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coisas sensatas, porque diminuem a esperança; as coisas mais profundas da natureza,
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Resumo

Integração de dados tem como objetivo combinar dados de diferentes fontes

(repositórios de dados tais como bibliotecas digitais e bancos de dados) por meio da

adoção de um modelo de dados global e da detecção e resolução de problemas de con-

�ito de esquemas e entre os dados armazenados, de modo a prover uma percepção/visão

uni�cada ao usuário. Dois problemas especí�cos relacionados ao processo de integração

de dados - deduplicação de registros e pareamento de esquemas - apresentam espaços

de soluções muito vastos. Por esse motivo, explorar esses espaços da forma tradicional

torna-se uma alternativa computacionalmente cara e tecnicamente inviável para se en-

contrar soluções. Além disso, as soluções para estes problemas exigem que objetivos

múltiplos (e às vezes con�itantes) sejam atendidos simultaneamente. O objetivo desta

tese é apresentar abordagens evolucionárias, como a programação genética, como ferra-

mentas para solucionar tais problemas, levando a novas abordagens e métodos capazes

de atender a todas essas exigências e ao mesmo tempo, prover soluções de alta e�ciência

e e�cácia.

O primeiro trabalho apresentado nesta tese propõe uma abordagem, baseada em

programação genética, para deduplicação de registros. Essa abordagem combina difer-

entes evidências extraídas dos dados armazenados para sugerir funções de deduplicação

capazes de identi�car quando dois registros são réplicas ou não. Como demonstrado pe-

los experimentos realizados, nossa abordagem consegue superar métodos na literatura

até então considerados como o estado-da-arte. Além disso, as funções de deduplicação

sugeridas são e�cientes, exigindo menos processamento, pois utilizam menos evidên-
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cias. Finalmente, essa abordagem evolucionária é capaz de adaptar automaticamente

as funções de deduplicação a qualquer valor de limiar de identi�cação de réplicas,

poupando o usuário do trabalho de escolher e ajustar o valor desse parâmetro.

A partir dos resultados obtidos pela abordagem anterior, também é proposta uma

abordagem evolucionária para o problema de encontrar casamentos entre elementos de

esquemas de repositórios de dados semanticamente relacionados (problema de parea-

mento de esquemas). O objetivo do nosso trabalho foi desenvolver uma abordagem ca-

paz de encontrar casamentos de esquemas em uma situação adversa na qual informações

sobre a estrutura do repositório não estão disponíveis. Esta abordagem é pioneira na

tarefa de encontrar casamentos complexos usando somente os dados armazenados nos

repositórios. Para encontrar casamentos complexos são utilizadas estratégias de busca,

baseadas em técnicas de deduplicação de registros e de recuperação de informação,

durante o processo evolucionário. Para demonstrar a e�cácia de nossa abordagem,

conduzimos uma avaliação experimental usando conjuntos de dados reais e sintéticos.

Os resultados demonstram que a abordagem proposta é capaz de identi�car casamentos

complexos com grande precisão, apesar de fazer uso somente dos dados armazenados.
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Abstract

Data integration aims to combine data from di�erent sources (data repositories such

as databases, digital libraries, etc.) by adopting a global data model and by detecting

and resolving schema and data con�icts so that a homogeneous, uni�ed view can be

provided. Two speci�c problems related to data integration - schema matching and

replica identi�cation - present a large solution space. This space is computationally

expensive and technically prohibitive to be intensively and exhaustively explored by

traditional approaches. Moreover, the solutions for these problems usually require that

multiple, sometimes con�icting, objectives must be simultaneously attended. This the-

sis aims to show that evolutionary-based techniques can be successfully applied to such

problems, leading to novel approaches and methods that address all aforementioned

requirements and, at the same time, provide e�cient and high accuracy solutions.

In this thesis, we �rst propose a genetic programming approach to record dedupli-

cation. This approach combines several di�erent pieces of evidence extracted from the

actual data present in the repositories to suggest a deduplication function that is able

to identify whenever two entries in a repository are replicas or not. As shown by our

experiments, our approach outperforms existing state-of-the-art methods found in the

literature. Moreover, the suggested function is computationally less demanding since it

uses fewer evidence. Finally, it is also important to notice that our approach is capable

of automatically adapting to a given �xed replica identi�cation boundary, freeing the

user from the burden of having to choose and tune this parameter

Based on the previous approach, we also devised a novel evolutionary approach
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that is able to automatically �nd complex schema matches. Our aim was to develop

a method to �nd semantic relationships between schema elements, in a restricted sce-

nario in which only the data instances are available. To the best of our knowledge,

this is the �rst approach that is capable of discovering complex schema matches using

only the data instances, which is performed by exploiting record deduplication and in-

formation retrieval techniques to �nd schema matches during the evolutionary process.

To demonstrate the e�ectiveness of our approach, we conducted an experimental eval-

uation using real-world and synthetic datasets. Our results show that our approach is

able to �nd complex matches with high accuracy, despite using only the data instances.

.
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Chapter 1

Introduction

The increasing volume of information available in digital media has become a challeng-

ing problem for the administrators of existing data repositories. Usually built on data

gathered from di�erent sources, data repositories used by information systems such as

digital libraries and e-commerce brokers may present records with disparate structure.

Also, problems regarding low response time, availability, security, and quality assurance

become more di�cult to handle as the amount of data gets larger.

In this environment, the decision of keeping repositories with �dirty� data (i.e., with

replicas, with no standardized representation, etc.) goes far beyond technical questions

such as the overall speed or performance of the systems. The solutions available for

addressing this situation require more than technical e�orts, they need management

and cultural changes as well (Bell and Dravis, 2006).

To avoid this situation, it is necessary to analyze the main causes for �dirt� in data

repositories. The most common ones are problems found in traditional data input

interfaces (e.g., free text data input �elds) that do not apply data standardization and

de�ciencies in data integration. This last one particularly presents a great potential to

cause errors and inconsistencies that require expensive and di�cult correction.

1
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Figure 1.1. Data Integration Approaches (Ziegler and Dittrich, 2004)

1.1 Data Integration

In general, data integration aims to combine data from di�erent sources (data repos-

itories such as databases, digital libraries, etc.) by adopting a global data model and

by detecting and resolving schema and data con�icts so that a homogeneous, uni�ed

view can be provided. This uni�ed view aims at giving users the illusion of interact-

ing with one single information system. Usually, there are two main reasons for data

integration (Ziegler and Dittrich, 2004):

• Given a set of data sources, an integrated view eases data access and reuse

through a single data access point.

• Given a certain information need, data from di�erent complementary sources can

be combined to provide a more comprehensive basis to satisfy this information

need.

However, the path towards this uni�ed view presents a serious problem: all this data

should adopt the same abstraction principles, in other words, they should be accessed

by the same semantic concepts in order to be fully used. Also, it is important to stress

that most data repositories are not designed aiming at easing the integration process.
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For these reasons, it is not rare to �nd several di�erent ways of representing the same

concepts, entities and ideas. This leads to di�erent approaches for data integration.

As illustrated in Figure 1.1, detailed in (Ziegler and Dittrich, 2004), the data in-

tegration process may occur at several distinct layers, each one related to a speci�c

functionality usually present in most systems. At the user layer, users access data and

services through various interfaces that run on top of di�erent applications. Applica-

tions may use a middleware - transaction processing (TP) monitors, SQL middlewares,

etc. - to access data via a data access interface. The data itself is managed by a data

storage system. Usually, database management systems (DBMS) are used to combine

data access and storage functionalities.

Nonetheless, the integration process for both the data access and storage layers

present some of the most de�ant situations. This occurs because these layers require

clean data repositories (i.e., repositories that are free from problems caused by �aws

in semantic integration, such as lack of data standardization and replicas) in order to

provide reliable services for the upper level layers.

