
CLASSIFICAÇÃO ASSOCIATIVA

SOB DEMANDA





ADRIANO ALONSO VELOSO

Orientador: Wagner Meira Jr.

CLASSIFICAÇÃO ASSOCIATIVA

SOB DEMANDA

Tese apresentada ao Programa de Pós-
Graduação em Ciência da Computação da
Universidade Federal de Minas Gerais como
requisito parcial para a obtenção do grau de
Doutor em Ciência da Computação.

Belo Horizonte

Março de 2009





ADRIANO ALONSO VELOSO

Advisor: Wagner Meira Jr.

DEMAND-DRIVEN

ASSOCIATIVE CLASSIFICATION

Thesis presented to the Graduate Program
in Computer Science of the Universidade
Federal de Minas Gerais in partial fulfill-
ment of the requirements for the degree of
Doctor in Computer Science.

Belo Horizonte

March 2009



c© 2009, Adriano Alonso Veloso.
Todos os direitos reservados.

Veloso, Adriano Alonso
Demand-Driven Associative Classification / Adriano Alonso

Veloso. — Belo Horizonte, 2009
xxxix, 132 f. : il. ; 29cm

Tese (doutorado) — Universidade Federal de Minas Gerais
Orientador: Wagner Meira Jr.

1. Data Mining. 2. Machine Learning. 3. Information
Retrieval. 4. Digital Libraries.







Abstract

The ultimate goal of machines is to help humans to solve problems. The solutions for

such problems are typically programmed by experts, and the machines need only to

follow the specified steps to solve the problem. However, the solution of some problems

may be too difficult to be explicitly programmed. In such difficult cases, instead of

directly programming machines to solve the problem, machines can be programmed

to learn the solution. Machine Learning encompasses techniques used to program ma-

chines to learn. It is one of the fastest-growing research areas today, mainly motivated

by the fact that the advent of improved learning techniques would open up many new

uses for machines (i.e., problems for which the solution is hard to program by hand).

A prominent approach to machine learning is to repeatedly demonstrate how the

problem is solved, and let the machine learn by example, so that it generalizes some

rules about the solution and turn these into a program. This process is known as

supervised learning. Specifically, the machine takes matched values of inputs (instan-

tiations of the problem to be solved) and outputs (the solution) and absorb whatever

information their relation contains in order to emulate the true mapping of inputs to

outputs. When outputs are drawn from a pre-specified and finite set of possibilities,

the process is known as classification, which is a major data mining task.

Some classification problems are hard to solve, and motivate this thesis. The key

insight that is exploited in this thesis is that a difficult problem can be decomposed into

several much simpler sub-problems. This thesis is to show that, instead of directly solv-

ing a difficult problem, independently solving its sub-problems by taking into account

their particular demands, often leads to improved classification performance. This is

shown empirically, by solving real-world problems (for which the solutions are hard

to program) using the computationaly efficient algorithms that are presented in this

thesis. These problems include categorization of documents and name disambiguation

in digital libraries, ranking documents retrieved by search engines, protein functional

analysis, revenue optimization, among others. Improvements in classification perfor-

mance are reported for all these problems (in some cases with gains of more than

100%). Further, theoretical evidence supporting our algorithms is also provided.

vii





Resumo

O objetivo primordial das máquinas é o de ajudar pessoas a resolver problemas. As

soluções para tais problemas são geralmente programadas por especialistas, de tal forma

que as máquinas precisam apenas seguir os passos que foram especificados no programa.

No entanto, as soluções para alguns problemas são muito dif́ıceis de serem progra-

madas explicitamente. Nestes casos, ao invés de programar a máquina para solucionar

o problema, a máquina é programada para aprender a solução de tal problema. A

Aprendizagem de Máquina compreende o desenvolvimento de técnicas que possam ser

usadas para programar máquinas a aprender.

Uma abordagem para a aprendizagem de máquina é demonstrar para a máquina,

repetidas vezes, como o problema é solucionado, e simplesmente deixá-la aprender com

esses exemplos, de forma que ela possa generalizar regras sobre a solução, e finalmente

transformar tais regras em um programa que solucione o problema. Este processo é

denominado aprendizagem supervisionada. Neste caso, são fornecidos exemplos de en-

tradas e suas respectivas sáıdas, de forma que a máquina possa, após absorver o máximo

de informação desses exemplos, emular o mapeamento de entradas a sáıdas. Quando

as sáıdas assumem valores pre-especificados, esse processo é denominado classificação.

Classificação é uma das tarefas mais tradicionais em mineração de dados.

Alguns problemas de classificação são extremamente dif́ıceis de solucionar, e moti-

vam esta tese. A intuição explorada nesta tese é que um problema de dif́ıcil solução

pode ser decomposto em vários sub-problemas mais simples. Esta tese mostra que, solu-

cionar de forma independente sub-problemas mais simples, ao invés de solucionar um

problema dif́ıcil diretamente, geralmente leva a resultados melhores. Isto é mostrado

empiricamente, através da solução de problemas úteis e importantes, usando os algorit-

mos apresentados nesta tese. Tais problemas incluem categorização de documentos e

remoção de ambiguidade em bibliotecas digitais, ordenação de documentos retornados

por máquinas de busca, otimização de renda, entre muitos outros. Ganhos em efetivi-

dade são reportados em todos estes problemas (em alguns casos com ganhos maiores

que 100%). Além disso, apresentamos evidência teórica que suporta nossos algoritmos.

ix





Resumo Estendido

Introdução

A busca por máquinas (ou computadores) capazes de aprender começou por volta

de 1950, quando Alan Turing utilizou pela primeira vez o termo “Aprendizagem de

Máquina”. Turing já imaginava que os computadores poderiam ir além da aritmética.

Especificamente, Turing imaginava que os computadores poderiam imitar o processo

de aprendizagem dos humanos [Turing, 1951a,b].

Atualmente, o termo “Aprendizagem de Máquina” refere-se à uma das áreas de

pesquisa que mais crescem no mundo. Várias classes de problemas referentes à apren-

dizagem de máquina já foram abordadas. Uma dessas classes engloba os problemas

de classificação, nos quais assume-se que o computador terá acesso a exemplos ou de-

monstrações de como um certo problema é resolvido. Especificamente, esses exemplos

são pares de entrada (contendo especificações do problema a ser solucionado) e sáıda

(a solução), e tais entradas e sáıdas estão relacionadas de alguma maneira desconhe-

cida. Espera-se, caso seja fornecida uma quantidade suficiente de exemplos, que o

computador (através da execução de um algoritmo) seja capaz de fornecer uma boa

aproximação da solução do problema, ou, mais precisamente, que o computador será

capaz de encontrar uma função de mapeamento de entradas para sáıdas. O grande

apelo, nesse caso, é que a solução do problema não precisa ser programada diretamente

por um especialista − basta que alguém com um certo entendimento do problema

forneça exemplos.

Existem vários algoritmos de classificação. O fator limitante desses algoritmos é

o grau de precisão da função de mapeamento que eles fornecem. A dificuldade de

um problema de classificação pode fazer com que esses algoritmos obtenham funções

pouco precisas, ou que necessitem de um tempo de processamento inaceitável para

obter funções que sejam relativamente melhores. Nesta tese exploramos o seguinte

conceito: um problema de dif́ıcil solução pode ser decomposto em sub-problemas que

possuam soluções bem mais simples. Além disso, ao decompor um problema em sub-

problemas, demandas espećıficas desses sub-problemas podem ser levadas em conta

xi



durante o processo de geração das funções de mapeamento.

Propomos vários algoritmos baseados neste conceito intuitivo. Os algoritmos pro-

postos buscam associações entre entradas e sáıdas que foram fornecidas como exemplo,

e as utilizam para reduzir o espaço de busca por funções de mapeamento. Ao invés de

encontrar uma única função de mapeamento que fornece uma aproximação da solução

do problema, nossos algoritmos decompõem o problema em sub-problemas e produzem

várias funções, onde cada função é especificamente produzida levando-se em conta ca-

racteŕıticas e demandas de cada sub-problema. Este processo é ilustrado pelo exemplo

na Figura 1.

s
a

id
a

entrada

f(
x
)

x

f(
x
)

x

f(
x
)

x

Figura 1. Ilustração do processo de obtenção da função de mapeamento.

O gráfico à esquerda mostra seis pontos negros que foram fornecidos como exemplos.

Esses pontos negros compõem o conjunto de treino, que é o conjunto de todos os pontos

fornecidos como exemplo. O segundo gráfico mostra uma função de mapeamento que foi

constrúıda usando-se todo o conjunto de treino. Os pontos brancos expressam entradas

para as quais as respectivas sáıdas não foram fornecidas ao algoritmo, e que portanto

não foram utilizadas durante o processo de construção da função de mapeamento. Tais

pontos brancos compõem o conjunto de teste, que é utilizado para avaliar o grau de

precisão da função de mapeamento. Sendo assim, a função de mapeamento mostrada

na segunda figura não possui um grau de precisão aceitável, uma vez que ela não

consegue fornecer sáıdas corretas para as entradas representadas por pontos brancos.

O terceiro figura mostra uma função de mapeamento bem mais complexa, que possui

um grau de precisão aceitável. No entanto, o tempo necessário para construir uma

função com tal complexidade, pode ser inaceitável. O gráfico à direita mostra duas

funções de mapeamento simples, constrúıdas a partir de dois sub-problemas diferentes

(i.e., os três primeiros e os três últimos pontos negros). A utilização de múltiplas

funções de mapeamento permite que cada função seja constrúıda levando-se em conta

xii



caracteŕısticas espećıficas de cada sub-problema, podendo portanto capturar melhor o

relacionamento entre entradas e sáıdas.

Uma vez que a efetividade dos algoritmos de classificação é medida utilizando-se um

conjunto de teste, as funções de mapeamento geradas devem ser especialmente precisas

para as entradas no conjunto de teste. Desta forma, os algoritmos propostos nesta tese

interpretam cada entrada no conjunto de teste como sendo um sub-problema distinto

e produzem uma função de mapeamento para cada uma dessas entradas. Mais especi-

ficamente, os exemplos utilizados na construção de uma função para uma determinada

entrada no conjunto de teste são apenas aqueles que fornecem alguma informação dis-

criminativa acerca dessa entrada. Considere o exemplo ilustrado na Figura 2. Os três

exemplos à esquerda são muito mais informativos para a entrada x1 do que os três

exemplos à direita. Sendo assim, a sáıda referente à entrada x1 será dada pela função

f1, que foi constrúıda utilizando-se somente esses três primeiros exemplos. De forma

similar, os três exemplos à direita são muito mais informativos para a entrada x2 do

que os três exemplos à esquerda. Portanto, a sáıda referente à entrada x2 será dada

pela função f2.

f(
x
)

x

x1
x2

f1

f2

Figura 2. Diferentes funções de mapeamento.

Inicialmente, propomos um algoritmo eficiente do ponto de vista do problema de

classificação (i.e., tal algoritmo necessita de poucos exemplos para obter funções de

mapeamento precisas). Várias melhorias são discutidas ao longo desta tese e os algo-

ritmos correspondentes são apresentados. Tais algoritmos foram avaliados utilizando-se

uma gama de aplicações complexas, tais como categorização e remoção de ambiguidade

em bibliotecas digitais, ordenação de documentos retornados por máquinas de busca,

otimização de lucro, etc. Ganhos em relação aos melhores algoritmos existentes são

reportados para todas essas aplicações.

xiii



O Problema de Classificação

A seguir apresentaremos as definições necessárias para que o problema de classificação

possa ser formalizado1.

Conjunto de Treino e Conjunto de Teste

São conjuntos de pares de entrada/sáıda da forma z=(xi, yi). Cada xi é um registro de

tamanho fixo da forma < a1, . . . , al >, onde ai representa o de valor de um atributo.

Cada yi assume valores provenientes de um conjunto y={c1, . . . , cp} e indica a qual

classe o par z pertence. Casos nos quais yi=? indicam que a classe de zi é desconhecida.

Existe uma distribuição de probabilidade, P(y|x), que governa a relação entre entradas

e sáıdas. Tal distribuição é desconhecida. Pares são divididos em dois conjuntos

distintos − o conjunto de treino (denominado S), e o conjunto de teste (denominado

T ):

S = {s1 = (x1, y1), . . . , sn = (xn, yn)}

T = {t1 = (x1, ?), . . . , tm = (xm, ?)}

Algoritmo de Classificação

É um algoritmo que recebe como entrada S e T , e gera como sáıda uma função de

mapeamento fS , que aproxima, de certa forma, a distribuição P(y|x). Várias funções de

mapeamento podem ser produzidas a partir dos exemplos em S. O espaço de hipóteses

(denominado H) é o espaço de funções exploradas por um algoritmo de classificação,

até que este encontre uma função, denotada como fS , que será usada para mapear

entradas à sáıdas.

Erro Esperado

De acordo com Cucker e Smale [2001] e com Vapnik [1995], o erro esperado de uma

função de mapeamento fS é definido como:

IT [fS ] =

∫

t=(x,y)

ℓ(fS , t)dP(y|x)

onde ℓ(fS , t) é uma função de perda (i.e., 0-1 loss).

1Uma lista com os principais śımbolos usados nesta tese pode ser encontrada logo após o ı́ndice.

xiv



O objetivo principal de um algoritmo de classificação é encontrar uma função fS

para a qual IT [fS ] é garantidamente baixo. No entanto, IT [fS ] não pode ser computado

já que P(y|x) é desconhecida.

Erro Emṕırico

Embora o erro esperado não possa ser computado, o erro emṕırico é facilmente calcu-

lado usando S:

IS [fS ] =
1

n

n
∑

i=1

ℓ(fS , si)

Generalização

É uma habilidade importante para qualquer algoritmo de classificação. Generalização

ocorre quando o erro emṕırico converge para o erro esperado, com o aumento da quan-

tidade de exemplos fornecidos ao algoritmo, ou seja, IS [fS ] ≈ IT [fS ]. O erro de

generalização (ou risco), denotado como ǫ, é dado por IT [fS ]− IS [fS ].

Eficiência

Um algoritmo de classificação eficiente é aquele que encontra, em tempo polinomial e

com uma quantidade polinomial de exemplos, com probabilidade (1− δ) , uma função

fS ∈ H, para a qual IS [fS ] < ǫ, e IS [fS ] ≈ IT [fS ].

Técnicas para Aproximação de Função

O problema de classificação é encarado como o problema de se encontrar a função de

mapeamento que melhor aproxime P(y|x). Duas estratégias de aproximação de funções

são consideradas nesta tese e são descritas a seguir.

Minimização do Risco Emṕırico Provavelmente a estratégia de aproximação mais

natural é a minimização do risco emṕırico (ERM − Empirical Risk Minimization): de

todas as funções em H, o algoritmo escolhe a função fS que minimiza IS [fS ]:

arg min

(

1

n

n
∑

i=1

ℓ(fS , si)

)

, ∀fS ∈ H (1)

No entanto, a minimização do risco emṕırico não garante generalização. Mais es-

pecificamente, a minimização do erro emṕırico não implica necessariamente na mini-

xv



mização do erro esperado. Uma condição suficiente para generalização de algoritmos

baseados em ERM á a estabilidade de fS [Mukherjee et al., 2006; Poggio et al., 2004].

A estabilidade mede a diferença, βsi
, dos erros emṕıricos no par si ∈ S quando

consideramos a função fS obtida utilizando-se todo o conjunto de treino S e a função

fS−si
obtida quando não levamos o par si em consideração. Em outras palavras, se o

conjunto de treino S é perturbado pela remoção do par si, e se a função fS não diverge

muito da função fS−si
, então fS é estável. A função fS é β-estável se:

∀si ∈ S, |fS(si)− fS−si
(si)| ≤ β (2)

O menor valor de β em 2 indica a estabilidade de fS . O menor valor de β é a maior

variação no par si. Dessa forma, a função fS mostrada na Figura 3, é obtida através

da minimização do risco emṕırico usando-se S = {s1, s2, s3, s4, s5}. De forma similar, a

função fS−s2
é obtida através da minimização do risco emṕırico usando-se {S − s2} e a

função fS−s5
ŕ obtida através da minimização do risco emṕırico usando-se {S − s5}. A

diferença no par s2, βs2
, é baixa. A diferença no par s5, βs5

, é alta. Consequentemente,

fS é βs5
-estável. A função fS é estável se β = O( 1

n
).

y

x

βs2

βs5

s1 s2 s3

s4 s5

fS
fS−s2fS−s5

Figura 3. Minimização do Risco Emṕırico

Bousquet e Eliseef [2002] mostraram que o erro esperado pode ser estimado pelo

erro emṕırico e a estabilidade da função fS , da seguinte forma:

IT [fS ] ≤ IS [fS ] +



β + (4nβ + 1)×

√

ln 1
δ

2n



 (3)

Sendo assim, a função fS que minimiza IT [fS ] pode ser encontrada aplicando a

Inequação 3 para cada função candidata em H.

xvi



Minimização do Risco Estrutural A minimização do risco estrutural (SRM −

Empirical Risk Minimization) representa uma escolha entre a complexidade da função

e o seu respectivo erro emṕırico. Funções simples podem fornecer erros emṕıricos altos,

enquanto funções complexas podem fornecer erros emṕıricos baixos. Sendo assim, de

todas as posśıveis funções em H, algoritmos baseados em SRM selecionam a função fS

que oferece o melhor balanço entre complexidade e erro emṕırico.

E
rr

o

 

underfitting overfitting

~ IT[fS]

ε

IS[fS]

Figura 4. Minimização do Risco Estrutural

Uma estrutura é um conjunto de classes de funções Fi, tal que F1 ⊆ F2 ⊆ . . .,

onde funções em F1 são mais simples (i.e., têm menor complexidade) que funções em

F2 − F1, e assim sucessivamente. Já que tais classes de funções são aninhadas, o erro

emṕırico tende a diminuir com o aumento da complexidade.

Uma medida de complexidade amplamente usanda é a chamada dimensão

VC [Vapnik and Chervonenkis, 1971; Blumer et al., 1989] de uma função fS , que aqui

é denotada como dfS . A dimensão VC mede o poder de expressão de uma função

verificando o quão complicada essa função pode ser. Foi mostrado em [Guyon et al.,

1992] que o erro esperado pode ser estimado pelo erro emṕırico e pela complexidade

de fS , da seguinte forma:

IT [fS ] ≤ IS [fS ] +

√

√

√

√

dfS

(

ln 2n
dfS

+ 1
)

− ln δ
4

n
(4)

O formato induzido por esta inequação é mostrado na Figura 4. A minimização do

risco estrutural busca encontrar a função fS que seja simples e que forneça o menor

erro emṕırico.

xvii



Classificação Associativa

O espaço de hipóteses, H, pode conter uma quantidade infinita de funções de mape-

amento. Produzir funções aleatoriamente, na esperança de encontrar uma função que

aproxime bem P(y|x), não é de forma alguma uma estratégia eficiente. Felizmente, exis-

tem várias estratégias mais eficientes. Uma dessas estratégias é explorar associações

entre entradas e sáıdas (que nesse caso são denominadas classes). Tais associações são

usadas para produzir funções de mapeamento precisas. Esta estratégia é geralmente

denominada classificação associativa. A função de mapeamento é composta por re-

gras X −→ cj, que indicam uma associação entre X (que é um conjunto de valores de

atributos, também chamados de caracteŕısticas) e uma classe cj ∈ y.

Regras de Decisão

São implicações da forma X −→ cj, onde X é um conjunto de caracteŕısticas e cj ∈ y é

uma classe. Tais implicações são mapeamentos locais de entrada para sáıdas, que são

extráıdos de S. Sendo assim, uma regra X −→ cj só existe se as caracteŕıticas em X

estiverem presentes em S. Alguns conceitos importantes acerca das regras de decisão

são apresentados a seguir.

Uma regra de decisão só é interessante caso a informação fornecida por ela seja

confiável. O suporte de uma regra X −→ cj , que é denotado por σ(X −→ cj), é uma

indicação importante do quão confiável é a informação fornecida pela regra. Formal-

mente, o suporte é definido como:

σ(X −→ cj) =
|(xi, yi)| ∈ S tal que X ⊆ xi e cj = yi

n
(5)

Uma regra X −→ cj só é interessante caso X e cj sejam associados de alguma forma.

A confiança da regra X −→ cj , que é denotada por θ(X −→ cj), é uma indicação de quão

forte é a associação entre X e cj. Formalmente, a confiança é definida como:

θ(X −→ cj) =
|(xi, yi)| ∈ S tal que X ⊆ xi e cj = yi

|(xi, yi)| ∈ S tal que X ⊆ xi

(6)

Geralmente, a complexidade de uma regra de decisão X −→ cj é dada pelo seu

tamanho, ou seja, pelo número de caracteŕısticas inclúıdas na regra (i.e., |X |).

Finalmente, uma regra X −→ cj só é aplicável a uma entrada xi ∈ T , caso X ⊆ xi.

Caso contrário, a regra é considerada inútil para fins de prever a classe de xi.

A seguir novos algoritmos baseados em classificação associativa serão apresentados.

xviii



EAC-SR (acrônimo derivado de “eager associative classification using a single rule”)

− É o algoritmo mais simples a ser apresentado nesta tese. Dada uma entrada xi, esse

algoritmo retorna a classe prevista pela regra X −→ cj (com X ⊆ xi) que possua o maior

valor de confiança. Embora seja um algoritmo muito simples, pode-se demonstrar que

EAC-SR é um algoritmo eficiente do ponto de vista do problema de classificação. Os

passos principais seguidos por este algoritmo estão descritos no Algoritmo 1 (página

33 da versão completa da tese).

Várias melhorias são propostas a partir do algoritmo EAC-SR. Tais melhorias levam

à elaboração dos outros algoritmos descritos nesta tese.

EAC-MR (acrônimo derivado de “eager associative classification using multiple ru-

les”) − Este algoritmo utiliza múltiplas regras para prever a classe de uma entrada.

Cada regra X −→ cj é interpretada como um voto dado por X à classe cj. O peso do

voto é dado por θ(X −→ cj). A pontuação de uma classe cj, referente à entrada xi, é

definida como:

s(xi, cj) =

∑

r∈R
xi
cj

θ(r)

| Rxi
cj |

(7)

onde Rxi
cj

é o conjunto de regras que são aplicáveis para a entrada xi, e que prevêem a

classe cj . A probabilidade da classe cj ser a sáıda correta da entrada xi, denotada por

p̂(cj|xi), é dada por:

p̂(cj |xi) =
s(xi, cj)

p
∑

k=1

s(xi, ck)

(8)

onde p é o número de posśıveis classes em S. Finalmente, o algoritmo EAC-MR retorna

a classe com maior probabilidade de ser a sáıda para xi. Os passos principais seguidos

por este algoritmo estão descritos no Algoritmo 2 (página 35 da versão completa da

tese).

EAC-MR-ERM (acrônimo derivado de “empirical risk minimization”) − Funções

de mapeamento constrúıdas a partir de regras complexas (i.e., regras que contêm muitas

caracteŕısticas), fornecem baixo erro emṕırico. No entanto, como discutido anterior-

mente, tais funções só serão efetivas caso sejam estáveis. O algoritmo EAC-MR-ERM

utiliza a Inequação 3 para encontrar uma função de mapeamento estável, e que ao

mesmo tempo forneça um erro emṕırico baixo. Os passos principais seguidos por este

algoritmo estão descritos no Algoritmo 3 (página 37 da versão completa da tese).

xix



EAC-MR-SRM (acrônimo derivado de “structural risk minimization”) − O algo-

ritmo EAC-MR-SRM utiliza a Inequação 4 de forma a escolher funções de mapeamento

que sejam simples e que também sejam capazes de fornecer baixo erro emṕıırico. Os

passos principais seguidos por este algoritmo estão descritos no Algoritmo 4 (página

39 da versão completa da tese).

Principais Resultados

Avaliamos a efetividade dos algoritmos propostos em um importante problema de clas-

sificação denominado categorização de documentos. Para tanto utilizamos uma coleção

de documentos extráıdos da biblioteca digital da ACM (Association for Computing Ma-

chinery). São quase 7.000 documentos, onde cada documento pode ser enquadrado em

uma de 8 categorias. Partes dos resultados a serem apresentados podem ser encontra-

das em [Veloso et al., 2006a].

Vários algoritmos diferentes são empregados para efeitos de comparação. A Ta-

bela 1 mostra os resultados obtidos por cada algoritmo avaliado. Todos os resultados

são estatisticamente significativos de acordo com o teste-T com 95% de confiança. Os

melhores resultados, incluindo empates estat́ısticos, são mostrados em negrito. O al-

goritmo Multi-Kernel [Joachims et al., 2001] é o que oferece os melhores resultados.

Em contrapartida, ele necessita de um tempo de processamento muito alto. O algo-

ritmo SVM parece ser o aquele que oferece o melhor custo-benef́ıcio entre effetividade

e rapidez. Os algoritmos EAC-SR, EAC-MR, EAC-MR-ERM, e EAC-MR-SRM não

foram efetivos para esta coleção. A principal causa é a dificuldade de extrair regras

com baixo suporte. Tais regras são importantes para aumentar a precisão da função de

mapeamento. A seguir, vamos apresentar algoritmos que extraem regras sob demanda,

e que, portanto, conseguem ser mais efetivos.

Ganhos (%) relativos
Algoritmos MicF1 MacF1 ao baseline Tempo de Execução

MicF1 MacF1

Amsler (baseline) 0,832 0,783 – – 1.251 segundos
EAC-MR 0,766 0,692 -0,079 -0,115 2.350 segundos
EAC-MR-ERM 0,789 0,736 -0,051 -0,060 2.921 segundos
EAC-MR-SRM 0,812 0,767 -0,024 -0,020 2.419 segundos
kNN 0,833 0,774 0,001 -0,011 83 segundos
SVM 0,845 0,810 0,016 0,035 1.932 segundos
Bayesian 0,847 0,796 0,019 0,016 8.281 segundos
Multi-Kernel 0,859 0,812 0,032 0,037 14.894 segundos

Tabela 1. Efetividade de diferentes algoritmos.

xx



Classificação Associativa Sob Demanda

A classificação associativa sob demanda baseia-se na intuição de que um problema

pode ser decomposto em sub-problemas mais simples, os quais, por sua vez, podem ser

resolvidos independentemente. A seguir, tornaremos tal intuição mais precisa.

Projeção

As projeções formam o conceito chave por trás da decomposição de um problema em

sub-problemas. Especificamente, dada uma entrada xi ∈ T , o conjunto de treinamento,

S, é projetado de forma que seja posśıvel extrair apenas regras X −→ cj para as quais

X ⊆ xi. Tal procedimento geralmente reduz significativamente a quantidade de regras

geradas. A projeção, que é denotada por Sxi , é obtida através da filtragem de ca-

racteŕısticas que não carregam informação discriminatória acerca de xi. Dessa forma,

cada projeção Sxi é um sub-problema de S (i.e., Sxi ⊆ S). A seguir apresentaremos

algoritmos que produzem múltiplas funções de mapeamento − mais precisamente, uma

função de mapeamento, fxi

S , é produzida a partir de cada sub-problema Sxi . A função

fxi

S é produzida de forma a fornecer uma aproximação especialmente precisa para a

entrada xi.

LAC-SR (acrônimo derivado de “lazy associative classification using a single rule”)

− Dada uma entrada xi ∈ T , esse algoritmo extrai regras de decisão a partir de cada

projeção Sxi . Em seguida, ele retorna a classe prevista pela regra que possua o maior

valor de confiança.

LAC-MR (acrônimo derivado de “lazy associative classification using multiple ru-

les”) − Dada uma entrada xi ∈ T , esse algoritmo extrai regras de decisão a partir de

cada projeção Sxi . Em seguida, ele utiliza múltiplas regras para prever a classe de xi.

Cada regra X −→ cj é interpretada como um voto dado por X à classe cj. O peso do

voto é dado por θ(X −→ cj). A pontuação de uma classe cj, referente à entrada xi, é

definido pela Equação 7. A probabilidade da classe cj ser a classe correta da entrada

xi é definida pela Equação 8. Os passos principais seguidos por este algoritmo estão

descritos no Algoritmo 5 (página 51 da versão completa da tese).

LAC-MR-ERM (acrônimo derivado empirical risk minimization) − Cada sub-

problema Sxi pode demandar funções com diferentes ńıveis de complexidade. O algo-

ritmo LAC-MR-ERM utiliza a Inequação 3 para encontrar uma função de mapeamento

estável para o sub-problema Sxi e que ao mesmo tempo forneça um erro emṕırico baixo

xxi



em Sxi . Os passos principais seguidos por este algoritmo estão descritos no Algoritmo 6

(página 53 da versão completa da tese).

LAC-MR-SRM (acrônimo derivado de “structural risk minimization”)− Cada sub-

problema Sxi pode demandar funções com diferentes ńıveis de complexidades. O algo-

ritmo LAC-MR-SRM utiliza a Inequação 4 para encontrar uma função de mapeamento

simples para o sub-problema Sxi , e que ao mesmo tempo forneça um erro emṕırico baixo

em Sxi . Os passos principais seguidos por este algoritmo estão descritos no Algoritmo 7

(página 54 da versão completa da tese).

Principais Resultados

Avaliamos a efetividade dos algoritmos propostos em um importante problema de

classificação denominado categorização de documentos. Novamente, utilizamos uma

coleção de documentos extráıdos da biblioteca digital da ACM (Association for Com-

puting Machinery). Tal coleção já foi descrita anteriormente. Partes dos resultados a

serem apresentados podem ser encontradas em [Veloso et al., 2006a].

Vários algoritmos diferentes são empregados para efeitos de comparação. A Ta-

bela 2 mostra os resultados obtidos por cada algoritmo avaliado. Todos os resultados

são estatisticamente significativos de acordo com o test-T com 95% de confiança. Os

melhores resultados, incluindo empates estat́ısticos, são mostrados em negrito. Os

algoritmos baseados na classificação associativa sob demanda oferecem os melhores

resultados. Além disso, eles também estão entre os mais rápidos. Estes resultados

demonstram as vantagens da classificação associativa sob demanda.

Ganhos (%) relativos
Algoritmos MicF1 MacF1 ao baseline Tempo de Execução

MicF1 MacF1

Amsler (baseline) 0,832 0,783 – – 1.251 segundos
kNN 0,833 0,774 0,001 -0,011 83 segundos
SVM 0,845 0,810 0,016 0,035 1.932 segundos
Bayesian 0,847 0,796 0,019 0,016 8.281 segundos
Multi-Kernel 0,859 0,812 0,032 0,037 14.894 segundos
LAC-MR 0,862 0,814 0,036 0,040 257 segundos
LAC-MR-ERM 0,868 0,833 0,043 0,064 504 segundos
LAC-MR-SRM 0,873 0,839 0,049 0,071 342 segundos

Tabela 2. Efetividade de diferentes algoritmos.

xxii



Extensões à Classificação Associativa Sob Demanda

A seguir aprentaremos extensões aos algoritmos baseados na classificação associativa

sob demanda. Tais extensões visam aumentar a gama de aplicações beneficiadas pela

técnica. Os algoritmos a serem apresentados, e os resultados obtidos por esses al-

goritmos, são discutidos em um ńıvel de detalhamento maior na versão completa da

tese.

Classificação Multi-Rotulada

Frequentemente, várias sáıdas (i.e., rótulos) estão relacionadas a uma mesma entrada.

Dois algoritmos para classificação multi-rotulada sob demanda são apresentados a se-

guir.

LAC-MR-IO (acrônimo derivado de “independent outputs”) − Este algoritmo é si-

milar ao algoritmo LAC-MR. A diferença é a utilização de um novo parâmetro, ∆min

(0≤ ∆min ≤0.5). Nesse caso, para uma entrada xi ∈ T , se p̂(cj|xi) ≥ ∆min, então a

sáıda cj é reconhecida como sendo uma das sáıdas associadas à entrada xi. Os passos

principais seguidos por este algoritmo estão descritos no Algoritmo 8 (página 63 da

versão completa da tese).

LAC-MR-CO (acrônimo derivado de “correlated outputs”) − Este algoritmo ex-

plora posśıveis correlações entre diferentes sáıdas, de forma a produzir funções de ma-

peamento ainda melhores. Nesse caso, ao se identificar uma sáıda para uma entrada

xi ∈ T , tal sáıda é posteriormente tratada como uma caracteŕıstica, e portanto pode

ser inserida no antecedente das regras. Os passos principais seguidos por este algoritmo

estão descritos no Algoritmo 9 (página 64 da versão completa da tese).

Resumo dos Resultados Os algoritmos propostos foram avaliados em aplicações

reais. Especificamente, o algoritmo LAC-MR-CO oferece os melhores resultados. Ga-

nhos de até 24% são obtidos quando LAC-MR-CO é comparado aos algoritmos pro-

postos em [Elisseeff and Weston, 2001; Schapire and Singer, 2000; Comité et al., 2003].

Resultados mais detalhados podem ser encontrados em Veloso et al. [2007a].

Classificação Multi-Métrica

Existem várias métricas que podem ser usadas para quantificar a associação entre

X e cj (i.e., confiança, correlação etc.). Algoritmos que utilizam métricas diferen-

tes frequentemente geram resultados diferentes. Classificação multi-métrica envolve a

xxiii



combinação dos resultados retornados por algoritmos que utilizam métricas diferentes.

Estes algoritmos são chamados de algoritmos-base. Três algoritmos para classificação

multi-métrica sob demanda são apresentados a seguir.

LAC-MR-SD (acrônimo derivado de “self-delegation”)− Este algoritmo escolhe, por

conta própria, qual algoritmo-base será utilizado para aproximar a sáıda de uma en-

trada xi ∈ T . A escolha é baseada nos valores de p̂(cj|xi) gerados por cada algoritmo-

base. Especificamente, o algoritmo-base que produz a função que retorna o maior valor

de p̂(cj|xi) é o escolhido, e cj é a sáıda retornada. Os passos principais seguidos por

este algoritmo estão descritos no Algoritmo 10 (página 73 da versão completa da tese).

LAC-MR-OC (acrônimo derivado de “output-centric”) − Este algoritmo utiliza um

meta-classificador, que escolhe qual algoritmo-base que será utilizado para aproximar a

sáıda de uma entrada xi ∈ X . A escolha é baseada na competência de cada algoritmo-

base com relação à sáıda que será retornada. A intuição é que alguns algoritmos-base

fornecem bons resultados quando prevêem certas sáıdas, mas não fornecem bons resul-

tados quando prevêem outras sáıdas. Os passos principais seguidos por este algoritmo

estão descritos no Algoritmo 12 (página 75 da versão completa da tese).

LAC-MR-IC (acrônimo derivado de “input-centric”) − Este algoritmo utiliza um

meta-classificador, que escolhe qual algoritmo-base que será utilizado para aproximar a

sáıda de uma entrada xi ∈ X . A escolha é baseada na competência de cada algoritmo-

base com relação às caracteŕısticas de cada entrada. A intuição é que alguns algoritmos-

base fornecem bons resultados apenas para certas entradas. Os passos principais segui-

dos por este algoritmo estão descritos no Algoritmo 13 (página 76 da versão completa

da tese).

Resumo dos Resultados Os algoritmos propostos foram avaliados em aplicações

reais. Especificamente, o algoritmo LAC-MR-IC oferece os melhores resultados. Ga-

nhos de mais de 8,5% são obtidos quando LAC-MR-IC é comparado aos algoritmos

propostos em [Ortega et al., 2001]. Resultados mais detalhados podem ser encontrados

em Veloso et al. [2009c,d].

Classificação Calibrada

Algumas aplicações necessitam que as probabilidades p̂(cj|xi) sejam extremamente pre-

cisas, ou seja, o valor da aproximação p̂(cj|xi) deve ser o mais próximo posśıvel do valor

xxiv



real. Quando isso acontece, diz-se que o algoritmo está calibrado. Dois algoritmos para

classificação calibrada sob demanda são apresentados a seguir.

LAC-MR-NC (acrônimo derivado de “naive calibration”) − Este algoritmo utiliza

uma suavização baseada em histogramas. Especificamente, a acurácia das previsões

em cada histograma é usada para calibrar as probabilidades p̂(cj |xi). A quantidade e

os limites dos histogramas são fornecidos pelo usuário.

LAC-MR-EM (acrônimo derivado de “entropy minimization”) − Este algoritmo

utiliza uma suavização baseada em histogramas. Especificamente, a acurácia das pre-

visões em cada histograma é usada para calibrar as probabilidades p̂(cj|xi). A quanti-

dade e os limites dos histogramas são obtidos automaticamente, através de um processo

de minimização da entropia em cada histograma. Tal processo cria histogramas novos

até que o ganho de informação obtido com a criação de um histograma seja menor que

o tamanho da descrição mı́nima (MDL) desse histograma [Rissanen, 1978].

Resumo dos Resultados Os algoritmos propostos foram avaliados em aplicações

reais. Especificamente, o algoritmo LAC-MR-EM oferece os melhores resultados. Ga-

nhos superiores a 17,5% são obtidos quando LAC-MR-EM é comparado com outros

algoritmos propostos em [Platt, 1999; Cestnik, 1990; Zadrozny and Elkan, 2001]. Re-

sultados mais detalhados podem ser encontrados em Veloso et al. [2008b, 2009b].

Auto-Treinamento

Algumas aplicações possuem caracteŕısticas que dificultam a produção de exemplos de

treino. Entre tais dificuldades, destacamos a ambiguidade entre as sáıdas, que pode

trazer confusão ao especialista. Um algoritmo capaz de realizar auto-treinamento é

apresentado a seguir.

