglLeNet

GoogLeNet, presented in [Szegedy et al., 2015|, is the ConvNet architecture that won
the ILSVRC-2014 competition (classification and detection tracks). Its main peculiar-
ity is the use of “Inception” modules, which reduce the complexity of the expensive
filters of traditional architectures allowing multiple filters, with different resolutions,

to be used in parallel. GoogLeNet has two main advantages: (i) utilization of filters

5.2. SPECIFIC EXPERIMENTAL SETUP 61

of different sizes at the same layer, which maintains more spatial information, and
(ii) reduction of the number of parameters of the network, making it less prone to
overfitting and allowing it to be deeper. In fact, GoogleNet has 12 times fewer pa-
rameters than AlexNet, i.e., approximately 5 millions of parameters. Specifically, the
22-layer Googl.eNet architecture, which can be seen in Figure 5.4g, has more than 50

convolutional layers distributed inside the “Inception” modules.

In our experiments, Googl.eNet was used as a feature extractor network by ex-
tracting the features from the last pooling layer (purple one in Figure 5.4g), which
results in a feature vector of 1,024 dimensions. Googl.eNet was fine-tuned for all
datasets just like AlexNet, with exactly the same strategies for each dataset. Finally,
GooglLeNet was fully trained from scratch for all datasets under the same configurations

of the original model [Szegedy et al., 2015].

5.2.2.5 VGG ConvNets

VGG ConvNets, presented in [Simonyan and Zisserman, 2014|, won the localization
and classification tracks of the ILSVRC-2014 competition. Several networks have been
proposed in this work, but two have become more successful: VGG and VGGy.
Giving the similarity of both networks, we choose to work with the former one because
of its simpler architecture and slightly better results. However, similar results obtained
by VGG should be also yielded by VGGhg. This network, which architecture can be
seen in Figure 5.4d, has 13 convolutional layers, 5 pooling ones and 3 fully-connected

ones (considering the softmax).

VGG was used as a feature extractor network by extracting the features from
the last fully-connected layer (purple one in Figure 5.4d), which results in a feature
vector of 4,096 dimensions. VGG1g was also fine-tuned in the UCMerced and RS19
datasets by giving more importance to the final softmax layer, without freezing any
layer. However, this network could not be fine-tuned for the Brazilian Coffee dataset
(the most different one) as well as could not be fully trained from scratch for any
dataset. This problem is due to the large amount of memory required by this network,
as presented in Table 5.1, which allows only small values of batch size to be used
during the training process. Since larger values of batch size, combined with other
parameters (weight decay, learning rate), help the convergence of a ConvNet in the
training process [Goodfellow et al., 2016; Bengio, 2009|, there was no convergence in

the aforementioned scenarios.

62 CHAPTER 5. CONVNET-BASED SCENE CLASSIFICATION

5.2.2.6 OverFeat ConvNets

OverFeat [Sermanet et al., 2014], a deep learning framework focused on ConvNets
and winner of the detection track of ILSVRC 2013, has two ConvNet models available,
which can be used to extract features and/or to classify images. There is a small (fast

OverFeatg) and a larger network (accurate OverFeaty), both having similarities
with AlexNet |Krizhevsky et al., 2012|. The main differences are: (i) no response
normalization, and (ii) non-overlapping pooling regions. OverFeat ;, which architecture
can be seen in Figure 5.4f, has more differences including: (i) one more convolutional
layer and, (ii) the number and size of feature maps, since a different number of kernels
and stride were used for the convolutional and the pooling layers. In the other way
around, OverFeat g, which architecture can be seen in Figure 5.4e, is more similar to the
AlexNet, differing only in the number and size of feature maps. The main differences
between the two OverFeat networks are the stride of the first convolution, the number
of stages and the number of feature maps [Sermanet et al., 2014].

These ConvNets are only used as feature extractor since no model was provided
in order to perform fine-tuning or fully-training of the networks. Considering this
strategy, a feature vector of 4,096 dimensions is obtained from the last fully-connected
layer, which are illustrated as purple layers in Figures 5.4e and 5.4f, for OverFeat ¢ and

OverFeat, respectively.

5.2.3 Protocol

We carried out all experiments with a 5-fold cross-validation protocol, as introduced
in Section 4.2, while results are reported in terms of average accuracy and standard
deviation among the 5 folds, as presented in Section 4.3.

When performing fine-tuning or training a network for scratch, at each run, three
folds are used as training set, one as validation (used to tune the parameters of the
network) and the remaining one is used as the test set. It is important to mention that
the full training or fine-tuning of a network starts from the beginning for every new
iteration of the 5-fold cross-validation strategy. Five different networks are obtained,
one for each step of the 5-fold cross-validation process. That is, there is no contam-
ination of the training set with testing data. When using the ConvNets as feature
extractors, four sets are used as training while the last is the test set. Still considering

this strategy, we always used linear SVM as the final classifier.

When fine-tuning or full training a network, we basically preserve the parameters

of the original author, varying only two according to Table 5.2. It is important to

5.3. RESULTS AND DISCUSSION 63

Table 5.2: Parameters utilized in fine-tuning and full-training strategies.

Strategy #iterations Learning Rate
Fine-tuning 20,000 0.001
Full-training 50,000 0.01

highlight that there is no training when using a pre-trained ConvNet (without fine-

tuning) as feature extractor, thus there are no parameters to analyze.

All computational experiments were performed on a 64 bits Intel i7 4960X ma-
chine with 3.6GHz of clock and 64GB of RAM memory. Two GPUs were used: a
GeForce GTX770 with 4GB of internal memory and a GeForce GTX Titan X with
12GB of memory, both under a 7.5 CUDA version. Ubuntu version 14.04.3 LTS was

used as operating system.

5.3 Results and Discussion

In this section, we present and discuss the experimental results related to the use
of different strategies to exploit ConvNets in the remote sensing scenario. Firstly, in
Section 5.3.1, we discuss the power of generalization of ConvNets as feature descriptors
and compare them with low-level and mid-level representations. Then, we compare
the performance of the three different strategies for exploiting the existing ConvNets
in Section 5.3.2. Finally, Section 5.3.3 compare the most accurate ConvNets against

some of the state-of-the-art methods for each dataset.

5.3.1 Generalization Power Evaluation

In this first section, we compare six pre-trained ConvNets used as descriptors against
low-level and mid-level representations for aerial and remote sensing scene classifica-
tion. We conducted several experiments in order to evaluate the best BoVW configu-
rations, but only the top-5 best were reported. It is also important to highlight that
the ConvNets results in this section refer to their use as feature extractors, by consid-
ering the features of the last layer before softmax as input for a linear SVM. So, the
original network was not used to classify the samples. The objective is to observe how
deep features perform in datasets from different domains they were trained, i.e., how
good is the generalization power of this learned representation. As introduced, this is

very important analysis because, since remote sensing domain does not have lots of

64 CHAPTER 5. CONVNET-BASED SCENE CLASSIFICATION

labeled data available, a feature representation, learned on huge but distinct sort of
datasets, may be useful.

In Figure 5.5, we show the average accuracy of each descriptor and ConvNet
for the UCMerced dataset. We can notice that ConvNet features achieve the highest
accuracy rates (> 90%). CaffeNet, AlexNet, and VGGig yield the highest average
accuracies (more than 93%). GoogLeNet achieves 92.80% =+ 0.61 and OverFeat achieves
90.91% =+ 1.19 for the small and 90.13% = 1.81 for the large network. SASI is the best
global descriptor (73.88% =+ 2.25), while the best BoVW configurations are based on

dense sampling, 5 or 10 thousand visual words and soft assignment with max pooling

(~81%).

100—

QO

O

70|

60} T---

Average accuracy (%)

50

Feature representation

Figure 5.5: Average accuracy of pre-trained ConvNets used as feature extractors and low- and mid-level
descriptors for the UCMerced Land-use Dataset.

In Figure 5.6, we show the average accuracies for the RS19 dataset. ConvNets
again achieved the best results (> 90%). The best global descriptor was again SAST and
the best BoVW configurations have 5 or 10 thousand visual words with soft assignment
and max-pooling, but in this dataset, sparse sampling also achieved similar accuracies
to dense sampling.

The results with UCMerced and RS19 datasets illustrate the capacity of ConvNet
features to generalize from everyday pictures to the aerial domain.

In Figure 5.7, we show the average accuracies for the Brazilian Coffee Scenes
dataset. In this dataset, the results are different than in the other two datasets already
mentioned. We can see that, although most of the ConvNets achieve accuracy rates
above 80%, with VGG14 achieving 85.36% = 2.08, BIC and ACC also achieved high
accuracies. BIC achieved the highest average accuracy (87.03% =+ 1.17) outperforming
all the descriptors including the ConvNets in this dataset. The BIC algorithm for

5.3. RESULTS AND DISCUSSION 65

Average accuracy (%)

Feature representation

Figure 5.6: Average accuracy of pre-trained ConvNets used as feature extractors and low- and mid-level
descriptors for the RS19 Dataset.

classifying pixels in border or interior basically separates the images into homogeneous
and textured regions. Then, a color histogram is computed for each type of pixel.
As for the Brazilian Coffee Scenes dataset, the differences between classes may be not
only in texture but also in color properties, BIC could encode well such differences.
The best BoVW configurations are again based on dense sampling, 5 or 10 thousand
visual words and soft assignment with max pooling, and they have comparable results
to OverFeat.

100

Average accuracy (%)

Feature representation

Figure 5.7: Average accuracy of pre-trained ConvNets used as feature extractor and low- and mid-level
descriptors for the Brazilian Coffee Scenes Dataset.

A possible reason for the deep features to perform better in the aerial dataset
than in the agricultural one is due to the particular intrinsic properties of each dataset.

The aerial datasets have more complex scenes, composed of a lot of small objects (e.g.,

66 CHAPTER 5. CONVNET-BASED SCENE CLASSIFICATION

buildings, cars, airplanes). Many of these objects are composed of similar patterns in
comparison with the ones found in the dataset used to train the ConvNets.

Concerning the Brazilian Coffee Scenes dataset, it is composed of finer and more
homogeneous textures where the patterns are much more overlapping visually and more
different than everyday objects. The color/spectral properties are also important in
this dataset, which fit with results reported in other works [dos Santos et al., 2014;
Faria et al., 2014].

5.3.2 Comparison of ConvNets Strategies

In this section, we compare the performance of the three different strategies for exploit-
ing the existing ConvNets: full training, fine-tuning, and using as feature extractors.
Figures 5.8 to 5.10 show the comparison of the strategies in terms of average classi-
fication accuracy. In such figures, the suffix “Descriptors” refers to when we use the
features from the last layer before the softmax layer as input for another classifier,
which was a linear SVM in our case. However, it is worth mentioning that SVM was
used only after the fine-tuning or the fully-training process, not during the training

process.

100

Average accuracy (%)

Descriptors Fine—Tuned Pine—Tuned — Fully—Trained Fully—Trained
Descriptors Descriptors

Feature representation

Figure 5.8: Average accuracy considering all possible strategies to exploit ConvNets for the UCMerced
Land-use Dataset.

There are several interesting aspects illustrated in the graphs. The first one is that
fine-tuning (red and blue bars) is usually the best strategy, outperforming the other
two in all the datasets. The difference was higher for UCMerced and RS19 datasets

5.3. RESULTS AND DISCUSSION 67

100

Average accuracy (%)

Descriptors Fine—Tuned Fine—Tuned Fully—Trained Fully—Trained
Descriptors Descriptors

Feature representation

Figure 5.9: Average accuracy considering all possible strategies to exploit ConvNets for the RS19 Dataset.

Average accuracy (%)

Descriptors Fine—Tuned Fine—Tuned FPully—Trained Fully—Trained
Descriptors Descriptors

Feature representation

Figure 5.10: Average accuracy considering all possible strategies to exploit ConvNets for the Brazilian Coffee
Scenes Dataset.

(Figures 5.8 and 5.9). For the Coffee Scenes dataset, this difference was small, however,
the Fine-Tuned Descriptors (blue bars) were slightly superior.

This advantage of fine-tuned networks, when compared to the fully-trained ones,
is maybe due to a better initialization in the search space. This can be noticed in
Figure 5.11, where even with more iterations, fully-trained networks stick in worse local
minimum than the fine-tuned ones, what demonstrates that a better initialization of
the filter weights tends to provide better results. Another way to explain these results

is based on the fact this strategy uses the initialization to really understand and fill

68 CHAPTER 5. CONVNET-BASED SCENE CLASSIFICATION

the existing gap between the different domains (computer vision and remote sensing
ones). Specifically, this strategy can use a specific initialization to understand how the
current representation is distinct from the requested one (which is based on the new

dataset), adjusting the representation and improving the final accuracy.

curacy (%)

— Fine-Tuned AlexNet
— Fully-Trained AlexNet]

— Fine-Tuned AlexNet
— Fully-Trained AlexNet

(a) UCMerced Land-use (¢) Brazilian Coffee Scenes
dataset dataset

Figure 5.11: Examples of convergence of AlexNet for all datasets, considering Fold 1.

Other aspect to highlight is that full training (orange bars) was not a good strat-
egy for datasets UCMerced and RS19. For RS19 dataset especially, there was a drop
in accuracy in relation even to the original feature extractors (green bars), which were
trained on ImageNet. This may be justified by the small amount of labeled data avail-
able in these datasets, which makes the networks incapable of learning good feature
representation. However, for Coffee Scenes dataset, the fully-training strategy improved
results in comparison with other ones. Though this dataset also has a limited amount
of labeled data, results may be explained by the fact that it has very distinct prop-
erties from the original dataset (ImageNet) used to pre-trained the networks. Thus,
in this case, training a ConvNet from scratch is a better strategy to learn the feature
representation.

Another aspect of the results is that replacing the last softmax layer by SVM
on almost every ConvNet was a better solution. The Fine-Tuned Descriptors (blue
bars) and Fully-Trained Descriptors (orange bars) were usually superior than their
counterparts with the softmax layer (red and pink bars, respectively). In the Coffee
Scenes, however, this difference was smaller.

Comparing the different ConvNets, we can see that their results are very similar
in all the datasets. GoogLeNet seems to be less affected by the full training process,
as their results decreased less than the other ConvNets when comparing the Fine-
Tuned and the Fully-Trained versions. One possible reason is that Googl.eNet has
fewer parameters to be learned and, as the datasets used are very small considering

the requirements of the full training process, GoogLeNet was less affected.

5.3. RESULTS AND DISCUSSION 69

Comparing the results of the ConvNets as feature extractors (green bars) in rela-
tion to fine-tuning (red and blue bars), we can see that the original feature extractors,
trained on ImageNet, are not too worse than the fine-tuned version of the ConvNets,
especially for the UCMerced and RS19 datasets. The reason is that in such datasets,
the edges and local structures of the images are more similar to everyday objects
than in the Coffee Scenes dataset, in which the difference was higher in favor of fine-
tuned ConvNets. In the Coffee Scenes dataset, the textures and local structures are

very different than everyday objects.

Comparing the results among the three datasets, we can see that the Coffee
Scenes dataset has different behavior for the ConvNets. Fully-trained networks achieve
better accuracy in this dataset than in the others. This maybe motivated by the huge
difference between the datasets, since UCMerced and RS19 datasets are aerial ones

while Coffee Scenes is a multi-spectral one.

Considering the computational load, using a pre-trained ConvNet as feature ex-
tractor is the most efficient strategy since no training over the network is required. The
fine-tuning strategy is less efficient since requires a little training over the parameters of
the network, but this method, generally, yields better results. The strategy that needs
more computational requirements is full training since a network is trained from scratch
(with randomly initialized weights and bias), requiring more time and resources to be
trained. Specifically for these two last strategies, in our experiments, five ConvNets are
trained (one for each fold), which makes the process time-consuming. Considering the
fine-tuning technique, the whole process takes around 5 hours to be completed, while
the fully-trained strategy takes, approximately, 9 hours. In both cases, we consider an

average training time of all three datasets on the GeForce GTX Titan X.

As a summary, we can recommend fine-tuning as the strategy that tends to be
more promising in different situations. In addition, fine-tuning is less costly than full
training, which can represent another advantage when efficiency is a constraint. On
top of that, we can also recommend the use of the features extracted from the last
layer of the fine-tuned network and then using SVM for the classification task, instead

of using the softmax layer.

As shown in the experimental results, the best ConvNet configurations classify
almost 100% of the aerial images (UCMerced and RS19). Notwithstanding, the wrong
classified images are really difficult, as can be noted in the examples shown in Fig-

ure 5.12. Notice how these misclassified samples are quite similar visually.

70 CHAPTER 5. CONVNET-BASED SCENE CLASSIFICATION

W B
NN

. 4 B 4 4 i . t !)
(a) Freeway missclassified o (b) Medium Residential (c) Dense Residential
int issclassified . . missclassified .
away e missclassificd, 1yonse Residential misselassified ppobile Home-
into into

park

. missclassified
(d) Commercial (f) Forest ——————
znto 1nt0 1nto

Park Meadow tain

mzssclasszfzed
Moun-

Farmland

mzssclasszfzed (
[S]

Figure 5.12: Three examples of wrong predictions of each aerial dataset, UCMerced and RS19, for a fine-
tuned AlexNet. (a)-(f) The first image is the misclassified one, while the second is a sample of the predicted
class. Notice the similarity between the classes.

5.3.3 Comparison with Baselines

In this section, we compare the performance of the best results of each strategy for
exploiting the existing ConvNets and state-of-the-art baselines. Figures 5.13 to 5.15
show the comparison in terms of average accuracy. As in the previous section, the
suffix “Descriptors” specify when ConvNets were used as feature extractor, being the
deep features classified with linear SVM.

For the UCMerced dataset, we select three state-of-the-art baselines: (i)
GCLBP |Chen et al., 2015|, (ii) With-Sal [Zhang et al., 2015], and (iii) Dense-
STET |Cheriyadat, 2014]. The results presented in Figure 5.13 show that the baselines
were outperformed by all strategies, except the full training one. Furthermore, the clas-
sification of deep features extracted from the fine-tuned GooglLeNet with linear SVM
achieve the best result of all (99.47% =+ 0.50), being closely followed by the fine-tuned
GoogLeNet, which yielded 97.78% =+ 0.97, in terms of average accuracy.

For the RS19 dataset, we compare the best results of each strategy to the
GCLBP [Chen et al., 2015] approach, which yielded 91.0% =+ 1.5. The outcomes
presented in Figure 5.14 confirm the results obtained in the UCMerced dataset since
these two datasets are very similar: using linear SVM to classify deep features ex-
tracted from a fine-tuned Googl.eNet yielded the best result. Furthermore, analogous
to the previous dataset, the fully-trained network did not outperform the baseline,

being statistically similar.

5.3. RESULTS AND DISCUSSION 71

100

80} . - e - .

70} . - e - .

Average accuracy (%)

50| . - e - .

Descriptors Fine. Fine—Tuned Fully Fully—Trained
Tuned Descriptors ‘Trained Descriptors

Feature representation

Figure 5.13: Comparison between state-of-the-art baselines and the best results of each strategy to ex-
ploit ConvNets for the UCMerced Land-use Dataset. The Fine-Tuned Descriptors extracted by GoogLeNet
achieved the highest accuracy rates.

100

90

80

70

60

Average accuracy (%)

50

40

Descriptors Fine Fine—Tuned Fully Fully—Trained
Tuned Descriptors ~ ‘Trained Descriptors

Feature representation
Figure 5.14: Comparison between state-of-the-art baselines and the best results of each strategy to ex-

ploit ConvNets for the RS19 Dataset. The Fine-Tuned Descriptors extracted by GoogLeNet achieved the
highest accuracy rates.

For the Brazilian Coffee Scenes dataset, the only state-of-the-art result available
is the one which was released with the dataset in our previous work [Penatti et al.,
2015|, using the BIC descriptor, that we also present here in Section 5.3.1. Now, the
best result for this dataset and current state-of-the-art is achieved by extracting deep
features from the fine-tuned CaffeNet (94.45% =4 1.20), as presented in Figure 5.15.
Note that although BIC outperforms the ConvNet used as a descriptor, it is not true for

72 CHAPTER 5. CONVNET-BASED SCENE CLASSIFICATION

the Fully-Trained and Fine-Tuned. It means that we can adjust the domain by using
a fully-trained ConvNet. However, by using parameters obtained in other domain is

useful to yield even better results.

100

HH

Average accuracy (%)

N
o
Descriptors Fine Fine—Tuned Fully Fully—Trained
Tuned Descriptors ~ ‘Trained Descriptors

Feature representation

Figure 5.15: Comparison between state-of-the-art baselines and the best results of each strategy to ex-
ploit ConvNets for the Brazilian Coffee Scenes Dataset. The Fine-Tuned Descriptors extracted by CaffeNet
achieved the highest accuracy rates.

5.4 Conclusions

We evaluated three strategies for exploiting existing ConvNets in different scenarios
from the ones they were trained. All this evaluation has the following objectives: (i)
to verify the generalization power of deep features, (ii) to analyze how well fine-tuning
strategy benefits from a better initialization of the filter weights, how it understands
the difference of domains, and how it adjusts its feature representation, and (iii) to
understand the best way to obtain the most benefits from these state-of-the-art deep
learning approaches in existing applications, in which there are few labeled data. We
performed experiments evaluating the following strategies for exploiting the ConvNets:
full training, fine-tuning, and using as feature extractors. The experiments considered
six popular ConvNets (OverFeat networks [Sermanet et al., 2014], AlexNet [Krizhevsky
et al., 2012|, CaffeNet [Jia et al., 2014], GoogLeNet [Szegedy et al., 2015], VGG |Si-
monyan and Zisserman, 2014|, and PatreoNet) in three remote sensing datasets. It is
important to emphasize that the Brazilian Coffee Scenes dataset was created specifi-
cally for this analysis [Penatti et al., 2015], since, in general, there is a lack of agriculture

dataset.

5.4. CONCLUSIONS 73

The results pointed out that deep features of the existing pre-trained ConvNets
generalize to other domains, mainly when there are similarities between them (case of
UCMerced and RS19 datasets). Also, results demonstrated that fine-tuning strategy
can use a better initialization to improve the final performance of the networks. In other
words, this strategy, somehow, learns the difference of domains and adjusts its feature
representation into one closer to the target dataset. Furthermore, fine tuning tends to
be the best strategy in different situations as demonstrated by the experimental results.
Specially, using the features of the fine-tuned network with an external classifier, linear
SVM in our case, provides the best results. It is important to note that, although
some of the conclusions above seem obvious nowadays, they were not so clear when
this pioneer work was conducted.

