DANIEL CAMARA

FORMAL VERIFICATION OF COMMUNICATION
PROTOCOLS FOR WIRELESS NETWORKS

Belo Horizonte
22 de outubro de 2009

DANIEL CAMARA

ORIENTADOR: ANTONIO ALFREDO FERREIRA LOUREIRO

FORMAL VERIFICATION OF COMMUNICATION
PROTOCOLS FOR WIRELESS NETWORKS

Projeto de tese apresentado ao Programa de
Po6s-Graduagdo em Computer Science da Fed-
eral University of Minas Gerais como requisito
parcial para a obtencdo do grau de Doutor em
Computer Science.

DANIEL CAMARA

Belo Horizonte
22 de outubro de 2009

DANIEL CAMARA

ADVISOR: ANTONIO ALFREDO FERREIRA LOUREIRO

FORMAL VERIFICATION OF COMMUNICATION
PROTOCOLS FOR WIRELESS NETWORKS

Thesis project presented to the Graduate Pro-
gram in Computer Science of the Federal Univer-
sity of Minas Gerais in partial fulfillment of the
requirements for the degree of Doctor in Com-
puter Science.

DANIEL CAMARA

Belo Horizonte
October 22, 2009

© 2009, Daniel Camara.
Todos os direitos reservados

Ficha catalografica elaborada pela Biblioteca do ICEx — UFMG

Camara, Daniel

C172f Formal verification of communication protocols for wireless
networks / Daniel Camara— Belo Horizonte, 2009.
X, 122 f. 1il. ; 29¢cm

Tese (doutorado) — Universidade Federal de Minas —
Departamento de Ciéncia da Computacgao.

Orientador: Antonio Alfredo Ferreira Loureiro.

1. Computacao - Teses. 2. Redes de computadores —
Teses. 3. Sistemas de comunicacao sem fio — Teses.
I. Orientador. Il.Titulo.

CDU 519.6*22(043)

UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE CIENCIAS EXATAS B
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

FOLHA DE APROVACAO
Verificagdo formal de protocolos para redes sem fio

DANIEL CAMARA

Tese defendida e aprovada pela banca examinadora constituida pelos Senhores:

PROF. ANTON IFREDO FERREIRA LOUREIRO - Orientador
Departantéento de Ciéncia da Computac@o - UFMG

PROF. CLAUDIONOR JOSE NUNES COELHO JUNIOR
Departamento de Ciéncia da Computagdo - UFMG

/ %ED@ SILVA DW(@Q —

~Departamento de Ciéncia da Computacio - UFAM

o
ARECIDA DE FREITAS MINI
1€ncia da Computacio - PUC-MG

Departamento de

VALE AGUIAR CAMPOS
Departaéento e Ciéncia da Computacdo - UFMG

‘,/

Belo Horizonte, 22 de outubro de 2009.

To my wife, Wanessa, my son, Arthur, and my daughter, Helena.

Acknowledgments

The process I followed to finish the PhD, and the thesis, was not what one can call of standard.
For this reason it is amazing the number of people I should acknowledge here, starting by the
members of the evaluation committee. Not only for their valuable and insightful comments, but
also for the understanding and flexibility you demonstrate for the schedule I had to accomplish.
I would also like to thanks to all the secretariat people, mainly Renata Viana Moraes Rocha,
Sheila Lucia dos Santos and Tilia Andrade Salomon Fernandes for the guidance, patience and
help over the bureaucratic process. I would like also to thank to Claudemberg Ferreira which
whom I work in the beginning of this project, a long, long time ago. Without his work and
determination at that time, I am more than sure that nothing would be accomplished here.

I need also to acknowledge and thank FAPEMIG for the scholarship in the beginning of the
PhD, that provided me the means to start the whole process. People from Synergia, specially
professor Geraldo Robson Mateus, for the confidence he shown and the opportunities he gave
me. In special I would like to thank to Eduardo Habib Bechelane Maia, for all the work we
developed together and for the support during the time of the thesis defense.

I need also to acknowledge my family for the support and understanding during the time this
adventure took to complete. For the lost weekends and for the grumpy temper when the things
did not work as expected. Wanessa, thanks for supporting me and providing me the comfort
and time I needed to finish this project.

However, above all, I would like to apologize and thank to my advisor Antonio Alfredo
Ferreira Loureiro. Apologize for all the trouble and overwork this humble student give to him
and thank for the guidance and patience during the whole process. 1 would like to thank him
for convincing me and giving me the opportunity to start the PhD at UFMG, when I was most
deluded with my situation, at the time. However, even more, I need to acknowledge him not
only for giving me support when I decided to start the second PhD but also to help me finish
the first one. Loureiro, I am sincere and deep grateful to you for all you have done to me during

all these years.

il

Resumo

Redes de comunicagao sem fio se tornaram nos tltimos anos uma constante na vida de um ntimero
crescente de pessoas. Em um circulo virtuoso, novos e ainda mais sofisticados protocolos sao
projetados a cada dia, aumentando o niimero de ferramentas disponiveis, o que atrai ainda mais
usuarios. Contudo novas ferramentas sdo necessérias para ajudar os designers no seu trabalho de
desenvolvimento de novos e melhores softwares e protocolos para este tipo de rede. Ferramentas
tradicionais, projetadas para ambientes distribuidos tradicionais ndo necessariamente funcionam
no contexto de redes sem fio, devido as caracteristicas particulares deste meio.

Redes de comunicacao sem fio representam um dos piores cenérios possiveis para sistemas
distribuidos possivel. O meio de comunicagdo nao é confidvel, mensagens podem ser tanto
perdidas quanto corrompidas. Os nodos por sua vez também nfo sao confidveis, uma vez que
dependem de um suprimento limitado de energia que pode se esgotar a qualquer momento. O
meio de transmissao é compartilhado e a quantidade de energia gasta com mensagens de controle
deve ser reduzido ao maximo, ndo somente para economizar banda, mas também para salvar a
energia dos nodos.

Por exemplo, roteamento é um dos processos mais basicos e importantes em uma rede de
computadores. Ter um algoritmo de roteamento correto, robusto e eficiente é fundamental em
qualquer rede, e principalmente para redes sem fio. Contudo o principal problema é como
garantir estas qualidades desejaveis. Nem simulagdes nem implementacoes em testbeds podem
garantir a qualidade requerida a estes protocolos.

Simulagdes sdo normalmente baratas e criadas executando o algoritmo um nidmero repre-
sentativo de vezes de forma aleatéria. Contudo nao ha garantias que um cendrio especifico,
que causa um erro, vai estar presente na massa de testes simulada. Testbeds, por sua vez,
sao significativamente mais caros, e desta forma, tipicamente, com um ntimero menor de nodos.
Contudo, ao contrario de simulagoes, testbeds ndo sofrem influéncia das abstragoes inseridas nas
simulagoes, uma vez que sao implementacoes reais dos algoritmos. Isto tem seu lado bom, uma
vez que problemas reais podem ser detectados, mas da mesma forma que simulagoes, nao existem
garantias que os cendrios que podem levar a um problema apareceram nos testes realizados no
testbed.

Como uma alternativa a estes métodos alguns pesquisadores tem investigado com sucesso o
uso de verificacao formal como forma de garantir a qualidade dos protocolos de roteamento para
redes sem fio. Verificagao formal é uma técnica para garantir que um sistema tem, ou nao, uma
dada propriedade, baseado em uma especificagao formal do sistema em avaliacdo. Esta técnica
tem se mostrado uma ferramenta valiosa no desenvolvimento de protocolos para redes sem fio,

inclusive contradizendo as afirmagoes de alguns autores e provas informais.

1ii

Esta tese apresenta algumas das principais ferramentas, propostas e técnicas disponiveis
para a verificacao formal de algoritmos e softwares para redes sem fio ad hoc. A tese também
apresenta um novo e simples método para ajudar os desenvolvedores na tarefa de criar protocolos

para redes sem fio ad hoc.

v

Abstract

Wireless networks have became in recent years a constant in the every day life of an increasing
amount of people. In a virtuous circle, newer and more sophisticated protocols are designed
every day, increasing the available tools and attracting even more users. However newer tools
are needed to help designers on their job of creating better software and protocols for this kind of
network. Traditional tools, designed for traditional distributed environments, do not necessarily
work in the context of wireless networks.

Wireless networks represent the worst distributed system possible. The medium is not reli-
able, messages can be lost or corrupted. Nodes are also not reliable, once they typically have a
limited energy supply, they can fail at any moment. The medium is also shared and the amount
of control transmissions must to be reduced to the minimum not only to save bandwidth, but
also to save the nodes energy.

For example, routing is one of the most basic and important tasks in a collaborative com-
puter network. Having a correct, robust and efficient routing protocol is fundamental to any
network, mainly for a wireless one. However, the problem is how to guarantee these desirable
qualities. Neither simulations nor testbed implementations can ensure the quality required for
these protocols.

Simulations, normally, are cheap and made by executing the algorithm an expressive amount
of times in a random way. However, there is no guarantees one specific case, which may lead
to a problem, will be present at the simulated scenarios. Testbeds, on the other hand, are
significatively more expensive, and in this way smaller, but, in opposite to simulations, they
are not biased by abstractions, they are real implementations. This is good, once real world
problems may be detected, but again, there are no guarantees the scenarios that may lead to a
problem appear in a testbed implementation.

As an alternative to these methods some researchers have successfully investigate the use of
formal verification as a mean to guarantee the quality of routing protocols. Formal verification
is a technique that assures a system has, or has not, a given propriety, based on a formal
specification of the system under evaluation. This technique has proved to be a valuable tool,
even contradicting some authors claims and informal proofs.

This thesis presents some of the main tools, proposals and techniques available to perform
formal verification of routing algorithms for wireless ad hoc networks. The thesis also present
a new and simple method to help developers in the task of design new protocols for wireless

networks.

Contents

1 Introduction

2 Background

2.1 Formal Verification Techniques
2.1.1 Model Checking
2.1.2 Theorem Proving
2.1.3 Equivalence Checking

2.2 Satisfiability and Over vs Under-approximation

2.3 The state explosion problem and remedies

2.4 Tools e
2.4.1 HOL e
2.4.2 SPIN . . e
2.4.3 CPN . . . e

Proposals for Verification of Routing Protocols
3.1 Formal Analysis of Convergence of Routing Protocols
3.2 Formal Verification of Ad-Hoc Routing Protocols Using Spin Model Checker . . .
3.2.1 The broadcast system L L
3.22 Timers. L
3.2.3 Mobility
3.3 A Pragmatic Approach to Model Checking Real Code
3.4 A Methodology for Model-checking Ad-hoc Networks
3.5 Modeling and Simulation of Routing Protocol for Mobile Ad Hoc Networks Using
Petri Nets o o o e
3.6 An Abstract Model of Routing in Mobile Ad Hoc Networks
3.7 Provable Security of On-Demand Distance Vector Routing in Wireless Ad Hoc
Networks L
3.8 Ad Hoc Routing Protocol Validation
3.9 Counter-Example Based Predicate Discovery in Predicate Abstraction. Formal
Methods in Computer-Aided Design
3.10 A Timing Analysis of AODV
3.11 Topology Dissemination Based on Reverse-Path Forwarding (TBRPF): Correct-

ness and Simulation Evaluation

vi

10
10
10
11

3.12 Specification and Validation of an Edge Router Discovery Protocol for Mobile Ad

Hoc Networks o o
Methodology
4.1 Limitations o L e e
4.2 Ground Principles
4.2.1 Topology abstraction Lo
4.2.2 Node position L
4.2.3 Lower layers services Lo e
4.3 Modeling
4.3.1 Communicating channel o Lo
4.3.2 Flooding representation oL
4.3.3 DMobilityo
434 Thenetwork L
4.3.5 Internal and external behavior
4.3.6 Information modeling Lo
4.3.7 Procedures Abstraction Lo
4.3.8 Model
4.3.9 Analysis
4.4 Algorithm e
Case Study
5.1 Modeling e
5.1.1 Understanding the protocolo oL oL
5.1.2 OLSR State machine
5.1.3 Messages and kinds of nodes Lo oL
5.1.4 Dividing into internal and external behaviors
5.1.5 Modeling the channel o0 Lo
51.6 Creating themodel
5.2 Verifying themodelo
52.1 Casestudy results

Application to LAR and DREAM Protocols

6.1 Evaluated Routing Protocols L.
6.2 Modeling
6.3 Results. e

Virtual Access Points For Vanets

7.1 Related Work
7.2 The protocol
7.3 Protocol analysis
7.3.1 Methodology Application
7.3.2 Virtual Access Points for Stream Based Traffic Dissemination
7.3.3 Methodology Application

vil

30
31
31
31
32
32
33
33
33
34
34
34
35
35
36
36
36

39
39
39
40
40
41
41
42
42
43

45
45
46
46

7.4 Remarks s 55

8 Conclusions 56
8.1 Directions for Future Research 56
8.2 Data Types e 111
8.3 Array Variables 112
8.4 Process Types oL 112
8.5 Atomic Sequences. e 113
8.6 Message Passingo 113
8.7 The statement e 114
8.8 Control Flow e 114

8.8.1 Case Selection 114
8.8.2 Repetition L 114
Bibliography 116

viii

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

5.1

6.1

6.2

6.3

6.4

7.1
7.2

7.3

The Model checking approach oL 6
Relation between over and under aproximation. 7
Relationships between the proposals and the tools they use 9
General View of the relation graphics. oo oL 12
Relationships between the proposals and the properties they mainly focus 13
Relationships between the proposals and the protocols each proposal validate as

example of its applicationo 14
Relationships between the proposals, protocols and tools 15
Network with three nodes used to evaluate AODV 16
Hierarchy of pages of the AODV model 20
General CPN model of a MANET proposed by Yuan et al. [13] 21
Predicate Abstraction L 25
Chiyangwa Linear Topology Model 26
Kristensen and Jensen model of network architecture verified 28

High view of the hierarchy page of the CPN model of Kristensen and Jensen work . 28
Simplified OLSR intermediate node state machine diagram 40

Delivery failure in LARI when a path it is available, problem detected by the method-

Loop detected in LAR2, when a path it is available, and all nodes are in the § region
inamnearcircle e 48
Loop and delivery failure discovered in DREAM when a series of nodes are in the

angle of dissemination is big enough oo L. 48

A road coverage vision Lol 51
Typical receiving messages map for a 50 APs city scenario, we can see how VAPs
allow us to connect existing "connectivity isles”o 54

Typical receiving messages map for a 5 APs road scenario ab

X

List of Tables

5.1 OLSR Messages and their semantics for each node 41
5.2 Sizes of the OLSR built models oL 44
6.1 Sizes of the built models for the different algorithms 48
8.1 Data Types o . o e 112

Chapter 1

Introduction

This thesis describes the application of formal verification in the development of algorithms for
wireless ad hoc networks. It presents a description of the target problem, a review of some of
the most important proposals on this field and the results of our current research on this field
as well as the next steps and paths we intend to follow in the research.

Developing new protocols and applications for wireless networks is a challenging and error
prone task. The transmission medium is not trustworthy, the network topology may be highly
dynamic, nodes have limited amount of energy and may fail without any warning. In other
words, one of the worst possible distributed scenarios. On the top of that the nodes also share
the same medium, so the messages exchange must to be efficient and secure. The exchange of
useless messages is not only a waste of bandwidth, but also a misuse of the limited amount of
energy. These losses affect not only the sender, but as the medium is intrinsically a broadcast
one, any waist with transmissions may be also shared by all nodes in the neighborhood.

Given this scenario and evaluating the number of variables involved in the development of
algorithms for this kind of network (e.g. number of nodes, mobility), it is hard to confirm whether
a given algorithm is correct or not. For this reason some researchers [1, 2, 3, 19] advocate the use
of formal methods as a valuable tool in the development of new algorithms for wireless networks.
Our research also indicates that the use of formal methods is a helpful technique to validate the
behavior of algorithms for wireless networks.

Formal verification is also starting to be recognized by the computer science community as
an important method to validate algorithms. Thus, the winners of the 2007 Turing award [76],
probably the most prestigious award of the Computer Science Community, where Edmund M.
Clarke, E. Allen Emerson and Joseph Sifakis, “For their role in developing Model-Checking into a
highly effective verification technology, widely adopted in the hardware and software industries”.
This award is the recognition from the community for their efforts and, in some extension, the
recognition of the importance of the formal verification technique.

However, at this point two important questions should be answered first, “What is a formal
verification technique” and second, “Why should it be applied to routing protocols for wireless
ad hoc networks?” In short, the term formal method refers to mathematical-based techniques
used in specification, development and verification of software and hardware systems. The use of
formal methods intends to increase the rigor on the design and development of systems, leading

to more reliable products.

1. INTRODUCTION 2

Looking at this definition, and mainly keeping in mind the mathematics involved in the pro-
cess, some people tend to believe that the use of formal methods, and mainly formal verification,
is hard and worthy only for safety-critical systems. However, the fact is that formal methods
may help the development of any system and the mathematics involved is straightforward [11].
Formal methods, especially formal verification, can help the protocol designers to decrease the
development time [11], find design errors and validate the proposed solutions. Thus the use of
such methods tends to improve the final quality of the verified pieces of software. Following
this line, this proposal focuses on formal verification as a tool to increase the quality of routing
algorithms for wireless networks. Formal verification is the mathematical proof that the formal
specified system, and hopefully the developed system, has, or has not, a given property. Such
verification can be done manually or automatically.

Normally designers perform a manual verification of a system when they want to understand
better the system they are developing. Such proofs aim human readability and, some times,
lack the required precision and formalism. Usually manual proofs are done in high level and,
not rarely, in natural language. Unfortunately the ambiguity, inherent to the natural language,
may lead to subtle errors that can be neglected. Another point to observe is that the continuous
improvement in computing capacity has increased the complexity of hardware and software
systems. Given such scenario, it is virtually impossible for humans to manually check all aspects
of the system. Automatic verification, on the other hand, presents a more accurate method to
check the correctness of a system. The use of verification tools also requires a simpler, and more
common, mathematical background than the one required to perform a manual verification.
This makes this technique accessible to a wider audience and applicable to a broader range of
cases.

The current version of this work presents the following contributions:

e A survey of the work on the field, presenting a critical analysis pointing their stronger and

weaker points;
e Formal verification and problem identification of four well-known and established protocols;

e Development of a series of new techniques to enable the application of formal verification
to a broader range of algorithms for wireless ad hoc networks. Among the problems that

could not be formally verified prior than this thesis we can highlight:
— Topology independence, the presented method does not rely in a specific topology or
configuration what makes it more general

— Number of nodes independence, the technique is independent of the number of nodes

in the topology;
— Flooding, the technique enables, in an efficient way, the verification of flooding based
algorithms;

— Node mobility, the technique permits the verification of the topology dynamic behav-

ior;

— Specific methodology, the technique presented here is independent and generic. It

does not rely in specific characteristics of protocols or tools;

1. INTRODUCTION 3

e Development of a methodology that enables the utilization of the described techniques, in

a simple way, to a broad range of protocols than the previous techniques;

e Possibility of verification of generic algorithms for wireless networks. The previous works
on this field focus specifically on wireless routing algorithms. Our technique, on the other
hand, proved useful in the verification of other kinds of algorithms besides routing proto-

cols;

e Creation of a library of verified proceedings to simplify the development and verification

of newer protocols for wireless networks.

The remainder of this thesis is organized as follows: the next chapter 2, Background, discusses
the main formal verification techniques, main variants, problems and formal verification tools.
After that, chapter 3, presents a survey of works of formal verification for wireless networks.
Chapter 4, methodology, presents the proposed technique explaining the ground principles it is
based on and how to build useful models for communication algorithms. Chapter 5, case study,
presents in details the application of the protocol to the OLSR protocol. Chapter 6 presents
the results of the methodology application to LAR 1, LAR 2 and DREAM. Chapter 7 presents
the Virtual Access Points proposed protocol that was also verified with our technique. Finally,

chapter 8 presents the conclusions and some thoughts about future research on the field.

Chapter 2
Background

Formal verification is the process of verifying, based on a series of formal proofs, if a system has or
has not a given property. The US Department of Defense DOD 5200.28-STD standard [21], the
orange book, states that “a formal proof is a complete and convincing mathematical argument,
presenting the full logical justification for each proof step, for the truth of a theorem, or set of
theorems, composed as a series of inference steps. This process is machine checkable and each
step follows the results of one or more previous steps”.

It is important to point out that formal verification is not a substitute for testing or sim-
ulation. These three quality assurance techniques are complementary rather than competitive
approaches. They should be used together to improve the system reliability once each one has
a different approach and objective.

Test is a way to think how the system works trying to find situations where it may fail.
Simulation offers the possibility to run a large battery of tests under identical circumstances
where a given parameter can be varied and its effect studied [12]. Formal verification is used
to prove the correctness of the system, according to some properties. However, even the most
enthusiastic supporters of formal methods recognize that other approaches are important as
well [20]. Notice also that neither formal verification nor testing can guarantee that the system
is perfect [11].

Dijkstra’s quote about testing, “Program testing can best show the presence of errors but
never their absence”, can also be applied to formal verification in the way that it can only
prove that a system presents, or not, a characteristic we can think of. However this does not
guarantee, by no means, the system is perfect. Even further, the truth is that formal systems are
also fallible. The fallibility is the most fundamental limitation of formal verification methods,
and it arises from two facts: first, some properties can never be proved and second, we can make

mistakes in the proofs of those aspects we want to prove [11].

2.1 Formal Verification Techniques

The most used forms of formal verification techniques in commercial use today [77] are: model
checking, theorem proving and equivalence checking. Model checking is a method to verify
whether a formally modeled system satisfies a given property [9]. Theorem proving uses mathe-

matical methods, such as axioms or rules, to prove the correctness of a system [10]. Equivalence

4

2. BACKGROUND 5

checking formally checks if two models, at different abstraction levels, are equivalent [10]. This
section discusses these techniques, but it is worth emphasizing that, even though they propose
automated solutions, none of them works without some degree of human assistance. For exam-
ple, sometimes theorem proving requires an advice from the designer of which properties should
be verified. Model checkers, on the other hand, can quickly get stuck while checking millions
of useless states and human guidance can be handy. Now we will discuss in more detail the
three main variants of formal verification techniques: model checking, equivalence checking, and

theorem proving.

2.1.1 Model Checking

Model checking verifies if a given model is in accordance with the specification. The model is
normally programmed in a special purpose language and it is based on the system specification.
Given the complexity of the current systems, the models often represent a simplified version
of the target systems. Some tools express the properties to be verified using temporal logic
formulae. Temporal logic allows the programmer to express system properties and verify them
against the model.

Figure 2.1 depicts the model checking approach. The tool receives as input the system
model and the desired/undesired properties to be checked. The output is the answer whether
the system holds or not the requested property. In the last case, it usually provides a counter
example showing why the property is not satisfied.

In model checking, all the valid inputs and possibilities are verified to guarantee the correct-
ness of the system. To do this model checking tools require a combinatorial amount of states
to represent the system. In other words, the number of states required to represent a system
increases exponentially with its size, leading to a problem known as state explosion. The state
explosion is considered the most important problem in Model Checking [35]. In the last years,
many techniques were developed to decrease the effect of the state explosion problem, but it still
persists.

The success of the model checking verification depends much on the user’s expertise. Because
of the state explosion problem, the designer, when building a model, needs to find the right
tradeoff between representing the main points of the system and limiting the model size. The
model designer must be very careful to do not remove fundamental system characteristics and,
at the same time, reduce the system complexity to enable its verification. Building the model
and defining the properties to check are critical tasks and must be carefully done. Another
problem of model checking is that there is no metric to evaluate the coverage of the verification

and, thus, the confidence that the main design properties have been verified.

2.1.2 Theorem Proving

Theorem proving involves the verification of the truth of mathematical theorems postulated
about the design. Theorem proving is similar to any other traditional proof: it starts with axioms
and using rules of inference the designer tries to prove the truth of a conclusion. The specification
of the system is done in first order or higher order logic. From this precise formulation of the

system the designer can infer relations to prove its correctness.

2. BACKGROUND 6

Model ;
: Model Checking
System Requirements > Tool

Specification
System Requirements

Figure 2.1: The Model checking approach

Theorem proving is probably the most used and that provides the strongest proofs. However,
theorem proving tool often requires some guidance from the user and the proof itself can be al-
most obtained by an interactive process. This technique requires highly trained and experienced

designers able to guide the tool through the right path.

2.1.3 [Equivalence Checking

Equivalence checking is the process of verifying whether two implementations of the same system,
in different abstract levels, are identical. Equivalence checking is very popular in the industry
and it is commonly used in the development of digital integrated circuits to formally prove
whether two representations of a circuit present exactly the same behavior. In this case, a
gate-level implementation is typically compared with its representation at a higher level, the
Register Transfer Level (RTL). However, in general, equivalence checking can work well for two
structurally similar designs as well.

Notice that equivalence checking does not verify if the design is error free. In addition, when
a difference between two design implementations is found, the error diagnosis capability of an
equivalence checking tool is, often, limited and, thus, it is difficult to determine the exact cause
of the difference.

2.2 Satisfiability and Over vs Under-approximation

A basic component for formal verification tools is a satisfiability (SAT) solver module [84]. This
module is the one responsible for deciding if the conditions on a given formula are satisfiable or
not. L.e. if the proposed formula evaluates to a true value. The main idea of formal verification
techniques is to search in a, possibly, infinite state space if a requested property p is or not
present. The SAT module is responsible for determining if p is or not present on such state space.
One of the problems with SAT analysis is the size of the considered state space. Abstractions
are normally considered an attractive way to overcome this problem [85].

Approximations for solving SAT can either over or under approximate the behaviors of
a system. They can be used to guarantee the absence of errors (via over-approximation)

and to identify existing errors (via under-approximation). The over-approximation and under-

2. BACKGROUND 7

Fake positives, cases not
present on the real system

Over-approximation

Under-approximation

Redlsystem

Figure 2.2: Relation between over and under aproximation.

approximation differ in the way the real problem is modeled and abstracted.