LAC-MR-ST (acrônimo derivado de “self-training”)− Este algoritmo utiliza uma

nova técnica de auto-treinamento, onde (1) a falta de informação, e (2) a certeza nas

previsões, são usadas para a produção automática de novos exemplos de treino.

Resumo dos Resultados Os algoritmos propostos foram utilizados na remoção de

ambiguidade de nomes em bibliotecas digitais. Especificamente, o algoritmo LAC-MR-

ST oferece resultados similares aos resultados obtidos por algoritmos que têm acesso

a informação privilegiada [Han et al., 2005]. Resultados mais detalhados podem ser

encontrados em Veloso et al. [2009a].

xxv



Regressão Ordinal

Algumas aplicações precisam ordenar as entradas de acordo com algum critério pré-

estabelecido. Este é o caso, por exemplo, de muitas das aplicações de Recuperação

de Informação, onde documentos devem ser ordenados de acordo com a respectiva

relevância para a consulta. Um algoritmo capaz de ordenar as entradas xi ∈ T , de

acordo com suas relevâncias, é apresentado a seguir.

LAC-MR-OR (acrônimo derivado de “ordinal regression”)− Este algoritmo produz

probabilidades p̂(cj |xi), onde xi ∈ T e cj é uma posśıvel classe de relevância. Essas

probabilidades são combinadas linearmente, de acordo com a Equação 9, de forma que

o valor rank(xi) obtido através dessa operação possa ser usado para fornecer a posição

da entrada xi. Os passos principais seguidos por este algoritmo estão descritos no

Algoritmo 17 (página 108 da versão completa da tese).

rank(xi) =

p
∑

j=0

(

cj × p̂(cj|xi)
)

(9)

Resumo dos Resultados Os algoritmos propostos foram avaliados em aplicações

reais. Especificamente, o algoritmo LAC-MR-OR oferece os melhores resultados. Os

ganhos fornecidos pelo algoritmo LAC-MR-OR variam de 6,6% a 42%, quando ele

é comparado com os algoritmos propostos em [Yue et al., 2007; Tsai et al., 2007;

Freund et al., 2003; Joachims, 2002; Xu and Li, 2007; Cao et al., 2007]. Resultados

mais detalhados podem ser encontrados em Veloso et al. [2008a].

Conclusões

Nesta tese tratamos uma classe de problemas que são amplamente conhecidos como

problemas de classificação. Dado um conjunto de entradas e suas respectivas sáıdas,

que são de alguma forma relacionadas entre si, o objetivo é produzir uma função de

mapeamento capaz de aproximar a relação entre entradas e sáıdas, de forma que essa

função seja utilizada para prever sáıdas para entradas arbitrárias. Propusemos vários

algoritmos de classificação. Desses algoritmos, mostramos que o mais simples deles é

eficiente do ponto de vista do problema de classificação. Aplicamos melhorias diversas a

esse algoritmo, que resultaram na criação de vários outros algoritmos, bem mais sofisti-

cados. Esse processo de melhoria cont́ınua culminou na criação de algoritmos baseados

na classificação associativa sob demanda. Utilizamos problemas reais para mostrar

que esses algoritmos produzem funções de mapeamento com alto grau de precisão.

xxvi



A intuição chave por trás desses algoritmos é a de que um problema complexo pode

ser decomposto em vários sub-problemas bem mais simples e que tais sub-problemas

podem ser resolvidos independentemente. Finalmente, propusemos extensões a esses

algoritmos, de forma que eles possam solucionar problemas relacionados ao problema

de classificação original.

xxvii





Contents

1 Introduction 1

1.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Informal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 The Classification Problem 9

2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The Probably-Approximately Correct Learning Framework . . . . . . . 12

2.3 Function Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Major Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Classification Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Decision Trees (DTs) . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.2 Naive Bayes (NB) . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.3 Nearest Neighbors (NNs) . . . . . . . . . . . . . . . . . . . . . . 22

2.5.4 Support Vector Machines (SVMs) . . . . . . . . . . . . . . . . . 22

2.6 Theoretical and Practical Remarks . . . . . . . . . . . . . . . . . . . . 24

2.6.1 The Need for Bias . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.2 No Free Lunch . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Associative Classification 27

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Association Rules and Decision Rules . . . . . . . . . . . . . . . 28

3.2 Method and Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Level-Wise Rule Extraction . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Function Approximation . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xxix



3.3.1 The UCI Benchmark . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.2 The ACM Digital Library . . . . . . . . . . . . . . . . . . . . . 40

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Demand-Driven Associative Classification 47

4.1 Method and Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.2 Demand-Driven Function Approximation . . . . . . . . . . . . . 52

4.2 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 The UCI Benchmark . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2 The ACM Digital Library . . . . . . . . . . . . . . . . . . . . . 55

4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Extensions to Demand-Driven Associative Classification 61

5.1 Multi-Label Classification . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Multi-Metric Classification . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Calibrated Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Self-Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5 Ordinal Regression and Ranking . . . . . . . . . . . . . . . . . . . . . . 106

5.5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xxx



5.5.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Conclusions 115

6.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Bibliography 119

xxxi





List of Figures

1 Ilustração do processo de obtenção da função de mapeamento. . . . . . . . xii

2 Diferentes funções de mapeamento. . . . . . . . . . . . . . . . . . . . . . . xiii

3 Minimização do Risco Emṕırico . . . . . . . . . . . . . . . . . . . . . . . . xvi

4 Minimização do Risco Estrutural . . . . . . . . . . . . . . . . . . . . . . . xvii

1.1 An illustration of the classification problem. . . . . . . . . . . . . . . . . . 3

1.2 Decomposition into sub-problems. . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Simple and complex mapping functions. . . . . . . . . . . . . . . . . . . . 11

2.2 Empirical risk minimization. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 The VC-dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Structural risk minimization. . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Splitting according to information gain. . . . . . . . . . . . . . . . . . . . . 21

2.6 Increasing the number of neighbors. . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Maximum margin hyperplane. . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Mapping functions with increasing complexity. . . . . . . . . . . . . . . . . 24

3.1 Discretized input space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Polynomials of increasing degrees. . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Trading-off complexity and stability. . . . . . . . . . . . . . . . . . . . . . 38

3.4 Rule confidence values in S and T as a function of rule support. . . . . . . 43

3.5 Average discrepancy of rule confidence as a function of rule support. . . . . 44

3.6 Relationship between σmin, MicF1, and execution time. . . . . . . . . . . . 44

4.1 The pruning dilemma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Processing time with varying cache sizes.. . . . . . . . . . . . . . . . . . . 58

5.1 Relationship between confidence and other metrics. . . . . . . . . . . . . . 79

5.2 Utilization of base algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Distribution of competent algorithms. . . . . . . . . . . . . . . . . . . . . . 81

5.4 Reliability diagram and τ -calibrated algorithms. . . . . . . . . . . . . . . . 86

xxxiii



5.5 Calculating bin boundaries for different categories (category “Data Mining”

on the left, and category “Inf. Retrieval” on the right). . . . . . . . . . . . 90

5.6 Bins produced for category “Information Systems”. . . . . . . . . . . . . . 92

5.7 Algorithms, before and after being calibrated. . . . . . . . . . . . . . . . . 93

5.8 Accuracy estimated by calibrated algorithms. . . . . . . . . . . . . . . . . 94

5.9 Comparing calibration methods in terms of τ . . . . . . . . . . . . . . . . . 96

5.10 Sensitivity to φmin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.11 Sensitivity to ∆min. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.12 MicF1 values for different ∆min and φmin. . . . . . . . . . . . . . . . . . . . 105

5.13 Precision numbers for different ranking algorithms. . . . . . . . . . . . . . 113

5.14 NDCG Numbers for different ranking algorithms. . . . . . . . . . . . . . . 114

6.1 Relationship between the proposed classification algorithms. . . . . . . . . 116

xxxiv



List of Tables

1 Efetividade de diferentes algoritmos. . . . . . . . . . . . . . . . . . . . . . xx

2 Efetividade de diferentes algoritmos. . . . . . . . . . . . . . . . . . . . . . xxii

3.1 Training data and test set given as example. . . . . . . . . . . . . . . . . . 34

3.2 Classification performance for different algorithms. . . . . . . . . . . . . . 41

3.3 Categorization performance for different algorithms. . . . . . . . . . . . . . 43

4.1 Training data and test set given as example. . . . . . . . . . . . . . . . . . 51

4.2 Projected training data: Sx12 . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Classification performance of different algorithms. . . . . . . . . . . . . . . 56

4.4 Categorization performance for different algorithms. . . . . . . . . . . . . . 57

5.1 Training data given as example of a multi-label problem. . . . . . . . . . . 64

5.2 Categorization performance for different algorithms. . . . . . . . . . . . . . 67

5.3 Categorization performance for different algorithms. . . . . . . . . . . . . . 68

5.4 Training data given as an example of multi-metric problem. . . . . . . . . 74

5.5 Enhanced training data, Se. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.6 Classification performance of base algorithms. . . . . . . . . . . . . . . . . 80

5.7 Classification performance of multi-metric algorithms. . . . . . . . . . . . . 80

5.8 Classification performance of base algorithms. . . . . . . . . . . . . . . . . 83

5.9 Classification performance of multi-metric algorithms. . . . . . . . . . . . . 83

5.10 Example using documents of a digital library. . . . . . . . . . . . . . . . . 88

5.11 Class membership probabilities. . . . . . . . . . . . . . . . . . . . . . . . . 89

5.12 Bin boundaries and calibrated probabilities for each category. . . . . . . . 90

5.13 Comparing algorithms in terms of profit and MSE. . . . . . . . . . . . . . 96

5.14 The DBLP and BDBComp collections . . . . . . . . . . . . . . . . . . . . 102

5.15 MicF1 numbers for DBLP collection. . . . . . . . . . . . . . . . . . . . . . 104

5.16 MAP numbers for OHSUMED subset. . . . . . . . . . . . . . . . . . . . . 110

5.17 MAP numbers for TD2003 subset. . . . . . . . . . . . . . . . . . . . . . . 111

5.18 MAP numbers for TD2004 subset. . . . . . . . . . . . . . . . . . . . . . . 111

5.19 MAP numbers for NP2003 subset. . . . . . . . . . . . . . . . . . . . . . . . 111

xxxv



5.20 MAP numbers for NP2004 subset. . . . . . . . . . . . . . . . . . . . . . . . 111

5.21 MAP numbers for HP2003 subset. . . . . . . . . . . . . . . . . . . . . . . . 112

5.22 MAP numbers for HP2004 subset. . . . . . . . . . . . . . . . . . . . . . . . 112

xxxvi



List of Algorithms

1 Finding fS , according to EAC-SR. . . . . . . . . . . . . . . . . . . . . . 33

2 Finding fS , according to EAC-MR. . . . . . . . . . . . . . . . . . . . . 35

3 Finding fS , according to EAC-MR-ERM. . . . . . . . . . . . . . . . . . 37

4 Finding fS , according to EAC-MR-SRM. . . . . . . . . . . . . . . . . . 39

5 Finding fxi

S , according to LAC-MR. . . . . . . . . . . . . . . . . . . . . 51

6 Finding fxi

S , according to LAC-MR-ERM. . . . . . . . . . . . . . . . . 53

7 Finding fxi

S , according to LAC-MR-SRM. . . . . . . . . . . . . . . . . . 54

8 Finding fxi

S , according to LAC-MR-IO. . . . . . . . . . . . . . . . . . . 63

9 Finding fxi

S , according to LAC-MR-CO. . . . . . . . . . . . . . . . . . 64

10 Finding fxi

S , according to LAC-MR-SD. . . . . . . . . . . . . . . . . . . 73

11 Enhancing the training data with the competence of each competing

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

12 Finding fxi

S , according to LAC-MR-OC. . . . . . . . . . . . . . . . . . 75

13 Finding fxi

S , according to LAC-MR-IC. . . . . . . . . . . . . . . . . . . 76

14 Estimating membership probabilities. . . . . . . . . . . . . . . . . . . . 87

15 Calibrating the probabilities. . . . . . . . . . . . . . . . . . . . . . . . . 88

16 Including new examples to the original training data. . . . . . . . . . . 100

17 Producing ranking scores using LAC-MR-OR. . . . . . . . . . . . . . . 108

xxxvii



xxxviii



List of Symbols
x: the space of inputs.

y: the discrete space of outputs.

a: the space of attributes.

H: the hypothesis space.

xi: an arbitrary input.

ci: an arbitrary output (or label).

γi: an arbitrary metric.

ai: an arbitrary attribute-value (or feature).

si: an arbitrary pair in S.

zi: an arbitrary pair in T .

S: an arbitrary training data.

T : an arbitrary test set.

X : an arbitrary set of features.

X −→ ci or r refer to an arbitrary decision rule.

R: an arbitrary set of rules.

Rxi : an arbitrary set of rules matching xi.

Rci: an arbitrary set of rules predicting ci.

m: the number of pairs in the test set.

n: the number of pairs in the training data.

p: the number of outputs.

l may refer to the number of attributes of an input, or to the left boundary of a bin.

q: the number of features in S.

fS : a discrete approximation of P(y|x).

fxi

S : a discrete approximation of P(y|x), which is specially accurate at input xi.

σ(X −→ ci): the support of a rule.

θ(X −→ ci): the confidence of a rule.

β: the stability of a function.

σmin: the minimum support threshold.

∆min: a threshold indicating the predicted outputs in multi-label classification.

φmin: a threshold indicating that the prediction is reliable.

τ : the degree of calibration of a classification algorithm.

xxxix





Chapter 1

Introduction

Learning is a fundamental ability of many living organisms. It leads to the development

of new skills, values, understanding, and preferences. Improved learning capabilities

catalyze the evolution and may distinguish entire species with respect to the activi-

ties they are able to perform. The importance of learning is, thus, beyond question.

Learning covers a broad range of tasks. Some tasks are particularly interesting because

they can be mathematically modeled. This makes natural to wonder whether machines

might be made, or programmed, to learn.

A deep understanding of how to program machines to learn is still distant, but

it would be of great impact because it would increase the spectrum of problems that

machines can solve. Candidate problems range between two extremes: structured

problems for which the solution is totally defined (and thus are easily programmed

by humans [Hutter, 2002]), and random problems for which the solution is completely

undefined (and thus cannot be programmed). Problems in the vast middle ground

have solutions that cannot be well defined and are, thus, inherently hard to program.

Machine Learning is the way to handle this vast middle ground and many tedious and

difficult hand-coding tasks would be replaced by automatic learning methods.

A prominent approach to machine learning is to provide to the machine examples

demonstrating how the problem is solved. These examples are paired values of inputs

(instantiations of the problem to be solved) and outputs (the corresponding solution).

Inputs and outputs are related somehow, but this relationship is unknown. The ma-

chine must generalize rules about this relationship and turn these rules into a program.

This program will predict the outputs associated with inputs for which the solution is

unknown. When the solution assumes pre-defined and finite values (which are called

classes), this process is known as classification. Classification is a major task in pre-

dictive data mining [Witten and Frank, 2005]. According to Wu et al. [2008], six out

of the ten most influential data mining algorithms are classification algorithms.

1



2 Chapter 1. Introduction

The relationship between inputs and outputs may be expressed as a mapping func-

tion, which takes an input and provides the corresponding output. Since this func-

tion is unknown, the classification problem can be essentially stated as a function

approximation problem: given as examples some inputs for which the outputs (i.e., the

classes) are known, the goal is to extrapolate the (unknown) outputs associated with

yet unseen inputs as accurately as possible. Several classification algorithms follow

this function approximation paradigm [Evgeniou et al., 2000; Poggio and Girosi, 1998;

Rahimi and Recht, 2008]. These algorithms usually rely on a single mapping function

to approximate the target function (i.e., the relationship between inputs and outputs).

This single function is selected from a set of candidate functions and is the one which

is most likely to provide the best available approximation to the target function. This

implies that such single function will be used to approximate the target function over

the full space of inputs. This is not necessarily a good strategy, because:

• the set of possible functions might not contain a good approximation of the target

function for the full input space;

• the use of a single function to approximate the target function over the full space

of inputs tends to be good on average, but it may fail on some particular regions

(or ranges) of the input space.

Figure 1.1 illustrates the function approximation process for a classification prob-

lem. The left-most graph on the top (middle and right) shows the target function,

where each point represents an input-output pair. The black points are given as ex-

amples to the classification algorithm, which uses them to build the mapping function.

The white points are used to assess the accuracy of this function. Different mapping

functions are shown. Graphs on the top show mapping functions that do not provide

a good approximation for the target function. Graphs on the bottom show mapping

functions that fit well the target function, although they still fail on some particular

regions of the input space.

The limiting factor of classification algorithms is the accuracy of the mapping func-

tions they can provide in a reasonable time. Dramatic gains cannot be achieved through

minor algorithmic modifications, but require the introduction of new strategies and

approaches. The key approach we exploited in this thesis, in order to enhance the ac-

curacy of classification algorithms, is to decompose a hard classification problem into

much easier sub-problems, where each sub-problem is defined by inputs that are sim-

ilar somehow (i.e., a range of the input space). Then, a specific mapping function for

each sub-problem is built independently from each other, on a demand-driven basis,

according to particularities of each sub-problem. This strategy leads to a finer-grained



3

o
u

tp
u

t 
s
p

a
c
e

input space

f(
x
)

x

f(
x
)

x

f(
x
)

x

f(
x
)

x
f(

x
)

x

Figure 1.1. An illustration of the classification problem.

function approximation process, in which multiple mapping functions are built. Each

mapping function is likely to perform particularly accurate predictions for the inputs

that define the corresponding sub-problem.

This finer-grained process is illustrated in Figure 1.2. The original problem is

decomposed into two sub-problems. One sub-problem is defined by the three examples

(i.e., first three black points), while the other sub-problem is defined by the last three

examples. Two mapping functions are built using the respective set of examples.

Each mapping function provides an optimized approximation of the target function on

specific regions of the input space. Although this strategy is very intuitive, some key

questions must be answered:

• How sub-problems are defined/differentiated?

• Is there a suitable way to search for mapping functions, such that the space for

candidate functions is constrained?

• Can particularities of a sub-problem be used to improve function approximation?



4 Chapter 1. Introduction

f(
x
)

x

x1
x2

f1

f2

Figure 1.2. Decomposition into sub-problems.

• Is the approximation obtained by multiple functions tighter than the approxima-

tion obtained by a single function?

• What is the computational cost associated with algorithms that use multiple

mapping functions to approximate the target function? Are there polynomial

time, efficient algorithms? Are they more efficient than algorithms that approxi-

mate the target function using a single function?

This thesis is mainly devoted to answer these questions.

1.1 Thesis Statement

Classification is posed as a function approximation problem, which can be decomposed

into sub-problems that are defined by different regions of the input space. The main

hypothesis of this thesis is that such sub-problems are much simpler than the original

problem. The aim of this thesis is to show that, instead of of approximating the

target function in the full space of inputs, approximating the target function in specific

ranges or regions of the input space, on a demand-driven basis (i.e., taking into account

particular demands of each region of the input space) leads to more accurate mapping

functions.

1.2 Thesis Contributions

Some of the specific contributions of this thesis include:



1.3. Informal Description 5

• Associations between inputs and outputs are discovered using a well-known data

mining technique. These associations are used to constrain the space for mapping

functions to only those functions that are likely to be accurate. We show, in

Chapter 3, that this strategy leads to algorithms that need few examples to build

accurate mapping functions (i.e., Probably Approximately Correct, or simply,

PAC-efficient algorithms).

• We show, in Chapter 4, that different sub-problems demand different mapping

functions.

• We propose polynomial-time algorithms for demand-driven associative classifica-

tion in Chapter 4.

• Several extensions to demand-driven associative classification are presented in

Chapter 5.

• An extensive set of experiments demonstrates the effectiveness of the proposed

algorithms in various scenarios and applications.

1.3 Informal Description

The goal of this informal description is to help you, the reader, understand what this

thesis is about, and what you will learn if you chose to read it. We will attempt to

give a picture not only of the research itself, but of the choices and developments that

led to this research.

To a large extent, this thesis is about Associative Classification and related algo-

rithms. They are machine learning algorithms for solving classification problems. The

core of these algorithms is the explicit use of association rules (which is a typical data

mining technique) expressing the relationship between features and classes. When we

first began the research that led to this thesis, in 2005, there was a growing sense that

associative classification algorithms were not of practical use in complex applications.

This was mainly due to the exponential number of rules that could be extracted from

the training data.

At that time, we already had some experience developing efficient association rule

mining algorithms [Veloso et al., 2002a,b, 2003, 2002c], and we felt we could, some-

how, solve this impediment, and make associative classification algorithms more effi-

cient and practical. Our insight was that, since classification performance is usually

assessed using a test set, then to achieve high classification performance, only a much

much smaller subset of rules needs to be extracted, more specifically, only those rules



6 Chapter 1. Introduction

that carry discriminative information about instances in the test set. This observation

motivated our first paper in this field: Lazy Associative Classification (abbreviated as

LAC) which introduced lazy algorithms for associative classification and was published

in [Veloso et al., 2006b]. LAC independently solves sub-problems by “projecting” the

training data according to instances in the test set, so that only rules that contribute

somehow to improve classification performance are processed. Two months later, we

improved LAC and applied it to solve complex classification problems, such as docu-

ment categorization. These algorithms were able to achieve pretty good results, which

were published in [Veloso et al., 2006a].

Then, we started to apply LAC to all problems we had some interest in solving. This

included spam filtering, protein functional analysis, social networks, sentiment analysis,

and many others. Most of these attempts to solve interesting problems resulted in

publications [Veloso and Meira, 2006, 2005, 2007; Veloso et al., 2007b].

We then turned to the analysis of variations of the original classification problem.

We extended LAC so that it became able to solve multi-label problems. Our first at-

tempt was, however, over-simplified, and the results we obtained were not as promising

as we were expecting. Fortunately, we observed that, frequently, different labels are

somehow associated to each other. Thus, we decided to exploit the association between

labels in order to improve our algorithms. We were able to solve several multi-label

problems with these algorithms, which were published in [Veloso et al., 2007a]. Another

task that is related to classification is ranking. Putting simple, the major difference is

that, instead of learning how to group objects, one has to learn how to sort them. We

were able to extend LAC so that it became able to solve ranking problems. In fact,

LAC is currently one of the most effective algorithms that learn ranking functions, in

the context of information retrieval. Exciting results were published in [Veloso et al.,

2008a].

During the process of implementing and reimplementing LAC, we realized that each

projection is, in fact, a sub-problem which could be solved using specifically designed

strategies. Some sub-problems are extremely simple, while others are very hard to

solve. Such a finer-grained approach may combine simple and complex solutions in

order to solve the original problem. For example, selecting which statistic measure of

association is the best for each sub-problem leads to overall improvements in classifi-

cation performance, as was shown in [Veloso et al., 2009c].

From now on, this thesis will be written in a more technical, formal style.



1.4. Thesis Outline 7

1.4 Thesis Outline

This thesis is structured in 6 chapters. The remainder of this thesis is organized as

follows.

Chapter 2. [The Classification Problem] Basic definitions, notations, challenges

and techniques concerning the classification problem are presented.

Chapter 3. [Associative Classification] Algorithms that produce candidate func-

tions by exploiting associations between inputs and outputs are presented. These al-

gorithms are denoted as associative classification algorithms.

Chapter 4. [Demand-Driven Associative Classification] Algorithms that use

multiple functions to approximate the target function are presented. These algorithms

are denoted as demand-driven associative classification algorithms. Empirical results

showing the effectiveness of these algorithms are reported.

Chapter 5. [Extensions to Demand-Driven Associative Classification] Sev-

eral extensions to demand-driven associative classification are discussed.

Chapter 6. [Conclusions] Contributions and limitations are summarized and the

thesis is concluded.





Chapter 2

The Classification Problem

In this chapter we describe basic definitions that are necessary to understand the clas-

sification problem. Further, we also discuss some of the main challenges and research

wreathing this problem.

2.1 Definitions

In this section we present definitions and notations that form the basis of the classifi-

cation problem.

Training Data and Test Set

In a classification problem, there is a set of input-output pairs (also referred to as

instances or examples) of the form zi=(xi, yi). Each input xi is a fixed-length record

of the form < a1, . . . , al >, where each ai is an attribute-value. Each output yi draws

its value from a discrete and finite set of possibilities y = {c1, . . . , cp}, and indicates

the class to which zi belongs. Cases where yi =? indicate that the correct class of zi

is unknown. There is a fixed but unknown conditional probability distribution P(y|x),

that is, the relationship between inputs and outputs is fixed but unknown. The set of

pairs is explicitly divided into two partitions, the training data (denoted as S) and the

test set (denoted as T ):

S = {s1 = (x1, y1), . . . , sn = (xn, yn)}

T = {t1 = (xn+1, ?), . . . , tm = (xn+m, ?)}

Further, it is assumed that pairs in T are in some sense related to pairs in S, and

that {tn+1, . . . , tn+m} and {s1, . . . , sn} are sampled independently and identically from

9



10 Chapter 2. The Classification Problem

the same distribution P(y|x).

Classification Algorithm

A classification algorithm takes as input the training data S and the test set T , and

returns a mapping function fS : x −→ y that represents the relation between inputs and

outputs in S, that is, the mapping function fS is a discrete approximation of P(y|x)

(i.e., a classification algorithm observes n input-output pairs and produces a function

which describes well the underlying input-output process). Many possible functions

can be derived from S. The hypothesis space H is the space of functions explored by

the classification algorithm in order to select fS . The selected mapping function fS is

finally used to estimate the outputs y given the inputs x, for each xi ∈ T .

Figure 2.1 illustrates the problem of function approximation. The dark solid line

represents the true (target) function. The dark points are given as examples (i.e.,

S = {s1, . . . , sn}). Two approximations (i.e., candidate functions) are used to fit the

true function. The complex approximation fits S exactly. Yet, it is clear that the

complex approximation will perform poorly in T , as it is far from the true function

on most of the space of inputs (i.e., the x-axis). The simple approximation does

not fit S exactly, but provides better approximations for most of the points in T .

The classification problem is that of selecting, from all functions in H, the one which

best approximates (discretely) the distribution P(y|x). The selection is based on S.

This formulation implies that the classification problem corresponds to the problem of

function approximation.

Loss Function

A loss function, ℓ(fS , zi = (xi, yi)), represents the loss (or cost) associated with a wrong

estimate (i.e., fS(xi) 6= yi) as a function of the degree of deviation from the correct

value. Unless otherwise stated, the 0-1 loss function will be the one used throughout

this thesis, where for zi=(xi, yi):

ℓ(fS , zi) =

{

0 if fS(xi) = yi

1 otherwise

The 0-1 loss function is very intuitive, since it states that one should make as few

mistakes as possible. It may be considered an upper bound for other loss functions,

such as the hinge and the squared loss functions [Rosasco et al., 2004].



2.1. Definitions 11

f S
(x

)

x

Simple Approximation

Complex Approximation

Figure 2.1. Simple and complex mapping functions.

Expected Error

According to Cucker and Smale [2001] and Vapnik [1995], the expected error of a map-

ping function fS is defined as:

IT [fS ] =

∫

t=(x,y)

ℓ(fS , t)dP(y|x)

The primary goal of classification algorithms is to select a mapping function fS

for which IT [fS ] is guaranteed low. However, IT [fS ] cannot be computed because the

conditional probability distribution P(y|x) is unknown.

Empirical Error

Although the expected error is unknown, the empirical error of a mapping function fS

can be easily computed using S:

IS [fS ] =
1

n

n
∑

i=1

ℓ(fS , si)

Generalization

An important ability for any classification algorithm is generalization: the empirical

error must converge to the expected error as the number of examples n increases, that

is, IS [fS ] ≈ IT [fS ]. Informally, the classification performance of the selected function,



12 Chapter 2. The Classification Problem

fS , in S must be a good indicator of its classification performance in T . Generalization

error (or risk), denoted as ǫ, is given by IT [fS ]− IS [fS ]. High generalization (i.e., low

values of ǫ) implies low expected error only if IS [fS ] ≈ 0.

Next we discuss a well-known mathematical tool for the analysis of classification

algorithms.

2.2 The Probably-Approximately Correct

Learning Framework

The Probably-Approximately Correct (PAC) learning framework [Valiant, 1984a,b]

states that the classification algorithm must be able to select a mapping function

fS from H which, with high probability, will have low expected error. There are two

major requirements in the PAC learning framework:

• The expected error is bounded by some constant ǫ (i.e., the generalization error).

• The probability that the expected error is greater than ǫ is bounded by some

constant δ.

Putting simple, the PAC learning framework requires that the classification al-

gorithm probably selects a mapping function fS that is approximately correct. More

specifically, a classification problem is PAC-feasible if the algorithm selects a mapping

function fS ∈ H, such that IT [fS ] ≤ ǫ, with probability of at least (1−δ), for 0 < ǫ < 1
2

and 0 < δ < 1
2
. This statement is formalized as follows:

P[IT [fS ] < ǫ] ≥ 1− δ (2.1)

Sample Complexity

The sample complexity of a classification algorithm is the relation between IT [fS ] and

|S| (or n). Inequality 2.1 can be used to derive the sample complexity of a classification

algorithm. In this case, a mapping function, fS , is considered accurate if IT [fS ] < ǫ.

We denote an accurate function as f+, and similarly, we denote poor functions as f−.

Also, f ∗ is the most accurate mapping function in the hypothesis space, H.

For a given pair zi = (xi, yi) (i.e., an example), the probability of f−(xi) 6= yi,

is at least ǫ. Thus, the probability of f−(xi) = yi is at most 1 − ǫ. So, for n pairs

{z1 = (x1, y1), . . . , zn = (xn, yn)}, the probability that f−(x1) = y1∧. . .∧f−(xn) = yn is

at most (1−ǫ)n. Now, considering that there are k poor functions in H, the probability

that at least one of these functions correctly predicts the output of the n pairs is



2.2. The Probably-Approximately Correct Learning Framework 13

k× (1− ǫ)n. Using the fact that k ≤ |H| (and assuming that IT [f ∗] = 0), the following

inequality is obtained:

P[IT [fS ] > ǫ] ≤ H× (1− ǫ)n ≤ δ (2.2)

Since (1 − ǫ) ≤ e−ǫ [Kearns and Vazirani, 1994], and solving for n, (2.2) can be

rewritten as:

P[IT [fS ] > ǫ] ≤ H × e−nǫ ≤ δ

H× e−nǫ ≤ δ

n ≥
1

ǫ

(

ln |H|+ ln(
1

δ
)
)

(2.3)

Thus, the more accuracy (lower ǫ values) and the more certainty (lower δ values)

one wants, the more examples the classification algorithm needs. Now, (2.2) and (2.3)

can be used to derive the expected error bound:

ǫ ≥
1

n

(

ln |H|+ ln(
1

δ
)
)

IT [fS ] ≤ IS [fS ] +
1

n

(

ln |H|+ ln(
1

δ
)
)

(2.4)

So far, it was assumed that IS [f ∗] = 0 (i.e., the classification algorithm is gnostic1).

If IS [f ∗] > 0 (i.e., the classification algorithm is agnostic), then, according to Angluin

[1992], Chernoff approximation can be used to derive the sample complexity:

n ≥
1

2ǫ2

(

ln |H|+ ln(
1

δ
)
)

(2.5)

Now, (2.2) and (2.5) can be used to derive the expected error bound:

ǫ ≥

√

1

2n

(

ln |H|+ ln(
1

δ
)
)

IT [fS ] ≤ IS [fS ] +

√

1

2n
(ln |H|+ ln(

1

δ
)) (2.6)

1A function fS is consistent with example s = (x, y) if fS(x) = y. A classification algorithm is
gnostic if it selects a function fS which is consistent with all examples in S.



14 Chapter 2. The Classification Problem

For PAC-based expected error bounds, |H| must be estimated. The simpler the

hypothesis space (or, equivalently, the fewer functions are explored), the lower is ǫ, at

the expense of increasing the empirical error.

Classification Efficiency

The empirical error is a finite sample approximation of the expected error. It can

be shown [Cucker and Smale, 2001] that the empirical error converges uniformly to

the expected error when |S| → ∞ (n → ∞). An efficient classification algorithm

ensures that this convergence occurs with high rate. Formally, in the PAC learning

framework, a classification algorithm is efficient if it selects, in polynomial time and

with a polynomial number of examples, with probability (1− δ), a function fS ∈ H for

which IS [fS ] < ǫ, and IS [fS ] ≈ IT [fS ] (that is, efficient classification algorithms must

achieve low empirical error, with access to a restricted number of examples and in a

reasonable amount of time).

2.3 Function Approximation

Classification is posed as synthesizing a mapping function that best approximates

the relationship between the inputs xi and the corresponding outputs yi (i.e., the

classes). Two strategies for function approximation are considered in this thesis: empir-

ical risk minimization (which follows the stability theory [Devroye and Wagner, 1979;

Kutin and Niyogi, 2002; Bousquet and Elisseeff, 2002; Mukherjee et al., 2006]), and

structural risk minimization (which follows the VC theory [Guyon et al., 1992; Vapnik,

1991, 1995]). Both strategies establish sufficient conditions for generalization. Next we

will discuss these strategies.

Empirical Risk Minimization

Probably the most natural function approximation strategy is Empirical Risk Mini-

mization (ERM): from all possible mapping functions in H, the classification algorithm

selects the function fS which minimizes IS [fS ], the empirical error given by:

arg min

(

1

n

n
∑

i=1

ℓ(fS , si)

)

, ∀fS ∈ H (2.7)

The Empirical Risk Minimization strategy, however, does not ensure generalization.

More specifically, minimizing the empirical error does not necessarily imply in mini-



2.3. Function Approximation 15

mizing the expected error. A sufficient condition for generalization of ERM algorithms

is the stability of fS [Mukherjee et al., 2006; Poggio et al., 2004].

Stability. The stability measures the difference, βsi
, in empirical errors at a pair

si ∈ S between a function fS obtained given the entire training data S and a function

fS−si
obtained given the same training data but with pair si left out. Specifically, if the

training data S is perturbed by removing one pair si, and if the selected function fS does

not diverge much from fS−si
, then fS is stable. Informally, avoiding unstable functions

can be thought as a way of controlling the variance of the function approximation

process. Function fS is β-stable if:

∀si ∈ S, |fS(si)− fS−si
(si)| ≤ β (2.8)

The lowest value of β in (2.8) provides the stability of fS . The lowest value of β is

the largest change at any pair si. Thus, function fS shown in Figure 2.2, is obtained by

Empirical Risk Minimization using S = {s1, s2, s3, s4, s5}. Similarly, function fS−s2
is

obtained by Empirical Risk Minimization using {S−s2}, and function fS−s5
is obtained

by Empirical Risk Minimization using {S − s5}. The difference at s2, βs2
, is small.

The difference at s5, βs5
, is large. Therefore, fS is βs5

-stable, despite the very small

value of βs2
. Function fS is stable if β = O( 1

n
).

y

x

βs2

βs5

s1 s2 s3

s4 s5

fS
fS−s2fS−s5

Figure 2.2. Empirical risk minimization.

It has been shown in [Bousquet and Elisseeff, 2002] that the expected error can be

estimated by the empirical error and the stability of the selected function fS , as follows:



16 Chapter 2. The Classification Problem

IT [fS ] ≤ IS [fS ] +



β + (4nβ + 1)×

√

ln 1
δ

2n



 (2.9)

Thus, the function fS which minimizes IT [fS ] can be selected by applying (2.9) to

each possible candidate function.

Structural Risk Minimization

Structural Risk Minimization (SRM) provides a trade-off between the complexity of

a function and its empirical error. Simpler functions may provide high empirical er-

ror (they may underfit the training data), while complex functions may provide low

empirical error (but it may be by means of overfitting the training data). Thus, from

all possible functions in H, the classification algorithm following the Structural Risk

Minimization strategy selects the function fS which minimizes this trade-off.

A structure is a (possibly infinite) nested set of classes of functions Fi, such that

F1 ⊆ F2 ⊆ . . ., where functions in F1 are simpler (i.e., have lower complexity) then

functions in F2 − F1, and so on. Since classes of functions are nested, the empirical

error decreases as the complexity of classes of functions increases.

The Vapnik-Chervonenkis Dimension − Suppose yi ∈ {±1} (i.e., examples in

S are classified either as positive or as negative). In this case, n pairs in S can be

labeled in 2n ways as positive and negative. Therefore, 2n different classification prob-

lems can be defined by n pairs. If for any of these problems, the function fS ∈ H

exactly separates all the positive examples from all the negative ones, then it is said

that fS shatters n pairs (i.e., all pairs in fS can be classified with no error by fS).

The maximum number of pairs in S that can be shatttered by fS is called the VC-

dimension [Vapnik and Chervonenkis, 1971; Blumer et al., 1989] of fS , which is de-

noted as dfS .

An example of classification problem composed of four pairs in two dimensions (i.e.,

attributes a1 and a2) is given in Figure 2.3. A rectangle can shatter four points in two

dimensions, but a line can shatter only three. Thus, for this classification problem, the

VC-dimension of a rectangle is four, while the VC-dimension of a line is three. For a

given classification problem, dfS is given by the maximum number of pairs that can be

correctly classified by fS . VC dimension may seem pessimistic, since it establishes that

a line can only classify problems composed of three pairs, and not more. A function

that can classify only three pairs is not very useful. However, this is because the VC

dimension is independent of the probability distribution from which pairs are drawn



2.4. Major Challenges 17

a
2

a1

a
2

a1

Figure 2.3. The VC-dimension.

(i.e., P(y|x)). In practice, however, pairs that are close to each other often have the

same label.