As additional contributions, we can point the evaluation of different ConvNets in
each strategy mentioned in three remote sensing datasets, comparing their results with
traditional low- and mid-level descriptors, as well as with state-of-the-art baselines of
each dataset. And finally, we obtained state-of-the-art results in the three datasets
used (UCMerced land use, RS19, and Brazilian Coffee Scenes).

Chapter 6

ConvNet-Based Pixel Classification

Fully scene understanding is a primary task in a wide range of applications and one
of the most important in the remote sensing community. This task is strongly based
on the creation of thematic maps which, in turn, are essentially modeled in a super-
vised manner that should have, as outcome, a class for each and every pixel of the
input image. Based on its outcome, this process is commonly called pixel classification
(also known, in the computer vision field, as semantic segmentation) |Wilkinson, 2005;
Nogueira et al., 2016a; Volpi and Tuia, 2017].

Definition 2. Pizel Classification. Let D and T be the training and testing sets.
The training set D consists of tuples of the form {p;, c¢;}, where p; is a pizel and ¢; its
respective class. Note that i € {1,--- |D|} and ¢; € C, where C = {Cy,Cs,--- ,Cy} is
the set of the k possible classes. Distinctly, the testing set T is only composed of pizels
p; (with j € {1,--- ,|TI|}).

D is used to perform a supervised training of a function F that receives as input
a pizel p; and outputs a membership probability p(c|p;) for each class ¢ € C. This
probability is used to define the final predicted class (the one with higher score), which
s employed, with the ground-truth c;, to estimate the error and optimize F. After the
optimization process, we used F to predict classes for pizels in T. Therefore, the final
goal of the pizel classification task is to predict, as accurately as possible, a class for
each pizel of T using the trained function F, allowing the creation of the prediction

(thematic) map.

This process produces essential and useful information capable of assisting in the
decision making of a wide range of areas, including crop and forest management [dos
Santos et al., 2012; Nogueira et al., 2015b; Santana et al., 2017|, disaster relief |Fustes

)

76 CHAPTER 6. CONVNET-BASED PIXEL CLASSIFICATION

pixel to be context Original Probability
classified window Image Context]1_‘1
N e Windows ST S e
TS AN
. 7N *‘Z‘ﬁ\
. }“‘[.“
\N 23

!
A
l

ConvNet

@ (b)

Figure 6.1: (a) Example of a context window. The pattern is represented by a large window that is centered
on the pixel of interest in order to include the context of its neighborhood. (b) The process performed by a
pixelwise network. A set of context windows are generated for each pixel and then classified by the network.
The predicted class for the context window is actually the label of the centered pixel.

et al., 2014; Nogueira et al., 2018|, urban planning [Volpi and Ferrari, 2015; Volpi and
Tuia, 2017|, phenological studies [Nogueira et al., 2019b|, and so on.

Because of its usefulness and relevance, the development of pixel classification
algorithms is still considered an open and hot research topic in the remote sensing
community [Benediktsson et al., 2013; Ma et al., 2015; Ball et al., 2017]. In fact, several
strategies have been proposed over the years to perform pixel classification. Among
all approaches, deep learning [Bengio, 2009; Goodfellow et al., 2016] is the current
state-of-the-art [Long et al., 2015; Noh et al., 2015; Badrinarayanan et al., 2017; Wang
et al., 2017; Peng et al., 2019; Nogueira et al., 2019b| for this task, mainly due to its
feature learning concept. There are two basic techniques based on deep learning for
pixel classification. The first one receives as input context windows (Figure 6.1a) and
outputs a class (that is, in fact, associated with the centered pixel). This approach,
presented in Figure 6.1b, is computationally inefficient, given that each pixel must be
classified independently. The second technique improves the first strategy by solving
this computational problem. Particularly, it solves this issue by adapting the ConvNets
to output a dense prediction, i.e., to produce another image (usually with the same
resolution of the input) that has each pixel associated to a semantic class. In this case,
the network receives as input an image and outputs another image (with the same
resolution of the input) with all pixels classified. Differently from aforesaid approaches
that exploit the pixel signature to perform the classification, such deep learning-based
approaches try to improve the performance by exploiting the pixel context, which is,

in these cases, directly connected to the input image.

This input (and, consequently, the context) is actually represented by a patch, in
the remote sensing domain. This is due to the fact that RSIs have a huge size (when
compared to everyday photos) and therefore can not be processed directly (due to

computational constraints). Because of this, as aforementioned, the RSIs are usually

7

divided into fixed-size overlapping patches, which delimit the context that may be
exploited by the algorithms. Due to this, the definition of the best input patch size is
of vital importance for the network, given that patches of small size (or context) could
not bring enough information to allow the network to capture the patterns while,
larger patches could lead to semantically mixed information, which could affect the
performance of the ConvNet. In the literature, the definition of this patch size is
usually performed using two strategies: (i) empirically [Sherrah, 2016; Volpi and Tuia,
2017, by evaluating several sizes and selecting the best one, which is a very expensive
process, given that, for each size, a new network must be trained (without any guarantee
for the best patch configuration), and (ii) imposed |Audebert et al., 2016; Marmanis
et al., 2018|, in which the patch size is defined by network constraints (i.e., changing
the patch size implies modifying the architecture). This could be a potentially serious
limitation given that the patch size required by the network could be not even close to
the optimal one. Hence, it is clear that both current strategies suffer from drawbacks
and could not lead to the best patch size.

An attempt to alleviate such dependence of the patch size is to aggregate multi-
context information. Multi-context paradigm has been proven to be essential for seg-
mentation methods [dos Santos et al., 2012; Sherrah, 2016|, given that it allows the
model to extract and capture patterns of varying granularities, helping the method to
aggregate more useful information. Precisely, as presented and explained in (caption
of) Figure 6.2, smaller contexts may be preferable in some situations while larger ones
can be useful in other scenarios. Therefore, several works [Marcu and Leordeanu, 2016;
Audebert et al., 2016; Maggiori et al., 2017; Marmanis et al., 2018; Paisitkriangkrai
et al., 2016; Wang et al., 2017| incorporate the benefits of the multi-context paradigm
in their architectures using different approaches. Some of them [Marcu and Leordeanu,
2016; Paisitkriangkrai et al., 2016; Audebert et al., 2016] train several distinct layers
or networks, one for each context, and combine them for the final prediction. Oth-
ers [Marmanis et al., 2018; Maggiori et al., 2017; Wang et al., 2017] extract and merge
features from distinct layers in order to aggregate multi-context information. Indepen-
dently of the approach, to aggregate multi-context information, more parameters are
included in the final model, resulting in a more complex learning process [Goodfellow
et al., 2016].

In this chapter, we propose a novel technique to perform semantic segmenta-
tion of RSIs that exploits the multi-context paradigm without increasing the number
of parameters while defining adaptively the best patch size for the inference stage.
Specifically, this technique is based upon an architecture composed exclusively on di-

lated convolutions |[Yu and Koltun, 2015|, which are capable of processing input patch

78 CHAPTER 6. CONVNET-BASED PIXEL CLASSIFICATION

85x85

Figure 6.2: Example showing the importance of multi-context information. In the top case, while smaller
contexts may not provide enough information for the understanding of the scene, a large context brings more
information that may help the model to identify that it is a road with a car on it. In the bottom scenario,
smaller contexts bring enough information for the identification of cars, while a large context may confuse the
network and lead it to misclassify a different object as a car.

of varying sizes without distinction, given that they learn the patterns without down-
sampling the input. In fact, the multi-context information is aggregated to the model
by allowing it to be trained using patches of varying sizes (and contexts), a process
that increases scale-invariance and reduces over-fitting |He et al., 2015]. This proce-
dure allows the extraction of multi-context information without any combination of
distinct networks or layers (a common process of deep learning-based multi-context
approaches), resulting in a method with fewer parameters and easier to train. More-
over, during the training stage, the network gives a score (based on accuracy or loss)
for each patch size. Then, in the prediction phase, the process selects the patch size
with the highest score to perform the segmentation. Therefore, differently from em-
pirically selecting the best patch size which requires a new network trained for each
evaluated patch (increasing the computational complexity and training time), the pro-
posed technique evaluates several patches during the training stage and selects the best
one for the inference phase doing only a unique training procedure. Aside from the
aforementioned advantages, the proposed networks can be fine-tuned for any semantic
segmentation application, since they do not depend on the patch size to process the
data. This allows other applications to benefit from the patterns extracted by our
models, a very relevant feature specially when working with small amounts of labeled
data [Nogueira et al., 2017¢]|.

6.1. PIXEL CLASSIFICATION APPROACH 79

6.1 Pixel Classification Approach

In the next sections, we describe the basic ideas of the proposed approach to perform
pixel classification in RSIs. The core (dynamic multi-context) algorithm is presented
in Section 6.1.1. Then, the dilated ConvNet architectures proposed to perform pixel

classification are presented in Section 6.1.2.

6.1.1 Dynamic Multi-Context Algorithm

We propose a novel method to perform semantic segmentation of RSIs that: (i) exploits
the multi-context paradigm without increasing the number of trainable parameters of
the network, and (ii) defines, in training time, the best patch size that should be
exploited by the network in the test phase.

As presented in Algorithm 1, the training process receives as input: (i) the data
D, where the images and their reference labels come from, (ii) a patch size distribution
P, that represents the probability function (kept the same during all the training pro-
cedure) from which the patch sizes will come from, (iii) the patch scores S (initialized
with zeros), which will be used during the training procedure to accumulate the score
of the patch sizes produced by the network, (iv) the network A/(-), which can be seen
as a function that processes the input batch (X\xx, Vaxa) € D (a tuple of patches and
reference semantic labels with the same resolution A x A) with respect to the current
weights W, updating them, and outputting a score for the batch v, that can be seen,
somehow, as a quality assessment of the patch size relative to the current network, (v)
the number of iterations or epochs n.

The first step (line 2) of each iteration (comprised in the loop from line 1 to 6) of
training procedure is to randomly select a patch size A\, from the distribution P, which
may be any valid distribution, such as uniform or multinomial. Then, in the line 3 of
the algorithm, this patch size)y is used to create a new batch (X, xx,, Vaixa,) € D.
Observe that, at each iteration of the algorithm, a new patch size is selected and a new
random batch (using different sites) is sampled based on this size. This batch is then
employed to train the network N, i.e., to update its weights W (line 4). It is important
to emphasize that this training process (performed by the sampled batch) represents
only a single step (iteration) of the mini-batch optimization strategy |Goodfellow et al.,
2016] (and not the full train) that processes one whole batch to then update the network
weights WW. As aforementioned, for each step of the mini-batch training algorithm, the
network A outputs a score for the current batch v, which can be any metric (such

as a loss or accuracy) that estimates the performance of the network based on the

80 CHAPTER 6. CONVNET-BASED PIXEL CLASSIFICATION

current batch. This generated score v is used to update the patch scores S (line 5 of
the algorithm), which accumulate, throughout the training procedure, the scores of the
patch sizes and are employed in the selection of the best patch size during the inference
stage. Note the difference between the patch distribution P and the scores S, i.e., while
the former is a distribution employed during the whole training procedure the latter
accumulates the scores of the patch sizes given by the network to be employed in the
prediction phase. Hence, there is no connection between patch distribution P and the
scores S, and an update in § has no impact on P, which is kept fixed throughout the
training process.

All the aforementioned steps are repeated during the training process until the
number of iterations n is reached. As it can be noticed, the multi-context information is
aggregated to the model by allowing the network to be trained using batches composed
of patches of multiple sizes. This process allows the network to capture and extract
features by considering distinct context regions, a very important process as presented
and explained in (caption of) Figure 6.2.

When the training phase is finalized, the algorithm outputs the updated network
N (i.e., its weights W) and the updated patch scores S. The second benefit of the
proposed method is almost a direct application of the patch scores S created during
the training phase. Precisely, in the prediction phase, scores S over the patch sizes
are averaged and analyzed. The best patch size * (which corresponds to the highest
or lowest score, for accuracy and loss, respectively) is then selected and used to create
patches. The network processes these patches (of A* x * pixels) outputting the pre-
diction maps, but no updates in the patch scores S are performed. It is important to
highlight that the proposed technique can only choose the best patch size within all
possible sizes determined by the patch distribution P, since only the patches within P

are evaluated by the algorithm.

ALGORITHM 1
Process of dynamic training a Convolutional Networks.

Require: data D, network N with its weights ¥/, number of iterations n, patch dis-
tribution P, and patch scores S (initialized with zeros).
Ensure: updated of the network weights W, and patch scores S.
1: para t=1 to n faga

2 A\ =P(k) {Randomly select current patch size}
30 (Xnore Puxa) €D {Create new batch}

40 vy, = N(Xyxaes Vs W) {Continue training}

5 Sy, = Sy, Ty, {Update scores}

6: fim para

6.1. PIXEL CLASSIFICATION APPROACH 81

6.1.2 Architectures

As presented in Section 3.1.2.2, the properties of the dilated convolutions [Yu and
Koltun, 2015] make them fit perfectly into the proposed multi-context methodology,
given that a network composed of such layers is capable of processing an input of any
size without downsampling it. This creates the possibility of processing patches of
any size without constraints. Although these layers have the advantage of computing
feature responses at the original image resolution, a network composed uniquely of
dilated convolutions would be costly to train especially when processing entire (large)
scenes. However, as previously mentioned, processing an entire RSI is not possible
(because of its huge size) and, therefore splitting the image into small patches is already

necessary, which naturally alleviates the training process.

Though, in this work, we explore networks composed of dilated convolutions,
other types of ConvNets could be used, such as fully convolutions [Long et al., 2015]
and deconvolutions [Noh et al., 2015; Badrinarayanan et al., 2017|. These networks
can also process patches of varying size, but they have restrictions related to a high
variation of the patch size. Specifically, these networks need to receive a patch larger
enough to allow the generation of a coarse map, that is upsampled to the original
size. If the input patch is too small, the network could reach a situation where it is
not possible to create the coarse map and, consequently, the final upsampled map.
Such problem is overcome by dilated convolutions [Yu and Koltun, 2015|, which are
allowed to process patches of any size, without distinction, always outputting results
with the same resolution of the input data (given proper configurations, such as stride
and padding). Such concept is essential to allow the variance of patch sizes, from very

small values (such as 7 x 7) to larger ones (for instance, 256 x 256).

Considering this, a full set of experiments (guided by [Bengio, 2012|) was per-
formed in order to define the best architectures. After the experiments, four networks,
illustrated in Figure 6.3, have been selected (based on the average accuracy) and exten-
sively evaluated in this work. The first network, presented in Figure 6.3a, is composed
of seven layers: six dilated convolutions (that are responsible to capture the patterns
of the input images) and a final 1 x 1 convolution layer, which is responsible to gen-
erate the dense predictions. There is no pooling or normalization in this network, and
all layers have stride 1. Specifically, the first two convolutions have 5 x 5 filters with
dilation rate r 1 and 2, respectively. The following two convolutions have 4 x 4 filters
but rate 3 and 4 while the last two convolutions have smaller filters (3 x 3) but 5 and
6 as dilation rate. Because this network has 6 layers responsible for the feature extrac-

tion, it will be referenced as Dilated6. The second network (Figure 6.3b) is based on

&2 CHAPTER 6. CONVNET-BASED PIXEL CLASSIFICATION

overlapping Dilated Dilated Dilated Dilated Dilated Dilated
patches Convolution 1 Convolution 2 Convolution 3 Convolution 4 Convolution 5 Convolution 6
R Kernel = 5x5 Kernel = 5x5 Kernel = 4x4 Kernel = 4x4 Kernel = 3x3 Kernel = 3x3 Classification
@ --- P«—»| ReLUs = 64 | ReLUs = 64 3{ReLUs = 128 —3{ReLUs = 128 —»{ReLUs = 256[—3»|ReLUs = 256[—» Layer
/B B r=1 r=2 r=3 r=4 r=5 r=6
(a) Dilated ConvNet with max rate 6
overlapping Dilated Dilated Dilated Dilated Dilated Dilated
patches Convolution 1 Convolution 2 Convolution 3 Convolution 4 Convolution 5 Convolution 6
oA Kernel = 5x5 Kernel = 5x5 Kernel = 4x4 Kernel = 4x4 Kernel = 3x3 Kernel = 3x3 Classification
@ - P-—»| ReLUs =32 RelLUs = 32 /4 RelUs =64 —%| ReLUs =64 ReLUs = 128 / RelUs = 128—> Layer
LK] r=1 r=2 r=3 . r=4 r=5 r=6
(b) Densely Dilated ConvNet
overlapping Dilated Dilated Dilated Dilated
patches Convolution 1 max-pooling Convolution 2 max-pooling Convolution 3 max-pooling Convolution 4 max-pooling
SR | Kernel = 5x5 Kernel = 3x3 Kernel = 5x5 Kernel = 3x3 Kernel = 4x4 Kernel = 3x3 Kernel = 4x4 Kernel = 3x3
@ .- P-—>»{ ReLUs =64 | stride=1 3| ReLUs =64 | stride=1 [—3|ReLUs = 128[—3| stride =1 »|ReLUs = 128|—| stride =1
LR B r=1 pad =1 r=2 pad =1 r=3 pad =1 r=4 pad =1
. . Kernel = 3x3 Kernel = 3x3 Kernel = 3x3 Kernel = 3x3
Classiioation g | stride =1 |«—|ReLUs = 256{«—| stride =1 |€—ReLUs = 256
ayer - -
pad =1 r=6 pad =1 r=5
max-pooling Dilated max-pooling Dilated
Convolution 6 Convolution 5
(c) Dilated ConvNet with max rate 6 and pooling
overlapping Dilated Dilated Dilated Dilated
patches Convolution 1 max-pooling Convolution 2 max-pooling Convolution 3 max-pooling Convolution 4 max-pooling
EEN Kernel = 5x5 Kernel = 3x3 Kernel = 5x5 Kernel = 3x3 Kernel = 4x4 Kernel = 3x3 Kernel = 4x4 Kernel = 3x3
B -+ Pi—>»{ ReLUs =64 || stride=1 |—3»|RelLUs =64 | stride=1 [—3»RelLUs =128 stride=1 |-3|ReLUs = 128{—3> stride =1
LR Y r=1 pad =1 r=2 pad =1 r=3 pad =1 r=4 pad =1
Classification [erl)= 39 Kernel = 3x3 Kernel = 3x3 Kernel = 3x3 Kernel = 3x3 Kernel = 3x3 Kernel = 3x3 Kernel = 3x3
Lever € stride =1 |«—RelLUs =256/« stride =1 |«—RelLUs =256/« stride=1 |«—RelLUs=192(«— stride=1 |€—{ReLUs =192
Y pad = 1 r=8 pad = 1 r=7 pad = 1 r=6 pad = 1 r=5
max-pooling Dilated max-pooling Dilated max-pooling Dilated max-pooling Dilated
Convolution 8 Convolution 7 Convolution 6 Convolution 5

(d) Dilated ConvNet with max rate 8 and pooling

Figure 6.3: Dilated Convolutional Network architectures.

densely connected networks [Huang et al., 2017], which recently achieved outstanding
results on the image classification task. This network is very similar to the first one
having the same number of layers and configuration. The main difference between these
networks is that a layer receives as input feature maps of all preceding layers. Hence,
the last layer has access to all feature maps generated by all other layers of the net-
work. This process allows the network to combine different feature maps with distinct
level of abstraction, supporting the capture and learning of a wide range of feature
combination. Because this network has 6 layers responsible for the feature extraction
and is densely connected, it will be referenced in this work as DenseDilated6. The
third network, presented in Figure 6.3c, has the same configuration of the Dilated6,
but with pooling layers between each convolutional one. Given a specific combination

of stride and padding, no downsampling is performed over the inputs in these pooling

6.2. SPECIFIC EXPERIMENTAL SETUP 83

layers. Because of the number of layers and the pooling layers, this network will be
referenced hereafter as Dilated6Pooling. The last network (Figure 6.3d) is an exten-
sion of the previous one, having 8 dilated convolutions instead of only 6. The last two
convolutional layers have smaller filters (3 x 3) but 7 and 8 as dilation rate. There are
pooling layers between all convolutional ones. Given that this network has 8 dilated
convolutional and pooling layers, it will be referenced hereafter as Dilated8Pooling.
Although only this network with 8 layers is explored in this work, other variant net-
works (such as Dilated8 and DenseDilated8) were initially considered but not retained
for further experiments due to the similar initial performance and longer training time

when compared to the Dilated6 variant networks.

6.2 Specific Experimental Setup

In this section, we present the details about the experiments conducted to evaluate
the proposed method. Section 6.2.1 describes the baselines while Section 6.2.2 presents

details about the used experimental protocol, such as the framework.

6.2.1 Baselines

For the Coffee Dataset, we employed the Cascaded Convolutional Neural Network
(CCNN) [Nogueira et al., 2015b| as baseline. This method, a contribution of this
thesis, employs a multi-context strategy by aggregating several ConvNets in order to
perform the classification of fixed size tiles towards the final segmentation of the image.
For the GRSS Data Fusion Dataset, we employed, as baseline, the method proposed
by [Santana et al., 2017|. Their algorithm extracts features with many levels of context
by exploiting different layers of a pre-trained convolutional network, which are then
combined in order to aggregate multi-context information.

Aside from this, for both aforementioned datasets, we also considered as base-
line a precursor method [Nogueira et al., 2016a] proposed during the development
of this thesis. This basic approach, referenced hereafter as pixelwise, is essentially
based on context windows and, therefore, classifies each pixel independently. Also,
for these two datasets, we considered as baselines: (i) Fully Convolutional Networks
(FCNs) [Long et al., 2015]. In this case, the precursor pixelwise architectures were
converted into a fully convolutional network and exploited as a baseline. (ii) Deconvo-
lutional networks [Badrinarayanan et al., 2017; Noh et al., 2015]. Again, the precursor
pixel architectures were converted into a deconvolutional network (based on the well-

known SegNet |Badrinarayanan et al., 2017| architecture) and exploited as a baseline

84 CHAPTER 6. CONVNET-BASED PIXEL CLASSIFICATION

in this work. (iii) dilated network [Yu and Koltun, 2015|, which is, in this case, the
Dilated6Pooling (Figure 6.3c). All these networks were trained traditionally using
patches of constant size defined according to a previous set of experiments. Precisely,
patches of 7 x 7 and 25 x 25 were used for the Coffee and GRSS Data Fusion datasets,
respectively.

For the remaining datasets (Vaihingen and Potsdam), we refer to the official

results published on the challenge website! as baselines for the proposed work.