Even for these two layers (data access and storage), it is possible to �nd di�erent

descriptions for their internal steps, that exist to attend speci�c needs and objectives.

However, it is possible to describe a common sequence of steps for the integration

process of these layers (Batini et al., 1986). Each step is generally related to common

data integration subproblems. These steps represent data integration tasks that may

be organized in two phases, as illustrated in Figure 1.2, whose main objectives are

brie�y described in the following:

1. Semantic Integration Phase

a) Pre-Processing: involves structural and data type analysis in order to gather

information about the modeling and concepts adopted in the data reposito-

ries that will be integrated.

b) Schema Matching: comprises �nding valid alternatives for matching and
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posterior mapping between the concepts and modeling adopted in the data

repositories.

c) Post-Processing: comprises schema matching validation (or ranking, when

there is more than one valid suggestion) and data mapping. In this step,

additional processing can be required in order to prepare the repository for

further steps or to present the results to the user.

2. Instance Integration Phase

a) Cleaning and Standardization: comprises data cleaning and the establishing

of patterns and standards that the data must obey, in order to ease later

integration steps.

b) Blocking: comprises similarity analysis and initial processing (to build

blocks) in order to optimize the replica identi�cation step. The main idea

behind the blocking strategies is to create blocks whose records have the

smallest possible probability of being matches of records on the other blocks.

c) Replica Identi�cation: involves comparison between repository records to

�nd replicated entries, related to the same real-world entity. There are two

main tasks that can be viewed as equivalent in replica identi�cation: Record

Linkage (or record association) which is the task of �nding record entries

that refer to the same real world entity, however, these records are stored in

di�erent data repositories. Record Deduplication which is the task of identify

replicas of records found in the same data repository.

d) Clustering: comprises identi�cation of original and replicated records, and

analysis of the di�erences found between the same record related entities

found.

The semantic integration phase, which is usually accomplished by the schema

matching step, allows the implementation of services that are available in the data
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Figure 1.2. Data Integration Process

access layer. The instance integration phase, on the other hand, is responsible for

maintaining the consistency of the data stored in the uni�ed data layer.

In some speci�c environments, some of these steps are not performed or even re-

quired due to the characteristics of the data repositories, as well as to the objectives

that must be ful�lled at the end of the integration process. In some scenarios, only the

cleaning and standardization step may be required, in others, the replica identi�cation

step requires a further clustering analysis. We refer the reader to (Ziegler and Dittrich,

2004) for a more detailed discussion of the data integration process.

1.2 Thesis Statement

Two speci�c problems related to the data integration process - schema matching and

replica identi�cation - present a large solution space. This space is computationally

expensive and technically prohibitive to be intensively and exhaustively explored by

traditional approaches. Moreover, the solutions for these problems usually require that

multiple, sometimes con�icting, objectives must be simultaneously attended. This
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thesis aims to show that evolutionary-based techniques can be successfully applied to

such problems, leading to novel approaches and methods that address all requirements

and, at the same time, provide e�cient and high accuracy solutions.

1.3 Thesis Objectives

The main objective of this thesis is to propose evolutionary approaches, mainly based on

Genetic Programming (GP), to solve data integration related problems. The problems

we address are record deduplication (which is central to the replica identi�cation step)

and schema matching, which are related, respectively, to the instance and semantic

integration phases of the data integration process, as described in Figure 1.2.

Regarding record deduplication, we propose a GP-based approach that combines

several di�erent pieces of evidence extracted from the actual data stored in a repository

to produce a deduplication function that is able to identify whether two or more entries

are replicas or not.

Based on our solution to the record deduplication problem, we devised a novel

evolutionary approach to schema matching, strongly inspired by GP, that aims at

automatically �nding complex matches between schema elements of two semantically

related data repositories. This novel approach was developed since some subtleties

found in the schema matching problem require an evolutionary technique that extends

the �classic� GP, as we shall explain in Chapter 6.

The reasons why we have adopted evolutionary approaches to address these prob-

lems relies on the fact that they present the following characteristics:

1. Large search space: both problems present solutions that can be build by com-

bining small subsolutions for smaller problems. The optimal combination of these

subsolutions involves a large search space, that is computationally expensive and

technically prohibitive to be intensively and exhaustively explored.
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2. Multi-objective solutions: both problems require that several objectives must be

attended simultaneously in order to provide useful valid solutions.

3. Feature selection: despite the problem of �nding how to combine subsolutions

(characteristic 1), sometimes there are situations in which it is necessary to iden-

tify when some of the subsolutions should or not be part of the combined (�nal)

solution. Each subsolution represents a di�erent dimension component of the �-

nal solution, but, in some cases, the optimal solution may not include (or require)

all subsolutions available.

Evolutionary approaches comprise some techniques that are known for their ca-

pability to e�ciently �nd suitable answers to a given problem, without having to

explore the entire space of solutions and when there is more than one objective to

be accomplished (Banzhaf et al., 1998). In fact, some of them, particularly GP, have

been successfully applied to several problems related to information and data manage-

ment, such as document and information retrieval (Bergström et al., 2000; Cummins

and O'Riordan, 2006; Gordon, 1988), text classi�cation (Hirsch et al., 2007; Masand,

1994), ranking for web search (Fan et al., 2004), content-based image retrieval (Torres

et al., 2009), content target advertising (Lacerda et al., 2006), and record deduplica-

tion (de Carvalho et al., 2006).

1.4 Contributions

The main contributions of this thesis are:

1. A GP-based approach to record deduplication (de Carvalho et al., 2008a) that:

• is competitive when compared with existing state-of-the-art methods found

in the literature, and outperforms them as demonstrated by our experi-

ments (de Carvalho et al., 2008a);
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• provides solutions less computationally intensive, since it suggests solutions

that use the available evidence more e�ciently;

• frees the user from the burden of choosing how to combine similarity func-

tions and repository attributes (this distinguishes our approach from all

existing methods, since they require user�provided settings);

• frees the user from the burden of choosing the replica identi�cation boundary

value, since it is able to automatically adapt the similarity functions to a

�xed value for this deduplication parameter.

2. A detailed experimental study of our GP-based approach to record deduplica-

tion (de Carvalho et al., 2008b) that:

• shows how the selection of GP parameters impacts the performance of the

record deduplication task;

• provides guidelines for setting the parameters of our approach.

3. A novel evolutionary approach to complex schema matching that:

• uses only the actual data in the repositories to �nd matches between schema

elements - to the best of our knowledge, this is the only approach capable

of �nding complex matches (n-n and 1-n) in this restricted scenario;

• exploits novel matching strategies based on record deduplication and infor-

mation retrieval techniques to �nd the matches in several repository data

scenarios (from repositories with overlapping data to those with no common

data) with high accuracy;

• can be integrated with or be used to improve the e�ectiveness of existing

data integration systems.

1.5 Thesis Organization

The remaining of the thesis in organized in six chapters as follows:
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• Chapter 2 presents a review of major work related to the two problems we address

in this thesis - record deduplication and schema matching.

• Chapter 3 presents an overview of genetic programming focusing on those con-

cepts that are the basis of our approaches. Particularly, it describes how solutions

are represented in GP, the basic genetic operations and the evolutionary process.

• Chapter 4 describes our GP-based approach to record deduplication and presents

the experiments we conducted to evaluate it.

• Chapter 5 presents an experimental study on how the genetic programming pa-

rameters a�ect the results of our GP-based approach to record deduplication.

• Chapter 6 describes our novel evolutionary approach to schema matching and

presents the experiments we conducted to evaluate it.

• Finally, Chapter 7 presents a summary of our results and discusses future work.





Chapter 2

Related Work

In this chapter, we present a review of major work related to the two problems we

address in this thesis: record deduplication and schema matching.