Under-approximation, of a system S, decreases the scope of S and can be produced, for
example, by stopping the construction of the behavior of S at a depth k, thus causing a k-
truncation, Tk(S), of S. In general, for finite state systems, any truncation will be a proper
under-approximation of S, in the sense that any computation over Tk(S) is also present in S,
but the opposite is not true [86]. Under-approximation presents fewer solutions for the SAT
analysis, all satisfying solutions also satisfies p.

Over-approximation of a system, on the other hand, presents all the possible computations
of the target system, but possible more. The covering graph Ck(S) generated by the over-
approximation of S behavior can map every valid computation of S and every hypergraph
reachable from the start graph can be mapped to Ck(G). Therefore, if a given p holds over S,
it also holds for C'k(S) [86]. However, not all computations and hypergraphs reachable from
Ck(G) may be represented in S, i.e. if p holds for Ck(G) it may, or may not, hold for S. Over-
approximation presents a bigger set of solutions for the SAT analysis, a satisfying solutions may,
or may not, be valid for S.

The main difference between over-approximation and under-approximation is the size of the
solutions set. Over-approximation presents more solutions than the real one, so if the property
is unsatisfiable, then so it is p, on the other hand, under-approximation presents fewer solutions,
so a satisfying solution also satisfies p. Figure 2.2 presents a graphical representation of these
solutions set.

As stated by Breuer and Pickin [87], "In general, exploring more paths than real execution
will is preferred, because it leads to flagging false alarms (over-approximation; crying wolf too
often) instead of missing alarms (under-approximation; the watchman sleeps on the job) ”. Our
solution focus over-approximation exactly because we also believe it is preferable to have the

work to analyze false results than missing a case where a failure could be hidden.

2. BACKGROUND 8

2.3 The state explosion problem and remedies

Model checking tools normally work generating a Binary Decision Diagram (BDD), that is a
compact structure to represent all the states for the target system. However, creating the BDD
is not enough to formally verify a system. It is needed to compute the system reachable states.
Reachability analysis has been proved to be one of the most effective techniques to formally verify
a broad range of systems. It consists of the analysis of which states the system can reach in the
next steps, giving the current state. Although it is a powerful technique, it has its application
severely restricted due to the state “explosion problem” [19]. This term refers to the situation in
which the state space storage grows exponentially with the size of the model. The state space
explosion problem occurs because of the large number of possible interleaving between processes
in a reactive concurrent system. In this case the verification may fail, not because the model is
wrong, but simply because there is not enough memory to verify the target system [12].

A number of proposals have been made to minimize this problem, and, thus, enable its appli-
cation to the verification of real systems. In the following, we list some of the main techniques,

according to the description provided by Clarke et al. [25]:

o Symbolic representation: This technique refers to the use of compact data structures to
represent the state space [26], i.e., encoding the transition relations of a Kripke structure
as a Binary Decision Diagram (BDD). In this case it is possible to save storage space by
exploiting the often inherent regularity of a hardware or software system. Other example of
symbolic representation is the constraint system representation of continuous parameters
such as clock ranges, i.e., UPPAAL [39]. In this case it would not even be possible to store

explicitly all-time points, regardless of the amount of memory available [12].

e Partial order reduction: It is based on the principle [27] that if two, or more, processes do
not exchange information during their lifetime, it does not matter if they run in parallel
or in any sequential order. This makes the verification easier since these processes can
be verified in isolation from each other. Partial order reduction analyzes the processes
execution and exploits the commutativity of concurrently executed transitions, which result
in the same state when executed in different orders. Notice that the verification property
must also be taken into account since it might introduce additional data dependencies
between processes. Partial order reduction has been successfully applied to a series of
tools, such as SPIN [28].

o Compositional reasoning: In short, it is the decomposition of the system into components
which are verified apart from the other components [29]. Given the composition of these
parts, global properties can then be inferred. Even if mutual dependencies between compo-
nents exist, the components can be verified separately assuming that the other components

work as expected.

o Abstraction: Abstraction is a way to decrease the complexity of system models [30]. Nor-
mally, when modeling a system, one may use abstractions in many ways. For example,
instead of verifying the behavior of the system for all possible floating inputs, different

classes of values can be modeled and used. When modeling network protocols, normally,

2. BACKGROUND

Wibling et al.

Obradovic et al

Chiyangwa et al

Renesse et al.

Godskesen
£ UsE

Godskesen and Gryn

Santos et al.

Zakiuddin et al.

SPIN

HOL

UPPAAL

Q Mcher and Fehnker

Saksena et al

|

Fehnker and Gao

Maag and Zaidi

CSP/FDR CPN Proverif PRISM
GBT e SDL
Yuan et al.
Xiong et al,

Kristensen and Jensen

Musuvathi et al

Maag and Grepet

Figure 2.3: Relationships between the proposals and the tools they use

other stack layers and protocols are abstracted from the problem to decrease the complex-

ity of the model. Automatic abstraction methods are also available and can help in the

formal verification of a broad range of systems.

o Symmetry: Many systems are symmetric in their design and implementation. Some times
this symmetry can be seen as a form of redundancy [31]. Symmetry reduction [32] is a
technique that combines states, which are similar, into equivalence classes. From these a
new reduced model is built choosing one representative of each equivalence class. Hopefully
the new model will be smaller than the original one preserving the state transition graph.
Using this technique it is possible to reach a substantial, often exponential, savings in

terms of states.

2.4 Tools

The automatic verification of protocols is intrinsically linked to software tools. This section
briefly presents some tools used in the literature to formally verify communication algorithms
for wireless networks. All these are general tools and can be applied to a number of different

applications to verify a broad range of systems. Figure 2.3 presents a list of the tools used in

the proposals described in Chapter 3 and the protocols verified with them.

2. BACKGROUND 10

2.4.1 HOL

Higher Order Logic (HOL) [36] is a powerful and widely used interactive theorem proving tool.
It is used to construct formal specifications and proofs in higher order logic. HOL is used
in a broad range of areas and problems, being successfully in both industry and academia.
HOL is a complete programming environment in which theorems can be proved and proof tools
implemented. An important characteristic of this tool is its high degree of programmability based
on the ML meta-language. To help the developers, HOL has some built-in decision procedures
and theorem proofs. An oracle mechanism also gives access to external programs such as SAT
and BDD engines. Obradovic et al. [2, 14] used HOL to verify the AODV protocol.

2.4.2 SPIN

SPIN is an efficient verification system for modeling distributed software systems. It provides
a powerful and concise notation for expressing general correctness requirements [17]. SPIN
accepts design specifications written in the verification language PROMELA (Process Meta
Language) [18] and the specification or correctness properties are expressed in linear temporal
logic (LTL). The description of a concurrent system in PROMELA consists of one or more user
defined process templates and at least one process instantiation. The templates define the be-
havior of different types of processes. Any running process can instantiate further asynchronous
processes, using the process templates [17]. SPIN translates each process template into a finite
automaton.

Given a model system specified in PROMELA, Spin can either perform random simulations
of the system’s execution or it can generate a C program that performs an efficient online
verification of the system’s correctness properties [82]. This saves memory, improves performance
and allows the insertion of C code directly into the model. SPIN was used in a number of
proposals [1, 4, 14, 22] to verify different routing protocols for wireless ad hoc networks, such as
AODV, WARP, LAR, DREAM, LUNAR.

2.4.3 CPN

Coloured Petri Nets: Petri Nets [37] is a tool that allows the creation of mathematical repre-
sentations of discrete distributed systems in an intuitive and graphical way. The systems are
modeled as graphs consisting of place nodes, transition nodes and directed arcs connected by
transitions. In Petri Nets, modules interact using a set of well-defined interfaces. The graphical
representation makes it easier to see the basic structure of a complex model.

An important characteristic of Petri nets it is that they can handle more than one data
stream at each time. This provides great expressiveness especially when modeling distributed and
parallel systems. There are two main variants of Petri nets: the standard one and Coloured Petri
Net (CPN) [38]. Unlike standard Petri nets, where tokens are indistinguishable, in a Coloured
Petri Net, every token has a value. This makes easier for the designer to express different events
and actions. Coloured Petri Nets have also a formal, mathematical representation with a well-
defined syntax and semantics. Petri nets have been used to prove the correctness of AODV [23],
DSDV [13] and ERDP [24].

2. BACKGROUND 11

2.4.4 UPPAAL

UPPAAL [39] is a tool suited for modeling, simulating and verifying a broad range of systems,
but mainly real-time systems. To do so it uses a collection of non-deterministic processes with
finite control structure and real-valued clocks, communicating through channels and/or shared
variables.

UPPAAL has three main parts, a description language, a simulator and a model checker.
The description language is non-deterministic and serves to describe the system behavior using
a network of timed automata. The simulator is used for interactive and automate analysis
of the model, and for the verification of the correctness of the programmed model examining
specific executions of the model. The model checker can also be used in an interactive way to
find errors in the modeled system. However its full power is shown when automatically covers
the exhaustive dynamic behavior of the modeled system. UPPAL automatically generates a

diagnostic trace that explains why a property is, or is not, satisfied by a system description.

Chapter 3

Proposals for Verification of Routing

Protocols

This chapter presents a survey of related work on the field of formal verification for wireless
networks. We also present the relation of the works through a series of graphs. Figure 3.1
presents a the relation among these graphs. Figure 3.2 presents the relationships between the
proposals and the properties they verify. Figure 3.3 shows the relation between works and
verified protocols and Figure 3.4 shows a more complete view with the relations of proposals,

protocols and tools.

3.1 Formal Analysis of Convergence of Routing Protocols

Obradovic et al. [2, 14] use the theorem prover HOL and the model checker SPIN together
to prove key properties of distance vector routing protocols. To exemplify their method they
use it to verify the Ad-Hoc On-Demand Distance Vector (AODV) protocol [63]. Perkins and
Royer [63] affirm that AODV is loop free, they even give a sketch of a proof for such claim.

General view)
Formal werificatiion techniques
)
1
]
Initiatives
; 1 ~
N
! L) ~4
Tools ! erifyed protocols erifyed properties

Figure 3.1: General View of the relation graphics

12

3. PROPOSALS FOR VERIFICATION OF ROUTING PROTOCOLS 13

Verified properties
[Formal Ver ification
<<implement »> Ogier
Weighbor discovery
Saksena et al l Ve
Theorem Proving Fa_lluu in Find a
Equivalence Checking Mode| Checking Dis ponible Route Detect Broken
Link.
‘<< implement > Wibling et al. Yuan et al.
<<implement x> Obradovic et al
‘ Loop Detection
Mchver and Fehnker Ferformance
-
= 1 Santos et al.
Securky T
i et al
—>
Fehnker and Gao| Reliability
(Godskesen and Gryn
—> v

Predicate
discovery

]

Timing aspects Xiong et al,
Treatment

Acs etal

Das and Dill

Design failure Zakuddin et al.
Chivangua et al

Maag and Zaidi

Maag and Grepet

Renesse et al.

Kristensen and Jensen

Figure 3.2: Relationships between the proposals and the properties they mainly focus

However Obradovic et al. manage to detect some flaws at the routing loop prevention mecha-
nism of AODV. As a consequence, modifications were made in the new versions of AODV loop
prevention mechanism. This fact shows the importance of the use of more formal methods in
the development of new routing algorithins.

The reason why Obradovic et al. decided to use both HOL and SPIN it is because the
two tools clearly have different payoffs and objectives. SPIN is more suited to model and
simulate communication protocols and it has some fixed verification strategies to do it. On
the other hand, HOL offers a more powerful mathematical infrastructure, allowing the user
to develop more general proofs [2]. As drawbacks, normally SPIN verifications are limited by
memory restrictions and expressiveness. HOL verifications, on the other hand, are bound by
the complexity and time required to reach a result. The technique proposed by Obradovic et al.
consists in coding the protocol first in SPIN and use HOL to address limits in the expressiveness
of the SPIN model. They use HOL to prove abstractions addressed in SPIN. For example, if a
property P stands for two routers, it will stand for arbitrary routers. In this way HOL reduces

the memory required by SPIN while ensure the model implemented in SPIN is correct.

3. PROPOSALS FOR VERIFICATION OF ROUTING PROTOCOLS 14

Werified protocols
Obradovic et al AODV Chivangwa et al ALY Godskesen
[
SAODY %{ extends ==
Xiong et al. ERDP Musuvathi et al
Godskesen and Gryn
LAR
WARP Renesse et al <fame
Kristensen and jensen Acs et al
e
DREAM
TBRPF Ogier Santos et al.
OLSR p——
DSDV Yuan et al. Maag and Zaidi
DSR Maag and Grepet CBRP Zakuddin et al.
Fehnker and Gao Flooding Mchver and Fehnker LUNAR Wibling et al.
Saksena et al DYMO

Figure 3.3: Relationships between the proposals and the protocols each proposal validate as
example of its application

The verification of AODV was done for the network topology presented in Figure 3.5. The
verification of the AODV model considers all three nodes. D is the only destination, and both
A and B attempt to send data to D. The link between B and D is fragile and may be broken
at any time. A challenge is to discover that the B—D link has broken and the route to D is no
longer available. Note that, if A and B form a routing loop, they will never discover that D is
unreachable.

During the verification, SPIN found a number of scenarios where the routing loop could
occur. After the analysis of such scenarios, it was realized that three of them were routing loop
situations.

An important achievement of that work is to identify the omissions and errors at the AODV
specification that can lead to loop situations. Guided by the scenario results, Obradovic et al.
defined three assumptions that are proposals to change the AODYV specification to avoid loop

situations:

e A1 — Whenever a node discovers that its route to a destination has expired or broken, it

increments the sequence number for the route;
e A2 — Nodes never delete routes;

e A3 — Nodes always immediately detect when a neighbor restarts its AODV process. The

restart is treated as if all links to the neighbor have broken.

15

3. PROPOSALS FOR VERIFICATION OF ROUTING PROTOCOLS

PaAua 3 115 UAIIRIRY D

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 17 <=t ~ -~~~ -~~~/ omoomomomomomommmm e

LOIPRISY U Ny

< 0} paijdee = >

|
i
|
|
i
i
I
] << 35N PEET
1® 12 BUasyES
! < o pajjdde = - o
! e LTWn o aLanm =5
! peis aanrey ubrsag < 3N
! << asn x>
| uasuF pue uIsUA AN < 3Ehm=
i << AN EE ulin pue < 01 pajdde »=
; << mn:.&vavvnw
| 3 U3 A 510301044) o1fpandde = R paJuas £103010
! t = s =
' 1prez pue beey]
! |
! | uasayspon
| | < Y papionf USI0
1 dd3 F— T FIUBMIOLIAY
i -
, 1adaan pue mﬁEmEm:_N < 3 plada << 01 pandde x> = FaL
; ¥ paldpe = e UL An PALLIOAN -
: | e 13 uBny,
) =< 0] pajdde > Y [K] =
usa — ' WL
| E spyadse Buus) Haaoad
| N i <k e paju > -
, ' —
i
| o aspy SURERN iAo e 32 Buopx NV L
: Buipool 4 '
| e i rarree——— ! Arnoag 1ap
ABfuyay pue aqon| !
|
'
| < Y p pLICan,
‘ sipo) L << of panddE >
Adsa
| ATOVS . 1% 13 enbueing
A el | Adan0o5ip J0qy b ay| NdD
| 1e 12 5oy
' T i S5t {on ot << 03 pa|fide ==
” WSHd FRB — HYNmM
“Te 12 Buyqr,
; o1 paldde = < LI P LI oy Aquuodaq T nam e
! ® pury w 2anpey|
i L —1 "I® 13 wppryez <= 03 paydde =
|
| 1as JHED U PRLIOV |y e paplioan vl
| < Y p Lo,
211ddy
I <FP pandd > Asanodsip b bl ol] OMEAIEERE —
' T 111g pue seq awnpay
|
; P AQOY ek s pacuichs =] WyTHa
1 oW o1 paldds = —
i < 41Am paLIo L 10H
< [patom b 3
y 1® 13 peAnShi uopAq dooy Te 13 3ssauxR < o1 paydde b5
|
| dduaL
. = JUYM
) Ha4/ds> W T < 35N
l <= N> | 2 I P AL =
\\\\\\\\\\\\\\\\\\\\\\\\ << 0 palgde =g by Hun ORI W W RIS W e SR W R EOR W W #
<€ SPIIU D> =< L3 PALLIOAN = uDjoug 1213g 1R 13 NADPRIGO << 5P >
<A w P SULT I DS A_NAA WA W
RS SUEIEI-IES-Y
ECSUEINEIINTE-5-Y

BuppaLyy dueAInby

Buppay) |3po

il

uoIEI I [BuLIog]

Buiaoy waloay |

Figure 3.4: Relationships between the proposals, protocols and tools

These modifications lead to Theorem 1 “Consider an arbitrary network of nodes running

3. PROPOSALS FOR VERIFICATION OF ROUTING PROTOCOLS 16

(A) B)

Figure 3.5: Network with three nodes used to evaluate AODV

AODWw2. If all nodes conform to the assumptions A1-AS3, there will be no routing loops formed”.
The complete proof that the new protocol is loop free is presented using HOL, based on a
corollary of the preservation of a key path invariant of the protocol, used also to prove route
validity [2].

The main problem with this verification approach is the strong dependency on the user [13].
HOL is a semi-automatic theorem prover and the user needs to guide it. Another problem is
the complexity in defining the theorems and lemmas to prove. This definition must be done

carefully by an expert user.

3.2 Formal Verification of Ad-Hoc Routing Protocols Using
Spin Model Checker

Renesse and Aghvami [22] present a technique to use SPIN to formally verify routing algorithms
for ad hoc networks. In their work Renesse and Aghvami argue that the supertrace mode, or
bitstate hashing [83], a partial checking method, of SPIN is more suitable for large models, as
it is the case of routing algorithms for ad hoc networks. With the supertrace mode of SPIN,
validations can be performed with less memory, and still retain reasonable coverage.

The bitstate hashing method is a partial check technique, and some states may be missing.
To predict the coverage, SPIN uses a hash-factor [64]. The coverage function is defined as
Hf = % Where N’ is the number of states reached and M the maximum number of storable
states. When Hf > 100 the coverage is > 99.9%, if Hf is between 10 and 100 the coverage is
greater than 98%.

The SPIN tool is normally used to verify communication protocols with a fixed topology. Re-
nesse and Aghvami propose ways to represent broadcast, timers and mobility to verify protocols
for mobile networks with SPIN.

3.2.1 The broadcast system

In SPIN, when two nodes want to communicate they use a predetermined channel. To emulate

a broadcast, a node must have as many channels as nodes in the network. Each channel is

associated with a different node and each node can receive messages only through this channel.
An example of a PROMELA code to perform a broadcast:

if
(routing-tabl[k] .next-id == 2) ->
broadcast2!lu,source-id,destination-id
(routing-tabl[k] .next-id == 3) ->

3. PROPOSALS FOR VERIFICATION OF ROUTING PROTOCOLS 17

broadcast3!lu,source-id,destination-id
(routing-tabl[k] .next-id == 4) ->
broadcast4!lu,source-id,destination-id;
fi;

3.2.2 Timers

PROMELA does not provide real timers, or at least not in the sense routing protocols need.
Renesse and Aghvami argue that timers are just triggers from the point of view of the verification

process and could be implemented in this way:

if
(timer=1) ->
goto cancel-entry
(timer=0) ->
Skip
fi;

This means that the entry timer reaches its value or not. In this case SPIN will take care
of verifying both possibilities. In a routing table, for example, each entry should have its own

timer.

3.2.3 Mobility

A node in an ad hoc network cannot differentiate its mobility from the mobility of other nodes.
The node mobility is just perceived as broken links. Renesse and Aghvami propose, without
using timers, to simulate mobility reconfiguring the routing table of the nodes. The moving
node loses all the entries and the others remove the moving node from their own routing tables.

Another way is to let SPIN compute all different configurations using the case selection

feature of PROMELA. In the initialization case, the links setup can be specified in this way:

if
(neigh-id=2) ->
broadcast2!1,my-id,destination-id
(neigh-id=3) ->
broadcast3!1,my-id,destination-id
(neigh-id=4) ->
broadcast4!1,my-id,destination-id
fi;

Doing the initialization as stated, all initial configurations will be verified once SPIN checks
every possibility at the case selection. This second approach is easier to implement and to check
using the tool.

To validate their model, Renesse and Aghvami verify the Wireless Adaptive Routing Pro-
tocol (WARP) [65]. WARP is a hybrid table-driven on-demand protocol. WARP attempts to

3. PROPOSALS FOR VERIFICATION OF ROUTING PROTOCOLS 18

maintain up-to-date routes between all nodes in the network with routing tables and link-update
propagations. If there is no route in the routing table to the destination WARP uses a routing
discovery process.

To verify WARP, the authors use a network with five nodes. They argue that it is enough
to provide indication of the behavior for larger networks. Each node has a routing table with
the following entries: destination, next hop, backup next hop, and adjacent nodes timer. They
also model hello and link update messages sent among the nodes. The most critical part of the
method is the complexity of the algorithm reduction. The simplified model of WARP has one
fifth the size of the complete model.

The main simplifications of the model are related to the number of nodes, number of links,
number of sent messages and order of arrival of the nodes. The five nodes in the network
are: one source, one destination and three intermediate nodes. Each node can initialize only
one link with another node. In the model, node one sends only one message to node five and
cannot be directed connected to it. All nodes arrive at the network one after the other. The
simplifications, even reasonable, are very restrictive and a series of possibilities are not verified.
This may compromise even the validity of the results. Another point to observe is that the
authors simply state that five nodes are enough, but there is no analysis or strong justification

to use this number.

3.3 A Pragmatic Approach to Model Checking Real Code

The process of building models for a model checker tool is a hard and error prone task. When
an abstraction of the code, rather than the code itself, is verified it is easy to miss possible
errors. Observing this Musuvathi et al. [40] suggest a new way to perform formal verification.
They propose a new model checker, CMC (C Model Checker), which checks C and C-++ code
implementations directly, eliminating the need for a separate abstract description of the system
behavior. Performing the verification on the real code the designer neither misses the errors that
would be omitted from a model nor wastes time evaluating bugs that appear in the model but
not in the real implementation.

To validate CMC, the authors applied it in the verification of an implementation of Ad-hoc
On-demand Distance Vector (AODV) [63]. They found 34 errors in the code including one error
in the AODYV specification itself.

Before starting the verification using CMC, it is necessary to specify the correctness proper-
ties, i.e., the invariants that should hold for all cases. Some properties are domain independent,
as the case that the program should not access illegal memory area. Other properties are domain
dependent and must be placed at the code through assertives. The second step to apply CMC
is the definition of the environment. The user must build a test environment that adequately
represents the behavior of the actual environment in which the protocol is executed. The third
and last step is the definition of the initialization functions and event handlers for every process
in the system.

CMC is a very interesting and promising tool, however, when CMC compromises with the

analysis of a real C/C++ implementation, it verifies that version of the protocol that was

3. PROPOSALS FOR VERIFICATION OF ROUTING PROTOCOLS 19

implemented, it became harder to verify if the protocol specification has design errors. What
the tool is doing in the end is just evaluating errors on that specific implementation of the
protocol. Even though the authors argue in contrary [40].

For example, Obradovic et al. [2] found a number of flaws at AODV specification exactly
because they were not bounded by a real implementation. Specifically for routing protocols,
one should additionally consider that the method ignores the interaction among nodes ,in other
words, how to verify the dynamic behavior of the protocols. Possibly, one could create a program
that models this interaction and afterwards verify this program. This could be possibly per-
formed through the identification of initialization function and environment specification phases.
However, it would be harder than simply modeling the desired protocol behavior and verifying
it. More over Wibling et al. [69] argue that CMC approach is not aimed at proving correctness,
but rather it is a tool to find bugs in the code since an exhaustive state space search can generally

not be performed.

3.4 A Methodology for Model-checking Ad-hoc Networks

Zakiuddin et al. [41] propose a methodology to verify ad hoc network protocols through model
checking. Their approach is limited to a small number of nodes, typically about five. The authors
argue that this is enough to characterize undesirable behavior. They also argue that given the
characteristics of the data and the tool they use, CSP and FDR, the results are applicable to an
unbound number of nodes, but do not present a proof of that. They study a military network
and so, for confidentiality reasons, they do not give many data about the network itself.

The first approach they use to verify the protocol is the simple translation of the protocol
into CSP ;. The only simplification made was in the range of the continuous parameters and
the number of data types. As expected this approach leads to a complex and intractable model.

From that the authors tried a different approach, starting from the simplest possible repre-
sentation of the system. With this model they simply capture the states of the system compo-
nents and then map interactions between such components onto their states. Step by step, the
complexity of the model is increased while most of the network behavior is added.

The technique relies on two characteristics of the tool CSP,;. The support for renaming
a process and its model of shared event communication. The renaming is used to program
the nodes interaction, and the model of shared event communication is used to implement this
interactions.

The methodology proposed by Zakiuddin et al. consists of essentially of three parts [41]:

1. The logical view: The CSPj; processes should be modeled to capture the state transi-
tions of the units of the verified protocol. The model must include processes for links as

well as nodes. These basic processes will only capture local states and state transitions;

2. Promoting local to global: CSPj; renames the map interactions onto the states of the
basic processes. Indeed, the local states of the node and link processes can affect each

other, allowing in this way both local and system views;

3. Specifying properties: Code the requisite properties of eventual correctness in CSP.

3. PROPOSALS FOR VERIFICATION OF ROUTING PROTOCOLS 20

Hierarchi #10)y Node 1
Node 2
Node 3
Node 4
Node 5

Figure 3.6: Hierarchy of pages of the AODV model

Authors emphasize that an important part of their technique it is to condense as much
the protocol as possible in one single shared event while the local view process stays as simple
as possible. Zakiuddin et al. [41] apply the technique to the Cluster Based Routing Protocol
(CBRP) [66] based on the following assumptions:

1. All links are bidirectional;

2. Routing tables and routing table information are not stored nor transmitted. The needed

information is got implicitly;
3. Nodes always receive messages that change their behavior.