Complexity. The VC-dimension measures the expressive power, richness or flexi-

bility of a set of functions by assessing how wiggly its members can be. The com-

plexity of a function fS is usually given by the VC-dimension of fS . It has been

shown [Guyon et al., 1992] that the expected error can be estimated by the empirical

error and the complexity of the selected function fS , as follows:

IT [fS ] ≤ IS [fS ] +

√

√

√

√

dfS

(

ln 2n
dfS

+ 1
)

− ln δ
4

n
(2.10)

The shape of this bound, which is shown in Figure 2.4, can be exploited to select a

function with the most appropriate complexity for S. Classes of functions are consid-

ered in increasing complexity (i.e., F1 is considered before F2, and so on). Structural

Risk Minimization corresponds to finding the simplest function fS which provides the

lowest empirical error. By applying (2.10) to each class of functions, a function in the

class for which the error bound is tightest can be selected.

2.4 Major Challenges

In this section some of the current challenges regarding the problem are outlined. This

list is not exhaustive and is intended to give the reader a feel of the types of challenge

we wrestle with.



18 Chapter 2. The Classification Problem

E
rr

o
r

 

underfitting overfitting

~ IT[fS]

ε

IS[fS]

Simple Functions Complex Functions

Figure 2.4. Structural risk minimization.

High Dimensionality

The hypothesis space, H, increases exponentially with the number of attributes in

S (i.e., the number of dimensions). Thus, as the dimensionality of S increases, it

becomes exponentially more difficult to find the best function in H. This means that

functions (i.e., classification problems) that are specified by many attributes are usually

hard to approximate2. A simple, and sometimes very effective way of dealing with

high-dimensional problems is to reduce the number of attributes by eliminating those

that seem irrelevant. This suggests that classification algorithms must be able to

eliminate the largest amount of irrelevant attributes without discarding any important

information, so that the number of candidate functions is reduced.

Labeling

Annotating (or labeling) data usually requires humans who can explicitly provide ex-

amples showing the relationship between inputs and outputs. Thus, the acquisition of

labeled training examples may be very costly, time-consuming, and prone to error. La-

beling a single example for protein shape classification, for instance, can take months.

2Suppose a classification problem in which each xi is composed of l binary attributes, and yi ∈

{±1}. In this case, there are 2l possible input patterns and 22l

possible functions that describe the

relationship between xi and yi. Given n examples in S, there will be 22
l

2n = 2(2l
−n) possible functions

that can be extracted from S. If l = 10 and n = 1, 000, then the number of possible functions will be
2(1,024−1,000) ≈ 4 million possible functions. Thus, although S contains almost all possible examples,
the number of possible functions is still enormous.



2.5. Classification Methods 19

Documents, videos and images on the Internet may contain very ambiguous content,

challenging the expertise of the annotators. This suggests that classification algorithms

must be able to somehow exploit unlabeled data, in order to reduce the annotation

burden.

Outliers

An outlier is an instance that is numerically distant from most of the examples in the

training data. Classification algorithms, specially those that follow the ERM function

approximation strategy may erroneously select complex functions in order to fit outliers.

Thus, outliers can be extremely harmful to effective classification.

Processing Time

Processing time has been an influential factor in designing classification algorithms.

Some algorithms are extremely slow in learning classification functions (i.e., training

time). Others are fast in learning classification functions, at the price of slowing down

the assignment of classes to test instances (i.e., classification time). Efforts to reduce

processing time have been mainly pursued by significantly reducing the number of

attributes without sacrificing necessary information. This suggests that classification

algorithms must be able to discard only useless attributes.

Next we discuss some widely used classification methods.

2.5 Classification Methods

There has been a huge proliferation of classification methods. In the following, some

of the most popular methods (and which we believe are representative of the state-of-

the-art), will be briefly described. The goal is not to go too much into detail, but to

show the basic principles and the differences between these methods.

2.5.1 Decision Trees (DTs)

The decision tree classification method expresses the relationship between inputs xi

and outputs yi using a tree. Each interior node of the tree corresponds to an attribute,

and a connection from this node to one of its children represents a possible value of

the corresponding attribute. A leaf node represents the predicted output (or class),

given the values of the attributes represented by the path from the root. Thus, a path

is essentially conjunctions of attribute-values that lead to a prediction.



20 Chapter 2. The Classification Problem

Top down algorithms for building decision trees usually follow a divide-and-conquer

recursive strategy [Quinlan, 1986, 1993], which splits a node into its children. This

process is repeated on each derived child in a recursive manner. The recursion is

completed when splitting is either non-feasible, or perfect discrimination is reached.

The crucial step is the attribute selection (i.e., which attribute must be included at a

given node). Several attribute selection criteria were already proposed, such as entropy-

based selection measures, which will be detailed next.

Entropy-Based Selection Let V be a discrete random variable with range V. In

this case, the entropy of V (also known as the information of V ), is defined in Equa-

tion 2.11, where 0 log 0 = 0 and the base of the logarithm is two, so that entropy is

expressed in bits. The entropy is always non-negative and quantifies the amount of

uncertainty of V .

E(V ) = −
∑

v∈V

p(V = v) log p(V = v) (2.11)

The conditional entropy of V given another random variable, Q (with range Q), is

the expected value of the entropies of the conditional distributions averaged over the

conditioning random variable, which is given in Equation 2.12.

E(V |Q) = −
∑

q∈Q

E(V |Q = q)

= −
∑

q∈Q

p(Q = q)
∑

v∈V

p(V = v|Q = q) log p(V = v|Q = q)

= −
∑

q∈Q

∑

v∈V

p(V = v ∧Q = q) log p(V = v|Q = q) (2.12)

The mutual information of V and Q, also known as the information gain of V

given Q (G(V ; Q)), quantifies the relative entropy between the joint distribution and

the product distribution, as shown in Equation 2.13.

G(V ; Q) =
∑

v∈V

∑

q∈Q

p(V = v ∧Q = q) log
p(V = v ∧Q = q)

p(V = v)p(Q = q)

= E(V )−E(V |Q) (2.13)

Information gain quantifies the reduction in uncertainty in V after observing the

value of Q. Given the training data, the information gain can be computed by using the



2.5. Classification Methods 21

empirical probabilities, with V representing the outputs (or classes) and Q representing

the possible values of an attribute. The attribute selection step is implemented by

testing the information gain for each attribute Q with outputs V , and picking the

attribute associated with the highest information gain, as illustrated in Figure 2.5. In

the figure, splitting process is illustrated from left to right. First, splitting the y-axis

provides the highest information gain. Then, the x-axis is also splitted. In the end of

the process, two partitions of the space are induced by the decision tree.

−30

−20

−10

 0

 10

 20

−30 −20 −10  0  10  20  30  40
−30

−20

−10

 0

 10

 20

−30 −20 −10  0  10  20  30  40
−30

−20

−10

 0

 10

 20

−30 −20 −10  0  10  20  30  40

Figure 2.5. Splitting according to information gain.

2.5.2 Naive Bayes (NB)

The Naive Bayes classification method is commonly studied in machine learn-

ing [Domingos and Pazzani, 1997; Wolpert, 1995]. The basic idea is to use the joint

probabilities of attribute-values and outputs (or classes) to estimate the probabilities

of each output given a test instance. The naive part is the assumption of independence

between attributes, that is, the conditional probability of an attribute-value ai given

an output y is assumed to be independent from the conditional probabilities of another

attribute-value aj given that output:

p(ai|y ∧ aj) = p(ai|y)

This assumption makes NB algorithms usually very fast, because it does not use

combinations of attribute-values as predictors. In spite of their naive design and ap-

parently over-simplified assumptions, NB algorithms often perform much better than

it might be expected [Zhang, 2005].



22 Chapter 2. The Classification Problem

2.5.3 Nearest Neighbors (NNs)

The k-nearest neighbors classification method has been extensively studied [Dasarathy,

1990]. Given an input xi ∈ T , the classification is based on the k closest training inputs

in the attribute space. The space is partitioned into regions (or locations) depending

on xi and k, as shown in Figure 2.6. In the figure, the number of neighbors increases

from left to right. Usually, Euclidean distance is used in order to place the examples

(or points) in the proper location in the space.

k-NN is a lazy classification method, in which the training phase consists only of

storing the examples and the corresponding classes. During testing phase, distances

are computed and the k closest inputs to xi are selected. There is a number of ways to

predict the output for xi. Typically, the predicted output for xi is the most common

class amongst the k nearest neighbors.

−30

−20

−10

 0

 10

 20

−30 −20 −10  0  10  20  30  40
−30

−20

−10

 0

 10

 20

−30 −20 −10  0  10  20  30  40
−30

−20

−10

 0

 10

 20

−30 −20 −10  0  10  20  30  40

Figure 2.6. Increasing the number of neighbors.

2.5.4 Support Vector Machines (SVMs)

The Support Vector Machine classification method was introduced in [Boser et al.,

1992]. The method was initially developed for solving problems with only two classes

(i.e., there are only two possible outputs), but it can be extended to solve more complex

problems. SVMs are defined over the attribute space, and the problem is to find a

decision surface that best separates inputs that are related to different outputs.

Margin In order to define the best separation, it is necessary to introduce the defi-

nition of margin between two outputs (or classes). Figure 2.7 illustrates the idea. For

simplicity, it is shown only a case in a two-dimensional space with linearly separable



2.5. Classification Methods 23

classes, but the idea can be generalized to a high dimensional space and to classes

that are not linearly separable. A decision surface in a linearly separable space is a

hyperplane. The solid lines in Figure 2.7 show two possible decision surfaces, each of

which correctly separates the two groups of instances. The dashed lines parallel to the

solid ones show how much one can move the decision surface without causing errors.

The distance between each set of those parallel lines are referred to as the margin.

Graph on the left shows a decision line (solid) with a smaller margin, while graph on

the right shows the decision line (solid) with maximal margin. SVMs find the decision

surface that maximizes the margin between the instances in the training data. The

assumption is that the larger the margin the higher the generalization will be.

−30

−20

−10

 0

 10

 20

−30 −20 −10  0  10  20  30  40
−30

−20

−10

 0

 10

 20

−30 −20 −10  0  10  20  30  40

Figure 2.7. Maximum margin hyperplane.

More precisely, this decision surface is a hyperplane which is written in Equa-

tion 2.14, where xi is an arbitrary test instance, and w and the constant b are learned

from the training data.

w · xi − b = 0 (2.14)

Let yi ∈ {±1} be the possible classes for xi (i.e., assuming only two classes). The

SVM problem is to find w and b that satisfy the constraints shown in Equations 2.15

and 2.16, which can be solved using quadratic programming techniques [Wu and Zhou,

2005].

w · xi − b ≥ +1 for yi = +1 (2.15)

w · xi − b ≤ −1 for yi = −1 (2.16)

These techniques can be extended for solving non-separable problems, as the ones



24 Chapter 2. The Classification Problem

shown in Figure 2.8, by either introducing soft margin hyperplanes [Cortes and Vapnik,

1995] (i.e., hyperplanes allowing some training errors), or by using a kernel

trick [Aizerman et al., 1964] which maps the inputs to a higher dimensional space,

and the corresponding instances in this (new) space become linearly separable.

An interesting property of SVMs is that the decision surface is determined only

by the examples which have exactly the distance 1
|w|

from the decision plane. Those

instances are called the support vectors, which are the only useful instances in the

training data; if all other instances were removed, the same decision function will be

learned.

−30

−20

−10

 0

 10

 20

 30

−30 −20 −10  0  10  20  30
−30

−20

−10

 0

 10

 20

−30 −20 −10  0  10  20  30  40
−30

−20

−10

 0

 10

 20

−30 −20 −10  0  10  20  30  40

Figure 2.8. Mapping functions with increasing complexity.

2.6 Theoretical and Practical Remarks

Next we discuss some important remarks in classification.

2.6.1 The Need for Bias

From all possible mapping functions in H, selecting an accurate one is a challenge. Any

factors other than the provided examples that determine the mapping function that

will be produced by the classification algorithm are called the bias of the algorithm.

That is, the bias of a classification algorithm is essentially the set of assumptions used

to determine the mapping function to be produced. Thus, classification algorithms

may present different performances on the test set, depending on the bias which is

implicit in their design. The following is a list of common biases employed by different

classification algorithms:



2.6. Theoretical and Practical Remarks 25

• Maximum Margin: when drawing a boundary separating two outputs, attempt

to maximize the width of the boundary. This is the bias used by SVM algo-

rithms [Boser et al., 1992]. The assumption is that distinct outputs tend to be

separated by wide boundaries.

• Minimum Description Length: when building a mapping function, attempt to

minimize the length of the description of the function. This is the bias used to

prune decision trees [Mehta et al., 1996; Fayyad and Irani, 1990]. The assump-

tion is that simpler functions are more likely to be accurate.

• Nearest Neighbors: given an input, guess that its output is the same output

related to the majority in its immediate neighborhood in feature space. This is

the bias used in kNN classification algorithms [Dasarathy, 1990]. The assumption

is that inputs in a small neighborhood in feature space are related to the same

output.

Each classification algorithm encodes specific assumptions about how the optimal

algorithm would be and works best when this assumption is satisfied by the problem

to which it is applied.

2.6.2 No Free Lunch

The “No Free Lunch” theorem [Wolpert, 1996; Schaffer, 1994] states that all classifi-

cation algorithms have identical performance over the set of all possible classification

problems. Specifically, if a classification algorithm performs particularly well in a prob-

lem, there must exist a dual problem in which the same algorithm performs particularly

badly. Thus, classification algorithms cannot be universally good. Further, on average,

no algorithm is better than randomly guessing outputs.

The major criticism of the “No Free Lunch” theorems is that they are proven

under the most general conditions possible. For instance, they assume that all the

configurations of a classification problem are equaly likely to occur, while, in practice,

some configurations are not even expected to occur (i.e., if a configuration is likely to

occur in practice, its dual configuration is very unlikely to occur). Thus, it is important

to develop classification algorithms that perform particularly well on problems that

are likely to occur in practice. This highlights the need for bias while developing

classification algorithms.





Chapter 3

Associative Classification

The hypothesis space, H, may contain a huge (possibly infinite) number of functions.

Randomly producing functions, in the hope of finding one that approximates well the

target function P(y|x), is not likely to be an efficient strategy. Fortunately, there are

countless more efficient strategies for producing approximations of P(y|x). One of these

strategies is to directly exploit relationships, dependencies and associations between in-

puts and outputs (i.e., classes) [Liu et al., 1998]. Such associations are usually hidden

in the examples in S, and, when uncovered, they may reveal important aspects concern-

ing the underlying phenomenon that generated these examples (i.e., P(y|x)). These

aspects can be exploited for sake of producing only functions that provide potentially

good approximations of P(y|x) [Li et al., 2001; Cheng et al., 2007, 2008; Fan et al.,

2008]. This strategy has led to a new family of classification algorithms which are

often referred to as associative classification algorithms. The mapping functions pro-

duced by these algorithms are composed of rules X −→ cj, indicating an association

between X , which is a set of attribute-values, and a class cj ∈ y. In the following

sections we will discuss some preliminaries and ways to extract rules from S. Then,

novel associative classification algorithms are presented and evaluated.

3.1 Preliminaries

We first present some discretization methods. Then, we discuss rules associating dis-

cretized attribute-values (which are subsets of an input) and classes (outputs).

3.1.1 Discretization

Attributes can assume real or nominal values. In the case of real-valued attributes,

the number of possible attribute-values is virtually infinite. This causes undesirable

27



28 Chapter 3. Associative Classification

consequences for associative classification algorithms, due to high dimensionality (i.e.,

huge hypothesis space). An immediate question is whether it is possible to reduce

the dimensionality by grouping together attribute-values. Discretization refers to the

process of splitting the space of attribute-values into intervals, where each interval

contains values that carry (almost) the same information. The crucial point during

discretization is the definition of the boundaries of each interval. After discretization,

real-valued and nominal attributes are treated indistinctly, and discretized attribute-

values are referred to as features.

Uniform Range and Uniform Frequency Discretization

A simple discretization method is to split the space of values of each attribute into

equal, predefined interval ranges. This method is known as Uniform Range Discretiza-

tion. Figure 3.1(Left) shows the intervals defined by this method. Another simple

strategy is to split the space of values of each attribute into variable-size intervals, so

that each interval contains approximately the same number of examples. This method

is known as Uniform Frequency Discretization. Figure 3.1(Middle) shows the intervals

defined by this method.

Since these methods do not use information about the input-output relationship in

order to set interval boundaries, it is likely that important information will be lost as

a result of combining values that are strongly associated with different classes into the

same interval. This may be harmful to classification effectiveness.

Discretization based on Minimum Description Length

A more sophisticated discretization method was proposed by Fayyad and Irani [1993].

It recursively splits the space of values of each attribute. The boundaries are those that

provide the maximum information gain, that is, the intervals are found in a way that

minimizes the entropy of the classes (e.g., intervals tend to include examples of the

prevailing class). Splitting continues until the gain is below the minimal description

length of the interval. This may result in an arbitrary number of intervals, including

a single interval in which case the attribute is discarded as useless. Figure 3.1(Right)

shows the intervals defined by this method.

3.1.2 Association Rules and Decision Rules

Association rules are implications of the form a −→ b, where a and b are conjunctions

of features/classes (i.e., any non-empty combination of features or classes). A much



3.1. Preliminaries 29

−30

−20

−10

 0

 10

 20

−30 −20 −10  0  10  20  30  40
−30

−20

−10

 0

 10

 20

−30 −20 −10  0  10  20  30  40
−30

−20

−10

 0

 10

 20

−30 −20 −10  0  10  20  30  40

Figure 3.1. Discretized input space.

smaller subset of all association rules are particularly interesting for sake of approxi-

mating P(y|x). This subset is composed of rules, which hereafter will be called decision

rules. Decision rules are implications of the form X −→ cj , where X is any combination

of features, and cj ∈ y is a class. Thus, these implications can be considered local

mappings from inputs to outputs.

Decision rules are extracted from S. Thus, a decision rule X −→ cj only exists if

the set of features X is a subset of at least one input xi ∈ S. Next we discuss some

important properties of decision rules.

Confidence. A decision rule X −→ cj is only interesting for sake of approximating

P(y|x) if X and cj are somehow associated. The confidence of a decision rule X −→ cj,

which is denoted as θ(X −→ cj), is an indication of how strongly X and cj are associated.

It is given by the fraction of inputs containing X as subset, for which the corresponding

output is cj. Formally:

θ(X −→ cj) =
|(xi, yi)| ∈ S such that X ⊆ xi and cj = yi

|(xi, yi)| ∈ S such that X ⊆ xi

(3.1)

Support. A decision rule is only interesting for sake of approximating P(y|x) if the

information it provides is reliable. The support of a decision rule X −→ cj, which is

denoted as σ(X −→ cj), is an important indication of the reliability of the association

between X and cj . It is given by the fraction of inputs in S containing X as a subset,

and having cj as the corresponding output. Formally:

σ(X −→ cj) =
|(xi, yi)| ∈ S such that X ⊆ xi and cj = yi

n
(3.2)



30 Chapter 3. Associative Classification

Complexity. There is no universal way of measuring complexity. Often, however,

the length of an explanation can be an indication of its complexity [Kolmogorov, 1965;

Solomonoff, 1964; Chaitin, 1969; Rissanen, 1978]. A decision rule X −→ cj can be

viewed as an explanation that leads to the decision cj . In this case, the explanation is

essentially the features in X . Feature sets composed of few features provide simple ex-

planations about the decision, while more complex explanations require more features.

The size of the decision rule is the number of features in X (i.e., |X |) and is regarded

as the complexity of the corresponding explanation.

Usefulness. A decision rule X −→ cj matches an input xi ∈ T if and only if X ⊆ xi.

Since the prediction provided by a decision rule is based on all the features that are in

X , only decision rules matching input xi are used to estimate the corresponding output

yi. A decision rule is useful for sake of approximating P(y|x) if it matches at least one

input in T , otherwise the decision rule is said to be useless. For practical problems

involving many features, useful decision rules correspond to a very small subset of all

possible decision rules.

3.2 Method and Algorithms

In this section a simple method for associative classification will be presented. Similar

methods were already proposed in [Li et al., 2001; Liu et al., 1998]. First, it will be

described how decision rules are extracted from S, and then how these decision rules

are used in order to approximate P(y|x). The method to be presented will hereafter be

referred to as EAC (standing for Eager Associative Classification). Algorithms based

on this method will also be presented in this section.

3.2.1 Level-Wise Rule Extraction

Simpler decision rules are extracted before more complex ones. Specifically, decision

rules of size k are extracted from S before decision rules of size k + 1. The set of rules

of size k is denoted as Fk. The support of a decision rule X −→ cj is calculated by

directly accessing S and counting the number of inputs having X as subset, for which

cj is the corresponding output.

Support Counting

Efficient support counting is mandatory for the scalability of the algorithm. The main

objective is to reduce the number of accesses to S. The algorithms to be presented in



3.2. Method and Algorithms 31

this thesis employ an efficient strategy for support counting, which will be described

next.

Vertical Bitmap Representation. A vertical bitmap is created for each feature

and class (or output) in S. That is, S is translated into a bitmap matrix, in which

the columns are indexed by features (or classes), and lines are indexed by examples.

If feature (or class) ai appears in example sj , then the bit indexed by example sj and

feature (or class) ai is set to one; otherwise, the bit is set to zero.

Bit-Wise Operations. Given the bitmap for feature ai, and the bitmap for feature

aj , the bitmap for feature-set {ai, aj} is simply the bitwise AND of these two bitmaps.

Classes are processed in the same way. Each bitmap is divided into words, and each

word is 16-bit length (i.e., each word comprises 16 examples).

Look-Up Table. All possible results of a bit-wise operation are stored in a look-up

table with 216 entries. After a word is processed, the corresponding result for this word

is retrieved from the look-up table. The results associated with each word are finally

summed. The final sum is the support count.

Pruning

The number of all possible decision rules hidden in S may be huge. Very often, practical

limitations prevent the extraction of all such decision rules. Thus, pruning strategies

must be employed in order to reduce the number of decision rules that are processed.

EAC employs the typical pruning strategy which is to use a single cut-off value based

on a minimum support threshold, σmin. This cut-off value separates frequent from non-

frequent decision rules. Specifically, only decision rules occurring at least σmin × |S|

times in S, are considered frequent. Since decision rules are extracted in a level-wise,

bottom-up way, only feature-sets associated with frequent rules of size k are used to

produce rules of size k+1 [Agrawal et al., 1993] (i.e., only feature-sets included in rules

in Fk are used to produce rules in Fk+1).

3.2.2 Prediction

Mapping functions perform predictions using the decision rules extracted from S, as it

will be discussed next.



32 Chapter 3. Associative Classification

Grouping

After extracting decision rules from S, EAC groups them in order to facilitate fast

access to specific ones. In the discussion that follows it will be denoted as R an

arbitrary set of decision rules extracted from S (i.e., frequent rules in S). Similarly, it

will be denoted as Rxi the subset of R which contains only the decision rules matching

an arbitrary input xi. Finally, it will be denoted asRxi
cj

the subset ofRxi which contains

only decision rules predicting class cj (i.e., decision rules of the form X −→ cj for which

X ⊆ xi).

Learning Mapping Functions

Given an arbitrary input xi, fS(xi) gives the predicted output for xi. The value of

fS(xi) is calculated based on the decision rules in Rxi. Different algorithms based on

the EAC method can be distinguished depending on the prediction strategy used.

EAC-SR − This algorithm (standing for EAC using a single rule) produces a map-

ping function, fS , using frequent decision rules in S. Then, given an input xi, fS simply

returns the output (or the class) predicted by the strongest decision rule (i.e., the one

with highest confidence value) matching xi, that is:

fS(xi) = cj such that θ(X −→ cj) is argmax(θ(r)) ∀ r ∈ Rxi (3.3)

EAC-SR is a PAC-efficient classification algorithm, as will be demonstrated next.

Theorem 3.1. EAC-SR is PAC-efficient.

Proof. Let q be the number of features in S. In this case, the hypothesis space H for

EAC-SR is the set of all possible decision rules in S, which is clearly |H| = p × 2q.

According to Equation 2.4

n ≥
1

ǫ

(

ln(p× 2q) + ln(
1

δ
)

)

≥
1

ǫ

(

ln(p) + 0.69q + ln(
1

δ
)

)

Thus, the sample complexity increases only polynomially with q. It is also necessary

to show that a function fS , for which IS [fS ] = 0 is found in time polynomial in q.

Obviously, the number of functions in S is exponential in q (i.e., O(2q)). However,

since an input is composed of l attribute-values (or features), the maximum allowed size

of decision rules can be held fixed to l (i.e., a decision rule can have at most l features).



3.2. Method and Algorithms 33

Thus, the number of possible decision rules in S is p × (q +
(

q

2

)

+ . . . +
(

q

l

)

) = O(ql),

and, thus, fS can be found in time polynomial in q, according to Algorithm 1. This

completes the proof.

Algorithm 1 Finding fS , according to EAC-SR.

Require: The training data S, σmin, and l
Ensure: fS , if it exists. Failure, otherwise.

1: R⇐ rules X −→ cj extracted from S, such that |X | ≤ l and σ(X −→ cj) ≥ σmin

2: if ∀xi ∈ S ∃r ∈ Rxi such that θ(r) = 1.00 then
3: return fS such that fS(xi) = cj , where X −→ cj ∈ Rxi and θ(X −→ cj) = 1.00
4: else
5: return failure.
6: end if

An immediate question is to find under which circumstances IS [fS ] = 0.

Theorem 3.2. If σmin ≤
1
|S|

, then IS [fS ] = 0.

Proof. If σmin ≤
1
|S|

then any feature set occurring at least once in S is frequent.

Since S is composed of distinct inputs (i.e., instances with different features sets),

there must be feature sets occurring only once in S. A feature set, X , occurring once

in S (an extreme case is X = xi) must produce a decision rule X −→ cj such that

θ(X −→ cj) = 1.00. Further, for any feature set Y such that Y ⊆ X , if there is a

decision rule Y −→ cj then θ(Y −→ cj) < 1.00. Therefore, rule Y −→ cj is never the

strongest one (since rule X −→ cj is always stronger than it), an thus IS [fS ] = 0.

Theorem 3.2 gives a lower bound for σmin which ensures that IS [fS ] = 0. Unfortu-

nately, in real-world scenarios, setting σmin to 1
|S|

, is not practical, since the number of

decision rules that will be generated is overwhelming. In practice, as will be empirically

shown in Section 3.4.2, IS [fS ]→ 0 when σmin →
1
|S|

.

Next we present an example which illustrates the basic steps of EAC-SR.

Example. Consider Table 3.1. There are 10 pairs in S. All inputs were discretized.

Suppose σmin is set to 0.30. In this case:

• F1 contains:

1. {a1 =[0.00-0.22]−→ output = 1} (θ = 0.75)

2. {a2 =[0.33-0.71]−→ output = 1} (θ = 0.80)

3. {a3 =[0.00-0.35]−→ output = 1} (θ = 1.00)

4. {a3 =[0.35-1.00]−→ output = 0} (θ = 0.60)



34 Chapter 3. Associative Classification

Input (xi) Output (yi)
a1 a2 a3

(x1, y1) [0.00-0.22] [0.33-0.71] [0.00-0.35] 1
(x2, y2) [0.00-0.22] [0.33-0.71] [0.35-1.00] 0
(x3, y3) [0.46-1.00] [0.71-1.00] [0.35-1.00] 1
(x4, y4) [0.22-0.46] [0.00-0.33] [0.35-1.00] 0

S (x5, y5) [0.00-0.22] [0.33-0.71] [0.00-0.35] 1
(x6, y6) [0.22-0.46] [0.33-0.71] [0.00-0.35] 1
(x7, y7) [0.00-0.22] [0.33-0.71] [0.00-0.35] 1
(x8, y8) [0.22-0.46] [0.71-1.00] [0.00-0.35] 1
(x9, y9) [0.46-1.00] [0.00-0.33] [0.35-1.00] 1

(x10, y10) [0.22-0.46] [0.00-0.33] [0.35-1.00] 0

T (x11, y11) [0.22-0.46] [0.33-0.71] [0.35-1.00] ?(1)

Table 3.1. Training data and test set given as example.

• F2 contains:

1. {a1 =[0.00-0.22]∧a2 =[0.33-0.71]−→ output = 1} (θ = 0.75)

2. {a1 =[0.00-0.22]∧a3 =[0.00-0.35]−→ output = 1} (θ = 1.00)

3. {a2 =[0.33-0.71]∧a3 =[0.00-0.35]−→ output = 1} (θ = 1.00)

• F3 contains:

1. {a1 =[0.00-0.22]∧a2 =[0.33-0.71]∧a3 =[0.00-0.35]−→ output = 1} (θ = 0.75)

• F4 = ∅, and no more frequent decision rules can be extracted from S.

Clearly, R = {F1 ∪ F2 ∪ F3}. There is one input in T , x11, for which the corre-

sponding output, y11, is unknown. The selected function fS will use the rule set Rx11

in order to predict such output. Rx11 contains only 2 rules:

1. {a2 =[0.33-0.71]−→ output = 1} (θ = 0.80)

2. {a3 =[0.35-1.00]−→ output = 0} (θ = 0.60)

According to Equation 3.3, EAC-SR simply picks the strongest rule in Rx11 , and

thus it predicts output 1 for input x11.

In the remaining of this thesis we propose several improvements to EAC-SR. Such

improvements lead to other classification algorithms, which are more efficient and prac-

tical. Thus, EAC-SR is a starting point for the classification algorithms proposed in

this thesis.



3.2. Method and Algorithms 35

EAC-MR − A single decision rule is simply a local mapping of parts of some inputs

to an output, and thus it only provides a fragmented, incomplete information about

P(y|x). This makes EAC-SR prone to error, since it picks a single, very strong decision

rule to perform predictions. Such a simple pick may provide biased predictions, and

is likely to suffer from overfitting (very strong rules tend to be too specific). A safer

strategy is to produce a global mapping by combining the predictions of multiple

decision rules, so that a collective prediction can be performed. Intuitively, that would

help avoiding bias and overfitting [Li et al., 2001].

Given input xi, EAC-MR (standing for EAC using multiple rules) produces a map-

ping function fS , which returns the output (or the class) which receives the highest

score in a weighted voting process. Specifically, Rxi is interpreted as a poll, in which

each decision rule X −→ cj ∈ R
xi is a vote given by X for output cj. The weight of a

vote X −→ cj depends on θ(X −→ cj). The score associated with output cj for input xi,

denoted as s(xi, cj), is:

s(xi, cj) =

∑

r∈R
xi
cj

θ(r)

| Rxi
cj |

(3.4)

The likelihood of class cj being the output of input xi, denoted as p̂(cj |xi), is:

p̂(cj |xi) =
s(xi, cj)

p
∑

k=1

s(xi, ck)

(3.5)

where p is the number of possible outputs (i.e., the number of distinct classes in

S). Finally:

fS(xi) = cj such that p̂(cj|xi) is argmax (p̂(ck|xi)), where 1 ≤ k ≤ p (3.6)

The basic steps of EAC-MR are shown in Algorithm 2.

Algorithm 2 Finding fS , according to EAC-MR.

Require: The training data S, and σmin, and l
Ensure: fS .

1: R⇐ rules X −→ cj extracted from S, such that |X | ≤ l and σ(X −→ cj) ≥ σmin

2: return fS such that fS(xi) = cj, where p̂(cj|xi) is argmax(p̂(ck|xi)) ∀ 1 ≤ k ≤ p



36 Chapter 3. Associative Classification

3.2.3 Function Approximation

While the main objective of EAC-SR is to learn a function fS for which IS [fS ] = 0

(i.e., consistency with training data), EAC-MR aims at learning a function fS for which

IS [fS ] ≈ IT [fS ] (i.e., generalization). While Theorems 3.1 and 3.2 state that EAC-SR

produces functions that are consistent with the training data (i.e., IS [fS ] = 0), EAC-

MR must rely on specific function approximation strategies in order to learn functions

that are more likely to generalize.

EAC-MR may employ two function approximation techniques, which were described

in Section 2.3. This leads to two new algorithms, EAC-MR-ERM, which employs the

well known Empirical Risk Minimization technique to approximate the target function,

and EAC-MR-SRM, which employs the Structural Risk Minimization technique to

approximate the target function. Both algorithms will be described next.

EAC-MR-ERM − A simple strategy to empirical risk minimization is to include

only highly complex, very long decision rules in R. In this case, a function fS which

makes predictions according to rules in R will fit S almost perfectly. The obvious

problem is overfitting, because too complex decision rules may be as long as the training

data itself, and thus fS is unlikely to generalize. A likely to generalize function, on the

other hand, would use decision rules which are considerably shorter than the training

data. The problem, in this case, is underfitting, since too simple decision rules may

not capture the underlying properties of S. Figure 3.2 illustrates this idea. High-order

polynomials are able to fit S, while low-order polynomials are unable to properly fit S.

The same trend can be observed in mapping functions that use either very complex or

very simple decision rules.

Selecting a function fS with the appropriate complexity is challenging, but manda-

tory for effective classification. An approach to control the complexity of fS is to

establish a relationship between how well fS fits S (i.e., how close IS [fS ] is to 0), and

how much fS is dependent on S. If variations in S (i.e., removing a pair) do not

considerably change fS , then fS is likely to fit pairs that are not in S as well as it

fits pairs that are in S (i.e., IS [fS ] ≈ IT [fS ]). If, additionally, IS [fS ] is close to 0,

then fS effectively approximates P(y|x). The stability [Bousquet and Elisseeff, 2002;

Kutin and Niyogi, 2002; Mukherjee et al., 2006] of a function, which is denoted as β,

measures at which extent small variations on S change fS .

One way to assess the stability of a function fS is to compare fS(xi) with fS−si
(xi)

at each pair si = (xi, yi) ∈ S (where fS−si
is the function selected from {S − si}, that

is, the training data after the specific pair si is removed). According to Equation 2.8,

the stability of fS is given by the highest value of |fS(xi)− fS−si
(xi)| over all pairs in



3.2. Method and Algorithms 37

S. Stability can be used to select a function with appropriate complexity.

Selecting fS according to Stability. The hypothesis space is traversed by evalu-

ating candidate functions in increasing order of complexity. That is, simpler functions

are produced before more complex ones. To achieve this, we introduce a nested struc-

ture of subsets of rules, h1, h2, . . . , hl, where hi contains frequent decision rules X −→ cj

for which |X | ≤ l. Clearly, h1 ⊆ h2 ⊆ . . . ⊆ hl. The simplest candidate function is the

one which uses decision rules in h1 (i.e., this function uses only decision rules of size

1), while the most complex one uses decision rules in hl. From these candidate func-

tions, we select the one which minimizes Equation 2.9. This selection process involves

a trade-off: as the complexity of the rules increases the empirical error decreases, but

the stability of the corresponding function also decreases. Figure 3.3 illustrates this

trade-off. It shows functions obtained before and after removing the black point. Fig-

ure in the left shows the case in which fS is stable (i.e., low variation between fS and

fS−si
, where si is the black point) but it does not fit S well. Figure in the middle shows

the desirable case, in which fS fits S relatively well and is stable. Figure in the right

shows the case in which fS fits S very well, but it is not stable anymore. The selected

function is the one that best trades empirical error and stability. Algorithm 3 shows

basic steps of EAC-MR-ERM.

Algorithm 3 Finding fS , according to EAC-MR-ERM.

Require: The training data S, σmin, l,and δ
Ensure: fS .

1: tighest bound⇐∞
2: for i = 1 to l do
3: R⇐ hi ⇐rules X −→ cj, such that |X | ≤ i and σ(X −→ cj) ≥ σmin

4: for each pair si = (xi, yi) ∈ S do
5: βsi

= |fS(xi)− fS−si
(xi)|

6: end for
7: β = sup(βsi

)

8: bound⇐ IS [fS ] +

(

β + (4nβ + 1)×

√

ln 1

δ

2n

)

9: if tighest bound ≤ bound then break
10: tighest bound⇐ bound
11: end for
12: return fS such that fS(xi) = cj, where p̂(cj|xi) is argmax(p̂(ck|xi)) ∀ 1 ≤ k ≤ p

EAC-MR-SRM − Another way of controlling the complexity of fS is to establish

a relationship between how well fS fits S, and how complex is fS . In Figure 3.2, where

the x-axis represents the input space, and the y-axis represents the output space, the



38 Chapter 3. Associative Classification

f S
(x

)

x

f S
(x

)

x

f S
(x

)

x

Figure 3.2. Polynomials of increasing degrees.

f S
(x

)

x

fS
fS−si

f S
(x

)

x

fS
fS−si

f S
(x

)

x

fS
fS−si

Figure 3.3. Trading-off complexity and stability.

complexity of a function is given by the number of free parameters (i.e., the polynomial

degree). A more general measure of the complexity of a mapping function fS is its VC-

dimension, denoted as dfS . Ideally, fS has small VC-dimension and IS [fS ] is close to

0.

Selecting fS according to VC-dimension. The hypothesis space is traversed by

evaluating candidate functions in increasing order of complexity. That is, simpler

functions are produced before more complex ones. Again, it is employed a nested

structure of subsets of rules, h1, h2, . . . , hl, where hi contains frequent decision rules

X −→ cj for which |X | ≤ l. From these candidate functions, the selected is the one

which minimizes Equation 2.10. This selection process involves a trade-off: as the

complexity of the rules increases the empirical error decreases, but the VC-dimension



3.3. Empirical Results 39

of the corresponding function increases. The selected function is the one that best

trades empirical error and VC-dimension. Algorithm 4 shows the detailed steps of

EAC-MR-SRM.

Algorithm 4 Finding fS , according to EAC-MR-SRM.