2.1 Record Deduplication

Record deduplication is a growing research topic in database and related �elds such

as digital libraries. Today, this problem arises mainly when data is collected from dis-

parate sources using di�erent information description styles and metadata standards.

Other common place for replicas is found in data repositories created from OCR docu-

ments. These situations can lead to inconsistencies that may a�ect many systems such

as those that depend on searching and mining tasks.

To solve these inconsistencies it is necessary to design a deduplication function that

combines the information available in the data repositories in order to identify whether

a pair of record entries refers to the same real-world entity. In the realm of biblio-

graphic citations, for instance, this problem was extensively discussed by Lawrence et

al. (1999a; 1999b). They propose a number of algorithms for matching citations from

di�erent sources based on edit-distance, word matching, phrase matching, and sub�eld

extraction.

As more strategies for extracting disparate pieces of evidence become available,

11
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many works have proposed new distinct approaches to combine and use them. Elma-

garmid et al. (2007) classify these approaches into the following two categories:

• Ad�Hoc or Domain Knowledge Approaches: This category includes approaches

that usually depend on speci�c domain knowledge or speci�c string distance

metrics. Approaches that make use of declarative languages (Elmagarmid et al.,

2007) can be also classi�ed in this category.

• Training�based Approaches: This category includes all approaches that depend

on some sort of training � supervised or semi�supervised � in order to identify the

replicas. Probabilistic and machine learning approaches fall into this category.

Next, we brie�y comment on some works based on these two approaches (domain

knowledge and training�based), particularly those that exploit the domain knowledge

and those that are based on probabilistic and machine learning techniques, which are

the ones more related to our work.

2.1.1 Domain Knowledge Approaches

The idea of combining evidence to identify replicas has pushed the data management

research community to look for methods that could bene�t from domain-speci�c in-

formation found in the actual data as well as for methods based on general similarity

metrics that could be adapted to speci�c domains (Elmagarmid et al., 2007).

As an example of a method that exploits general similarity functions adapted to

a speci�c domain, we can mention the work by Chaudhuri et al. (2003). There the

authors propose a matching algorithm that, given a record in a �le (or repository),

looks for another record in a reference �le that matches the �rst record according to a

given similarity function. The matched reference records are selected based on a user-

de�ned minimum similarity threshold. Thus, more than one candidate record may be

returned. In such cases, the user is required to choose one among them indicating

which is the closest one. Records matching on high weight tokens (strings) are more
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similar than those matching on low weight tokens. The weights are calculated by the

well-known IDF weighting scheme (Baeza-Yates and Ribeiro-Neto, 1999).

This weighting scheme is also used in WHIRL (Cohen, 2000), a database manage-

ment system that supports similarity joins among relations that have free text attribute

values. In (Carvalho and da Silva, 2003), the authors use the vector space model for

computing similarity among �elds from di�erent sources and evaluate four distinct stra-

tegies to assign weights and combine the similarity scores of each �eld. As a result of

their experiment, they found that using evidence extracted from individual attributes

improves the results of the replica identi�cation task.

2.1.2 Probabilistic Approaches

Newcombe et al. (1959) were the �rst ones to address the record deduplication pro-

blem as a Bayesian inference problem (a probabilistic problem) and proposed the �rst

approach to automatically handling replicas. However, their approach was considered

empirical (Elmagarmid et al., 2007) since it lacks a more elaborated statistical ground.

After Newcombe et al.'s work, Fellegi and Sunter (1969) proposed a more elaborated

statistical approach to deal with the problem of combining evidence. Their method

relies on the de�nition of two boundary values that are used to classify a pair of records

as being replicas or not. Tools that implement this method, such as Febrl1, usually

work with two boundaries as follows:

1. Positive Identi�cation Boundary � if the similarity value lies above this boundary,

the records are considered as replicas;

2. Negative Identi�cation Boundary � if the similarity value lies below this boundary,

the records are considered as not being replicas.

For the situation in which similarity values stand between the two boundaries, the

records are classi�ed as �possible matches� and, in this case, a human judgment is

1Freely Extensible Biomedical Record Linkage - http://sourceforge.net/projects/febrl
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necessary.

2.1.3 Machine Learning Approaches

More related to our work are those proposals that apply machine learning techniques for

deriving record-level similarity functions that combine �eld-level similarity functions,

including the proper assignment of weights (Bilenko et al., 2003; Bilenko and Mooney,

2003; Cohen and Richman, 2002; Tejada et al., 2001). These proposals make use of a

small portion of the available data for training. This training dataset is assumed to have

characteristics similar to the test dataset. This allows learning techniques to generalize

their solutions when dealing with unseen data that share these characteristics. The

good results usually obtained with these techniques have empirically demonstrated that

those assumptions are valid.

Bilenko et al. (2003) and Bilenko and Mooney (2003) use a machine learning tech-

nique to improve both the similarity functions that are applied to compare record

�elds and the way pieces of evidence are combined. In their work, extracted evidence

is encoded as feature vectors, that are used to train a support vector machine (SVM)

classi�er to better combine them in order to identify replicas, in a system named Marlin.

The main idea behind this approach is that, given a set of record pairs, the similarity

between two attributes (e.g., two text strings) is the probability of �nding the score of

best alignment between them, so the higher the probability, the bigger the similarity

between these attributes. They compare the Marlin system with several other e�ective

learning methods and show that it outperforms all of them. The Marlin system is

used in this thesis as our baseline since it is the current state-of-the-art method for the

record deduplication problem.

The adaptive approach presented by Cohen and Richman (2002) consists of using

examples for training a learning algorithm to evaluate the similarity between two given

names, i.e., strings representing identi�ers. This approach is applied to both clustering

and pair-wise matching, achieving satisfactory experimental results.
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Active Atlas (Tejada et al., 2001) is a system whose main goal is to learn rules

for mapping records from two distinct �les in order to establish relationships among

them. During the learning phase, the mapping-rule and the transformation weights

are de�ned. The process of combining the transformation weights is executed using

decision trees. This system di�ers from the others in the sense that it tries to reduce

the amount of necessary training, relying on user-provided information about the most

relevant cases for training. Before Marlin, this system was the state-of-the-art solution

for the record deduplication problem.

An approach distinct from the previous ones is presented by Guha et al. (2004).

The main idea is to generate individual rankings for each �eld based on similarity

scores generated. Then, the individual rankings are merged in order to obtain a global

ranking such that the distance among the individual rankings is minimized. By doing

so, the top records in this global ranking are considered to be the most similar to

the input record. Notice that this approach requires no training. Unfortunately, the

experiments conducted do not evaluate the quality of the global ranking with respect

to the record matching e�ectiveness.

In (de Carvalho et al., 2006), we propose a GP-based approach to improve results

produced by the Fellegi and Sunter's method (1969). Particularly, we use GP to balance

the weight vectors produced by the Fellegi and Sunter's method, in order to generate

a better evidence combination than the simple summation used by that method. Our

experiments with real datasets show that our approach achieves improvements over 7%

in precision.

In this thesis, we use GP to �nd the best evidence combination in a generic frame-

work that is independent of any other technique (de Carvalho et al., 2008a). We use GP

to pair attributes and similarity functions in order to combine the available evidence,

and compare this strategy with the traditional human chosen evidence combination.

Another important di�erence from our previous work (de Carvalho et al., 2006) is that

we use only one identi�cation boundary value, which prevents the existence of results
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that would require a human judgment to determine whether selected record pairs are

replicas or not.

2.2 Schema Matching

Schema matching is a critical step in any data integration process (Elmagarmid et al.,

2007). The problem usually arises due to the many possible ways of expressing the

same ideas and concepts when modeling data. For example, database designers may

opt for di�erent representations of a same real-world entity (as an entity type or an

attribute) or even adopt di�erent data modeling paradigms.