6.2.2 Protocol

For the Coffee Dataset, we conducted a 5-fold cross-validation to assess the performance
of the proposed algorithm. In this case, the reported results are the average metric
of the five runs followed by its corresponding standard deviation. For the remaining
datasets, we employed the training/test protocol, as presented in Section 4.2. In these
experiments, the final results are reported based on the performance on the test set. As
introduced, the reported results are always some combination of the metrics described
in Section 4.2, in order to provide enough information about the effectiveness of the
proposed method.

The proposed method and network? were implemented using TensorFlow [Abadi
et al., 2015|, a framework conceived to allow efficient exploitation of deep learning with
Graphics Processing Units (GPUs). All experiments were performed on a 64 bits Intel
i7 4960X machine with 3.6GHz of clock and 64GB of RAM memory. Four GeForce
GTX Titan X with 12GB of memory, under an 8.0 CUDA version, were employed in
this work. Note, however, that each GPU was used independently and that all networks
proposed here can be trained using only one GPU. Ubuntu version 16.04.3 LTS was
used as operating system.

As previously stated, a set of experiments (guided by |Bengio, 2012]) was exe-
cuted to define the hyperparameters. After all the setup experiments, the best values
for hyperparameters, presented in Table 5.2, were determined for each dataset. The
number of iterations increases with the complexity of the dataset in order to ensure
convergence. In the proposed models, the learning rate, responsible to determine how

much an updating step influences the current value of the network weights, starts with a

1 http://www2.isprs.org/commissions/comm2/wg4/vaihingen-2d-semantic-labeling-contest.
html and http://www2.isprs.org/commissions/comm2/wg4/potsdam-2d-semantic-labeling.
html.

2The code has been made publicly available at https://github.com/keillernogueira/
dynamic-rs-segmentation

6.3. RESULTS AND DISCUSSION 85

Table 6.1: Hyperparameters employed in each dataset.

Learning ‘Weight Exponential Decay

Datasets Rate Decay Iterations (decay /steps)
Coffee Dataset 0.01 0.001 150,000 0.5/50,000
GRSS Data Fusion Dataset 0.01 0.005 200,000 0.5/50,000
Vaihingen Dataset 0.01 0.01 500,000 0.5/50,000
Potsdam Dataset 0.01 0.01 500,000 0.5/50,000

high value and is reduced during the training phase using the exponential decay [Abadi

et al., 2015] with parameters defined according to the last column of Table 6.1.

6.3 Results and Discussion

In this section, we present and discuss the obtained results. Specifically, we first an-
alyze the parameters of the proposed technique: Section 6.3.1 presents the results
achieved using different patch distributions, Section 6.3.2 analyzes distinct functions
to update the patch size score, and Section 6.3.3 evaluates different ranges for the
patch size. Then, a comparison between the dilated and standard convolution is pre-
sented in Section 6.3.4. A convergence analysis of the proposed technique is performed
in Section 6.3.5 while a comparison between networks trained with the proposed and
standard training techniques is presented in Section 6.3.6. Finally, a comparison with

the state-of-the-art is reported in Section 6.3.7.

6.3.1 Patch Distribution Analysis

As explained at the beginning of Section 6.1.1, the algorithm receives as input a list of
possible patch sizes and a correspondent distribution. In fact, any distribution could
be used, including uniform or multinomial. Given the influence of this distribution
over the proposed algorithm, experiments have been conducted to determine the most
appropriate distribution. Towards this, we selected and compared three distinct dis-
tributions. First is the uniform distribution over a range of values, i.e., given two
extreme points, all intermediate values (extremes included) inside this range should
have the same probability of being selected. Second is the uniform distribution but
over selected values (and not a range). In this case, referenced as uniform fixed, the
probability distribution is equally divided into the given values (the remaining inter-
mediate points have no probability of being selected). The last distribution evaluated

is the multinomial. In this case, ordinary values inside a range have the same proba-

86 CHAPTER 6. CONVNET-BASED PIXEL CLASSIFICATION

Table 6.2: Results over different distributions.

Overall Accuracy Kappa Average Accuracy F1 Score

Uniform 86.13+£2.39 69.39+3.48 84.81£1.65 84.58+1.90
Uniform Fixed 86.27+1.44 69.41+£2.01 84.85£1.66 84.62+1.06
Multinomial 86.06+1.68 68.94+2.94 84.56£2.00 84.39+£1.51

bility but several given points have twice the chance of being selected. In those last two
distribution, the relevant points are chosen based on previous works of the literature.

The main difference between the evaluated distributions is related to the prior
knowledge of the application. In the uniform distribution, no prior knowledge is as-
sumed, and all patch sizes from the input range have the same probability, taking
more time to converge the model. The uniform fixed distribution assumes a good
knowledge of the application and only pre-defined patch sizes can be (equally) selected
and evaluated, taking less time to converge the model. The multinomial distribution
tries to blend previous ideas. Assuming a certain prior knowledge of the application,
the multinomial distribution weighs the probabilities allowing the network to give more
attention to specific pre-defined patch sizes but without discarding the others. If prior
intuition is confirmed, these pre-defined patch sizes are randomly selected more often
and the network should converge faster. Otherwise, the proposed process is still able
to use other (non-pre-defined) patch sizes and converge the network anyway.

Results of this analysis can be seen in Table 6.2. Note that all experiments were
performed using the Coffee Dataset [Nogueira et al., 2016a], Dilated6 network (Fig-
ure 6.3a), accuracy as score function, and hyperparameters presented in Table 6.1. In
these experiments, patches size varied from 25 x 25 to 50 x 50. Specifically, for the
uniform distribution, any value between 25 and 50 has the same probability of being
selected, while for the multinomial distribution, all values have some chance to be se-
lected, but these two points have twice the probability. For the uniform fixed, these two
patch sizes split the total probability and each one has 50% of being selected. Overall,
the variation of the distribution has no serious impact on the final outcome, since re-
sults are all very similar. However, given its simplicity and faster convergence, for the

remaining of this work, results will be reported using the uniform fixed distribution.

6.3.2 Score Function Analysis

As introduced in Section 6.1, at each training iteration an update is performed in the
score of patch sizes, which are used in the selection of the best patch size during the

testing stage. In this work, we evaluated two possible score functions that could be

6.3. RESULTS AND DISCUSSION 87

Table 6.3: Results over different score functions.

Overall Accuracy Kappa Average Accuracy F1 Score

Accuracy 86.27+1.44 69.41+2.01 84.85+1.66 84.62+1.06
Loss 86.15+1.96 69.16+3.41 84.68+2.02 84.49+1.76

employed in this step: the loss and the accuracy. In the first case, the loss is a measure
(obtained using cross entropy |Goodfellow et al., 2016], in this case) that represents
the error generated in terms of the ground-truths and the network predictions. In the
second case, the score is represented by the pixel classification accuracy [Congalton
and Green, 2008| of the images.

To analyze the most appropriate score function, experiments were performed
varying only this particular parameter and maintaining the remaining ones. Specif-
ically, these experiments were conducted using: the Coffee Dataset [Nogueira et al.,
2016a], Dilated6 network (Figure 6.3a), uniform fixed distribution (over 25 x 25 and
50 x 50), and same hyperparameters presented in Table 6.1. Results can be seen in
Table 6.3. Through the table, it is possible to see that both score functions achieved
similar results. However, since accuracy score is more intuitive, for the remaining of

this work, results will be reported using this function.

6.3.3 Range Analysis

Although the presented approach is proposed to select automatically the best patch
size, in training time, avoiding lots of experiments to adjust such size (as done in several
works [Nogueira et al., 2016a; Paisitkriangkrai et al., 2016; Volpi and Tuia, 2017|), in
this section, the patch size range is analyzed in order to examine the robustness of the
method.

This range is evaluated on all datasets, except Potsdam. Such dataset is very
similar to Vaihingen one and, therefore, analysis and decisions made over the latter
dataset are also applicable to the Potsdam one. Furthermore, in order to evaluate such
dataset, a validation set, created according to [Volpi and Tuia, 2017|, was employed.
Experiments were conducted varying only the patch size range but maintaining the
remaining configurations. Particularly, the experiments employed the same hyperpa-
rameters (presented in Table 6.1), Dilated6 network (Figure 6.3a), and uniform fixed
distribution.

Table 6.4 presents the obtained results. Each dataset was evaluated over several
ranges, selected based on previous works [Nogueira et al., 2016a; Volpi and Tuia, 2017|.

Specifically, each dataset was evaluated in a large range (comprising from small to large

88 CHAPTER 6. CONVNET-BASED PIXEL CLASSIFICATION

sizes) and subsets of such range. Table 6.4 also presents the most selected patch size (for
the testing phase) for each experiment, giving some insights about how the proposed
method behaves during such step.

For the Coffee Dataset |Nogueira et al., 2016a|, obtained results are all very
similar making it difficult to define a better or worse range. Hence, any patch size
range could be selected for further experiments, showing the robustness of the proposed
algorithm which yielded similar results independently of the patch size range. Because
of processing time (smaller patches are processed faster), in this case, patch size range
25,50 was selected and used in all further experiments.

For remaining datasets, a specific range achieved the best result. For the GRSS
Data Fusion Dataset |Liao et al., 2015|, the best result was obtained when consider-
ing the largest range (7,14,21,28,35,42,49,56,63,70), i.e., the range varying from
small to large patch sizes. For Vaihingen |[ISPRS, 2018al|, the intermediate range
(45, 55,65, 75,85) achieved the best result. Therefore, in these cases, such ranges were
selected and used in the remaining experiments of this work. However, as can be seen
through Table 6.4, other ranges also produce competitive results and could be selected
and used without significant loss of performance, which confirms the robustness of the
proposed method in relation to the patch size range, allowing it to process images
without the need of experimentally searching for the best patch size configuration.

In terms of patch size selection (during the inference phase), the algorithm really
varies depending on the experiment. For the Coffee Dataset, the most selected patch
sizes were 50 and 75, showing a trend towards such interval. For the remaining datasets,
larger patches were favored in our experiments. This may be justified by the fact that
urban areas have complex interactions and larger patches allow the network to capture
more information about the context. Though the best patch size is really dependent
on the experiment, current results showed that the proposed approach is able to learn
and select the best patch size in processing time producing interesting outcomes when

compared to state-of-the-art works, a fact reconfirmed in Section 6.3.7.

6.3.4 Convolution Operation Analysis

Although the proposed networks use dilated convolutions, it is possible to recreate such
architectures using standard convolution operations. As introduced in Section 3.1.2.2,
the only difference between these convolution operations is the possibility to have gaps
in the filter weights, a special characteristic of the dilated convolutions [Yu and Koltun,
2015|. Such aspect makes all the difference since dilated convolution can expand the

exploited context (by enlarging the filter weights) without increasing the number of

6.3. RESULTS AND DISCUSSION 89

Table 6.4: Results of the proposed approach when varying the input range of patch sizes. For Vaihingen, a
validation set (created according [Volpi and Tuia, 2017]) is employed. Bold patch size ranges were selected for
all further experiments.

Patch Most Overall Aver
Datasets Size Selected Acciric Acci:agce
Range Size Y Y
25,50 50 86.27+1.44 84.85+1.66
Coffee 50,75 50 87.324+1.82 85.59+1.59
75,100 75 86.07+1.95 85.91+1.68
25,50,75,100,125 75 87.11+1.74 85.1741.52
7,14,21,28,35 35 87.93 85.87
28,35,42,49,56 49 87.71 85.26
GRSS 42,49,56,63,70 70 88.33 88.04
7,14,21,28,35,42,49,56,63,70 70 90.10 90.13
25,45,55,65 65 86.60 71.03
Vaihingen 45,55,65,75,85 85 88.66 71.96
25,45,55,65,85,95,100 95 87.44 71.30

parameters, while standard convolutions are not able to do this since the filters are
always grouped (without gaps). This is a great advantage since a deeper network
composed of standard convolution operations (without any downsample or upsample
operation) would require more layers in order to aggregate a large context, while a
network composed of dilated convolutions can expand the context without increasing
the number of parameters, requiring fewer layers.

In order to demonstrate this advantage of dilated convolutions over standard
ones, we performed experiments comparing two networks that have exactly the same
architecture (Dilated6 — Figure 6.3a) but differ in the convolution operation: while one
network uses dilated convolutions, the second architecture employs the standard opera-
tion. Since the Dilated6 network does not have pooling layers, the comparison between
these networks is totally fair, given that the only difference is the convolution opera-
tion type. All datasets were used in this experiment, except Potsdam. This is because
the Vaihingen and Potsdam Datasets are very similar and analysis performed over one
can also be extended to the other. A validation set, created according to [Volpi and
Tuia, 2017|, was used to evaluate the Vaihingen Dataset. Experiments were executed
preserving all configurations and varying only the convolution type. Particularly, the
configuration was defined taken into account previous experiments, i.e., it uses uniform
fixed distribution, patch ranging according to Section 6.3.3, accuracy as score function,
and hyperparameters presented in Table 6.1.

Results can be seen in Table 6.5. Overall, architectures based on dilated convo-

lution outperformed the networks that employ the standard operation. Since the only

90 CHAPTER 6. CONVNET-BASED PIXEL CLASSIFICATION

Table 6.5: Results of the Dilated6 network trained using distinct convolution types.

Convolution Overall Average
Datasets
Type Accuracy Accuracy
Coffee Standard 84.1341.28 82.9740.48
Dilated 86.2741.44 84.8541.66
Standard 85.70 85.31
GRSS Dilated 90.10 90.13
Vaihineen Standard 86.13 69.65
& Dilated 88.66 71.96

difference between the networks is the convolution (and, consequently, the exploited
context), these results show the advantage of the dilated operations over the standard

one.

6.3.5 Convergence Analysis

In this section, we analyze the convergence of the proposed technique. Figure 6.4
presents the convergence of the datasets using the Dilated6 network, accuracy as score
function, uniform fixed distribution, and hyperparameters presented in Table 6.1. Ac-
cording to the figure, the loss and accuracy vary significantly at the beginning of
the process but, with the reduction of the learning rate, the networks converge in-
dependently of the use of distinct patch sizes during the training. Moreover, the
test /validation accuracy (green line) converges and stabilizes showing that the net-

works can learn to extract features from patches of multiple sizes.

LOT— R L I 1.0

(e o) BHF

«+ Train Loss 0.6

T A Skl

0.8

0.8]

0.6 Train Loss 0.6 i

-- Train Accuracy -~ Train Accuracy

0.41 | ; — Validation Accuracy 0.4 fE —— Validation Accuracy 0.4 1
E i F iR Train Loss Train Loss
0.2 0.2 v H 0.24 —--- Train Accuracy 0.2{ ---- Train Accuracy
oo H : —— Validation Accuracy —— Validation Accuracy
0.0 B - 0.0 0.0 0.0
0 50000 100000 150000 0 100000 200000 0 250000 500000 0 250000 500000
#iterations #iterations #iterations #iterations

(a) Coffee Dataset — fold(b) GRSS Data Fusion (c) Vaihingen Dataset (d) Potsdam Dataset
1 Dataset

Figure 6.4: Convergence of Dilated6 network for all datasets. For the Coffee Dataset, only the fold 1 is
reported. For Vaihingen and Potsdam Datasets, the validation set (created according [Volpi and Tuia, 2017])
is reported.

6.3. RESULTS AND DISCUSSION 91

6.3.6 Performance Analysis

To analyze the efficiency, in terms of performance and processing time, of the proposed
algorithm, several experiments were conducted comparing the same network trained
using two distinct methods: (i) the traditional training process |Goodfellow et al.,
2016, in which the network is trained using patches of constant size, without any
variation. This method is the standard one when it comes to neural networks and is
the most exploited in the literature for training deep learning-based techniques. Also,
this is the approach that is used to empirically selects the best patch size, which is
traditionally done by training several networks, one for each considered patch. (ii) the
proposed dynamic training process, in which the network is trained with patches of
varying size.

Two datasets were selected to be evaluated using these training strategies: (i)
the GRSS Data Fusion Dataset, which has the largest patch size range (according
to Section 6.3.3) allowing a better comparison between the training strategies, and
(i) Vaihingen Dataset, which is very similar to Potsdam one and, therefore, allows the
conclusions to be applied to this one. To evaluate this dataset, a validation set, created
according |Volpi and Tuia, 2017|, was employed.

Specifically, in these experiments, Dilated6 network (Figure 6.3a) is trained using
both strategies. For the proposed dynamic training process, previous experiments were
taken into account, i.e., it uses uniform fixed distribution, patch ranging according to
Section 6.3.3, accuracy as score function, and hyperparameters presented in Table 6.1.
Concerning the traditional training process, several networks (with same architecture)

were trained using each of the possible patch sizes.

Results of these experiments are presented in Table 6.6. For both datasets, net-
works trained with the proposed approach outperform the models trained with the
traditional training process (independently of the patch size), showing the ability of
the proposed method to capture multi-context information from patches of distinct size
which improve the performance of the final model. Also, on average, the processing
time of the proposed method is lower than the traditional training process, in which
the computational time increases with the increase of the patch size, an expected be-
havior given that the convolution process using large inputs takes more time than using
smaller ones.

Specifically, for the GRSS Data Fusion Dataset, considering only models trained
with the traditional method, the best result is achieved by the network using patches
of 70 x 70 pixels. This ConvNet took around 160 hours to train using 200,000 iter-

ations and achieved 86.93% of average accuracy. However, the model trained with

92 CHAPTER 6. CONVNET-BASED PIXEL CLASSIFICATION

Table 6.6: Comparison between the dilated network trained using the proposed and the traditional method.

Training . Training Average
Dataset Process Patch Size Time (hours) Accuracy
7 35 83.33
.- 28 99 85.48
Traditional 49 36 35.94
GRSS Data Fusion 70 160 86.93
714,21,
Dynamic 28,35,42,49, 81 90.13
56,63,70
45 125 66.29
a5 160 66.77
Vaihingen Traditional 65 200 66.84
& 75 260 66.65
85 325 66.96
Dynamic 45,55,65,75,85 220 71.96

the proposed dynamic process outperforms this result while taking less time to train.
Particularly, Dilated6 network trained using the dynamic process produced 90.13% of
average accuracy while taking around 81 hours to train. This improvement in the per-
formance is due to the exploitation of distinct contexts provided by different patch sizes
during the training procedure. This process of using distinct patch sizes also speeds
up the training, given that small patches (which are processed faster) are also used

together with large ones.

The same conclusions hold for the Vaihingen Dataset. Precisely, the best result
using the traditional method is achieved by the network trained with patches of 85 x 85
pixels. This ConvNet took around 325 hours to train using 500,000 iterations and
achieved 66.96% of average accuracy. However, this result was outperformed by the
network trained using the proposed dynamic strategy, while taking less training time.
Such model produced 71.96% of average accuracy while taking around 220 hours to

train.

Moreover, the proposed dynamic strategy has another advantage: while the em-
pirical method would require training several networks in order to select the best patch
size, resulting in a greater computational time, the proposed strategy combines all
patch sizes during the training stage while selecting the best size for the inference
phase, requiring only one full procedure to achieve its final result. Hence, overall,
the proposed method requires less training time than the empirical approach, while

achieving better results.

6.3. RESULTS AND DISCUSSION 93

6.3.7 State-of-the-art Comparison

6.3.7.1 Coffee Dataset

Using analysis performed on previous sections, we have conducted several experiments
over the Coffee Dataset. Results for the proposed method, as well as, for the state-
of-the-art baselines are presented in Table 6.7. In order to allow a visual comparison,
relevance maps (an image that facilitates the observation of the right and wrong pre-
dictions) for the Coffee Dataset using different networks trained with the proposed
method are presented in Figure 6.5.

Overall, all baselines produced similar results. While the pixelwise network
yielded a slightly worse result with a higher standard deviation, all other baselines
reached basically the same level of performance, with a smaller standard deviation.
This may be justified by the fact that the pixelwise network does not learn much infor-
mation about the pixel interaction (since each pixel is processed independently), while
the other methods process and classify a set of pixels simultaneously. Because of the
similar results, all baselines are comparable.

This same behavior may be seen among the networks trained with the proposed
methodology. Although these networks achieved comparable results, such models out-
performed the baselines. Furthermore, the Dilated6Pooling trained with the proposed
dynamic method produced better results than the same network trained with tradi-
tional training process (mainly in the Kappa Index). These results show the effective-
ness of the proposed technique that produces state-of-the-art outcomes by capturing
multi-context information while selecting the best patch size, two great advantages

when compared to the traditional training process.

Table 6.7: Results for the Coffee dataset.

Trainin Average
Proces;g Network Accuragcy Kappa
Pixelwise [Nogueira et al., 2016a] 81.724£2.38 62.75+7.42
CCNN [Nogueira et al., 2015b] 82.80+2.30 64.60+4.34
Traditional FCN 83.2542.47 66.0043.55
Deconvolution Network 82.61£2.05 65.56+3.47
Dilated network (Dilated6Pooling) — 82.52+1.14 66.1442.27
Dilated6 84.85+1.66 69.41+2.01
Dynamic DenseDilated6 85.884+2.34 T1.51+£2.74
Dilated6Pooling 85.77£1.74 T72.27+1.38
Dilated8Pooling 86.67+1.39 73.78+1.87

94 CHAPTER 6. CONVNET-BASED PIXEL CLASSIFICATION

Original Dense Dilated6 Dilated8
Image

PR

<5
= e 1

.,(\g

& = S,
"\ “\

Figure 6.5: Images of the Coffee Dataset, their respective ground-truths, and the relevance maps generated
by the proposed algorithm. Legend — White: True Positive. Black: True Negative. Red: False Positive.
Green: False Negative.

6.3.7.2 GRSS Data Fusion Dataset

We also performed several experiments on the GRSS Data Fusion Contest Dataset |Liao
et al., 2015] considering all analysis carried out in previous sections. Experimental
results, as well as baselines, are presented in Table 6.8. The prediction maps obtained

for the test set are presented in Figure 6.6.

Overall, Dilated6 produced the best result among all approaches. In general,
networks trained with the proposed method outperformed the baselines. Moreover,
the Dilated6Pooling trained with the proposed dynamic technique outperformed the
baseline composed of the same network trained using traditional training process, cor-

roborating with previous conclusions.

Among the baseline methods, although all of them achieved comparable results,

6.3. RESULTS AND DISCUSSION 95

the best outcome was yielded by the Deep Contextual |[Santana et al., 2017]. This
method also leverages from multi-context information, since it combines features ex-
tracted from distinct layers of pre-trained ConvNets. When comparing this method
with the best result of the proposed technique (Dilated6), one can clearly observe the
advantage of the proposed approach, which improves the results for all metrics when
compared to the Deep Contextual [Santana et al., 2017| approach. This reaffirms the

effectiveness of the proposed dynamic method, corroborating with previous conclusions.