Although the authors claim about the specification of a methodology, the proposed technique
relies heavily on specific characteristics of the used tool. A point to notice is that the application
of the methodology depends on the user proficiency of the tool. Once the procedure to apply
the methodology is not fully specified, two people applying the same technique may arrive at
different implementations and possibly results. Another point to observe is the assumptions with
respect to modeling. Some of them may be appropriate for CBRP, but can be very restrictive
to others, and there are no guidelines for choosing such assumptions nor for ignoring some of
them, if needed.

3.5 Modeling and Simulation of Routing Protocol for Mobile
Ad Hoc Networks Using Petri Nets

Xiong et al. [23] propose a timed model for AODV protocol based on the idea of topology
approximation mechanism, which describes the aggregate behavior of nodes when their long
term average behaviors are of interest. With this technique the nodes and their relationships are
modeled as a graph where nodes are the vertices and the links the edges of the graph. With this
the vertex degree shows the number neighbors of the node. This structure is then translated
into Colored Petri Nets (CPN). Figure 3.6 shows the model hierarchy of pages. The top level of
the model is called prime, the second level has the template of the node that implements AODV
and on the third level has the pages that represent the AODV states.

This work introduces a new approach to verify routing protocols for wireless ad hoc networks
and present a very reliable architecture to do so. However it also makes a series of strong

assumptions about the network:

3. PROPOSALS FOR VERIFICATION OF ROUTING PROTOCOLS 21

Nodes snode rnode

Update Table

UpdateNode(mode, shode)

BrokenLink(node,i) 1 node

Broken Link

Figure 3.7: General CPN model of a MANET proposed by Yuan et al. [13]

e Links are symmetric;
e Every node knows all their neighbors;
e All nodes have the same transmission range.

Besides these assumptions the authors do not have any study about the number of nodes,
ideal neighborhood or even how topology changes affect their AODV model. It is only said that
it is possible, in their architecture, to instantiate as many nodes as possible, but what exactly
this means is not clear. To perform the verification that work uses five nodes, but there is no
explanation about why to use such number. The protocol verification is, partially, bounded
by the computational power available to the user, i.e. if there are more resources you can add
more nodes. We believe that this characteristic should be avoided in formal verification. The
verification model of a protocol should be resource independent. If one proves the validity of
a protocol for a given configuration, this proof should stand for other configurations as well.
After all, what it is important is to know whether the protocol is correct or not, regardless of

the amount of resources available for the verification process.

3.6 An Abstract Model of Routing in Mobile Ad Hoc Networks

Yuan et al. [13] illustrate the dynamic operations of a MANET using Coloured Petri Nets. They
show a simple, yet powerful, way to model the dynamic topology changes of ad hoc networks
with Colored Petri Nets. This approach is simpler and presents less unrealistic assumptions than
the one presented in [23] that also uses CPNs.

The model expresses how nodes update their routing tables and how they deal with broken
links. The authors verify the DSDV protocol to exemplify their technique, Figure 3.7 presents
the basic model based on the DSDV protocol.

3. PROPOSALS FOR VERIFICATION OF ROUTING PROTOCOLS 22

In this verification approach, each node begins with only one entry in its routing table
pointing only to itself. The Update Table and Broken Link events are independent and can
occur at any time. The Update Table receives an acknowledgment message with two variables
— Snode and Tpoge — that represent two arbitrary network nodes. The update can occur at any
time. The function UpdateNode returns the changes of the routing table of the rypyq. if it is in
the range of spoqe in the moment that the update message was sent.

In Figure 3.7, the transaction Broken Link models a node that detects it has not received
an update from a neighbor in the expected period of time. This event occurs in a nonde-
terministic way and when it occurs an arbitrary node(i) is pointed as the one that lost the
connection. The chosen node is always a neighbor, or in other words it has a hopcount of one
from the actual node, guaranteed by the neighbor(node, i) function in the model. The function
BrokenLink(node, i) updates the routing table of the node with the new information and the
function UpdateNode(mode, snode) returns the updated node routing table.

Yuan et al. [13] design for simplicity and elegance of the proposed model to handle mobility.
However, regarding the model simplifications, the nodes do not really send messages, so there
are no differences between full and incremental routing table updates. This simplification may
hide important errors that are not verified. It is also important to notice that, as consequence
of how the transmitted messages are modeled, two different nodes cannot receive and process
broadcast messages at the same time. In this case, errors caused by concurrent sending/receiving
messages cannot be verified.

Even though the model can represent the dynamic behavior of a MANET, it does it in an
arbitrary way. The technique depends on node configurations created arbitrarily, i.e., there is

no guarantee that a configuration that causes a problem is represented in the proof.

3.7 Provable Security of On-Demand Distance Vector Routing
in Wireless Ad Hoc Networks

Acs et al. [42] proposed a framework model to verify security of on demand routing algorithms.
They apply their model to Secure AODV (SAODV) [67] and Authenticated Routing for Ad-Hoc
Networks (ARAN) [68] protocols. Basically they propose the creation of two distinct models, a
real world and an ideal world model. The real world model should describe the real operations
of the system, and the ideal world model should capture what the system wants to achieve
in terms of security. To prove the system security, the outputs of these two models must be
indistinguishable [42]. The ideal world model is secure by construction, since no attack can
be successful. On the other hand, attacks can be successful at the real world model, once no
precautions are made in the sense to avoid such attacks.

Acs et al. model the network as a graph G(V, E), where V is the set of vertices and F is the
set of edges. The vertices represent the nodes and the edges the radio links among them. To
simplify the model, the authors assume that links are symmetric.

Besides the theoretical justification to this work, an important point is the new standpoint
to the problem. The authors argue that if a model is specified in such a way that every one of

its aspects works perfectly, to prove that the other system is correct it is enough to compare the

3. PROPOSALS FOR VERIFICATION OF ROUTING PROTOCOLS 23

output of both systems. Of course it might be very difficult to define the ideal world model, and
which characteristics must be modeled to achieve the objectives of the correctness of the system.
However, in some cases it is worth to think in this way and represent the system according to
these principles.

On the other hand, the proposal has some drawbacks. First of all, the process is still
theoretical and no automated proof is presented. Furthermore, it is not clear how the results
were obtained nor what it is the real scope of the model. Regarding the implementation, the
model is set to run on a “perfect” architecture composed of Turing machines interconnected by
the same tape. This is convenient, as a theoretical model, but the real implementation, to be
useful, should be very different from that.

Acs et al. emphasize they verify only the security of the route discovery part of the routing
protocol. They are not concerned about a node misbehave as in the case that a node intentionally
does not forward a message. In this way the behavior of protocols under attacks, such as worm
holes and deny of service, is not verified.

The occurrence of attacks depends on a specific network configuration. Thus, the modeled
attacks should be planned very careful to work, even in the real world model. For example, if an
attack depends on a particular five-node configuration to work and there are only four nodes,

or five in a different configuration, this attack may not even work in the real world model.

3.8 Ad Hoc Routing Protocol Validation

Wibling et al. [69] present one of the most complete and interesting work on this field. They
develop a series of techniques applied in the verification of the Lightweight Underlay Network
Ad-hoc Routing (LUNAR) Protocol |70]. They use both SPIN and UPPAAL. With SPIN, the
data and control aspects of the protocol are verified. UPPAAL serves in the verification of
timing properties. In both cases the size of network, i.e., the number of nodes involved, as well
as the nature of the topological scenarios are limited due to state space storage overhead [69].

Besides the proposed verification techniques, that work also defines what it means a “correct
operation” for an ad hoc routing protocol: “If there at one point in time exists a path between
two nodes, then the protocol must be able to find some path between the nodes. When a path
has been found, and for the time it stays valid, it shall be possible to send packets along the
path from the source node to the destination node” [69]. This definition is important because it
expresses how a generic protocol should work, independently of its internals. Another important
fact about this definition is that it is also easily expressed in terms of mathematical logic. This
definition has also been used by Chiyangwa and Kwiatkowska [3] in their work.

Wibling et al. build a formal model, based on model checking, that is an abstraction of the
real protocol. To construct such model one must evaluate the tradeoff between the verification
complexity and relevance of the results [12]. In this way the formal system model can be checked
to fully comply with a given set of requirements. The work proposes a model of layers above and
below the network layer, responsible for routing process. Upper layers are seen as generators
and destinations of IP packets destined for a certain network address. For the link and physical

layers, the authors specify if nodes are connected or not, and assume that no intermediate state

3. PROPOSALS FOR VERIFICATION OF ROUTING PROTOCOLS 24

is possible. Connected nodes can send packets to each other without loss or corruption during
the time of connectivity. Using UPPAAL, for verification of timing properties, they additionally
include a nondeterministic packet delivery delay [12].

They propose to model each protocol instance and the connectivity between the nodes ex-
plicitly. If at any time the network topology changes, such change should appear in the model.
This approach limits the number of nodes and types of possible transitions to be verified. In-
deed, the maximum topology size the work can handle is a six-node topology where any node
can become unavailable at any time with the properties being verified automatically, without
human interference.

To deal with the state explosion problem in [1] Wibling et al. propose the idea of abstract
the flooding process of the routing algorithms verification. The main idea of this abstraction is
that, if you are sure e.g. the flooding works, it can be used as a subroutine and do not need to be
verified. Of course there are risks involved in such approach, and it should not be used for any
process inside the network. When using this subroutine call, subtle errors may pass unnoticed
through the verification. However, the authors argue these risks are minimized by the analysis
of the process needed to formulate the model. Again, in model checking, there are always a
tradeoff between the abstraction and the need into handle the state explosion problem. One
must pay much attention when abstracting the protocol functions to do not make an incomplete
verification. On the other hand, the state explosion is a real problem and can prevent the entire
verification.

Wibling et al. have a very interesting and consistent work. However, as a drawback, they
just verify LUNAR [70], their own protocol. Even though most of the techniques proposed by
them are general, the lack of proof of a third part algorithm would provide better indices that
the technique is really general.

Other point to observe is that some of the general assumptions they made about the net-
work, only bidirectional links are allowed, may be too strong for some protocols. Other general
assumptions made, the messages are delivered in sequential order and each node in the network
can only receive and handle one message at a time. For some protocols, that do data aggregation
for example, these assumptions are so strong that can even prevent the protocol verification.
Regarding the state of the nodes, they don’t have persistent memory, so if a node goes down,
it loses all its states. For some protocols this may not be true, for example, some protocols use
old data to perform optimizations. The most interesting fact is that, from our point of view,
none of such limitations are really fundamental for the process as a whole and could be easily

removed.

3.9 Counter-Example Based Predicate Discovery in Predicate

Abstraction. Formal Methods in Computer-Aided Design

Das and Dill [43] propose a way to discover quantified predicates automatically from the model.
They use this technique to prove the absence of loops in a simplified version of AODV. The
initial predicate set is formulated in a manual step where conditions on next node pointers, hop

counters, and existence of routes are constructed. The method successfully discovers all required

3. PROPOSALS FOR VERIFICATION OF ROUTING PROTOCOLS 25

Concrete System
Verification Condition

Property Verified

Abstraction and
Model Checking

Initial Predicates

Discovered Predicates Abstract Counter-example

Counter Example checking
and predicate discovery

Figure 3.8: Predicate Abstraction

predicates for the version of AODV considered [1].

Unfortunately for the general case, the problem of finding predicates to an unbounded system
is intractable. However, the authors claim that presented technique, Predicate Abstraction, is
an efficient way of reducing infinite state systems into more tractable finite state systems. A
finite set of abstraction predicates, defined on the concrete system, is used to define the finite-
state model of the system. The states of the abstract system consist of boolean assignments
to the set of abstraction predicates, that is, to each predicate is assigned a value true or false.
The abstraction is conservative, meaning that for any property proved on the abstract system,
a concrete counterpart holds on the actual system [43].

The problem of proving arbitrary safety properties of a transition system is undecidible, so
the technique may fail for some cases. However, for other cases, given a pre-selected set of
predicates and making some other assumptions, it is possible to prove that the system satisfies
a safety property. On the other hand a failed proof may either indicate that the property is
violated, or that the abstraction is not precise enough to complete the proof. An analysis of the
results is often required on the failure case.

The work also introduces a way to find useful predicates automatically by diagnosing failed
proofs. This is a huge step once, in the most of the previous works on predicate abstraction, the
predicates were either assumed to be given by the user or extracted syntactically from the system
description. The task of finding the right set of predicates is hard and often a trial-and-error
one. Rarely the predicates present in the system description are sufficient so new ones must be
added. The challenge in search for useful predicates resides in avoiding irrelevant predicates,
since the cost of checking the abstract system normally increases exponentially with the number
of predicates [43].

The schematic model of the authors proposal is shown in Figure 3.8. The upper block is a
tool described in |74]. The system by itself was implemented using Binary Decision Diagrams
(BDD). The tool receives the set of abstraction predicates, the verification condition and the
concrete system description. With this an approximate abstract model is created. This abstract
model is model checked and the abstract system refined appropriately if too inexact. This process
finishes either when the verification condition verified or when an abstract counter example trace

is presented. The lower block represents the search for the new predicate.

3. PROPOSALS FOR VERIFICATION OF ROUTING PROTOCOLS 26

-~

-~ .RREQ1

»

Figure 3.9: Chiyangwa Linear Topology Model

On behalf the work of Das and Dill Shuvendu et al. [75] state that predicate abstraction, with
locally quantified predicates, require complex quantified predicates to construct the inductive
assertions and these predicates are often as complex as invariants themselves. This compromises
the real use of such technique. Other critic to the model is that the authors state that they
cannot find a way to treat timeouts. This greatly restricts the range of protocols that can take

advantage of the technique.

3.10 A Timing Analysis of AODV

Chiyangwa and Kwiatkowska [3]| focus their work on the timing aspects of AODV using UP-
PAAL. They build a timed automata model and considered the effects of the standard protocol
parameters on the timing behavior of AODV. The authors investigate properties such as timely
route discovery and messages delivered in a specific time period. The used timing automata can
be found at [71].

With their model Chiyangwa and Kwiatkowska found that AODV routes rely in static pa-
rameters that can lead to failures when a network grows dynamically in size. The failures may be
either in discovering a route that actually exists or in delivering data packages to a destination.
Deriving from the results of this study the authors proposed the use of adaptive route timeouts
to avoid these problems.

To work on the time aspects of the protocol the topology evaluated is nearly the same. It is
always linear topology where the source is the node 0 and the destination is the node n — 1. All
other nodes involved are sequentially placed between the source and the destination. The main
reason to evaluate this singular topology is that the authors were focus in timing aspects and
in finding the maximum network diameter. The chosen topology makes such evaluations easier
and cleaner. Thus, the method model just three different kinds of nodes, source, destination
and intermediate node. Each one of these node are modeled to accomplish a specific function.

To allow a simple instantiation of different number of intermediate nodes the authors propose
the formulation of an n_nodes node, which combines n nodes linearly into one multiple node.
Figure 3.9 shows the proposed Chiyangwa and Kwiatkowska linear topology model with the
three routing discovery attempts proposed in AODV running in parallel.

The maximum network size for AODV was reached with twelve intermediate nodes. Given
the expiration of the route lifetime of AODV, packets cannot be sent in longer routes. The
authors also proved that in a network with seven intermediate nodes an established route may

expire before the data packet transmission. These values in the real world can be even lower, once

3. PROPOSALS FOR VERIFICATION OF ROUTING PROTOCOLS 27

to be fair the work did not consider message delays and message loss. Such kind of knowledge
is of fundamental importance for the protocol creators, once it shows the limitations of their
algorithm.

On [71] Chiyangwa and Kwiatkowska state that, because the state space explosion problem,
they find fifteen intermediate nodes a limit for the feasible application of their approach on
AODYV. Fortunately, on this case, only twelve intermediate nodes where enough to find the
problem. However, this is a point to observe, if applying this technique, in other contexts.
Being unable to detect a problem can mean either that the problem really does not exist or that
it is beyond the technique feasible implementation limit.

Other point to be aware about this work, is that to find the network diameter with the linear
topology is an iterative process. One must run and re-run the model, increasing the size of the

network, to find the protocol limits.

3.11 Topology Dissemination Based on Reverse-Path
Forwarding (TBRPF): Correctness and Simulation

Evaluation

Richard Ogier in [44] manually prove the correctness of the Topology Dissemination Based on
Reverse-Path Forwarding TBRPF routing protocol [72]. Since TBRPF consists of two modules,
the routing module and the neighbor discovery module, the author correctness proof is presented
for both modules separately.

To proof the correctness of the routing module Ogier states the theorem 1 ”If no topology
changes occur after sometime ¢ 0, then within some finite time after ¢ 0, the source tree T
computed by each node will contain minimum hop paths to all reachable nodes”. Then through
induction, over the number of hops, Ogier proofs that the routing module works optimally in
terms of the least number of hops.

The discovery module works through differential HELLO messages, which report only
changes in the status of links. Such hello messages are not reliable. Thus to proof the correctness
of the discovery module Ogier needed to verify three possible cases: when the communication is
bidirectional, unidirectional or lost in both directions. Ogier manages to proof that the neighbor
information exchanged is sufficient for the functionality of the protocol. However the proof it is
neither easy nor valuable for other protocols. The results and procedures used stand for TBRPF
and only for it. Other point that must be taken into account is that when verifying a protocol

all cases must to be considered and this, when performing a manual proof, is even harder.

3.12 Specification and Validation of an Edge Router Discovery
Protocol for Mobile Ad Hoc Networks

Using CPNs Kristensen and Jensen [24] verify the Edge Router Discovery Protocol (ERDP) a
extension of the Neighbor Discovery Protocol (NDP) [73]. The process is iterative and both,

a conventional natural language specification and a CPN model are developed. This work is

3. PROPOSALS FOR VERIFICATION OF ROUTING PROTOCOLS 28

GW_ER_LINK
GW ER Link #5

Figure 3.10: Kristensen and Jensen model of network architecture verified

| ERDP#1 '
Satoway ooy 73
(Process Unsolcited RA #3 h
Receive
3 (T UwRd AT),
Prefix $(SendRouterSolotaion #15)}

GWDiscardProfixes#9

Send > Sendl Ttated 70 D)
ProcessRS
i S —
ERDiscard
NoAssign
ﬁ NodeNewAssignPrefid10

GW_ER_LINK

———CEEmE) (e)

Figure 3.11: High view of the hierarchy page of the CPN model of Kristensen and Jensen work

mainly concerned with the state space explosion problem and the logical correctness of the
algorithm. They do not intend to verify performance or any other non-functional aspect of the
protocol. Thus on their verification Kristensen and Jensen uses just two nodes, a gateway and
an edge router connected through a link. With this simple topology they mainly focus on the
verification of the basic operation of the ERDP. Figure 3.10 presents the architecture, composed
by the Gateway, Edge router and Gateway-Edge router link. Figure 3.10 makes references to
the pages of the Figure 3.11 that describes the high view of the CPN model.

One interesting aspect of this work is that it is a partnership between academia and industry
and it was a part of the development of ERDP. Researchers from the academia developed the
model and people from industry implemented it. On this process many failures were found
because the synergy of the two groups. With two revisions revealed 24 issues on the protocol
and its specification. An interesting data from this study is the approximate efforts spend on it.
The total amount effort of constructing the CPN model and conducting the state space analysis,

one of the concerns of this work, was approximately 100 man-hours. This data is relevant and

3. PROPOSALS FOR VERIFICATION OF ROUTING PROTOCOLS 29

not very common in such kind of work.

The concerns about the state space explosion of Kristensen and Jensen is completely fair
and justifiable. However the use of only two nodes penalizes the approach and even the results
it may reach. For example, any problem with the concurrent aspect of the protocol is probably

completely lost with this simplistic approach.

Chapter 4

Methodology

This work is built over the one presented in [3|, and it is a step-by-step procedure to verify
routing protocols for wireless ad hoc networks. The focus of the verification method is model
checking. Typical formal verification approaches applied to routing protocols for MANETS,
such as Wibling et al. [1], and Chiyangwa and Kwiatkowska [2]|, use either a specific network
configuration or a given number of nodes on the verification. The problem with these approaches
is that mobile ad hoc and sensor networks are dynamic systems. Therefore, the correctness proof
of a particular configuration does not guarantee the correctness of the protocol with respect to
other configurations. This work is grounded on a complete different principle. It does not model
any particular network configuration. Instead of that, it proposes that one should model all the
possible implications caused by network configurations to the behavior of the routing protocol
for MANETSs. In other words, the verification should model all the possible relations among the
nodes. This is a key observation in our technique.

When applying model checking verification a designer wants to determine, in an automatic
way, if a given model M presents a defined property P. Both, M and P are provided by
the protocol designer and precisely defined. M is composed by the finite set of variables V,
V = wvl,...,un, the set of initializations I, where it is applied I(V') or I is a condition over V,
and a set of transitions T, T'(V, V'), where V' is the new value for the variable V after the
application of the model step. The model checking tool uses then M, to build the set of all
possible system states, we use SPIN model checker. Let G = (V,I,T) be the set of all states,
and P = (V) the property to verify, the tool must than search if P can be satisfied starting
with I and applying T' a finite number of times. If M model all the possible relations, than G
contains all the possible outcome system states.

The method is independent, and could be implemented with any formal verification tool
where ground principles, described below, could be modeled. We use SPIN model checker since
it is freely available and matches perfectly our needs. All the snippets of code for the next
sections, and on the appendix, are described in PROMELA, the SPIN programming language.
When in the text we refer to random initialization that means that the set of initial values is
defined, but it is up to the tool decide which values to test, normally all. For example, when
we make a random initialization of a boolean value, we set the possibility for the tool to choose
both values, if we are doing a full verification the tool will need to test both paths. However, if

we are using a random path verification just one of the values will be chosen by the tool, in a

30

4. METHODOLOGY 31

random way. Again, we use the term random initialization to define all the possible values.

4.1 Limitations

In contrast to the work presented in [2], this method focuses mainly in qualitative aspects rather
than quantitative ones. We are interested in identify routing loops, packet delivery failures,
unexpected reception of messages and pathological cases not treated in the original protocol
specifications. However, quantitative aspects, such as max/min number of messages exchanged
among nodes, behavior in a particular topology or timing aspects, are not the focus of the

method and are not covered by it. These problems are handled by other authors.

4.2 Ground Principles

This section presents some of the principles that work as basis for the technique. To decrease
the complexity of the models and avoid the combinatorial explosion problem this work proposes
that the verification must follow some ground principles. They are: topology abstraction, node

position and lower layer services.

4.2.1 Topology abstraction

Many of the techniques described at Chapter 3 consider the network topology as an integrant
part of the model and the verification. Any proof that takes into account a specific topol-
ogy just proved that the protocol is correct or not regarding particular evaluated topology.
We advocate here that, for the set of properties we want to verify, the topology is not a rel-
evant factor, since the errors are based on the relation among the nodes, not on their spe-
cific positions. So, instead of enumerating all the infinite possible topologies, it is better to
avoid it and focus on the node relations. In order to do that, the method proposes the use of
three kinds of nodes, namely, source (.5), destination (D) and intermediate (/V) nodes. Let R,
R = (Source, Destination), be the set of all possible relations among the different kinds of nodes,
R = {(8,D),(S,N),(S,Null),(N,S),(N,N),(N,D),(N,Null),(D,S),(D,Null),(D,N)},
where Null represents the case where the message is lost or corrupted. If the model M contains
all the relations defined in R, and R contains all the possible and relevant message forwarding
cases, then all the possibilities will be presented in G, and thus in consequence in the verification.

Representing the set of all possible intermediate node relations,
(S,N),(S,Null),(N,S),(N,N),(N,D),(N,Null),(D,N), enables the verification of all
the situations where transmission related properties could arise. These relations represent,
specially (N, N)and(N, Null) represents all the possible transmissions among intermediate
nodes. These relations also represent, implicitly, the set of all intermediate nodes and all
possible effects of interconnections among them. For example, a node with a neighbor and a
packet transmitted successfully, a node with a neighbor and a lost packet, and so on. The key
aspect to make sure the topology abstraction works is to model all the possible relations and

this is especially true for the intermediate node.

4. METHODOLOGY 32

With this process the topology becomes irrelevant since the relations among intermediate
nodes will model the possible relations, not the network topologies. Consider C' C V, where
C ={c:ce€ M and c controls the message flow}. C is the set of all procedures used by the target
protocol to control the flow of information through the network, for example, ¢ could be the
last received message counter. Assume that Ve € C,c = {0, 1}, if I(C) is random, the tool will
generate all possible initial values, each of the two possible values for each ¢ will be represented
in G. If G contains all the states, the search for P over G is granted even without considering
the topology. This different way to face the network is what ensures the topology independence
to the method, once it does not rely in any particular topology. This greatly decreases the
complexity and, in consequence, the effort required to formally verify the dynamics of routing
protocols. One of the biggest problems for other methods, that use the network topology in the
verification, is that they are somewhat bounded by the size of the network. The state space

explosion problem makes unfeasible the verification of protocols behavior for large networks.

4.2.2 Node position

Position awareness is one of the criteria for classifying routing algorithms. However, with the
topology abstraction, the nodes position are irrelevant since what we represent are the possible
kind of nodes relations. This stands even for position aware algorithms, since we are concerned
with the possible relations, not specific configurations.

This principle, even being counter intuitive at first sight, holds exactly in consequence of the
previous principle, the topology independence. When we focus on the possible relations, defined
in R, they are the same whether one considers the nodes position or not. For example, if two
nodes are connected, normally, their physical positions do not matter. However, if the verified
protocol is a geographic one and uses, in some way, the nodes positions, the nodes relations must
also be modeled. For example, LAR1 protocol uses the intermediate nodes geographic position
to determine either if they should rebroadcast the message or not. In this case instead of trying
to model and verify all the infinite positions in the three-dimensional space one can just add to
M the two possible relations, either the next hop is inside the re-broadcast area or not. Doing

this, for this case, the need for geographic positions disappears.