Require: The training data S, σmin, and δ
Ensure: fS .

1: tighest bound⇐∞
2: for i = 1 to l do
3: R⇐ hi ⇐rules X −→ cj, such that |X | ≤ i and σ(X −→ cj) ≥ σmin

4: dfS = n× (1− IS [fS ])

5: bound⇐ IS [fS ] +

√

dfS

„

ln 2n
dfS

+1

«

−ln δ
4

n

6: if tighest bound ≤ bound then break
7: tighest bound⇐ bound
8: end for
9: return fS such that fS(xi) = cj, where p̂(cj|xi) is argmax(p̂(ck|xi)) ∀ 1 ≤ k ≤ p

3.3 Empirical Results

In this section we will present the experimental results for the evaluation of the pro-

posed associative classification algorithms, which include: EAC-SR, EAC-MR, EAC-

MR-ERM, and EAC-MR-SRM.

Setup Continuous attributes were discretized using the MDL-based entropy mini-

mization method [Fayyad and Irani, 1993], which was described in Section 3.1.1. In

all experiments we used 10-fold cross-validation and the final results of each experi-

ment represent the average of the ten runs. All results to be presented were found

statistically significant based on a t-test at 95% confidence level.

Computational Environment The experiments were performed on a Linux-based

PC with a Intel Pentium III 1.0 GHz processor and 1 GB RAM.

3.3.1 The UCI Benchmark

The UCI benchmark1 provides a method for comparing the classification performance

of various classification algorithms. We used a set of 26 datasets, obtained from various

different applications. In this section we will evaluate the proposed algorithms using

these datasets.
1Available at http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/


40 Chapter 3. Associative Classification

Baselines The evaluation is based on a comparison involving a decision tree al-

gorithm (C4.5), a Naive Bayes algorithm (NB), and an SVM algorithm. For C4.5

and NB algorithms, we used the corresponding implementations available in MLC++

(Machine Learning Library in C++) proposed in [Kohavi et al., 1996]. For SVM, we

used the implementation available at http://svmlight.joachims.org/ (version 3.0).

The well-known CBA associative classification algorithm Liu et al. [1998] (to be dis-

cussed in Section 3.4) was also used as baseline. Its implementation is available at

http://www.comp.nus.edu.sg/∼dm2/ (version 2.1).

Parameters The implementation for Naive Bayes is non-parametric. For C4.5, we

used the C4.5-auto-parm tool, available in MLC++, for finding optimum parame-

ters for each dataset. For SVM, we used the grid parameter search tool in Lib-

SVM [Chang and Lin, 2001] for finding the parameters for each dataset. For CBA,

EAC-SR, EAC-MR, EAC-MR-ERM, and EAC-MR-SRM, we set σmin=0.01 (we tried

some values and selected the one which yields the best average performance using

cross-validation on each training fold).

Evaluation Criteria Classification performance is expressed using the conventional

true error rate in the test set.

Analysis Table 3.2 shows classification performance for different classification algo-

rithms. Best results, including statistical ties, are shown in bold. EAC-SR outperforms

C4.5 and NB. In fact, it was demonstrated in [Veloso et al., 2006b] that, if we set all

algorithms under the information gain principle, an associative classification algorithm

always outperforms the corresponding decision tree one. EAC-MR outperforms all

baselines, showing the importance of employing multiple decision rules while approxi-

mating the target function. Furthermore, EAC-MR-ERM and EAC-MR-SRM were the

best performers, suggesting that more sophisticated function approximation strategies

are also capable of improving classification performance.

3.3.2 The ACM Digital Library

Organizing documents in order to facilitate fast access to information is a long-existing

necessity. In the ancient times, the Library of Alexandria contained more than 120,000

scrolls, and, at that time, finding the desired information could take days. Callimachus

of Cyrene is considered the first bibliographer, and is the one who proposed to organize

the scrolls in the library by their subjects. He invented the first library catalog, a

catalog of scrolls, which revolutionized the way people store information.

http://svmlight.joachims.org/
http://www.comp.nus.edu.sg/~dm2/


3.3. Empirical Results 41

EAC Baselines
Dataset SR MR MR-ERM MR-SRM C4.5 NB SVM CBA

anneal 0.025 0.025 0.025 0.025 0.075 0.027 0.051 0.021
australian 0.146 0.138 0.138 0.138 0.148 0.140 0.143 0.146
auto 0.176 0.156 0.156 0.156 0.176 0.321 0.249 0.199
breast 0.106 0.074 0.074 0.074 0.056 0.024 0.028 0.037
cleve 0.142 0.132 0.132 0.129 0.215 0.171 0.166 0.171
crx 0.127 0.127 0.123 0.127 0.150 0.146 0.144 0.146
diabetes 0.261 0.254 0.244 0.230 0.261 0.244 0.230 0.255
german 0.265 0.256 0.247 0.247 0.284 0.246 0.288 0.265
glass 0.255 0.255 0.253 0.251 0.304 0.294 0.291 0.261
heart 0.168 0.144 0.144 0.144 0.218 0.181 0.142 0.181
hepatitis 0.183 0.183 0.167 0.150 0.182 0.150 0.167 0.189
horse 0.176 0.176 0.176 0.176 0.147 0.206 0.178 0.176
hypo 0.062 0.047 0.047 0.040 0.007 0.015 0.013 0.001
ionosphere 0.077 0.063 0.063 0.063 0.105 0.119 0.083 0.077
iris 0.081 0.053 0.067 0.053 0.047 0.060 0.043 0.053
labor 0.033 0.033 0.033 0.033 0.223 0.140 0.218 0.137
led7 0.325 0.281 0.267 0.252 0.305 0.267 0.252 0.281
lymph 0.180 0.130 0.130 0.130 0.238 0.244 0.197 0.221
pima 0.301 0.258 0.245 0.230 0.258 0.245 0.230 0.271
sick 0.061 0.061 0.061 0.061 0.011 0.039 0.032 0.028
sonar 0.220 0.067 0.067 0.067 0.284 0.230 0.160 0.225
tic-tac-toe 0.138 0.108 0.100 0.100 0.138 0.301 0.167 0.004
vehicle 0.315 0.315 0.310 0.310 0.285 0.401 0.254 0.310
waveform 0.225 0.225 0.219 0.219 0.228 0.193 0.102 0.203
wine 0.050 0.050 0.00 0.00 0.073 0.095 0.021 0.050
zoo 0.096 0.096 0.070 0.070 0.078 0.137 0.049 0.032
Avg 0.161 0.142 0.137 0.134 0.173 0.178 0.150 0.151

Table 3.2. Classification performance for different algorithms.

Currently, fast access to information is still a central issue in digital libraries. In

order to build the catalog, it is necessary to effectively group documents by common

topics or subjects − a task known as document categorization. The dominant approach

to document categorization is based on the application of classification algorithms. In

this case, for a document given as input, its subject (or category) must be given as

output.

In this section we will evaluate the proposed algorithms using a collection of doc-

uments extracted from the ACM digital library2. The collection contains 6,682 doc-

uments, which were labeled using 8 first level categories of ACM, namely: Hardware,

Computer Systems Organization, Software, Computing Methodologies, Mathematics

2http://portal.acm.org/dl.cfm/

http://portal.acm.org/dl.cfm/


42 Chapter 3. Associative Classification

of Computing, Information Systems, Theory of Computation, Computing Milieux. Ci-

tations and words in title/abstract of a document compose the corresponding set of

features. The collection has a vocabulary of 9,840 unique words, and a total of 51,897

citations.

Baselines The evaluation is based on a comparison involving general-purpose algo-

rithms, such as kNN and SVM. For kNN, we used the implementation available in

MLC++ [Kohavi et al., 1996]. For SVM, we used the implementation available at

http://svmlight.joachims.org/ (version 3.0). Application-specific methods were

also used in the evaluation. Amsler [Amsler, 1972] is a very used bibliographic-based

method for document categorization. The Bayesian method [Calado et al., 2003] and

Multi-Kernel SVMs [Joachims et al., 2001] are two state-of-the-art representatives of

methods for document categorization.

Parameters The implementation for Amsler and Bayesian methods are non-

parametric. For SVM and Multi-Kernel SVMs, we used the grid parameter search

tool in LibSVM [Chang and Lin, 2001] for finding the optimum parameters. For kNN,

we carefully tuned k=15. For EAC-MR, EAC-MR-ERM, and EAC-MR-SRM, we set

σmin=0.005.

Evaluation Criteria Categorization performance for the various methods being

evaluated is expressed through F1 measures. In this case, precision p is defined as

the fraction of correctly classified documents in the set of documents classified as pos-

itive. Recall r is defined as the fraction of correctly classified documents out of all

the documents having the target category. F1 is a combination of precision and recall

defined as the harmonic mean 2pr

p+r
. Macro- and micro-averaging [Yang et al., 2002]

were applied to F1 to get single performance values over all classification tasks. For

F1 macro-averaging (MacF1), scores were first computed for individual categories and

then averaged over all categories. For F1 micro-averaging (MicF1), the decisions for

all categories were counted in a joint pool. The computational efficiency is evaluated

through the total execution time, that is, the processing time spent in training and

classifying all documents.

Analysis Table 3.3 shows categorization performance for various classification algo-

rithms. Amsler was used as the baseline for comparison. The Multi-Kernel algorithm

achieved the highest values of MicF1 and MacF1. Associative classification algorithms

were not very effective in this application scenario, mainly due to the large number of

features, which leads to a huge number of decision rules.

http://svmlight.joachims.org/


3.3. Empirical Results 43

Gains (%) over
Algorithms MicF1 MacF1 baseline Execution Time

MicF1 MacF1

Amsler (baseline) 0.832 0.783 – – 1,251 secs
EAC-MR 0.766 0.692 -0.079 -0.115 2,350 secs
EAC-MR-ERM 0.789 0.736 -0.051 -0.060 2,921 secs
EAC-MR-SRM 0.812 0.767 -0.024 -0.020 2,419 secs
kNN 0.833 0.774 0.001 -0.011 83 secs
SVM 0.845 0.810 0.016 0.035 1,932 secs
Bayesian 0.847 0.796 0.019 0.016 8,281 secs
Multi-Kernel 0.859 0.812 0.032 0.037 14,894 secs

Table 3.3. Categorization performance for different algorithms.

We analyzed the discrepancy between rule confidence values in S and T . If the

discrepancy is low, then the algorithm is likely to be effective. Figure 3.4 shows dis-

crepancy values as a function of rule support. In this case, each point corresponds to

a rule. Lighter colored regions represent rules with higher support values. Rules with

low discrepancy in confidence appear in the diagonal. As it can be seen, rules with low

discrepancy have usually higher values of support. This is also depicted in Figure 3.5,

which shows the average discrepancy in confidence values according to the support.

Clearly, rules with higher support values are more reliable.

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

ACM-DL

 0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1

θ in S

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

θ 
in

 T

Figure 3.4. Rule confidence values in S and T as a function of rule support.

At first glance, one might expect that rules with lower values of support are not

reliable, and should therefore be discarded. This is not always true, as shown in

Figure 3.6, which shows the relationship between σmin, execution time, and MicF1. As

it can be seen, higher MicF1 numbers are obtained when lower σmin values are employed.

This is because some documents in the test set contain rare features, and consequently,



44 Chapter 3. Associative Classification

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
A

ve
ra

g
e

 D
is

cr
e

p
a

n
cy

σ

ACM−DL

Figure 3.5. Average discrepancy of rule confidence as a function of rule support.

such documents may demand rules with low support values. Although the information

provided by such rules may not be reliable, having this information is still better than

having no information at all. The problem, however, is that the execution time increases

exponentially as σmin decreases. This happens because, an overwhelming number of

decision rules are extracted from S. This problem may prevent associative classification

algorithms to achieve full potential. What is needed is a classification algorithm which

is able to extract only indispensable rules, without incurring unnecessary overhead

(even for lower values of σmin). In the next chapter, we will present this algorithm.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 0.001 0.002 0.003 0.004 0.005

E
xe

cu
tio

n
 T

im
e

 (
se

cs
)

σmin

EAC−MR−ERM

0.789 0.798
0.819

0.837

0.851

0.858

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 0.001 0.002 0.003 0.004 0.005

E
xe

cu
tio

n
 T

im
e

 (
se

cs
)

σmin

EAC−MR−SRM

0.812
0.824

0.842
0.852

0.859

0.862

Figure 3.6. Relationship between σmin, MicF1, and execution time.



3.4. Related Work 45

3.4 Related Work

Most existing work on associative classification relies on developing new algorithms to

improve classification performance. The difference between these algorithms resides on

the way they exploit decision rules. CBA [Liu et al., 1998] extracts decision rules from

the training data, and ranks these rules according to their confidence. Ties are broken

using their support. Then it selects the best ranked rule to be applied to each input in

the test set. CBA was used as baseline in our experimental evaluation, and, on average,

it showed to be superior than EAC-SR. On the other hand, EAC-MR, EAC-MR-ERM,

and EAC-MR-SRM showed better classification performance than CBA. Enhancements

to CBA were proposed in [Wang and Karypis, 2005; Li et al., 2001; Yin and Han, 2003;

Dong et al., 1999]. HARMONY [Wang and Karypis, 2005] uses an input-centric rule-

extraction approach in the sense that it assures the inclusion, in the final rule set, of

at least one rule for each input in the training data. CMAR [Li et al., 2001] selects

multiple rules (instead of a single best one), and the prediction is performed based

on a weighted χ2 analysis of the selected rules. An algorithm which uses only non-

redundant decision rules for sake of prediction was proposed in [Baralis and Chiusano,

2004]. CAEP [Dong et al., 1999] exploits the concept of emerging patterns (patterns

that present different frequencies in the training data, depending on the associated

class), and, as a result, it usually predicts accurately all classes, even if their pop-

ulations are unbalanced. Wang et al. [2000] proposed an algorithm that finds rules

with high confidence, and then it prunes those ones that are not statistically mean-

ingful using a decision tree like structure. It has been empirically shown that these

associative classification algorithms usually outperform decision trees [Liu et al., 1998;

Veloso et al., 2006b; Li et al., 2001].

Other approaches for rule-based classification, include algorithms such as

RISE [Domingos, 1995], RIPPER [Cohen, 1995], and SLIPPER [Cohen and Singer,

1999]. The algorithms use greedy heuristics which are driven by global metrics. RISE

performs a complete overfitting by considering each input as a rule, and then it gen-

eralizes the rules. RIPPER and SLIPPER extend the “overfit and prune” paradigm,

that is, they start with a huge rule set and prune it using several heuristics. Further,

the SLIPPER algorithm also associates a probability with each rule, weighting the

contribution of the rule during prediction.

While EAC-SR and EAC-MR share some similarities with other associative clas-

sification algorithms (such as CBA and CMAR), EAC-MR-ERM and EAC-MR-SRM

improve previous algorithms by introducing the use of empirical and structural risk min-

imization techniques in the context of associative classification. These improvements,

as shown in our experiments, provide significant gains in classification performance.



46 Chapter 3. Associative Classification

3.5 Summary

In this chapter we have introduced associative classification algorithms. We showed

that the basic algorithm, EAC-SR, is PAC-efficient. Although EAC-SR shares several

similarities with other existing algorithms, we used it as a starting point for designing

more efficient and practical algorithms. The first improvement to EAC-SR leads to

EAC-MR, which produces a mapping function that employs multiple decision rules.

Then, we apply function approximation strategies, such as empirical and structural risk

minimization, in order to produce mapping function with appropriate complexities.

These improvements lead to EAC-MR-ERM and EAC-MR-SRM algorithms. These

algorithms were evaluated and compared to several baselines using different datasets. In

the first set of experiments, using UCI benchmark datasets, the proposed improvements

provided gains that range from 10.6% to 24.7%. Results obtained in the second set

of experiments, using the ACM Digital Library, revealed some deficiencies that are

inherent to EAC-based algorithms. Specifically, some inputs may demand decision

rules that cannot be extracted in reasonable time by EAC-based algorithms. The

solution for such deficiencies is the main focus of the next chapter.



Chapter 4

Demand-Driven Associative

Classification

The ultimate goal of classification algorithms is to achieve the best possible classifica-

tion performance for the problem at hand. Most often, classification performance is

obtained by assessing some accuracy criterion using the test set, T . Therefore, an effec-

tive classification algorithm does not need to approximate the target function over the

entire input space (i.e., over all possible inputs). Rather, it needs only to approximate

the parts of the target function that are defined over the inputs in T .

As discussed, it is often hard to approximate the target function defined over inputs

in T , using a single mapping function. The key insight is to produce a specifically

designed function, fxi

S , which approximates the target function at each input xi ∈ T .

Thus, a natural way to improve classification performance is to predict the outputs for

inputs in T , on a demand-driven basis. In this case, particular characteristics of each

input in T may be taken into account while predicting the corresponding output. The

expected result is a set of multiple mapping functions, where each function fxi

S is likely

to perform particularly accurate predictions for input xi ∈ T , no matter the (possible

poor) performance in predicting outputs for other inputs.

4.1 Method and Algorithms

In this section we will present a method for associative classification, which produces

mapping functions on a demand-driven basis, according to each input in T . First, it

will be described how decision rules are extracted from S, and then how these rules

are used in order to approximate P(y|x). The method to be presented will hereafter be

referred to as LAC (standing for Lazy Associative Classification). Algorithms based

on this method will also be presented in this section.

47



48 Chapter 4. Demand-Driven Associative Classification

Correlation Preserving Projection

In demand-driven associative classification, whenever an input xi ∈ T is being con-

sidered, that input is used as a filter to remove from S, features and examples that

are useless1 to approximate the target function at input xi. This process generates a

projected training data, defined as Sxi . Specifically, given an input xi ∈ T , the corre-

sponding projected training data, Sxi , is the set of examples in S, which is obtained

after removing all features that are not included in xi.

Theorem 4.1. Given an input xi ∈ T , a decision rule X −→ cj, such that X ⊆ xi, has

the same confidence value in S and Sxi.

Proof. Comes directly from the fact that confidence is null-invariant, thus adding or

removing examples that do not contain X , does not change θ(X −→ cj).

Theorem 4.1 states that the projection preserves the original correlation between

inputs and outputs, since confidence values for rules extracted from S and Sxi have

the same value. Thus, the difference of extracting rules from S or from Sxi , resides

basically on the rules that are used to approximate the target function at input xi.

Demand-Driven Rule Extraction

Rule extraction is a major issue when devising an associative classification algorithm.

Typically, frequent rules are extracted from S, and used to produce a mapping function.

Two problems may arise: (i) an infrequent, but useful rule may be not extracted from S

(possibly hurting classification performance), and (ii) a frequent, but useless rule may

be extracted from S (incurring unnecessary overhead). Figure 4.1 illustrates these

problems. In the figure, black balls represent useful rules, and white balls represent

useless rules. σmin induces a border which separates frequent from infrequent rules. If

σmin is set too high, few useless rules are extracted from S, but several useful rules

are not extracted. If σmin is set too low, all useful rules are extracted from S, but a

prohibitive number of useless rules is also extracted. An optimal value for σmin, in the

sense that only useful rules are extracted from S, is unlikely to exist.

An ideal scenario would be to extract only useful rules from S, without discarding

useful ones. Inputs in T have valuable information that can be used during rule

extraction to guide the search for useful rules. In this section, we propose to achieve

the ideal scenario by extracting rules from S on a demand-driven basis, according to

the input in T being considered.

1Usefulness is defined in Section 3.1.2.



4.1. Method and Algorithms 49

Theorem 4.2. Given an input xi ∈ T , Rxi contains only decision rules that are useful

to approximate the target function at xi.

Proof. Rules inRxi are extracted from Sxi . Since all inputs in Sxi contain only features

that are included in xi, the existence of a rule X −→ cj ∈ Rxi , such that X * xi, is

impossible.

σmin(1) σmin(1)

σmin(2) σmin(2)

σmin(3) σmin(3)

σmin(1)>σmin(2)>σmin(3)

Figure 4.1. The pruning dilemma.

Thus, according to Theorem 4.2, only useful rules are extracted from S. Next, we

will discuss more sophisticated pruning strategies that reduce the chance of discarding

useful rules.

Demand-Driven Pruning with Multiple Cut-Off Values

As discussed in the previous chapter, the typical pruning strategy is based on a cut-

off frequency value derived from σmin, which separates frequent from infrequent rules.

In many cases, however, rules with low support may carry useful information for the

sake of prediction. In such cases, the “use-and-abuse” support-based pruning strat-

egy [Baralis et al., 2004] is not appropriate, since useful rules may also be discarded.

We propose an alternate strategy, which prevents support-based pruning from being

excessive. The proposed strategy employs multiple cut-off values. Specifically, cut-off

values are calculated depending on how frequent (or how rare) are the features compos-

ing input xi ∈ T . The key insight is that if xi contains commonly-appearing features,

then the corresponding projected training data, Sxi , will contain several examples (i.e.,

|Sxi | ≈ |S|). Otherwise, if xi contains rare features, then the corresponding projected



50 Chapter 4. Demand-Driven Associative Classification

training data will contain only few examples (i.e., |Sxi | ≪ |S|). Therefore, for a fixed

σmin, the cut-off value for input xi (which is denoted as πxi

min) is calculated based on

the size (i.e., the number of examples) of Sxi , according to Equation 4.1.

πxi

min = ⌈σmin × |S
xi |⌉ (4.1)

Since the cut-off value is calculated based on how frequent (or how rare) are the

features composing input xi, the chance of discarding rules matching xi is reduced.

This is because inputs xi ∈ T composed of rare features will produce small projections

of the training data, decreasing the value of πxi

min.

Caching Common Decision Rules

Extracting a decision rule has a significant computational cost, since it involves access-

ing S multiple times. Different inputs in T may demand the extraction of different

rules, but it is very likely that some of these rules are common. In this case, caching

(or memorization) is very effective in reducing work replication and, consequently, to

reduce the number of accesses to S.

Our cache is a pool of entries, and each entry has the form <key, data>, where

key={X , cj} and data={σ(X −→ cj), θ(X −→ cj)}. Our cache implementation has a

limited storage and stores all cached decision rules in main memory. Before extracting

rule X −→ cj , algorithms based on the LAC method first check whether this rule is

already in the cache. If an entry is found with a key matching {X , cj}, then the rule

in the cache entry is used instead of extracting it from S. If it is not found, the rule is

extracted from S and then it can be inserted into the cache.

The cache size is limited, and when the cache is full, some rules must be discarded

to make room for other ones. The replacement heuristic is based on the support of the

rules. More specifically, the least frequent rule stored in the cache is the first one to be

discarded (and it will only be discarded if the rule to be inserted is more frequent than

it). There are two main reasons to adopt this heuristic. First, the more frequent is the

rule, the higher is the chance of using this rule later, to predict the output for other

inputs in T (thus, if a frequent rule is discarded, it is higher the chance of recalculating

it later on). Second, the computational cost associated with the extraction of more

frequent rules is higher than the cost associated with the extraction of less frequent

ones (more frequent rules necessitates more accesses to S).



4.1. Method and Algorithms 51

4.1.1 Prediction

Mapping functions perform predictions using the decision rules extracted from Sxi , as

will be discussed next.

LAC-SR − This algorithm employs a single decision rule, which is the strongest one

in Rxi (i.e., the one with highest confidence value), in order to predict the output for

input xi ∈ T , according to Equation 4.2.

fxi

S (xi) = cj such that θ(X −→ cj) is argmax(θ(r)) ∀ r ∈ Rxi (4.2)

LAC-MR − This algorithm employs multiple decision rules to produce a specific

function, fxi

S , for input xi ∈ T . It first projects the original training data, S, according

to input xi. The result is Sxi . Then, LAC-MR extracts rules from Sxi , on a demand-

driven basis. All extracted rules are useful to xi. Basic steps for LAC-MR are shown

in Algorithm 5.

Algorithm 5 Finding fxi

S , according to LAC-MR.

Require: The training data S, input xi ∈ T , σmin, andlfxi

S .

Ensure:1: Sxi ⇐ S projected according to xi

2: Rxi ⇐ rules X −→ cj extracted from Sxi , such that π(X −→ cj) ≥ πxi

min

3: return fxi

S such that fxi

S (xi) = cj , where p̂(cj|xi) is argmax(p̂(ck|xi)) ∀ 1 ≤ k ≤ p

Input (xi) Output (yi)
a1 a2 a3

(x1, y1) [0.00-0.22] [0.33-0.71] [0.00-0.35] 1
(x2, y2) [0.00-0.22] [0.33-0.71] [0.35-1.00] 0
(x3, y3) [0.46-1.00] [0.71-1.00] [0.35-1.00] 1
(x4, y4) [0.22-0.46] [0.00-0.33] [0.35-1.00] 0

S (x5, y5) [0.00-0.22] [0.33-0.71] [0.00-0.35] 1
(x6, y6) [0.22-0.46] [0.33-0.71] [0.00-0.35] 1
(x7, y7) [0.00-0.22] [0.33-0.71] [0.00-0.35] 1
(x8, y8) [0.22-0.46] [0.71-1.00] [0.00-0.35] 1
(x9, y9) [0.46-1.00] [0.00-0.33] [0.35-1.00] 1

(x10, y10) [0.22-0.46] [0.00-0.33] [0.35-1.00] 0

T (x12, y12) [0.46-1.00] [0.00-0.33] [0.35-1.00] ?(1)

Table 4.1. Training data and test set given as example.



52 Chapter 4. Demand-Driven Associative Classification

Example Consider the example shown in Table 4.1. There are 10 pairs in S. There

is one input in T , x12, for which the corresponding output, y12, is unknown. All inputs

were discretized. After projecting S according to input x12, we obtain Sx12 , which is

shown in Table 4.2.

Input (xi) Output (yi)
a1 a2 a3

(x2, y2) [0.35-1.00] 0
(x3, y3) [0.46-1.00] [0.35-1.00] 1

Sx12 (x4, y4) [0.00-0.33] [0.35-1.00] 0
(x9, y9) [0.46-1.00] [0.00-0.33] [0.35-1.00] 1

(x10, y10) [0.00-0.33] [0.35-1.00] 0

Table 4.2. Projected training data: Sx12 .

Suppose σmin is set to 0.30. In this case, Rx12 contains the following 6 rules:

1. {a1 =[0.46-1.00]−→ output = 1} (θ = 1.00)

2. {a1 =[0.46-1.00]∧a3 =[0.35-1.00]−→ output = 1} (θ = 1.00)

3. {a2 =[0.00-0.33]−→ output = 0} (θ = 0.67)

4. {a2 =[0.00-0.33]∧a3 =[0.35-1.00]−→ output = 0} (θ = 0.67)

5. {a3 =[0.35-1.00]−→ output = 0} (θ = 0.60)

6. {a3 =[0.35-1.00]−→ output = 1} (θ = 0.40)

According to Equation 3.6, LAC-MR calculates the likelihood associated with each

output, which are p̂(output = 0|x12)=0.48 and p̂(output = 1|x12)=0.52. Thus. LAC-

MR predicts output 1 for input x12, which is the correct one.

4.1.2 Demand-Driven Function Approximation

A complex target function may be composed of simple parts. Thus, instead of ap-

proximating a complex target function using a complex mapping function (i.e., fS),

we can employ multiple simple functions (i.e., fxi

S ). Intuitively, such simple functions

are more likely to generalize than a single complex function. The appropriate com-

plexity for each function fxi

S is selected using the function approximation techniques

described in Section 2.3. LAC-MR-ERM employs the well known Empirical Risk Min-

imization technique to approximate the target function, while LAC-MR-SRM employs

the Structural Risk Minimization technique to approximate the target function.



4.1. Method and Algorithms 53

LAC-MR-ERM and LAC-MR-SRM are much finer-grained than their eager coun-

terparts EAC-MR-ERM and EAC-MR-SRM, since they are able to select a different

complexity for each function fxi

S . In the end of the process these algorithms produce

multiple mapping functions, each one with a possibly different complexity. Both algo-

rithms will be described next.

LAC-MR-ERM − The hypothesis space induced by each projected training data,

Sxi , is traversed by evaluating candidate functions in increasing order of complexity.

That is, simpler functions are produced before more complex ones. To do this, we

introduce a nested structure of subsets of rules, h1, h2, . . . , hl, where hi contains frequent

decision rules X −→ cj for which |X | ≤ l. Clearly, h1 ⊆ h2 ⊆ . . . ⊆ hl. The simplest

candidate function is the one which uses decision rules in h1 (i.e., this function uses only

decision rules of size 1), while the most complex one uses decision rules in hl. From these

candidate functions, we select the one which minimizes Equation 2.9. This selection

process involves a trade-off: as the complexity of the rules increases, the empirical error

decreases, but the stability of the corresponding function also decreases. The selected

function is the one that best trades empirical error and stability. Algorithm 6 shows

the basic steps of LAC-MR-ERM.

Algorithm 6 Finding fxi

S , according to LAC-MR-ERM.

Require: The training data S, input xi ∈ T , σmin, l, and δ
Ensure: fxi

S .

1: tighest bound⇐∞
2: Sxi ⇐ S projected according to xi

3: for i = 1 to l do
4: Rxi ⇐ hi ⇐rules X −→ cj extracted from Sxi , such that |X | ≤ i and π(X −→

cj) ≥ πxi

min

5: for each pair si = (xi, yi) ∈ Sxi do
6: βsi

= |fxi

S (xi)− fxi

S−si
(xi)|

7: end for
8: β = sup(βsi

)

9: bound⇐ ISxi [f
xi

S ] +

(

β + (4|Sxi|β + 1)×
√

ln 1

δ

2|Sxi |

)

10: if tighest bound ≤ bound then break
11: tighest bound⇐ bound
12: end for
13: return fxi

S such that fxi

S (xi) = cj , where p̂(cj|xi) is argmax(p̂(ck|xi)) ∀ 1 ≤ k ≤ p

LAC-MR-SRM − The hypothesis space induced by each projected training data,

Sxi , is traversed by evaluating candidate functions in increasing order of complexity.



54 Chapter 4. Demand-Driven Associative Classification

That is, simpler functions are produced before more complex ones. Again, it is em-

ployed a nested structure of subsets of rules, h1, h2, . . . , hl, where hi contains frequent

decision rules X −→ cj for which |X | ≤ l. From these candidate functions, the selected

is the one which minimizes Equation 2.10. This selection process involves a trade-off:

as the complexity of the rules increases the empirical error decreases, but the VC-

dimension of the corresponding function increases. The selected function is the one

that best trades empirical error and VC-dimension. Algorithm 7 shows the detailed

steps of LAC-MR-SRM.

Algorithm 7 Finding fxi

S , according to LAC-MR-SRM.

Require: The training data S, input xi ∈ T , σmin, and δ
Ensure: fxi

S .

1: tighest bound⇐∞
2: Sxi ⇐ S projected according to xi

3: for i = 1 to l do
4: Rxi ⇐ hi ⇐rules X −→ cj extracted from Sxi , such that |X | ≤ i and π(X −→

cj) ≥ πxi

min

5: df
xi
S

= |Sxi| × (1− ISxi [f
xi

S ])

6: bound⇐ ISxi [f
xi

S ] +

√

d
f

xi
S

 

ln
2|Sxi |
d
f

xi
S

+1

!

−ln δ
4

|Sxi |

7: if tighest bound ≤ bound then break
8: tighest bound⇐ bound
9: end for

10: return fxi

S such that fxi

S (xi) = cj, where p̂(cj|xi) is argmax(p̂(ck|xi)) ∀ 1 ≤ k ≤ p

4.2 Empirical Results

In this section we will present the experimental results for the evaluation of the pro-

posed demand-driven associative classification algorithms, which include: LAC-SR,

LAC-MR, LAC-MR-ERM, LAC-MR-SRM.

Setup Continuous attributes were discretized using the MDL-based entropy mini-

mization method [Fayyad and Irani, 1993], which was described in Section 3.1.1. In all

the experiments we used 10-fold cross-validation and the final results of each experi-

ment represent the average of the ten runs. All the results to be presented were found

statistically significant based on a t-test at 95% confidence level.



4.2. Empirical Results 55

4.2.1 The UCI Benchmark

Baselines The evaluation is based on a comparison involving a lazy decision tree

algorithm (LazyDT), a kNN algorithm (kNN), and an associative classification algo-

rithm (DeEPs). For LazyDT and kNN, we used the corresponding implementations

available in MLC++ [Kohavi et al., 1996]. For DeEPs, we used the results available

at [Li et al., 2004].

Parameters For LazyDT, we used the C4.5-auto-parm tool, available in MLC++,

for finding optimum parameters for each dataset. For kNN, the value of k was carefully

hand-tuned for each dataset. For LAC-SR, LAC-MR, LAC-MR-ERM, and LAC-MR-

SRM, we set σmin=0.01.

Evaluation Criteria Classification performance is expressed using the conventional

true error rate in the test set.

Analysis Table 4.3 shows classification performance for different classification algo-

rithms. Best results, including statistical ties, are shown in bold. LAC-SR outperforms

LazyDT and kNN. In fact, it was demonstrated in [Veloso et al., 2006b] that, if we set

all algorithms under the information gain principle, a demand-driven associative classi-

fication algorithm always outperforms the corresponding decision tree one. LAC-SR has

also outperformed EAC-SR, providing gains of more than 8%. LAC-MR outperforms

all baselines. It also outperformed EAC-MR, with gains of more than 7%. Further-

more, LAC-MR-ERM and LAC-MR-SRM were the best performers, suggesting that

more finer-grained function approximation strategies are effective in improving classifi-

cation performance. LAC-MR-ERM outperformed EAC-MR-ERM with gains of more

than 9.5%, while LAC-MR-SRM outperformed EAC-MR-SRM with gains of more than

9.7%.

4.2.2 The ACM Digital Library

Baselines The evaluation is based on a comparison involving general-purpose

algorithms, such as kNN, SVM, and TSVM (transductive SVM). For kNN, we

used the implementation available in MLC++ [Kohavi et al., 1996]. For SVM,

we used the implementation available at http://svmlight.joachims.org/

(version 3.0). For TSVM, we used the implementation available at

http://www.kyb.mpg.de/bs/people/fabee/universvm.html. Application-specific

methods were also used in the evaluation. Amsler [Amsler, 1972] is a very used

bibliographic-based method for document categorization. The Bayesian method

http://svmlight.joachims.org/
http://www.kyb.mpg.de/bs/people/fabee/universvm.html


56 Chapter 4. Demand-Driven Associative Classification

LAC Baselines
Dataset SR MR MR-ERM MR-SRM LazyDT kNN DeEPs

anneal 0.025 0.025 0.021 0.021 0.042 0.100 0.050
australian 0.146 0.138 0.132 0.132 0.152 0.152 0.116
auto 0.176 0.156 0.151 0.151 0.247 0.280 0.273
breast 0.074 0.024 0.021 0.021 0.051 0.185 0.036
cleve 0.142 0.132 0.132 0.129 0.172 0.162 0.158
crx 0.127 0.127 0.123 0.123 0.169 0.169 0.119
diabetes 0.221 0.221 0.221 0.221 0.249 0.241 0.230
german 0.265 0.256 0.247 0.247 0.261 0.256 0.256
glass 0.253 0.253 0.231 0.243 0.265 0.372 0.326
heart 0.168 0.144 0.144 0.137 0.177 0.102 0.177
hepatitis 0.183 0.183 0.110 0.110 0.203 0.223 0.175
horse 0.176 0.176 0.173 0.173 0.173 0.173 0.147
hypo 0.062 0.047 0.032 0.032 0.012 0.012 0.018
ionosphere 0.077 0.063 0.063 0.063 0.080 0.153 0.088
iris 0.053 0.033 0.033 0.033 0.053 0.044 0.033
labor 0.033 0.033 0.033 0.016 0.204 0.033 0.023
led7 0.281 0.259 0.271 0.263 0.265 0.263 0.263
lymph 0.180 0.130 0.130 0.123 0.201 0.180 0.246
pima 0.266 0.218 0.208 0.212 0.259 0.279 0.229
sick 0.061 0.061 0.061 0.026 0.021 0.094 0.033
sonar 0.220 0.067 0.067 0.067 0.246 0.220 0.133
tic-tac-toe 0.054 0.036 0.036 0.054 0.006 0.108 0.004
vehicle 0.310 0.310 0.292 0.292 0.318 0.334 0.254
waveform 0.225 0.225 0.212 0.196 0.225 0.225 0.157
wine 0.050 0.000 0.000 0.000 0.079 0.263 0.039
zoo 0.096 0.096 0.070 0.070 0.078 0.070 0.028
Avg 0.149 0.132 0.124 0.121 0.162 0.180 0.139

Table 4.3. Classification performance of different algorithms.

[Calado et al., 2003] and Multi-Kernel SVMs [Joachims et al., 2001] are two state-of-

the-art representatives of methods for document categorization.

Parameters The implementation for Amsler and Bayesian methods are non-

parametric. For SVM, TSVM, and Multi-Kernel SVMs, we used the grid parameter

search tool in LibSVM [Chang and Lin, 2001] for finding the optimum parameters. For

kNN, we carefully tuned k=15. For LAC-MR, LAC-MR-ERM, and LAC-MR-SRM,

we set σmin=0.005.

Evaluation Criteria Categorization performance for the various methods being

evaluated, is expressed through F1 measures. In this case, precision p is defined as



4.2. Empirical Results 57

the proportion of correctly classified documents in the set of all documents. Recall r

is defined as the proportion of correctly classified documents out of all the documents

having the target category. F1 is a combination of precision and recall defined as the

harmonic mean 2pr

p+r
. Macro- and micro-averaging [Yang et al., 2002] were applied to F1

to get single performance values over all classification tasks. For F1 macro-averaging

(MacF1), scores were first computed for individual categories and then averaged over

all categories. For F1 micro-averaging (MicF1), the decisions for all categories were

counted in a joint pool. The computational efficiency is evaluated through the to-

tal execution time, that is, the processing time spent in training and classifying all

documents.