Table 6.8: Results for the GRSS Data Fusion Dataset.

Training Overall Average Kappa
Process Network Accuracy Accuracy Index

Pixelwise [Nogueira et al., 2016a] 85.04 86.52 78.18

FCN 83.27 87.45 76.10

Traditional Deconvolution Network 82.15 86.24 75.04

Dilated network (Dilated6Pooling) 83.96 83.83 76.12

Deep Contextual [Santana et al., 2017] 85.45 88.33 79.01

Dilated6 90.10 90.13 85.22

Dynamic DenseDilated6 88.66 80.62 81.80

Dilated6Pooling 88.05 86.12 81.81

Dilated8Pooling 89.03 85.31 83.08

(d) DenseDilated6 (e) Dilated6Pooling (f) Dilated8Pooling

Figure 6.6: The GRSS Data Fusion test image, the respective ground-truth, and the prediction maps
generated by the proposed algorithm. Legend — Black: unclassified. Light purple: road. Light green: trees.
Red: red roof. Cyan: gray roof. Dark purple: concrete roof. Dark green: vegetation. Yellow: bare soil.

96 CHAPTER 6. CONVNET-BASED PIXEL CLASSIFICATION

6.3.7.3 Vaihingen Dataset

As introduced in Section 6.2.1, official results for the Vaihingen Dataset are reported
only by the challenge organization that held some images that are used for testing the
submitted algorithms. Therefore, one must submit the outcomes of the proposed algo-
rithm to have them evaluated. In our case, following previous analysis, we submitted
five approaches: the first four are related to each network presented in Section 6.1
trained with the 6 classes (which are represented in the official results as UFMG_1
to 4), and the fifth one, represented in the official results as UFMG 5, is the Di-
lated8 network (Figure 6.3d) trained with only 5 classes, i.e., all labels except the
clutter /background one. This last submission is due to the lack of training data for
that class which corresponds to only 0.67% of the dataset (as stated in Table 4.4). Tt
is important to note that all submissions related to the proposed work do not use any
post-processing, such as Conditional Random Fields (CRF) |Lafferty et al., 2001].

Some official results reported by the organization are summarized in Table 6.9.
In addition to our results, this table also compiles the best results of each work
with enough information to make a fair comparison, i.e., in which the proposed ap-
proach is minimally explained. In order to allow a visual comparison, examples of the
proposed method, for the validation and test sets, are presented in Figures 6.7 and 6.8,

respectively.

It is possible to notice that the proposed work yielded competitive results. The
best result, in terms of overall accuracy, was 90.3% achieved by DLR_9 |[Marmanis
et al., 2018] and GSN3 [Wang et al., 2017]. Our best result (UFMG_4) appears in
fifth place by yielding 89.4% of overall accuracy, outperforming several methods, such
as ADL_ 3 |Paisitkriangkrai et al., 2015] and RIT L8 |Liu et al., 2017|, that also tried
to aggregate multi-context information. However, as can be seen in Table 6.9 and
Figure 6.9a, while the other approaches have a larger number of trainable parameters,
our network has only 2 millions, which makes it less pruned to overfitting and, conse-
quently, easier to train, showing that the proposed method really helps in extracting
all feasible information of the data even if using limited architectures (in terms of pa-
rameters). In fact, the number of parameters of the network is so relevant that authors
of DLR_ 9 submission [Marmanis et al., 2018|, one of the best results but with a higher
number of parameters, do not recommend their proposed method for practical use
because of the memory consumption and expensive training phase. Furthermore, the
obtained results, that do not have any post-processing, are better than others, such
as DST 2 [Sherrah, 2016|, that employ CRF as post-processing method, which shows

the potential of dilated convolutions in aggregate refined information.

6.3. RESULTS AND DISCUSSION 97

Table 6.9: Official results for the Vaihingen Dataset.

F1 Score

Overall
Method #Parameters Impervious Buildi Low N . Accuracy
Surface undmg Vegetation ee ar
DLR_9 [Marmanis et al., 2018] 806 - 10° 92.4 95.2 839 899 81.2 90.3
GSN3 [Wang et al., 2017] 44108 92.3 95.2 84.1 90.0 79.3 90.3
ONE_ 7 [Audebert et al., 2016] 28 - 108 91.0 94.5 84.4 899 T77.8 89.8
INR [Maggiori et al., 2017] 4-106 91.1 94.7 834 893 T1.2 89.5
UFMG_4 2108 91.1 94.5 829 888 813 89.4
UFMG_5 2108 91.0 94.6 82.7 889 825 89.3
UFMG 1 1.3-108 90.5 94.1 825 89.0 785 89.1
DST _ 2 [Sherrah, 2016] 3.5 108 90.5 93.7 834 892 726 89.1
UFMG_ 2 0.8 -10° 90.7 94.3 82.5 885 774 89.0
UFMG_3 1.3-108 90.6 93.4 824 885 T79.8 88.8
ADL_ 3 |Paisitkriangkrai et al., 2015] 0.5-106 89.5 93.2 82.3 882 63.3 88.0
RIT 2 |Piramanayagam et al., 2016] 138 - 108 90.0 92.6 814 884 61.1 88.0
RIT_L8 |Liu et al., 2017] 134 -10° 89.6 92.2 81.6 88.6 76.0 87.8
UZ_1 |Volpi and Tuia, 2017] 2.5 109 89.2 92.5 81.6 869 57.3 87.3

Aside from this, the proposed work (UFMG _5) achieved the best result (82.5%
of F1 Score) in the car class, which is one of the most difficult classes (of this dataset)
when compared to others (such as building) because of its composition (small objects)
and its high intraclass variance (caused by a great variety of models and colors). This
may be justified by the fact that the proposed network does not downsample the input
image preserving important details for such classes composed of small objects. However,
this submission ignores the clutter/background class, which could be considered as an
advantage, making the comparison unfair. But, there are other works doing the same
training protocol (i.e., ignoring the clutter/background class), such as INR |Maggiori
et al., 2017|. Yet such works have not achieved good accuracy in the car class as the
proposed work. Furthermore, still considering the car class, the second best result
(81.3% of F1 Score) is also yielded by our proposed work (UFMG _4), which employs
all classes during the training phase, which shows the effectiveness and robustness of

our work mainly for classes related to small objects.

6.3.7.4 Potsdam Dataset

As for the Vaihingen Dataset, official results for the Potsdam dataset are reported only
by the challenge organization. For this dataset, we have four submissions, one for each
network presented in Section 6.1 trained with the 6 classes (which are represented, in
the official results, as UFMG 1 to 4). In this dataset, there is no need to disregard
the clutter/background class, since it has a sufficient amount of samples (4.96%). As
before, all submissions related to the proposed work does not use any post-processing.

Table 6.10 summarizes some results reported by the organizers. Again, besides
our results, the table also compiles the best results of each work with enough

information to make a fair comparison. Visual examples of the proposed method, for

98 CHAPTER 6. CONVNET-BASED PIXEL CLASSIFICATION

Dense . . .
Image nDSM Ground- Dilated6 Di. Dllat.ed6 Dllat':edS D11a1:.ed8
Truth lated6 Pooling Pooling Pooling

Figure 6.7: Example predictions for the validation set of the Vaihingen Dataset. Legend — White: impervious
surfaces. Blue: buildings. Cyan: low vegetation. Green: trees. Yellow: cars. Red: clutter, background.

the validation and test sets, are presented in Figures 6.10 and 6.11, respectively.

The proposed work achieved competitive results, appearing in third place accord-
ing to the overall accuracy. DST _5 [Sherrah, 2016] and RIT _L7 [Liu et al., 2017] are
the best result in terms of overall accuracy. However, they have a larger number of
trainable parameters when compared to our proposed networks, as seen in Figure 6.9b.

This outcome corroborates with previous results, reaffirming obtained conclusions.

6.4 Conclusions

In this chapter, we propose a novel approach based on Convolutional Networks to
perform pixel classification of remote sensing scenes. The method exploits networks
composed uniquely of dilated convolution layers that do not downsample the input.
Based on these networks and their no downsampling property, the proposed approach:

(i) employs, in the training phase, patches of different sizes, allowing the networks to

6.4. CONCLUSIONS 99

Dense
Image nDSM Dilated6 Di-

Dilated6 Dilated8 Dilated8
Pooling Pooling

Figure 6.8: Example predictions for the test set of the Vaihingen Dataset. Legend — White: impervious
surfaces. Blue: buildings. Cyan: low vegetation. Green: trees. Yellow: cars. Red: clutter, background.

Table 6.10: Official results for the Potsdam Dataset.

F1 Score

Method #Parameters 1 . Overall
mpervious g i1 ding Low Tree Car ‘ccuracy
Surface Vegetation
DST 5 [Sherrah, 2016] 3.5-10° 92.5 96.4 86.7 88.0 94.7 90.3
RIT_L7 [Liu et al., 2017 134 - 108 91.2 94.6 85.1 851 928 88.4
UFMG 4 2-106 90.8 95.6 84.4 843 924 87.9
UFMG_3 1.3-108 90.5 95.6 83.3 82.6 90.8 87.2
UFMG 1 1.3-106 90.1 95.6 83.7 824 91.3 87.0
KLab_ 2 [Kemker et al., 2018] 44108 89.7 92.7 83.7 84.0 92.1 86.7
UFMG_2 0.8-10° 88.7 95.3 83.1 80.8 90.8 85.8
UZ_1 |Volpi and Tuia, 2017] 2.5- 109 89.3 95.4 81.8 80.5 86.5 85.8

capture multi-context characteristics given the distinct context size, and (ii) updates
a score for each of these patch sizes in order to select the best one during the testing

phase.

We performed experiments on four high-resolution remote sensing datasets with
very distinct properties. Experimental results have showed that our method is effective
and robust. It achieved state-of-the-art results in two datasets (Coffee and GRSS Data

100 CHAPTER 6. CONVNET-BASED PIXEL CLASSIFICATION

90.5 91
e ° DST 5
GSN3 DLR_g -
S 9.0 ®ONE_7) x 90 °
< INR - =
= 89.5 UFMG_4 o =
2 UFMG_1 8UFMG_5 $'89; AT Ly
S 89.0UFMG_ 20 ® °®DST2 5 -
g o S agl UFMG_4
< 885 UFMG_3 < '
. UFMG_3
= ADL RIT 2 =
S 880/ e -3 - g 87 UFJG_l KLgb 2
S ® S
Sg7s 1 RIT_L8 S 86f UFMG2 UZ 1
[]
87.0 0.5 1.0 1.5 2.0 25 3.0 35 4.0 88.5 1.0 1.5 2.0 2.5 3.0 3.5
log1g (# parameters) logiog (# parameters)
(a) Vaihingen (b) Potsdam

Figure 6.9: Comparison, in terms of overall accuracy and number of trainable parameters, between proposed
and existing networks for Vaihingen and Potsdam Datasets. Ideal architectures should be in the top left
corner, with fewer parameters but higher accuracy. Since the x axis is logarithmic, a change of only 0.3 in this
axis is equivalent to more than 1 million new parameters in the model.

Fusion datasets) outperforming several techniques (such as Fully Convolutional [Long
et al., 2015] and deconvolutional networks [Badrinarayanan et al., 2017]) that also
exploit the multi-context paradigm. This shows the potential of the proposed method
in learning multi-context information using patches of multiple sizes.

For the other datasets (Vaihingen and Potsdam), although the proposed technique
did not achieve state-of-the-art, it yielded competitive results. In fact, our approach
outperformed some relevant baselines that exploit post-processing techniques (although
we did not employ any) and other multi-context strategies. Among all methods, the
proposed one has the least number of parameters and is, therefore, less pruned to
overfitting and, consequently, easier to train. At the same time, it produces one of
the highest accuracies, which shows the effectiveness of the proposed technique in
extracting all feasible information from the data using limited (in terms of parameters)
architectures. Furthermore, the proposed technique achieved one of the best results
for the car class, which is one of the most difficult classes of these datasets because of
its composition (small objects). This demonstrates the benefits of processing the input
image without downsampling it, a process that preserves important details for classes
that are composed of small objects.

Aside from this, the proposed networks can be fine-tuned for any semantic seg-
mentation application, since they do not depend on the patch size to process the
data. This allows other applications to benefit from the patterns extracted by our
models, a very important process mainly when working with small amounts of labeled
data [Nogueira et al., 2017¢]|.

6.4. CONCLUSIONS 101

Dense
Ground- . . Dilated6 Dilated8
Image nDSM Truth Dilated6 Di- Pooling Pooling

lated6
* v

i

o 1
P

NENT - T
L N
ol | ot 1

Figure 6.10: Example predictions for the validation set of the Potsdam Dataset. Legend — White: impervious
surfaces. Blue: buildings. Cyan: low vegetation. Green: trees. Yellow: cars. Red: clutter, background.

102 CHAPTER 6. CONVNET-BASED PIXEL CLASSIFICATION

Dense . .
Image nDSM Dilated6 Di-]I));l(?EidG g(l)lglti(:ldS
lated6 g &

Figure 6.11: Example predictions for the test set of the Potsdam Dataset. Legend — White: impervious
surfaces. Blue: buildings. Cyan: low vegetation. Green: trees. Yellow: cars. Red: clutter, background.

Chapter 7

An Introduction to Deep
Morphological Networks

ConvNets |Goodfellow et al., 2016] achieved state-of-the-art in several applications,
including image classification [Krizhevsky et al., 2012; Penatti et al., 2015, object
and scene recognition [Long et al., 2015; Nogueira et al., 2015b; Noh et al., 2015;
Badrinarayanan et al., 2017; Yu and Koltun, 2015; Nogueira et al., 2019b|, and many
others. This network is essentially composed of convolutional layers [Goodfellow et al.,
2016| that process the input using optimizable filters, which are actually responsible
to extract features from the data.

Despite using non-linear activation functions and pooling layers to bring some
non-linearity to the learning process, those convolutional layers only perform linear
operations over the input data, ignoring non-linear processes and the relevant informa-
tion captured by them. For instance, one desires a basic network composed of just one
neuron that always extracts the minimum of the neighborhood defined by its learnable
filter. As presented in Figure 7.1, despite having a myriad of possible configurations, in
this case, the ConvNet is not able to perform such non-linear operation and, therefore,
may not be able to produce the expected output.

Concerning the image characteristics, non-linear operations are able to cope with
some properties better than the linear ones, being preferable in some applications.
Precisely, in some scenarios, such as the remote sensing one, images do not have a
clear concept of perspective (i.e., fore and background) with all objects (or pixels)
having equivalent importance. In these cases, borders and corners can be considered
salient and fundamental features that should be preserved in order to help distinguish
objects (mainly small ones). However, linear transformations (as performed by the

convolutional layers) weight the pixels (with respect to the neighborhood) blurring

103

104 CHAPTER 7. AN INTRODUCTION TO DEEP MORPHOLOGICAL NETWORKS

Possible Outcomes
Filters

Input
Image

Desirad
COutcome

Figure 7.1: Tllustration showing an input image (representing what can be seen as an x-shaped border),
some ConvNet filters and the produced outputs generated by these filters. Note that none of the network
outcomes is similar to the desired output, which was generated using a morphological erosion with a 3 x 3
filter /structuring element, equal to the first one employed by the ConvNet. This shows that regardless of the
filter, the Convolutional Network is not able to produce an output as desired due to its fully linear operations.

edges and losing this notion of borders and corners. Hence, in these applications, edge-
aware filters, such as non-linear operations, can be considered a better option than

linear ones |[Tanizaki, 2013], since they are able to preserve those relevant features.

Supported by this property, some non-linear operations are still very popular be-
ing considered state-of-the-art in some applications, including in remote sensing ones.
A successful non-linear filter are the morphological operations [Serra and Soille, 2012].
Such processes are considered effective tools to automatic extract features but preserv-
ing essential characteristics (such as corners and borders), being still widely employed
and current state-of-the-art in several applications in which such properties are con-
sidered fundamental [Dalla Mura et al., 2010; Xia et al., 2015; Kimori et al., 2016; Seo
et al., 2018|. Although successful in some scenarios, morphological operations have a
relevant drawback: a structuring element (filter used to define the neighborhood that
must be taken into account during the processing) must be defined and provided for
the process. In typical scenarios, since different structuring elements may produce
distinct results depending on the data, it is imperative to design and evaluate many
structuring elements in order to find the most suitable ones for each application, an
expensive process that does not guarantee a good descriptive representation.

Encouraged by the current scenario, in this chapter, we propose a novel method
for deep feature learning, called Deep Morphological Network (DeepMorphNet), which
is capable of doing non-linear morphological operations while performing the feature

learning step (by optimizing the structuring elements). For simplicity, in this work, only

7.1. DEEP MORPHOLOGICAL NETWORKS 105

morphological operations based on binary SEs that operate over one single channel at a
time were considered. This new approach, strongly based on the ConvNets (because of
the similarity between the operation performed by the morphological transformations
and convolutional layers), would aggregate the benefits of morphological operations
while overcoming the aforementioned drawback by learning the structuring element
during the training process. Particularly, the processing of each layer of the proposed
technique can be divided into three steps: (i) the first one employs depthwise convolu-
tions [Chollet, 2017| to rearrange the input pixels according to the binary filters (that
represent the structuring elements), (ii) the second one uses depthwise pooling to select
the pixel (based on erosion and dilation operations) and generate an eroded or dilated
outcome, and (iii) the last one employs pointwise convolutions [Chollet, 2017] to com-
bine the generated maps in order to produce one final morphological map (per neuron).
This whole process resembles the depthwise separable convolutions [Chollet, 2017] but

using binary filters and one more step (depthwise pooling) between the convolutions.

7.1 Deep Morphological Networks

In this section, we present the proposed network, called Deep Morphological Net-
works (or simply DeepMorphNets), capable of doing morphological operations while
optimizing the structuring elements. Technically, this new network is strongly based
on ConvNets mainly because of the similarity between the morphological operations
and convolutional layers, since a significant analogy can be made between the process-
ing operations performed by these transformations (i.e., both probe the image with a
sliding window that defines the neighborhood of interest). Therefore, this new network
seeks to efficiently combine morphological operations and deep learning, aggregating
the ability to learn certain important types of image properties (such as borders and cor-
ners) of the former and the feature learning step of the latter. Such combination would
bring advantages that could assist several applications in which borders and shape are
considered essential. However, there are several challenges in fully integrating morpho-
logical operations and deep learning-based methods, especially convolutional neural
networks.

In this specific case, a first challenge is due to the convolutional layers and their
operations. Precisely, such layers, the basis of ConvNets, extract features from the
input data using an optimizable filter by performing only linear operations not sup-
porting non-linear ones. Formally, let us assume a 3D input y(-) of a convolutional

layer as a mapping from coordinates (Z?) to the pixel-value domain (Z or R). Anal-

106 CHAPTER 7. AN INTRODUCTION TO DEEP MORPHOLOGICAL NETWORKS

ogously, the trainable filter (or weight) W (-) of such layer can be seen as a mapping
from 3D coordinates (Z3) to the real-valued weights (R). A standard convolutional
layer performs a convolution (denoted here as *) of the filter W(-) over the input y(-),
according to Equation 7.1. Note that the output of this operation is the summation of
the linear combination between input and filter (across both space and depth). Also,
observe the difference between this operation and the morphological ones stated in
Section 3.2. This shows that the integration between morphological operations and

convolutional layers is not straightforward.

SW,y) g = W xy)(i,) =
D> Wimn,Dyli+m,j+n,l) (7.1)

Another important challenge is due to the optimization of non-linear operations
by the network. Technically, in ConvNets, a loss function L is defined to allow the
evaluation of the network’s current state and its optimization towards a better state.
Nevertheless, the objective of any network is to minimize this loss function by adjust-
ing the trainable parameters (or filters) . Such optimization is traditionally based
on the derivatives of the loss function £ w.r.t. the weights W. For instance, sup-
pose Stochastic Gradient Descent (SGD) |Goodfellow et al., 2016] is used to optimize
a ConvNet. As presented in Equation 7.2, the optimization of the filters (towards a
better state) depends directly on the partial derivatives of the loss function £ w.r.t. the
weights W (employed with a pre-defined learning rate «). Those partial derivatives
are usually obtained using the backpropagation algorithm [Goodfellow et al., 2016],
which is strongly supported by the fact that all operations of the network are easily
differentiable (w.r.t. the filters), including the convolution presented in Equation 7.1
(since, it is only a linear combination). However, this algorithm can not be directly
applied to non-linear operations, such as the presented morphological ones, because

those operations do not have easy derivatives.

oL

W=W — TG (7.2)

Overcoming such challenges, we propose a novel network, based on ConvNets,

that employs depthwise and pointwise convolution with depthwise pooling to recre-
ate and optimize morphological operations, from basic to complex ones. First, Sec-
tion 7.1.1 introduce the basic concepts used as a foundation for the proposed Deep
Morphological Network. Section 7.1.2 presents the proposed neurons responsible to
perform morphological operations. The proposed morphological layer, composed of

the proposed neurons, is presented in Section 7.1.3. The optimization of the filters

7.1. DEEP MORPHOLOGICAL NETWORKS 107

(also called structuring elements) of such layers is explained in Section 7.1.4. Finally,

the proposed DeepMorphNet architectures are introduced in Section 7.1.5.

7.1.1 Basic Morphological Framework

The combination of morphological operations and deep learning is subject to an es-
sential condition: the new technique should be capable of conserving the end-to-end
learning strategy, i.e., it should be able to blend with the current training procedure.
The reason for this condition is two-folded: (i) to extract the benefits of the feature
learning step (i.e., optimization of the filters) from deep learning, and (ii) to allow the
combination of morphological operations with any other existing operation explored
by deep learning-based approaches. Towards such objective, we have proposed a new
framework, capable of performing morphological erosion and dilation, based on oper-
ations that meet this condition, i.e., neurons based on this framework can be easily
integrated into the standard training process. The processing of this framework can be
separated into two steps. The first one employs depthwise convolution [Chollet, 2017]
to perform a delimitation of features, based on the neighborhood (or filter). As defined
in Equation 7.3, this type of convolution differs from standard ones since it handles the
input depth independently, using the same filter W to every input channel. In other
words, suppose that a layer performing depthwise convolution has k£ filters and receives
an input with [channels, then the processed outcome would be an image of k x [
channels, since each k-th filter would be applied to each I-th input channel. The use
of depthwise convolution simplifies the introduction of morphological operations into
the deep network since the linear combination performed by this convolution does not
consider the depth (as in standard convolutions presented in Equation 7.1). This pro-
cess is fundamental for the recreation of the introduced morphological operations since
such transformations can only process one single channel at a time (as aforementioned
in Section 3.2). Although there are morphological operations capable of handling more
than one channel at a time |[Chevallier et al., 2015|, in this work, as introduced, only
operations based on binary SEs that operate over one single channel at a time were

considered.