Rahm and Bernstein (2001) propose a taxonomy for schema matching approaches,

in which they classify the existing approaches in the following categories:

• Schema-Level: This category includes approaches that usually use structural

schema information as well as some knowledge on the application domain con-

sidered.

• Instance-Level: This category includes all approaches that use only the stored

data instances as source of evidence.

• Hybrid: This category includes all approaches that combine information ex-

tracted from both the schema structure and the stored instances.

Next, we brie�y comment on some representatives of these three approaches, fo-

cusing on those that exploit only the data available in the repositories (instance level)

which are the ones more related to our work.

2.2.1 Schema-Level Approaches

Several works on schema matching use structural information, such as attribute names,

to �nd the relationships among the schema elements of two repositories. Batini
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et al. (1986), for example, propose a methodology for integrating schemas of rela-

tional databases into a global, uni�ed schema, using the information available in the

associated entity-relationship schemas (e.g., entities, relationships, and cardinalities).

However, this methodology lacks scalability since it requires manual match identi�ca-

tions, being infeasible for large scale schemas.

Other works present broader alternatives. For instance, they use object labels from

schemas modeled with the OO paradigm, entity descriptions, attribute types, etc. One

common way of using all this information is to induce association rules to unearth

relationships between the schemas, as in systems such as TranScm (Milo and Zohar,

1998) and ARTEMIS (Castano et al., 2001).

In the TranScm (Milo and Zohar, 1998) system, the authors use a schema translation

process, based on relationships created from attribute information extracted from the

schema, such as their data types. The process aims at �nding how to transform one

schema into another by matching the attribute characteristics from two schemas. The

system usually requires user insights and manually provided examples in order to be

used.

In ARTEMIS (Castano et al., 2001), the schema matching is accomplished by using

a global similarity coe�cient. This coe�cient is calculated using a previously stored

dictionary and thesauri information. The system uses the labels and the descriptions

of the attributes to identify potential relationships between schema elements. Then, it

builds a�nity trees that estimate how related the attributes are. These trees are then

compared using association rules, and the best ones are presented for the �nal user.

Nonetheless, this proposal ignores the problems of complex matches, presenting only

1-1 matches as solutions.

Other works represent the schema structure found in the repositories as graphs in

order to compare them. The main examples of this strategy are the Cupid (Madhavan

et al., 2001) and Similarity Flooding (Melnik et al., 2002) systems.

The Cupid system (Madhavan et al., 2001), which may be classi�ed as a hybrid
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matcher2, uni�es several strategies that aim at analyzing the repository structures

in order to �nd schema matches. One of the adopted strategies is based on linguistic

analyses of attribute names and object labels. Cupid is also able to extract information

from labels used by keys, view names and structural constraints, such as relationship

cardinalities. The �nal result is the combination of all this information, which is

presented to the user as a graphical model of the relationships found between the

schemas. It must be noticed that Cupid makes extensive use of external resources such

as dictionaries, thus, its use may be problematic depending on the repository domain

if these resources are not available.

Similarity Flood (Melnik et al., 2002) presents a pairing algorithm that looks for

�semantic� points (e.g., same words or similar expressions for the same concepts) that

can be used as milestones for building associations between the candidate schemas. The

algorithm input are the two graphs that represent the schema structures and its output

is a match table for the elements that were connected. This �nal solution requires user

adjustments and, for this reason, the authors describe Similarity Flood as a user aid

tool. It helps �nding a set of match suggestions for which the user has only to provide

�ne-grained adjustments.

2.2.2 Instance-Level Approaches

As explained before, instance-level approaches build their strategies to �nd matches

between schema elements using only the data available in the repositories being pro-

cessed. Some of the most e�ective systems in this category use probabilistic and ma-

chine learning techniques. For example, Li and Clifton propose a system for this task,

named SemInt (Li and Clifton, 1994, 2000), that is based on neural networks. SemInt

categorizes the repository attribute values into speci�c types and, then, trains a neural

network to �nd the similarity between these values. In the most recent version of this

system (Li and Clifton, 1994), additional information is exploited in the neural network

2Its �rst version was purely instance-level.
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training. Some of this additional information is extracted from structural elements (i.e.,

name of the attributes). However, the system is still only capable of identifying 1-1

matches.

Another elaborated approach that uses machine learning techniques is proposed

by Doan et al. (2000; 2001). In their work, the LSD (Learning Source Description)

system utilizes a multi-level architecture that combines the results of di�erent learning

strategies. LSD aims at semi-automatically processing the schema matching task.

The system requires initial examples of semantic mappings from the user and employs

these examples to train each machine learning technique available. Using the candidate

solutions provided for each learner, a meta-learner is used to combine them in a single

�nal solution to be presented to the user.

The �rst version of LSD (Doan et al., 2000) relied on the analysis of repository

data samples to provide user selected instance-level examples for training. However,

its most recent version (Doan et al., 2001) received upgraded modules that use schema

information to improve the results. Thus, its approach can now be classi�ed as a hybrid

one. Nonetheless, the LSD system only presents solutions for 1-1 matches and because

of its dependence of external domain information, such as dictionaries, it can present

problems (e.g., no dictionaries or thesauri available) in some data domains.

More recently, Warren and Tompa (2006) have described a speci�c multi-column

string matching approach that, in fact, proposes data mappings (i.e., it identi�es the

operations that are required to transform an attribute value into another one) between

schema elements. Their approach is able to discover several complex combinations of

strings in order to �nd the mappings. However, as pointed out by the authors, they

require some common data between the repositories in order to �nd the solutions.

Additionally, the approach also needs some external information, such as a previously

selected set of attributes, in order to solve complex mappings.
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2.2.3 Hybrid Approaches

Systems and tools that are built based on hybrid schema matching approaches use

both instance and structural information to �nd the relationships between schemas.

As discussed by Rahm and Bernstein (2001), most of the current research are in fact

focused on hybrid approaches. This can be explained since, separately, both instance

and schema level approaches present de�ciencies that may be solved when their infor-

mation is combined.

An example of a hybrid schema matching system is Clio (Hernández et al., 2001;

Miller et al., 2000; Yan et al., 2001), which employs a user-feedback technique and an

analysis of the data stored in the repositories to suggest the best schema matches. The

Clio system gathers information from the users in cycles, improving the solutions in

each interaction. Both, information extracted from the schemas (e.g., attribute names)

and from the instances, are re�ned in this process.

Another example is SKAT (Mitra et al., 1999, 2000), which provides a hybrid ap-

proach for repositories that are modeled using the OO paradigm. The system explores

the cardinality of the associations between objects, as well as their labels.

A more elaborated system is iMAP (Dhamankar et al., 2004). This system com-

prises several modules, featuring di�erent pre-processing data strategies, machine learn-

ing techniques, and schema processing approaches. All the information coming from

these di�erent modules is combined during a post-processing stage, and several options

and suggestions of solutions are presented to the �nal user.

In this thesis, we propose a novel evolutionary instance-level approach that aims at

automatically �nding complex schema matches. Our major objective was to develop a

method that provided useful information about existing semantic relationships between

schema elements, in a restricted scenario in which only the data instances are available.

To the best of our knowledge, our approach is the �rst instance-level approach that

deals with complex matches.
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Overview of Genetic Programming

In this chapter, we present an overview of genetic programming focusing on those

concepts that are the basis of our approaches. Particularly, we describe how solutions

are represented, the genetic operations and the evolutionary process.