4.2.3 Lower layers services

Layers others than the one where the algorithm in test is located should be abstracted, once
they are not the object of study. The services provided by the lower layers should be modeled
as available and trustable, unless some cross layer aspect is crucial for the protocol validation.
In this case, the verification, for this cross layer aspect, should be done apart. This step is the
application of the assume-guarantee paradigm [78, 79|, since assume that the lower layers behave
as expected and, if it is required we need to guarantee this assumption through verification.
The main idea behind this is to simplify as much as possible the protocol verification to avoid
the state space explosion problem. Unless the verified protocol considers cross layer aspects, it is
possible, without lack of generality, to consider just the interaction, or API, between the layers
and ignore the way the other layers work. For the routing layer, for example, the MAC layer

should work as a procedure call. E.g. the protocol requires a message to be sent to a specific

4. METHODOLOGY 33

node, either this service works, the message is delivered, or not, for the routing layer it is all
that matters. However, if the protocol consider, or uses, some specific characteristic of the MAC

layer, then this behavior, at the MAC layer, must also be verified to ensure its correctness.

4.3 Modeling

In accordance to the technique described here, the algorithm one wants to verify should be
modeled following some guidelines, in respect to some specific aspects. Following these guidelines
enable the designer to verify aspects that are not possible using other techniques. This section
presents these guidelines and also provides a clear explanation why such guidelines are important

to the whole process.

4.3.1 Communicating channel

One of the key aspects to enable the proper verification is the modeling of the communicating
channel. The channel should be available in a random way among the three defined kind of
nodes or no node at all. Let K be the set of packets defined in the target protocol, K C V' and
K={vkeK:k—-0OVk—NVk— DVEk— Null}. Where the relation — stands for "from
the present node may be delivered to”. This means that any node, or even no one at all, may
receive the packet. This guarantees that all the relations will be verified in the end.

However, the way the protocol is designed must determine if the packet will actually reach
the destination or not, regardless the way the channel is modeled. This point is important since
it, in the deepest analysis, what enables the intermediate node to represent all the possible
relation among intermediate nodes.

In other words, is the channel model the main responsible for the topology independence.
The possibility that any node, and even no node at all, may receive the communication implies
that all the possible scenarios are present in the model. It is important to call attention to the

fact that there is no topology involved, just the plain and simple relationship among nodes.

4.3.2 Flooding representation

Relying on this communication channel model two messages are enough to represent all existing
relations in a flooding. What happens here is that if I(K) is correctly done, two messages
on the network will represent a Cartesian product of K over K, KxK, where all the relations
among the same packets over the kind of nodes will be represented. The need for two messages
to represent a flooding came from the fact that at least two messages are needed to represent
concurrent transmissions. l.e. the case where two nodes send the same message to a given node
at the same time.

However, when verifying a protocol, the designer must make all possible relations reach-
able. If the relations are not reachable, by a modeling mistake, the verification results may be

compromised.

4. METHODOLOGY 34

4.3.3 Mobility

From the nodes point of view, the main consequence of the mobility is the occurrence of broken
links. So, as the model represents all possible relations among nodes, including connected and
disconnected nodes (i.e. broken links), the mobility is also modeled.

The changing in the neighbor nodes may affect the way some protocols work, i.e. the need
of attach to a new cluster head, or send position updates. The protocol designer must be aware
that even not considering the nodes position the behavior of the protocol, regarding mobility,
can and indeed should be modeled through the broken links.

4.3.4 The network

More important than identify all possible topologies is to identify all possible effects of different
topologies and node states to the routing protocol. For instance, what can happen to a message
after it is received by a node? Some possible scenarios are: it can be lost because of a node
failure, it can be transmitted to a neighbor node with a checksum error, it can be transmitted
successfully, and so on.

In this way, reviewing and modeling all the possible network behavior, one can increase the
chances of having a successful protocol verification. These relations are also extremely important,
even more when analyzing the verification results to see if the failure scenario found is really

possible or not.

4.3.5 Internal and external behavior

The division of the protocol into internal and external behavior is an instance of compositional
reasoning [80]. Composition is a divide and conquer approach [81] where the target system is
divided into small components that are verified separately. However, it is important to notice
that the composition in this case refers to the division of the protocol behavior and not func-
tionalities. The protocol behavior should be divided into internal and external, and each part
verified separately. Internal behavior refers to how the protocol handles data and controls mes-
sages internally to the node. In other words, the actions the node implements when it receives,
or sends, a specific message.

The external behavior refers to how the whole network reacts to the messages. Both models
should be independent and modeled in such way that the internal behavior could act as a
procedure of the external behavior. The idea is model the two different behaviors as if they were
one part of the other. However, when we break the behavior not only we manage to focus in the
verification of two different aspects separately, but also we decrease the model complexity. Both
behaviors start, in general, with a packet and its relations. The initialization of the packet data
and its relations should be random to guarantee the coverage of all relations.

The internal behavior is the one where, normally, the largest part of the protocol will be
represented and thus where the biggest part of the errors will be identified. This is expected
once the internal behavior should be exactly how the protocol behaves inside the node and thus
it is the way a real implementation of the protocol would work. However normally not all the

network expected behavior can be inferred from the internal behavior implementation. The

4. METHODOLOGY 35

external behavior main purpose is then to verify if the network reacts as expected and if the
desired network properties hold.

When creating a protocol designers normally try to create a general network behavior based
on the nodes actions. For example, the OLSR protocol routing information dissemination pro-
cedure explained in detail in chapter 5. The node behavior of choosing a set of multi-point
relay (MPRs) and send the messages through them can be verified through the internal node
part. However, for example, the expected process of message spreading, that should resemble a
tree creation, should be verified modeling the planed external behavior. To make the external
behavior as close to the real one as possible it should be implemented using calls to the internal
behavior. These calls should just return, in a random way, the possible results, but not imple-
ment the verification of the called parts. In this way one decreases the complexity of the model

at the same time keeps the models consistent and the verification coherent.

4.3.6 Information modeling

Every information regarding the verified protocol should be modeled as a variable and, as far as
possible, randomly initialized (e.g., package type, packet time-to-live (TTL), and table exchange
trigger). When we say random initialized, we mean that the choice of each of the the total set of
possible values is random, but the set of values must to be defined. For example, when possible,
such information should also be modeled with boolean variables. Both values should be defined,
but the choice of which of the values will be taken during the verification, is on behalf of the
tool.

This way of modeling the information, decreasing the set of possible values, and, for
example, modeling the TTL as Boolean, is a form of abstraction [30], since we will not be
representing the whole set of possible values for a v € V. For example, if the packet has a TTL,
not all its values need to be verified: if the TTL was reached, or not, is normally enough. In
PROMELA this can be represented as:

bool ttl;
if
2 (1) ->ttl=1
2 (1) ->ttl =0
ﬁ}.

For this specific example the variable ttl may receive the value 1 or 0, meaning the time to
live of the message expired or not. So as the attribution is done in a random way, both cases
are possible, the verification tool will be forced to verify both cases, what to do when the ttl

expired, and when do not.

4.3.7 Procedures Abstraction

To avoid the combinatorial state space explosion a protocol should be simplified as much as
possible, while this does not compromise the verification results, of course. Over simplifications
may often lead to wrong conclusions, so the amount simplifications over the protocol should be

carefully applied. This is, again, the application of the abstraction paradigm [30]. However, here

4. METHODOLOGY 36

we are interested in the simplification of the algorithms procedures, not variable values. Vt € T,
the designer should verify if ¢ cannot be reduced to a simpler representation in V', preferably as
a boolean.

As an example of possible simplification, suppose a protocol that uses the Dijkstra or Floyd
protocol to find the minimum path. For the verification purpose, it may be enough to model
the shortest path as a boolean variable, either the protocol finds the path or not. This may be
enough because when verifying a new protocol, the designer is normally more concerned about
his own algorithm than the shortest path one. However if it is not the case, if the protocol
changes something, or uses a sub phase of the minimum path algorithm, this behavior also must

to be present in the model, and just one boolean variable may not be enough.

4.3.8 Model

The development of the protocol model should start simple and one should increase the model
complexity appropriately. With this approach, basic problems can be identified earlier and pos-
sible solutions can be quickly proposed and validated. This also allows the protocol designer to
stop verifying the protocol whenever it reaches a defined goal or a reasonable model complexity.

The verification, as it is any test process, can extend indefinitely since at any time one may
think of new things to verify and test. It is much more realistic to think that the verification
phase of the protocol, in the real world, will be bounded for time/resource limitations. In this
way if one starts with a complex and extremely detailed model, all the work can be wasted if
the limitations are met. It is wiser to have useful results with simpler models and be able to

profit from the verification results of these simpler models.

4.3.9 Analysis

Every time a property is verified and the tool presents a response scenario, the designer must
analyze whether the result is a fault on the protocol or on the model. For example, simplifications
can introduce errors in the model in some way that some of the found properties even being
present in the model are not possible in the real world. Vp € P : (p < G) = a, being P the set
of properties to be analyzed, the relation <, that produces the answer a, must to be analyzed.

This is a crucial step and, unfortunately, as it is the actual technological state of the art,
cannot be done automatically. It is required a human operator to reasoning over the scenario

and decide whether the error may or may not occur in some way.

4.4 Algorithm

This section presents a description of the verification methodology in an algorithmic form. Using
this algorithm one can easily apply the methodology as it highlights the most important points
of the method and presents the tasks in an organized and coherent sequence.

The tasks are intentionally presented in high level to provide a useful abstraction and freedom
to the designer to choose the best approaches and tools to fulfill the required steps.

The first step, acquire the needed information is maybe obvious but it is surely enough, in

conjoint with the next two, some of the most important steps of the method. All the other steps,

4. METHODOLOGY 37

actually the entire verification process itself is useless if one does not understand the protocol.
If the protocol is not clear for the person who is performing the verification it is possible that
important procedures and characteristics of the protocol may never be verified, or even worse a
completely different protocol may be verified instead.

The second and third steps should occur as many times as needed to one to have a consistent
representation and reach a complete understanding of the protocol. Creating a representation of
the protocol in an algorithmic or pseudo code provides to the designer not only a better view of
the protocol but force them to think in the exception condition. Normally the designers, when
creating a protocol, tend to pay attention to the big issues and are somewhat more careless with
the exception cases. In this way these cases, which are not fully defined may hide situations

where the protocol may fail.

Algorithm 1 Verification Methodology Steps

1: Acquire needed information to model the protocol;
2: repeat
3: Create a detailed pseudo-code or finite state machine of the protocol;
4: Compare carefully all cases described in the protocol with the pseudo code;
5: until Pseudo code is consistent with the protocol
6: for Each kind of packet do
7 for Each kind of node do
8: Specify the semantics of the packet to the node;
9: end for
10: end for

11: Divide the protocol into internal and external behaviors
12: Internal behavior: describes the message flows and behaviors for the node;
13: External behavior: describes the behaviors related to the node interactions;
14: for Each behavior do
15: Create an algorithm or an state machine representation to ensure the validity of the abstraction;
16: end for
17: Model the External vs. Internal interactions
// The internal behavior should be modeled as if it was a routine call.
// In this way the external behavior becomes independent of the internal behavior.
// Ideally, the external and internal behaviors should be independent;
18: Build a simple model based on the internal and external behavior machines
19: while The desired model complexity was not reached do
20: Analyses and verify the model

21: for Each error found on the model do

22: Verify whether the error is due to a protocol failure or a modeling failure;
23: Find a solution for the problem;

24: Model the solution;

25: Test the solution;

26: end for

27: Increase the model complexity;

28: end while
29: Identify and isolate verified procedures to be used in other protocols.

Steps from 6 to 10 also intend to provide a better understanding of the protocol through the
organization of the protocol messages. These steps make it easy to generate the model once they
summarize the messages and their meaning for each node. It is crucial to enumerate accurately
all the cases for all the nodes and messages. In this case a table having the three kinds of nodes
as columns and the packets as lines, or vice versa, is a good exercise since forces the designer to
fill all the gaps for all the combinations.

Lines from 11 to 13 advise the methodology user to divide the protocol into Internal and

4. METHODOLOGY 38

External behaviors. This means that, normally, the designer is advised to verify its protocol
using two different models. For some cases maybe the external view can be overlooked, if one
can represent efficiently all the protocol interesting behavior with the internal view. However,
at this step the designer is not creating the model yet, but just thinking which routines could
be better represented in each model. The steps 14 to 16 are the responsible for verifying if the
division is feasible and coherent. Creating an algorithm or a state machine forces the designer
to really understand and validate the division he/she made.

When creating a model for verification one should start with the simplest model possible,
this is advised in the steps 17 and 18. Using this tactics one can profit from earlier results at
the same time understands better the protocol he/she is verifying. The real verification process
occurs in the loop that starts on step 18 and ends on step 28. The verification is defined here
as an iterative process. One should get the simplest model, verify the desired properties over it,
step 20. If it is not detailed enough the model should be refined, and its complexity increased,
step 27. If any error was found on this model, step 21, the designer should verify if the error is
in the model or in the real target protocol, step 22. Either one of the alternatives, a solution
for the problem should be found, step 23. This solution should then be modeled, step 24, and
finally this solution should be verified to guarantee it is feasible and that the protocol is now
free of the previously detected problem.

The step 29 intends to create a library of verified processes to enable easy design and verifi-
cation of newer protocols. If one could use a library of verified procedures there is a possibility

the quality of the new algorithms and protocols would increase significantly.

Chapter 5

Case Study

This chapter presents the methodology applied to OLSR protocol [33], using SPIN model checker.
Notice, however, that any model checker that allows the modeling of non-deterministic channels
can be used. The examples presented here are in PROMELA, the SPIN language. Another
important observation is that, even though, OLSR has newer and more precise descriptions [34],
in order to meet our objectives, given its simplicity, we use the original version [33].

The structure of this chapter follows the algorithm presented in Section 1. This toy example

exemplifies how to apply the technique in a real protocol finding real problems on this protocol.

5.1 Modeling

5.1.1 Understanding the protocol

The Optimized Link State Routing Protocol (OLSR) [33] is proactive protocol. In order to
disseminate routing information, a node sends both hello messages to its neighbors and topology
control (T'C) messages to a set of selected nodes that, in turn, re-broadcast them to other MPR
(multi-point relay) nodes. The broadcast information includes the node address and a list of
distance information of nodes neighbors. With this information each node builds its routing
table, using a shortest path algorithm. In this way, the node can create a route to every
other node in the network. If a node receives a duplicated packet it discards it rather than
retransmitting it. However, the key concept of OLSR is the multi-point relay (MPR) nodes.
OLSR relies on MPR nodes to retransmit information in an organized and smart way. The
MPR nodes are chosen among the 1-hop neighbors in such a way that they are the minimum
set that covers all the 2-hop neighbors.

More specifically OLSR is composed of five steps: Symmetric neighbors detection, Multipoint
relays, Optimized flooding, Partial link state and Optimal route calculation. The Symmetric
neighbor detection consists of nodes periodically broadcasting hello packets, what advertise the
heard nodes set. Based on the hellos nodes perform the Multipoint relay selection, i.e. every
node selects its multipoint relay set (MPR). After that the control are broadcast through Opti-
mized flooding, only the multipoint relays forward broadcasts. Through the MPRs all network
nodes receive, but only a subset retransmits. The periodic topology control (TC) messages are

broadcasted through the MPR the result is a much smaller set of nodes rebroadcasting the TC

39

5. CASE STUDY 40

Waiting for

A 4

-

Recelve TC msg ¢

eceive Data msg
*R Receive Hello m

Route Table
Has dest. Add

Discard Message Find Best Discard TC Update Routing
e =
Send
Message

Remove Non Calculate Stora New
Used Entries F Routes F Entries Clean Table I

Figure 5.1: Simplified OLSR intermediate node state machine diagram

messages. The Route calculation is based on the MPRs. The Nodes know their neighbors and
all the network MPR links. The route calculation occurs on partial topology knowledge. From

time to time the tables are erased and recalculated with basis on the last known information.

5.1.2 OLSR State machine

To better understand how the protocol works it is often useful to rewrite it in an algorithmic
form or translate it to a state machine. Just doing this sometimes one can find errors or flaws
in the protocol description. Some of the most important errors found in AODV by Obradovic
et al. [2] were exactly specification errors. These specification problems occur, in some extent,
often because the protocol designers are normally much more concerned about the main protocol
ideas and are somehow more careless describing the details and smaller, but important, design
decisions. Figure 5.1 shows a simplified diagram for the OLSR intermediate node, suitable for
an early verification model. In the diagram the discard message box, when there is no route
for data packets, has the symbol ”?” because the protocol description has no explicit reference

about this specific case, so we will need to infer what to do.

5.1.3 Messages and kinds of nodes

OLSR defines three different kinds of messages: hello, topology control (TC) and data message.
Each one has its own purpose and semantics for each different node. Table 5.1 presents these

messages and their meaning for each kind of node.

5. CASE STUDY

41

Node Hello TC Data

Origin Spread infor- | Spread informa- | Share upper-layer
mation of links | tion about the | protocol informa-
among neighbors | network table tion

Intermediate Update its own | Update rout- | Find new route
neighbor table, | ing tables and | and rebroadcast
find MPRs rebroadcast

Destination This role does not | This role does not | Send msg to up-
exist, act as inter- | exist, act as inter- | per layers
mediate mediate

Table 5.1: OLSR Messages and their semantics for each node

5.1.4 Dividing into internal and external behaviors

The main part of the verification is done by the internal model behavior. This is expected since
if we model the behavior of each node in respect to each different message, it is exactly how
the distributed protocol should behave in the network. However, sometimes some behaviors can
only be captured globally and, in this case, the external view is quite useful. For the OLSR
this is clear when we observe the creation of the tree of MPRs and the transmission of messages
through it.

For the OLSR protocol the modeling of the external behavior was worth it because it showed
that the source node may receive the same TC packet it has generated. This may occur because
the source node may be the MPR, or may be in the vicinity of an MPR of the node that is
retransmitting its TC message. We cannot characterize this as an error, but at least for us this
is somehow surprising, once the whole structure is intended to decrease the number of messages

sent and it is always represented as a tree without loops.

5.1.5 Modeling the channel

One of the key aspects of the methodology is doubtlessly the channel modeling. Modeling
the channel in a non-deterministic way makes the results more general and, indeed it is what
makes it possible for the intermediate node to act as a cloud of nodes. This simple observation
greatly decreases the complexity of the models and allows their verification independently of

any specific topology. The channel could be modeled in PROMELA as follows:

mtype = {RouteRequest, RouteReply, DataPacket};
/* type, origlD, destID, TTL, inf timestamp */
chan medium =[nnodes| of {mtype, byte, byte, bool, bool};

However, the most important aspect of the channel is the way nodes receive messages from
it. The choice must be random and any node should be able to receive the message at any time.
The protocol behavior will be in charge of handling the messages ac-cording to its specification.

Another important channels characteristic is that it should be able to hold more than one
message. OLSR is heavily based on a controlled flooding, but flooding nevertheless. If all

relations are modeled, putting at least two messages in the channel, it enables the verification

5. CASE STUDY 42

of all possible node states, even concurrency.

5.1.6 Creating the model

To model a new protocol it is better starting with the simplest model as possible, Algorithm
2 shows a first version of the OLSR model. After that the model complexity can be increased
slowly until the desired level. Building the model in this way has several advantages. First, it
helps a designer to better understand the protocol. Second, if one finds an error in the protocol,
it is easier to isolate the problem and find a solution for it. Third, building the model in this way
makes it easier to debug and finding out errors on it. However, the most important advantage
is to have results sooner. Starting the process by building a complex model is probably a much
more difficult task and, sometimes, people simply give up in the middle of the work. It is better
to have results sooner and being able to stop at some comfortable point, than to have a complex
model, which most surely will even drive the model to the state explosion problem and, worse,
without any result.

The model should be as simple as possible, while this does not compromise the protocol
verification. For example, the condition of the OLSR timer to send a hello message can be
modeled as a boolean variable, i.e. either it is time to send the hello message or not. In this case

there is no need for modeling a real timer. This trigger could be programmed in PROMELA as:

bool sendHello;

of
:: skip -> sendHello = true
:: skip -> sendHello = false

Ji;

Every variable, as much as possible, should be randomly initialized within a defined interval.
This increases the number of verified cases and makes the verification more independent and
broader. Once a variable is initialized randomly, all cases related to that variable will be verified
automatically. Of course, in the hello message example above, we are assuming that the message
sending procedure represents an independent event. It is neither triggered nor affected by other
events. The drawback of this approach is that the model may become so broad that even cases
that can never occur in the real world may be present in the model, and, thus, leading to false
positives that need to be analyzed and discarded. Although this is probably better than missing
a real world case in the model. Algorithm 2 shows an example of a first possible version of a
PROMELA code for the verification of OLSR algorithm.

5.2 Verifying the model

In SPIN the verification is done based on propositions represented in linear time temporal logic
(LTL). To make the verification easier, each protocol scenario, especially the ones that can lead
to errors, should be identified with a different variable, normally a boolean one. Building the

model in this way enables the creation of simpler and straight forward LTL formulae. To verify

5. CASE STUDY 43

Algorithm 2 Example of a simple first version of the OLSR model

1: #*define nnodes 3 /* Intermidiates + Origin + Destination */
2: chan medium = [nnodes] of { mtype, byte, byte };
3: mtype = { Hello, TopologyControl, DataPacket };
4: mtype = { Origin, Destination, Intermediate };
5: bool packt = false;
6:
7: proctype nodes() {
8: bool ttl;
9: byte type;
10: byte node;
11:
12: if /*build the packet*/
13: it skip — > ttl = true /* reached the TTL*/
14: i skip — > ttl = false /* not reached the TTL*/
5. fi;
16:
17 if
18: it skip — > type = Hello
19: :t skip — > type = TopologyControl
20: :: skip — > type = DataPacket
21 fi;
22: medium!type(ttl);
23:
24: if /*threat packet*/
25: :: skip -> node = Origin /*acts as origin node*/
26: :: skip -> node = Destination /*acts as origin node*/
27: :: skip -> node = Intermediate /*acts as origin node*/
28: fi;
29: }
30:
31: anit {
32: run nodes();
33: }

a proposition becomes just a matter of verifying the state of a variable. For example, the LTL

formula to verify if the protocol fails to deliver a message could be:
[| (MfailDeliveryMessage && PathExists)

5.2.1 Case study results

Using the technique and incrementing slowly the complexity of the model presented in Algorithm
2, one can find a series of errors in the OLSR protocol, some presented here. Table 5.2 presents
the sizes of SPIN verification for different OLSR built models. It is important to highlight again
that neither formal verification nor testing can guarantee that the system is perfect [11]. Indeed,
we do not intend, by no means, to claim that the errors presented here are the only ones present
in the protocol specification. However, what we do claim is that, for sure, at least these ones
exist. As proposed in [8] the algorithm to recalculate the routing table, first cleans the entire
routing table prior rebuilding it. It is not clear in the original work how this procedure is done;
actually this can be seen as an incompleteness of the protocol description. However, if a data
packet arrives at this time OLSR may raise an error because there will be no route available and
the packet may be even discarded. This spin trace for this case is depicted by the trace at the
Appendix, subsection "Trace - LTL:||!dm, distinct case”.

5. CASE STUDY 44

Implementation | Depth | # States | # Transitions | Memory usage (MB)

reached stored for states
First version 7 34 46 0.003
Second version 10 55 67 0.003
Third version 18 637 637 0.033
Fourth version 37 61469 96637 3.442
Last version 89 | 2245174 3533252 196.987

Table 5.2: Sizes of the OLSR built models

Other problem that occurs in the OLSR specification is that, when a message arrives in a
node, just after the link is marked as unidirectional instead of bidirectional, the control messages
may be discarded. With this, possibly, not all two hop neighbors will receive such message. The
problem here is that authors argue that the MPR nodes are enough to guarantee that all two-
hop neighbors will receive the control messages, once they represent the minimum set to cover
all two-hop away nodes. This statement may not hold if, for any reason, a node stops to act as
MPR. In this case part of the network may be uncovered until another node takes its place.

Authors also argue that OLSR is resilient to a message loss. However, the protocol removes
old entries from its tables if they are not refreshed in a defined amount of time. If the update
message is lost, even if the route is still valid and able to deliver messages, the entry may be
removed.

The last two OLSR problems presented here are the following. It has no explicit control for
counter overflow stated on the main paper [33]. Thus, whenever a counter overflow occurs, the
older information is kept on the routing tables instead of newer ones. This situation holds at
least until the information entries are discarded by aging. This apparently is not an important
problem, although, it can lead to another more serious problem that is a routing loop, at least
for a short amount of time. The loop case may befall if a conjunction of over-flow and message

lost situations occur leading to inconsistent routing tables among nodes.

Chapter 6

Application to LAR and DREAM

Protocols

To validate the methodology, we use three different routing protocols for MANETs: LARI,
LAR2 [7] and DREAM [6].The first two algorithms are geographic routing protocols and the
last one is a link state based protocol. Such algorithms were chosen to show the usefulness of the
methodology. The first two algorithms are well-established geographic routing algorithms with
some well-known flows. The idea behind this is to know whether the methodology can be applied
to geographic routing protocols, ignoring the node position, and whether the methodology is able
to, at least, detect the known flows of such algorithms. Another point about these protocols
is that they are flooding-based ones. We wanted to make sure our technique really works with
this class of algorithms as well. On the other hand, OLSR is a well-known and cited algorithm,
which became an RFC [16], and uses a completely different routing approach.

Without exception all evaluated protocols, LAR1, LAR2, DREAM and OLSR, presented
problems. Some of them are well known, such as the inability of both LAR and DREAM to find
an existing route. However, others such as the presence of a loop on both DREAM and LAR2,

in the best of our knowledge were not previously known for these algorithms.

6.1 Evaluated Routing Protocols

The Location-Aided Routing (LAR) [7] routing protocol has two different variants, LAR1 and
LAR2. Both are geographic routing algorithms but working in a quite different way. LARI
defines a rectangular requesting zone defined by the two extreme points of the following diagonal:
the sender position and the old destination position including a circular expected zone of this
node. Inside the requesting zone the packets are flooded to reach the destination. In LAR2,
instead of a rectangular expected zone, every node, when receives a message, calculates its own
distance from the destination and verifies if such distance is greater than the one from the
previous node, considering a d threshold. If this distance is greater, the packet is discarded, if
not the packet is forwarded.