SW.)i =Y W(mn)y(i+m,j+n,l) (7.3)

However, just using this type of convolution does not allow the reproduction
of morphological transformations, given that a spatial linear combination is still per-

formed by this convolutional operation. To overcome this, all filters W are first con-

108 CHAPTER 7. AN INTRODUCTION TO DEEP MORPHOLOGICAL NETWORKS

verted into binary and then used in the depthwise convolution operation. Precisely, this
binarization process, referenced hereafter as max-binarize, activates only the highest
value of the filter, i.e., only the highest value is considered active, while all others are
deactivated. Formally, the max-binarize b(-) is a function that receives as input the real-
valued weights W and processes them according to Equation 7.4, where 1{condition}
is the indicator function, that returns 1 if the condition is true and 0 otherwise. This
process outputs a binary version of the weights, denoted here as W?°, in which only the
highest value (in W) is activated (in W?’). By using this binary filter W?, the linear
combination performed by depthwise convolution can be seen as a simple operation

that preserves the exact value of the single pixel activated by this binary filter.

Wiy = bW (i, 7)) = I{mawy;(W(k, j) = W(i,j)} (7.4)

(i,

However, only preserving one pixel w.r.t. the binary filter is not enough to re-
produce the morphological operations, since they usually operate over a neighborhood
(defined by the SE B). In order to reproduce this neighborhood concept in the depth-
wise convolution operation, we decompose each filter IV into several ones, that when
superimposed retrieve the final SE B. More specifically, suppose a filter W with size
s X s. Since only one position can be activated at a time (because of the aforemen-
tioned binarization process), this filter has a total of s* possible activation variations.
Suppose also a SE with size s x s. As explained in Section 3.2, such SE defines the
pixel neighborhood and can have any feasible configuration. Considering each position
of this SE independently, each one can be considered activated (when that position of
the neighborhood should be taken into account) or deactivated (when the neighboring
position should not be taken into account). Therefore, a SE of size s x s has s? possible
configurations when considering each position separately. Based on all this, a set of s?
max-binary filters with size s x s is able to cover all possible configurations of a SE with
the same size, i.e., with this set, it is possible to recreate any feasible configuration of
a s X s SE. Precisely, a set of s? filters with size s x s can be seen as a decomposed
representation of the neighborhood concept (or of the SE) given that those s? filters
(with only a single activated position) can be superimposed in order to retrieve any
possible s x s neighborhood configuration defined by the SE. Supported by this idea,
any s X s SE can be decomposed into s? filters, each one with size s x s and only one
activated value. By doing this, the concept of neighborhood introduced by the SE can
be exploited in depthwise convolution. Particularly, a s2 set of s x s filters W can be
converted into binary weights W (via the aforementioned max-binarize function b(-))

and then, used to process the input data. When exploited by Equation 7.3, each of

7.1. DEEP MORPHOLOGICAL NETWORKS 109

these s% binary filter TW° will preserve only one pixel which is directly related to one
specific position of the neighborhood. Thus, technically, this first step recreates, in
depth, the neighborhood of a pixel delimited by a s x s SE B, which is essentially

represented by s2 binary filters W? of size s x s.

By = 1{D_W*(i,j,1) > 1} (7.5)

Since the SE B was decomposed in depth, in order to retrieve it, a depthwise
operation, presented in Equation 7.5, must be performed over the s? binary filters W?.
Analogously, a depthwise operation is also required to retrieve the final outcome, i.e.,
the eroded or dilated image. This is the second step of this proposed framework,
which is responsible to extract the relevant information based on the depthwise neigh-
borhood. In this step, an operation, called depthwise pooling P(:), performs a pixel
and depthwise process over the s? outcomes (of the decomposed filters), producing the
final morphological outcome. This pooling operation is able to actually output the
morphological erosion and dilation by using pixel and depthwise minimum and max-
imum functions, as presented in Equations 7.6 and 7.7, respectively. Note that the
reproduction of morphological operations using minimum and maximum functions is
only possible because the set created with each pixel position along the channels can
be considered an ordered set (similar to the definition presented in Section 3.2). The
outcome of this second step is the final (eroded or dilated) feature map that will be

exploited by any subsequent process.
Pg(y)(i,j) = mliny(ivja l) (76)

P?(y)i,y) = maxy(i, 1) (7.7)

Equations 7.8 and 7.9 compile the two steps performed by the proposed frame-
work for morphological erosion and dilation, respectively. This operation, denoted here
as M (-), performs a depthwise convolution (first step), which uses (binary) filters that
decompose the representation of the neighborhood concept introduced by SEs, followed
by a pixel and depthwise pooling operation (second step), outputting the final morpho-
logical (eroded or dilated) feature maps. Note the similarity between these functions
and Equations 3.12 and 3.13 presented in Section 3.2. The main difference between
these equations is in the neighborhood definition. While in the standard morphology,
the neighborhood of a pixel is defined spatially (via SE B), in the proposed framework,
the neighborhood is defined along the channels due to the decomposition of the SE B

into several filters and, therefore, minimum and maximum operations also operate over

110 CHAPTER 7. AN INTRODUCTION TO DEEP MORPHOLOGICAL NETWORKS

the channels.
MEW,y) gy = PE(SIWV,9))) = min Sy (W, y)) (7.8)

M (W, y)g) = P (S(W,y)) i) = max S (W, y)) (7.9)

A visual example of the proposed framework being used for morphological erosion

is presented in Figure 7.2. In this example, the depthwise convolution has 4 filters W
with size 4 x 4 which actually represent a unique 4 x 4 SE. The filters W are first
converted into binary using the max-binarize function b(-), presented in Equation 7.4.
Then, each binary filter W? is used to process (step 1, blue dashed rectangle) each
input channel (which, for simplicity, is only one in this example) using Equation 7.3.
In this process, each binary filter W outputs an image in which each pixel has a
direct connection to the one position activated in that filter (that, actually, represents
a neighborhood position activated in the SE B). The output is then processed (step
2, green dotted rectangle) via a pixel and depthwise min-pooling P(-)¢ (according to
Equation 7.6) to produce the final eroded output. Note that the binary filters W?,
when superimposed (using Equation 7.5), retrieve the final SE B. The dotted line
shows that the processing of the input with the superimposed SE B using the standard
morphological erosion (£(-) presented in Equation 3.12) results in the same eroded

output image produced by the proposed morphological erosion.

7.1.2 Morphological Processing Units

The proposed framework is the foundation of all proposed morphological processing
units (or neurons). However, although the proposed framework is able to reproduce
morphological erosion and dilation, it has an important drawback: since it employs
depthwise convolution, the number of outcomes can grow polynomially, given that,
as previously explained, each input channel is processed independently by each pro-
cessing unit. Thus, in order to overcome this issue and make the proposed technique
more scalable, we propose to use a pointwise convolution |Chollet, 2017]| to force each
processing unit to output only one image (or feature map). Particularly, any neuron
proposed in this work has the same design with two parts: (i) the core operation (fun-
damentally based on the proposed framework), in which the processing unit performs
its morphological transformation outputting multiple outcomes, and (ii) the pointwise
convolution [Chollet, 2017|, which performs a pixel and depthwise (linear) combina-
tion of the outputs producing only one outcome. Observe that though the pointwise

convolution performs a depthwise combination of the multiple outcomes, it does not

7.1. DEEP MORPHOLOGICAL NETWORKS 111

11x1 Depthwise -

. w b)) we * min-pooling :

USRI roded

Superimposed

structuring
: elementB L~ :
e P E()orenererrnneeeenes :

Figure 7.2: Example of a morphological erosion based on the proposed framework. The 4 filters W (with
size 4 x 4) actually represent a unique 4 x 4 SE. Each filter W is first converted to binary WP, and then
used to process each input channel (step 1, blue dashed rectangle). The output is then processed via a pixel
and depthwise min-pooling to produce the final eroded output (step 2, green dotted rectangle). Note that the
binary filters W°, when superimposed, retrieve the final SE B. The dotted line shows that the processing of
the input with the superimposed SE B using the standard morphological erosion results in the same eroded
output image produced by the proposed morphological erosion.

learn any spatial feature, since it employs a pixelwise (or pointwise) operation, man-
aging each pixel separately. This design allows the morphological neuron to have the
exact same input and output of a standard existing processing unit, i.e., it receives
as input an image with any number of bands and outputs a single new representa-
tion. It is interesting to notice that this processing unit design employs depthwise and
pointwise convolution [Chollet, 2017|, resembling very much the depthwise separable
convolutions [Chollet, 2017], but with extra steps and binary decomposed filters. Next
Sections explain the core operation of all proposed morphological processing units.
Note that these neurons were conceived to be equivalent in terms of operations. There-
fore, all of them have, exactly, two operations (based on the proposed framework). Also
observe that, although not mentioned in the next Sections, the pointwise convolution

is present in all processing units proposed in this work.

7.1.2.1 Composed Processing Units

The newly introduced framework allows a deep network to perform erosion and dila-
tion, the two basic operations of morphology. However, instead of using such operations

independently, the first proposed processing unit is based on both morphological trans-

112 CHAPTER 7. AN INTRODUCTION TO DEEP MORPHOLOGICAL NETWORKS

MY
MCs tied weights
S 3 3
S = S
(a) Composed Neuron (b) Opening Neuron
M7 MZ.
tdentity identity

opening M7
dilation M?

erosion M¢

(c) White Top-hat Neuron (d) Reconstruction by Erosion Neuron

Figure 7.3: Definition of morphological neurons based on the proposed framework. In this case, just one
type of each neuron is represented. Some neurons have tied weights to force the network to use the same
filters (i.e. SE) in both operations. Other neurons have skip connections in order to allow an new operation
using the original input and the processed data.

formations. The so-called composed processing units, which are totally based on the
proposed framework, have in their core a morphological erosion followed by a dilation
(or vice-versa), without any constraint on the weights (i.e., on the SE). The moti-
vation behind the composed processing unit is based on the potential of the learned
representation. While erosion and dilation can learn simple representations, the com-
bination of these operations is able to capture more complex information. Formally,
Equations 7.10 and 7.11 present the two possible configurations of the morphological
composed neurons. It is important to notice that the weights (W; and W) of each
operation of this neuron are independent. Aside from this, a visual representation of

one type of composed neuron can be seen in Figure 7.3a.

M (W,y) = M°(Wa, M (Wh,y)) (7.10)
MW, y) = M (Wa, M° (W1, y)) (7.11)

7.1.2.2 Opening and Closing Processing Units

Aside from implementing morphological erosion and dilation, the proposed framework

is also able to support the implementation of other, more complex, morphological

7.1. DEEP MORPHOLOGICAL NETWORKS 113

operations (or their approximations). The most intuitive and simple transformations
to be implemented are the opening and closing. As stated in Section 3.2, an opening is
simply an erosion operation followed by a dilation of the eroded output (Equation 3.14),
while closing is the reverse operation (Equation 3.15). In both cases, the two basic
operations (erosion and dilation or vice-versa) use the same SE B. Based on this,
the implementation of the opening and closing processing units, using the proposed
framework, is straightforward. Precisely, the core of such neurons is very similar to that
of the composed processing units, except that in this case a tie on the filters of the two
basic morphological operations is required in order to make them use the same weights,
i.e., the same SE B. A visual representation of the proposed opening neuron, presented
in Figure 7.3b, allows a better view of the operation. Formally, Equations 7.12 and 7.13
define the opening and closing morphological neurons, respectively. Note the similarity

between these functions and Equations 3.14 and 3.15.

7.1.2.3 Top-hat Processing Units

The implementation of other, more complex, morphological operations is a little more
tricky. This is the case of the top-hat operations, which require both the input and
processed data to generate the final outcome. Therefore, for such operations, a skip
connection |Goodfellow et al., 2016; He et al., 2016| (based on the identity mapping)
is employed to support the forwarding of the input data, allowing it to be further
processed. The core of the top-hat processing units is composed of three parts: (i)
an opening or closing morphological processing unit (depending on the type of the
top-hat), (ii) a skip connection, that allows the forwarding of the input data, and (iii)
a subtraction function that operates over the data of both previous parts, generating
the final outcome. A visual concept of the white top-hat neuron is presented in Fig-
ure 7.3c. Such operation and its counterpart (the black top-hat) are formally defined
in Equations 7.14 and 7.15, respectively.

M (W,y) =y — M"(W,y) (7.14)
MT'(W,y) = M?(W,y) —y (7.15)

114 CHAPTER 7. AN INTRODUCTION TO DEEP MORPHOLOGICAL NETWORKS

7.1.2.4 Geodesic Reconstruction Processing Units

Similarly to the previous processing units, the geodesic reconstruction also requires the
input and processed data in order to produce the final outcome. Hence, the imple-
mentation of this important operation is also based on skip connections. Aside from
this, as presented in Section 3.2, reconstruction operations require an iterative process.
Although this procedure is capable of producing better outcomes, its introduction in
a deep network is not straightforward (given that each process can take a different
number of iterations). Supported by this, the reconstruction processing units proposed
in this work are an approximation, in which just one transformation over the marker
image is performed (and not several iterations). Particularly, the input is processed by
two basic morphological operations (without any iteration) and an elementwise max-
or min-operation (depending on the reconstruction) is performed over the input and
processed images. Such concept is formally presented in Equations 7.16 and 7.17 for
reconstruction by erosion and dilation, respectively. A visual representation of the
processing unit for reconstruction by erosion is presented in Figure 7.3d. Note that
the SE used in the reconstruction of the marker image (denoted in Section 3.2 by B’)
is a dilated version of the SE employed to create such image, i.e., the SE exploited in
the second morphological operation is a dilated version of the SE employed in the first

transformation.

MP (W.y) = My (W, M (W, y)) 7.16)
MP (W, y) = MJ(W, ME(W,y)) (7.17)

7.1.3 Morphological Layer

After defining the processing units, we are able to formally specify the morphologi-
cal layers, which provide the essential tools for the creation of the DeepMorphNets.
Similar to the standard convolutional layer, this one is composed of several process-
ing units. However, the proposed morphological layer has two main differences when
conceptually compared to the standard one. The first one is related to the neurons
that compose the layers. Precisely, in convolutional layers, the neurons are able to
perform the convolution operation. Though the filter of each neuron can be different,
the operation performed by each processing unit in a convolutional layer is a simple
convolution. On the other hand, there are several types of morphological processing
units, from opening and closing to geodesic reconstruction. Therefore, a single mor-

phological layer can be composed of several neurons that may be performing different

7.1. DEEP MORPHOLOGICAL NETWORKS 115

operations. This process allows the layer to produce distinct (and possibly comple-
mentary) outputs, increasing the heterogeneity of the network and, consequently, the
generalization capacity. The second difference is the absence of activation functions.
More specifically, in modern architectures, convolutional layers are usually composed
of a convolution operation followed by an activation function (such as ReLU [Nair and
Hinton, 2010]), that explicitly maps the data into a non-linear space. In morphological
layers, there are only processing units and no activation function is employed. This is
due to the fact that such functions may change drastically the values of the pixels, an

undesired effect in the mathematical morphology.

Figure 7.4 presents the concept of a single morphological layer. Observe that each
neuron is performing a specific operation and outputting only one feature map. Also,
note that, although the input has ¢ channels, supported by the pointwise convolution,
each neuron outputs only one feature map. Hence, the number of outputted maps is
directly connected to the number of neurons in that layer. In Figure 7.4, the layer has

n neurons that, consequently, produce n feature maps.

morphological layer
with n_neurons

output data

input data

c-dimensional

@ n-dimensional

Figure 7.4: Concept of a morphological layer. Note that a single morphological layer can have neurons per-
forming different operations. This process is able to aggregate heterogeneous and complementary information.

116 CHAPTER 7. AN INTRODUCTION TO DEEP MORPHOLOGICAL NETWORKS

7.1.4 Optimization

Aside from defining the morphological layer, as introduced, we must optimize its pa-
rameters, i.e., the filters . Since the proposed morphological layer uses common
(derivable) operations already employed in other existing deep learning-based methods,
the optimization of the filters is straightforward. In fact, the same traditional existing
techniques employed in the training of any deep learning-based approach, such feed-
forward, backpropagation and Stochastic Gradient Descent (SGD) |Goodfellow et al.,

2016|, can also be used for optimizing a network composed of morphological layers.

The whole training procedure is detailed in Algorithm 2. Given the training data
(yo, ™), the first step is the feedforward, comprised in the loop from line 2 to 12. In line
4, the weights of the first depthwise convolution are converted into binary (according
to Equation 7.4). Then, in line 5, the first depthwise convolution is performed, while
the first depthwise pooling is executed in line 6. The same operations are repeated in
line 8 to 10 for the second depthwise convolution and pooling. Finally, in line 11, the
pointwise convolution is carried out. After the forward propagation, the total error
of the network can be estimated. With this error, the gradients of the last layer can
be directly estimated (line 14). These gradients can be used by the backpropagation
algorithm to calculate the gradients of the inner layers. In fact, this is the process
performed in the second training step, comprised in the loop from line 15 to 22. It
is important to highlight that during the backpropagation process, the gradients are
calculated normally, using real-valued numbers (and not binary). Precisely, lines 16 and
17 are responsible for the optimization of the pointwise convolution. Line 16 propagates
the error of a specific pointwise convolution to the previous operation, while in line 17
calculates the error of that specific pointwise convolution operation. The same process
is repeated for the second and then for the first depthwise convolutions (lines 18-19 and
20-21, respectively). Note that during the backpropagation, the depthwise pooling is
not optimized since this operation has no parameters and only passes the gradients to
the previous layer (similar to the backpropagation employed in the max-pooling layers
commonly explored in ConvNets). The third and last step of the training process is
the update of the weights and optimization of the network. This process is comprised
in the loop from line 24 to 28. Observe that, for simplicity, Algorithm 2 uses SGD to
optimize the network, however, any other optimization algorithm could be exploited.
For a specific layer, line 25 updates the weights of the pointwise convolution while
lines 26 and 27 update the parameters of the first and second depthwise convolutions,

respectively.

7.1. DEEP MORPHOLOGICAL NETWORKS 117

ALGORITHM 2
Training a Deep Morphological Network with L layers.

Require: a minibatch of inputs and targets (yo,y*), previous weights W, and previous
learning rate a.
Ensure: updated weights W.
1: 1. Forward propagation:
2: para k=1 to L facga

3: {First Processing Unit Operation}

4 WP b(Wk(l)) {Binarization}

5: 5,(;) — Ypo1 * W,f(l) {Depthwise Convolution}
6: y,(cl) — P(s,(:)) {Depthwise Pooling}

7. {Second Processing Unit Operation}

g WP b(Wk(Q)) {Binarization}

9: s,(f) — y,(;) « W {Depthwise Convolution}
10: y,?) — P(s,(f)) {Depthwise Pooling}

11 Yy < y,(f) * Wk(“l)

12: fim para
13: 2. Backpropagation: {Gradients are not binary.}
14: Compute g,m = % knowing y; and y*

L

{Pointwise Convolution}

15: para k—L to 1 faga
1x1
16: Gy %—-gyg>VVéfj)
].7: X <— T _
gwlgill) gy}(j)yk 1

b(2)
18: gyﬁ?l é_'gykflvvk—»]

(2)
19: gW£(2f 90 Ybo1

p(1)
20 g —ge= W
Yr-1 Yr-1

1)
21: m —q' ”
Iy T Iy, e

22: fim para
23: 3. Update the weights (via SGD):
24: para k=1 to L faca
25: VVéle)4-LV§1X1)——(lgwﬂ1xn
k

26: l1/}§1) — l473§l) — CY{]‘%/b(l)

k
27: LVém é—I@iz)—-&gmw@)

k
28: fim para

118 CHAPTER 7. AN INTRODUCTION TO DEEP MORPHOLOGICAL NETWORKS

7.1.5 DeepMorphNet Architecture

With all the fundamentals defined, we can finally specify the DeepMorphNet architec-
tures exploited in this work. Particularly, three networks, composed of morphological
and fully connected layers, were proposed for image classification. Although such archi-
tectures have distinct designs, the pointwise convolutions exploited in the morpholog-
ical layers have always the same configuration: kernel 1 x 1, stride 1, and no padding.
This is due to the fact this configuration does not allow the layer to learn and extract
spatial information (what should be performed by the morphological layers) but only
a pixel-level combination. Furthermore, all networks use cross-entropy as loss function

and Stochastic Gradient Descent as optimization algorithm |Goodfellow et al., 2016].

The first network, presented in Figure 7.5a, is the simplest one, having just a
unique layer composed of one morphological opening M? (with kernel size of 11 x 11,
stride 1 and padding 5 for both depthwise convolutions). In fact, this architecture
was only designed to be used with the proposed synthetic datasets (as introduced
in Section 7.2.1.1). Because of this, such network is referenced hereafter as Deep-
MorphSynNet. Technically, this network was only conceived to validate the learning

process of the proposed framework as explained in Section 7.3.1.

The second proposed network, presented in Figure 7.5b, is a morphological ver-
sion of the famous LeNet architecture [LeCun et al., 1998]. In virtue of this, such
network is called here as DeepMorphLeNet. Formally, this architecture is composed
of two morphological and three fully connected layers. The first layer has 6 neurons
equally divided into the two types of composed processing units (M€ and M%), The
processing units of this first layer have kernels of size 5 x5, and stride and padding equal
2 (for both depthwise convolutions). The second morphological layer has 16 neurons:
3 of the first type of composed processing units M€, 3 of the second type of composed
neurons MY, 3 reconstruction by erosion M?° and 2 by dilation M?°, 2 white MT"
and 3 black top hats MT". This layer has kernel filters of size 5 x 5, with stride 1,
and padding 2 for both depthwise convolutions. After the morphological layers, three
fully connected ones are responsible to learn high-level features and perform the final
classification. The first layer has 120 neurons while the second has 84 processing units.
Both layers use RelL.Us [Nair and Hinton, 2010] as the activation function. Finally, the
last fully connected has the number of neurons equal the number of class of training

dataset and uses softmax as the activation function.