Analysis Table 4.4 shows categorization performance for various classification al-

gorithms. Again, Amsler was used as the baseline for comparison. The TSVM and

Multi-Kernel algorithms achieved the highest values of MicF1 and MicF1. LAC-MR

outperformed these algorithms, showing the importance of producing mapping func-

tions on a demand-driven basis. Finer-grained function approximation techniques were

also effective. LAC-MR-ERM and LAC-MR-SRM were the best overall performers.

Further, demand-driven associative classification algorithms are much faster than most

of the baselines.

Gains (%) over
Algorithms MicF1 MacF1 baseline Execution Time

MicF1 MacF1

Amsler (baseline) 0.832 0.783 – – 1,251 secs
kNN 0.833 0.774 0.001 -0.011 83 secs
SVM 0.845 0.810 0.016 0.035 1,932 secs
Bayesian 0.847 0.796 0.019 0.016 8,281 secs
TSVM 0.855 0.808 0.028 0.032 17,183 secs
Multi-Kernel 0.859 0.812 0.032 0.037 14,894 secs
LAC-MR 0.862 0.814 0.036 0.040 257 secs
LAC-MR-ERM 0.868 0.833 0.043 0.064 504 secs
LAC-MR-SRM 0.873 0.839 0.049 0.071 342 secs

Table 4.4. Categorization performance for different algorithms.

Figure 4.2 depicts the execution times obtained by employing different cache sizes.

We varied the cache size from 0 to 50MB, and for each storage capacity we obtained

the corresponding execution time. Clearly, execution time is very sensitive to cache

size. Caches as large as 50MB are able to store all decision rules with no need of

replacement, being the best cache configuration.



58 Chapter 4. Demand-Driven Associative Classification

 0

 500

 1000

 1500

 2000

 2500

 0  10  20  30  40  50
P

ro
ce

ss
in

g
 T

im
e

 (
se

c)

Cache Size (MB)

ACM−DL

LAC−MR
LAC−MR−ERM
LAC−MR−SRM

Figure 4.2. Processing time with varying cache sizes..

4.3 Related Work

We believe that lazy classification algorithms are the closest to demand-driven clas-

sification algorithms. Most existing work on lazy [Stanfil and Waltz, 1986; Aha,

1997] (memory-based, instance-based, case-based, local-learning) classification is based

on the kNN approach [Dasarathy, 1990; Bottou and Vapnik, 1992; Yang, 1994],

which retrieves a set of similar related instances at classification time, and then

uses the retrieved instances to build a local approximation of the target function.

It was showed in [Aha et al., 1991] that storing and using specific instances im-

proves the performance of several classification algorithms, including algorithms that

learn decision trees [Friedman et al., 1996; Fern and Brodley, 2003] and Bayesian

rules [Zheng and Webb, 2000; Kontkanen et al., 1998]. In [Friedman et al., 1996] a

lazy learning algorithm for decision tree induction was proposed. This algorithm tries

to alleviate the missing rule problem (i.e., when no path in the tree matches an input

in T ), since a specific decision tree is induced for each input in T .

Our work shares some similarities with [Li et al., 2004], in the sense that they

sample the training set at classification time, and use a similar language to express the

induced concept. However, the algorithm proposed in [Li et al., 2004] uses emerging

patterns as basic seeds for the rules that will compose the concept. The use of emerging

patterns is a tentative to capture important, but possibly not frequent, rules. On the

other hand, our algorithms attempt to capture important, but not so frequent rules,

by employing different cut-off values while traversing the search space for rules on a

demand-driven basis.

Transductive classification algorithms also share some similarities with demand-

driven classification algorithms. Transductive support vector machines [Vapnik, 1995]



4.4. Summary 59

are a method of improving the effectiveness of SVMs [Boser et al., 1992] by using in-

puts in T . Transductive SVMs, like regular SVMs, learn a large margin hyperplane

function using examples in S, but simultaneously force this hyperplane to be far away

from the inputs in T . Vapnik [1995] interpreted the success of transductive SVMs

due to the fact that transduction (labeling a specific test set) is inherently easier than

induction (learning a general rule from the training data). Unfortunately, transductive

SVM algorithms are often unable to deal with a large number of examples. The first

implementation of these algorithms appeared in [Bennett and Demiriz, 1998a], which

used an integer programming method, intractable for large classification problems.

Joachims [1999] then proposed a combinatorial approach, known as SVMLight-TSVM,

that is practical for a few thousand examples. Fung and Mangasarian [2001] intro-

duced a sequential optimization procedure that could potentially scale well, although

their largest experiment used only 1,000 examples. The most practical transductive

SVM algorithm seems to be univerSVM, which was proposed in [Collobert et al., 2006].

Demand-driven associative classification algorithms exploit inputs in T in a different

way. Specifically, inputs in T are used to reduce the number of decision rules that

are extracted from S and to select mapping functions with appropriate complexities.

In our experiments (including experiments presented in Chapter 5), we show that our

demand-driven classification algorithms scale well for large scale problems.

4.4 Summary

In this chapter we have introduced demand-driven associative classification algorithms.

These algorithms postpone the rule extraction process, so that rules are only extracted

from the training data after an input in the test set is informed. Each input in the

test set induces a sub-problem, which is a projection of the original training data.

Demand-driven algorithms have some important abilities. First, they are able to ex-

tract only useful decision rules from the training data. LAC-based algorithms exploit

this ability to overcome most of the deficiencies of EAC-based algorithms. Further,

LAC-based algorithms are also able to take into account specific characteristics of each

sub-problem while producing mapping functions. They apply multiple minimum sup-

port thresholds, which are calculated on-the-fly, according to how frequent (or how

rare) are the features that composed each sub-problem. A simple caching mechanism

makes rule extraction fast. Further, LAC-MR-ERM and LAC-MR-SRM are also able

to produce mapping functions with appropriate complexities for each input in the test

set. Specificaly, certain inputs may induce simple sub-problems, which demand a sim-

ple mapping function. Other inputs may induce complex sub-problems, which demand



60 Chapter 4. Demand-Driven Associative Classification

a complex mapping function. Our experiments have shown that LAC-based algorithms

are competitive with the state-of-the-art, while being much faster. In the first set of

experiments, using UCI benchmark datasets, LAC-based algorithms provided gains in

terms of classification performance ranging from 12.9% to 32.8%. In the second set

of experiments, LAC-based algorithms provided gains in terms of classification perfor-

mance that are up to 4.9%, while being one order of magnitude faster than the most

competitive baselines.



Chapter 5

Extensions to Demand-Driven

Associative Classification

Some application scenarios are not well suited for the direct application of the clas-

sification algorithms presented so far. In this chapter we will discuss extensions for

demand-driven associative classification, so that its spectrum of applications is en-

larged. Such extensions include: multi-label classification, multi-metric classification,

calibrated classification, self-training, and ranking.

5.1 Multi-Label Classification

A typical assumption in classification is that outputs are mutually exclusive, so that

an input can be mapped to only one output (i.e., single-label classification). However,

due to ambiguity or multiplicity, it is quite natural that many applications violate this

assumption, allowing inputs to mapped to multiple outputs simultaneously. Multi-

label classification is a generalization of single-label classification, and its generality

makes it much more difficult to solve.

Despite its importance, research on multi-label classification is still lacking. Com-

mon approaches simply learn independent functions, not exploiting dependencies

among outputs. Also, several small disjuncts may appear due to the possibly large

number of combinations of outputs, and neglecting these small disjuncts may degrade

classification performance. In this section we extend demand-driven associative clas-

sification to multi-label classification. The proposed method progressively exploits

dependencies among outputs.

61



62 Chapter 5. Extensions to Demand-Driven Associative Classification

5.1.1 Related Work

Typical algorithms for multi-label classification are based on producing an independent

binary classification function for each output (or label). These independent functions

are used to assign a probability of membership to each output, and then an instance is

mapped to the outputs that rank above a given threshold. Examples of this approach

include ADTBoost.MH [Comité et al., 2003] (decision trees that can directly handle

multi-label problems), a multi-label generalization of SVM algorithms [Boser et al.,

1992], and a a multi-label lazy learning based on the kNN method [Zhang and Zhou,

2007].

The main problem with the binary, independent approach is that it does not con-

sider correlation among outputs. The direct multi-label approach explores this corre-

lation by considering a combination of outputs as a new, separate label [Boutell et al.,

2004]. For instance, a multi-label problem with 10 original outputs will be transformed

to a single-label problem composed of potentially 1,024 possible outputs. The problem

now is that a relatively small number of examples may be associated with those new

outputs, specially for large combinations.

Research in multi-label classification was initially motivated by the difficulty en-

countered in text categorization tasks [Schapire and Singer, 2000] due to ambiguity. In

fact, many multi-label classification algorithms are specific to text categorization ap-

plications. However, it is also important in other domains, such as pattern recognition

and bioinformatics. In [Boutell et al., 2004] a multi-label algorithm was used for se-

mantic scene classification. In [Clare and King, 2001] the C4.5 Decision Tree algorithm

was adapted to handle multiple outputs, and used in gene expression tasks.

5.1.2 Algorithms

Next we present two algorithms for multi-label associative classification. The first one,

which will be referred to as LAC-MR-IO (standing for LAC-MR with independent

outputs), neglects any association among outputs while producing classification func-

tions. The second one, which will be hereafter referred to as LAC-MR-CO (standing

for LAC-MR with correlated outputs), explores correlated outputs, improving classifi-

cation performance.

LAC-MR-IO − The assumption of independence of outputs leads to a natural strat-

egy for multi-label classification, where class membership probabilities, p̂(ci|x), are

naturally used to select outputs. A user specified threshold, ∆min (0 ≤ ∆min ≤ 0.5),

is used to separate the outputs that will be predicted. Specifically, for a given input



5.1. Multi-Label Classification 63

x, an output ci is only predicted if p̂(ci|x) ≥ ∆min. LAC-MR-IO follows this strategy,

and the basic steps are shown in Algorithm 8.

Algorithm 8 Finding fxi

S , according to LAC-MR-IO.

Require: The training data S, input xi ∈ T , σmin, and ∆min

Ensure: fxi

S .

1: Sxi ⇐ S projected according to xi

2: Rxi ⇐ rules X −→ cj extracted from Sxi , such that π(X −→ cj) ≥ σmin × |Sxi |
3: return fxi

S =Pxi, such that ∀cj ∈ Pxi , p̂(cj |xi) ≥ ∆min

LAC-MR-CO − Outputs in multi-label problems are often correlated, and as it will

be shown in the experiments, this correlation may be helpful for improving classification

performance. Next we will present LAC-MR-CO, which, unlike LAC-MR-IO, explicitly

exploits interactions among outputs while producing classification functions. These

functions are composed of multi-label decision rules, which are rules of the form {X ∪

F} −→ cj , where F ⊆ {C − cj}. Thus, multi-label decision rules enable the presence of

outputs in the antecedent.

Classification functions are produced iteratively, following a greedy heuristic called

progressive label focusing [Veloso et al., 2007a], which tries to find the best combination

of outputs by making locally best choices. In the first iteration, F=∅, and a set of

rules matching input x ∈ T , Rx1

(which is composed of rules of the form X −→ cj), is

extracted from Sx. Based on Rx1

, output cr is predicted for input x. In the second

iteration, output cr is treated as a new feature while extracting rules (i.e., F={cr}). A

set of multi-label rules, Rx2

(which is composed of rules of the form {X ∪ {cr}} −→ cj,

with j 6= r), is extracted from Sx. Based on Rx2

, output cs is predicted for input x.

This process iterates until no more rules are extracted from Sx. The basic idea is to

progressively narrow the search space for rules as outputs are being predicted for input

x. The main steps of LAC-MR-CO are shown in Algorithm 9.

Example − Table 5.1 shows an example of the multi-label classification problem.

In this case, each input corresponds to a movie, and each movie is assigned to one or

more labels (i.e., outputs). This movie subject was chosen because its intuitive aspects

may help to understand the ideas just discussed.

Suppose we want to predict the outputs for input x11. In this case, the execution

of LAC-MR-IO, with σmin=0.50 and ∆min=0.35, proceeds as follows. First a set of

frequent rules is extracted from Sx11 :

1. actor=M. Damon −→output=Action (θ=1.00)



64 Chapter 5. Extensions to Demand-Driven Associative Classification

Algorithm 9 Finding fxi

S , according to LAC-MR-CO.

Require: The training data S, input xi ∈ T , and σmin

Ensure: fxi

S .

1: Ω⇐ 1
2: F ⇐ ∅
3: Sxi ⇐ S projected according to xi

4: while true do
5: Rxi

⇐ rules {X ∪ F}−→cj extracted from Sxi , such that π({X ∪ F}−→cj) ≥
σmin × |Sxi|

6: if Rxi

=∅ then break
7: F ⇐ F ∪ cΩ, where p̂(cΩ|xi) is argmax(p̂(ck|xi)) with 1 ≤ k ≤ p
8: Ω++
9: end while

10: return fxi

S ={c1, . . . , cΩ}

Output Input
Title Actors

x1 Comedy/Romance Forrest Gump T. Hanks
x2 Drama/Romance The Terminal T. Hanks
x3 Drama/Crime Catch Me If You Can T. Hanks and L. DiCaprio
x4 Drama/Crime The Da Vinci Code T. Hanks

S x5 Drama/Crime Blood Diamond L. DiCaprio
x6 Crime/Action The Departed L. DiCaprio and M. Damon
x7 Crime/Action The Bourne Identity M. Damon
x8 Action/Romance Syriana M. Damon
x9 Romance Troy B. Pitt
x10 Drama/Crime Confidence E. Burns

T x11 [Action/Crime] Ocean’s Twelve B. Pitt and M. Damon
x12 [Crime/Drama] The Green Mile T. Hanks

Table 5.1. Training data given as example of a multi-label problem.

2. actor=M. Damon −→output=Crime (θ=0.67)

Following Equation 3.5, p̂(Action|x11)=0.60, and p̂(Crime|x11)=0.40. In this case,

both outputs, “Action” and “Crime”, are correctly predicted for input x11, since

∆min=0.35.

Now, suppose we want to predict the outputs for input x12. In this case, the

execution of LAC-MR-CO, with σmin=0.50, proceeds as follows. At the first iteration,

one rule is extracted from Sx12 :

• Actor=T. Hanks−→output=Drama (θ=0.75)



5.1. Multi-Label Classification 65

Obviously, output “Drama” is predicted as the output for input x12. Therefore,

F={Drama}. In the next iteration, another rule is extracted from Sx12 :

• Actor=T. Hanks∧output=Drama−→output=Crime (θ=0.50)

Since no more rules can be extracted from Sx12 , the process stops. Outputs

“Drama” and “Crime” are predicted for input x12. In summary, outputs “Romance”

and “Crime” are equaly related to feature “Actor=T. Hanks”. Therefore, it may be

difficult to distinguish these two outputs based solely on this feature. However, if we are

confident that a movie starred by “T. Hanks” should be classified as “Drama”, then it

is more likely that this movie should be classified as “Crime”, rather than “Romance”.

5.1.3 Empirical Results

In this section we will present the experimental results for the evaluation of the pro-

posed multi-label classification algorithms, namely: LAC-MR-IO and LAC-MR-CO.

Setup − In all the experiments we used 10-fold cross-validation and the final results

of each experiment represent the average of the ten runs. All the results to be presented

were found statistically significant based on a t-test at 95% confidence level.

Computational Environment − The experiments were performed on a Linux-

based PC with a Intel Pentium III 1.0 GHz processor and 1 GB RAM.

Evaluation Criteria − The evaluation of multi-label classification algorithms is

much more complicated than the evaluation of single-label ones. We used three evalu-

ation criteria that were proposed in [Schapire and Singer, 2000]:

• Hamming Loss (hxi
): Evaluates how many times input xi is misclassified (i.e., an

output not related to xi is predicted or an output related to xi is not predicted),

as show in Equation 5.1, where p is the number of possible outputs and ∆ stands

for the symmetric difference between the set of predicted outputs (Pxi
) and the

set of true outputs (Axi
) for input xi.

hxi
=

1

p
| Pxi

∆Axi
| . (5.1)

• Ranking Loss (rxi
): Evaluates the average fraction of output pairs (cj , ck, for

which ck ∈ Axi
and cj /∈ Axi

) that are reversely ordered (i.e., j > k), as shown



66 Chapter 5. Extensions to Demand-Driven Associative Classification

in Equation 5.2 (where Axi
denotes the complementary set of Axi

).

rxi
=
| {(ck, cj) ∈ Axi

×Axi
: j > k} |

| Axi
|| Axi

|
. (5.2)

• One-Error (oxi
): Evaluates the label ranking performance from a restrictive per-

spective as it only determines if the top-ranked label is present in the set of proper

outputs (Axi
) of input xi, as shown in Equation 5.3.

oxi
=
{ 0 if most likely output is in Axi

1 otherwise.
(5.3)

The overall classification performance is obtained by averaging each criterion, that

is:

Hamming Loss =
1

| T |
×
∑

xi∈T

hxi
(5.4)

Ranking Loss =
1

| T |
×
∑

xi∈T

rxi
(5.5)

One Error =
1

| T |
×
∑

xi∈T

oxi
(5.6)

The ACM Digital Library

Two collections were used in the experiments. The first collection, which is called ACM-

DL (first level), was extracted from the first level of the ACM Computing Classification

System (http://portal.acm.org/dl.cfm/), comprising a set of 81,251 documents

labeled using the 11 first level categories of ACM. The second collection, ACM-DL

(second level) contains the same set of documents of ACM-DL (first level), but these

documents are labeled using the 81 second level categories. In both collections, each

document is described by its title and abstract, citations, and authorship, resulting

in a huge and sparse feature space. For ACM-DL (first level), the average number of

labels (or outputs) for each document is 2.55, while for ACM-DL (second level) the

average number of labels for each document is 2.82.

Baselines − The evaluation is based on a comparison involving ML-

SVM [Elisseeff and Weston, 2001].

http://portal.acm.org/dl.cfm/


5.1. Multi-Label Classification 67

Parameters − For ML-SVM, polynomial kernels of degree 8 were used. For LAC-

MR-IO and LAC-MR-CO, σmin was set to 0.01. For LAC-MR-IO, ∆min was set to

0.25.

Analysis − Table 5.2 shows categorization performance for different classification

algorithms. Best results, including statistical ties, are shown in bold. ML-SVM and

LAC-MR-IO shown competitive performance, and LAC-MR-CO is the best performer.

To verify if the association between labels was properly explored by LAC-MR-CO,

we checked wether the explicitly correlated categories shown in the ACM Comput-

ing Classification System (http://www.acm.org/class/1998/overview.html) were

indeed used. We verified that some of these explicitly correlated categories often ap-

pear together in the predicted label combination (i.e., Files and Database Management,

or Simulation/Modeling and Probability/Statistics). We further verified that some of

the associated labels appear more frequently in the predictions performed by LAC-

MR-CO than it was observed in the predictions performed by the other algorithms.

First Level Second Level
Hamming Ranking Hamming Ranking

Algorithms Loss Loss One-Error Loss Loss One-Error

ML-SVM 0.225 0.194 0.244 0.327 0.299 0.348
LAC-MR-IO 0.222 0.216 0.238 0.319 0.294 0.331
LAC-MR-CO 0.187 0.179 0.238 0.285 0.273 0.331

Table 5.2. Categorization performance for different algorithms.

Gene Functional Analysis

Genes play a fundamental role in life. Thus, predicting the function of a certain

gene is of great interest. In this section we evaluate LAC-MR-IO and LAC-MR-CO

for sake of predicting the gene functional classes of the Yeast Saccharomyces cere-

visiae, which is one of the best studied organisms. More specifically, the YEAST

dataset [Schapire and Singer, 2000] is investigated. The whole set of functional classes

is structured into hierarchies up to 4 levels deep 4. In our evaluation, only functional

classes in the top hierarchy are considered. The dataset is composed of a set of 2,417

genes. Each gene is described by the concatenation of micro-array expression data and

phylogenetic profile, and is associated with a set of functional classes. There are 14

possible class labels (functions), and the average number of labels for each gene is 4.24.

http://www.acm.org/class/1998/overview.html


68 Chapter 5. Extensions to Demand-Driven Associative Classification

Baselines − The evaluation is based on a comparison involving

BoosTexter [Schapire and Singer, 2000], ADTBoost.MH [Comité et al., 2003],

and ML-SVM [Elisseeff and Weston, 2001]. We believe that these methods are

representative of some of the most effective multi-label methods available.

Parameters − For BoosTexter and ADTBoost.MH, the number of boosting rounds

was set to 500 and 50, respectively. For ML-SVM, polynomial kernels of degree 10 were

used. For LAC-MR-IO and LAC-MR-CO, σmin was set to 0.01. For LAC-MR-IO, ∆min

was set to 0.25.

Analysis − Table 5.3 shows the results. Best results, including statistical ties, are

shown in bold. The YEAST dataset is considered complex, with strong dependencies

among labels. LAC-MR-CO provide gains of 24% in terms of one-error, considering

BoosTexter as the baseline. The reason is that the simple decision function used by

BoosTexter is not suitable for this complex dataset. Also, LAC-MR-IO and LAC-MR-

CO are able to explore many more associations than ADTBoost.MH. LAC-MR-CO

performs much better than ML-SVM since it is able to explore dependencies between

labels.

Algorithms Hamming Loss Ranking Loss One-Error

BoosTexter 0.220 0.186 0.278
ADTBoost.MH 0.207 − 0.244
ML-SVM 0.196 0.163 0.217
LAC-MR-IO 0.191 0.164 0.213
LAC-MR-CO 0.179 0.150 0.213

Table 5.3. Categorization performance for different algorithms.

5.1.4 Summary

In this section we introduced multi-label demand-driven associative classification algo-

rithms, LAC-MR-IO and LAC-MR-CO. The functions produced by these algorithms

map inputs to multiple outputs. LAC-MR-IO is a very simple extension of LAC-MR,

which produces functions that predict all outputs that are associated with the input

(a threshold, ∆min, defines the necessary degree of association). LAC-MR-CO exploits

the association between different outputs to refine the mapping function. Our exper-

iments, concerning classification problems such as document categorization and gene

functional analysis, have shown that these algorithms are able to provide gains that

are up to 24%.



5.2. Multi-Metric Classification 69

5.2 Multi-Metric Classification

The classification performance of an associative classification algorithm is strongly

dependent on the statistic measure or metric that is used to quantify the strength of

the association between features and classes (i.e., confidence, correlation etc.). Previous

studies have shown that classification algorithms produced using different metrics may

predict conflicting outputs for the same input, and that the best metric to use is

data-dependent and rarely known while designing the algorithm [Veloso et al., 2009c].

This uncertainty concerning the optimal match between metrics and problems is a

dilemma, and prevents associative classification algorithms to achieve their maximal

performance.

A possible solution to this dilemma is to exploit the competence, expertise, or as-

sertiveness of classification algorithms produced using different metrics. The basic idea

is that each of these algorithms has a specific sub-domain for which it is most competent

(i.e., there is a set of inputs for which this algorithm consistently provides more accurate

predictions than algorithms produced using other metrics). Particularly, we investigate

stacking-based meta-learning methods, which use the training data to find the domain

of competence of associative classification algorithms produced using different metrics.

The result is a set of competing algorithms that are produced using different metrics.

The ability to detect which of these algorithms is the most competent one for a given

input leads to new algorithms, which are denoted as competence-conscious associative

classification algorithms.

5.2.1 Related Work

A variety of related methods, that combine several algorithms, has already been pro-

posed. Well known methods include bagging [Breiman, 1996], boosting [Schapire, 1999],

and stacking [Wolpert, 1992]. In the following, we will focus our attention on stacking

methods, since the algorithms to be proposed in this section are most related to them.

Stacking is based on the idea that different classification algorithms provide different

but complementary explanations of the training data. Thus, the predictions of these

different (base) algorithms provide novel information that can be used as meta-features

to build a new training data. Then, a meta-classifier is produced using this new training

data, but instead of predicting the correct output for a given input, the meta-classifier

predicts the base algorithm that is most likely to correctly predict the output for such

input. The obvious advantage, in this case, is that the errors of a base algorithm may

be counter-attacked by the hits of other constituent algorithms.

The integration of algorithms using methods related to stacking was largely ex-



70 Chapter 5. Extensions to Demand-Driven Associative Classification

plored [Ferri et al., 2004; Ortega et al., 2001; Tsymbal et al., 2006; Gama and Brazdil,

2000; Antonie et al., 2006]. We believe that the work of Ortega et. al [Ortega et al.,

2001] is the closest to ours. They used a referee (which in our case is a meta-classifier)

to indicate the best constituent algorithm to be applied for each input. The approach

used to produce the referee (which is based on decision trees) is different to the ap-

proach we used to produce the meta-classifier.

Self-delegation [Ferri et al., 2004] is another method for combining the predictions

of different base algorithms, and thus it is also related to this work. The idea is that

each base algorithm chooses by itself for which inputs it can safely predicts the output.

This choice is based on the confidence in its prediction. A base algorithm delegates the

difficult or uncertain predictions to other algorithms. Clearly, this strategy produces

algorithms which are exclusively defined in terms of the original features (no meta-

features are generated). This simplicity may be desirable, but it may neglect important

information associated with meta-features.

Several statistic metrics can be used to estimate the association between inputs and

outputs [Tan et al., 2002; Lavrac et al., 1999; Hilderman and Hamilton, 2001], but the

most competent one is rarely known in advance. Thus, we propose to explore the

diversity among classification algorithms that are produced using different metrics to

boost the classification performance of the final algorithm [Veloso et al., 2009c] (which

will be refereed as a competence-conscious associative algorithm).

5.2.2 Algorithms

Next we present three algorithms for multi-metric associative classification. The

first one, which will be referred to as LAC-MR-SD (standing for LAC-MR with self-

delegation), delegates the metric to be used for producing fxi

S . The second one, which

will be referred to as LAC-MR-OC (standing for LAC-MR with output-centric metric

selection), groups the competence of metrics according to the outputs. The last one,

which will be referred to as LAC-MR-IC (standing for LAC-MR with input-centric

metric selection), is much finer-grained and associates the competence of metrics to

inputs.

Metrics

Next, we present several metrics for measuring the strength of association between a

set of features (X ) and classes (c1, c2, . . . , cp). Some of these metrics are popular ones

[Agrawal et al., 1993; Tan et al., 2002], while others were recently used in the context

of associative classification[Arunasalam and Chawla, 2006]. These metrics interpret



5.2. Multi-Metric Classification 71

association using different definitions. We believe that these definitions are different

enough to indicate that the corresponding algorithms may present some diversity.

• Confidence (γ1) [Agrawal et al., 1993]: This metric was defined in Equation 3.1.

Its value ranges from 0 to 1.

• Added Value (γ2) [Hilderman and Hamilton, 2001]: This metric measures the

gain in accuracy obtained by using rule X −→ cj instead of always predicting cj,

as shown in Equation 5.7. Negative values indicate that always predicting cj is

better than using the rule. Its value ranges from -1 to 1.

γ2 = p(cj |X )− p(cj) (5.7)

• Certainty (γ3) [Lavrac et al., 1999]: This metric measures the increase in accuracy

between rule X −→ cj and always predicting cj, as shown in Equation 5.8. It

assumes values smaller than 1.

γ3 =
p(cj |X )− p(cj)

p(cj)
(5.8)

• Yules’Q (γ4) and Yules’Y (γ5) [Tan et al., 2002]: These metrics are based on odds

value, as shown in Equations 5.9 and 5.10, respectively. Their values range from

-1 to 1. The value 1 implies perfect positive association between X and cj , value

0 implies no association, and value -1 implies perfect negative association.

γ4 =
p(X ∪ cj)× p(X ∪ cj)− p(X ∪ cj)× p(X ∪ cj)

p(X ∪ cj)× p(X ∪ cj) + p(X ∪ cj)× p(X ∪ cj)
(5.9)

γ5 =

√

p(X ∪ cj)× p(X ∪ cj)−
√

p(X ∪ cj)× p(X ∪ cj)
√

p(X ∪ cj)× p(X ∪ cj) +
√

p(X ∪ cj)× p(X ∪ cj)
(5.10)

• Strength Score (γ6) [Arunasalam and Chawla, 2006]: This metric measures the

correlation between X and cj, but it also takes into account how X is correlated

to the complement of cj (i.e., cj), as shown in Equation 5.11. Its value ranges

from 0 to ∞.

γ6 =
p(X |cj)× p(cj|X )

p(X |cj)
(5.11)



72 Chapter 5. Extensions to Demand-Driven Associative Classification

• Support (γ7) [Agrawal et al., 1993]: This metric was defined in Equation 3.2. Its

value ranges from 0 to 1.

• Weighted Relative Confidence (γ8) [Lavrac et al., 1999]: This metric trades off

accuracy and generality, as shown in Equation 5.12. The first component is the

accuracy gain that is obtained by using rule X −→ cj instead of always predicting

cj. The second component incorporates generality.

γ8 = (p(cj|X )− p(cj))× p(X ) (5.12)

Although we focus our analysis only on these metrics, the algorithms to be intro-

duced are general and able to exploit any number of metrics, transparently.

LAC-MR-SD − Selecting an appropriate metric is a major issue while designing

an associative classification algorithm. Algorithms produced by different metrics often

present different classification performance. Depending on the characteristics of the

problem, some metrics may be more suitable than others. Given a set composed of

algorithms, Cγ1
, Cγ2

, . . ., Cγq
, which were produced using different metrics, we must

select which algorithm is the one most likely to perform a correct prediction. Equa-

tion 3.5 can be used to estimate the reliability of a prediction, and this information

can be used to select the most reliable prediction performed, considering all constituent

classification algorithms. This is the approach used by LAC-MR-SD, which is illus-

trated in Algorithm 10. For a given input xi, the predicted output is the one which is

associated with the highest likelihood p̂(cj|xi) amongst all competing algorithms. The

basic idea is to use the most reliable prediction (among the predictions performed by

all competing algorithms) to select the output for xi.

Although simple, LAC-MR-SD does not exploit the competence of each constituent

algorithm. In fact, each base algorithm simply decides by itself the inputs for which it

will predict the output, not meaning that the selected inputs belong to its domain of

competence.

Domain of Competence

The optimal match between metrics and problems is valuable information. In this

section we present an approach to estimate such matching. The proposed approach

may be viewed as an application of Wolpert’s stacked generalization [Wolpert, 1992].

From a general point of view, stacking can be considered a meta-learning method, as

it refers to the induction of algorithms over inputs that are, in turn, the predictions of

other algorithms induced from the training data.



5.2. Multi-Metric Classification 73

Algorithm 10 Finding fxi

S , according to LAC-MR-SD.

Require: The training data S, and an input xi ∈ T
Ensure: fxi

S

1: Sxi ⇐ S projected according to xi

2: Rxi ⇐ rules X −→ cj extracted from Sxi

3: for each competing algorithm Cγq
do

4: produce candidate functions cxi

γqS
using rules in Rxi

5: end for
6: return fxi

S which is the function that provides the highest likelihood p̂(cj |xi),
amongst all candidate functions cxi

γqS

Algorithm 11 Enhancing the training data with the competence of each competing
algorithm.

Require: The original training data S, and a cross-validation parameter k
Ensure: The enhanced training data Se

1: split S into k partitions, so that S={d1 ∪ d2 ∪ . . . ∪ dk}
2: Se ⇐ ∅
3: for each partition dt do
4: for each input xi ∈ dt do
5: γ ⇐ ∅
6: {S − dt}xi ⇐ {S − dt} projected according to xi

7: Rxi ⇐ rules X −→ cj extracted from {S-d}xi

8: build different algorithms, Ct
γ1

, Ct
γ2

, . . . , Ct
γq

, using rules in Rxi

9: for each algorithm Cγj
do

10: if Cγj
correctly predicts the class for xi then

11: γ ⇐ γ ∪ γj

12: end if
13: end for
14: Se ⇐ Se ∪ {(xi, yi) ∪ γ}
15: end for
16: end for

The process starts by enhancing the original training data using the outputs pre-

dicted by the base algorithms, Cγ1
, Cγ2

. . . Cγq
. Algorithm 11 shows the basic steps

involved in the process. Initially, the enhanced training data, Se is empty. An example

xi, along with the competence of each algorithm with regard to xi (i.e., which compet-

ing algorithm correctly predicted the output for xi), is inserted into Se. The process

continues until all examples are processed. In the end, for each example xi ∈ Se we

have a list of competing algorithms that predicted the correct output for xi, and this

information enables learning the domains of competence of each algorithm.



74 Chapter 5. Extensions to Demand-Driven Associative Classification

Example − To illustrate the process, consider the example shown in Tables 5.4

and 5.5. Table 5.4 shows the original training data, S. Using the process described in

Algorithm 11, the competence of each algorithm with regard to each input is appended

to S, resulting in the enhanced training data, Se, which is shown in Table 5.5. In

this case, for a given example xi, metric γj is shown if the corresponding algorithm

Cγj
has correctly predicted the output for input xi using the stacking procedure. The

enhanced training data, Se, can be exploited in several ways. In particular, we will use

Se to produce competence-conscious associative classification algorithms, as it will be

discussed next.

input
id output a1 a2 . . . al

1 c1 1 3 . . . 6
2 c1 1 3 . . . 7
3 c1 2 4 . . . 6
4 c2 2 4 . . . 7
5 c2 2 5 . . . 8
6 c2 2 4 . . . 6
7 c3 1 3 . . . 9
8 c3 2 5 . . . 9
9 c3 2 4 . . . 8
10 c3 2 4 . . . 9

Table 5.4. Training data given as an example of multi-metric problem.

input Competent Most Competent
id output a1 a2 . . . al Metric(s) (per instance) Metric(s) (per class)

1 c1 1 3 . . . 6 γ2

2 c1 1 3 . . . 7 γ1 γ3 γ1

3 c1 2 4 . . . 6 γ1

4 c2 2 4 . . . 7 γ1 γ2

5 c2 2 5 . . . 8 γ1 γ2 γ3 γ1

6 c2 2 4 . . . 6 γ1

7 c3 1 3 . . . 9 γ2

8 c3 2 5 . . . 9 γ2 γ3 γ2

9 c3 2 4 . . . 8 γ1 γ2 γ3

10 c3 2 4 . . . 9 γ2

Table 5.5. Enhanced training data, Se.



5.2. Multi-Metric Classification 75

Competence-Conscious Metric Selection

In this section we present algorithms that exploit Se to produce functions fxi

S . The

challenge, in this case, is to properly select a competent metric for a specific input.

The competence-conscious algorithms to be presented differ in how they perform the

analysis of the domains of competence of the competing algorithms.

LAC-MR-OC − The competence of algorithms produced using different metrics

are often associated with certain outputs (or classes). Some metrics, for instance, pro-

duce algorithms which show preference for more frequent classes, while others produce

algorithms which show preference for less frequent ones. As an illustrative example,

please consider Table 5.5. Algorithm derived from metric γ1 is extremely competent

for inputs that are related to outputs c1 and c2. On the other hand, if we consider

inputs that are related to c3, the algorithm derived from metric γ2 perfectly classifies all

inputs. This information (which is shown in the last column of Table 5.5) may be used

to produce output-centric competence-conscious algorithms. The process is depicted

in Algorithm 12. It starts with a meta-classifier,M, which learns the most competent

base algorithm for a given class. Specifically, instead of extracting rules X −→ cj , the

meta-classifier extracts rules X −→ γi, which maps features (i.e., in the third column

of Table 5.5) to metrics (i.e., in the fifth column of Table 5.5). Then, for each input

xi ∈ T , the meta-classifier indicates the most competent base algorithm, Cγj
, that is

then used to produce fxi

S .

Algorithm 12 Finding fxi

S , according to LAC-MR-OC.

Require: The enhanced training data Se (i.e., the 3rd and 5th columns of Table 5.5),
and an input xi ∈ T

Ensure: fxi

S

1: Sxi
e ⇐ Se projected according to xi

2: for each metric γt do
3: Rxi

γt
⇐ rules X −→ γt extracted from Sxi

e

4: estimate p̂(γt|xi), according to Equation 3.5
5: end for
6: let Cγj

, such that p̂(γj|xi) ≥ p̂(γt|xi)∀t 6= j, be the most competent algorithm for
input xi

7: return fxi

S which is produced by Cγj

LAC-MR-IC − Although the competence of some base algorithms are associated

with certain classes, specific inputs may be better classified using other base algorithms.

In such cases, a finer-grained analysis of competence is desired. As an illustrative



76 Chapter 5. Extensions to Demand-Driven Associative Classification

example, consider again Table 5.5. Although algorithm derived from metric γ1 is the

most competent one to predict the outputs for inputs that are related to class c1,

algorithm derived from metric γ2 is the only one which competently classifies input 1

(which is related to c1). Again, a meta-classifier,M, is used to explore such cases. The

process is depicted in Algorithm 13. In this case, the meta-classifier learns the most

competent metric by extracting rules of the form X −→ γj, which maps features (i.e.,

in the third column of Table 5.5) to metrics (i.e., in the fourth column of Table 5.5).

Then, for each input xi ∈ T , the meta-classifier indicates the most competent base

algorithm, Cγj
, that is then used to produce fxi

S .

Algorithm 13 Finding fxi

S , according to LAC-MR-IC.