The Distance Routing Effect Algorithm for Mobility (DREAM) [6] is based on two simple

observations, distance effect and mobility rate. When a node needs to send a message to any

45

6. APPLICATION TO LAR AND DREAM PROTOCOLS 46

other node, it verifies the position, velocity and information time of the destination node on
its own routing table. With these the source node estimates the area where the node is and
calculates the angle a, which defines the destination node expected reachable zone. With this
expected zone the source defines a triangular region between its position and the tangents to
the expected zone. Then it sends a unicast message to the nodes within that region, which in

their turn repeat the same procedure until the message reaches the destination.

6.2 Modeling

The properties verified in this work where loop occurrence, valuable packet dropped and packet
not delivered. Each one of such properties was modeled as boolean variables and the occurrence
or not of the property was the LTL formula verified. The scenarios were small and occupied
from 1.4 to 1.6 MB of space for each property verified. All verifications used the default SPIN
hash table state size, which is 218. The stored or reachable states for the protocols, with the
verified properties, varied from 91 to 2489. The maximum longest depth-first search path for
the verified properties varied from 17 to 90 steps. These data are indicative of how tractable

the models became.

6.3 Results

Among the design errors found using the methodology we report: (i) fail to deliver messages in
LAR1, LAR2 and DREAM, even though all three protocols use controlled flooding to deliver
messages, (ii) loop scenarios in LAR1, LAR2 and DREAM, somehow unexpected for geographic
routing algorithms; (iii) fail to deliver messages in OLSR, when a message arrives during a routing
table recalculation; (iv) discard newer table information in OLSR and (v) control messages
discarded in OLSR. Table 6.1 presents the sizes of the SPIN verificarion for the models of the
verified algorithms.

Figure 6.1 shows a scenario where LARI fails to deliver a message, although there is a path
between source and destination. This error will occur in LARI whenever the only path available
to the destination passes outside the requesting zone, this was an already known failure that was
confirmed through the use of the methodology. Figure 6.2 shows the scenario where the same
deliver a fail happens for LAR2. For LAR2 the error occurs if any node in the path is farther
from the destination than the previous one. This error was well known for LAR,however, this
fail can occur also in DREAM, Figure 6.4, if the path is not inside the expected zone and this, in
the best of our knowledge were not known for DREAM. In LARI the delivery failure may occur
if there is a path outside the expected zone and no path inside it. This is interesting because
even doing a flooding there is no guarantees that LAR or DREAM will effectively deliver a
message. Another identified situation where LAR1 may fail delivering a message is when the
expected zone and the origin node are aligned. When this occurs few, or no nodes at all, are
found inside the expected zone, and, thus, the packet is lost.

In a broader point of view all three protocols may fail delivering messages because route

concavity. In other words, if the only viable route passes through a node and this node is far

6. APPLICATION TO LAR AND DREAM PROTOCOLS 47

=

stination

:
¥

oufce u
equest Zone .
. Ignored MESS&QE q _____________*Poss|b|e Pa‘lh

Figure 6.1: Delivery failure in LAR1 when a path it is available, problem detected by the
methodology

-3 Possible Path

—— Chosen Path : Destination

Figure 6.2: Delivery failure in LAR2, when a path it is available, problem detected by the
methodology

from the destination than the previous one this path is discarded and the message will never
reach the destination.

Figure 6.3 shows the loop scenario in LAR2. This situation occurs when all nodes are at
the same distance from the destination, considering § as a distance threshold. In this case the
message will be forwarded from node to node indefinitely.

The loop on LARI occurs whenever the time during which a packet is retransmitted inside
the requested zone is greater than the time nodes keep track of the transmitted packets.

The loop on DREAM, Figure 6.4, can occur if the search angle is greater than 90o. The
path may not converge and loops are possible. This is somewhat unexpected as DREAM authors
claim their algorithm being loop free [6]. This just reinforces the need of formal verification for

routing protocols.

6. APPLICATION TO LAR AND DREAM PROTOCOLS 48

.\.

£

Figure 6.3: Loop detected in LAR2, when a path it is available, and all nodes are in the § region
in a near circle

-~ Possible Path Destination
—— Loop Path Q o5

. Source

Figure 6.4: Loop and delivery failure discovered in DREAM when a series of nodes are in the
angle of dissemination is big enough

Implementation | Depth | # States | # Transitions | Memory usage (MB)

reached stored for states
DREAM 15 76 95 0.005
LAR 58 45529 52369 4.189
OLSR 37 61469 96637 3.442

Table 6.1: Sizes of the built models for the different algorithms

Chapter 7

Virtual Access Points For Vanets

The same method used to verify the routing protocols for wireless networks was also used to
verify another kind of protocol, a cache like one. This protocol is specified for vehicular networks
and intends to provide access to nodes in areas without access points. The work is also described
in [62]. The verification of this protocol is important as it shows the potential of the technique.
The previous works on this field focus mainly in routing protocols, which are important, but
by far not the only kind of protocol and algorithm designed for wireless networks. The VAP
protocol itself is not part of the contributions for this thesis, but we used our formal development
technique in the development of the protocol, what greatly helped its development.

The network access on roads is normally provided by hot points, called Access Points (AP)
installed in restaurants or gas stations. Such hot points even though providing a valuable service
are not, even by far, enough to provide complete coverage to roads. Given the costs to cover the
whole transport network one can expect that this situation will not change in the next few years.
To make the access problem even worse the nodes in the network, the vehicles, are typically in
high velocity, so the time node spend really connected, even in covered areas is small, this time
is normally in the scale of few seconds. However, the need to be connected is increasing more
and more, to the point that some people became dependent of this network connection. This
chapter presents a simple, yet powerful, technique to provide coverage to nodes outside the hot
spots areas.

Many solutions have being proposed to solve the roads uncovered problem, among them, the
use of more powerful access points, satellite coverage, mobile APs [52], caches, among others.
This proposal is related to the last one, caches. The first approaches, even though important
and valid, have basically two problems that this work wants to avoid, scalability and cost. The
cost to fill roads with access points, mainly mobile ones, is prohibitive. The satellite coverage,
although important, simply does not scale for massive uplink/downlink communication. This
approach, based on the cache solution, intends to provide a simple and inexpensive way to
increase the coverage of VANETs.

The whole point of this work is to make nodes cooperate, in a coordinated way, to increase
the network coverage area. Nodes that receive messages from the APs or from other nodes, act
as a Virtual Access Points (VAP) to other nodes in specific non covered areas. In this way nodes,
collaboratively, help to spread packets in areas that had previously no traffic. The technique is

based in a cache approach, so the VAP can not guarantee that all packets will be delivered, it

49

7. VIRTUAL AccEss PoOINTS FOR VANETS 50

is a best effort technique. Some of the applications that can heavily benefit from the technique
introduced here are road information and tourist aid systems and stream based traffic.

A key aspect of our approach is how nodes cooperate, in a coordinated way, to increase the
network coverage area. The mobile nodes cache messages originating from the APs, and are able
to act as a VAP to other nodes in specific non covered areas. Thus, the nodes, collaboratively,

help to forward packets to areas that had no traffic previously.

7.1 Related Work

The area of vehicular communication is a very prolific one. Many kinds of different techniques
and target applications have been studied. This work focus in regular push based communication,
where the user traffic demand is big, but, typically, not real time. We consider the basic multiple
Infostation model introduced by Goodman et al. in [48] as the model to be followed here,
however, we will refer to the Infostations as Access Points (APs).

The main objective of this work is to provide access to areas out of the coverage of APs.
A very interesting work with similar objectives is the SPAWN system, introduced by Gerla et
al. [45, 46]. In these, the authors discuss how vehicles should interact to accommodate swarming
protocols, such as BitTorrent traffic. In SPAWN, the nodes passing through APs collect data
that they subsequently exchange among nearby nodes. As opposed to our system, SPAWN
focuses on a restricted application that generates great volumes of traffic. Nodes are required
to carry possibly useless to them traffic and the BitTorrent protocol is bandwidth intensive.
Moreover, the number of retransmissions of a message in a vehicular network is estimated to
be approximately 3 and so our gain from using the swarming protocol in this environment is
non-optimal.

The Data Mule project [47] and the Message Ferrying scheme [60], designed for sensor net-
works, propose the use of mobile nodes to collect data from the sensors, buffer it, and deliver the
collected data to a sink. As opposed to these works, we consider the problem not of retrieving
data from the nodes, but of disseminating it to them. The MULEs (Mobile Ubiquitous LAN
Extensions) and ferries utilize nodes navigating through the sensor network to collect data in
mobile caches. According to the Data Mule project, all the nodes are fixed and only the cache
is mobile. On the contrast, in our scenario all nodes are mobile but we cannot affect their
trajectories.

Message Ferrying also considers mobile nodes but in that approach, as well as in [50, 51], the
nodes are required to follow specific paths and even move in order to help message delivering.
The work presented in [51] proposes a multicast protocol for the highway environment where
information dissemination though message flooding for VANET environments is proposed. Our
proposal advocates that using of a more systematic approach for data dissemination, which is
more bandwidth efficient.

Zebranet [61] uses Zebras to carry historical data to the sink. In this project latency is not
important. However, the most important differences are that the network is extremely sparse,
the nodes are not moving in roads, their speed is limited and when two nodes meet, we consider

there is enough time to exchange larger volumes of information.

7. VIRTUAL AccEss PoOINTS FOR VANETS 51

Figure 7.1: A road coverage vision

Chen et al. [49] study network delay as a function of the number of cars and their velocity.
The authors note that node mobility on highways can improve end-to-end transmission delay
when messages were relayed. Furthermore, that low density networks may experience higher
delays. These results are directly related to our work. VAPs locations should be selected so that
information is not too widely spread and messages of time sensitive applications can reach their
destinations in time.

An appealing solution to the problem, but more expensive and probably hard to implement,
is the system proposed by Gavrilovich in [52]. In this work, to compensate for the velocity of
the cars, the authors propose the creation of a chain of mobile APs on the center of the highway.

Their role is to increase coverage and compensate for the high velocity of cars on the highway.

7.2 The protocol

One of the biggest problems for mobile access is the lack of covered areas. The technique
presented here intends to decrease the impact of such areas in a less intrusive way as possible.
Basically the Virtual Access Point is a regular node, that when reach a predefined region, not
covered by any AP, broadcasts the last messages received and stored into its buffer to the nearest
nodes. As shown in Figure 7.1 the VAP increases the coverage to regions not previously covered
by any regular APs. The main idea is that the mobile nodes receive the information they need
independently of which node is providing it. We want the VAP to be, transparent for the nodes
receiving the communication. The important thing is the information and not who is providing
it, if a real AP or a VAP. In this way there is no difference in the downlink protocol from the
AP and the VAP.

The regions where the nodes start to act as a VAP are chosen over the uncovered areas. The
spots can be dynamically assigned, depending on the last AP position or fixed specified. The
first one is more flexible, but the second one is easier to implement and is potentially closer to
the optimal. If a node is passing through an area that is assigned as a VAP one, it listens the
medium to see if there is no other node acting as a VAP in the region. If there is no one, the
node starts to act as a VAP broadcasting the messages stored in its buffer. The mobile nodes,
store the received messages in a buffer. The messages in this buffer are the ones shared if the
mobile node decides to act as a VAP. The node act as a VAP just for a defined amount of time,
the VAP is more valuable if the nodes that pass through the area act as VAP in rounds. This

helps to keep the information fresher and it is fairer in relation to the use of nodes resources.

7. VIRTUAL AccEss PoOINTS FOR VANETS 52

7.3 Protocol analysis

We assume that there is a finite set of objects, and that each time, each mobile node needs
a subset of them. Such a subset can be the empty set or contain a number of objects, where
each of them is associated with a deadline specified by the node. The deadline is the time after
which the object is no longer needed and the query is dropped. When the node passes through
roadside Access Points, it can query for objects and receive them with the answer, as well as
overhear answers to queries of other nodes and objects that are proactively pushed by the AP.
A cache is used to temporarily store objects for future queries. Whenever a node acts as VAP,
it forms a program of cached objects to push to nearby vehicles.

The method works in a best-effort manner, there is no guarantee that the VAP will help
nodes to receive all the messages they were meant to receive, but the VAPs are trying their best
to accomplish it. In terms of exchanged messages, as expected, the VAP surely increase the
number of exchanged messages among the nodes once now they are connected even in areas not

covered by regular APs. The upper bound increase in the number of sent messages is given by:
nEM =nV AP x BS (7.1)

where nEM is the number of exchanged messages, nVAP is the number of Virtual Access points,
and BS is the Buffer Size. Unfortunately not all received messages are useful for every node and
the duplicate or old objects are discarded. The number and locations of the VAPs will greatly
affect the systems performance. The data and latency of messages broadcasted on each a VAP
depend on the distance from the originating APs.

The location of VAPs is also a sensitive parameter. A great concentration of VAPs near APs
helps the dissemination of new information that the mobile nodes just received from the AP.
Nodes moving towards an AP and passing through a VAP will receive messages that this AP
has recently transmitted by nodes exiting the AP, and thus the effective range of this AP will
be extended. However, in VAPs situated far from any AP, when the role of VAP is assumed
by nodes that have not recently passed through any AP, the objects transmitted will be older,
possibly less useful to receiving nodes. The further from APs a node is, the greater is the
probability it will receive old and duplicated data, the points in between APs being the most

likely candidates for such areas.

7.3.1 Methodology Application

We used our verification method to develop and evaluate the proposed technique. Our goal
was to verify if the protocol is loop free. At first sight the protocol is loop free, however we
discovered it may present loops. A loop scenario may occur when the relative velocities of the
nodes are not equal. For example, considering the Figure 7.1, the simplest loop scenario occurs
in the following case: node (A), acting as VAP in the point one, transmits the message M1 that
is received by the node (B). Considering node (B) faster than node (A) and starting to act as a
VAP at point two, it can transmit message M1, received by node (A). This characterizes a loop,
and is one of the reasons why messages need to be equipped with unique IDs. Once the node

(A) receives a duplicated message, identified by the ID, the node discards the message, indeed

7. VIRTUAL AccEss PoOINTS FOR VANETS 53

preventing the loop formation.

Another kind of message loop is present, and in fact is even desirable. Again, consider
Figure 7.1, take the node (A) acting as a VAP in the lane 1, a message M1 sent can reach the
node (C), going in the opposite direction in the lane 2. At some point in the future the node
(C) start to act as a VAP and retransmits the message M1 that is received by the node (D)
in the lane 1. If node (D) does not have the message, it is stored and will be retransmitted in
the future in case node (D) becomes a VAP. However notice that this case is not a loop in the
conventional sense, once the nodes involved are different. Other point to observe is that this
kind of loop is even desirable once it helps spreading messages over the region. The buffer favors
newer messages, so older messages are ignored and removed from the buffer.

The protocols description allows for concurrent transmission. It is possible for two nodes to
start acting as a VAP at the same time, when they are passing through the same region. This
could become a problem since VAPs send messages using broadcast and the signal of the two
VAPs will interfere with each other. For the simulation results we consider that the MAC layers
mechanisms handle this, either using CSMA-CA protocol, like the one described for the IEEE
802.11 networks, or a scheduler, as it is the case for IEEE 802.16 networks. In any case the
worst thing that will happen is a waist of bandwidth due concurrency or even collision.

As stated before, the technique is a best effort kind. There is no guarantee the mobile nodes
will receive all the messages needed to fill their buffers, or even that they will receive any message
at all. It may happen that a node traverses the entire path from one AP to the other without
receiving any message from other VAPs. This may happen in case the node is unfortunate
enough to not be inside the VAP range of other nodes acting as VAP, or when the node itself is
acting the VAP, and thus is not receiving messages from other VAPs. These situations are more

likely to occur in sparse networks.

7.3.2 Virtual Access Points for Stream Based Traffic Dissemination

We also extended the VAP protocol to handle stream based traffic and applied the VAP concept
in a city environment. In this section we discuss how, and to what extent, VAPs can enable
streaming on a highway or a city environment.

Figure 7.2 and Figure 7.3 demonstrates typical histograms of messages received in a 2Km
simulated square of Washington DC and a highway segment respectively. Observe that VAPs
provide a much more homogeneous and less intermittent distribution extending the areas where
mobile nodes receive messages. The VAP technique was first designed to be used in road like

environments, but as shown in Figure 7.2 metropolitan environments can too benefit from it.

7.3.2.1 Virtual Access Points for stream

The VAP protocol is basically the same one defined in the previous sections. The main focus of
the VAP technique is to decrease the areas not covered by roadside APs so as to minimize the
problem of intermittent access to mobile nodes. If we decrease this problem, then stream traffic
for mobile users may be enabled.

The MAC control, again, is done by the lower layers, but when a node senses another node

acting as VAP in the same region, it gives up being a VAP, even if it lies in the area it could

7. VIRTUAL AccEss PoOINTS FOR VANETS 54

Received messages without VAPs, city

2000

Received messages with VAPs, city

2000

Figure 7.2: Typical receiving messages map for a 50 APs city scenario, we can see how VAPs
allow us to connect existing “connectivity isles”

act as one. Therefore, the first node to broadcast VAP messages in a given region becomes the

VAP. Nodes are not allowed to act as VAPs during two consecutive time intervals.

7.3.2.2 Analysis

The data stream is generated in a constant bit rate (CBR). At each second 1, 2 or 3 packets are
generated from a source and spread through all antennas, which are then in charge of broad-
casting the stream message to their neighbors. Each message is transmitted from each antenna
just once. Every mobile node has a limited size buffer where it stores the last received messages.
During cache replacement the oldest stream message, with lower stream ID, is discarded first,
regardless if it was the last one to be received or not.

All the observations from the previous section holds in the case of streaming transmission.
The system is a best effort one; there are no guarantees that every node will receive all stream
packets, but using VAPs, we aim to increase the chances for timely reception. Note that the VAPs
increase significantly the overall number of messages in the network; however, this increase occurs
in areas with no previous coverage, so they create no significant interference with the normal

network behavior. The number and locations of the VAPs greatly affect the system performance.

7. VIRTUAL AccEss PoOINTS FOR VANETS 55

Received messages without VAPs, road

70
&0
50

30
20
10

5008

Received messages with VAPs, road

uu&‘

Figure 7.3: Typical receiving messages map for a 5 APs road scenario

Consequently, the role of VAP is assigned dynamically. Based on the nodes mobility pattern

and distance from any APs, the nodes autonomously decide if they should act as a VAP.

7.3.3 Methodology Application

Interestingly the changes, in the model of the information source, stream vs implicit queries,
had no impact in the model. All the previous cases of loops, lost messages and non-receiving
messages continue to happen independently of the kind of traffic. However, we did change the
way nodes perceive there are and VAPs around. This modifications on the model, ensured, if

the lower levels work correctly, the inexistence of duplicated VAPs at the same area.

7.4 Remarks

This chapter introduced a simple yet powerful technique to increase network coverage for VENET
networks. The technique is effective in increasing the packet reception rates with effectively no
overhead on the AP regions. The formal verification of the technique provided useful insights of

the protocol during its developing phase and indeed helped in the protocol development.

Chapter 8

Conclusions

Formal verification is a promising technique to validate algorithms for wireless networks. Dif-
ferently of what someone can think the application of formal verification techniques in the
development of new algorithms may be easy and still help increasing the quality of the in devel-
opment protocols. The techniques presented here are a good start point for people who want to
follow the research on this field or at least apply formal verification on their own algorithms.

The method presented here is robust and useful to confirm the existence of problems in
algorithms and even to find new ones. With it, we were also able to verify flooding based
protocols, which, in general, become a problem for other techniques because the state space
explosion [16]. The topology abstraction, channel and information modeling showed to be an
effective and reliable form to build verification models for routing algorithms.

However, the current version of the method does not help determining the protocol limits.
Other problem is that the error scenarios must to be manually evaluated by the designer who
also needs to determine the sources of such errors. Currently, we are working on extensions of
this technique to other protocols and building a library of verified procedures that can be used
to create more reliable protocols in the future. The protocol verification built on top of such
procedures, may simplify the work of protocol designers and grant more reliable protocols in the

future.

8.1 Directions for Future Research

The formal verification technique applied to algorithms for communication in wireless networks
is a quite unexplored field yet, and therefore there are many opportunities for new research.
Indeed, the field is in need of more specific techniques and tools.

Until this moment, at the best of our knowledge, no attempt was made trying to apply equiv-
alence checking techniques in the verification of communication protocols for wireless networks.
Equivalence checking is a powerful technique and may be extremely helpful in the development
and mainly in the evolution of wireless routing algorithms.

Every new communication algorithm is a target for the techniques already developed. The
verification of newer algorithms often reveals crucial failures that, if corrected earlier, can lead
to more stable and trustable algorithms.

In terms of individual proposals, the work of Musuvathi et al. [40] has a huge merit in the

56

8. CONCLUSIONS 57

sense it presents a different and, in some terms, more practical approach. Verifying directly
the algorithm code, instead models, may be an interesting and promising path to follow in the
verification field. Advances in this kind of verification technique would have a wide applicability.

The work of Chiyangwa and Kwiatkowska [3] has also a remarkable value in the way it limits
the verification scope and targets very specific limit problems. Such kind of approach may be
interesting and applicable for other problems and situations. A good and valuable work, apart
from expanding the existing one and applying it to other algorithms, could define a list of general
situations and limits where one can use this kind of technique.

The mixing of the existent tools and approaches, for example the work of Obradovic et
al. |2, 14], is also often interesting. One should use the techniques and tools that better suits its
needs mix the use of tools using the right ones to prove the target characteristic is a valuable
guideline.

Routing is a key aspect for the network and, mainly for wireless networks, security is a key
aspect, and the work of Acs et al. [42] points this need. The verification of security aspects of

routing protocols for wireless networks is also a promising research field.

APPENDIX A

Appendix A - PROMELA Codes

A.1 OLSR - Verification Code, first version

#define nnodes 3 /* Intermidiates + Origin + Destination */

chan medium = [nnodes] of { mtype, byte, byte };

mtype = { Hello, TopologyControl, DataPacket };
mtype = { Origin, Destination, Intermediate 1};

bool packt = false;

proctype nodes() {
bool ttl;
byte type;
byte node;

/*build the packetx*/

if
:: skip -> ttl = true /* reached the TTLx*/
:: skip -> ttl = false /* not reached the TTLx*/
fi;
if
:: skip -> type = Hello
:: skip -> type = TopologyControl
:: skip -> type = DataPacket
fi;

medium!type(ttl);

if /*threat packet*/

skip -> node = Origin /*acts as origin nodex/

skip -> node = Destination /*acts as origin nodex/

skip -> node = Intermediate /*acts as origin nodex/

fi;

printf ("###Pkt_type:%d ttl=/d ", type, ttl);

init {

run nodes();

APPENDIX A

99

A.1.1 Spin Output - No error

hint: this search is more efficient if pan.c is compiled -DSAFETY

(Spin Version 4.2.9 -- 8 February 2007)

+ Partial Order Reduction

Bit statespace search for:

never claim (none specified)

assertion violations +

acceptance cycles (not selected)

invalid end states +

State-vector 32 byte, depth reached 7, errors: O
34 states, stored
12 states, matched
46 transitions (= stored+matched)

0 atomic steps

hash factor: 246724 (best if > 100.)

bits set per state: 3 (-k3)

Stats on memory usage (in Megabytes):

0.002 equivalent memory usage for states
(stored*(State-vector + overhead))

.049 memory used for hash array (-w23)
.040 memory used for bit stack

.320 memory used for DFS stack (-m10000)
.065 other (proc and chan stacks)

.100 memory lost to fragmentation

= O O O O

.573 total actual memory usage

unreached in proctype nodes
(0 of 25 states)

unreached in proctype :init:
(0 of 2 states)

APPENDIX A 60

A.2

#tdef

mtyp

mtyp
chan

byte
byte
byte
byte
byte

OLSR - Verification Code, second version

ine nnodes 3 /* Intermidiates + Origin + Destination */
e = { Hello,TopologyControl, DataPacket };
e = { Origin, Destination, Intermediate };
medium = [nnodes] of { mtype, byte, byte, bool };
origin;
destination;
ttl; /* Msg time to live */
type; /* Packet type */
node;

proctype network() {

medium?type (origin,destination,ttl);

if

fi;

init

at

3/

/*threat packetx*/

(true) -> node = Origin /*acts as origin node*/

(true) -> node = Destination /*acts as origin nodex*/

(true) -> node = Intermediate /*acts as origin node*/

3

{

omic {

origin 0;

destination 2;

if
(true) -> ttl = true /* reached the TTL*/
(true) -> ttl = false /* not reached the TTLx*/
fi;
if
(true) -> type = Hello
(true) -> type = TopologyControl
(true) -> type = DataPacket
fi;

medium!type(origin,destination,ttl) ->
printf("-> Type: %d Origin: %d destination: %d ttl: %d\n",
type, origin,destination,ttl);

* atomic */

APPENDIX A

61

run network()

APPENDIX A

62

A.2.1 Spin Output - No error

hint: this search is more efficient if pan.c is compiled -DSAFETY

(Spin Version 4.2.9 -- 8 February 2007)

+ Partial Order Reduction

Bit statespace search for:

never claim (none specified)

assertion violations +

acceptance cycles (not selected)

invalid end states +

State-vector 36 byte, depth reached 10, errors: O
b5 states, stored
12 states, matched
67 transitions (= stored+matched)

9 atomic steps

hash factor: 152520 (best if > 100.)

bits set per state: 3 (-k3)

Stats on memory usage (in Megabytes):

0.003 equivalent memory usage for states
(stored*(State-vector + overhead))

.049 memory used for hash array (-w23)
.040 memory used for bit stack

.320 memory used for DFS stack (-m10000)
.065 other (proc and chan stacks)

.099 memory lost to fragmentation

= O O O O =

.573 total actual memory usage

unreached in proctype network
(0 of 10 states)

unreached in proctype :init:
(0 of 21 states)

APPENDIX A

A.3 OLSR - Verification Code, third version

/* Assertions to test out */

#define T (test==true)