3.1 Genetic Programming

Evolutionary programming is based on ideas inspired on the naturally observed process

that in�uence virtually all living beings, the natural selection. Genetic Programming

(GP) (Koza, 1992; Banzhaf et al., 1998) is one of the best known evolutionary pro-

gramming techniques. It can be seen as an adaptive heuristic whose basic ideas come

from the properties of the genetic operations and natural selection system. It is a

direct evolution of programs or algorithms used for the purpose of inductive learn-

ing (supervised learning), initially applied to optimization problems. GP, as well as

other evolutionary techniques, is also known for its capability of working with multi-

objective problems, that are normally modeled as environment restrictions during the

evolutionary process (Banzhaf et al., 1998).

GP-based systems are also widely known for their good performance on searching

over very large - possibly in�nite - search spaces, where the optimal solution in many

cases is not known, usually providing near-optimal answers (Koza, 1992; Banzhaf et al.,

21
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1998). This happens because the GP algorithm is able to search, in parallel, several

points on the problem state space with numerous search directions. As stated by

Koza (1992), �the fact that the GP algorithm operates on a population of individuals,

rather than a single point in the search space of the problem, is an essential aspect

of the algorithm�. This can be explained since the population serves as the pool of

the probably-valuable genetic material, which is used to create new solutions with

probably-valuable new combinations of features.

The main aspect that distinguishes GP from other evolutionary techniques (e.g.,

genetic algorithms, evolutionary systems, genetic classi�er systems) is that it represents

the concepts and the interpretation of a problem as a computer program - and even the

data is viewed and manipulated in this way. This special characteristic enables the GP

computer program representation to model any other machine learning representation

(Banzhaf et al., 1998).

Moreover, another advantage of GP over other evolutionary techniques is its appli-

cability to symbolic regression problems, since the structures of the computer program

representation are variable (i.e., they have no length limitations). According to An-

geline and Kinnear (1996), �while GP does not mimic nature as closely as do genetic

algorithms, it does o�er the opportunity to directly evolve programs of unusual com-

plexity, without having to de�ne the structure or size of the program in advance�.

It is important to notice that most of the problems solved (or approximated) by

GP are, in some ways, symbolic regression problems. This means that GP is able to

discover the independent variables and their relationships with each other and with

any dependent variables. Thus, GP can �nd the correct functional form that �ts the

data and discover the appropriate coe�cients (Angeline and Kinnear, 1996). Solving

this kind of problem is noticeably more complex than linear regression or polynomial

regression problems.
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3.2 Solution Representation

Usually, GP evolves a population of length-free data structures, also called individu-

als, each one representing a single solution to a given problem. For example, in our

GP-based approach to record deduplication, the individuals are trees that represent

arithmetic functions, as illustrated in Figure 3.1. In this representation, each variable

(a numerical value) is represented by a leaf in the tree. The internal nodes represent

operations that are applied to the leafs, such as simple mathematical functions (e.g.,

+,−,∗,/,exp) that manipulate these values.

In GP, there are several ways of spawning the initial population of individuals that

will participate in the evolutionary process. The most common way is to create random

trees using the functions and terminals available. Some approaches also make use of

the user input to suggest how to create the initial population. This is achieved by using

the tree (problem solution) provided by the user for creating variants, for example, by

applying mutations or crossing them with other random created trees.

Other ways of spawning the initial population are: full depth � all trees are created

with the same maximum allowed depth; grown � the trees are created with a random

number of nodes, but not exceeding the maximum allowed depth; ramped half-and-half

� half of the trees is created using the full depth method and the other half, using the

grown method.

3.3 Basic Genetic Operations

During the evolutionary process, the individuals are handled and modi�ed by genetic

operations such as reproduction, crossover, and mutation (Koza, 1992), in an iterative

process that is expected to spawn better individuals (solutions to the proposed problem)

in the subsequent generations.

Reproduction is the operation that copies individuals without modifying them.

Usually, this operation is used to implement an elitism strategy (Koza, 1992), that is
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tree(a,b,c) = a + (b/c)

Figure 3.1. Example of a Function Mapped as a Tree

a cb /+ + ba -*bctree(a,b,c) = a + (b/c) tree(a,b,c) = (c+a) * (a-b)
a cb /+ + ba -*bctree(a,b,c) = a + (c+b) tree(a,b,c) = (b/c) * (a-b)

Figure 3.2. Random SubTree Crossover

adopted to keep the genetic code of the �ttest individuals across the changes in the

generations. According to Koza (1992), �the operation of reproduction for the genetic

programming paradigm is the basic engine of Darwinian reproduction and survival of

the �ttest�. Thus, if a good individual is found in earlier generations, it will not be lost

during the evolutionary process.

The crossover operation allows genetic content (e.g., subtrees) exchange between

two parents, in a process that can generate two or more children. In GP, two parent

trees are selected according to a matching (or pairing) policy and, then, a random

subtree is selected in each parent. Child trees are the result from the swap of the

selected subtrees between the parents, as illustrated in Figure 3.2.

One important concern is to discover how to balance the reproduction and crossover
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rates. If the number of reproduced individuals is high, there will be no diversity among

the population. Also, the evolutionary process may require more generations to achieve

good solutions, since there are less new individuals that are created in each generation.

However, if the number of individuals that will su�er crossover is higher than neces-

sary, the �pool� of good individuals will be smaller. This happens because the crossover

operation, that is responsible for creating new individuals, also presents a destructive

e�ect over good solutions (Banzhaf et al., 1998). A major consequence of this is that

some good individuals may be lost during the process. This fact can be balanced by

keeping some of the good individuals, that are found during the process, unaltered over

the generations (using the reproduction operation).

Another concern is how to choose the most adequate way to create the pairs of

individuals that will participate in the crossover. There are three well known strategies.

The �rst one is the random pairing � the pairs of individuals that will exchange genetic

materials are randomly selected. The second is the ranking pairing � the individuals

are paired in crescent order of �tness. The third is the mirror pairing - the individuals

are ordered by �tness and paired as (1, n), (2, n − 1), (3, n − 3), ..., ((n/2), (n/2) − 1),

where n is the size of the population (which forces the exchange of genetic materials

between good and bad individuals).

The mutation operation has the role of keeping a minimum diversity level of indi-

viduals in the population, thus avoiding premature convergence. Convergence is also

known as allele loss. Allele1 loss is the natural loss of traits in the gene pool during the

evolutionary process. Thus, severe allele loss results in a population unable of solving a

problem with the available gene pool. For these reasons, mutation is often responsible

for preventing the evolutionary process from being stuck in minimum or maximum

local values.

Every individual resulting from the crossover operation has an equal chance of

su�ering a mutation. In a GP tree scheme, a random node in the chosen tree is

1In biology, the term allele refers to the range of values a particular gene can assume.
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a cb /+* aa tree(a,b,c) = a + (b/c)
cb /*

tree(a,b,c) = (a*a) * (a-b)
Random GeneratedSubTree

* aa
Figure 3.3. Random SubTree Mutation

selected and the pointed subtree is replaced by a new randomly created subtree, as

illustrated in Figure 3.3. However, if the mutation rate is set to a higher value,

it usually disrupts good solutions, slowing the evolutionary process. Like in nature,

mutations are destructive and, for this reason, it corresponds to a parameter that is

kept with lower values.

It is important to notice that, in our experiments (described in Chapters 4, 5, and

6) all operations for node replacements and insertions performed by the mutation and

crossover operations consider equal (and constant) probabilities. All nodes have the

same probability of being chosen during these operations, in order to guarantee the

diversity of the individuals within the genetic pool.

3.4 Evolutionary Process

There are two ways to conduct the GP evolutionary process (Banzhaf et al., 1998):

by applying a steady state algorithm that does not consider distinct generations, or a

generational one that does.