To analyze the effectiveness of the technique in a more complex scenario, we
proposed a larger network based on the famous AlexNet |[Krizhevsky et al., 2012]

architecture. However, in order to have more control of the trainable parameters, the

7.2. EXPERIMENTAL SETUP 119

proposed morphological version of the AlexNet architecture |Krizhevsky et al., 2012],
called DeepMorphAlexNet and presented in Figure 7.5¢, has the same number of
layers but less neurons in each layer. The morphological first layer has 8 processing
units: 4 related to the first type of composed neurons M€ and 4 related to the second
type of composed neurons M%. Furthermore, in this layer, the kernels have size of
11 x 11 (for both depthwise convolutions) and stride of 1 and 5, and padding of 5 and
2, for the first and second depthwise convolutions, respectively. The second layer has
24 neurons, with 4 for each of the following operations: first (M “¢) and second (M%)
types of composed processing units, reconstruction by erosion M and by dilation
Mﬁé, white M7" and black MT" top hats. In this layer, the kernels have size of 5 x 5,
with stride 1, and padding 2 for both depthwise convolutions. The third morphological
layer has 48 neurons equally divided into the two types of composed processing units
(MC% and M). This layer has the kernels of size 3 x 3 (for both convolutions) and
stride 1 and 3, and padding 1 and 0, for the first and second depthwise convolutions,
respectively. The fourth layer has 32 neurons: 6 of the first (M) and second (M%)
types of composed processing units, 5 reconstruction by erosion M and 5 by dilation
M? 5 white M7 and 5 black M7 top hats. Moreover, this layer has, for both
convolutions, the following parameter configuration: kernel filters of size 3 x 3, and
stride and padding equal 1. The fifth (and last) morphological layer has 32 neurons
also equally divided into the two types of composed processing units (M€ and M%).
This layer has kernel of size 3 x 3 (for both convolutions), and stride of 1 and 2, and
padding of 1 and 0, for the first and second depthwise convolutions, respectively. In the
end, three fully connected layers are responsible to learn high-level features and perform
the final classification. Similarly to the DeepMorphLeNet, the first two layers have 512
neurons (with RelLUs [Nair and Hinton, 2010] as the activation function) while the
last one has the number of neurons equal the number of classes of the training dataset

(with softmax as activation function).

7.2 Experimental Setup

In this section, we present the experimental setup. Section 7.2.1 presents specific
datasets employed to validate the proposed technique. Baselines are described in Sec-

tion 7.2.2 while the experimental protocol is introduced in Section 7.2.3.

120 CHAPTER 7. AN INTRODUCTION TO DEEP MORPHOLOGICAL NETWORKS

Morphological Morphological Morphological Fully Fully
Layer 1 Layer 1 - Layer 2 — Connected 1 Connected 2
Neurons =1 Neurons = 6 L
S 3x MOs,3x MOe| [SMCsACena?] Classi fication
Kernel =11 x 11 Classi fication Kernel =5 x5 Zxﬂlfg;rlexl ;bxd\ag ReLUs = 120 ReLUs — 84 ‘Léye} ion|
Strides =1,1 Hager Strides =2,2 Strides = 1,1
Paddings = 5,5 Paddings = 2,2 Paddings = 2 2
;

(a) Simple DeepMorphSynNet (b) DeepMorphLeNet version of the LeNet archicture [LeCun et al.,
proposed for evaluating the 199§|
learning process

Morphological Morphological Fully Fully
Layer 1 Layer 2 Im/Fr& Luum 4 Lauev 5 Connected 1 Connected 2

Neurons = 8 Neurons = 24 Neurons = 48 Neurons = 32 Neurons = 32
4 x MCs,4 x MCe 4x M Cs, 4><MTCW4><Mi 24 x MCs, 24 x MC| 6 MC36x MO 5x M7, 16 x MC5,16 x M| Classi ficati
Kernel = 11 x 11 P Kernel = 3 x 3 xy{"ﬂzfl’;fwjgﬂ Kernel =3x 3 ReLUS = 512 ReLUS = 512 “SZZ’Z;: on
P 1
Strides = 1,5 Strides 1,1 Strides = 1,3 Stridos = 1.1 Pit;;fzss 1?0
Paddings = 5,2 Paddings = 2,2 Paddings = 2,0 Paddings=1,1 9:

(c) DeepMorphAlexNet conceived based on the AlexNet [Krizhevsky et al., 2012]

Figure 7.5: The three Deep Morphological Network (DeepMorphNet) architectures proposed and exploited
in this work. Note that the number of morphological neurons of each type in each layer is codified using the
Equations of Section 7.1.2. Also, observe that the two depthwise convolutions of a same layer share the kernel
size, sometimes differing only in the stride and padding. Moreover, the padding and stride of each layer are
presented as follows: the value related to the first depthwise convolution is reported separated by a comma
of the value related to the second depthwise convolution. Though not visually represented, the pointwise
convolutions explored in the morphological layers always use the same configuration: kernel 1 x 1, stride 1,
and no padding.

7.2.1 Specific Datasets

Four datasets were employed to validate the proposed DeepMorphNets. Two of them
(UCMerced Land-use and WHU-RS19 datasets) have already been presented in Sec-
tion 4.1.1. The other two are synthetic datasets that were exclusively designed to check

the feature learning of the proposed technique.

7.2.1.1 Synthetic Datasets

As introduced, two simple image classification datasets were designed in this work to
validate the feature learning process of the proposed DeepMorphNets. In order to allow
such validation, these datasets were created so that it is possible to define, a priori,
the optimal structuring element (i.e., the SE that would produce the best results) for
a classification scenario. Hence, in this case, the validation would be performed by
comparing the learned structuring element with the optimal one, i.e., if both SEs are
similar, then the proposed technique is able to perform well the feature learning step.

Specifically, both datasets are composed of 1,000 grayscale images with a resolu-
tion of 224 x 224 pixels (a common image size employed in famous architecture such
as AlexNet [Krizhevsky et al., 2012]) equally divided into two classes.

The first dataset has two classes of squares: (i) a small one, with 5 x 5 pixels,
and (ii) a large one, with 9 x 9 pixels. In this case, a simple opening with a square

structuring element larger than 5 x 5 but smaller than 9 x 9 should erode the small

7.2. EXPERIMENTAL SETUP 121

squares while keeping the larger ones, allowing the network to perfectly classify the

dataset.

More difficult, the second synthetic dataset has two classes of rectangles. The
first class has shapes of 7 x 3 pixels while the other one has rectangles of 3 x 7. This case
is a little more complicated because the network should learn a structuring element
based on the orientation of one the rectangles. Particularly, it is possible to perfectly
classify this dataset using a single opening operation with one of the following types of
SEs: (i) a rectangle of at least 7 pixels of width and height larger than 3 but smaller
than 7 pixels, which would erode the first class of rectangles and preserve the second
one, or (ii) a rectangle with a width larger than 3 but smaller than 7 pixels and height
larger than 7 pixels, which would erode the second class of rectangle while keeping the

first one.

7.2.2 Baselines

For all datasets, two baselines were used. The first baseline is a standard convolutional
version of the proposed DeepMorphNet. Precisely, this baseline recreates the exact
morphological architecture using the traditional convolutional layer (instead of depth-
wise and pointwise convolutions) but preserving all remaining configurations (such as
filter sizes, padding, stride, etc). Furthermore, differently from the morphological net-
works, this baseline makes use of max-pooling layers between the convolutions, which
makes it very similar to the traditional architectures of the literature [LeCun et al.,
1998; Krizhevsky et al., 2012]. The second baseline, referenced hereafter with the
prefix “Depth”, is exactly the DeepMorphNet architecture but without using binary
weights and depthwise pooling. This baseline reproduces the same DeepMorphNet ar-
chitecture using only depthwise and pointwise convolutions (i.e., depthwise separable

convolution [Chollet, 2017]) without binary weights.

Differently from the morphological networks, both baselines use Rectified Linear
Units (ReLUs) [Nair and Hinton, 2010] as activation functions and batch normaliza-
tion [loffe and Szegedy, 2015| (after each convolution). It is important to highlight
that, despite the differences, both baselines have the exact same number of layers and
feature maps of the base DeepMorphNet. We believe that this conservation allows
a fair comparison between the models given that the potential representation of the

networks is somehow the same.

122 CHAPTER 7. AN INTRODUCTION TO DEEP MORPHOLOGICAL NETWORKS

7.2.3 Experimental Protocol

For synthetic datasets, the train/test protocol, presented in Section 4.2, was employed.
Particularly, in this case, the whole dataset is randomly divided into three sets: training
(composed of 60% of the instances), validation and test (each one composed of 20% of
the dataset samples). Once determined, these sets are used throughout the experiments
for all networks and baselines. Results of this protocol are reported in terms of the
average accuracy (presented in Section 4.3) of the test set.

For the other datasets, a 5-fold cross-validation was conducted to assess the ac-
curacy of the proposed algorithm. In this case, the final results are the mean of the
average accuracy (for the test set) of the five runs followed by its corresponding stan-
dard deviation.

All networks proposed in this work were implemented using Torch!, a scientific
computing framework with wide support for machine learning algorithms. This frame-
work is more suitable due to its support to parallel programming using CUDA, an
NVidia parallel programming based on Graphics Processing Units. All experiments
were performed on a 64 bit Intel i7 5930K machine with 3.5GHz of clock, 64GB of
RAM memory and a GeForce GTX Titan X Pascal with 12GB of memory under a 9.0
CUDA version. Ubuntu version 18.04.1 LTS was used as operating system.

7.3 Results and Discussion

In this section, we present and discuss the obtained outcomes. Section 7.3.1 presents
the results of the synthetic datasets while Section 7.3.2 discusses about the experiments

over the image classification datasets.

7.3.1 Synthetic Datasets

As explained in Section 7.2.1.1, two synthetic datasets were proposed in this work
to validate the feature learning of the deep morphological networks. Furthermore, as
introduced, both datasets can be perfectly classified using one opening with specific
structuring elements. Supported by this, the basic DeepMorphSynNet (Figure 7.5a),
composed of one opening neuron, can be used to validate the feature learning process of
the proposed technique, given that this network has the capacity of perfectly classifying

the datasets as long as it successfully learns the SE.

http://torch.ch/ (as of May 2019).

7.3. RESULTS AND DISCUSSION 123

Table 7.1: Results, in terms of average accuracy, of the proposed method and the baselines for the square
synthetic dataset (Section 7.2.1.1).

Method Average Accuracy (%)
Classification Layer 86.50
ConvNet 58.00
Depth-ConvNet 60.00
DeepMorphSynNet 100.00

Given the simplicity of these datasets, aside from the methods describe in Sec-
tion 6.2.1, we also employed as baseline a basic architecture composed uniquely of a
classification layer. Specifically, this network has one layer that receives a linearized
version of the input data and outputs the classification. The proposed morphological
network, as well as the baselines, were tested for both synthetic datasets using the same
configuration, i.e., learning rate, weight decay, momentum, and number of epochs of
0.01, 0.0005, 0.9, and 10, respectively.

Results for the synthetic square dataset are presented in Table 7.1. Among the
baselines, the worst results were generated by the ConvNets while the best outcome
was produced by the network composed of a single classification layer (86.50%). A
reason for this is that the proposed dataset does not have much visual information to
be extracted by the convolution layers. Hence, in this case, the raw pixels themselves
are able to provide relevant information (such as the total amount of pixels of the
square) for the classification. However, the result yielded by the best baseline (the
network composed of the classification layer) was worse than the result generated by
the proposed morphological network. Precisely, the DeepMorphSynNet yielded a 100%
of average accuracy, perfectly classifying the whole test set of this synthetic dataset. As
introduced in Section 7.2.1.1, in order to achieve this perfect classification, the opening
would require a square structuring element larger than 5 x 5 but smaller than 9 x 9
pixels. As presented in Figure 7.6a, this was exactly the structuring element learned
by the network. Moreover, as introduced, with this SE, the opening would erode the
small 5 x 5 squares while keeping the larger 9 x 9 ones. This was the exact outcome of

the morphological network, as presented in Figure 7.7.

Results for the synthetic rectangle dataset are presented in Table 7.2. Differently
from the synthetic square dataset, the network composed of a single classification layer
produced the worst outcome while the convolutional architectures yielded perfect re-
sults (100%). This difference may be justified by the fact that this is a more complex
dataset that has two classes with equal shapes but differing in other relevant proper-

ties (such as the orientation) that may be extracted by the convolution layers. Also

124 CHAPTER 7. AN INTRODUCTION TO DEEP MORPHOLOGICAL NETWORKS

,-

(a) Synthetic (b) Syn-
square dataset thetic rectangle
dataset

Figure 7.6: Learned structuring elements for the synthetic datasets. In both cases, the learned SEs are
exactly as expected, i.e., a square SE larger than 5 x 5 but smaller than 9 x 9 for the square synthetic dataset,
and a rectangle larger than the rectangles of one class and in the same orientation for the rectangle synthetic
dataset.

) Class 1: Square 5 (b) Class 2: Square 9 x 9

Figure 7.7: Examples of the output of the opening neuron for the square synthetic dataset. The first column
represents the input image, the second one is the output of the erosion, and the last one is the output of the
dilation. Since erosion and dilation have tied weights (i.e., the same structuring element), they implement an
opening.

Table 7.2: Results, in terms of average accuracy, of the proposed method and the baselines for the synthetic
rectangle dataset (Section 7.2.1.1).

Method Average Accuracy (%)
Classification Layer 55.00
ConvNet 100.00
Depth-ConvINet 100.00
DeepMorphSynNet 100.00

different from previous outcomes, in this case, the proposed DeepMorphSynNet and
best baselines produced the same results (100% of average accuracy), perfectly classi-
fying this synthetic dataset. As introduced in Section 7.2.1.1, to perform this perfect
classification, the opening operation (of the DeepMorphSynNet) would require a spe-
cific SE that should have the same orientation of one of the rectangles. As presented
in Figure 7.6b, this is the SE learned by the morphological network. With such filter,
the opening operation would erode the one type of rectangles while keeping the other,
the exact outcome presented in Figure 7.8.

Results obtained with the synthetic datasets show that the proposed morpho-
logical networks are able to optimize and learn interesting structuring elements.

Furthermore, in some scenarios, such as those simulated by the synthetic datasets,

7.3. RESULTS AND DISCUSSION 125

(a) Class 1: Rectangle 7 x 3 (b) Class 2: Rectangle 3 x 7

Figure 7.8: Examples of the output of the opening neuron for the synthetic rectangle dataset. The first
column represents the input image, the second one is the output of the erosion, and the last one is the output of
the dilation. Since erosion and dilation have tied weights (i.e., the same structuring element), they implement
an opening.

the DeepMorphNets have achieved promising results. A better analysis of the poten-
tial of the proposed technique is performed in the next section using real (not synthetic)

datasets.

7.3.2 Image Classification Datasets

For the image classification datasets, aside from the methods describe in Section 6.2.1,
we also employed as baseline an approach, called hereafter as Static SEs, that repro-
duces the exactly morphological architectures but with static (non-optimized) struc-
turing elements. In this case, each neuron has the configuration based on the 5 most
common structuring elements (presented in Figure 3.5). The features extracted by
these static neurons are classified by a Support Vector Machine (SVM). The idea be-
hind this baseline is to have a lower bound for the morphological network, given that
this proposed approach should be able to learn better structuring elements and, con-
sequently, produce superior results.

Aside from this, for both datasets, all networks were tested using essentially the
same configuration, i.e., bath size, learning rate, weight decay, and momentum of 16,
0.01, 0.0005, and 0.9, respectively. The only difference in the experiments is related to
the number of epochs. Precisely, the L.eNet-based architectures were trained using 500

epochs while for the AlexNet-based networks, 2,000 epochs were employed.

7.3.2.1 UCMerced Land-use Dataset

Results for the UCMerced Land-use dataset are reported in Table 7.3. In this case, all
networks outperformed their respective lower bounds (generated by the Static SEs),
an expected outcome given the feature learning step performed by the deep learning-
based approaches. Considering the LeNet-based networks, the best result, among the
baselines, was produced by the architecture based on depthwise separable convolu-
tions [Chollet, 2017, i.e., the Depth-LeNet. The proposed DeepMorphLeNet produced

126 CHAPTER 7. AN INTRODUCTION TO DEEP MORPHOLOGICAL NETWORKS

Table 7.3: Results, in terms of accuracy, of the proposed method and the baselines for the UCMerced
Land-use Dataset.

Average Number of Training
Method Accuracy (%) Parameters Time
(millions) (hours per fold)
Static SEs 19.46+2.06 - -
LeNet [LeCun et al., 1998] 53.2940.86 4.42 1.2
Depth-LeNet 54.81£1.25 5.04 6.2
DeepMorphLeNet (ours) 56.52+1.74 6.04 7.8
Static SEs 28.21£2.64 - -
AlexNet-based |Krizhevsky et al., 2012] 72.62+1.05 6.50 8.5
Depth-AlexNet-based 73.14+1.43 7.47 101.1
DeepMorphAlexNet (ours) 76.86£1.97 10.50 209.9

similar results when compared to this baseline, which shows the potential of the pro-
posed technique that optimizes the morphological filters to extract salient and relevant
features.

The exact same conclusions can be drawn from the AlexNet-based net-
works. Specifically, the best baseline was the Depth-AlexNet-based, that produces
73.1441.43% of average accuracy. However, again, the proposed DeepMorphAlexNet
yielded competitive results when compared to this baseline (76.86+1.97% of average
accuracy). These results show that morphological operations are able to learn useful
features. Some of these feature maps of the AlexNet-based architectures are presented
in Figure 7.10. Note the difference between the characteristics learned by the distinct
networks. In general, the morphological network is able to capture different features
when compared to the ConvNets.

In order to better evaluate the proposed morphological network, a convergence
analysis for the UCMerced Land-use dataset is presented in Figure 7.9a. Note that
the DeepMorphNets are slower to converge compared to the other networks. A
reason for that is the number of trainable parameters. As presented in Table 7.3,
the DeepMorphNets have more parameters and, therefore, are more complex to train.
However, given enough training time, all networks converge very similarly, which con-
firms that the proposed DeepMorphNets are able to effectively learn interesting SEs

and converge to a suitable solution.

7.3.2.2 WHU-RS19 Dataset

Table 7.4 presents the results related to the WHU-RS19 dataset. Again, as expected, all
architectures outperformed their respective lower bounds (generated by the Static SEs).

Considering the LeNet-based networks, the best result, among the baselines, was pro-

7.4. CONCLUSION 127

----- LeNet B
—==- Depth-LeNet
—— DeepMorphLeNet

----- AlexNet-based -=--+ LeNet
——- Depth-AlexNet-based ——- Depth-LeNet
—— DeepMorphAlexNet A —— DeepMorphLeNet

----- AlexNet-based
——- Depth-AlexNet-based
—— DeepMorphAlexNet

N
= VNS st !

0 100 200 300 400 500 00 500 100(‘) 1.50(; 2000 OU 100 200 300 400 500 GO 500 1000 ‘1;00 2000
#epochs #epochs #epochs #epochs
(a) UCMerced Land-use Dataset (b) WHU-RS19 Dataset

Figure 7.9: Convergence of the proposed morphological networks and the baselines for both datasets. Note
that only fold 1 is reported.

duced by the LeNet architecture [LeCun et al., 1998|. The proposed DeepMorphLeNet
generated competitive results when compared to this baseline, corroborating with pre-
vious conclusions about the ability of the proposed technique to optimize the morpho-
logical filters and extract important features.

As for the UCMerced Land-use dataset, the exact same conclusions can be drawn
from the AlexNet-based networks. In this case, the best baseline was the AlexNet-based
network, that produces 64.384+2.93% of average accuracy. However, the proposed Deep-
MorphAlexNet produced similar results when compared to this baseline (68.20 +-2.75%
of average accuracy). These results reaffirm the previous conclusions related to the
ability of the morphological networks to capture interesting information. Figure 7.11
presents some feature maps learned by the AlexNet-based networks for the WHU-RS19
Dataset. Again, it is remarkable the difference between the features extracted by the
different architectures. Overall, the DeepMorphNet is capable of learning specific and
distinct features when compared to the ConvNets.

As for the previous dataset, a convergence analysis for the WHU-RS19 dataset is
presented in Figure 7.9b. Again, although the DeepMorphNets are slower to converge
(mainly due to the number trainable parameters, as presented in Table 7.4), they
are able to achieve similar results if enough time is provided for training the model,

corroborating with previous conclusions.

7.4 Conclusion

In this chapter, we proposed a novel method for deep feature learning, called Deep
Morphological Network (DeepMorphNet), that is able to do morphological opera-
tions while optimizing their structuring elements toward a better solution. This pro-
posed DeepMorphNet is composed of morphological layers, which are strongly based
on a framework that is basically consisted of depthwise convolutions (that process the

input with decomposed binary weights) and pooling layers. Such framework provides

128 CHAPTER 7. AN INTRODUCTION TO DEEP MORPHOLOGICAL NETWORKS

Input

Image
= T———

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 7.10: Input images and some produced (upsampled) feature maps extracted from all layers of the
AlexNet-based networks for the UCMerced Land-use Dataset. For each input image: the first row presents
features from the AlexNet-based network, the second row presents the feature maps learned by the Depth-
AlexNet-based architecture, and the last row presents the features of the proposed morphological network.

support for the creation of the basic morphological layers that perform erosion and dila-
tion. This basic layer, in turn, allows the creation of other more complex layers, which
may perform opening, dilation, (black and white) top-hat, and (an approximation of)
geodesic reconstruction (by erosion or dilation). The proposed approach is trained end-
to-end using standard algorithms employed in deep learning-based networks, including
backpropagation and Stochastic Gradient Descent (SGD) |Goodfellow et al., 2016].

Experiments were first conducted on two synthetic datasets in order to analyze

7.4. CONCLUSION 129

Table 7.4: Results, in terms of average accuracy, of the proposed DeepMorphNets and baselines for the
WHU-RS19 dataset.

Average Number of Training
Method Accuracy (%) Parameters Time
(millions) (hours per fold)
Static SEs 15.17+2.83 - -
LeNet [LeCun et al., 1998| 48.26+2.01 4.42 0.6
Depth-LeNet 47.1942.43 5.04 3.1
DeepMorphLeNet (ours) 52.91+2.60 6.04 3.7
Static SEs 25.33+2.95 - -
AlexNet-based |[Krizhevsky et al., 2012] 64.384+2.93 6.50 4.7
Depth-AlexNet-based 63.27+2.14 7.47 44.7
DeepMorphAlexNet (ours) 68.20£2.75 10.50 99.8

the feature learning of the proposed technique as well as its efficiency. Results over
these datasets have shown that the proposed DeepMorphNets are able to learn relevant
structuring elements. In fact, the method could learn the expect (a priori) structuring
element. Furthermore, the proposed approach learned a perfect classification of both
datasets outperforming or producing equal results when compared to the ConvNets.
This result shows the potential of DeepMorphNets, which are able to learn important
filters that are also different from those learned by the ConvNets.