#define p (loop==true)

#define notp (loop==false)

#define dm (discardDataMsg == true)
#define dtc (discardTCMsg == true)
#define ut (updateTable == true)
#define unt (updateNTable == true)
#define umpr (updateMPR == true)
#define crt (changedRoutTab == true)

#define cr (calculateRoutes == true)

#define rr (removeunusedRoutes == true)

#define rm (resentlMsg == true)

#define ct (cleanTable == true)

/% Constants x/

#define true 1
#define false O
#define retranmission 9 /* (nnodes * nnodes)*/

#define nnodes 3 /* Intermidiates + Origin + Destination */

/* MESSAGE FORMAT */
/* type, origin, destination, TTL */

chan medium = [nnodes] of { mtype, byte, byte, bool };

mtype = { Hello, TopologyControl, DataPacket };

mtype = { Origin, Intermediate, Destination };
bool packt = false;

bool test = true;

byte myid; /* choose in a randomicaly way the node idx/

/* Control Variables */
byte origin_p; /* Origin of the message */

byte destination_p ; /* Destinatination of the message */

byte type; /* Packet type */

bool ttl; /* Time to Live of the messagex/

bool knowsDestination; /* represents a search at the node roting table */
bool newerTCinfo; /* If the info in the TC info is newer*x/

bool tmp;

APPENDIX A

/* Log Variables */

bool loop = false;

bool received = false;

bool discardDatalMsg = false;
bool discardTCMsg = false;
bool updateTable = false;
bool updateNTable = false;
bool updateMPR = false;

bool changedRoutTab = false;
bool calculateRoutes = false;
bool removeunusedRoutes = false;
bool resentMsg = false;

bool cleanTable = false;

proctype networkl() {
/* Choosing randomly my ID. %/

if
(true) -> myid = Origin
(true) -> myid = Intermediate
(true) -> myid = Destination
fi;
/%
* recelve the message
*/

medium?type(origin_p,destination_p,ttl);

/* DEBUG %/
printf("-> NET: Pkt_type:%d Origin:}%d Destination:%d TTL:%d Myid:%d \n",
type,origin_p,destination_p,ttl,myid);

endl11:if /* I am the origin */
(myid == Origin) -> loop = true ;

/* I am the destination */
(myid == Destination) ->
endl12: if
(type == DataPacket) -> received = true;
fi;

APPENDIX A

65

/* I am the intermiate node */

(myid == Intermediate) ->

end13: if
(type == Hello) ->
updateNTable = true;
updateMPR = true;
(type == TopologyControl) ->
endl14: if
(newerTCinfo == false) ->
discardTCMsg= true;
11 else ->
cleanTable = true;
updateTable = true;
fi;
(type == DataPacket) ->
end15: if
(knowsDestination == false) ->
discardDataMsg = true;
:: else ->
resentMsg = true;
fi,;

fi; /* Im the intermediate */

fi; /* packet type */

init {

atomic {

/* initialize node variables */

if /* routing table hit/miss */

(true) -> knowsDestination = true;

(true) -> knowsDestination = false;

fi->

if /#* TC message info newer or older */
(true) -> newerTCinfo = true;
(true) -> newerTCinfo = false;

fi->

if /*build the packet*/

APPENDIX A 66

:: packt == false -> packt = true->
/*
* We have fixed the Origin and
* the Destination to simplify
* the model and its analysis.
*/

origin_p

Origin;

destination_p = Destination;

if
(true) -> ttl = true; /* reached the TTL */
(true) -> ttl = false; /* not reached the TTL */

fi->

/*

* Choosing a random value to the Packet Type

*/

if
(true) -> type = Hello;
(true) -> type = TopologyControl;
(true) -> type = DataPacket;

fi;

fi; /* Build the packet */

/* put the message ito the channel */

medium!type(origin_p,destination_p,ttl);

/* DEBUG */
printf ("-> INIT: type:%d Origin:%d Destination:%d TTL:%d ",
type, origin_p, destination_p, ttl) ->

} /*atomic*/

run network1();

APPENDIX A

A.3.1 Spin Output - No error

hint: this search is more efficient if pan.c is compiled -DSAFETY
(Spin Version 4.2.9 -- 8 February 2007)

+ Partial Order Reduction

Bit statespace search for:

never claim

(none specified)

assertion violations +

acceptance cycles (not selected)

invalid end states +

State-vector 36 byte, depth reached 18, errors: O
637 states, stored
0 states, matched
637 transitions (= stored+matched)

42 atomic steps
hash factor: 13168.9 (best if > 100.)
bits set per state: 3 (-k3)

Stats on memory usage (in Megabytes):

0.033 equivalent memory usage for states
(stored*(State-vector + overhead))

1.049 memory used for hash array (-w23)
0.040 memory used for bit stack

0.320 memory used for DFS stack (-m10000)
0.070 other (proc and chan stacks)

0.095 memory lost to fragmentation

1

.573 total actual memory usage

unreached in proctype networkl
(0 of 41 states)

unreached in proctype :init:
(0 of 37 states)

A.3.2 Spin Output - Error found, Supertrace Mode

warning: for p.o. reduction to be valid the never claim must

be stutter-invariant

(never claims generated from LTL formulae are stutter-invariant)
depth 0: Claim reached state 5 (line 175)

pan: claim violated! (at depth 28)

APPENDIX A

68

pan: wrote pan_inl.trail
(Spin Version 4.2.9 -- 8 February 2007)
Warning: Search not completed

+ Partial Order Reduction

Bit statespace search for:

never claim +

assertion violations + (if within scope of claim)
acceptance cycles + (fairness disabled)

invalid end states - (disabled by never claim)

State-vector 40 byte, depth reached 32, errors: 1
389 states, stored
43 states, matched
432 transitions (= stored+matched)

28 atomic steps

hash factor: 172516 (best if > 100.)

bits set per state: 3 (-k3)

Stats on memory usage (in Megabytes):

0.022 equivalent memory usage for states
(stored*(State-vector + overhead))

8.389 memory used for hash array (-w26)
0.400 memory used for bit stack

3.200 memory used for DFS stack (-m100000)
0.111 other (proc and chan stacks)

0.094 memory lost to fragmentation

12.194 total actual memory usage

unreached in proctype networkl

(0 of 41 states)

unreached in proctype :init:

(0 of 37 states)

unreached in proctype :never:

line 180, "pan. ", state 8, "-end-"

——— 2

(1 of 8 states)

APPENDIX A 69

A.3.3 Trace - LTL : [|ldm

preparing trail, please wait...done
Starting :init: with pid O
spin: warning, "pan_in", global, ’bit test’ variable is never used
spin: warning, "pan_in", global, ’bit tmp’ variable is never used
spin: warning, "pan_in", global, ’bit loop’ variable is never used
spin: warning, "pan_in", global, ’bit received’ variable is never used
spin: warning, "pan_in", global, ’bit discardDataMsg’ variable is never used
spin: warning, "pan_in", global, ’bit discardTCMsg’ variable is never used
spin: warning, "pan_in", global, ’bit updateTable’ variable is never used
spin: warning, "pan_in", global, ’bit updateNTable’ variable is never used
spin: warning, "pan_in", global, ’bit updateMPR’ variable is never used
spin: warning, "pan_in", global, ’bit changedRoutTab’ variable is never used
spin: warning, "pan_in", global, ’bit calculateRoutes’ variable is never used
spin: warning, "pan_in", global, ’bit removeunusedRoutes’ variable is never
used
spin: warning, "pan_in", global, ’bit resentMsg’ variable is never used
spin: warning, "pan_in", global, ’bit cleanTable’ variable is never used
spin: couldn’t find claim (ignored)

2: proc O (:init:) line 118 "pan_in" (state 3) [(1)] <

2: proc O (:init:) line 118 "pan_in" (state 4) [knowsDestination = 0]
3: proc O (:init:) line 122 "pan_in" (state 7) [(1)] <

3: proc O (:init:) line 122 "pan_in" (state 8) [newerTCinfo = 1]

4: proc O (:init:) line 127 "pan_in" (state 13) [((packt==0))] <

4: proc O (:init:) line 127 "pan_in" (state 14) [packt = 1] <

4: proc O (:init:) line 133 "pan_in" (state 15) [origin_p = Origin] <

4: proc O (:init:) line 134 "pan_in" (state 16)
[destination_p = Destination] <
: proc O (:init:) line 137 "pan_in" (state 17) [(1)] <
(:init:) line 137 "pan_in" (state 18) [ttl = 1]
(:init:) line 147 "pan_in" (state 27) [(1)] <
(:init:) line 147 "pan_in" (state 28) [type = DataPacket]
(:init:) line 152 "pan_in" (state -) [values: 1!DataPacket,6,4,1]

5
5: proc
6: proc
6: proc
7: proc
7: proc O (:init:) line 152 "pan_in" (state 33)
[medium!type,origin_p,destination_p,ttl] <
-> INIT: type:1 Origin:6 Destination:4 TTL:1 7:
proc O (:init:) line 155 "pan_in" (state 34)
[printf(’-> INIT: type:%d Origin:%d Destination:%d TTL:%d °’,
type,origin_p,destination_p,ttl)]
Starting networkl with pid 2
9: proc O (:init:) line 159 "pan_in" (state 36) [(run networki())]

APPENDIX A

70

11: proc
13: proc
15: proc
15: proc

1
1
1

1

(networkl) line 61 "pan_
(networkl) line 61 "pan_
(networkl) line 69 "pan_
(networkl) line 69 "pan_

in" (state
in" (state
in" (state

in" (state

[medium?type,origin_p,destination_p,ttl]
-> NET: Pkt_type:1 Origin:6 Destination:4 TTL:1 Myid:5

17: proc

1

(networkl) line 72 "pan_

in" (state

3) [(1)]
4) [myid = Intermediate]

-) [values: 17DataPacket,6,4,1]
9)

10)

[printf(’-> NET: Pkt_type:%d Origin:%d Destination:%d TTL:%d Myid:%d
\\n’,type,origin_p,destination_p,ttl,myid)]

19: proc
21: proc
23: proc
25: proc

1

1
1
1

(networkl) line 86 "pan_
(networkl) line 99 "pan_
(networkl) line 101 "pan_
(networkl) line 102 "pan_

27: proc 1 terminates

in" (state
in" (state
in" (state

in" (state

29: stop error, proc 1 (i=2) trans 40, Q

#processes: 1

29: proc

18) [((myid==Intermediate))]
30) [((type==DataPacket))]
31) [((knowsDestination==0))]
32) [discardDatalsg = 1]

0 (:init:) line 161 "pan_in" (state 37)

2 processes created

APPENDIX A

A.4 OLSR - Verification Code, two paralel messages version

/* Assertions to test out */

#define T (test==true)

#define p (loop==true)

#define notp (loop==false)

#define dm (discardDataMsg == true)
#define dtc (discardTCMsg == true)
#define ut (updateTable == true)
#define unt (updateNTable == true)
#define umpr (updateMPR == true)
#define crt (changedRoutTab == true)

#define cr (calculateRoutes == true)

#define rr (removeunusedRoutes == true)

#define rm (resentlMsg == true)

#define ct (cleanTable == true)

/% Constants x/

#define true 1
#define false O
#define retranmission 9 /* (nnodes * nnodes)*/

#define nnodes 3 /* Intermidiates + Origin + Destination */

/* MESSAGE FORMAT */
/* type, origin, destination, TTL */

chan medium = [nnodes] of { mtype, byte, byte, bool };

mtype = { Hello, TopologyControl, DataPacket };

mtype = { Origin, Intermediate, Destination };
bool packt = false;

bool test = true;

byte myid; /* choose in a randomicaly way the node idx/

/* Control Variables */
byte origin_p; /* Origin of the message */

byte destination_p ; /* Destinatination of the message */

byte type; /* Packet type */

bool ttl1; /* Time to Live of the messagex/

bool knowsDestination; /* represents a search at the node roting table */
bool newerTCinfo; /* If the info in the TC info is newer */

bool tmp;

APPENDIX A

/* Log Variables */

bool loop = false;

bool received = false;

bool discardDatalMsg = false;
bool discardTCMsg = false;
bool updateTable = false;
bool updateNTable = false;
bool updateMPR = false;

bool changedRoutTab = false;
bool calculateRoutes = false;
bool removeunusedRoutes = false;
bool resentMsg = false;

bool cleanTable = false;

[koke sk sk ok sk sk ok sk sk ok sksk ok ok sk sk ok o sk sk ok e sk sk ok ek sk sk e ok sk sk o ok
* Models the node’s behavior
* In this case with two variables it
* models the behavior of a node when
* handling two concurrent transmissions
**/
proctype networkl() {
byte typel; /* Packet type */
bool ttlil; /* Time to Live of the message*/

/* Choosing randomly my ID. */

if
(true) -> myid = Origin
(true) -> myid = Intermediate
(true) -> myid = Destination
fi;
/%
* receive the message
*/

medium?typel(origin_p,destination_p,ttll);

/* DEBUG */
printf("-> NET: Pkt_type:%d Origin:%d Destination:%d TTL:%d Myid:%d \n",
typel,origin_p,destination_p,ttll,myid);

APPENDIX A

73

endl11:if /+ I am the origin */

endl12:

end13:

endi14:

end15:

f

(myid == Origin) -> loop = true ;

/* I am the destination */
(myid == Destination) ->
if
(typel == DataPacket) -> received = true;
fi;

/* I am the intermiate node */
(myid == Intermediate) ->
if
(typel == Hello) ->
updateNTable = true;
updateMPR = true;
(typel == TopologyControl) ->
if
(newerTCinfo == false) ->
discardTCMsg= true;
:: else ->
cleanTable = true;
tmp = knowsDestination;
knowsDestination = false;
updateTable = true;

knowsDestination =tmp;

fi;

(typel == DataPacket) ->

if
(knowsDestination == false) ->
discardDataMsg = true;

:: else ->

resentMsg = true;

fi;

fi; /* Im the intermediate */

i; /* packet type */

/KK kKo ok ok ok ok kK ok ok ok ok KK R ok ok ok R Rk ok kKK

* Initialization Process Should be

* as random and as broad as possible

*************************************/

init {

APPENDIX A

74

atomic {

/* initialize node variables */

if /% routing table hit/miss */

(true) -> knowsDestination = true;

(true) -> knowsDestination = false;

fi->

if /* TC message info newer or older */
(true) -> newerTCinfo = true;
(true) -> newerTCinfo = false;
fi->

/*
* We have fixed the Origin and
* the Destination to simplify
* the model and its analysis.
*/

origin_p

Origin;

destination_p = Destination;

if
(true) -> ttl = true; /* reached the TTL */
(true) -> ttl = false; /* not reached the TTL */
fi->
/%
* Choosing a random value to the Packet Type
*/
if
(true) -> type = Hello;
(true) -> type = TopologyControl;
(true) -> type = DataPacket;
fi;

/* put the message ito the channel */

medium!type(origin_p,destination_p,ttl);

/* DEBUG x/
printf("-> INIT: type:%d Origin:%d Destination:%d TTL:%d ",
type, origin_p, destination_p, ttl)

APPENDIX A

70

if
(true) -> ttl = true; /#* reached the TTL */
(true) -> ttl = false; /* not reached the TTL */
fi->
/*
* Choosing a random value to the Packet Type
*/
if
(true) -> type = Hello;
(true) -> type = TopologyControl;
(true) -> type = DataPacket;
fi;

/* put the message ito the channel */

medium!type(origin_p,destination_p,ttl);
/* DEBUG */

printf("-> INIT: type:%d Origin:%d Destination:%d TTL:%d ",
type, origin_p, destination_p, ttl) ->

run networkl(); run networkl();

APPENDIX A 76

A.4.1 Spin Output - No error

hint: this search is more efficient if pan.c is compiled -DSAFETY
(Spin Version 4.2.9 -- 8 February 2007)

+ Partial Order Reduction

Bit statespace search for:

never claim

(none specified)

assertion violations +

acceptance cycles (not selected)

invalid end states +

State-vector 40 byte, depth reached 37, errors: O
61469 states, stored
35168 states, matched
96637 transitions (= stored+matched)

254 atomic steps

hash factor: 136.469 (best if > 100.)

bits set per state: 3 (-k3)

Stats on memory usage (in Megabytes):

3.442 equivalent memory usage for states (stored*(State-vector +
overhead))

.049 memory used for hash array (-w23)

.040 memory used for bit stack

.320 memory used for DFS stack (-m10000)

.174 other (proc and chan stacks)

.094 memory lost to fragmentation

= O O O O =

.676 total actual memory usage

unreached in proctype networkl
(0 of 44 states)

unreached in proctype :init:
(0 of 50 states)

A.4.2 Spin Output - Error found, Supertrace Mode

warning: for p.o. reduction to be valid the never claim must be
stutter-invariant
(never claims generated from LTL formulae are stutter-invariant)

depth 0: Claim reached state 5 (line 197)

APPENDIX A

pan:

claim violated! (at depth 58)

pan: wrote pan_inl.trail
(Spin Version 4.2.9 -- 8 February 2007)

Warning: Search not completed

+ Partial Order Reduction

Bit statespace search for:

never claim +

assertion violations + (if within scope of claim)

acceptance cycles + (fairness disabled)

invalid end states - (disabled by never claim)

State-vector 44 byte, depth reached 68, errors: 1
3999 states, stored
2091 states, matched

6090 transitions (= stored+matched)

19 atomic steps

hash factor: 16781.4 (best if > 100.)

bits set per state: 3 (-k3)

Stats

0.240
8.389
0.400
3.
0
0

200

.112
.093

on memory usage (in Megabytes):

equivalent memory usage for states (stored*(State-vector + overhead))
memory used for hash array (-w26)

memory used for bit stack

memory used for DFS stack (-m100000)

other (proc and chan stacks)

memory lost to fragmentation

12.194 total actual memory usage

unreached in proctype networkl

line 96, "pan. ", state 24, "discardTCMsg = 1"

——— 3

(1 of 44 states)
unreached in proctype :init:
line 126, "pan. ", state 11, "(1)"

_——— b

line 126, "pan. " state 11, "(1)"

——— 2

(1 of 50 states)

unreached in proctype :never:

line 202, "pan. ", state 8, "-end-"
(1 of 8 states)

——— b

APPENDIX A

78

A.4.3 Trace - LTL : [|ldm, distinct case

preparing trail, please

Starting :init:

spin: warning,

spin:
spin:
spin:
spin:
spin:
spin:
spin:
spin:
spin:
spin:

spin:

used

spin:
spin:

spin:

2:

w W w w N

warning,

warning,

warning,

warning,

warning,

warning,

warning,

warning,

warning,

warning,

warning,

warning,

warning,

couldn’t

proc

1 proc
: proc
1 proc
: proc

: proc

0

O O O O

0

Destination]

(G2 TG 2 S S S

6:

: proc
: proc
: proc

: proc

proc

O O O O

0

~ N ~

with pid 0

“pan_in",
"pan_in",
“pan_in",
"pan_in",
"pan_in",
"pan_in",
"pan_in",
"pan_in",
"pan_in",
"pan_in",
"pan_in",

"pan_in”,

“pan_in”,

"pan_in”,

wait...done

global, ’bit
global, ’bit
global, ’bit
global, ’bit
global, ’bit
global, ’bit
global, ’bit
global, ’bit
global, ’bit
global, ’bit
global, ’bit
global, ’bit

global, ’bit
global, ’bit

find claim (ignored)

(:init:
(:init:
(:init:
(:init:
(:init:
(

:init:

<

:init:
:init:
:init:
:init:

(:

init:

)

~ N N

~ N

)

11TopologyControl,6

6:

proc

line
line
line
line
line

line

line
line
line
line
line
,4,1]

0 (:init:) line

122
122
127
127
134
135

138
138
147
147
152

152

"pan_in"
“pan_in”
"pan_in"
“pan_in”
"pan_in"

“pan_in”

"pan_in"
“pan_in”
"pan_in"
“pan_in”

"pan_in”

"pan_in”

packt’

variable is never used

test’ variable is never used

loop’ variable is never used

received’ variable is never used

discardDataMsg’ variable is never used
discardTCMsg’ variable is never used
updateTable’ variable is never used

updateNTable’ variable is never used

updateMPR’ variable is never used

changedRoutTab’ variable is never used

calculateRoutes’ variable is never used

removeunusedRoutes’

resentMsg’ variable is never used

cleanTable’ variable is never used

(state
(state
(state
(state
(state
(state

(state
(state
(state
(state
(state

(state

[medium!type,origin_p,destination_p,ttl] <
-> INIT: type:2 Origin:6 Destination:4 TTL:1
0 (:init:) line 155 "pan_in" (state 30) [printf(’->

1) [<

2) [knowsDestination = 1]
7) [(D] <

8) [newerTCinfo = 1] <
13) [origin_p = Origin] <
14) [destination_p =

15) [(D] <

16) [ttl = 1]

23) [(D] <

24) [type = TopologyControll]

-) [values:

29)

6: proc

INIT: type:%4d Origin:%d Destination:%d TTL:%d ’,type,origin_p,
destination_p,ttl)]
0 (:init:) line 160 "pan_in" (state 31) [(1)] <
0 (:init:) line 160 "pan_in" (state 32) [ttl = 1]
0 (:init:) line 170 "pan_in" (state 41) [(1)] <

7:
7:
8:

proc
proc

proc

variable is never

APPENDIX A

8: proc O (:init:) line 170 "pan_in" (state 42) [type = DataPacket]
9: proc O (:init:) line 174 "pan_in" (state -) [values:
1tDataPacket,6,4,1]
9: proc O (:init:) line 174 "pan_in" (state 45)
[medium!type,origin_p,destination_p,ttl] <

-> INIT: type:1 Origin:6 Destination:4 TTL:1 9: proc O

(:init:) line 177 "pan_in" (state 46) [printf(’-> INIT:

type:%d Origin:%d Destination:%d TTL:%d ’,

type,origin_p,destination_p,ttl)]

Starting networkl with pid 2

11: proc O (:init:) line 181 "pan_in" (state 48) [(run networkl())]
13: proc 1 (networkl) line 63 "pan_in" (state 1) [(1)]

Starting networkl with pid 3
15: proc O (:init:) line 181 "pan_in" (state 49) [(run networkl())]
17: proc 2 (networkl) line 64 "pan_in" (state 3) [(1)]

19: proc 1 (networkl) line 63 "pan_in" (state 2) [myid = Origin]

21: proc 2 (networkl) line 64 "pan_in" (state 4) [myid = Intermediate]
23: proc 2 (networkl) line 72 "pan_in" (state -)

[values: 1?7TopologyControl,6,4,1]

23: proc 2 (networkl) line 72 "pan_in" (state 9)
[medium?typel,origin_p,destination_p,ttl1]
-> NET: Pkt_type:2 Origin:6 Destination:4 TTL:1 Myid:5

25: proc 2 (networkl) line 75 "pan_in" (state 10) [printf(’->

NET: Pkt_type:%d Origin:’d Destination:%d TTL:%d Myid:%d \\n’,
typel,origin_p,destination_p,ttll,myid)]

27: proc 2 (networkl) line 88 "pan_in" (state 18) [((myid==Intermediate))]
29: proc 2 (networkl) line 93 "pan_in" (state 22)
[((typel==TopologyControl))]

31: proc 2 (networkl) line 97 "pan_in" (state 25) [else]

33: proc 2 (networkl) line 98 "pan_in" (state 26) [cleanTable = 1]

35: proc 2 (networkl) line 99 "pan_in" (state 27) [tmp = knowsDestination]
37: proc 2 (networkl) line 100 "pan_in" (state 28) [knowsDestination = 0]
39: proc 2 (networkl) line 101 "pan_in" (state 29) [updateTable = 1]

41: proc 1 (networkl) line 72 "pan_in" (state -)

[values: 17DataPacket,6,4,1]

41: proc 1 (networkl) line 72 "pan_in" (state 9)
[medium?typel,origin_p,destination_p,ttl1]
-> NET: Pkt_type:1 Origin:6 Destination:4 TTL:1 Myid:5

43: proc 1 (networkl) line 75 "pan_in" (state 10) [printf(’->
NET: Pkt_type:%d Origin:%d Destination:%d TTL:%d Myid:%d \\n’,
typel,origin_p,destination_p,ttll,myid)]

APPENDIX A 80

45: proc 1 (networkl) line 88 "pan_in" (state 18) [((myid==Intermediate))]
47: proc 1 (networkl) line 104 "pan_in" (state 33) [((typel==DataPacket))]
49: proc 1 (networkl) line 106 "pan_in" (state 34) [((knowsDestination==0))]
51: proc 2 (networkl) line 102 "pan_in" (state 30) [knowsDestination = tmp]
53: proc 2 terminates

B5: proc 1 (networkl) line 107 "pan_in" (state 35) [discardDataMsg = 1]

57: proc 1 terminates

59: proc O terminates
spin: trail ends after 59 steps

3 processes created

APPENDIX A

81

A.5 OLSR - Last version

/* Assertions to test out */

#define T (test==true)

#define p (loop==true)

#define notp (loop==false)

#define dm (discardDataMsg == true)
#define dtc (discardTCMsg == true)
#define ut (updateTable == true)
#define unt (updateNTable == true)
#define umpr (updateMPR == true)
#define crt (changedRoutTab == true)

#define cr (calculateRoutes == true)

#define rr (removeunusedRoutes == true)
#define rm (resentlMsg == true)

#define ct (cleanTable == true)

#define receivedMTO (receivedMoreThanOne == true)
#define NotDellivery (reachDestination == false)
#define Forwarded (forward == true)

#define loop_teste (loop == true)

/* Constants */

#define true 1
#tdefine false O
#define retranmission 4

#define nnodes 3 /* Intermidiates + Origin + Destination */

/% MESSAGE FORMAT */

/* type, origin, destination, TTL, last id,

number of retransmissions*/
chan medium = [nnodes] of { mtype, byte, byte, bool, byte,
byte };

mtype = { Hello, TopologyControl, DataPacket };

mtype = { Origin, Intermediate, Destination };
bool packt = false;

bool test = true;

byte myid; /* choose in a randomicaly way the node id*/

/* Control Variables */

APPENDIX A 82

byte
byte
byte
bool
bool
bool
bool

bool

byte

origin_p; /* Origin of the message */

destination_p ; /* Destinatination of the message */

type; /* Packet type */

ttl; /* Time to Live of the messagex/

knowsDestination; /* represents a search at the node roting table */
newerTCinfo; /* If the info in the TC info is newerx/

tmp;

again; /* This Flag is used to do the chooosing of sending once

or twice the message */

ret_control;