A steady state algorithm copies the next generation of individuals into the same

population from which the parents were previously selected. When the genetic op-
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Figure 3.4. Steady State Algorithm: (1) Selecting parents (2) New o�spring is

created (3) Parents are replaced in the population

erations on the parents are completed, the new o�spring takes the place of members

of the previous generation within that population. In sum, the new individuals of

the population are exchanged with the old members of the same population (Banzhaf

et al., 1998), as illustrated in Figure 3.4. This process of creating the new population

continues until no individuals of the previous generation remain or another termination

criterion is established, such as processing time. Thus, in this case, the evolutionary

process �ows in a continuous run.

A generational algorithm, on the other hand, comprises well-de�ned and distinct

generation cycles. The steps that comprise this kind of algorithm are the following:

1. Initialize the population (with random or user provided individuals).

2. Evaluate all individuals in the present population, assigning a numeric rating or

�tness value to each one.

3. If the termination criterion is ful�lled, then execute the last step. Otherwise

continue.

4. Reproduce the best n individuals into the next generation population.

5. Select m individuals that will compose the next generation with the best parents.
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6. Apply the genetic operations to all individuals selected. Their o�spring will

compose the next population. Replace the existing generation by the generated

population and go back to Step 2.

7. Present the best individual(s) in the population as the output of the evolutionary

process.

The evaluation in Step 2 is done by assigning to an individual a value that measures

how suitable that individual is to the proposed problem. In our GP experimental

environment, individuals are evaluated on how well they learn to predict good answers

to a given problem, using the set of functions and terminals available. The resulting

value is also called raw �tness and the evaluation functions are called �tness functions.

The �tness value can be seen as a �direction� or �path� that a GP suggested solution

takes in its evolutionary process. In other words, it represents an individual's ability

to overcome the di�culties within an environment for available resources. Thus, by

using this �tness value, in Step 5 it is possible to select which individuals should be in

the next generation.

The selection step applies a criterion for choosing the individuals that should be

in the next generation. After the evaluation, each solution has a �tness value that

measures how good or bad it is to the given problem. Using this value, it is possible

to decide whether an individual should be in the next generation.

Strategies for the selection operation may use very simple or complex techniques,

varying from just selecting the best n individuals to randomly selecting the individuals

proportionally to their �tness. The mostly adopted strategies are: roulette wheel �

the probability of selection is proportional to the individual's �tness; tournament � for

each available position in the next generation, two individuals are randomly chosen and

the �ttest one is selected; random � the selection is made randomly; ranking � all n

available positions are occupied by the n �rst �ttest individuals; greedy � a small group

of �ttest individuals have their chances of being selected improved over the others ones
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Figure 3.5. Generational Algorithm: (1) Selecting parents in the present pop-

ulation (2) New o�spring is created (3) New individuals are inserted in the next

population

in the population. For more details on each of these strategies, see (Banzhaf et al.,

1998) and (Koza, 1992).

These selection strategies have di�erent results on the balance of the number of

�tted and un�tted individuals among the population. Since di�erent problems may

require di�erent experimental setups, choosing the most suitable selection strategy for

a speci�c problem may improve the quality of the suggested solutions and may require

less resources.

Notice that a generational algorithm uses two populations at the selection stage,

as illustrated in Figure 3.5. One population contains the parents to be selected (the

�present population�) and the other population holds their descendents (the �next gen-

eration�). The steady state algorithm uses the same population for both parents and

their descendents.

In this thesis, the GP evolutionary process is guided by a generational algo-

rithm (Banzhaf et al., 1998). We adopted this approach since it captures the basic

idea behind several evolutionary strategies and, also, because the generational algo-

rithm is known to be better than the steady state algorithm when dealing with small

populations (e.g., less than 100 individuals), as reported in (Kinnear, 1993). In smaller
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populations, the advantages of the steady state algorithm are outweighed by �the neg-

ative e�ects of genetic drift2�(Kinnear, 1993).

Regarding to the generational algorithm, it is important to point out that the

termination criterion on Step 3 depends on the particular application. In the case of

our proposed approaches, we stop after a �xed number of generations is processed, in

order to limit processing time. However, it is also possible to relate the termination

criterion to the �tness (e.g., if the �tness value reaches a previously �xed boundary,

the evolutionary process stops).

3.5 Generalization Issues

Machine learning techniques, such as GP, use valid or useful solutions to �nd other

ones with the same characteristics of those given as example. However, it is possible

that these techniques also �nd some solutions that are only useful in speci�c situations,

such as when small datasets are used.

Usually, the main goal of such techniques is to look for solutions that are able

to attend all requirements for both the controlled (when previously known solutions

are given as examples) and real-case situations/scenarios. For this reason, machine

learning techniques usually make use of a two-phase strategy to assure that the �nal

solutions can endure both scenarios: the training and the test phases.

The training phase aims at �teaching� the learning technique to identify the rele-

vant characteristics of good solutions (that are given as guiding examples). In most

situations, this training is accomplished by the use of positive examples (i.e., valid

or acceptable solutions), negative examples (i.e., invalid or unacceptable solutions) or

both at the same time. From these examples, used as the training set, it is expected

that the technique will successfully identify good solutions in new sets of examples.

The test phase, also referred to as �evaluation� phase, is required to verify that

the solutions found in the training phase are useful. For this, the individuals are
2Genetic drift is the change in the relative frequency with which an allele occurs in a population.
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tested against a collection of examples, whose behavior (or set of characteristics) is

equal or similar to that of the training set, which is also called the evaluation example

set. This procedure is necessary as a means to assure that the solution behavior in a

representative sample of a population is the same (or valid) for other samples of this

same population, in other words, to assure that the solution is generalizable.

When using GP (and other machine learning techniques), there are two major points

that must be observed to assure generalizable solutions: sampling and over�tting.

Sampling is a impacting factor, since bad sampling techniques will lead to a subset of

the population with di�erent characteristics from the ones found in the superset. For

this reason, sampling must be done with attention in order to assure valid training and

evaluation sets. Otherwise, the learning techniques will fail to provide useful solutions.

Over�tting occurs when a suggested solution successfully works in the training set, but

its behavior in the evaluation set is very di�erent, usually providing poor results.

With respect to over�tting. Banzhaf et al. (1998) points out three major causes for

it:

1. Complexity of the suggested solution: the more simple the solution, the higher

the probability that it is generalizable.

2. Training e�ort and time: in neural networks, it is very important to stop the

learning process before the over�tting occurs. However, in GP (and other evolu-

tionary techniques), it is not clear when it occurs. This happens because �nding

the right moment to end the training is a complex and still open problem.

3. Size of the training set: the smaller the training set (i.e., not representative), the

less trustful will be the solutions obtained from this set.

In our experiments, described in Chapters 4, 5, and 6, we provide detailed informa-

tion on the sampling techniques and, also, the results achieved with both the training

and test sets. This has been done in order to show that the results are statistically

equivalent in both sets.





Chapter 4

A GP-based Approach to Record

Deduplication

Record deduplication is the task of identifying, in a data repository, records that refer

to the same real world entity or object in spite of misspelling words, typos, di�erent

writing styles or even di�erent schema representations or data types. There has been

a large investment from private and government organizations in the development

of methods for removing replicas from data repositories (Wheatley, 2004; Bell and

Dravis, 2006). This is due to the fact that clean and replica-free repositories not only

allow the retrieval of higher-quality information but also lead to a more concise data

representation and to potential savings in computational time and resources to process

this data.

In this chapter, we propose a genetic programming (GP) approach to record dedu-

plication. Our approach combines several di�erent pieces of evidence extracted from

the data content to produce a deduplication function that is able to identify whether

two or more entries in a repository are replicas or not. Since record deduplication

is a time consuming task even for small repositories, our aim is to foster a method

that �nds a proper combination of the best pieces of evidence, thus yielding a dedu-

plication function that maximizes performance using a small representative portion of

33
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the corresponding data for training purposes. Then, this function can be used on the

remaining data or even applied to other repositories with similar characteristics. It is

worth noticing that this (arithmetic) function, which can be thought as a combination

of several e�ective deduplication rules, is easy and fast to compute, allowing its e�cient

application to the deduplication of large repositories.