Require: The enhanced training data Se (i.e., the 3rd and 4th columns of Table 5.5),
and an input xi ∈ T

Ensure: fxi

S

1: Sxi
e ⇐ Se projected according to xi

2: for each metric γt do
3: Rxi

γt
⇐ rules X −→ γt extracted from Sxi

e

4: estimate p̂(γt|xi), according to Equation 3.5
5: end for
6: let Cγj

such that p̂(γj|xi) ≥ p̂(γt|xi)∀t 6= j, be the most competent algorithm for
input xi

7: return fxi

S which is produced by Cγj

The main advantage of LAC-MR-OC and LAC-MR-IC is that, in practice, multi-

ple metrics produce competent algorithms for a particular input xi, but M needs to

predict only one of them (competent algorithms are not mutually exclusive, and thus,

in practice, multiple metrics produce competent algorithms for xi). This redundancy

in competence that exists when different metrics are taken into account, may increase

the chance of selecting a competent algorithm.

5.2.3 Empirical Results

In this section we will present the empirical results for the evaluation of the proposed

multi-metric classification algorithms, which include LAC-MR-SD, LAC-MR-OC, and

LAC-MR-IC.

Setup − In all the experiments we used 10-fold cross-validation and the final results

of each experiment represent the average of the ten runs. All the results to be presented

were found statistically significant based on a t-test at 95% confidence level.



5.2. Multi-Metric Classification 77

Baselines − The evaluation is based on a comparison involving SVM algorithms and

against ER (standing for External Referee), which is a combination method proposed

in [Ortega et al., 2001] (in this case, the competing algorithms are Cγ1
, . . . , Cγ8

, but

the most competent algorithm for each input is selected using a decision tree referee).

For SVM, we used the implementation available at http://svmlight.joachims.org/

(version 3.0). We used our own implementation of ER.

Computational Environment − The experiments were performed on a Linux-

based PC with a Intel Pentium III 1.8 GHz processor and 1 GB RAM.

Bounds for multi-metric associative classification − We derived simple lower

and upper bounds for the classification performance of LAC-MR-SD, LAC-MR-OC,

and LAC-MR-IC. The lower bound is the performance that is obtained by randomly

selecting a competent algorithm. Clearly, this lower bound increases with the redun-

dancy between the base algorithms (this redundancy exists because competent algo-

rithms are not mutually exclusive, and, thus, for a particular input xi, multiple base

algorithms may be competent). The upper bound is the classification performance

that would be obtained by an oracle which always predicts a competent base algorithm

(note that perfect performance is not always possible, since it may not exist a compe-

tent algorithm for some inputs). Clearly, this upper bound increases with the accuracy

and diversity associated with base algorithms.

The ACM Digital Library

In this section we will evaluate the proposed algorithms using a collection of docu-

ments extracted from the ACM digital library. This is the same collection used in the

experiments shown in Section 3.3.2. There 6,682 documents, which were labeled under

8 first level categories of ACM, namely: Hardware (C1), Computer Systems Organiza-

tion (C2), Software (C3), Computing Methodologies (C4), Mathematics of Computing

(C5), Information Systems (C6), Theory of Computation (C7), Computing Milieux

(C8).

Parameters − As suggested by the grid parameter search tool in Lib-

SVM [Chang and Lin, 2001], polynomial kernel of degree 6 was used in the experi-

ments.

Evaluation Criteria − Categorization performance for the various methods being

evaluated, is expressed through MicF1.

http://svmlight.joachims.org/


78 Chapter 5. Extensions to Demand-Driven Associative Classification

Analysis − Using the rules extracted from ACM-DL, we can analyze the relation-

ship between the widely used confidence metric (γ1) with other metrics, as shown in

Figure 5.1 (to ease the observation of this relationship, we also include, in each graph,

a thicker line which indicates the corresponding confidence value). Each point in the

graphs corresponds to a rule, for which it is shown the values of some metrics (i.e.,

confidence in the x-axis and another metric in the y-axis). Different lines are associated

with different outputs (i.e., classes). Clearly, each metric has its particular behavior

with varying values of confidence. We will use these relationships to understand some

of the results to be presented. For lower values of confidence, Added Value (γ2) has

a preference for less frequent classes, but, after a certain confidence value, the pref-

erence is for more frequent classes. Certainty (γ3) always prefer less frequent classes,

but linearly approaches confidence as its value increases. Yules’Q (γ4) and Yules’Y

(γ5) have a similar behavior, showing preference for less frequent classes and hardly

penalizing associations with low confidence values. Strength Score (γ6) and Weighted

Relative Confidence (γ8) both prefer less frequent classes, but Strength Score shows a

non-proportional preference for associations with higher values of confidence. The re-

lationship between confidence and support (γ7) is omitted, but, by definition, support

shows a preference for more frequent classes.

Table 5.6 shows the classification performance obtained by different base algorithms.

Best results, including statistical ties, are shown in bold. We will first analyze the per-

formance associated with each category, and then the final classification performance,

which is shown in the last line of the table. Algorithms produced by confidence (Cγ1
)

and support (Cγ7
) performed very well in the most frequent categories (Software, Infor-

mation Systems and Theory of Computer Science). On the other hand, inputs belong-

ing to less frequent categories (Computer Methodologies, Mathematics of Computer

Science, and Computer Science Organization) were better classified using algorithms

produced by Yules’Q (Cγ4
) and Yules’Y (Cγ5

). This is expected, and is in agreement

with the behaviors depicted in Figure 5.1 (algorithms produced by Yules’Y and Yules’Q

show a preference for less frequent categories). The best base algorithm is the one that

better balances its performance over all categories. Although the Cγ5
algorithm was

not the best one for any specific category of ACM-DL, it was the best overall base

algorithm.

Table 5.7 shows classification performance for multi-metric algorithms. Best results,

including statistical ties, are shown in bold. LAC-MR-SD shows a performance that is

similar to the performance obtained by most of the base algorithms (the improvement,

when it exists, is only marginal). Competence-conscious algorithms LAC-MR-OC and

LAC-MR-IC showed the best performances. LAC-MR-IC outperformed all other pro-



5.2. Multi-Metric Classification 79

−0.15

−0.1

−0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A
d

d
e

d
 V

a
lu

e

Confidence

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

W
e

ig
h

te
d

 R
e

la
ti
v
e

 C
o

n
fi
d

e
n

c
e

Confidence

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
e

rt
a

in
ty

Confidence

 1e−05
 0.0001

 0.001
 0.01

 0.1
 1

 10
 100

 1000
 10000

 100000
 1e+06

 0.001  0.01  0.1  1

S
tr

e
n

g
th

 S
c
o

re

Confidence

−1

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Y
u

le
s
’Q

Confidence

−1

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Y
u

le
s
’Y

Confidence

Figure 5.1. Relationship between confidence and other metrics.



80 Chapter 5. Extensions to Demand-Driven Associative Classification

Category Cγ1
Cγ2

Cγ3
Cγ4

Cγ5
Cγ6

Cγ7
Cγ8

C1 0.809 0.846 0.826 0.834 0.834 0.848 0.183 0.628
C2 0.714 0.785 0.758 0.772 0.799 0.752 0.313 0.785
C3 0.912 0.851 0.888 0.871 0.864 0.748 0.960 0.880
C4 0.569 0.690 0.628 0.657 0.661 0.676 0.090 0.547
C5 0.548 0.624 0.593 0.675 0.680 0.670 0.010 0.329
C6 0.948 0.929 0.937 0.931 0.927 0.893 0.689 0.761
C7 0.922 0.893 0.897 0.890 0.887 0.889 0.507 0.687
C8 0.641 0.715 0.687 0.721 0.729 0.755 0.071 0.481

Total 0.843 0.847 0.850 0.852 0.855 0.810 0.566 0.735

Table 5.6. Classification performance of base algorithms.

posed algorithms and baselines, providing gains of more than 7%, when compared

against SVM, and gains of more than 8.5% when compared against ER. LAC-MR-IC

is always far superior than the corresponding lower bound, but it is also relatively far

from the corresponding upper bound.

Lower LAC-MR Upper
Category Bound SD OC IC Bound ER SVM

C1 0.715 0.813 0.809 0.821 0.893 0.801 0.729
C2 0.723 0.730 0.738 0.766 0.880 0.719 0.879
C3 0.870 0.876 0.884 0.918 0.983 0.874 0.661
C4 0.562 0.581 0.623 0.623 0.795 0.604 0.515
C5 0.563 0.568 0.625 0.648 0.751 0.613 0.907
C6 0.877 0.919 0.911 0.925 0.965 0.898 0.869
C7 0.837 0.906 0.895 0.902 0.922 0.876 0.672
C8 0.591 0.654 0.697 0.697 0.823 0.674 0.771

Total 0.798 0.848 0.858 0.881 0.925 0.811 0.827

Table 5.7. Classification performance of multi-metric algorithms.

We also performed an analysis on how the different base algorithms were used by

LAC-MR-OC and LAC-MR-IC, as can be seen in Figure 5.2. LAC-MR-OC utilized

only few base algorithms, specially Cγ2
, Cγ3

, and Cγ7
. Metric γ4 was used to produce

algorithms to only one category, and metrics γ5 and γ8 were not used to produce any

base algorithm at all (this is because the corresponding algorithms were not the most

competent in any category of ACM, and therefore are not considered by LAC-MR-

OC). LAC-MR-IC, on the other hand, utilized all base algorithms, specially Cγ1
, Cγ2

and Cγ3
. Both LAC-MR-OC and LAC-MR-IC make large utilization of base algorithms

Cγ2
and Cγ3

. For LAC-MR-OC, some areas of expertise can be easily detected. Base

algorithm Cγ2
is considered competent for categories Hardware and Computer Science



5.2. Multi-Metric Classification 81

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

Cγ1
Cγ2

Cγ3
Cγ4

Cγ5
Cγ6

Cγ7
Cγ8

U
s
a

g
e

Base algorithm

ACM−DL

LAC−MR−OC
LAC−MR−IC

Figure 5.2. Utilization of base algorithms.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5 6 7 8

V
a

lu
e

Number of competent base algorithms

ACM−DL

0.07

0.47

Accuracy (LAC−MR−OC)
Accuracy (LAC−MR−IC)

Frequency

Figure 5.3. Distribution of competent algorithms.

Organization, while Cγ3
is considered competent for category Information Systems.

For LAC-MR-IC, areas of expertise are finer grained, but with manual inspection we

detected that Cγ1
is considered competent for category Computer Science Organization,

and Cγ3
is considered competent for category Milieux.

We finalize this set of experiments by analyzing one of the reasons of the good

performance showed by LAC-MR-IC. Figure 5.3 shows the accuracy associated with

scenarios for which a different number of base algorithms are competent. The frequency

of occurrence of each scenario is also shown (note that both accuracy and frequency

values are shown in the y-axis). As it can be seen, for more than 7% of the inputs

in the test set, no base algorithm is competent, and, obviously, these inputs were

misclassified (this means that the inclusion of other metrics may improve classification



82 Chapter 5. Extensions to Demand-Driven Associative Classification

performance in this dataset). As expected, accuracy increases with the number of

competent base algorithms. For almost half of the inputs in the test set all base

algorithms were competent. In these scenarios, there is no risk of misclassification,

since a base algorithm produced by any metric will perform a correct prediction. The

accuracy associated with scenarios where only 7 and only 6 of the base algorithms are

competent, is also extremely high (respectively, 99% and 96%). These three scenarios

(i.e., 8, only 7, and only 6 base algorithms are simultaneously competent) correspond

to 86% of the inputs, and the average accuracy associated with these three scenarios

is almost 98% for LAC-MR-IC. Further, LAC-MR-IC shows to be more robust than

LAC-MR-OC, providing superior accuracy (relative to the accuracy of LAC-MR-OC)

in scenarios where only few base algorithms are competent.

Web Spam Detection

In this application the objective is to detect malicious actions aimed at the ranking

functions used by search engines. We used a dataset obtained from the Web Spam

Challenge (http://webspam.lip6.fr/wiki/pmwiki.php). The dataset is very skewed

(only 6% of the examples are spam pages). Each example is composed of direct features

(i.e., number of pages in the host, number of characters in the host name etc.) link-

based features (i.e., in-degree, out-degree, PageRank etc.) and content-based features

(i.e., number of words in the page, average word length etc.).

Parameters − As suggested by the grid parameter search tool in Lib-

SVM [Chang and Lin, 2001], we used a linear kernel with parameter C set to 5.00.

Evaluation Criteria − For this application, classification performance is com-

puted through MicF1 and MacF1 measures, and the area under the ROC

curve [Fürnkranz and Flach, 2003].

Analysis − Table 5.8 shows the classification performance obtained by different

base algorithms. Best results, including statistical ties, are shown in bold. Cγ1
and Cγ7

showed impressive performance in terms of MicF1. This is expected, because the vast

majority of examples are legitimate pages, and confidence and support have preference

for more frequent classes. On the other hand, Cγ1
and Cγ7

showed poor classification

performance in terms of MacF1 and AUC (i.e., no spam pages were detected). The

remaining base algorithms were able to detect some spam pages, specially Cγ6
, which

also shows impressive performance in terms of accuracy. In terms of AUC, Cγ2
and

Cγ3
showed the best classification performance, amongst all base algorithms. Thus,

http://webspam.lip6.fr/wiki/pmwiki.php


5.2. Multi-Metric Classification 83

different algorithms produced by different metrics show distinct performance depending

on the evaluation target (i.e., MicF1, MacF1, or AUC).

Evaluation
Target Cγ1

Cγ2
Cγ3

Cγ4
Cγ5

Cγ6
Cγ7

Cγ8

MicF1 0.946 0.704 0.702 0.894 0.901 0.948 0.946 0.880
MacF1 0.486 0.522 0.522 0.584 0.589 0.592 0.486 0.587
AUC 0.500 0.756 0.756 0.607 0.606 0.562 0.500 0.629

Table 5.8. Classification performance of base algorithms.

Table 5.9 shows classification performance for multi-metric algorithms. Best results,

including statistical ties, are shown in bold. LAC-MR-OC and LAC-MR-IC were the

best performers in terms of MacF1. Although LAC-MR-IC showed to be far from the

optimal classification performance, it showed impressive gains when compared against

SVM and ER, in terms of MacF1 and AUC.

Evaluation Lower LAC-MR Upper
Target Bound SD OC IC Bound ER SVM

MicF1 0.852 0.861 0.870 0.897 0.990 0.866 0.956
MacF1 0.588 0.594 0.609 0.624 0.947 0.586 0.504
AUC 0.662 0.730 0.718 0.789 0.908 0.725 0.512

Table 5.9. Classification performance of multi-metric algorithms.

5.2.4 Summary

In this section we introduced multi-metric demand-driven associative classification al-

gorithms, LAC-MR-OC and LAC-MR-IC. These algorithms combine predictions per-

formed by mapping functions that are produced using different association metrics. A

specific mapping function is selected to predict the output for each input in the test set.

The selection is based on the domain of competence of each algorithm, which is the set

of inputs that are accurately classified by the algorithm. The proposed multi-metric al-

gorithms differ on the granularity of the domain of competence. LAC-MR-IC employs

a finer-grained analysis of competence, and, as shown in our experiments concerning

classification problems such as document categorization and Web spam detection, it is

able to provide gains of more than 8.5% in classification performance.



84 Chapter 5. Extensions to Demand-Driven Associative Classification

5.3 Calibrated Classification

Given an input xi and an arbitrary output cj, a classification algorithm usually works

by estimating the probability of xi being related to cj (i.e., class membership probabil-

ity). Well calibrated classification algorithms are those able to produce functions that

provide accurate estimates of class membership probabilities, that is, the estimated

probability p̂(cj|xi) is close to p(cj|p̂(cj|xi)), which is the true, (unknown) empirical

probability of xi being related to output cj given that the probability estimated by

the classification algorithm is p̂(cj|xi). Calibration is not a necessary property for

producing an accurate approximation of the target function, and, thus, most of the

research has focused on direct accuracy maximization strategies rather than on cali-

bration. However, non-calibrated functions are problematic in applications where the

reliability associated with a prediction must be taken into account (i.e., cost-sensitive

classification, cautious classification etc.). In these applications, a sensible use of the

classification algorithm must be based on the reliability of its predictions, and thus,

the algorithm must produce well calibrated functions.

5.3.1 Related Work

There are studies investigating calibration of classification algorithms, such as SVMs,

Naive Bayes, and Decision Trees. The calibration of Naive Bayes and Decision Tree

classification algorithms were investigated in [Zadrozny and Elkan, 2001], where it was

shown that probabilities estimated by these algorithms are usually far from the ob-

served, true probabilities. The same methodology was used to show that SVM al-

gorithms are poorly calibrated [Zadrozny and Elkan, 2002], and that the distortion

very often forms a sigmoid pattern. Boosting-based algorithms were shown to produce

functions that are poorly calibrated in [Niculescu-Mizil and Caruana, 2005]. Although

these algorithms do not produce calibrated functions, they tend to assign higher prob-

abilities to the correct output. Therefore, predictions are usually accurate. The advan-

tages of calibrated functions were discussed in [Cohen and Goldszmidt, 2004], where it

was shown that calibrating a function is guaranteed not to decrease its classification

performance.

There are several existing methods used to correct the distortion between estimated

and observed probabilities. Methods for calibrating SVM algorithms transform the pre-

dictions to posterior probabilities by passing them through a sigmoid. The parametric

approach proposed in [Platt, 1999] consists in finding the parameters a and b for a sig-

moid function of the form p̂c(ci|x) = 1/(1+exp{ap̂(ci|x)+b}), which transforms the original

estimated probability, p̂(ci|x), into a calibrated estimate, p̂c(ci|x). These parameters



5.3. Calibrated Classification 85

are found by minimizing the negative log-likelihood of the training data. Methods

for calibrating functions produced by Decision Tree and Naive Bayes algorithms were

proposed in [Zadrozny and Elkan, 2001]. These methods are based on smoothing the

distribution of the original estimates, and they also rely on finding parameters from

the training data. Functions produced by boosting based algorithms are calibrated

using a method called Logistic Regression, proposed in [Friedman et al., 2000]. This

method transforms original estimates, p̂(ci|x), into calibrated estimates, p̂c(ci|x), us-

ing the function p̂c(ci|x) = 1/(1+exp{−2ap̂(ci|x)}). All the mentioned methods find the

corresponding parameters through 10-fold cross-validation using the training data.

5.3.2 Algorithms

In this section we define calibrated algorithms, and then we propose methods to cali-

brate associative classification algorithms. Further, we present two algorithms that are

calibrated using the proposed calibration methods. The first one, which will be referred

to as LAC-MR-NC (standing for LAC-MR with naive calibration), is calibrated using

a naive calibration method. The second one, which will be referred to as LAC-MR-EM

(standing for LAC-MR with entropy minimization), is calibrated using a sophisticated

calibration method based on entropy minimization.

τ-calibrated Classification Algorithms

The calibration of a classification algorithm can be visualized using reliability dia-

grams. Diagrams for two arbitrary algorithms using an arbitrary dataset are depicted

in Figure 5.4 (Left). These diagrams are built as follows [DeGroot and Fienberg, 1982].

First, the probability space (i.e., the x-axis) is divided into a number of bins, which

was chosen to be 10 in our case. Probability estimates (i.e., theoretical probabilities)

with value between 0 and 0.1 fall in the first bin, estimates with value between 0.1 and

0.2 fall in the second bin, and so on. The fraction of correct predictions associated

with each bin, which is the true, empirical probability (i.e., p(c|p̂(cj|xi))), is plotted

against the estimated probability (i.e., p̂(cj|xi)). If the algorithm is well calibrated,

the points will fall near the diagonal line, indicating that estimated probabilities are

close to empirical probabilities. The degree of calibration of an algorithm, denoted as

τ , is obtained by measuring the discrepancy between observed probabilities (oi) and

estimated probabilities (ei), as shown in Equation 5.13 (where k is the number of bins).

Values of τ range from 0 to 1. A value of 0 means that there is no relationship be-

tween estimated probabilities and true probabilities. A value of 1 means that all points

lie exactly on a straight line with no scatter. Algorithm 1 is better calibrated than



86 Chapter 5. Extensions to Demand-Driven Associative Classification

Algorithm 2, as shown in Figure 5.4 (Right).

τ = 1−
1

k

k
∑

i=1

(oi − ei)
2

(oi + ei)2
(5.13)

  0
  0.1
  0.2
  0.3
  0.4
  0.5
  0.6
  0.7
  0.8
  0.9

  1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
(
c

j|
p

(
c

j|
x

i)
)

p(cj|xi)

Algorithm 1
Algorithm 2

  0
  0.1
  0.2
  0.3
  0.4
  0.5
  0.6
  0.7
  0.8
  0.9

  1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p

(
c

j|
p

(
c

j|
x

i)
)

p(cj|xi)

Calibrated Algorithm
Algorithm 1 (τ=0.97)
Algorithm 2 (τ=0.82)

Figure 5.4. Reliability diagram and τ -calibrated algorithms.

LAC-MR-NC − To transform original probability estimates, p̂(cj|xi), into accurate

well calibrated probabilities, we also use a method based on binning. The method starts

by estimating membership probabilities using the training data, S. A typical method is

10-Fold Cross-Validation. In this case, S is divided into 10 partitions, and at each trial,

9 partitions are used for training, while the remaining partition is used to simulate a

test set. After the 10 trials, the algorithm will have stored in the set O, the membership

probability estimates for all inputs in S. This process is shown in Algorithm 14.

Once the probabilities are estimated, a naive calibration method would proceed

by first sorting these probabilities in ascending order (i.e., the probability space), and

then dividing them into k equal-sized bins, each having pre-specified boundaries. An

estimate is placed in a bin according to its value (i.e., values between 0 and 1
k

are placed

in the first bin, values between 1
k

and 2
k

in the second, and so on). The probability

associated with a bin is given by the fraction of correct predictions that were placed

in it. An estimate p̂(cj |xi) is finally calibrated by using the probability associated

with the corresponding bin. Specifically, each bin bl↔u ∈ B (with l and u being its

boundaries) works as a map, relating estimates p̂(cj|xi) (such that l ≤ p̂(cj |xi) < u) to

the corresponding calibrated estimates, pbl↔u
. Thus, this process essentially discretizes



5.3. Calibrated Classification 87

Algorithm 14 Estimating membership probabilities.

Require: Examples in S
Ensure: For each input xi in S, the corresponding membership probabilities

p̂(c1|xi), p̂(c2|xi), . . . , p̂(cp|xi), along with the correct output

1: O ⇐ ∅
2: Split S into 10 equal-sized partitions, p1, p2, . . . , p10

3: for each partition pj do
4: for each input xi ∈ pj do
5: Estimate probabilities, p̂(c1|xi), p̂(c2|xi), . . . , p̂(cp|xi), using {S-pi} as training
6: O ⇐ O∪{(p̂(c1|xi), v1)}∪ . . .∪{(p̂(cp|xi), vp)}, where vj=1 if cj is the correct

class for example xi, and vj=0 otherwise
7: end for
8: end for
9: return O

the probability space into intervals, so that the accuracy associated with the predictions

in each interval is as reliable as possible.

Such naive method, however, may be disastrous as critical information may be lost

due to innapropriate bin boundaries. Instead, we propose to use information entropy

associated with candidate bins to select the boundaries [Fayyad and Irani, 1993].

LAC-MR-EM − This algorithm uses the information in O to initially find a thresh-

old that minimizes the entropy over all possible partitions; and it is then recursively

applied to both of the partitions induced by the threshold. To illustrate the method,

suppose we are given a set of pairs (p̂(cj|xi), v)1 ∈ O. In this case, the entropy of O is

given by Equation 5.14.

E(O) = −
|(p̂(cj|xi), 0) ∈ O|

|O|
× log

(

|(p̂(cj |xi), 0) ∈ O|

|O|

)

−
|(p̂(cj|xi), 1) ∈ O|

|O|
× log

(

|(p̂(cj |xi), 1) ∈ O|

|O|

)

(5.14)

There is a threshold f , which is a boundary that induces two partitions of O (bf≤

and bf>, where bf≤ contains pairs (p̂(cj |xi), v) for which p̂(cj |xi) ≤ f , and bf> contains

pairs for which p̂(cj|xi) > f). The selected threshold, t, is the one which minimizes the

weighted average entropies, given by Equation 5.15.

E(O, f) =
|bf≤|

|O|
× E(bf≤) +

|bf>|

|O|
×E(bf>) (5.15)

1v can take the values 0 (the prediction is wrong) or 1 (otherwise), as shown in step 6 of Algo-
rithm 14.



88 Chapter 5. Extensions to Demand-Driven Associative Classification

This method is then applied recursively to both of the partitions induced by t, bt≤

and bt>, creating multiple intervals until a stopping criterion is fulfilled. Splitting stops

if the information gain (the difference between the entropies before and after the split)

is lower than the minimum description length [Rissanen, 1978] of the partition, and

the final set of bins, B, is found. According to Fayyad and Irani [1993], the minimum

description length induced by a threshold t over a partition O is the second term of

the following inequality:

E(O)−E(O, t) >
log(|O| − 1)

|O|
+

∆(O, t)

|O|
(5.16)

where ∆(O, t) = log(3k − 2) − (k × E(O) − k1 × E(bt≤) − k2 × E(bt>)), and ki is

either 1 or 2 (ki = 1 if the corresponding partition is pure, that is, if it contains only

correct (or only incorrect) predictions; and ki = 2 otherwise).

Finally, for each input xi in the test set, p̂(c1|xi), p̂(c2|xi), . . . , p̂(cp|xi) are estimated

using S. Then, the estimated probabilities are calibrated using the accuracy associated

with the appropriate bin in B, as shown in Algorithm 15.

Algorithm 15 Calibrating the probabilities.

Require: Examples in S, inputs in T , the calibrated probability pbl↔u
of each bin bl↔u

Ensure: For each estimate p̂(cj|xi), the corresponding calibrated estimate p̂c(cj |xi)

1: for each input xi ∈ T do
2: Estimate probabilities, p̂(c1|xi), p̂(c2|xi), . . . , p̂(cp|xi), using S as training
3: for each cj do output p̂c(cj |xi)=pbl↔u

, such that l ≤ p̂(cj|xi) < u
4: end for

Category Features

d1 Databases Rules in Database Systems
d2 Databases Applications of Logic Databases
d3 Databases Hypertext Databases and Data Mining
d4 Data Mining Mining Association Rules in Large Databases
d5 Data Mining Database Mining: A Performance Perspective
d6 Data Mining Algorithms for Mining Association Rules
d7 Inf. Retrieval Text Databases and Information Retrieval
d8 Inf. Retrieval Information Filtering and Information Retrieval
d9 Inf. Retrieval Term Weighting Approaches in Text Retrieval
d10 Inf. Retrieval Performance of Information Retrieval Systems

Table 5.10. Example using documents of a digital library.



5.3. Calibrated Classification 89

Example − Table 5.10 shows an illustrative example composed of 10 documents

extracted from a digital library. Each document belongs to one category. Such doc-

uments are given as training data. Several rules are extracted from these documents.

Specifically, Rd1 , which is the set of rules (extracted from {S−p1}) matching document

d1, includes:

1. text=system(s)−→Inf. Retrieval (θ=1.00)

2. text={rule(s)∧database(s)}−→Data Mining (θ=1.00)

3. text=rule(s)−→Data Mining (θ=1.00)

4. text=database(s)−→Databases (θ=0.40)

5. text=database(s)−→Data Mining (θ=0.40)

6. text=database(s)−→Inf. Retrieval (θ=0.20)

From such decision rules, class membership probabilities for document d1

are estimated using Equation 3.5, resulting in the following probabilities:

p̂(Databases|d1)=0.19, p̂(Data Mining|d1)=0.44, and p̂(Inf. Retrieval|d1)=0.37. Mem-

bership probabilities for all documents are shown in Table 5.11, where the number

between parenthesis indicates if the prediction is correct (1) or not (0).

p̂(Databases|d) p̂(Data Mining|d) p̂(Inf. Retrieval|d)

d1 0.19 (1) 0.44 (0) 0.37 (0)
d2 0.27 (1) 0.48 (0) 0.24 (0)
d3 0.26 (1) 0.61 (0) 0.13 (0)
d4 0.36 (0) 0.46 (1) 0.18 (0)
d5 0.27 (0) 0.25 (1) 0.48 (0)
d6 0.30 (0) 0.53 (1) 0.17 (0)
d7 0.22 (0) 0.25 (0) 0.53 (1)
d8 0.00 (0) 0.29 (0) 0.71 (1)
d9 0.00 (0) 0.00 (0) 1.00 (1)
d10 0.31 (0) 0.31 (0) 0.38 (1)

Table 5.11. Class membership probabilities.

Figure 5.5 (Left) shows the process of setting bin boundaries by entropy minimiza-

tion, for category “Data Mining”. Initially, the probability space (which ranges from

0.00 to 1.00) is divided into two bins. The cut point at 0.45 gives an information gain

which is higher than the minimum description length of initial bin. Now, there are two

bins. The bin on the right (i.e., [0.45-1.00]) is not divided anymore, since additional



90 Chapter 5. Extensions to Demand-Driven Associative Classification

cut points would not provide enough information gain. The bin on the left is further

divided into two other bins. The cut point at 0.20 gives an information gain which

is higher than the minimum description length of this bin. Then, the process stops

because no more bins are created. Figure 5.5 (Right) shows the same process of setting

bin boundaries for category “Inf. Retrieval”.

Bins obtained for each category are shown in Table 5.12. For this simplified ex-

ample, only two bins are produced for category “Databases”, and only three bins are

produced for categories “Data Mining” and “Inf. Retrieval”. The calibrated probabil-

ity for each bin, which is the fraction of correct predictions within each bin, are also

shown in Table 5.12.

0.00 0 0 0
11 1

000 0 1.00

0.00 0.450
1
000 0

0.00 1 111
000 0 00 1.00

1 111
0 1.000.38

Figure 5.5. Calculating bin boundaries for different categories (category “Data
Mining” on the left, and category “Inf. Retrieval” on the right).

Databases Data Mining Inf. Retrieval
Boundaries Prob. Boundaries Prob. Boundaries Prob.

[0.00-0.17] 0.000 [0.00-0.20] 0.000 [0.00-0.38] 0.000
[0.17-1.00] 0.375 [0.20-0.45] 0.200 [0.38-0.52] 0.500

[0.45-1.00] 0.500 [0.52-1.00] 1.000

Table 5.12. Bin boundaries and calibrated probabilities for each category.



5.3. Calibrated Classification 91

5.3.3 Empirical Results

In this section we present the experimental results for the evaluation of the proposed

calibrated algorithms, LAC-MR-NC (which is calibrated using the naive calibration

method) and LAC-MR-EM (which is calibrated using the MDL-based entropy mini-

mization method).

Computational Environment − The experiments were performed on a Linux-

based PC with a Intel Pentium III 1.0 GHz processor and 1 GB RAM.

Baselines − The evaluation is based on a comparison against current state-of-the-art

calibrated algorithms, which include SVM [Boser et al., 1992], Naive-Bayes [Cussens,

1993], and Decision Tree classifiers [Quinlan, 1993]. After being calibrated using specific

methods [Platt, 1999; Cestnik, 1990; Zadrozny and Elkan, 2001], these algorithms are

respectively referred to as CaSVM, CaNB, and CaDT.

The ACM Digital Library

For this application we used the ACM-DL dataset, which was described in Section

3.3.2. The classification algorithm must decide to which category a document belongs.

However, the administrator of the digital library imposes an additional minimum accu-

racy requirement, accmin, to the algorithm. In this case, the algorithm must estimate

the total accuracy after each prediction is performed, and then it must decide to con-

tinue classifying documents (if the estimated accuracy is higher than accmin) or to stop

classification (if the estimated accuracy is lower than accmin).

Setup − In all the experiments we used 10-fold cross-validation and the final results

of each experiment represent the average of the ten runs. All the results to be presented

were found statistically significant based on a t-test at 95% confidence level.

Evaluation Criteria − We used accuracy, τ , and the fraction of documents classified

at accmin, to assess classification performance.

Parameters − For CaSVM we used linear kernels and set C=0.90. These parameters

were set according to the grid parameter search tool in LibSVM [Chang and Lin, 2001].

For CaNB and CaDT we used the default parameters, which were also used in other

works [Cussens, 1993]. For LAC-MR-NC, the number of bins was set to 5. For LAC-

MR-NC and LAC-MR-EM, we set σmin=0.001.



92 Chapter 5. Extensions to Demand-Driven Associative Classification

Analysis − The bins produced by different calibration methods are shown in Fig-

ure 5.6. Bin boundaries are shown in the x-axis and the corresponding calibrated prob-

abilities are shown in the y-axis. Coincidentally, the MDL-based Entropy-Minimization

method also produced 5 bins, but with varying sizes.

  0
  0.1
  0.2
  0.3
  0.4
  0.5
  0.6
  0.7
  0.8
  0.9

  1

0.00−0.20 0.20−0.40 0.40−0.60 0.60−0.80 0.80−1.00

C
a

li
b

r
a

te
d

 P
r
o

b
a

b
il
it
y

Probability Estimates

Naive Calibration

  0
  0.1
  0.2
  0.3
  0.4
  0.5
  0.6
  0.7
  0.8
  0.9

  1

0.00−0.27 0.27−0.32 0.32−0.48 0.48−0.60 0.60−1.00
C

a
li
b

r
a

te
d

 P
r
o

b
a

b
il
it
y

Probability Estimates

Calibration based on Entropy Minimization

Figure 5.6. Bins produced for category “Information Systems”.

After the bins were found, we apply LAC-MR to the test set, and we replace the

original probability estimate (x-axis) by the calibrated probability associated with the

corresponding bin (y-axis). The result of calibration is depicted in Figure 5.7, which

shows τ values for LAC-MR, before and after being calibrated with different methods

(resulting in LAC-MR-NC and LAC-MR-EM algorithms). Other algorithms were also

evaluated. The worst algorithm in terms of calibration is SVM with τ=0.69. After

calibrating SVM, the corresponding algorithm, CaSVM, shows τ=0.75. NB and LAC-

MR, with τ=0.76 and τ=0.78, respectively, are already better calibrated than CaSVM.

These algorithms, when calibrated, show the best calibration degrees − CaNB with a

τ=0.91, and LAC-MR-EM with τ=0.97. Next, we will evaluate how this difference in

calibration affects the effectiveness of the algorithms.

We continue our analysis by evaluating each algorithm in terms of its ability for

estimating the actual accuracy. Figure 5.8 shows the actual accuracy and the accuracy

estimates obtained with each algorithm, so that the corresponding values can be di-

rectly compared2. As expected, LAC-MR-EM shows to be better calibrated than LAC-

MR-NC. This is because the bins used by LAC-MR-NC are produced in an ad-hoc way,

while the bins used by LAC-MR-EM are produced following the entropy-minimization

strategy. The direct consequence of applying such method is that a bin is likely to con-

2For each experiment, predictions were sorted from the most reliable to the least reliable.



5.3. Calibrated Classification 93

  0.5

  0.55

  0.6

  0.65

  0.7

  0.75

  0.8

  0.85

  0.9

  0.95

  1

τ

Algorithm

SVM
DT

CaSVM
NB

LAC−MR
LAC−MR−NC

CaDT
CaNB

LAC−MR−EM

Figure 5.7. Algorithms, before and after being calibrated.

tain predictions which are as similar as possible. While in most of the cases CaNB and

CaDT are well calibrated, CaSVM very often underestimates or overestimates the ac-

tual accuracy, and is thus poorly calibrated. The main reason of the poor performance

of CaSVM is that Platt Scaling is prone to overfitting, since this calibration method

is based on regression. The other calibration mechanisms apparently do not overfit as

much. This explanation is supported by the results present in [Cohen and Goldszmidt,

2004] (which show that Naive Bayes algorithms are much better calibrated than SVM

algorithms).

If the administrator of the digital library specifies a threshold accmin (i.e., the

minimum acceptable accuracy of the algorithm), then the value of the algorithm resides

in how many documents it is able to classify while respecting accmin. Figure 5.8 shows

the fraction of documents in the test set each algorithm is able to classify for a given

value of accmin (y-axis). Clearly, LAC-MR-EM is the best performer, except for accmin

values higher than 0.95, when the best performer is LAC-MR-NC. CaNB and CaDT

are in close rivalry, with CaDT being slightly superior. In most of the cases, both

CaNB and CaDT show to be superior than LAC-MR-NC. CaSVM, as expected, is the

worst performer for all values of accmin.

KDDCUP’98

For this application we used a dataset called KDD-98, which was used in KDDCUP’98

contest. This dataset was provided by the Paralyzed Veterans of America (PVA), an

organization which devises programs and services for US veterans. With a database of

over 13 million donors, PVA is also one of the world’s largest direct mail fund raisers.



94 Chapter 5. Extensions to Demand-Driven Associative Classification

 0.78
 0.8

 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

V
a

lu
e

Fraction of documents classified

Empirical Acc. of LAC−MR
Acc. estimated by LAC−MR−EM
Acc. estimated by LAC−MR−NC

 0.76
 0.78

 0.8
 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

V
a

lu
e

Fraction of documents classified

Empirical accuracy of SVM
Acc. estimated by CaSVM

 0.8
 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

V
a

lu
e

Fraction of documents classified

Empirical Accuracy of NB
Acc. estimated by NB

 0.78
 0.8

 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

V
a

lu
e

Fraction of documents classified

Empirical Accuracy of DT
Acc. estimated by CaDT

Figure 5.8. Accuracy estimated by calibrated algorithms.