/%
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool

Log Variables */
loop = false;

data_loop = false;

received = false;
discardDataMsg = false;
discardTCMsg = false;
updateTable = false;
updateNTable = false;
updateMPR = false;
changedRoutTab = false;
calculateRoutes = false;
removeunusedRoutes = false;
resentMsg = false;
cleanTable = false;
reachDestination = false;
receivedMoreThanOne = false;
forward = false;

loop_int = false;

[F ok Kok ok ok ok ok KKK K ok ok ok ok KK koK ok ok K koK koK Kk K

* Models the node’s behavior

* In this case with two variables it

* models the behavior of a node when

* handling two concurrent transmissions

**/

proctype networkl() {

byte typel; /* Packet type */

bool ttli; /* Time to Live of the messagex/

APPENDIX A

83

byte priorid_p; /* choose in a randomicaly way the node id*/

byte retransm_p; /* Number of retransmissions*/

/* Choosing randomly my ID. */

if
(true) -> myid = Origin
(true) -> myid = Intermediate
(true) -> myid = Destination
fi;

if /% routing table hit/miss */

(true) -> knowsDestination = true;

(true) -> knowsDestination = false;

fi->

/*
* Choosing a random value to "again" which, in a reality,chooses
* if it sends 1 ou 2 copies of the message. When two copies

* are sent it is done to emulate the broadcasting by choosing "again ==true"

*/

if
(true) -> again = true
(true) -> again = false
fi;
/%
* recelive the message
*/

medium?typel(origin_p,destination_p,ttll,priorid_p,retransm_p);

/* DEBUG */
printf("-> NET: Pkt_type:%d Origin:’%d Destination:%d TTL:%d Myid:%d
priorNode:%d retransm:%d \n",

typel,origin_p,destination_p,ttll,myid,priorid_p,retransm_p);

/*
* If the node is in the communication range

*/

APPENDIX A 84

end10:if

(retransm_p < retranmission) ->

end11:if /* I am the origin */
(myid == Origin) ->

/* loop detection at the source. Ignore message I sent to myself */
end112: if
(priorid_p !'= 0) -> loop = true
fi

/* I am the destination */

(myid == Destination) ->
end113: if
(reachDestination == true) -> receivedMoreThan(One = true
(reachDestination == false) -> reachDestination = true
fi ->
endi12: if

(typel == DataPacket) -> received = true;
fi;

/* I am the intermiate node */
(myid == Intermediate) ->
end13: if
(typel == Hello) ->
updateNTable = true;
updateMPR = true;
(typel == TopologyControl) ->
end14: if
(newerTCinfo == false) ->
discardTCMsg= true;
:: else ->
cleanTable = true;
tmp = knowsDestination;
knowsDestination = false;
updateTable = true;
knowsDestination =tmp;
fi;
(typel == DataPacket) ->
end15: if

APPENDIX A 85

(knowsDestination == false) ->
discardDatalMsg = true;
: else ->
resentMsg = true;
fi;

/* TTL haven’t expired. So, we can forward the message */
end151: if
(ttll == false && typel != Hello) ->

end152: if
(forward == true) -> loop_int = true
(forward == false) -> forward = true ->
medium!typel(origin_p,destination_p,ttll,myid,
(retransm_p + 1));
/%
* Sending the message again or not
*/
end153: if
(again == true) ->
medium!typel(origin_p,destination_p,ttll,myid,
(retransm_p + 1));
(again == false) -> again = false /* doing nothing */
fi ->
run networkl();
fi;
/* TTL have expired, or is Hello. We need ignore the message */
/¥ . else -> ; %/
fi;

fi; /* Im the intermediate */
fi;/* packet type */
fi; /* in the range */

/3K sk o ok sk sk ok sk ok ok o ok sk sk sk sk ok ok o ok ok sk sk sk ok ok o ok ok ok ok ok ok ok
* Initialization Process Should be

* as random and as broad as possible
Kok ok ok ok ok o o KK ok ok oK ok o K KK ok ok ok ok o KK ok ok ok ok o Kk ok ok ok /

init {

APPENDIX A

86

atomic {

ret_control = 0;

/* initialize node variables */

if /* TC message info newer or older */
(true) -> newerTCinfo = true;
(true) -> newerTCinfo = false;
fi->

/*

* We have fixed the Origin and
* the Destination to simplify

* the model and its analysis.

*/

origin_p = Origin;

destination_p = Destination;

if
(true) -> ttl = true; /#* reached the TTL */
(true) -> ttl = false; /* not reached the TTL */
fi->
/*
* Choosing a random value to the Packet Type
*/
if
(true) -> type = Hello;
(true) -> type = TopologyControl;
(true) -> type = DataPacket;
fi;
/%
* Choosing a random the prior node
*/
byte prior_p;
if

(true) -> prior_p = Origin;

(true) -> prior_p = Intermediate;

fi;

APPENDIX A

87

/* put the message ito the channel */

medium!type(origin_p,destination_p,ttl, prior_p,0);

/* DEBUG x/
printf("-> INIT: type:%d Origin:%d Destination:%d TTL:%d, prior=¥d ",
type, origin_p, destination_p, ttl, prior_p);

if
(true) -> ttl = true; /#* reached the TTL */
(true) -> ttl = false; /* not reached the TTL */
fi->
/*
* Choosing a random value to the Packet Type
*/
if
(true) -> type = Hello;
(true) -> type = TopologyControl;
(true) -> type = DataPacket;
fi;
/*
* Choosing a random the prior node
*/
if
(true) -> prior_p = Origin;
(true) -> prior_p = Intermediate;
fi;

/* put the message ito the channel */

medium!type(origin_p,destination_p,ttl, prior_p, 0);
/* DEBUG */

printf("-> INIT: type:%d Origin:%d Destination:%d TTL:%d, prior=}d ",
type, origin_p, destination_p, ttl, prior_p)->

run networkl(); run networkl();

APPENDIX A 88

Spin Output - No error

hint: this search is more efficient if pan.c is compiled -DSAFETY

Depth= 69 States= 1e+06 Transitions= 1.59e+06 Memory= 1.501
t= 2.17 R= 5et+05
Depth= 89 States= 2¢+06 Transitions= 3.15e+06 Memory= 1.501
t= 4.6 R= 4et05

(Spin Version 5.2.0 -- 2 May 2009)

+ Partial Order Reduction

Bit statespace search for:

never claim

(none specified)
assertion violations +

acceptance cycles (not selected)

invalid end states +

State-vector 76 byte, depth reached 89, errors: O
2245174 states, stored
1288078 states, matched
3533252 transitions (= stored+matched)
547 atomic steps

hash factor: 3.73628 (best if > 100.)
bits set per state: 3 (-k3)
Stats on memory usage (in Megabytes):

196.987 equivalent memory usage for states (stored*(State-vector +

overhead))

1.000 memory used for hash array (-w23)
0.038 memory used for bit stack

0.305 memory used for DFS stack (-m10000)
1.501 total actual memory usage

unreached in proctype networkl
(0 of 85 states)

unreached in proctype :init:
(0 of 57 states)

APPENDIX A

A.6 DREAM Verification Code

/* Assertions to test out */

#define p (loop==true)

#define notp (loop==false)

#define q (nnodes!=3)

#define t (trash == 1)

#define sa (sendAck == true)

#define dm (duplicatedMessage == true)

#define ip (IgnoredPacket == true)

#define ipna ((IgnoredPacket == true) && (NoNeighborInArea == true))

/* */

#define true 1
#define false O
#define TTL 9
#define range 9 /* (nnodes * nnodes)*/

#define nnodes 3 /* Intermidiates + Origin + Destination */

/* */

/* MESSAGE FORMAT + CHAIN

/* type, origin, destination, TTL , Angle */
chan medium = [nnodes] of {mtype, byte, byte, byte, byte };

/% GLOBAL VARIABLES

/* packet types */
mtype = {AckPacket, DataPacket};

byte myid; /* choose in a randomicaly way the node id*/

byte origin; /* Origin of the message */

APPENDIX A 90

byte ttl; /* Time to Live of the messagex/

byte destination ; /* Destinatination of the message */

byte destinationTimestamp; /* the age of the destination information */

byte angle ; /* the angle (alpha) in the region to the destination */
bool again; /* This Flag is used to do the chooosing of sending once

or twice the message */
byte previousAngle; /* The flooding angle of the previous node */

bool sentAck = false ; /* This flag indicate if the ack was sent or not */

bool duplicatedMessage = false; /* This flag indicate if was sent a

duplicated message */

bool HaveDestPosition; /* indicates if I have the destination position*/

bool loop = false ; /* this flag indicates that occured a loop */

bool IgnoredPacket = false ; /# indicates that the node doesnt have

the dest positionx*/
bool NoNeighborInArea = false; /* No neighbor in the flooding angle area */
bit trash = 0;
/* This procedure is to represent the internal behavior of the node . */
/* proctype InternallNode(){
bool nothing

// there can’t be a void procedure in promela

T ox/

/* NETWORK */
/* This procedure represent the network comunications among the nodes. */

proctype Network(){

/*
* Local variables chose randomly

*/

APPENDIX A

91

byte priorid; /* Id of the prior node */
byte type; /* Type of message */

/* byte trash = 0; #*/ /* necessary by if conditional structure */

atomic {

/* We will chose al parameters of the node in a random way.
- The ID
- The routing information age (destination timestamp)
- The flooding angle
All this variables are chose in this way to guarantees that

all cases will be covered by the formal verification.

We chose as sample, to represent all possibles angles the angles
30, 45, 90, 135, 180.

We split the timestamp in tree ranges. The first is assinged with
the angle 30 degrees, this represents new information. The second
range is assigned to angles between 30 and 90 degrees, that represents
old information, and the third range angles between 90 and 180

degrees, this represent the oldest information possible at the nodes.

We made a simplification, with relationtip the angle calculation. We
will consider the age of the information directly proportional to the
flooding angle. So we are fixing the r, of the formula, and providing

directly the angle.

We will work with relative positions. If the previous node send the
packet with the angle 30 degrees, this means that the previous node is
between the actual node and the destination. The previous node is
relatively before the actual node. If the degree is 90, the previous
can stay at the same distance to the origin, at the same "level", no one
is after the other. If the angle is greater than 90 the previous node
can stay after the actual node. This means that the node could sent the

message to back.

we can assume that node will be in the range because the DREAM always sends

a message to its neigbours

*/

APPENDIX A 92

/%
* recelve the message

*/

medium?type (origin,destination,ttl,previousingle)->

/* DEBUG */
printf ("NET: Pkt_type:%d Origin:’%d Destination:%d TTL:%d
Myid:%d PreviousAngle:%d \n",type,origin,destination,ttl,myid, previousAngle);

/*
* Choosing my ID. We put the restiction in (myid =0) to avoid loop

* if the angle is less than 90 degrees.As explained before.

*/
if
(previousAngle >= 90) -> myid = O
(true) -> myid =
(true) -> myid = 2
:: else if
(true) -> myid =1
(true) -> myid = 2
fi
fi->
if
(myid == 0) -> loop = true
:: else trash=1;
fi->
if
/* Im the destination */
(myid == destination) ->
if
(sentAck == true) -> duplicatedMessage = true

(sentAck == false) -> sentAck = true
fi

/* Im the intermiate node */

:: else ->

APPENDIX A

93

if
(HaveDestPosition == true) ->
/*
* Chose the information age
*/
if

(true) -> destinationTimestamp

(true) -> destinationTimestamp

(true) -> destinationTimestamp

fi->
/*
* Chose the angle
*/
if
(destinationTimestamp == 1) -> angle = 30
(destinationTimestamp == 2) ->
if
(true) -> angle = 30
(true) -> angle = 45
(true) -> angle = 90
fi
(destinationTimestamp == 3) ->

if /* one angle sample of each case */
(true) -> angle = 30

(true) -> angle = 90
(true) -> angle = 135
(true) -> angle = 180
fi
:: else trash = 2
fi->

if /x if exist any neighbor in the angle area */
/* not found*/
(true) -> NoNeighborInArea = true ->

IgnoredPacket = true

/* found nodes at the area */

(true) -> medium!type(origin,destination, (TTL-1),angle)

APPENDIX A 94

fi

(HaveDestPosition == false)-> IgnoredPacket = true

fi /* havedestposition == true or falsex/

fi/* Im the destination */

}/* atomic */

}/* Network */

/* INIT */

init{

byte i; /* counter */

byte dest; /* shift the row, because we put the

Matrix of nodes in a unidimensional way*/

byte Pkt_type; /* Type of the packet */

byte Origin, Destination; /* Origin and Destination
read from channel */
byte DestinationTimestamp, Angle; /* The timestamp of the destination

information, flooding Angle */

atomic {

/*
* We have fixed the Origin and the Detination to simplify

* the model and its analisis. This doesnt represent a lost of generality.

*/

Origin 0;

Destination 2;

/*
* Chose the information age
*/
if

(true) -> DestinationTimestamp = 1

APPENDIX A

(true) -> DestinationTimestamp

(true) -> DestinationTimestamp

fi->
/*
* Chose the angle
*/
if
(DestinationTimestamp == 1) -> Angle = 30
(DestinationTimestamp == 2) ->
if

(true) -> Angle = 30
(true) -> Angle = 45
(true) -> Angle = 90
fi
(DestinationTimestamp == 3) ->
if /* one angle sample of each case */
(true) -> Angle = 30

(true) -> Angle = 90
(true) -> Angle = 135
(true) -> Angle = 180
fi
:: else trash = 2
fi->
/*
* Choosing a random value to the Packet Type
*/
if
(true) -> Pkt_type = 1 /* AckPacket =/
(true) -> Pkt_type = 2 /* Data Packet */
fi->
/* DEBUG */

printf ("\tPkt_type:%d Origin:%d Destination:%d TTL:%d Angle:%d",
Pkt_type, Origin, Destination, TTL, Angle) ->

medium!Pkt_type(Origin,Destination,TTL,Angle) ->

run Network()

APPENDIX A

96

}/* atomic *x/

}/* init */

APPENDIX A

A.7 LAR Verification Code

#tdefine true 1
#define false O
#define TTL 3

#define range 9 /* (nnodes * nnodes)*/

#define nnodes 3 /* Intermidiates + Origin + Destination */

/*

#define m0 (myid == 0)
#define ml (myid == 1)
#define m2 (myid == 2)

Assertions to test out x/

#define IOT (InsideOutside == true)

#define IOF (InsideQutside == false)

#define Forwarded (Forward == true)

#define origin_isme (origin == myid)

#define destination_isme (destination == myid)

#define loop_teste (Loop == true)

/* Alterated at 29/05/00 */

#define NotDellivery (ReachDestination == false)

/* Alterated */

/* Reach More Than One Message in the Destinationx/

#define receivedMTO (ReceivedMoreThanOne == true)

/* */

bool InsideOutside; /* Inside Route Request Region */

bool InTheRange[range]; /* Inside the node range communicationx/
/* we put the matrix[nnodes] [nnodes] in

a unidimensional array*/

bool Loop = false; /* Reach a routing Loop */

bool Loop_int = false; /* Reach a routing Loop in intermediate nodex/

bool RequestComplete = false; /* Complete the Request Process */

bool ReachDestination = false; /* Arrive at the destination */

bool ReceiveData = false; /* The data arrived at the destination*/

APPENDIX A 98

bool ReceivedMoreThanOne = false; /* This flag tell us if there was more than

one message to the same node */

byte myid; /* choose in a randomicaly way the node id*/
byte origin; /* Origin of the message */
byte ttl; /* Time to Live of the messagex/

byte destination ; /* Destinatination of the message */

bool Forward = false; /*To indicate if the message has been forwarded*/

/* packet types */
mtype = {RouteRequest, RouteReply, DataPacket};

/* type, origin, destination, TTL, Prior node Id */

chan medium = [nnodes] of {mtype, byte, byte, byte, bytel};

bool again; /* This Flag is used to do the chooosing of sending once

or twice the message */

/* This procedure is to represent the internal behavior of the node
Now, we aren’t using it effectively, because we think that it can
cause a lot of overhead. But maybe in future */

/* proctype node(){

bool nothing

// there can’t be a void procedure in promela

T ox/

/* This procedure represent the network comunications among the nodes. */

proctype Network(){

/*

* Local variables chose randomly

*/

byte priorid; /* Id of the prior node */

byte type; /* Type of message */

byte a; /* Flag Variable to identify which assertionx/

atomic {

APPENDIX A 99

/*

* Choosing a random value to "again" which, in a reality,chooses

* if it sends 1 ou 2 copies of the message. When two copies

* are sent it 1s done to emulate the broadcasting by choosing "again ==true"

*/

if
(true) -> again = true
(true) -> again = false
fi;
/*
* Choosing a random value to my ID
*/
if
(true) -> myid = 2
(true) -> myid =1
(true) -> myid = O
fi;
/*
* recelive the message
*/

medium?type(origin,destination,ttl,priorid);

printf ("Pkt_type:%d Origin:%d Destination:%d TTL:%d PriorID:%d Myid:%d \n",

type,origin,destination,ttl,priorid,myid);

/*
* If the node is in the communication range
*/
if
(InTheRange [(myid* nnodes + priorid)] == true) ->
/*
* Verification of the message type
*/
if

(type == RouteRequest) ->

APPENDIX A 100

if /* Im origin. Probably a loop */
(origin == myid) ->

if /% Ignore message. Ive sent a message to myself */
(destination == myid)
/* Don’t continue to process the message. Loop. */
:: else Loop = true
fi

/* Im dest. I will send a Route Reply */

(destination == myid) ->

if
(ReachDestination == true) -> ReceivedMoreThanOne = true
(ReachDestination == false) -> ReachDestination = true

fi ->

/* Send a Request Response */
medium!RouteReply(destination,origin,TTL,myid) ->

/*
* Sending the message again or not
*/
if
(again == true) ->
/* Send a Request Response */
medium!RouteReply(destination,origin,TTL,myid)
(again == false) -> again = false /* doing nothing */
fi

/*Im a intermediate node. I have to forward the packet */

:: else

if /x TTL haven’t expired. So, we can forward the message */
(ttl '=0) ->

if
(Forward == true) -> Loop_int = true
(Forward == false) -> Forward = true ->
medium!type(origin,destination, (ttl - 1),myid)->
/*

* Sending the message again or not

APPENDIX A 101

*/
if
(again == true) ->
medium!type(origin,destination, (ttl - 1),myid)
(again == false) -> again = false /* doing nothing */
fi >

run Network()

fi
/* TTL have expired. We need ignore the message */
:: else ->a=1;
fi

fi /* message type is a route request */

(type == RouteReply) ->

if /* Im dest. The message was processed succesfully */
/* The route request process was completed*/

(destination == myid) -> RequestComplete = true

/*Im origin of the message. Probably a loop*/
(origin == myid) ->

/*

* Verify the TTL to know if a loop or not

*/

if /* If the TTL was changed, it is a loop*/
(ttl != TTL) -> Loop = true

/*1 read the packet that I ve just put on the pipex/
11 else -> a =2
fi /* If Im the origin */

/*Im a intermiate node. Forward the packet*/

:: else

if /#if the message is not expired and the node is
inside of the Route Request Region, we have to
forward the message */
((ttl !'= 0) &% (InsideOutside == true)) ->

APPENDIX A 102

if
(Forward == true) -> Loop_int = true
(Forward == false) -> Forward = false ->
medium!type(origin,destination, (ttl - 1),myid)->
/*
* Sending the message again or not
*/
if
(again == true) ->
medium!type (origin,destination, (ttl - 1),myid)
(again == false) -> again = false /* doing nothing */
fi ->
run Network()
fi

/* I can’t forward the packetx/
:: else -> a =3
fi

fi /* if the messase is a Route Reply */

(type == DataPacket) ->
if
/*Im origin. Probably a loop*/
(origin == myid) ->

if /*Ignore message. Ive sent a message to myself
or I heard a message that I sentx*/
(ttl == TTL)

/* A problem has occured. I have to ignore the message*/
:: else Loop = true /xIgnore message*/

fi /* if Im the origin */

/*Im dest. I will receive and treat the packet*/

(destination == myid) -> ReceiveData = true

/*Im a intermediate node. Forward the packet */

:: else ->

if /*if the message is not expired and the node is

APPENDIX A 103

inside of the Route Request Region
I have to forward the message*/
((ttl t= 0) &% (InsideOutside == true)) ->

if
(Forward == true) -> Loop_int = true
(Forward == false)-> Forward = true->
medium!type(origin,destination, (ttl - 1) ,myid)->
/*
* Sending the message again or not
*/
if
(again == true) ->
medium!type(origin,destination, (ttl - 1),myid)
(again == false) -> again = false /* doing nothing */
fi ->
run Network()
fi

/* A problem has occured. I have to ignore the message*/
:: else -> a = 4 /xIgnore messagex*/

fi
fi /* If the packet is a data packet */
fi /* Verification of the message type*/
/* I am not in the range. So Im not hearing the message */
:: else ->a=25

fi /* the sender is in my range */

} /* atomic */

}/* Network */

init{
byte 1i; /* counter */
byte desl ; /* shift the row, because we put the

Matrix of nodes in a unidimensional way*/

byte Pkt_type; /* Type of the packet */

APPENDIX A 104

int Origin, Destination; /* Origin and Destination

read from channel */

atomic{
atomic{
/*
* We are force the node be in his own transmission range
*/
i=0;
desl=0;
do
(i < range) -> InTheRange[i + desl] = true ->
i =1 + nnodes ->
desl = desl + 1
(i >= range) -> break
od;
/*
* we are setting up randomly the others values of the range
*/

i =1; /* it starts in 1 because O is a position
of the first node to himself */

do
(InTheRange[i] == 0) ->
if
(true) -> InTheRangel[i] = 0O
(true) -> InTheRangel[i] =
fi ->
if
(i == 8) -> break
(1 1=8) >i=1i+1
fi
(InTheRange[i] == 1) ->
if
(i == 8) -> break
(1 1=8) >1=1i+1
fi
od;

} /* atomic */

/*

APPENDIX A 105

* Choosing a random value to my Origin

*/
if
(true) -> Origin = 0
(true) -> Origin =
(true) -> Origin = 2
fi;
/*
* Choosing a random value to my Destination
*/
if
(true) -> Destination = 0;
(true) -> Destination = 1;
(true) -> Destination = 2;
fi;
/*
* Choosing a random value to the Packet Type
*/
if
(true) -> Pkt_type = 1 /* Route Request */
(true) -> Pkt_type = 2 /* Route Reply */
(true) -> Pkt_type = 3 /* Data Packet */
fi;
/* DEBUG */

printf ("\tPkt_type:%d Origin:Jd Destination:%d TTL:%d PriorID:%d \n",
Pkt_type, Origin, Destination, TTL, Origin);

/¥
* Start the processing. First send a message to anyone
* and continue after that. We are using only one message
* and only one intermediate node because we think that with
* only one i-node we can represent a lot of i-nodes.
*/
atomic {medium!Pkt_type(Origin,Destination,TTL,Origin) ->

/*
* Sending the message again or not

*/

APPENDIX A 106

if
(again == true) ->
medium!Pkt_type(Origin,Destination,TTL,0rigin)
(again == false) -> again = false /* doing nothing */
fi ->

run Network()}

} /* atomic */

}/* init */

APPENDIX B - GLOSSARY

107

802.11

Ad hoc

Assertion

Backbone

Backbone

Bandwidth

Broadband

Cell

Counter-Example

CSMA/CA

CSMA/CA

CSMA/CD

The IEEE standard for wireless connectivity atl Mbps and
2 Mbps in the 2.4 GHz band

A group of wireless devices communicating directly with each
other (peer-to-peer) without the use of an access point

A directive to a tool telling it what to do with a property. As-
sertions are properties that are evaluated within an execution
engine: a simulator, emulator, or formal analysis tool. An
assertion provides a monitor that ensures a property holds
once, always holds, or never holds during verification of the
design

The part of a network that connects most of the systems and
networks together, and handles the most data

A cable to which multiple nodes or workstations are attached

The amount of data you can send through a channel (mea-
sured in bits per second)

Transmission by modulated carrier - Data over TV cable is
broadband, DSL is not. In cable transmission a high fre-
quency carrier signal is modulated by data. In DSL data
signals are sent as changes in voltage on the wire. DSL
should be called "high data rate", not broadband

The geographic region that is serviced by one base station
(either analog cellular or digital)

Stimulus sequence from a legal design state that violates an
assertion

Carrier Sense Multiple Access Collision Avoidance is a net-
work access method in which each device signals its intent
to transmit before it actually does so. This prevents other
devices from sending information, thus preventing collisions
from occurring between signals from two or more devices.
This is the access method used by LocalTalk

Carrier Sense Multiple Access with Collision Avoidance

Carrier Sense Multiple Access Collision Detection is a net-
work access method in which devices that are ready to trans-
mit data first check the channel for a carrier. If no carrier
is sensed, a device can transmit. If two devices transmit
at once, a collision occurs and each computer backs off and
waits a random amount of time before attempting to retrans-
mit. This is the access method used by Ethernet

APPENDIX B - GLOSSARY

108

Download

Flooding

Formal Verification

(FV)

Global Positioning Sys-
tem (GPS)

Hardware

Hierarchical networks

Hop

Host

IEEE

Internet

Internet Protocol (IP)

Media Access Control
(MAC)

MANET

Mesh Network

Middleware

To receive a file transmitted over a network

a simple routing algorithm in which every incoming packet
is sent through every outgoing link

The use of mathematical models and analysis to function-
ally verify design behavior. Also, a product (0-In Formal
Verification) that uses formal techniques for model checking

A worldwide, satellite-based radio navigation system pro-
viding three-dimensional position, velocity and time infor-
mation to users having GPS receivers anywhere on or near
the surface of the Earth

The physical aspect of computers, telecommunications, and
other information technology devices

A network in which a host controls network communications
and processing

Transmission, or link, between two neighbor nodes

Computer that controls network communication in a hierar-
chical network

Institute of Electrical and Electronic Engineers

A global network that incorporates networks belonging to
the United States government, academic institutions, and
other organizations

A protocol used to send data over a network

The unique address that a manufacturer assigns to each net-
working device

mobile ad hoc network, sometimes called a mobile mesh net-
work, is a self-configuring network of mobile devices con-
nected by wireless links

architecture in which each node has a dedicated connection
to all other nodes. Node A network-access point. Examples
include terminals and computers Real time A transmission
or transaction that occurs immediately or in an extremely
short period of time. A telephone conversation occurs in
real time; correspondence through mail does not

An intermediate software component located on the wired
network between the wireless appliance and the application
or data residing on the wired network

APPENDIX B - GLOSSARY

109

Mobile IP

Mobility

Network

Node

Proof

Property

Roaming

Roaming

Router

Software

TCP/IP

Throughput

Time-to-live

A protocol developed by the Internet Engineering Task Force
to enable users to roam to parts of the network associated
with a different IP address

Ability to continually move from one location to another

A series of computers or devices connected for the purpose
of data sharing, storage, and/or transmission between users

A network junction or connection point, typically a computer
or work station

The result of static formal verification when it can be de-
termined that an assertion is never violated from the given
initial state

A concise statement about a specific intended behavior of a
design. Properties provide concise, mathematically precise
descriptions of behavior about the design, or that constrain
the operating environment of the block. In addition, proper-
ties can also describe coverage points or scenarios that must
be exercised by the verification process. Properties can spec-
ify functionality, timing, or any other aspect of the design.
The term assertion is often used interchangeably with prop-
erty

The ability to take a wireless device from one access point’s
range to another without losing the connection

Traveling from the range of one access point to another

A networking device that connects multiple networks to-
gether, such as a local network and the Internet. Routing
(or routening) is the process of selecting paths in a network
along which to send network traffic

Instructions for the computer. A series of instructions that
performs a particular task is called a "program"

Transport Control Protocol /Internet Protocol. Refers to the
Internet Protocols, a set of protocol originally developed for
the United States government. Because the Internet Proto-
cols have been implemented on a wide variety of computers,
they are often used in networks that interconnect disparate
systems

The amount of data moved successfully from one node to
another in a given time period

Valid time of a message, when this value reaches the limit
the message is removed from the network. Normally this
value is specified in number of hops

APPENDIX B - GLOSSARY 110

Upload To transmit a file over a network

Wi-Fi Wireless Fidelity Wi-Fi is meant to be used generically when referring of
any type of 802.11 network, whether 802.11b, 802.11a, dual-
band, etc. The term is promulgated by the Wi-Fi Alliance

APPENDIX C - PROMELA SYNTAX 111

This appendix presents a small guide of the syntax of PROMELA. The syntax ex-
amples and explanations are retrieved from the Basic Spin Manual from the webpage
http://spinroot.com/spin/Man/Manual.html, last visited in December 2009.