A function used for record deduplication must accomplish distinct but con�icting

objectives: it should e�ciently maximize the identi�cation of record replicas while

avoiding making mistakes during the process (e.g., to identify two records as replicas

when they are not).

As shown in our experiments, our GP-based approach achieves better results than

a state-of-the-art method (Bilenko and Mooney, 2003), based on Support Vector Ma-

chines, using less evidence to support it. Using less evidence to compute the similarity

between two records improves the deduplication e�ciency, since this reduces the num-

ber of attribute comparisons required.

In this thesis, we generalize our previous results (de Carvalho et al., 2006) by

showing that our GP-based approach is also able to automatically �nd e�ective dedu-

plication functions, even when the most suitable similarity function for each record

attribute is not known in advance. This is extremely useful for the non�specialized

user, who does not have to worry about selecting these functions for the deduplication

task.

In addition, we show that our approach is also able to adapt the suggested dedu-

plication function to changes on the replica identi�cation boundary used to classify a

pair of records as a match or not (de Carvalho et al., 2008a). This releases the user

from the burden of having to choose and tune these values.
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4.1 Modeling the Record Deduplication Problem

with GP

When using GP (or even some other evolutionary technique) to solve a problem, there

are some basic requirements that must be ful�lled, which are based on the data struc-

ture used to represent the solution (Koza, 1992). In our case, we have chosen a tree-

based GP representation for the deduplication function, since it is a natural represen-

tation for this type of function (i.e., combination of numerical values). Based on this

assumption, these requirements (Banzhaf et al., 1998) are the following:

1. All possible solutions to the problem must be represented by a tree, no matter

its size.

2. The evolutionary operations applied over each individual tree must, at the end,

result into a valid tree.

3. Each individual tree must be automatically evaluated.

For Requirement 1, it is necessary to take into consideration the kind of solution

we intend to �nd. In the record deduplication problem, we look for a function that

combines pieces of evidence.

In our approach, each piece of evidence (or simply �evidence�) E is a pair <attribute,

similarity function> that represents the use of a speci�c similarity function over the

values of a speci�c attribute found in the data being analyzed. For example, if we want

to deduplicate a database table with four attributes (e.g., forename, surname, address,

and postalcode) using a speci�c similarity function (e.g., the Jaro function Koudas

et al. (2006)), we would have the following list of evidence: E1<forename, Jaro>,

E2<surname, Jaro>, E3<address, Jaro>, and E4<postalcode, Jaro>.

For this example, a very simple function would be a linear combination such

as Fs(E1, E2, E3, E4) = E1 + E2 + E3 + E4 and a more complex one would be

Fc(E1, E2, E3, E4) = E1 ∗ ((EE3
2 )/E4).
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To model such functions as a GP tree, each evidence is represented by a leaf in

the tree. Each leaf (the similarity between two attributes) generates a normalized real

number value (between 0.0 and 1.0). A leaf can also be a random number between

1.0 and 9.0, which is chosen at the moment that each tree is generated. Such leaves

(random numbers) are used to allow the evolutionary process to �nd the most adequate

weights for each evidence, when necessary. The internal nodes represent operations that

are applied to the leaves. In our model, they are simple mathematical functions (e.g.,

+,−,∗,/,exp) that manipulate the leaf values.

To enforce Requirement 2, the trees are handled by sub-tree atomic opera-

tions (Banzhaf et al., 1998) to avoid situations that could a�ect the integrity of the

overall function. There cannot be neither a case where the value of a leaf node is

replaced by the value of an internal node nor one where the value of an internal node

is replaced by the value of a leaf node (Koza, 1992).

According to Requirement 3, all trees generated during a GP evolutionary process

are tested against pre-evaluated data repositories where the replicas have been previ-

ously identi�ed. This makes feasible to perform the whole process automatically, since

it is possible to evaluate how the trees perform in the task of recognizing record pairs

that are true replicas.

The tree input is a set of evidence instances, extracted from the data being handled,

and its output is a real number value. This value is compared against a replica iden-

ti�cation boundary value (see Section 2.1.2 for more details) as follows: if it is above

the boundary, the records are considered replicas, otherwise, the records are considered

distinct entries. It is important to notice that this classi�cation enables further anal-

ysis, especially regarding the transitive properties of the replicas1. This can improve

the e�ciency of clustering algorithms, since it provides not only an estimation of the

similarity between the records being processed, but also a judgment of whether they

are replicas or not.

1If A is duplicate of B and B of C, then A should be a duplicate of C.
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During the evolutionary process, a small sample of the repository data is used by

our GP-based approach for training purposes. Each individual tree is evaluated on

how it deduplicates the training data (by means of the combination of evidence it

represents/encodes). The better the way the evidence available is combined, the more

e�cient the individual tree represents a suitable deduplication function.

However, there are several ways of combining evidence, thus leading to a huge

search space for our GP-based approach to �nd the best solutions. For example, it

is possible that two individual trees contain the same pieces of evidence, but lead

to deduplication functions that produce di�erent results. On the other hand, it is

also possible that individual trees containing di�erent pieces of evidence may lead to

di�erent deduplication functions that produce similar results.

At the end of the evolutionary process a set of individual trees is chosen after the

evaluations at the last generation. This set of trees is tested against another sample of

the repository data, in order to evaluate and verify their deduplication e�ciency. The

best individual tree, that represents the best deduplication function, is returned as the

�nal solution.

In order to evaluate all individual tree evaluations (for both training and testing),

we use a �tness function2 that is described in the following section.

4.2 Fitness Function

As explained earlier, each individual tree represents a function that is used to �nd repli-

cas in a repository. This function is applied to all record-to-record comparisons that

take place during the deduplication. After doing these comparisons for all record pairs,

the total number of correct and incorrect identi�ed replicas is computed. This infor-

mation is then used by the most important con�guration component in our approach:

the �tness function.

2A �tness function is an objective function that is used to evaluate the individuals along
the evolutionary process (Banzhaf et al., 1998; Koza, 1992).
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In the experiments presented in this chapter, we have used the F1 metric as our

�tness function, since it harmonically combines the traditional precision and recall

metrics commonly used for evaluating information retrieval systems (Baeza-Yates and

Ribeiro-Neto, 1999), as follows:

Precision = NumberOfCorrectlyIdentifiedDuplicatedPairs
NumberOfIdentifiedDuplicatedPairs

Recall = NumberOfCorrectlyIdentifiedDuplicatedPairs
NumberOfTrueDuplicatedPairs

F1 = 2×Precision×Recall
Precision+Recall

Here, this metric is used to express, as a single value, how well a speci�c individual

performs in the task of identifying replicas. In summary, our GP-based approach tries

to maximize these �tness values by looking for individuals that can make more correct

decisions with fewer errors.

4.3 Complexity of the Training Phase

The time complexity of the training phase, based on our modeling, is O(Ng ×Ni)×Te,

where Ng is the number of evolution generations, Ni is the number of individuals in

the population pool, and Te is the �tness evaluation complexity of an individual.

In our problem, the �tness evaluation complexity of an individual is the complexity

of a single deduplication process given by O(Nt), where Nt is the number of train-

ing pairs. A single deduplication process requires an all-against-all comparison of all

records available in the repository being processed. Thus, the complexity of the train-

ing is given by O(Ng × Ni × Nt). This is the worst case scenario for the training

phase.