After this first analysis, the DeepMorphNet was analyzed using two remote sens-
ing image classification datasets. In both scenarios, the DeepMorphNets produced
competitive results when compared to the convolutional networks. This outcome cor-
roborates with the previous conclusion, that the morphological networks are capable

of learning relevant filters.

130 CHAPTER 7. AN INTRODUCTION TO DEEP MORPHOLOGICAL NETWORKS

Input
Image
7 A

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

A3

Figure 7.11: Input images and some produced (upsampled) feature maps extracted from all layers of the
AlexNet-based networks for the WHU-RS19 Dataset. For each input image: the first row presents features
from the AlexNet-based network, the second row presents the feature maps learned by the Depth-AlexNet-
based architecture, and the last row presents the features of the proposed morphological network.

Chapter 8

Conclusions and Future Work

This thesis addresses remote sensing scene and pixel classification challenges. Many
of them are directly related to peculiarities of remote sensing images, including data
availability, context exploitation, and so on. Considering this, we have presented con-
tributions in several main research topics that concerns those remote sensing scene and
pixel classification challenges.

In Chapter 5, we evaluated three strategies for exploiting existing ConvNets in
different scenarios from the ones they were trained. The objective was to understand
the best way to obtain the most benefits from these state-of-the-art deep learning
approaches in problems that usually are not suitable for the design and creation of
new ConvNets from scratch. Such scenarios reflect many existing applications, in which
there is few labeled data. We performed experiments evaluating the three strategies for
exploiting the ConvNets (full training, fine tuning, and using as feature extractors) over
six popular ConvNets in three remote sensing datasets. Experimental results showed
that fine tuning tends to be the best strategy in different situations. Furthermore,
results pointed out that deep features of the existing pre-trained ConvNets generalize
to other domains, mainly when there are similarities between them (case of UCMerced
and RS19 datasets).

In Chapter 6, we focus on pixel classification of remote sensing images. Since
the pixel may not have enough information to allow its classification, we proposed a
new technique that exploits the context to improve the classification results. Given
that the context size is of vital importance for the model, the proposed approach,
based on dilated ConvNets, alleviates this problem by exploiting the multi-context
paradigm (without increasing the number of parameters). Furthermore, this technique
can define adaptively the best patch size for the inference stage. Experimental results

pointed out that the proposed method can effectively exploit the benefits of the pixel

131

132 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

context by aggregating multi-context information, achieving state-of-the-art results in
two datasets and competitive outcome in other two remote sensing datasets.

In Chapter 7, we proposed a novel method for deep feature learning, called Deep
Morphological Network (DeepMorphNet), that is able to do morphological operations
while optimizing their structuring elements toward a better solution. The intuition
behind this method comes from the fact that morphological operations are able to
cope better with some visual characteristics when compared to the filters employed
in ConvNets. Experimental results showed that the proposed method are really able
to extract distinct image properties when compared to ConvNets. Moreover, the pro-
posed approach yielded competitive results in two remote sensing image classification

datasets.

8.1 Future Work

The work presented in this thesis open new opportunities towards a better spectral-
spatial feature representation, which is still needed for remote sensing applications,
such as agriculture or environmental monitoring.

In general, some possible research venues are:

o Analyze the effect of each type of morphological neuron. This topic involves under-
standing the benefits of each type of morphological neuron and analyzing which
ones are the best for each scenario. This is an interesting research topic given that
each type of neuron produces distinct outcomes. Therefore, this analysis would

allow the definition of which neurons are most suitable for each application.

o Combine ConuvNets and DeepMorphNets. This is a captivating research topic
given that it focuses on extracting and combining the benefits of convolutional
and morphological networks. As introduced in this thesis, these techniques are
able to capture distinct features. Hence, a combination of these approaches should
be able to create a better representation, mainly because of the diversity of the

extracted features.

e Adapt the deep morphological networks to perform pixel classification. This is
a direct application of the proposed DeepMorphNets. In this thesis, such net-
work has been evaluated only for remote sensing scene classification. Therefore,
it. should be natural to apply the proposed networks for remote sensing pixel

classification and analyze the benefits brought by this method.

8.1. FUTURE WORK 133

o Implement modern layers and architectures based on the deep morphological net-
works. There are several modern layers (such as the ones with dilated filters) and
architectures (including ResNets |He et al., 2016] and DenseNets |[Huang et al.,
2017|). It is an interesting research topic to analyze if it is feasible and logical to

adapt the deep morphological networks to recreate these techniques.

Appendix A

List of Publications

This thesis has generated publications directly and indirectly related to its context.

List of journal papers:

1. Dynamic Multi-Context Segmentation of Remote Sensing Images based on Con-
volutional Networks |Nogueira et al., 2019a]. K. Nogueira, M. Dalla Mura, J.
Chanussot, W. R. Schwartz, J. A. dos Santos. IEEE Transactions on Geoscience
& Remote Sensing. (to appear).

2. Spatio-Temporal Vegetation Pizel Classification By Using Convolutional Net-
works [Nogueira et al., 2019b]. K. Nogueira, J. A. dos Santos, N. Menini, T.
S. F. Silva, L. P. C. Morellato, R. S. Torres. IEEE Geoscience and Remote
Sensing Letters (to appear).

3. Exploiting ConuvNet Diversity for Flooding Identification |Nogueira et al., 2018].
K. Nogueira, S. G. Fadel, . C. Dourado, R. O. Werneck, J. A. V. Muoz, O.
A. B. Penatti, R. T. Calumby, L. T. Li, J. A. dos Santos, R. S. Torres. IEEE

Geoscience and Remote Sensing Letters, 2018.

4. Towards Better Exploiting Convolutional Neural Networks for Remote Sensing
Scene Classification [Nogueira et al., 2017¢|. K. Nogueira, O. A. B. Penatti, J.
A. dos Santos. Pattern Recognition, 2017.

List of conference papers:

1. Deep contextual description of superpizels for aerial urban scenes classifica-
tion |Santana et al., 2017]. T. M. Santana, K. Nogueira, A. M. Machado, J.
A. dos Santos. IEEE International Geoscience and Remote Sensing Symposium

(IGARSS), 2017.

135

136

10.

APPENDIX A. LIST OF PUBLICATIONS

. Semantic segmentation of vegetation images acquired by unmanned aerial vehicles

using an ensemble of ConuvNets [Nogueira et al., 2017a]. K. Nogueira, J. A. dos
Santos, L. Cancian, B. D. Borges, T. S. Silva, L. P. Morellato, R. S. Torres. IEEE
International Geoscience and Remote Sensing Symposium (IGARSS), 2017.

Learning Deep Features on Multiple Scales for Coffee Crop Recognition |Baeta
et al., 2017|. R. Baeta, K. Nogueira, D. Menotti, J. A. dos Santos. Conference
on Graphics, Patterns and Images (SIBGRAPI), 2017.

3

Data-Driven Flood Detection using Neural Networks [Nogueira et al., 2017b]. K.
Nogueira, S. G. Fadel, I. C. Dourado, R. Werneck, J. A. V. Muoz, O. A. B.
Penatti, R. T. Calumby, L. T. Li, J. A. dos Santos, R. S. Torres. MediaEval
Multimedia Benchmark Workshop, 2017.

Towards Vegetation Species Discrimination by using Data-driven Descrip-
tors |Nogueira et al., 2016b|. K. Nogueira, J. A. dos Santos, T. Fornazari, T. S.
F. Silva, L. P. Morellato, R. S. Torres. Pattern Recogniton in Remote Sensing
(ICPR Workshop), 2016.

Learning to Semantically Segment High-Resolution Remote Sensing Im-
ages |Nogueira et al., 2016a]. K. Nogueira, M. Dalla Mura, J. Chanussot, W.
R. Schwartz, J. A. dos Santos. International Conference on Pattern Recognition
(ICPR), 2016.

A Ranking Fusion Approach for Geographic-Location Prediction of Multimedia
Objects [Mufioz et al., 2016]. J. A. V. Muoz, L. T. Li, I. C. Dourado, K. Nogueira,
S. G. Fadel, O. A. B. Penatti, J. Almeida, L. A. M. Pereira, R. T. Calumby, J.
A. dos Santos, R. S. Torres. MediaEval Multimedia Benchmark Workshop, 2016.

Improving Spatial Feature Representation from Aerial Scenes by Using Convolu-
tional Networks [Nogueira et al., 2015a]. K. Nogueira, W. O. Miranda, J. A. dos
Santos. Conference on Graphics, Patterns and Images (SIBGRAPI), 2015.

Coffee Crop Recognition Using Multi-scale Convolutional Neural Net-
works |Nogueira et al., 2015b|. K. Nogueira, W. R. Schwartz, J. A. dos
Santos. Iberoamerican Congress on Pattern Recognition (CIARP), 2015.

Do Deep Features Generalize from FEveryday Objects to Remote Sensing and
Aerial Scenes Domains? |Penatti et al., 2015 O. A. B. Penatti, K. Nogueira,
J. A. dos Santos. EarthVision (IEE Conference on Computer Vision and Pattern
Recognition Workshop — CVPRW), 2015.

137

11. RECOD @ Placing Task of MediaEval 2015 |Li et al., 2015|. L. T. Li, J. A. V.
Muoz, J. Almeida, R. T. Calumby, O. A. B. Penatti, I. C. Dourado, K. Nogueira,
P. R. Mendes-Junior, L. A. M. Pereira, D. C. G. Pedronette, J. A. dos Santos,
M. A. Gonalves, R. da S. Torres. MediaEval Multimedia Benchmark Workshop,

2015.

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, 1., Harp, A., Irving,
G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, [.., Kudlur, M., Levenberg, J., Mané,
D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, 1., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,
Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015).
TensorFlow: Large-scale machine learning on heterogeneous systems. Software avail-

able from tensorflow.org.

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Siisstrunk, S. (2012). Slic
superpixels compared to state-of-the-art superpixel methods. IEEFE Transactions on
Pattern Analysis and Machine Intelligence, 34(11):2274-2282.

Almeida, J., dos Santos, J. A., Alberton, B., Torres, R. d. S., and Morellato, L. P. C.
(2014). Applying machine learning based on multiscale classifiers to detect remote

phenology patterns in cerrado savanna trees. Fcological Informatics, 23:49--61.

Aptoula, E., Ozdemir, M. C., and Yanikoglu, B. (2016). Deep learning with attribute
profiles for hyperspectral image classification. IEEE Geoscience and Remote Sensing
Letters, 13(12):1970--1974.

Audebert, N., Le Saux, B., and Lefévre, S. (2016). Semantic segmentation of earth ob-
servation data using multimodal and multi-scale deep networks. In Asian Conference

on Computer Vision, pages 180--196. Springer.

Avila, S., Thome, N., Cord, M., Valle, E., and de A. Aratjo, A. (2013). Pooling in
image representation: the visual codeword point of view. Computer Vision and
Image Understanding, 117(5):453--465.

139

140 BIBLIOGRAPHY

Avramovi¢, A. and Risojevi¢, V. (2014). Block-based semantic classification of high-
resolution multispectral aerial images. Signal, Image and Video Processing, pages
1--10.

Babenko, A., Slesarev, A., Chigorin, A., and Lempitsky, V. (2014). Neural codes for
image retrieval. In Computer Vision-ECCV 201}, pages 584--599. Springer.

Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. Transactions on Pattern Anal-
ysis and Machine Intelligence, 39(12):2481-2495.

Baeta, R., Nogueira, K., Menotti, D., and dos Santos, J. A. (2017). Learning deep
features on multiple scales for coffee crop recognition. In Conference on Graphics,
Patterns and Images (SIBGRAPI), pages 262-268.

Ball, J. E., Anderson, D. T., and Chan, C. S. (2017). Comprehensive survey of deep
learning in remote sensing: theories, tools, and challenges for the community. Journal
of Applied Remote Sensing, 11(4):042609.

Benediktsson, J., Chanussot, J., and Moon, W. (2013). Advances in very-high-
resolution remote sensing [scanning the issue|. Proceedings of the IEEE, 101(3):566—
969.

Benediktsson, J. A., Palmason, J. A., and Sveinsson, J. R. (2005). Classification of
hyperspectral data from urban areas based on extended morphological profiles. IEEE

Transactions on Geoscience and Remote Sensing, 43(3):480--491.

Bengio, Y. (2009). Learning deep architectures for ai. Foundations and trends in
Machine Learning, 2(1):1--127.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep

architectures. In Neural Networks: Tricks of the Trade, pages 437--478. Springer.

Bischke, B., Helber, P., Schulze, C., Venkat, S., Dengel, A., and Borth, D. (2017). The
multimedia satellite task at mediaeval 2017: Emergence response for flooding events.
In Proceedings of the MediaFval 2017 Workshop, Ireland.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Bouchiha, R. and Besbes, K. (2013). Comparison of local descriptors for automatic
remote sensing image registration. Signal, Image and Video Processing, 9(2):463--
469.

BIBLIOGRAPHY 141

Boureau, Y.-L., Bach, F., LeCun, Y., and Ponce, J. (2010). Learning mid-level features
for recognition. In Conference on Computer Vision and Pattern Recognition, pages
2559--2566.

Bullen, P. S. (2013). Handbook of means and their inequalities, volume 560. Springer

Science & Business Media.

Campbell, J. B. and Wynne, R. H. (2011). Introduction to remote sensing. Guilford

Press.

Carkacioglu, A. and Yarman-Vural, F. (2003). Sasi: a generic texture descriptor for
image retrieval. Pattern Recognition, 36(11):2615 — 2633.

Chatfield, K., Simonyan, K., Vedaldi, A., and Zisserman, A. (2014). Return of the devil
in the details: Delving deep into convolutional nets. arXiv preprint arXiv:1405.3531.

Chen, C., Zhou, L., Guo, J., Li, W., Su, H., and Guo, F. (2015). Gabor-filtering-
based completed local binary patterns for land-use scene classification. In IEEE
International Conference on Multimedia Big Data (BigMM), pages 324--329. TEEE.

Chen, C.-h., Pau, L.-F., and Wang, P. S.-p. (2010). Handbook of pattern recognition

and computer vision, volume 27. World Scientific.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2018).
Deeplab: Semantic image segmentation with deep convolutional nets, atrous con-
volution, and fully connected crfs. Transactions on Pattern Analysis and Machine
Intelligence, 40(4):834-848.

Chen, Y., Jiang, H., Li, C., Jia, X., and Ghamisi, P. (2016). Deep feature extraction
and classification of hyperspectral images based on convolutional neural networks.
IEEE Transactions on Geoscience and Remote Sensing, 54(10):6232--6251.

Chen, Y., Lin, Z., Zhao, X., Wang, G., and Gu, Y. (2014). Deep learning-based
classification of hyperspectral data. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 7(6):2094--2107.

Cheng, G., Li, Z., Yao, X., Guo, L., and Wei, Z. (2017). Remote sensing image scene
classification using bag of convolutional features. I[EEE Geoscience and Remote
Sensing Letters, 14(10):1735--1739.

Cheng, G., Ma, C., Zhou, P., Yao, X., and Han, J. (2016). Scene classification of
high resolution remote sensing images using convolutional neural networks. In IFEFE

International Geoscience & Remote Sensing Symposium, pages 767--770. IEEE.

142 BIBLIOGRAPHY

Cheng, G., Yang, C., Yao, X., Guo, L., and Han, J. (2018). When deep learning meets
metric learning: Remote sensing image scene classification via learning discriminative
cnns. IEEE Transactions on Geoscience and Remote Sensing, 56(5):2811--2821.

Cheriyadat, A. M. (2014). Unsupervised feature learning for aerial scene classification.
IEEE Transactions on Geoscience and Remote Sensing, 52(1):439--451.

Chevallier, E., Chevallier, A., and Angulo, J. (2015). N-ary mathematical morphology.
In International Symposium on Mathematical Morphology and Its Applications to
Signal and Image Processing, pages 339--350. Springer.

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In
Conference on Computer Vision and Pattern Recognition, pages 1800-1807.

Congalton, R. G. (1991). A review of assessing the accuracy of classifications of re-

motely sensed data. Remote sensing of environment, 37(1):35--46.

Congalton, R. G. and Green, K. (2008). Assessing the accuracy of remotely sensed

data: principles and practices. CRC press.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection.

In Conference on Computer Vision and Pattern Recognition, pages 886--893.

Dalla Mura, M., Benediktsson, J. A., Waske, B., and Bruzzone, L. (2010). Mor-
phological attribute profiles for the analysis of very high resolution images. IEEE
Transactions on Geoscience and Remote Sensing, 48(10):3747--3762.

de O. Stehling, R., Nascimento, M. A., and Falcao, A. X. (2002). A compact and
efficient image retrieval approach based on border/interior pixel classification. In

International Conference on Information and Knowledge Management, pages 102--
109.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet:
A large-scale hierarchical image database. In Conference on Computer Vision and
Pattern Recognition, pages 248--255. IEEE.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Darrell, T.
(2014). Decaf: A deep convolutional activation feature for generic visual recognition.

In International Conference on Machine Learning, pages 647--655.

dos Santos, J., Penatti, O., Gosselin, P., Falcao, A., Philipp-Foliguet, S., and Torres,
R. (2014). Efficient and effective hierarchical feature propagation. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing, PP(99):1-12.

BIBLIOGRAPHY 143

dos Santos, J. A., Gosselin, P.-H., Philipp-Foliguet, S., Torres, R. d. S., and Falcao,
A. X. (2013). Interactive multiscale classification of high-resolution remote sensing
images. IEFE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 6(4):2020--2034.

dos Santos, J. A., Penatti, O. A. B., and da Silva Torres, R. (2010). Evaluating
the potential of texture and color descriptors for remote sensing image retrieval
and classification. In International Conference on Computer Vision Theory and

Applications, pages 203--208.

dos Santos, J. A. d., Gosselin, P.-H., Philipp-Foliguet, S., Torres, R. d. S., and Falao,
A. X. (2012). Multiscale classification of remote sensing images. IEEE Transactions
on Geoscience and Remote Sensing, 50(10):3764--3775.

Douze, M., Jégou, H., Sandhawalia, H., Amsaleg, L., and Schmid, C. (2009). Evaluation
of gist descriptors for web-scale image search. In International Conference on Image
and Video Retrieval, pages 19:1--19:8.

Du, B., Xiong, W., Wu, J., Zhang, L., Zhang, L., and Tao, D. (2017). Stacked convo-
lutional denoising auto-encoders for feature representation. IEEE Transactions on
Cybernetics, 47(4):1017--1027.

Faria, F., Pedronette, D., dos Santos, J., Rocha, A., and Torres, R. (2014). Rank
aggregation for pattern classifier selection in remote sensing images. IFEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing, 7(4):1103—
1115.

Ferri, C., Hernandez-Orallo, J., and Modroiu, R. (2009). An experimental comparison

of performance measures for classification. Pattern Recognition Letters, 30(1):27--38.

Fingas, M. and Brown, C. (2014). Review of oil spill remote sensing. Marine pollution
bulletin, 83(1):9--23.

Firat, O., Can, G., and Yarman Vural, F. (2014). Representation learning for contex-
tual object and region detection in remote sensing. In International Conference on
Pattern Recognition, pages 3708-3713.

Fustes, D., Cantorna, D., Dafonte, C., Arcay, B., Iglesias, A., and Manteiga, M. (2014).
A cloud-integrated web platform for marine monitoring using gis and remote sensing.

Future Generation Computer Systems, 34:155--160.

144 BIBLIOGRAPHY

Ge, Z., McCool, C., Sanderson, C., Bewley, A., Chen, Z., and Corke, P. (2015). Fine-
grained bird species recognition via hierarchical subset learning. In International

Conference on Image Processing, pages 561--565. IEEE.

Gerke, M. (2015). Use of the stair vision library within the isprs 2d semantic labeling
benchmark (vaihingen). In ITC, University of Twente, Technical Report.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for
accurate object detection and semantic segmentation. In Conference on Computer
Vision and Pattern Recognition, pages 580--587. IEEE.

Goodfellow, 1., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Gu, Y., Liu, T., Jia, X., Benediktsson, J. A., and Chanussot, J. (2016). Nonlinear mul-
tiple kernel learning with multiple-structure-element extended morphological profiles

for hyperspectral image classification. IEEFE Transactions on Geoscience and Remote
Sensing, 54(6):3235--3247.

Guan, H., Yu, Y., Ji, Z., Li, J., and Zhang, Q. (2015). Deep learning-based tree
classification using mobile lidar data. Remote Sensing Letters, 6(11):864--873.

Hamaguchi, R., Fujita, A., Nemoto, K., Imaizumi, T., and Hikosaka, S. (2018). Ef-
fective use of dilated convolutions for segmenting small object instances in remote

sensing imagery. In 2018 IEEE Winter Conference on Applications of Computer
Vision (WACV), pages 1442--1450. IEEE.

Hara, K., Jagadeesh, V., and Piramuthu, R. (2016). Fashion apparel detection: the
role of deep convolutional neural network and pose-dependent priors. In Applications
of Computer Vision (WACV), 2016 IEEE Winter Conference on, pages 1--9. IEEE.

Haralick, R. M., Shanmugam, K., et al. (1973). Textural features for image classifica-

tion. IEEE Transactions on systems, man, and cybernetics, (6):610--621.

He, K., Zhang, X., Ren, S.,; and Sun, J. (2015). Spatial pyramid pooling in deep
convolutional networks for visual recognition. Transactions on Pattern Analysis and
Machine Intelligence, 37(9):1904--1916.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Conference on Computer Vision and Pattern Recognition, pages 770-
-T78.

BIBLIOGRAPHY 145

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep
belief nets. Neural computation, 18(7):1527--1554.

Hu, F., Xia, G.-S., Hu, J., and Zhang, L. (2015). Transferring deep convolutional
neural networks for the scene classification of high-resolution remote sensing imagery.
Remote Sensing, 7(11):14680--14707.

Hu, F., Xia, G.-S., Hu, J., Zhong, Y., and Xu, K. (2016). Fast binary coding for
the scene classification of high-resolution remote sensing imagery. Remote Sensing,
8(7):555.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). Densely
connected convolutional networks. In Conference on Computer Vision and Pattern
Recognition, pages 2261 2269.

Huang, J., Kumar, S. R., Mitra, M., Zhu, W., and Zabih, R. (1997). Tmage indexing us-
ing color correlograms. In Conference on Computer Vision and Pattern Recognition,
pages 762--768.