The total cost invested in generating a request (including the mail cost), is $0.68 per

piece mailed. Thus, PVA wants to maximize net revenue by soliciting only individuals

that are likely to respond with a donation. The KDD-98 dataset contains information

about individuals that have (or have not) made charitable donations in the past. The

provided training data consists of 95,412 examples, and the provided test set consists

of 96,367 inputs. Each example/input corresponds to an individual, and is composed

of 479 features. The training data has an additional field that indicates the amount

of the donation (a value $0 indicates that the individual have not made a donation).

From the 96,367 individuals in the test set, only 4,872 are donors. If all individuals

in the test set were solicited, the total profit would be only $10,547. On the other

hand, if only those individuals that are donors were solicited, the total profit would be

$72,764. Thus, the classifier must choose which individuals to solicit a new donation

from. According to Zadrozny and Elkan [2001], the optimal net maximization strategy

is to solicit an individual xi if and only if p̂(donate|xi) > 0.68
y(xi)

, where y(xi) is the



5.3. Calibrated Classification 95

expected amount donated by xi
3. Thus, in addition to calculating p̂(donate|xi), the

algorithm must also estimate y(xi).

Estimating the Donation Amount and p̂(donate|x) − Each donation amount

(i.e., $200, $199, . . ., $1, and $0) is considered as an output. Thus, for an

individual xi, rules of the form X −→ y (with X ⊆ xi) are extracted from

S, and Equation 3.5 is used to estimate the likelihood of each amount (i.e.,

p̂(y=$200|xi), p̂(y=$199|xi), . . . , p̂(y=$0|xi)). The donation amount, y(xi), is finally

estimated by a linear combination of the probabilities associated with each amount, as

shown in Equation 5.17. The probability of donation, p̂(donate|xi), is simply given by

1− p̂(y=$0|xi).

y(xi) =

$200
∑

i=$0

i× p̂(y = i|xi) (5.17)

Parameters

For CaSVM we used linear kernels and set C=2.00. These parameters were set accord-

ing to the grid parameter search tool in LibSVM [Chang and Lin, 2001]. For CaNB and

CaDT we used the default parameters, which were also used in other works [Cussens,

1993]. For LAC-MR-NC, we evaluate four different configurations, with 5, 8, 10, and

15 bins. For LAC-MR-NC and LAC-MR-EM, we set σmin=0.001.

Evaluation Criteria

We used profit as the primary metric for assessing the effectiveness of the algorithms

for net revenue optimization. For assessing the accuracy of probability estimates, we

use the mean squared error (MSE). Calibration degree, τ , was also used.

Analysis

The calibration degree, τ , achieved by each algorithm, is shown in Figure 5.9. CaSVM,

LAC-MR-NC(N15) and LAC-MR-NC(N10) achieved the lowest calibration degrees.

This is because the naive calibration method overfitted the training data (i.e., too

many bins incur small-sized bins for which the corresponding accuracy may not be

reliable, and for CaSVM, the Platt Scaling method is based on regression). LAC-MR-

EM and CaNB are the best performers, achieving τ values as high as 0.94. Next we

3The basic idea is to solicit a person xi for whom the expected return p̂(donate|xi)y(xi) is greater
than the cost of mailing the solicitation.



96 Chapter 5. Extensions to Demand-Driven Associative Classification

will analyze the effectiveness of algorithms with different calibration degrees for net

revenue optimization.

  0.3

  0.4

  0.5

  0.6

  0.7

  0.8

  0.9

  1

τ

Algorithm

LAC−MR−NC(N15)
LAC−MR−NC(N10)

CaSVM
LAC−MR−NC(N5)
LAC−MR−NC(N8)

CaDT
CaNB

LAC−MR−EM

Figure 5.9. Comparing calibration methods in terms of τ .

Algorithm Profit MSE

LAC-MR $11,097 0.0961
LAC-MR-NC(N8) $12,442 0.0958
LAC-MR-EM $14,902 0.0934
CaSVM $12,969 0.0958
CaNB $14,682 0.0952
CaDT $14,190 0.0953

Table 5.13. Comparing algorithms in terms of profit and MSE.

Table 5.13 shows the effectiveness of each algorithm. In all cases, the differ-

ences in profit are much more accentuated than the differences in MSE. As it can

be seen, LAC-MR achieved the lowest profit (which is slightly superior than soliciting

all individuals), and this is because it was not calibrated yet. For the same reason,

LAC-MR was also the worst performer in terms of MSE. Calibrated algorithms LAC-

MR-NC(N8) and CaSVM showed similar performance in terms of profit. According

to Cohen and Goldszmidt [2004], the poor performance of CaSVM is, again, due to

overfitting. CaDT and CaNB are again in close rivalry. Calibrating LAC-MR using

the entropy minimization method is very profitable, and the corresponding algorithm,

LAC-MR-EM is the best performer.



5.4. Self-Training 97

5.3.4 Summary

In this section we have introduced calibrated demand-driven associative classification

algorithms, LAC-MR-NC and LAC-MR-EM. Calibration is performed using a binning

method, which essentialy discretizes the probability space. The first algorithm, LAC-

MR-NC, employs a naive strategy in which the number and the boudaries of the bins

are explicitly informed by the user. LAC-MR-EM is a more sophisticated algorithm,

which employs an entropy-minimization method that recursively splits the bins. Split-

ting stops when the information gain provided by the split is lower than the minimum

description lenght of the bin. As shown in our experiments concerning classification

problems such as document categorization and profit optimization, LAC-MR-EM pro-

vides gains of more than 17.5%.

5.4 Self-Training

The acquisition of training examples usually requires skilled human annotators to man-

ually label the relationship between inputs and outputs. Due to various reasons, an-

notators may face inputs that are hard to label. The cost associated with this labeling

process thus may render vast amounts of training examples unfeasible. The acquisition

of unlabeled inputs (i.e., inputs for which the corresponding output is unknown), on the

other hand, is relatively inexpensive. However, it is worthwhile to label at least some

inputs, provided that this effort will be then rewarded with an improvement in clas-

sification performance. In this section demand-driven associative classification will be

extended, so that the corresponding algorithm achieves high classification performance

even in the case of limited labeling efforts.

5.4.1 Related Work

Semi-supervised and transductive classification algorithms, are those that incorpo-

rate inputs with unkown outputs, into the training data. Semi-supervised algo-

rithms [Blum and Mitchell, 1998; Chapelle et al., 2006] exploit the fact that, frequently,

it is unexpensive to collect large amounts of unlabeled inputs (i.e., inputs for which the

corresponding outputs are unknown). Transductive algorithms [Vapnik, 1998; Tresp,

2000] explicitly exploit unlabeled inputs in the test set to improve the mapping func-

tion.

Semi-supervised and transductive algorithms use few training examples to cre-

ate more and more pseudo-examples, which are used to produce mapping functions.

The basic idea adopted by many of these algorithms is to incorporate predictions



98 Chapter 5. Extensions to Demand-Driven Associative Classification

which are likely to be correct (i.e., highly reliable predictions) into the training

data [Blum and Chawla, 2001; Bennett and Demiriz, 1998b]. Thus, the training data

is progressively enhanced as new unlabeled inputs are processed.

There are several semi-supervised and transductive classification algorithms. Zhu

[2008] provides an excellent survey of the main algorithms.

5.4.2 Algorithm

In this section we present a self-training demand-driven associative classification al-

gorithm. This algorithm will be referred to as LAC-MR-ST (standing for LAC-MR

with self-training). LAC-MR-ST exploits reliable predictions and the lack of enough

evidence supporting the known outputs, to include new examples to S.

Reliable Predictions

A reliable prediction, (xi, cj) (where xi ∈ T ), is the one for which the corresponding

class membership probability, p̂(cj |xi),is above a given threshold, ∆min. For appropriate

values of ∆min, the chance of yi 6= cj (i.e., a misclassification) is low, and thus, these

predictions may be exploited for the sake of self-training. In this case, a reliable

prediction, (xi, cj), is considered as a new example and is added to S. Since rules are

extracted on a demand-driven basis, the next input to be processed will possibly take

advantage of the recently included (pseudo-)example.

Lack of Evidence

Some problems may contain a very large number of outputs. In such cases, it becomes

hard for the annotator to specify all the outputs, and the consequence is that some

outputs are never explicitly informed in S. The lack of (enough) decision rules pre-

dicting any known output present in S, may be exploited to detect the appearance of

a novel/unseen output in T . Specifically, for a given input xi ∈ T , if the number of

rules supporting any known output is smaller than φmin, than it is assumed that the

input xi is not related to any output in S. In this case, a new label, cj, is associated

with this possibly new output. The new output, cj , and the corresponding input, xi,

are considered as a new example, (xi, cj), which is included to S.

LAC-MR-ST − This algorithm exploits reliable predictions and the lack of enough

evidence to produce novel training examples, which are stored in N .

Naturally, some predictions are not reliable enough for certain values of ∆min. In

these cases, such doubtful predictions are abstained. As new examples are included



5.4. Self-Training 99

in N (i.e., the reliable predictions), they may be exploited, hopefully increasing the

reliability of the predictions that were previously abstained. To optimize the usage

of reliable predictions, inputs are stored in a priority queue, Q, so that inputs having

reliable predictions are considered first. The process works as follows. Initially, inputs

in T are randomly placed in Q. If the output cj of the input xi that is located

in the beginning of the queue is reliably predicted, then the xi is removed from Q

and a new example (cj, xi) is included into the training data N . Otherwise, if the

prediction is not reliable, the corresponding input is simply placed in the end of the

queue and it will be processed again only after processing all other inputs. The process

continues performing more reliable predictions first, until no more reliable predictions

are possible.

The lack of rules supporting any output in S may be used as evidence indicating

the appearance of an output that is not in S. The number of rules that is necessary to

consider an output as an already seen one is controlled by a threshold, φmin. Specifi-

cally, for an input xi, if the number of rules extracted from Sxi , is smaller than φmin,

then the output of xi is considered as an output not in S, and a new label cj is created

to identify such output. Further, this prediction is considered as a new example (xi, cj),

which is included to N . The basic steps of LAC-MR-ST are shown in Algorithm 16.

5.4.3 Empirical Results

In this section we present experimental results for the evaluation of LAC-MR and

LAC-MR-ST.

Setup − In all experiments we used 10-fold cross-validation, and the final results of

each experiment represent the average of the five runs. All the results to be presented

were found statistically significant based on a t-test at the 95% confidence level.

Evaluation Criteria − Classification performance for the various methods being

evaluated is expressed through MicF1 and MacF1.

Baselines − We used the k-Way unsupervised Spectral Clustering algorithm as base-

line [Han et al., 2005].

Parameters For the K-Way Spectral Clustering algorithm we set k to be the correct

number of clusters (thus, the performance reported for this algorithm may be consid-

ered as an upper-bound of its true performance). For LAC-MR and LAC-MR-ST we set



100Chapter 5. Extensions to Demand-Driven Associative Classification

Algorithm 16 Including new examples to the original training data.

Require: The training data S, T , σmin, ∆min, and φmin

Ensure: N .

1: Q ⇐ T
2: N ⇐ S
3: for each input xi ∈ Q do
4: ω ← false
5: N xi ⇐ N projected according to xi

6: Rxi ⇐ rules X −→ cj extracted from N xi, such that π(X −→ cj) ≥ σmin × |N xi|
7: if |Rxi | < φmin then
8: create a new label ck

9: N ⇐ N ∪ (xi, ck)
10: ω ← true
11: else
12: for each output cj do
13: if p̂(cj |xi) ≥ ∆min then
14: N ⇐ N ∪ (xi, cj)
15: ω ← true
16: end if
17: end for
18: end if
19: if ω =false then
20: place xi in the end of the queue, Q
21: end if
22: if it is not possible to perform reliable predictions anymore then return N
23: end for

σmin=0.05. Particularly for LAC-MR-ST, we investigated its sensitivity to parameters

∆min and φmin.

Computational Environment − The experiments were performed on a Linux-

based PC with a Intel Core 2 Duo 1.83 GHz processor and 2 GB RAM.

DBLP and BDBComp

Citations are an essential component of many current digital libraries. Citation man-

agement within digital libraries involves a number of tasks. One task in particular,

name disambiguation, has required significant attention from the research community

due to its inherent difficulty. Name ambiguity in the context of bibliographic citations

occurs when one author can be correctly referred to by multiple name variations (syn-

onyms) or when multiple authors have exactly the same name or share the same name

variation (polysems). This problem may occur for a number of reasons, including the



5.4. Self-Training 101

lack of standards and common practices, and the decentralized generation of content

(e.g., by means of automatic harvesting). Name ambiguity is widespread in many

large-scale digital libraries, such as Citeseer, Google Scholar, and DBLP.

Some of the most effective methods seem to be based on the application of super-

vised machine learning techniques. In this case, the training data consists of examples

(xi, yi), where xi is a set of features of a citation, and yi is a label which identifies

the corresponding author. More specifically, such examples are citations for which the

correct authorship is known. Although successful cases have been reported [Han et al.,

2004], some particular challenges associated with name disambiguation in the context

of bibliographic citations, prevent the full potential of supervised machine learning

techniques:

• The acquisition of training examples requires skilled human annotators to manu-

ally label authors in citations. Annotators may face hard-to-label citations with

highly ambiguous authors. The cost associated with this labeling process thus

may render vast amounts of examples unfeasible. Thus, classification algorithms

must be cost-effective, achieving high classification performance even in the case

of limited labeling efforts.

• It is not reasonable to assume that all possible authors are included in the training

data (specially due to the scarce availability of examples). Thus, classification

algorithms must be able to detect unseen/unknown authors, for whom no label

was previously specified.

We used two collections of bibliographic citations. One was extracted from

DBLP (http://dblp.uni-trier.de) and the other was extracted from BDBComp

(http://www.lbd.ufmg.br/bdbcomp). Each citation consists of the title of the work,

a list of coauthor names, and the title of the publication venue (conference or journal).

Pre-processing involved standardizing coauthor names using only the initial letter of

the first name along with the full last name, removing punctuation and stop-words

of publication and venue titles, stemming publication and venue titles using Porter’s

algorithm[Porter, 1980], and grouping authors with the same first name initial and

the same last name in order to create the ambiguous groups (i.e., groups of citations

having different authors with similar names). Table 5.14 shows more detailed informa-

tion about the collections and their ambiguous groups. Disambiguation is particularly

difficult in ambiguous groups such as the C. Chen group, in which the correct author

must be selected from 60 possible authors, and in ambiguous groups such as the J.

Silva group, in which the majority of authors appears in only one citation.

http://dblp.uni-trier.de
http://www.lbd.ufmg.br/bdbcomp


102Chapter 5. Extensions to Demand-Driven Associative Classification

DBLP BDBComp
Ambiguous Ambiguous
Group #Citations #Authors Group #Citations #Authors

A. Gupta 576 26 A. Oliveira 52 16
A. Kumar 243 14 A. Silva 64 32
C. Chen 798 60 F. Silva 26 20
D. Johnson 368 15 J. Oliveira 48 18
J. Martin 112 16 J. Silva 36 17
J. Robinson 171 12 J. Souza 35 11
J. Smith 921 29 L. Silva 33 18
K. Tanaka 280 10 M. Silva 21 16
M. Brown 153 13 R. Santos 20 16
M. Jones 260 13 R. Silva 28 20
M. Miller 405 12 − − −

Table 5.14. The DBLP and BDBComp collections

Analysis In all experiments, we varied the proportion, or fraction of training ex-

amples available. For instance, if the fraction of examples available is 0.5, then only

half of the examples in the training data was provided to the algorithm. In this case,

examples in the training data are randomly selected.

We start our analysis by evaluating the effectiveness of LAC-MR-ST in detecting

unseen authors using the BDBComp collection. For each fraction of training examples,

we varied φmin from 1 to 6. The results are shown in Figure 5.10, where each curve is

associated with a different fraction of training examples. For the BDBComp collection,

the fraction of unseen authors that are detected increases with φmin. This is expected,

since the amount of evidence that is required to recognize an author as already seen

one, increases for higher values of φmin. Further, it becomes more difficult to detect

an unseen author when the fraction of training examples increases. This is because, in

such cases, (1) more authors are seen (i.e., there are more examples), and (2) there is

an increase in the amount of available evidence supporting already seen authors.

We evaluate the effectiveness of LAC-MR-ST in incorporating new training exam-

ples using the DBLP collection. For each fraction of training examples, we varied ∆min

from 0.5 to 0.9. The results are shown in Figure 5.11. As it can be seen, the perfor-

mance of LAC-MR-ST decreases when ∆min is set too high (i.e., ∆min >0.75). Further,

the performance also decreases when ∆min is set too low (i.e., ∆min <0.65). On one

hand, when lower values of ∆min are applied, several citations in the test set, which are

associated with wrong predictions, are included in the training data, hurting perfor-

mance. On the other hand, when higher values of ∆min are applied, only few citations

in the test set are included in the training data. For the DBLP collection, LAC-MR-ST



5.4. Self-Training 103

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 1  2  3  4  5  6

F
ra

c
ti
o

n
 o

f 
U

n
s
e

e
n

 A
u

th
o

rs
 D

e
te

c
te

d

φmin

BDBComp

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Figure 5.10. Sensitivity to φmin.

achieves the best performance when ∆min is between 0.65 and 0.75 (specially when few

training examples are available).

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1Fraction of Examples  0.5

 0.6

 0.7

 0.8

 0.9

∆min

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

MicF1

 0.45
 0.5
 0.55
 0.6
 0.65
 0.7
 0.75
 0.8
 0.85
 0.9
 0.95

Figure 5.11. Sensitivity to ∆min.

We now evaluate how the self-training ability of LAC-MR-ST improves its perfor-

mance when compared with LAC-MR. Figure 5.12 shows some of the results. The

value associated with each point in each graph is obtained by applying a different com-

bination of ∆min and φmin, for different fractions of training examples. For the DBLP

collection, gains ranging from 18.4% to 53.8% are observed when few training examples

are available. The improvement decreases as more examples are available, since in this



104Chapter 5. Extensions to Demand-Driven Associative Classification

case (1) more authors are seen and (2) additional examples that are included in the

training data do not impact so much the final performance. Interestingly, LAC-MR-ST

achieves good performance even when not a single example is available for training.

This is possible because, in this case, citations authored by unseen authors are in-

cluded in the training data, and used as training examples. These gains highlight the

advantages of self-training.

Improvements obtained using the BDBComp collection are more impressive. This

collection contains several authors that appear in only one citation. LAC-MR is not

useful in such scenarios. (i.e., if this citation appears in the test set, then the training

data contains no evidence supporting the correct author). LAC-MR-ST, on the other

hand, is highly effective in such cases, being able to detect unseen authors, and to make

use of this information to enhance the training data with additional examples. As a

result, improvements provided by LAC-MR-ST range from 241.6% to 407.1%. Thus,

LAC-MR-ST is not only able to reduce labeling efforts (as shown in the experiments

with the DBLP collection), but it is also able to detect novel and important information

(i.e., unseen authors), being highly practical and effective in a variety of scenarios.

In the next experiment, we used the DBLP collection to perform a comparison

between LAC-MR-ST (∆min=0.7, φmin=4), and the k-way Spectral Clustering algo-

rithm [Han et al., 2005], when no training example is available. We adopted the eval-

uation methodology proposed in [Han et al., 2005], so that we can directly compare

the performance of both algorithms. In this case, a confusion matrix is used to assess

MicF1 numbers. A different confusion matrix is associated with each ambiguous group,

and the final performance is represented by the accuracy averaged over all groups.

Ambiguous Group LAC-MR-ST K-Way SC

A. Gupta 0.453 0.546
A. Kumar 0.555 0.505
C. Chen 0.365 0.607
D. Johnson 0.710 0.561
J. Martin 0.786 0.939
J. Robinson 0.662 0.693
J. Smith 0.444 0.500
K. Tanaka 0.554 0.626
M. Brown 0.680 0.759
M. Jones 0.504 0.628
M. Miller 0.699 0.479

Average 0.583 0.622

Table 5.15. MicF1 numbers for DBLP collection.

Table 5.15 shows the results. Best results, including statistical ties, are highlighted



5.4. Self-Training 105

in bold. As it can be seen, both algorithms provide results that are statistically tied on

almost all ambiguous groups. The K-way spectral clustering algorithm obtained supe-

rior performance on three ambiguous groups, while LAC-MR-ST was superior in one

ambiguous group. It is important to notice that the k-way spectral clustering algorithm

takes as input the correct number of clusters to be generated, that is, if there are k au-

thors in a group, then this group is clustered into exactly k clusters [Han et al., 2005].

This is clearly unrealistic in an actual or practical scenario, but provides something

closer to an upper-bound for an unsupervised algorithm that has privileged information.

LAC-MR-ST, on the other hand, does not use this information, and works by detecting

unseen authors, and incrementally adding new examples to the training data. Other

point worth mentioning is that, as shown in Figure 5.12, with small labeling efforts, the

performance of LAC-MR-ST is improved (greatly outperforming the unsupervised al-

gorithm), demonstrating that LAC-MR-ST is cost-effective (the only exception is when

only very few examples are available, because in this case it seems that LAC-MR-ST

has some difficulties in detecting novel authors, hurting disambiguation performance).

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

M
ic

F
1

Fraction of Examples

DBLP (φmin=4)

LAC−MR
LAC−MR−ST (∆min=0.6)
LAC−MR−ST (∆min=0.7)
LAC−MR−ST (∆min=0.8)
LAC−MR−ST (∆min=0.9)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

M
ic

F
1

Fraction of Examples

BDBComp (φmin=5)

LAC−MR
LAC−MR−ST (∆min=0.6)
LAC−MR−ST (∆min=0.7)
LAC−MR−ST (∆min=0.8)
LAC−MR−ST (∆min=0.9)

Figure 5.12. MicF1 values for different ∆min and φmin.

5.4.4 Summary

In this section we have introduced a self-training demand-driven associative classifica-

tion algorithm, LAC-MR-ST. It exploits the lack of evidence supporting any output in

the training data to infer that a new output needs to be created. Further, it includes

reliable predictions in the training data, so that new examples are automatically pro-

duced. As shown in our experiments, LAC-MR-ST is competitive to state-of-the-art



106Chapter 5. Extensions to Demand-Driven Associative Classification

unsupervised algorithm. Further, LAC-MR-ST achieves higher classification perfor-

mance when few examples are manualy provided.

5.5 Ordinal Regression and Ranking

Accurate ordering or ranking over instances is of paramount importance for several ap-

plications [Veloso and Meira, 2007; Veloso et al., 2007b, 2008a]. One clear application

is Information Retrieval, where documents retrieved by search engines must be ranked

according to the corresponding relevance to the query [Trotman, 2005]. Many features

may affect the relevance of such documents, and, thus, it is difficult to adapt ranking

functions manually. Recently, a body of empirical evidence has emerged suggesting that

methods that automatically learn ranking functions offer substantial improvements in

enough situations to be regarded as a relevant advance for applications that depend on

ranking. Hence, learning ranking functions has attracted significant interest from the

machine learning community. In the context of Information Retrieval, the conventional

approach to this learning task is to assume the availability of examples (i.e., a training

data, S, which typically consists of document features and the corresponding relevance

to specific queries), from which a learning function can be learned. When a new query

is given, the documents associated with this query are ranked according to the learned

function (i.e., this function gives a score to a document indicating its relevance with

regard to the query). In this section it will be presented ranking algorithms based on

demand-driven associative classification.

5.5.1 Related Work

Several methods have been proposed on how to compose a ranking function for Infor-

mation Retrieval. More than one million possibilities to compute such functions were

presented in [Zobel and Moffat, 1998]. Those possibilities take into account essentially

a small number of features, such as term frequency, inverse document frequency, and

document normalizations. Due to the growth in volume and popularity of the Web

throughout the last decade, extra features have been proposed for improving retrieval,

including those relative to the document structure (e.g., title, anchor text, and URL)

and features concerning the importance of a document based on link analysis (e.g.,

Page Rank, HITS authority and hub). Thus, learning to rank methods that consider

and combine all sorts of features for effective document retrieval and automatic ranking

have become a topic of interest.

Several ranking algorithms based on machine learning techniques [Mitchell, 1997]

have been proposed and applied for learning to rank in Information Retrieval. Ac-



5.5. Ordinal Regression and Ranking 107

cording to Cao et al. [2006], the current methods fall into three categories: (1)

point-wise, (2) pair-wise, and (3) list-wise approaches. In the point-wise approach

[Crammer and Singer, 2002; Nallapati, 2004], each training example is composed of a

set of document features and its corresponding relevance relative to a query. The

learning process tries to map features into relevance levels. In the pair-wise ap-

proach [Burges et al., 2005; Cao et al., 2006; Freund et al., 2003; Gao et al., 2005;

Herbrich et al., 2000; Joachims, 2002; Qin et al., 2007; Tsai et al., 2007], each training

example is composed of pairs of documents and the preference relation among them. In

this case, the goal is to classify each pair into correctly or incorrectly ranked categories.

Finally, in the list-wise approach [Cao et al., 2007; Xu and Li, 2007; Yue et al., 2007],

a list of documents are used as training examples. A ranking function is learned, and

then used to sort documents.

Nallapati [Nallapati, 2004] proposed a formalization of the ranking task as a bi-

nary classification problem (i.e., documents are assigned as relevant or irrelevant),

exploring the use of classifiers such as SVM and Maximum Entropy. A discrimi-

native model for ranking to optimize average precision was proposed in [Gao et al.,

2005]. The Ranking SVM method, which is based on the pair-wise approach, was pro-

posed in [Herbrich et al., 2000]. Joachims also applied SVM for learning ranking func-

tions using click-through data for training [Joachims, 2002]. Other ranking algorithms

based on SVMs include [Cao et al., 2006; Qin et al., 2007; Yue et al., 2007]. RankNet,

which is an algorithm based on neural networks, was proposed in [Burges et al., 2005].

In [Tsai et al., 2007], RankNet was extended by proposing a fidelity loss function on

the basis of the probabilistic ranking framework. RankBoost, which is a boosting

algorithm for combining preferences, was proposed in [Freund et al., 2003]. Another

boosting-based method is presented in [Xu and Li, 2007].

Other algorithms to produce ranking functions are based on Genetic Program-

ming [Koza, 1992]. Fan et al. have proposed several algorithms for discovering ranking

functions using Genetic Programming. In [Fan et al., 2004] an algorithm to auto-

matically generate term-weighting schemes for different contexts (e.g., collections and

users) was proposed. The work in [Trotman, 2005] presented another another rank-

ing algorithm based on Genetic Programming. A combined component approach for

generating ranking functions was proposed in [Almeida et al., 2007]. They use term-

weighting components extracted from well-known ranking functions for discovering

effective ranking functions.



108Chapter 5. Extensions to Demand-Driven Associative Classification

5.5.2 Algorithm

In this section we present an algorithm which learns ranking functions for Information

Retrieval, based on demand-driven associative classification. This algorithm will be

referred to as LAC-MR-OR (standing for LAC-MR for ordinal regression).

LAC-MR-OR − Extending demand-driven associative classification algorithms to

sort inputs is rather simple [Veloso et al., 2008a]. The first step is to extract from S,

decision rules associating inputs to outputs. In the context of Information Retrieval,

inputs are documents features and outputs are relevance levels. These rules are ex-

tracted on a demand-driven basis, as described in Section 4.1. The next step is to

calculate, using Equation 3.5, the likelihood of each relevance level (i.e., cj) for each

document (i.e., xi).

Finally, the ranking position of input xi can be estimated by a linear combination

of the likelihoods associated with each output (or each relevance level), as shown in

Equation 5.18. Higher values of rank(xi) indicates that input xi should be placed in

first positions of the rank. Basic steps of LAC-MR-OR are show in Algorithm 17.

rank(xi) =

p
∑

j=0

(

cj × p̂(cj|xi)
)

(5.18)

Algorithm 17 Producing ranking scores using LAC-MR-OR.

Require: The training data S, input xi ∈ T , σmin

Ensure: rank(xi)

1: Sxi ⇐ S projected according to xi

2: Rxi ⇐ rules X −→ cj extracted from Sxi , such that π(X −→ cj) ≥ σmin × |Sxi|
3: calculate membership probabilities p̂(cj|xi) for each output cj

4: return

p
∑

j=0

(

cj × p̂(cj|xi)
)

5.5.3 Empirical Results

In this section we empirically analyze the proposed algorithm, LAC-MR-OR. We first

present the collections employed in the evaluation, and then we discuss the effectiveness

of LAC-MR-OR in these collections.



5.5. Ordinal Regression and Ranking 109

The LETOR 3.0 Benchmark

LETOR [Liu et al., 2007] is a benchmark for research on learning to rank, released by

Microsoft Research Asia4. It makes available seven subsets (OHSUMED, TD2003,

TD2004, HP2003, HP2004, NP2003 and NP2004). Each subset contains a set of

queries, document features, and the corresponding relevance judgments. Features cover

a wide range of properties, such as term frequency, BM25, PageRank, HITS etc. Doc-

uments are given as inputs (i.e., xi), and their relevance levels are the corresponding

outputs (i.e., cj). The goal is to place relevant documents in the first positions of the

ranking. Pre-processing involved only the discretization [Fayyad and Irani, 1993] of

attribute-values in S.

Setup − In all experiments we used 5-fold cross-validation, and the final results of

each experiment represent the average of the five runs. All the results to be presented

were found statistically significant based on a t-test at the 95% confidence level.

Evaluation Criteria − Ranking performance is evaluated using NDCG@k, P@k,

and MAP measures. Basically, these measures express the ability to place documents

with high relevance in the first positions of the ranking. If the set of relevant documents

for a query qj ∈ Q is {x1, . . . , xmj
}, and Dj is the set of ranked documents associated

with query qj , then P@k is defined in Equation 5.19 (where r(xi) is the true relevance

of document xi ∈ Dj). Precision values are averaged over all queries.

P@k(Dj) =

k
∑

i=1

r(xi)

k
(5.19)

For a single query, Average Precision (AP) is the average of the precision values

obtained for the set of top k documents existing after each relevant document is re-

trieved, as given in Equation 5.20. MAP is obtained by averaging AP values over all

queries, as shown in Equation 5.20.

MAP(Q) =
1

|Q|

|Q|
∑

j=1

1

mj

mj
∑

k=1

P@k(Dj) (5.20)

Finally, NDCG@k is defined in Equation 5.21, where Zk is a normalization factor

calculated to make it so that the NDCG value of a perfect ranking is 1. NDCG values

are averaged over all queries.

4LETOR Web page: http://research.microsoft.com/users/LETOR/



110Chapter 5. Extensions to Demand-Driven Associative Classification

NDCG@k(Dj) = Zk

k
∑

i=1

2rank(xi) − 1

log(1 + i)
(5.21)

Computational Environment − The experiments were performed on a Linux-

based PC with a Intel Pentium III 1.0 GHz processor and 1 GB RAM.

Baselines and Parameters − Our evaluation is based on a comparison against

state-of-the-art learning to rank algorithms such as R-SVM [Yue et al., 2007],

FRank [Tsai et al., 2007], R-Boost [Freund et al., 2003], SVMMAP[Joachims, 2002],

AdaRank[Xu and Li, 2007], and ListNet[Cao et al., 2007]. The ranking performance,

as well as the corresponding parameters, for these algorithms are available at the

LETOR Web page. For LAC-MR-OR, we set σmin=0.005.

Analysis − Tables 5.16, 5.17, 5.18, 5.19, 5.20, 5.21, and 5.22 show MAP numbers

for the seven subsets. Best results, including statistical ties, are shown in bold. The

result for each trial is obtained by averaging partial results obtained from each query

in the trial. The final result is obtained by averaging the five trials. We conducted two

sets of significance tests (t-test) on each subset. The first set of significance tests was

carried on the average of the results for each query. The second set of significance tests

was carried on the average of the five trials.

In five, out of seven subsets, LAC-MR-OR was the best overall performer, demon-

strating the effectiveness of demand-driven associative classification. In most of the

subsets, LAC-MR-OR achieved superior ranking performance when compared to the

best baseline. The only exceptions occurred in HP2003 and HP2004 subsets, where

AdaRank was the best performer. Still, LAC-MR-OR obtained a ranking performance

which is much better than the performance obtained by the worst baselines. Gains

provided by LAC-MR-OR range from 6.6% (relative to FRank in NP2003) to 42%

(relative to FRank in TD2003).

Trial LAC-MR-OR R-SVM R-Boost FRank ListNet AdaRank SVMMAP

1 0.352 0.304 0.332 0.333 0.346 0.344 0.342
2 0.463 0.447 0.445 0.438 0.450 0.446 0.454
3 0.460 0.465 0.456 0.456 0.461 0.469 0.462
4 0.521 0.499 0.508 0.513 0.511 0.514 0.518
5 0.482 0.453 0.464 0.481 0.461 0.471 0.450

Avg 0.456 0.433 0.441 0.444 0.446 0.449 0.445

Table 5.16. MAP numbers for OHSUMED subset.



5.5. Ordinal Regression and Ranking 111

Trial LAC-MR-OR R-SVM R-Boost FRank ListNet AdaRank SVMMAP

1 0.169 0.164 0.110 0.113 0.192 0.153 0.172
2 0.293 0.258 0.291 0.297 0.325 0.251 0.237
3 0.365 0.408 0.251 0.155 0.381 0.290 0.342
4 0.394 0.236 0.262 0.212 0.275 0.322 0.276
5 0.219 0.249 0.222 0.238 0.202 0.125 0.196

Avg 0.288 0.263 0.227 0.203 0.275 0.228 0.244

Table 5.17. MAP numbers for TD2003 subset.

Trial LAC-MR-OR R-SVM R-Boost FRank ListNet AdaRank SVMMAP

1 0.213 0.211 0.247 0.226 0.225 0.173 0.185
2 0.276 0.209 0.281 0.203 0.215 0.248 0.192
3 0.285 0.206 0.241 0.218 0.223 0.229 0.201
4 0.267 0.218 0.238 0.285 0.223 0.194 0.211
5 0.276 0.274 0.299 0.262 0.229 0.250 0.235

Avg 0.263 0.224 0.261 0.239 0.223 0.219 0.205

Table 5.18. MAP numbers for TD2004 subset.

Trial LAC-MR-OR R-SVM R-Boost FRank ListNet AdaRank SVMMAP

1 0.695 0.625 0.685 0.591 0.593 0.621 0.623
2 0.676 0.662 0.666 0.645 0.648 0.620 0.640
3 0.670 0.695 0.711 0.673 0.751 0.660 0.714
4 0.751 0.761 0.733 0.769 0.724 0.702 0.736
5 0.748 0.735 0.743 0.642 0.732 0.789 0.721

Avg 0.708 0.695 0.707 0.664 0.689 0.678 0.687

Table 5.19. MAP numbers for NP2003 subset.

Trial LAC-MR-OR R-SVM R-Boost FRank ListNet AdaRank SVMMAP

1 0.592 0.535 0.550 0.599 0.550 0.700 0.574
2 0.648 0.608 0.559 0.629 0.659 0.594 0.669
3 0.870 0.756 0.609 0.731 0.739 0.607 0.767
4 0.611 0.694 0.531 0.485 0.728 0.600 0.599
5 0.650 0.701 0.570 0.560 0.684 0.608 0.701

Avg 0.675 0.659 0.564 0.601 0.672 0.622 0.662

Table 5.20. MAP numbers for NP2004 subset.



112Chapter 5. Extensions to Demand-Driven Associative Classification

Trial LAC-MR-OR R-SVM R-Boost FRank ListNet AdaRank SVMMAP

1 0.717 0.684 0.634 0.674 0.728 0.715 0.729
2 0.808 0.796 0.813 0.804 0.852 0.855 0.775
3 0.737 0.783 0.781 0.737 0.821 0.801 0.785
4 0.762 0.763 0.745 0.684 0.772 0.752 0.719
5 0.755 0.679 0.692 0.648 0.657 0.732 0.579

Avg 0.756 0.741 0.733 0.709 0.766 0.771 0.717

Table 5.21. MAP numbers for HP2003 subset.

Trial LAC-MR-OR R-SVM R-Boost FRank ListNet AdaRank SVMMAP

1 0.666 0.664 0.634 0.674 0.728 0.715 0.717
2 0.756 0.680 0.813 0.804 0.852 0.855 0.845
3 0.806 0.742 0.781 0.737 0.821 0.801 0.780
4 0.635 0.715 0.745 0.684 0.772 0.752 0.760
5 0.627 0.536 0.692 0.648 0.657 0.732 0.608

Avg 0.696 0.667 0.733 0.709 0.766 0.771 0.742

Table 5.22. MAP numbers for HP2004 subset.

We also evaluated LAC-MR-OR in terms of precision and NDCG. Figure 5.13

shows precision numbers obtained from the execution of LAC-MR-OR. LAC-MR-OR

improved the precision at the first positions (it was always the best performer at P@1).

Precision in the subsequent positions are similar to the precision achieved by the best

baselines. NDCG numbers are shown in Figure 5.14. Only the best and the worst

baselines are shown for comparison. Again, LAC-MR-OR showed some improvements

at the first positions, and a performance which is similar to the one achieved by the best

baselines in the subsequent positions. LAC-MR-OR outperformed the best baselines

in five (out of seven) subsets. Again, AdaRank showed to be the best performer in

HP2003 and HP2004 subsets.

5.5.4 Summary

In this section we introduced a learning to rank algorithm which is based on demand-

driven associative classification. LAC-MR-OR is a simple extension of LAC-MR which

makes a linear combination of the probabilities associated with each output. We eval-

uated LAC-MR-OR using information retrieval applications that depend on ranking.

Our experiments suggest that LAC-MR-OR is currently one of the best learning to

rank algorithms, providing gains that range from 6.6% to 42%.