A Promela model consist of:

type declarations

channel declarations

global variable declarations

e process declarations

init process

A process is defined by a proctype definition and executes concurrently with all other pro-
cesses, independently of speed or behavior communicating with other processes using either
global (shared) variables or channels. There may be several processes of the same type each one

with its own local state:

e process counter (location within the proctype)

e contents of the local variables

Variables are used to store either global information about the system as a whole, or in-
formation local to one specific process, depending on where the declaration for the variable is

placed. The declarations:
e bool flag;
e int state;
e byte msg;

define variables that can store integer values in three different ranges. The scope of a variable
is global if it is declared outside all process declarations, and local if it is declared within a process

declaration.

8.2 Data Types

The table below summarizes the basic data types, sizes, and typical value ranges on a 32-bit
wordsize computer.

The names bit and bool are synonyms for a single bit of information. An defined type, mtype,
variable can be assigned symbolic values that are declared in an mtype = ... statement, to be

discussed below.

APPENDIX C - PROMELA SYNTAX 112

Typename | C-equivalent | Typical Range

bit or bool bit-field 0.1

byte uchar 0..255
short short —215 1.2 1
int int —231 _1.231 1

Table 8.1: Data Types

8.3 Array Variables

Variables can be declared as arrays. For instance,
byte state[N]

declares an array of N bytes that can be accessed in statements such as
state[0] = state[3] + 5 * state[3*2/n]

where n is a constant or a variable declared elsewhere.

8.4 Process Types

The state of a variable or of a message channel can only be changed or inspected by processes.
The behavior of a process is defined in a proctype declaration. The following, for instance,

declares a process with one local variable state.

proctype AQ)
{ byte state;

state = 3
}

The process type is named A. The body of the declaration is enclosed in curly braces.
The declaration body consists of a list of zero or more declarations of local variables and/or
statements. The declaration above contains one local variable declaration and a single statement:
an assignment of the value 3 to variable state. The semicolon is a statement separator (not a
statement terminator, hence there is no semicolon after the last statement). Promela accepts

?

two different statement separators: an arrow ‘->’and the semicolon ‘;’. The two statement
separators are equivalent. The arrow is sometimes used as an informal way to indicate a causal

relation between two statements. Consider the following example.
byte state = 2;
proctype AQ

{ (state == 1) -> state = 3
}

APPENDIX C - PROMELA SYNTAX 113

proctype BQO)
{ state = state - 1
}

In this example we declared two types of processes, A and B. Variable state is now a global,

initialized to the value two.

8.5 Atomic Sequences

In Promela there is also another way to avoid the test and set problem: atomic sequences. By
prefixing a sequence of statements enclosed in curly braces with the keyword atomic the user
can indicate that the sequence is to be executed as one indivisible unit, non-interleaved with
any other processes. It causes a run-time error if any statement, other than the first statement,
blocks in an atomic sequence. This is how we can use atomic sequences to protect the concurrent

access to the global variable state in the earlier example.

byte state = 1;

proctype AQ)
{ atomic {

(state==1) -> state state+1

proctype B(O)
{ atomic {

(state==1) -> state state-1

init
{ run AQ); run B()
}

In this case the final value of state is either zero or two, depending on which process executes.

The other process will be blocked forever.

8.6 Message Passing

Message channels are used to model the transfer of data from one process to another. They are

declared either locally or globally, for instance as follows:

chan gname = [16] of { short }

APPENDIX C - PROMELA SYNTAX 114

This declares a channel that can store up to 16 messages of type short. Channel names can
be passed from one process to another via channels or as parameters in process instantiations.
If the messages to be passed by the channel have more than one field, the declaration may look

as follows:

chan gname = [16] of { byte, int, chan, byte }

8.7 The statement
gname ! expr

sends the value of expression expr to the channel that we just created, that is: it appends the

value to the tail of the channel.
Qname?’msg

receives the message, it retrieves it from the head of the channel, and stores it in a variable msg.

8.8 Control Flow

Between the lines, we have already introduced three ways of defining control flow: concatenation
of statements within a process, parallel execution of processes, and atomic sequences. There
are three other control flow constructs in Promela to be discussed. They are case selection,

repetition, and unconditional jumps.

8.8.1 Case Selection

The simplest construct is the selection structure. Using the relative values of two variables a

and b to choose between two options, for instance, we can write:

if
(a !'= b) -> optionl
(a == b) -> option2
fi

The selection structure contains two execution sequences, each preceded by a double colon. Only
one sequence from the list will be executed. A sequence can be selected only if its first statement

is executable. The first statement is therefore called a guard.

8.8.2 Repetition

A logical extension of the selection structure is the repetition structure. We can modify the
above program as follows, to obtain a cyclic program that randomly changes the value of the

variable up or down.

byte count;

APPENDIX C - PROMELA SYNTAX 115

proctype counter()

{

do

:: count = count + 1

:: count = count - 1
(count == 0) -> break

od

}

Only one option can be selected for execution at a time. After the option completes, the
execution of the structure is repeated. The normal way to terminate the repetition structure is

with a break statement.

Bibliography

[11]

[12]

Oskar Wibling, Joachim Parrow, and Arnold Pears, Ad Hoc Routing Protocol Verification
Through Broadcast Abstraction, Proceedings of the 25th IFIP International Conference
on Formal Techniques for Networked and Distributed Systems (FORTE), Taipei, Taiwan,
October 2005.

K. Bhargavan, D. Obradovic, C. A. Gunter, Formal verification of standards for distance
vector routing protocols, Journal of the ACM, 538-576, Volume 49, Number 4, y 2002.

Sibusisiwe Chiyangwa and Marta Kwiatkowska. A timing analysis of AODV, 7th IFIP
FMOODS, June 2005.

D. Camara, A. A. F. Loureiro, F. Filali, Methodology for Formal Verification of Rout-
ing Protocols for Ad Hoc Wireless Networks, IEEE GLOBECOM 2007, Washington, DC,
November, 2007.

D, Camara, C. F. Santos, A. A . F. Loureiro, Formal Verification of Routing Protocols
for Ad hoc Networks, Brazilian Symposium on Computer Networks, SC, Brazil, 2001. (In

Portuguese)

S. Basagni, 1. Chlamtac, V. Syrotiuk, and B. Woodward, A Distance Routing Effect Algo-
rithm For Mobility, MobiCom’98, Dallas, TX, 1998.

Y. Ko and N. H. Vaidya, Location-Aided Routing (LAR) Mobile Ad Hoc Networks, Mobi-
Com’98, Dallas, TX, 1998.

T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler, A. Qayyum, L. Viennot, Optimized
Link State Routing Protocol for Ad Hoc Networks, IEEE INMIC Pakistan 2001.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

C. Kern and M. R. Greenstreet. Formal verification in hardware design: a survey. ACM

Transactions on Design Automation of Electronic Systems, 4(2):123-193, April 1999.
A. Hall, Seven Myths of Formal Methods, IEEE Software, Sept 1990.

O. Wibling, Ad Hoc Routing Protocol Validation, Licentiate Thesis 2005-004, Dept of Info
Technology, Uppsala University, Sweden, 2005.

116

APPENDIX C - PROMELA SYNTAX 117

[13]

[14]

[15]

[24]

[27]

C. Yuan, J. Billington, An Abstract Model of Routing in Mobile Ad Hoc Networks, Sixth
Workshop and Tutorial on Practical Use of CPN and the CPN Tools, Aarhus, Denmark,
2005.

D. Obradovic, Formal Analysis of Convergence of Routing Protocols, Ph.D. Thesis Proposal,

Department of Computer and Information Science, University of Pennsylvania, Nov. 2000.

S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Woodward, A distance routing effect
algorithm for mobility (DREAM),in ACM/IEEE Mobicom 98, pages 76 - 84.

T. Clausen, P. Jacquet, Optimized Link State Routing Protocol (OLSR), Request for Com-
ments: 3626, October 2003.

G. J. Holzmann, The model checker SPIN. IEEE Trans. on Software Eng., 23(5), May 1997.

G.J. Holzmann Design and Validation of Computer Protocols. Englewood Cliffs, N.J.: Pren-
tice Hall, 1991.

F. J. Lin, P. M. Chu, M. T. Liu, Protocol verification using reachability analysis: the state
space explosion problem and relief strategies, SIGCOMM 87, ACM Press, 1988.

Jonathan P. Bowen and Michael G. Hinchey Seven More Myths of Formal Methods, IEEE
Software, July 1995.

Department Of Defense Standard: Department Of Defense Trusted Computer System Eval-
uation Criteria (Aka. The Orange Book). DoD 5200.28-STD; Supersedes; CSC-STD-001-83,
dtd 15 Aug 83; Library No. 5225,7I1.

R. de Renesse, A. H. Aghvami, Formal Verification of Ad-Hoc Routing Protocols Using
SPIN Model Checker, 12th Mediterranean Electrotechnical Conference, Croatia, 2004.

C. Xiong, T. Murata, and J. Tsai, Modeling and Simulation of Routing Protocol for Mobile
Ad Hoc networks Using Colored Petri Nets, Research and Practice in Information Technol-
ogy, Vol. 12, pp.145-153, Australian Computer Society, 2002.

Kristensen, Lars Michael, Jensen, Kurt, Specification and Validation of an Edge Router Dis-
covery Protocol for Mobile Ad Hoc Networks, Integration of Software Specification Tech-
niques for Applications in Engineering, V. 3147 of Lecture Notes in Computer Science,

Springer-Verlag, September 2004.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled,. Model Checking, MIT Press,
1999.

S. Hendriex and L. Claesen, A symbolic core approach to the formal verification of integrated

mixed-mode applications, EDTC ’97 European conference on Design and Test, 1997.

Patrice Godefroid, An Approach to the State-Explosion Problem, PhD. thesis, University
of Liege, Computer Science Department, 1994.

APPENDIX C - PROMELA SYNTAX 118

[28]

[29]

[33]

[34]

[35]

[41]

G.J. Holzmann and D. Peled. An improvement in formal verification. In Proc. 7th IFIP

WG 6.1 International Conference on Formal Description Techniques, October 1994.

Sergey Berezin, Sérgio Campos, and Edmund M. Clarke. Compositional reasoning in model
checking. In Compositionality: The Significant Difference: International Symposium, V.

1536 of Lecture Notes in Computer Science, Springer Verlag, September 1997.

E. M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction, ACM Trans-
actions on Programming Languages and Systems, 16(5):1512-1542, September 1994.

E. Allen Emerson and Richard J. Trefler; From Asymmetry to Full Symmetry: New Tech-
niques for Symmetry Reduction in Model Checking, Conference on Correct Hardware Design
and Verification Methods, p. 142-156, 1999.

E. M. Clarke, E.A. Emerson, S. Jha, and A.S. Sistla. Symmetry reductions in model check-
ing. V. 1427 of Lecture Notes in Computer Science, Springer Verlag, June/July 1998.

T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler, A. Qayyum, L. Viennot, Optimized
Link State Routing Protocol for Ad Hoc Networks, IEEE INMIC Pakistan 2001.

T. Clausen, P. Jacquet, Optimized Link State Routing Protocol (OLSR), Request for Com-
ments: 3626, October 2003.

Edmund Clarke, Model Checking: My 25 year quest to overcome the state-explosion prob-
lem, 25 Years of Model Checking Symposium, The 2006 Federated Logic Conference, Seat-
tle, Washington, August 10 - 22, 2006.

M. Aagaard, M. E. Leeser, and P. J. Windley. Toward a super duper hardware tactic, 6th
International Workshop, HUG’93, Vancouver, B.C., August 11-13 1993.

T. Murata, Petri Nets: Properties, Analysis and Applications Proceedings of the IEEE, pp.
541-580, Vol. 77, No 4, April, 1989.

K. Jensen, Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Volume 1, Basic Concepts, Monographs in Theoretical Computer Science, Springer-Verlag,
1997.

Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson and Wang Yi, Uppaal
- a Tool Suite for Automatic Verification of Real-Time Systems, In Proceedings of the 4th
DIMACS Workshop on Verification and Control of Hybrid Systems, New Jersey, Oct. 1995.

Madanlal Musuvathi, David Y. W. Park, Andy Chou, Dawson R. Engler, David L. Dill:
CMC: A Pragmatic Approach to Model Checking Real Code, 5th Symposium on Operating
System Design and Implementation, USENIX Association, Massachusetts, Dec. 2002.

Irfan Zakiuddin, Michael Goldsmith, Paul Whittaker, Paul H. B. Gardiner: A Methodology
for Model-Checking Ad-hoc Networks, Lecture Notes in Computer Science, Volume 2648,
Springer Verlag, May 2003.

APPENDIX C - PROMELA SYNTAX 119

[42]

[44]

[45]

[46]

[49]

[50]

G. Acs, L. Buttyan, and 1. Vajda, Provable Security of On-Demand Distance Vector Routing
in Wireless Ad Hoc Networks, Second European Workshop on Security and Privacy in Ad
Hoc and Sensor Networks (ESAS 2005) Visegrad, Hungary, July 13-14, 2005.

Satyaki Das and David L. Dill. Counter-Example Based, Predicate Discovery in Predicate
Abstraction. Formal Methods in Computer-Aided Design, Portland, Oregon, November,
2002.

Richard Ogier. Topology dissemination based on reverse-path forwarding (TBRPF): Cor-

rectness and simulation evaluation, Technical report, SRI International, October 2003.

S. Das, A. Nandan, G. Pau M.Y. Sanadidi and M. Gerla, SPAWN: Swarming Protocols for
Vehicular Ad Hoc Wireless Networks, Proceedings of the First ACM International Workshop
on Vehicular Ad Hoc Networks (VANET 2004), MOBICOM 2004, Berkeley, 2004.

A. Nandan, S. Das, G. Pau M.Y. Sanadidi and M. Gerla —Cooperative Downloading in
Vehicular Ad Hoc Wireless Networks, Proceedings of IEEE/IFIP International Conference
on Wireless On demand Network Systems and Services , St. Moritz, Switzerland, Jan 2005.

R. Shah, S. Roy, S. Jain, and W. Brunette. Data mules: Modeling a threetier architecture

for sparse sensor networks. Sensor Network Protocols and Applications. IEEE, 2003.

Goodman, D.J. Borras, J. Mandayam, N.B. Yates, R.D, INFOSTATIONS: a new sys-
tem model for data and messaging services, IEEE 47th Vehicular Technology Conference,
Phoenix, AZ, USA, 1997.

Zong Da Chen, H.T.Kung, and Dario Vah. Ad hoc relay wireless networks over moving
vehicles on highways. In MobiHoC, 2001.

Qun Li and Daniela Rus. Sending messages to mobile users in disconnected ad-hoc wireless
networks. In Proceedings of the sixth annual international conference on Mobile computing
and networking, pages 44U55. ACM Press, 2000.

Briesemeister, L. and Hommel, G., Role-Based Multicast in Highly Mobile but Sparsely
Connected Ad Hoc Networks, in Proceedings of the First Annual Workshop on Mobile Ad
Hoc Networking and Computing (MobiHOC), Boston, MA, USA, August 2000.

Gavrilovich, C. D., Broadband Communication on the Highways of Tomorrow, in IEEE

Communications Magazine, April 2001.

J. Harri, M. Fiore, F. Fethi, and C. Bonnet, VanetMobiSim: generating realistic mobility
patterns for VANETS, in Proc. of the 3rd ACM International Workshop on Vehicular Ad
Hoc Networks (VANET’06), September 29, 2006, Los Angeles, USA.

Swarup Acharya, Michael J. Franklin, and Stanley B. Zdonik. Balancing push and pull for
data broadcast. In ACM SIGMOD, pages 183-194, 1997.

DimitriosKatsaros and YannisManolopoulos.Web caching in broadcastmobile wireless envi-
ronments. IEEE Internet Computing, 08(3):37-45, 2004.

APPENDIX C - PROMELA SYNTAX 120

[56]

[57]

[58]

[59]

[62]

[63]

[67]

[68]

Chi-Jiun Su and Leandros Tassiulas. Joint broadcast scheduling and userSs cache manage-
ment for efficient information delivery. Wirel. Netw., 6(4):279-288, 2000.

Qiu Fang, Susan V. Vrbsky, Yu Dang, and Weigang Ni. A pull-based broadcast algorithm
that considers timing constraints. In ICPPW 04, pages 46-53, IEEE Computer Society,
Washington, DC, USA, 2004.

Liviu Iftode Tamer Nadeem, Pravin Shankar. A comparative study of data dissemination
models for vanets. In Proceedings of the 3rd Annual International Conference on Mobile
and Ubiquitous Systems: Networks and Services (MOBIQUITOUS 2006), July 2006.

Nikolaos Frangiadakis and Nick Roussopoulos. Caching in mobile environments: A new
analysis and the mobile - cache system. In IEEE International Symposium on Personal
Indoor and Mobile Radio Communications (PIMRC), Athens, Greece, September 2007.

M. Tariq, M. Ammar, E. Zegura. Message Ferry Route Design for Sparse Ad hoc Networks
with MobileNodes. ACM Mobihoc 2006. May 2006 22-27, Florence. Italy.

P. Juang and H. Oki and Y. Wang and M. Martonosi and L. Peh and D. Rubenstein.
Energy-efficient computing for wildlife tracking: Design tradeoffs and early experiences
with zebranet. ASPLOS, San Jose, CA, Oct 2002.

Nikolaos Frangiadakis, Daniel Camara, Fethi Filali, Antonio Alfredo F. Loureiro, Nick
Roussopoulos, Virtual access points for vehicular networks Mobilware 2008, 1st Interna-
tional Conference on MOBILe Wireless MiddleWARE, Operating Systems, and Applica-
tions, Innsbruck, Austria, February 12th-15th, 2008.

Charles E. Perkins and Elizabeth M. Royer. Adphoc onndemand distance vector routing.
In Proceedings of the 2nd TEEE Workshop on Mobile Computer Systems and Applications,
pages 90-100, Los Alamitos, California, February 1999.

G. J. Holzmann, An analysis of bitstate hashing, Formal Methods in Systems Design,
November 1998.

P. Khengar, Wireless adaptive routing protocol, PhD Dissertation, King’s College London,

Centre for Telecommunication Research, Dec. 2003

Mingliang Jiang, Jinyang Li and Y.C. Tay. Cluster Based Routing Protocol (CBRP). In-
ternet Draft draft-ietf-manet-cbrp-spec-01.txt, August 1999.

Manel Guerrero Zapata and N. Asokan Securing Ad-Hoc Routing Protocols In Proceedings
of the 2002 ACM Workshop on Wireless Security (WiSe 2002), pages 1-10. September 2002.

K. Sanzgiri, B. Dahill, B. Levine, C. Shields, and E. Belding-Royer. A secure routing pro-
tocol for ad hoc networks. In Proceedings of the International Conference on Network
Protocols (ICNP), 2002.

APPENDIX C - PROMELA SYNTAX 121

[69]

[70]

[71]

[72]

[73]

[80]

[81]

[82]

O. Wibling, J. Parrow, and A. Pears, Automatized Verification of Ad Hoc Routing Proto-
cols, Proc. 24th IFIP International Conference on Formal Techniques for Networked and
Distributed Systems (FORTE 2004), Madrid, Spain, 27-30 Sept. 2004.

Christian Tschudin, Richard Gold, Olof Rensfelt, and Oskar Wibling. LUNAR - A
Lightweight Underlay Network Ad-hoc Routing Protocol and Implementation. In Proceed-
ings of Next Generation Teletraffic and Wired/Wireless Advanced Networking (NEW2AN),
St. Petersburg, Russia, February 2004.

Sibusisiwe Chiyangwa and Marta kwiatkowska, Analysing Timed Properties of AODV with
UPPAAL, University of Birmingham, School of Computer Science, Technical Report CSR-
04-4, March 2004.

R. Ogier, F. Templin, and M. Lewis, Topology Dissemination Based on Reverse-Path For-
warding, draft-ietf-manet-tbrpf-11.txt, Internet-Draft, October 2003.

T. Narten, E. Nordmark, and W. Simpson. Neighbor Discovery for IP Version 6 (IPv6),
December 1998. RFC 2461.

Satyaki Das and David L. Dill. Successive approximation of In Proceedings of the Sixteenth
Annual TEEE Symposium on Logic in Computer Science, pages 51-60. IEEE Computer
Society, 2001. June 2001, Boston, USA.

Shuvendu K. Lahiri Randal E. Bryant, Predicate Abstraction with Indexed Predicates,
eprint arXiv:cs/0407006, ARXIV, publication date 07/2004.

Virginia Gold, ACM Turing Award Honors Founders of Automatic Verification Tech-
nology, ACM, http://www.acm.org/press-room /news-releases/turing-award-07/, collected
Feb. 2008.

R. P. Kurshan, Verification Technology Transfer, 25 Years of Model Checking - History,

Achievements, Perspectives. Lecture Notes in Computer Science 5000 Springer 2008

Orna Grumberg and David Long, Model checking and modular verification, ACM Transac-
tions on Programming Languages and Systems, 16(3):843-871, May 1994

A. Pnueli, In transition for global to modular temporal reasoning about programs, In K.
R. Apt, editor, Logics and Models of Concurrent Systems, volume 13 of NATO ASI series.

Series F', Computer and system sciences, Springer-Verlag, 1984

E.M. Clarke, S. Berezin, and S. Campos, Compositional Reasoning in Model Checking,
Lecture Notes in Computer Science 1536, pp. 81-103, 1998

N. Sinha, Automated Compositional Analysis for Checking Component Substitutability,
Doctoral Thesis, UMI Order Number: AAI3289953, Carnegie Mellon University, 2007

Gerard J. Holzmann, Basic Spin Manual, AT&T Bell Laboratories, Murray Hill, New Jersey

APPENDIX C - PROMELA SYNTAX 122

[83]

[84]

[85]

[86]

[87]

G. J. Holzmann. An analysis of bitstate hashing. In Proc. 15th International Conference
on Protocol Specification, Testing, and Verification, INWG /IFIP, pages 301U314, Warsaw,
Poland, 1995

D. Kroening and S. A. Seshia, Formal verification at higher levels of abstraction, In Pro-
ceedings of the 2007 IEEE/ACM international Conference on Computer-Aided Design, San
Jose, California, Nov., 2007

Yohan Boichut, Pierre-Cyrille Héam, Olga Kouchnarenko, Automatic Verification of Se-
curity Protocols Using Approximations, Rapport De Recherche Inria, RR-5727, inria-
00070291, Oct. 2005

Paolo Baldan, Andrea Corradini, and Barbara Konig. Unfolding-based verification for graph
transformation systems. In Proc. of UniGra 03: Uniform Approaches to Graphical Specifi-

cation Techniques, Warsaw, 2003

P. T. Breuer and S. Pickin, Verification in the Large via Symbolic Approximation, In
Proceedings of the Second international Symposium on Leveraging Applications of Formal
Methods, Verification and Validation, ISOLA, ITEEE Computer Society, Washington, DC,
November, 2006