Huang, X., Zhang, L., and Gong, W. (2011). Information fusion of aerial images
and lidar data in urban areas: vector-stacking, re-classification and post-processing

approaches. International Journal of Remote Sensing, 32(1):69--84.

Toffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

ISPRS (2018a). International society for photogrammetry and remote sensing (isprs).
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.
html. Accessed: 2018-06-18.

ISPRS (2018b). International society for photogrammetry and remote sensing (isprs).
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.
html. Accessed: 2018-06-18.

Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2009). What is the best
multi-stage architecture for object recognition? In International Conference on
Computer Vision, pages 2146--2153. IEEE.

Jensen, J. R. and Lulla, K. (1987). Introductory digital image processing: a remote

sensing perspective.

146 BIBLIOGRAPHY

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama,
S., and Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embed-
ding. In ACM International Conference on Multimedia, pages 675--678. ACM.

Kemker, R., Salvaggio, C., and Kanan, C. (2018). Algorithms for semantic segmenta-
tion of multispectral remote sensing imagery using deep learning. ISPRS Journal of

Photogrammetry and Remote Sensing, 145:60 77.

Kimori, Y., Hikino, K., Nishimura, M., and Mano, S. (2016). Quantifying morpho-
logical features of actin cytoskeletal filaments in plant cells based on mathematical

morphology. Journal of theoretical biology, 389:123--131.

Kréhenbiihl, P. and Koltun, V. (2011). Efficient inference in fully connected crfs with

gaussian edge potentials. In Neural Information Processing Systems, pages 109--117.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Tmagenet classification with
deep convolutional neural networks. In Neural Information Processing Systems, pages
1106--1114.

Kumar, G. and Bhatia, P. K. (2014). A detailed review of feature extraction in image
processing systems. In Advanced Computing & Communication Technologies, pages
5--12. IEEE.

Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001). Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In International

Conference on Machine Learning, pages 282--289.

Larochelle, H., Bengio, Y., Louradour, J., and Lamblin, P. (2009). Exploring strategies
for training deep neural networks. The Journal of Machine Learning Research, 10:1-
-40.

Lazebnik, S., Schmid, C., and Ponce, J. (2006). Beyond bags of features: Spatial pyra-
mid matching for recognizing natural scene categories. In Conference on Computer

Vision and Pattern Recognition, pages 2169 2178.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436-
-444.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278--2324.

BIBLIOGRAPHY 147

LeCun, Y., Jackel, L., Bottou, L., Brunot, A., Cortes, C., Denker, J., Drucker, H.,
Guyon, 1., Muller, U., Sackinger, E., et al. (1995). Comparison of learning algorithms
for handwritten digit recognition. In International conference on artificial neural

networks, volume 60, pages 53--60.

Leprince, S., Barbot, S., Ayoub, F., and Avouac, J.-P. (2007). Automatic and precise
orthorectification, coregistration, and subpixel correlation of satellite images, appli-
cation to ground deformation measurements. IEEE Transactions on Geoscience and
Remote Sensing, 45(6):1529--1558.

Li, H., Fu, K., Xu, G., Zheng, X., Ren, W., and Sun, X. (2017). Scene classification
in remote sensing images using a two-stage neural network ensemble model. Remote
Sensing Letters, 8(6):557--566.

Li, J., Lin, D., Wang, Y., Xu, G., and Ding, C. (2019). Deep discriminative rep-
resentation learning with attention map for scene classification. arXww preprint
arXiv:1902.07967.

Li, L. T., Munoz, J. A. V., Almeida, J., Calumby, R. T., Penatti, O. A. B., Dourado,
I. C., Nogueira, K., Mendes Junior, P. R., Pereira, A. M. L., Pedronette, D. C. G.,
Gongalves, M. A., dos Santos, J. A., and Torres, R. d. S. (2015). Recod @ placing
task of mediaeval 2015. In Working Notes Proc. MediaFEval Workshop, page 2.

Liao, W., Huang, X., Van Coillie, F., Gautama, S., Pizurica, A., Philips, W., Liu, H.,
Zhu, T., Shimoni, M., Moser, G., and Tuia, D. (2015). Processing of multiresolution
thermal hyperspectral and digital color data: Outcome of the 2014 ieee grss data
fusion contest. IEEE Journal of Selected Topics in Applied Farth Observations and
Remote Sensing, 8(6):2984--2996.

Lin, D. (2016). Deep unsupervised representation learning for remote sensing images.
arXww preprint arXiw:1612.08879.

Lin, D., Fu, K., Wang, Y., Xu, G., and Sun, X. (2017). Marta gans: Unsupervised
representation learning for remote sensing image classification. IEEE Geoscience and
Remote Sensing Letters, 14(11):2092--2096.

Liu, C., Frazier, P., and Kumar, L. (2007). Comparative assessment of the measures of

thematic classification accuracy. Remote sensing of environment, 107(4):606--616.

Liu, T., Gu, Y., Chanussot, J., and Dalla Mura, M. (2017). Multimorphological super-
pixel model for hyperspectral image classification. IEEE Transactions on Geoscience
and Remote Sensing, 55(12):6950-6963.

148 BIBLIOGRAPHY

Liu, Y., Fan, B., Wang, L., Bai, J., Xiang, S., and Pan, C. (2018). Semantic labeling in
very high resolution images via a self-cascaded convolutional neural network. ISPRS

Journal of Photogrammetry and Remote Sensing, 145:78--95.

Liu, Y., Piramanayagam, S., Monteiro, S. T., and Saber, E. (2017). Dense semantic
labeling of very-high-resolution aerial imagery and lidar with fullyconvolutional neu-
ral networks and higher-order crfs. In Conference on Computer Vision and Pattern
Recognition Workshop, pages 1561-1570.

Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for
semantic segmentation. In Conference on Computer Vision and Pattern Recognition,,
pages 3431--3440.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision, 60(2):91-110.

Ma, Y., Wu, H., Wang, L., Huang, B., Ranjan, R., Zomaya, A., and Jie, W. (2015). Re-
mote sensing big data computing: Challenges and opportunities. Future Generation
Computer Systems, 51:47--60.

Maggiori, E., Tarabalka, Y., Charpiat, G., and Alliez, P. (2017). High-resolution aerial
image labeling with convolutional neural networks. [IEFEE Transactions on Geo-
science and Remote Sensing, 55(12):7092 7103.

Makantasis, K., Karantzalos, K., Doulamis, A., and Doulamis, N. (2015). Deep su-
pervised learning for hyperspectral data classification through convolutional neural

networks. In IEEFE International Geoscience € Remote Sensing Symposium, pages
4959--4962. IEEE.

Marcu, A. and Leordeanu, M. (2016). Dual local-global contextual pathways for recog-
nition in aerial imagery. arXiw preprint arXiw:1605.05462.

Marmanis, D., Schindler, K., Wegner, J., Galliani, S., Datcu, M., and Stilla, U. (2018).
Classification with an edge: Improving semantic image segmentation with boundary
detection. ISPRS Journal of Photogrammetry and Remote Sensing, 135:158--172.

Masci, J., Angulo, J., and Schmidhuber, J. (2013). A learning framework for mor-
phological operators using counter harmonic mean. In International Symposium on
Mathematical Morphology and Its Applications to Signal and Image Processing, pages
329--340. Springer.

BIBLIOGRAPHY 149

Mellouli, D., Hamdani, T. M., Ayed, M. B., and Alimi, A. M. (2017). Morph-cnn: A
morphological convolutional neural network for image classification. In International

Conference on Neural Information Processing, pages 110--117. Springer.

Mikolajczyk, K. and Schmid, C. (2005). A performance evaluation of local descriptors.
IEEE transactions on pattern analysis and machine intelligence, 27(10):1615--1630.

Mirzapour, F. and Ghassemian, H. (2015). Improving hyperspectral image classification
by combining spectral, texture, and shape features. International Journal of Remote
Sensing, 36(4):1070--1096.

Munoz, J. A. V., Li, L. T., Dourado, I. C., Nogueira, K., Fadel, S. G., Penatti, O.
A. B., Almeida, J., Pereira, L. A. M., Calumby, R. T., dos Santos, J. A., and Torres,
R. d. S. (2016). A ranking fusion approach for geographic-location prediction of
multimedia objects. In Working Notes Proc. MediaEval Workshop, page 2.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th International Conference on Machine Learning
(ICML-10), pages 807--814.

Ng, A., Ngiam, J., Foo, C. Y., Mai, Y., and Suen, C. (2011a). Feature extrac-
tion using convolution. http://ufldl.stanford.edu/wiki/index.php/Feature_

extraction_using_convolution/. Accessed: 2017-08-02.

Ng, A., Ngiam, J., Foo, C. Y., Mai, Y., and Suen, C. (2011b). Pooling. http:
//ufldl.stanford.edu/wiki/index.php/Pooling/. Accessed: 2017-02-08.

Nogueira, K., Dalla Mura, M., Chanussot, J., Schwartz, W. R., and dos Santos, J. A.
(2016a). Learning to semantically segment high-resolution remote sensing images.

In International Conference on Pattern Recognition, pages 3566--3571. IEEE.

Nogueira, K., Dalla Mura, M., Chanussot, J., Schwartz, W. R., and dos Santos, J. A.
(2019a). Dynamic multi-context segmentation of remote sensing images based on

convolutional networks. IEFEE Transactions on Geoscience and Remote Sensing.

Nogueira, K., dos Santos, J. A., Cancian, L., Borges, B. D., Silva, T. S. F., Morellato,
L. P., and Torres, R. S. (2017a). Semantic segmentation of vegetation images acquired
by unmanned aerial vehicles using an ensemble of convnets. IEEFE International

Geoscience € Remote Sensing Symposium.

150 BIBLIOGRAPHY

Nogueira, K., Dos Santos, J. A., Fornazari, T., Silva, T. S. F., Morellato, L. P., and
Torres, R. d. S. (2016b). Towards vegetation species discrimination by using data-
driven descriptors. In Pattern Recogniton in Remote Sensing (PRRS), 2016 9th
IAPR Workshop on, pages 1--6. IEEE.

Nogueira, K., dos Santos, J. A., Menini, N., Silva, T. S. F., Morellato, L. P. C.,
and Torres, R. S. (2019b). Spatio-temporal vegetation pixel classification by using

convolutional networks. IFEE Geoscience and Remote Sensing Letters.

Nogueira, K., Fadel, S. G., Dourado, I. C., Werneck, R. d. O., Munoz, J. A. V.,
Penatti, O. A. B., Calumby, R. T., Li, L. T., dos Santos, J. A., and Torres, R. d. S.
(2017b). Data-driven flood detection using neural networks. In Working Notes Proc.
MediaFEval Workshop, page 2.

Nogueira, K., Fadel, S. G., Dourado, I. C., Werneck, R. O., Munoz, J. A. V., Penatti,
O. A., Calumby, R. T., Li, L. T., dos Santos, J. A., and Torres, R. S. (2018).
Exploiting convnet diversity for flooding identification. IEEE Geoscience and Remote
Sensing Letters, 15(9):1446--1450.

Nogueira, K., Miranda, W. O., and Dos Santos, J. A. (2015a). Improving spatial feature
representation from aerial scenes by using convolutional networks. In Conference on
Graphics, Patterns and Images (SIBGRAPI), pages 289--296. IEEE.

Nogueira, K., Penatti, O. A., and dos Santos, J. A. (2017c). Towards better exploit-
ing convolutional neural networks for remote sensing scene classification. Pattern
Recognition, 61:539--556.

Nogueira, K., Schwartz, W. R., and dos Santos, J. A. (2015b). Coffee crop recogni-
tion using multi-scale convolutional neural networks. In Iberoamerican Congress on

Pattern Recognition, pages 67--74. Springer.

Noh, H., Hong, S., and Han, B. (2015). Learning deconvolution network for semantic

segmentation. In International Conference on Computer Vision, pages 1520--1528.

Oliva, A. and Torralba, A. (2001). Modeling the shape of the scene: A holistic represen-
tation of the spatial envelope. International Journal of Computer Vision, 42(3):145-
-175. ISSN 0920-5691.

Paisitkriangkrai, S., Sherrah, J., Janney, P., and Hengel, A. (2015). Effective seman-
tic pixel labelling with convolutional networks and conditional random fields. In

Conference on Computer Vision and Pattern Recognition Workshop, pages 36--43.

BIBLIOGRAPHY 151

Paisitkriangkrai, S., Sherrah, J., Janney, P.; and van den Hengel, A. (2016). Semantic
labeling of aerial and satellite imagery. IEEFE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 9(7):2868--288]1.

Penatti, O. A., Nogueira, K., and dos Santos, J. A. (2015). Do deep features generalize
from everyday objects to remote sensing and aerial scenes domains? In Conference

on Computer Vision and Pattern Recognition Workshop, pages 44--51.

Penatti, O. A. B., Silva, F. B., Valle, E., Gouet-Brunet, V., and da S. Torres, R.
(2014). Visual word spatial arrangement for image retrieval and classification. Pat-
tern Recognition, 47(2):705-720. ISSN 0031-3203.

Penatti, O. A. B., Valle, E., and da S. Torres, R. (2012). Comparative study of global
color and texture descriptors for web image retrieval. Journal of Visual Communi-
cation and Image Representation, 23(2):359--380.

Peng, C., Li, Y., Jiao, L., Chen, Y., and Shang, R. (2019). Densely based multi-scale
and multi-modal fully convolutional networks for high-resolution remote-sensing im-
age semantic segmentation. IEEE Journal of Selected Topics in Applied Earth Ob-

servations and Remote Sensing.

Perronnin, F., Sanchez, J., and Mensink, T. (2010). Improving the Fisher Kernel
for Large-Scale Image Classification. In Furopean Conference on Computer Vision,
pages 143--156.

Pesaresi, M. and Benediktsson, J. A. (2001). A new approach for the morphological
segmentation of high-resolution satellite imagery. IEEFE Transactions on Geoscience
and Remote Sensing, 39(2):309--320.

Piramanayagam, S., Schwartzkopf, W., Koehler, F., and Saber, E. (2016). Classification
of remote sensed images using random forests and deep learning framework. In
Image and Signal Processing for Remote Sensing XXII, volume 10004, page 100040L.

International Society for Optics and Photonics.

Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson, S. (2014). Cnn features
off-the-shelf: An astounding baseline for recognition. In Conference on Computer

Vision and Pattern Recognition Workshop, pages 512--519.

Sabour, S., Frosst, N., and Hinton, G. E. (2017). Dynamic routing between capsules.
In Neural Information Processing Systems, pages 3856--3866.

152 BIBLIOGRAPHY

Santana, T. M., Nogueira, K., Machado, A. M., and dos Santos, J. A. (2017). Deep
contextual description of superpixels for aerial urban scenes classification. In IFEFE

International Geoscience € Remote Sensing Symposium, pages 3027-3031.

Seo, Y., Park, B., Yoon, S.-C., Lawrence, K. C., and Gamble, G. R. (2018). Mor-
phological image analysis for foodborne bacteria classification. Transactions of the

American Society of Agricultural and Biological Engineers, 61:5-13.

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. (2014).
Overfeat: Integrated recognition, localization and detection using convolutional net-

works. In International Conference on Learning Representations. CBLS.

Serra, J. and Soille, P. (2012). Mathematical morphology and its applications to image

processing, volume 2. Springer Science & Business Media.

Sherrah, J. (2016). Fully convolutional networks for dense semantic labelling of high-
resolution aerial imagery. arXiv preprint arXiv:1606.02585.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556.

Sivic, J. and Zisserman, A. (2003). Video google: a text retrieval approach to object
matching in videos. In International Conference on Computer Vision, volume 2,
pages 1470--1477.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, 1., and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15(1):1929--1958.

Sunderhauf, N., McCool, C., Upcroft, B., and Tristan, P. (2014). Fine-grained plant
classification using convolutional neural networks for feature extraction. In Working
notes of CLEF 201} conference.

Swain, M. J. and Ballard, D. H. (1991). Color indexing. International Journal of
Computer Vision, 7(1):11--32. ISSN 0920-5691.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In Confer-

ence on. Computer Vision and Pattern Recognition, pages 1--9.

Tanizaki, H. (2013). Nonlinear filters: estimation and applications. Springer Science
& Business Media.

BIBLIOGRAPHY 153

Tao, B. and Dickinson, B. W. (2000). Texture recognition and image retrieval using

gradient indexing. Journal of Visual Communication and Image Representation,
11(3):327--342. ISSN 1047-3203.

Taylor, J. R. and Lovell, S. T. (2012). Mapping public and private spaces of urban
agriculture in chicago through the analysis of high-resolution aerial images in google
earth. Landscape and Urban Planning, 108(1):57--70.

Tayyebi, A., Pijanowski, B. C., and Tayyebi, A. H. (2011). An urban growth boundary
model using neural networks, gis and radial parameterization: An application to
tehran, iran. Landscape and Urban Planning, 100(1):35--44.

Tuia, D., Volpi, M., Copa, L., Kanevski, M., and Munoz-Mari, J. (2011). A survey of
active learning algorithms for supervised remote sensing image classification. IEEFE
Journal of Selected Topics in Signal Processing, 5(3):606-617.

Tuytelaars, T. and Mikolajczyk, K. (2007). Local invariant feature detectors: A survey.
Foundations and Trends in Computer Graphics and Vision, 3(3):177--280.

van de Sande, K. E. A., Gevers, T., and Snoek, C. G. M. (2010). Evaluating color
descriptors for object and scene recognition. Transactions on Pattern Analysis and
Machine Intelligence, 32(9):1582--1596.

van de Sande, K. E. A.) Gevers, T., and Snoek, C. G. M. (2011). Empowering visual
categorization with the gpu. Transactions on Multimedia, 13(1):60--70.

van Gemert, J. C., Veenman, C. J., Smeulders, A. W. M., and Geusebroek, J.-M.
(2010). Visual word ambiguity. Transactions on Pattern Analysis and Machine
Intelligence, 32:1271-1283.

Vedaldi, A. and Fulkerson, B. (2010). Vlfeat: An open and portable library of computer
vision algorithms. In ACM International Conference on Multimedia, pages 1469--
1472. ACM.

Volpi, M. and Ferrari, V. (2015). Semantic segmentation of urban scenes by learning
local class interactions. In Conference on Computer Vision and Pattern Recognition

Workshop, pages 1--9.

Volpi, M. and Tuia, D. (2017). Dense semantic labeling of subdecimeter resolution
images with convolutional neural networks. IEEE Transactions on Geoscience and
Remote Sensing, 55(2):881--893.

154 BIBLIOGRAPHY

Wang, A., He, X., Ghamisi, P., and Chen, Y. (2018a). Lidar data classification using
morphological profiles and convolutional neural networks. IEEE Geoscience and
Remote Sensing Letters, 15(5):774--778.

Wang, H., Wang, Y., Zhang, Q., Xiang, S., and Pan, C. (2017). Gated convolutional
neural network for semantic segmentation in high-resolution images. Remote Sensing,
9(5):446.

Wang, P., Chen, P., Yuan, Y., Liu, D., Huang, Z., Hou, X., and Cottrell, G. (2018b).
Understanding convolution for semantic segmentation. In 2018 IEEE Winter Con-
ference on Applications of Computer Vision (WACV), pages 1451--1460. IEEE.

Wilkinson, G. G. (2005). Results and implications of a study of fifteen years of satellite
image classification experiments. [EFEE Transactions on Geoscience and Remote
Sensing, 43(3):433--440.

Xia, G.-S., Yang, W., Delon, J., Gousseau, Y., Sun, H., and Maitre, H. (2010). Struc-
tural high-resolution satellite image indexing. In ISPRS TC VII Symposium-100
Years ISPRS, volume 38, pages 298--303.

Xia, J., Dalla Mura, M., Chanussot, J., Du, P., and He, X. (2015). Random subspace en-
sembles for hyperspectral image classification with extended morphological attribute
profiles. IEEE Transactions on Geoscience and Remote Sensing, 53(9):4768--4786.

Xie, M., Jean, N., Burke, M., Lobell, D., and Ermon, S. (2016). Transfer learning
from deep features for remote sensing and poverty mapping. In AAAI Conference
on Artificial Intelligence, pages 3929--3935.

Xu, S., Mu, X., Chai, D., and Zhang, X. (2018). Remote sensing image scene classifica-

tion based on generative adversarial networks. Remote sensing letters, 9(7):617--626.

Xu, X., Li, J., Huang, X., Dalla Mura, M., and Plaza, A. (2016). Multiple morphologi-
cal component analysis based decomposition for remote sensing image classification.
IEEFE Transactions on Geoscience and Remote Sensing, 54(5):3083--3102.

Yang, Y. and Newsam, S. (2008). Comparing sift descriptors and gabor texture features
for classification of remote sensed imagery. In International Conference on Image

Processing, pages 1852--1855.

Yang, Y. and Newsam, S. (2010). Bag-of-visual-words and spatial extensions for land-
use classification. ACM SIGSPATIAL International Conference on Advances in Ge-

ographic Information Systems.

BIBLIOGRAPHY 155

Yang, Y. and Newsam, S. (2013). Geographic image retrieval using local invariant
features. IEEE Transactions on Geoscience and Remote Sensing, 51(2):818 832.

Yu, F. and Koltun, V. (2015). Multi-scale context aggregation by dilated convolutions.
arXiv preprint arXiw:1511.07122.

Yu, H., Yang, W., Xia, G.-S., and Liu, G. (2016). A color-texture-structure descriptor

for high-resolution satellite image classification. Remote Sensing, 8(3):259.

Yu, X., Wu, X., Luo, C., and Ren, P. (2017). Deep learning in remote sensing scene
classification: a data augmentation enhanced convolutional neural network frame-

work. GIScience € Remote Sensing, pages 1--18.

Yue, J., Zhao, W., Mao, S., and Liu, H. (2015). Spectral-spatial classification of
hyperspectral images using deep convolutional neural networks. Remote Sensing
Letters, 6(6):468--477.

Zhang, F., Du, B., and Zhang, L. (2015). Saliency-guided unsupervised feature learn-
ing for scene classification. IEEE Transactions on Geoscience and Remote Sensing,
53(4):2175 2184.

Zhang, F., Du, B., and Zhang, L. (2016). Scene classification via a gradient boosting
random convolutional network framework. IEEE Transactions on Geoscience and
Remote Sensing, 54(3):1793--1802.

Zhang, W., Tang, P., and Zhao, L. (2019). Remote sensing image scene classification
using cnn-capsnet. Remote Sensing, 11(5):494.