5.5. Ordinal Regression and Ranking 113

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 3 4 5

@

TD2003

LAC−MR−OR
R−Boost

ListNet

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1 2 3 4 5

@

TD2004

LAC−MR−OR
SVMMAP
R−Boost

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 2 3 4 5

@

HP2003

LAC−MR−OR
FRank

AdaRank

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1 2 3 4 5

@

HP2004

LAC−MR−OR
R−Boost
AdaRank

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1 2 3 4 5

@

NP2003

LAC−MR−OR
FRank

R−Boost

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1 2 3 4 5

@

NP2004

LAC−MR−OR
R−Boost

ListNet

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 2 3 4 5

@

OHSUMED

LAC−MR−OR
R−Boost

ListNet

Figure 5.13. Precision numbers for different ranking algorithms.



114Chapter 5. Extensions to Demand-Driven Associative Classification

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 3 4 5

@

TD2003

LAC−MR−OR
AdaRank

ListNet

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1 2 3 4 5

@

TD2004

LAC−MR−OR
ListNet

R−Boost

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 3 4 5

@

HP2003

LAC−MR−OR
FRank

AdaRank

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 3 4 5

@

HP2004

LAC−MR−OR
R−Boost
AdaRank

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 3 4 5

@

NP2003

LAC−MR−OR
FRank

R−Boost

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 3 4 5

@

NP2004

LAC−MR−OR
R−Boost

ListNet

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 2 3 4 5

@

OHSUMED

LAC−MR−OR
R−Boost
AdaRank

Figure 5.14. NDCG Numbers for different ranking algorithms.



Chapter 6

Conclusions

In this chapter we summarize the research contributions of this thesis and point out

limitations and problems that remained open.

6.1 Summary of Results

The basic problem addressed in this thesis is known as classification, in which it is

given a set of inputs and outputs, that are somehow related. The goal is to produce a

mapping function that approximates this relationship, so that this function is used to

predict the outputs for unknown inputs. We examined this problem from a function

approximation perspective and proposed several classification algorithms. The first al-

gorithm was shown to be PAC-efficient, and continuous improvements have led to the

other algorithms proposed in this thesis. Such improvements resulted in demand-driven

associative classification algorithms. We have shown that these algorithms produce

functions that provide high classification performance in several real-world problems.

The key insight that has led to these algorithms is that solving sub-problems may be

much easier than directly solving the entire problem. Furthermore, we have shown that,

frequently, each sub-problem demands approximation strategies that are very different

from the strategy adopted when the entire problem is solved at once. Thus, producing

approximation functions on a demand-driven basis may provide finer-grained results

that are not achievable when the original problem is not broken into sub-problems.

We successfully extended demand-driven associative classification algorithms to solve

a number of problems that are related to the original classification problem, includ-

ing cost-sensitive and cautious classification, multi-label classification, multi-metric

classification, classification with limited labeling efforts, and ordinal regression. The

relationship between the proposed algorithms is shown in Figure 6.1.

Apart from our results, we have implemented a vast amount of software, currently

115



116 Chapter 6. Conclusions

Figure 6.1. Relationship between the proposed classification algorithms.

available at http://dcc.ufmg.br/∼adrianov/software. These implementations in-

clude:

• Demand-driven associative classification algorithms.

• Self-training associative classification algorithms.

• Multi-label associative classification algorithms.

• Algorithms that learn to rank.

6.2 Limitations

The proposed demand-driven associative classification algorithms have some limitations

when compared to other classification techniques. These include:

1. Off-line discretization: the proposed algorithms are not able to process continu-

ous attributes directly. First, these attributes must be discretized. We noticed

http://dcc.ufmg.br/~adrianov/software


6.3. Open Problems 117

that the classification performance of the proposed algorithms depends on how

effectively attributes are discretized. Supervised discretization techniques, such

as [Fayyad and Irani, 1993], have shown to be effective in many cases. How-

ever, these techniques do not exploit the correlation among attribute-values,

and this information can be lost. There are also discretization techniques that

preserve the correlation between different attributes while producing the inter-

vals [Mehta et al., 2005], but these are not supervised, and consequently, they

may not consider important information about the correlation between inputs

and outputs while producing intervals. Apart from this, discretization is a pre-

processing step which many other classification algorithms (SVMs, KNN, many

decision trees, etc.) do not need to perform.

2. Classification time: the proposed algorithms perform almost all the computation

at classification time. While this strategy enables a great decrease in the total

execution time, the classification time inevitably increases. We have shown that

caching is extremely effective in keeping classification time low. However, this

still may cause problems, for instance, in real-time applications, where adverse

situations may take place, possibly increasing classification time.

6.3 Open Problems

Several interesting problems remained open. These problems include:

1. The choice of σmin: in this thesis we have shown how to adapt cut-off values

according to each sub-problem. However, the choice of the σmin threshold that

leads to the best classification performance is still an open problem. Interestingly,

different values of σmin induce nested classes of functions (i.e., functions derived

from rules with support higher than σmin). Thus, the same strategy we used to

select the appropriate complexity of a function (i.e., Empirical/Structural risk

minimization), can also be used to properly set σmin.

2. Generalization bounds for associative classification algorithms: in this thesis

we have used some general bounds derived from the stability or from the VC-

dimension of a function. Specific bounds for associative classification algorithms

can be derived using inputs in the test set. Specifically, we can confront how

different features are associated to each other, in the training data and in the

test set. The discrepancy observed between associations in the training data and

associations in the test set may provide a powerful tool that can be used to bound

generalization.



118 Chapter 6. Conclusions

3. Semi-supervised associative classification algorithms: calibrated probabilities

seems to be valuable in applications where few training examples are provided

to the classification algorithm. During the classification of an input in the test

set, if the probability associated with an output is substantially larger than the

probabilities associated with the other outputs, then, in practice, the chance of

misclassification is very low. In such cases, the input, along with the predicted

output, can be incorporated to the training data (with low risk), increasing the

number of examples and potentially improving classification performance. This

is because, usually, features in inputs in the training data are redundantly suffi-

cient to describe the examples, and thus associations between features of inputs

in the training data and in the test set can be exploited.

4. Parallel associative classification algorithms: the use of large amounts of

training data can enable the achievement of highly accurate mapping func-

tions [Chan and Stolfo, 1993]. Thus, its is necessary the development of high-

performance scalable classification algorithms, which are able to process large

amounts of training data efficiently (which eventually may not fit in main mem-

ory [Zaki et al., 1999]). The algorithms proposed in this thesis can be greatly

improved by parallel processing. First, each input in the test set induces a sub-

problem, and each sub-problem can be processed independently from each other.

This fact enables the use of a simple “bag os tasks” strategy, in which each

sub-problem corresponds to a task. To make the process asynchronous, each

processor will use a separate cache for storing its own decision rules. Load bal-

ancing is optimized, since processors will become idle only if no more tasks are

available (i.e., there is no more inputs in the test set). Other degrees of paral-

lelism can be further explored. For instance, the process of extracting rules from

the training data can be efficiently parallelized following the strategies proposed

in [Otey et al., 2003; Veloso et al., 2004; Otey et al., 2004].



Bibliography

Agrawal, R., Imielinski, T., and Swami, A. (1993). Mining association rules between

sets of items in large databases. In Proc. of the Int. Conf. on Management of Data

(SIGMOD), pages 207–216. ACM Press.

Aha, D. (1997). Lazy learning. Artificial Intelligence Review, 11:1–5.

Aha, D., Kibler, D., and Albert, M. (1991). Instance-based learning algorithms. Ma-

chine Learning, 6(1):37–66.

Aizerman, M., Braverman, E., and Rozonoer, L. (1964). Theoretical foundations of the

potential function method in pattern recognition learning. Automation and Remote

Control, 25:821–837.

Almeida, H., Gonçalves, M., Cristo, M., and Calado, P. (2007). A combined com-

ponent approach for finding collection-adapted ranking functions based on genetic

programming. In Proc. of the Conf. on Research and Development in Information

Retrieval (SIGIR), pages 399–406. ACM Press.

Amsler, R. (1972). Application of citation-based automatic classification. Technical

report, The University of Texas at Austin, Linguistics Research Center.

Angluin, D. (1992). Computational learning theory: survey and selected bibliography.

In Proc. of the Annual Symposium on Theory of Computing (STOC), pages 351–369.

ACM Press.

Antonie, M., Zäıane, O., and Holte, R. (2006). Learning to use a learned model: A two-

stage approach to classification. In Proc. of the Int. Conf. on Data Mining (ICDM),

pages 33–42.

Arunasalam, B. and Chawla, S. (2006). CCCS: a top-down associative classifier for

imbalanced class distribution. In Proc. of the Conf. on Data Mining and Knowledge

Discovery (KDD), pages 517–522. ACM Press.

119



120 Bibliography

Baralis, E. and Chiusano, S. (2004). Essential classification rule sets. Trans. on

Database Systems, 29(4):635–674.

Baralis, E., Chiusano, S., and Garza, P. (2004). On support thresholds in associative

classification. In Proc. of the Symposium on Applied Computing (SAC), pages 553–

558. ACM Press.

Bennett, K. and Demiriz, A. (1998a). Semi-supervised support vector machines. In

Proc. of the Annual Conf. on Neural Inf. Processing Systems (NIPS), pages 368–374.

Bennett, K. and Demiriz, A. (1998b). Semi-supervised support vector machines. In

Proc. of the Annual Conf. on Neural Inf. Processing Systems (NIPS), pages 368–374.

Blum, A. and Chawla, S. (2001). Learning from labeled and unlabeled data using graph

mincuts. In Proc. of the Int. Conf. on Machine Learning (ICML), pages 19–26.

Blum, A. and Mitchell, T. (1998). Combining labeled and unlabeled sata with co-

training. In Proc. of the Annual Conf. on Computational Learning Theory (COLT),

pages 92–100. Springer.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. (1989). Learnability and

the Vapnik-Chervonenkis dimension. Commun. ACM, 36(4):865–929.

Boser, B., Guyon, I., and Vapnik, V. (1992). A training algorithm for optimal margin

classifiers. In Proc. of the Annual Conf. on Computational Learning Theory (COLT),

pages 144–152. Springer.

Bottou, P. and Vapnik, V. (1992). Local learning algorithms. Neural Computation,

4(1):888–900.

Bousquet, O. and Elisseeff, A. (2002). Stability and generalization. Journal of Machine

Learning Research, 2:499–526.

Boutell, M., Luo, J., Shen, X., and Brown, C. (2004). Learning multi-label scene

classification. Pattern Recognition, 37(9):1757–1771.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2):123–140.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., and Hullen-

der, G. (2005). Learning to rank using gradient descent. In Proc. of the Int. Conf.

on Machine Learning (ICML), pages 89–96. ACM Press.



Bibliography 121

Calado, P., Cristo, M., Moura, E., Ziviani, N., Ribeiro-Neto, B., and Gonçalves, M.

(2003). Combining link-based and content-based methods for web document classifi-

cation. In Proc. of the Conf. on Information and Knowledge Management (CIKM),

pages 394–401. ACM Press.

Cao, Y., Xu, J., Liu, T., Li, H., Huang, Y., and Hon, H. (2006). Adapting ranking

SVM to document retrieval. In Proc. of the Conf. on Research and Development in

Information Retrieval (SIGIR), pages 186–193. ACM Press.

Cao, Z., Qin, T., Liu, T., Tsai, M., and Li, H. (2007). Learning to rank: from pairwise

approach to listwise approach. In Proc. of the Int. Conf. on Machine Learning

(ICML), pages 129–136. ACM Press.

Cestnik, B. (1990). Estimating probabilities: A crucial task in machine learning. In

Proc. of the European Conf. on Artificial Intelligence (ECAI), pages 147–149.

Chaitin, G. (1969). In the length of programs for computing finite binary sequences:

Statistical considerations. Journal of the ACM, 16:145–159.

Chan, P. and Stolfo, S. (1993). Experiments on multistrategy learning by meta-

learning. In Proc. of the Conf. on Information and Knowledge Management (CIKM),

pages 314–323. ACM Press.

Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library for support vector machines.

Available at http://www.csie.ntu.edu.tw/∼cjlin/papers/libsvm.pdf.

Chapelle, O., Scholhopf, B., and Kopriva, I. (2006). Semi-Supervised Learning. MIT

Press.

Cheng, H., Yan, X., Han, J., and Hsu, C. (2007). Discriminative frequent pattern

analysis for effective classification. In Proc. of the Int. Conf. on Data Engineering

(ICDE), pages 716–725.

Cheng, H., Yan, X., Han, J., and Yu, P. (2008). Direct discriminative pattern mining

for effective classification. In Proc. of the Int. Conf. on Data Engineering (ICDE),

pages 169–178.

Clare, A. and King, R. (2001). Knowledge discovery in multi-label phenotype data. In

Proc. of the European Conf. on Principles and Practice of Knowledge Discovery in

Databases (PKDD), pages 42–53. Springer-Verlag Inc.

Cohen, I. and Goldszmidt, M. (2004). Properties and benefits of calibrated classifiers. In

Proc. of the European Conf. on Principles of Data Mining and Knowledge Discovery

(PKDD), pages 125–136. Springer-Verlag Inc.

http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf


122 Bibliography

Cohen, W. (1995). Fast effective rule induction. In Proc. of the Int. Conf. on Machine

Learning (ICML), pages 115–123. IEEE Computer Society.

Cohen, W. and Singer, Y. (1999). A simple, fast, and effective rule learner. In Proc.

of the Nat. Conf. on Artificial Intelligence (AAAI), pages 335–342.

Collobert, R., Sinz, F. H., Weston, J., and Bottou, L. (2006). Large scale transductive

svms. Journal of Machine Learning Research, 7:1687–1712.

Comité, F., Gilleron, R., and Tommasi, M. (2003). Learning multi-label alternating

decision trees from texts and data. In Proc. of the Intl. Conf. on Machine Learning

and Data Mining in Pattern Recognition (MLDM), pages 35–49. Springer-Verlag Inc.

Cortes, C. and Vapnik, V. (1995). Support vector networks. Machine Learning,

20(3):273–297.

Crammer, K. and Singer, Y. (2002). A new family of online algorithms for category

ranking. In Proc. of the Conf. on Research and Development in Information Retrieval

(SIGIR), pages 151–158. ACM Press.

Cucker, F. and Smale, S. (2001). On the mathematical foundations of learning. Bulletin

(New Series) of the American Mathematical Society, 39(1):1–49.

Cussens, J. (1993). Bayes and pseudo-bayes estimates of conditional probabilities and

their reliability. In Proc. of the European Conf. on Machine Learning (ECML), pages

136–152. Springer-Verlag Inc.

Dasarathy, B. (1990). Nearest Neighbor Pattern Classification Techniques. IEEE Com-

puter Society.

DeGroot, M. and Fienberg, S. (1982). The comparison and evalution of forecasters.

Statistician, 32:12–22.

Devroye, L. and Wagner, T. (1979). Distribution-free performance bounds for potential

function rules. Trans. on Inf. Theory, 25(5):601–604.

Domingos, P. (1995). Rule induction and instance-based learning: A unified approach.

In Proc. of the Int. Joint Conf. on Artificial Intelligence (IJCAI), pages 1226–1232.

Domingos, P. and Pazzani, M. (1997). On the optimality of the simple Bayesian

classifier under zero-one loss. Machine Learning, 29:103–137.



Bibliography 123

Dong, G., Zhang, X., Wong, L., and Li, J. (1999). CAEP: Classification by aggregating

emerging patterns. In Proc. of the Int. Conf. on Discovery Science (ICDS), pages

30–49.

Elisseeff, A. and Weston, J. (2001). A kernel method for multi-labelled classification. In

Proc. of the Annual Conf. on Neural Inf. Processing Systems (NIPS), pages 681–687.

MIT Press.

Evgeniou, T., Pontil, M., and Poggio, T. (2000). Statistical learning theory: A primer.

International Journal of Computer Vision, 38(1):9–13.

Fan, W., Gordon, M., and Pathak, P. (2004). Discovery of context-specific ranking

functions for effective information retrieval using genetic programming. Trans. on

Knowledge and Data Engineering, 16(4):523–527.

Fan, W., Zhang, K., Cheng, H., Gao, J., Yan, X., Han, J., Yu, P., and Verscheure, O.

(2008). Direct mining of discriminative and essential frequent patterns via model-

based search tree. In Proc. of the Conf. on Data Mining and Knowledge Discovery

(KDD), pages 230–238.

Fayyad, U. and Irani, K. (1990). What should be minimized in a decision tree? In

Proc. of the Nat. Conf. on Artificial Intelligence (AAAI), pages 749–754.

Fayyad, U. and Irani, K. (1993). Multi interval discretization of continuous-valued

attributes for classification learning. In Proc. of the Int. Joint Conf. on Artificial

Intelligence (IJCAI), pages 1022–1027.

Fern, X. and Brodley, C. (2003). Boosting lazy decision trees. In Proc. of the Int.

Conf. on Machine Learning, ICML, pages 178–185.

Ferri, C., Flach, P., and Hernández-Orallo, J. (2004). Delegating classifiers. In Proc.

of the Int. Conf. on Machine Learning (ICML), page 37. ACM Press.

Freund, Y., Iyer, R., Schapire, R., and Singer, Y. (2003). An efficient boosting algo-

rithm for combining preferences. J. of Machine Learning Research, 4:933–969.

Friedman, J., Hastie, T., and Tibishirani, R. (2000). Additive logistic regression: A

statistical view of boosting. The Annals of Statistics, 2(38).

Friedman, J., Kohavi, R., and Yun, Y. (1996). Lazy decision trees. In Proc. of the Nat.

Conf. on Artificial Intelligence (AAAI), pages 717–724.

Fung, G. and Mangasarian, O. (2001). Proximal support vector machine classifiers. In

Proc. of the Conf. on Data Mining and Knowledge Discovery (KDD), pages 77–86.



124 Bibliography

Fürnkranz, J. and Flach, P. (2003). An analysis of rule evaluation metrics. In Proc. of

the Int. Conf. on Machine Learning (ICML), pages 202–209.

Gama, J. and Brazdil, P. (2000). Cascade generalization. Machine Learning, 45:315–

343.

Gao, J., Qi, H., Xia, X., and Nie, J. (2005). Linear discriminant model for informa-

tion retrieval. In Proc. of the Conf. on Research and Development in Information

Retrieval (SIGIR), pages 290–297. ACM Press.

Guyon, I., Boser, B., and Vapnik, V. (1992). Automatic capacity tuning of very large

vc-dimension classifiers. In Proc. of the Annual Conf. on Neural Inf. Processing

Systems (NIPS), pages 147–155. MIT Press.

Han, H., Giles, C. L., Zha, H., Li, C., and Tsioutsiouliklis, K. (2004). Two supervised

learning approaches for name disambiguation in author citations. In Joint Conf. on

Digital Libraries (JCDL), pages 296–305. ACM Press.

Han, H., Zha, H., and Giles, C. L. (2005). Name disambiguation in author citations us-

ing a k-way spectral clustering method. In Joint Conf. on Digital Libraries (JCDL),

pages 334–343. ACM Press.

Herbrich, R., Graepel, T., and Obermayer, K. (2000). Large margin rank boundaries

for ordinal regression, chapter 7, pages 115–132. MIT Press.

Hilderman, R. and Hamilton, H. (2001). Evaluation of interestingness measures for

ranking discovered knowledge. In Proc. of the Pacific-Asia Conf. on Research and

Development in Knowledge Discovery and Data Mining (PAKDD), pages 247–259.

Springer.

Hutter, M. (2002). The fastest and shortest algorithm for all well-defined problems.

Int. Journal on Foundations of Computer Science, 13(3):431–443.

Joachims, T. (1999). Transductive inference for text classification using support vector

machines. In Proc. of the Int. Conf. on Machine Learning (ICML), pages 200–209.

IEEE Computer Society.

Joachims, T. (2002). Optimizing search engines using clickthrough data. In Proc. of

the Conf. on Data Mining and Knowledge Discovery (KDD), pages 133–142. ACM

Press.

Joachims, T., Cristianini, N., and Shawe-Taylor, J. (2001). Composite kernels for

hypertext categorisation. In Proc. of the Int. Conf. on Machine Learning (ICML),

pages 250–257. ACM Press.



Bibliography 125

Kearns, M. and Vazirani, U. (1994). An Introduction to Computational Learning The-

ory. MIT Press.

Kohavi, R., Sommerfield, D., and Dougherty, J. (1996). Data mining using MLC++: A

machine learning library in C++. In Tools with Artificial Intelligence, pages 234–245.

Kolmogorov, A. (1965). Three approaches to the quantitative definition of information.

Problems of Information Transmission, 1:4–7.

Kontkanen, P., MyllYmaki, P., Silander, T., and Tirri, H. (1998). Bayes optimal

instance-based learning. In Proc. of the European Conf. on Machine Learning

(ECML), pages 77–88. Springer-Verlag Inc.

Koza, J. (1992). Genetic Programming: On the programming of computers by natural

selection. MIT Press.

Kutin, S. and Niyogi, P. (2002). Almost-everywhere algorithmic stability and general-

ization error. In Proc. of the Conf. on Uncertainty in Artificial Intelligence (UAI),

pages 275–282.

Lavrac, N., Flach, P., and Zupan, B. (1999). Rule evaluation measures: A unifying

view. Inductive Logic Prog., 1634:174–185.

Li, J., Dong, G., Ramamohanarao, K., and Wong, L. (2004). Deeps: A new instance-

based lazy discovery and classification system. Machine Learning, 54(2):99–124.

Li, W., Han, J., and Pei, J. (2001). Efficient classification based on multiple class-

association rules. In Proc. of the Int. Conf. on Data Mining (ICDM), pages 369–376.

IEEE Computer Society.

Liu, B., Hsu, W., and Ma, Y. (1998). Integrating classification and association rule

mining. In In Proc. of the Conf. on Data Mining and Knowledge Discovery (KDD),

pages 80–86.

Liu, Y., Xu, J., Qin, T., Xiong, W., and Li, H. (2007). LETOR: Benchmark dataset

for research on learning to rank for information retrieval. In L2R SIGIR Workshop.

Mehta, M., Agrawal, R., and Rissanen, J. (1996). SLIQ: A fast scalable classifier for

data mining. In Proc. of the Int. Conf. on Extending Database Technology (EDBT),

pages 18–32.

Mehta, S., Parthasarathy, S., and Yang, H. (2005). Toward unsupervised correlation

preserving discretization. Trans. Knowl. Data Eng., 17(9):1174–1185.



126 Bibliography

Mitchell, T. (1997). Machine Learning. McGraw Hill.

Mukherjee, S., Niyogi, P., Poggio, T., and Rifkin, R. (2006). Learning theory: stability

is sufficient for generalization and necessary and sufficient for consistency of empirical

risk minimization. Adv. Comput. Math., 25(1-3):161–193.

Nallapati, R. (2004). Discriminative models for information retrieval. In Proc. of the

Conf. on Research and Development in Information Retrieval (SIGIR), pages 64–71.

ACM Press.

Niculescu-Mizil, A. and Caruana, R. (2005). Obtaining calibrated probabilities from

boosting. In Proc. of the Conf. on Uncertainty in Artificial Intelligence (UAI), pages

413–420. AUAI.

Ortega, J., Koppel, M., and Argamon, S. (2001). Arbitrating among competing clas-

sifiers using learned referees. Knowledge and Information Systems, 3:470–490.

Otey, M., Parthasarathy, S., Wang, C., Veloso, A., and Meira, W. (2004). Parallel and

distributed methods for incremental frequent itemset mining. Teans. on System,

Man and Cybernetics, Part B, 34(6):2439–2450.

Otey, M. E., Wang, C., Parthasarathy, S., Veloso, A., and Meira, W. (2003). Mining

frequent itemsets in distributed and dynamic databases. In Proc. of the Int. Conf.

on Data Mining (ICDM), pages 617–620.

Platt, J. (1999). Probabilistic outputs for support vector machines and comparison to

regularized likelihood methods. Advances in Large Margin Classifiers, pages 61–74.

Poggio, T. and Girosi, F. (1998). A sparse representation for function approximation.

Neural Computation, 10(6):1445–1454.

Poggio, T., Rifkin, R., Mukherjee, S., and Niyogi, P. (2004). General conditions for

predictivity in learning theory. Nature, 428:419–422.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3):130–137.

Qin, T., Zhang, X., Wang, D., Liu, T., Lai, W., and Li, H. (2007). Ranking with multi-

ple hyperplanes. In Proc. of the Conf. on Research and Development in Information

Retrieval (SIGIR), pages 279–286. ACM Press.

Quinlan, J. (1986). Induction of decision trees. Machine Learning, 1:81–106.

Quinlan, J. (1993). C4.5: Programs for Machine Learning. M. Kaufmann.



Bibliography 127

Rahimi, A. and Recht, B. (2008). Uniform approximating functions with random bases.

In Allerton, pages 43–49. SIAM.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14:465–471.

Rosasco, L., Vito, E. D., Caponnetto, A., Piana, M., and Verri, A. (2004). Are loss

functions all the same? Neural Computation, 16(5):1063–107.

Schaffer, C. (1994). A conservation law for generalization performance. In Proc. of the

Int. Conf. on Machine Learning (ICML), pages 259–265. IEEE Computer Society.

Schapire, R. (1999). A brief introduction to boosting. In Proc. of the Int. Joint Conf.

on Artificial Intelligence (IJCAI), pages 1401–1406. M. Kaufmann.

Schapire, R. and Singer, Y. (2000). Boostexter: A boosting-based system for text

categorization. Machine Learning, 39(2-3):135–168.

Solomonoff, R. (1964). A formal theory of inductive inference. Information and Control,

7:1–22.

Stanfil, C. and Waltz, D. (1986). Toward memory-based reasoning. Communications

of the ACM, 13:7–34.

Tan, P., Kumar, V., and Srivastava, J. (2002). Selecting the right interestingness mea-

sure for association patterns. In Proc. of the Conf. on Data Mining and Knowledge

Discovery (KDD), pages 32–41. ACM Press.

Tresp, V. (2000). A bayesian committee machine. Neural Computation, 12(11):2719–

2741.

Trotman, A. (2005). Learning to rank. Information Retrieval, 8(3):359–381.

Tsai, M., Liu, T., Qin, T., Chen, H., and Ma, W. (2007). FRank: a ranking method

with fidelity loss. In Proc. of the Conf. on Research and Development in Information

Retrieval (SIGIR), pages 383–390. ACM Press.

Tsymbal, A., Pechenizkiy, M., and Cunningham, P. (2006). Dynamic integration with

random forests. In Proc. of the European Conf. on Machine Learning (ECML), pages

801–808. Springer-Verlag Inc.

Turing, A. (1951a). Can digital computers think? A talk on BBC Third Programme,

15 May 1951.

Turing, A. (1951b). Intelligent machinery, a heretical theory. A lecture given to ’51

Society at Manchester.



128 Bibliography

Valiant, L. (1984a). A theory of the learnable. Commun. ACM, 27(11):1134–1142.

Valiant, L. (1984b). A theory of the learnable. In Proc. of the Annual Symposium on

Theory of Computing (STOC), pages 436–445. ACM Press.

Vapnik, V. (1991). Principles of risk minimization for learning theory. In Proc. of the

Annual Conf. on Neural Inf. Processing Systems (NIPS), pages 831–838. MIT Press.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer-Verlag.

Vapnik, V. (1998). Statistical Learning Theory. Wiley.

Vapnik, V. and Chervonenkis, A. (1971). On the uniform convergence of relative

frequencies of events to their probabilities. Theory of Probability and its Applications,

16(2):264–280.

Veloso, A., Almeida, H., Gonçalves, M., and Meira, W. (2008a). Learning to rank at

query-time using association rules. In Proc. of the Conf. on Research and Develop-

ment in Information Retrieval (SIGIR), pages 267–274. ACM Press.

Veloso, A., Ferreira, A., Gonçalves, M., Laender, A., Meira, W., and Belém, R. (2009a).

Cost-effective on-demand associative

name disambiguation in bibliographic citations. Trans. on Knowledge and Data

Engineering.

Veloso, A. and Meira, W. (2005). Rule generation and rule selection techniques for cost-

sensitive associative classification. In Proc. of the Brazilian Symposium on Databases

(SBBD), pages 295–309.

Veloso, A. and Meira, W. (2006). Lazy associative classification for content-based spam

detection. In Proc. of the Latin American Web Congress LaWEB, pages 154–161.

IEEE Computer Society.

Veloso, A. and Meira, W. (2007). Efficient on-demand opinion mining. In Proc. of the

Brazilian Symposium on Databases (SBBD), pages 332–346. SBC.

Veloso, A., Meira, W., Cristo, M., Gonçalves, M., and Zaki, M. (2006a). Multi-evidence,

multi-criteria, lazy associative document classification. In Proc. of the Conf. on

Information and Knlwledge Management (CIKM), pages 218–227. ACM Press.

Veloso, A., Meira, W., and de Carvalho, M. B. (2002a). Mining reliable models of

associations in dynamic databases. In Proc. of the Brazilian Symposium on Databases

(SBBD), pages 263–277.



Bibliography 129

Veloso, A., Meira, W., de Carvalho, M. B., Rocha, B., Parthasarathy, S., and Zaki, M.

(2002b). Efficiently mining approximate models of associations in evolving databases.

In Proc. of the European Conf. on Principles of Data Mining and Knowledge Dis-

covery (PKDD), pages 435–448. Springer-Verlag Inc.

Veloso, A., Meira, W., Ferreira, R., Guedes, D., and Parthasarathy, S. (2004). Asyn-

chronous and anticipatory filter-stream based parallel algorithm for frequent itemset

mining. In Proc. of the European Conf. on Principles of Data Mining and Knowledge

Discovery (PKDD), pages 422–433. Springer.

Veloso, A., Meira, W., Gonçalves, M., and Zaki, M. (2007a). Multi-label lazy associa-

tive classification. In Proc. of the European Conf. on Principles of Data Mining and

Knowledge Discovery (PKDD), pages 605–612. Springer-Verlag Inc.

Veloso, A., Meira, W., Macambira, T., Guedes, D., and Almeida, H. (2007b). Auto-

matic moderation of comments in a large on-line journalistic environment. In Proc.

of the Int. Conf. on Weblogs and Social Media (ICWSM).

Veloso, A., Meira, W., Parthasarathy, S., and de Carvalho, M. B. (2003). Efficient,

accurate and privacy-preserving data mining for frequent itemsets in distributed

databases. In Proc. of the Brazilian Symposium on Databases (SBBD), pages 281–

292.

Veloso, A., Meira, W., and Zaki, M. (2008b). Calibrated lazy associative classification.

In Proc. of the Brazilian Symposium on Databases (SBBD), pages 135–149.

Veloso, A., Meira, W., Zaki, M., Gonçalves, M., and Mossri, H. (2009b). Calibrated

lazy associative classification. Information Sciences.

Veloso, A., Meira, W., and Zaki, M. J. (2006b). Lazy associative classification. In Proc.

of the Int. Conf. on Data Mining (ICDM), pages 645–654. IEEE Computer Society.

Veloso, A., Rocha, B. G., de Carvalho, M., and Meira, W. (2002c). Real world associ-

ation rule mining. In Proc. of the British Nat. Conf. on Databases (BNCOD), pages

77–89. Springer-Verlag Inc.

Veloso, A., Zaki, M., Meira, W., and Gonçalves, M. (2009c). The metric dillema:

Competence-conscious associative classification. In Proc. of the SIAM Data Mining

Conference (SDM). SIAM.

Veloso, A., Zaki, M., Meira, W., Gonçalves, M., and Mossri, H. (2009d). The metric

dillema: Competence-conscious associative classification. Statistical Analysis and

Data Mining.



130 Bibliography

Wang, J. and Karypis, G. (2005). HARMONY:efficiently mining the best rules for

classification. In Proc. of the SIAM Data Mining Conference (SDM), pages 205–216.

SIAM.

Wang, K., Zhou, S., and He, Y. (2000). Growing decision trees on support-less associ-

ation rules. In Proc. of the Conf. on Data Mining and Knowledge Discovery (KDD),

pages 265–269. ACM Press.

Witten, I. and Frank, E. (2005). Data Mining: Practical Machine Learning Tools and

Techniques. Morgan Kaufmann Publishers.

Wolpert, D. (1992). Stacked generalization. Neural Networks, 5(2):241–259.

Wolpert, D. (1995). The relationship between PAC, the statistical physics framework,

the Bayesian framework, and the VC framework. The Mathematics of Generalization.

Wolpert, D. (1996). The lack of a priori distinctions between learning algorithms.

Neural Computation, 8(7):1341–1391.

Wu, Q. and Zhou, D. (2005). SVM soft margin classifiers: Linear programming versus

quadratic programming. Neural Computing, 17(5):1160–1187.

Wu, X., Kumar, V., Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G., Ng,

A., Liu, B., Yu, P., Zhou, Z., Steinbach, M., Hand, D., and Steinberg, D. (2008).

Top 10 algorithms in data mining. Knowl. Inf. Syst., 14(1):1–37.

Xu, J. and Li, H. (2007). Adarank: a boosting algorithm for information retrieval. In

Proc. of the Conf. on Research and Development in Information Retrieval (SIGIR),

pages 391–398. ACM Press.

Yang, Y. (1994). Expert network: Effective and efficient learning from human deci-

sions in text categorization and retrieval. In Proc. of the Conf. on Research and

Development in Information Retrieval (SIGIR), pages 13–22, Dublin, Ireland. ACM

Press.

Yang, Y., Slattery, S., and Ghani, R. (2002). A study of approaches to hypertext

categorization. Journal of Intell. Inf. Systems, 18(2–3):219–241.

Yin, X. and Han, J. (2003). CPAR: Classification based on predictive association rules.

In Proc. of the SIAM Data Mining Conference (SDM). SIAM.

Yue, Y., Finley, T., Radlinski, F., and Joachims, T. (2007). A support vector method

for optimizing average precision. In Proc. of the Conf. on Research and Development

in Information Retrieval (SIGIR), pages 271–278. ACM Press.



Bibliography 131

Zadrozny, B. and Elkan, C. (2001). Obtaining calibrated probability estimates from

decision trees and naive bayesian classifiers. In Proc. of the Int. Conf. on Machine

Learning (ICML), pages 609–616. IEEE Computer Society.

Zadrozny, B. and Elkan, C. (2002). Transforming classifier scores into accurate mul-

ticlass probability estimates. In Proc. of the Conf. on Data Mining and Knowledge

Discovery (KDD), pages 694–699. ACM Press.

Zaki, M., Ho, C., and Agrawal, R. (1999). Parallel classification for data mining on

shared-memory multiprocessors. In Proc. of the Int. Conf. on Data Engineering

(ICDE), pages 198–205.

Zhang, H. (2005). Exploring conditions for the optimality of näıve bayes. Int. Journal

of Pattern Recognition and Artificial Intelligence, 19(2):183–198.

Zhang, M. and Zhou, Z. (2007). ML-kNN: A lazy learning approach to multi-label

learning. Pattern Recognition, 40(7):2038–2048.

Zheng, Z. and Webb, G. (2000). Lazy learning of Bayesian rules. Machine Learning,

41(1):53–84.

Zhu, X. (2008). Semi-supervised learning literature survey. Technical report, University

of Winsconsin, Computer Sciences, TR 150.

Zobel, J. and Moffat, A. (1998). Exploring the similarity space. SIGIR Forum,

32(1):453–490.




	1 Introduction
	1.1 Thesis Statement
	1.2 Thesis Contributions
	1.3 Informal Description
	1.4 Thesis Outline

	2 The Classification Problem
	2.1 Definitions
	2.2 The Probably-Approximately Correct Learning Framework
	2.3 Function Approximation
	2.4 Major Challenges
	2.5 Classification Methods
	2.5.1 Decision Trees (DTs)
	2.5.2 Naive Bayes (NB)
	2.5.3 Nearest Neighbors (NNs)
	2.5.4 Support Vector Machines (SVMs)

	2.6 Theoretical and Practical Remarks
	2.6.1 The Need for Bias
	2.6.2 No Free Lunch


	3 Associative Classification
	3.1 Preliminaries
	3.1.1 Discretization
	3.1.2 Association Rules and Decision Rules

	3.2 Method and Algorithms
	3.2.1 Level-Wise Rule Extraction
	3.2.2 Prediction
	3.2.3 Function Approximation

	3.3 Empirical Results
	3.3.1 The UCI Benchmark
	3.3.2 The ACM Digital Library

	3.4 Related Work
	3.5 Summary

	4 Demand-Driven Associative Classification
	4.1 Method and Algorithms
	4.1.1 Prediction
	4.1.2 Demand-Driven Function Approximation

	4.2 Empirical Results
	4.2.1 The UCI Benchmark
	4.2.2 The ACM Digital Library

	4.3 Related Work
	4.4 Summary

	5 Extensions to Demand-Driven Associative Classification
	5.1 Multi-Label Classification
	5.1.1 Related Work
	5.1.2 Algorithms
	5.1.3 Empirical Results
	5.1.4 Summary

	5.2 Multi-Metric Classification
	5.2.1 Related Work
	5.2.2 Algorithms
	5.2.3 Empirical Results
	5.2.4 Summary

	5.3 Calibrated Classification
	5.3.1 Related Work
	5.3.2 Algorithms
	5.3.3 Empirical Results
	5.3.4 Summary

	5.4 Self-Training
	5.4.1 Related Work
	5.4.2 Algorithm
	5.4.3 Empirical Results
	5.4.4 Summary

	5.5 Ordinal Regression and Ranking
	5.5.1 Related Work
	5.5.2 Algorithm
	5.5.3 Empirical Results
	5.5.4 Summary


	6 Conclusions
	6.1 Summary of Results
	6.2 Limitations
	6.3 Open Problems

	Bibliography