It is important to recall that the training time is not as important as the time

to perform the actual deduplication with the suggested function, since the training

phase is likely to be performed only once, and if eventually required, it can be done
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o�-line. The application of them suggested function is usually fast as it only requires

the computation of simple arithmetic functions. Finally, it is worth noticing that in

a real setting this training time can be even reduced with the application of blocking

techniques (Elmagarmid et al., 2007).

4.4 Experiments

In this section, we present and discuss the results of the experiments performed to

evaluate our proposed GP-based approach to record deduplication. There were three

sets of experiments:

1. GP was used to �nd the best deduplication function for previously user�selected

evidence, i.e., <attribute, similarity function> pair combinations speci�ed by the

user for the deduplication task. The use of user�selected evidence is a common

strategy adopted by all previous record deduplication approaches (Bilenko and

Mooney, 2003; Fellegi and Sunter, 1969; Tejada et al., 2002). Our objective in

this set of experiments was to compare the evidence combination suggested by

our GP-based approach with that of a state-of-the-art SVM-based solution, the

Marlin system, used as our baseline.

2. GP was used to �nd the best deduplication function with automatically-selected

evidence. Our objective in this set of experiments was to discover the impact on

the result when GP has the freedom to choose the similarity function that should

be used with each speci�c attribute.

3. GP was tested with di�erent replica identi�cation boundaries. Our objective in

this set of experiments was to identify the impact on the resulting deduplication

function when di�erent replica identi�cation boundary values are used with our

GP-based approach.
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4.4.1 Experimental Datasets

In our experiments, we used two real datasets commonly employed for evaluating record

deduplication approaches (Tejada et al., 2002; Bilenko and Mooney, 2003), which are

based on real data gathered from the Web. In addition, we created three additional

datasets using a synthetic dataset generator.

The �rst real dataset, the Cora Bibliographic dataset, is a collection of 1295 distinct

citations to 122 computer science papers taken from the Cora research paper search

engine. These citations were divided into multiple attributes (authornames, year, title,

venue, and pagesandotherinfo) by an information extraction system.

The second real dataset, hereafter named the Restaurants dataset, contains 864

entries of restaurant names and additional information, including 112 duplicates, that

were obtained by integrating records from Fodor and Zagat's guidebooks. We used the

following attributes from this dataset: (restaurant) name, address, city, and specialty.

The synthetic datasets were created using the Synthetic Dataset Generator

(SDG) (Christen, 2005) available in the Febrl package. Since real data is not eas-

ily available for experimentation, due to privacy and con�dentiality constraints, we

resorted to make use of synthetic datasets in order to conduct a larger set of experi-

ments to evaluate our approach. SDG can create datasets containing names (based on

frequency tables for given names and surnames), addresses (based on frequency tables

for localities, postcodes, streets numbers, etc.), phone numbers, and personal number

ids (like the social security number).

The attributes available from SDG are similar to those frequently found in personal

medical data records. Accordingly, we have used it to create datasets containing only

original records. Using the original records, SDG randomly generates duplicates of

these records by modifying them (inserting, deleting or substituting characters, and

swapping, removing, inserting, splitting or merging whole words), based on real error

characteristics, and then inserting them in the original dataset. Some of these replicas

are also created using look-up tables containing real world spelling variations for names
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and addresses.

For our experiments, we created the synthetic datasets with the following attributes:

forename, surname, street number, address1, address2, suburb, postcode, state, date of

birth, age, phone number, and social security number. Each one of these datasets

contains 2000 records in the total. They all present a di�erent proportion between

the number of original and replicated records, as well as a limit on the maximum

number of replicas that an original record is allowed to have. Also, a certain number of

modi�cations were applied to the candidate replicated records to simulate commonly

found errors, such as typos. These errors are controlled at record and attribute levels.

The datasets present the following characteristics:

• Dataset 1 � This dataset contains four �les of 500 records (400 originals and

100 duplicates), with a maximum of �ve duplicates based on one original record

(using a Poisson3 distribution of duplicate records), and with a maximum of two

modi�cations in a single attribute and in the full record.

• Dataset 2 � This dataset contains four �les of 500 records (350 originals and

150 duplicates), with a maximum of �ve duplicates based on one original record

(using a Poisson distribution of duplicate records), and with a maximum of two

modi�cations in a single attribute and four in the full record.

• Dataset 3 � This dataset contains four �les of 500 records (300 originals and 200

duplicates), with a maximum of seven duplicates based on one original record

(using a Poisson distribution of duplicate records), and with a maximum of four

modi�cations in a single attribute and �ve in the full record.

In the �rst set of experiments, our intent was to present a comparison between

the results of our GP-based approach with Marlin which is, as already mentioned, a

state-of-the-art SVM-based system for record deduplication (Bilenko et al., 2003). The

3We adopted the Poisson distribution since the number of records in each �le is relative
small (Christen, 2005).
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Marlin system has been implemented using an RBF kernel, tailored to the deduplication

problem. We have adopted it as our baseline because, from the many possible SVM-

based solutions for this problem, it is, for the best of our knowledge, the only concrete

implementation that has been experimentally implemented and tested. As we are

discussing here, the choice of the learning method is not the only issue determining the

relative performance of a deduplication strategy; the way the problem is modeled within

the learning framework chosen might even be more important. We also used the same

real datasets presented in (Bilenko and Mooney, 2003) to compare the e�ectiveness of

our GP-based approach with Marlin.

The second and third sets of experiments used the synthetic datasets. The use of

synthetic datasets in these experiments made it possible to better evaluate the impact

on the quality of the �nal solutions as a result of the changes in the record deduplication

parameter setup we suggest (the pieces of evidence and identi�cation boundaries), since

the existing errors and their characteristics are known in advance.

The content of the real datasets used in our experiments was shu�ed and divided

into separate �les. The Restaurant and Cora datasets were divided in four �les. All

experiments involved the following two steps:

1. The GP framework chooses one �le for training purposes.

2. The GP framework tests the results of the training step in all remaining �les.

The identi�cation boundary value for the �rst experiment was empirically chosen

after initial tuning tests and its value was set to 3.0 for both real datasets, since

it appeared to ease the GP e�ort during the evolutionary process. The maximum F1

values reported in the �rst and second experiments were calculated as in (Bilenko et al.,

2003). For the remaining experiments, we present the mean and standard deviation

values after ten runs, using a 4-fold cross validation. All comparisons consider a t-test

with a p-value of 0.05.
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It is important to notice that, in all experiments conducted, we do not use any

blocking technique (Sarawagi and Bhamidipaty, 2002). Blocking techniques are used

to deal with the high computational cost of the comparisons between the records that

are required by the deduplication task. We adopted this experimental strategy to

avoid any distortions in the recall value that could occur since blocking techniques

split the datasets into smaller blocks. These smaller blocks may not have all replicas

and originals of one record grouped in the same block, since the blocking method

may fail in the grouping task, thus a�ecting the recall measure. By doing this, we

intend to present an evaluation of our GP-based approach that is free of any errors

originated from prior steps such as cleaning, standardization and blocking (Sarawagi

and Bhamidipaty, 2002) in the record deduplication process.

In all sets of experiments, we used a workstation with the following hardware and

software con�guration: Pentium Core 2 Duo Quad (2 Ghz) processor with 4 GB RAM

DDR2 memory and 320 GB SATA hard drive, and running a 64-Bits FreeBSD 7.1

Unix-based operational system.

4.4.2 Experiments with User�Selected Evidence

In this �rst set of experiments, we adopted a user-selected evidence strategy, i.e., we

combined each dataset attribute with a previously user-selected similarity function. As

mentioned before, using user-selected similarity functions for each attribute is a strategy

commonly adopted by all previous works. The similarity functions chosen were string

distance (Levenshtein distance) and cosine similarity (SoftTFIDF similarity), since we

intended to compare our results with the ones presented in (Bilenko and Mooney,

2003), that use these same similarity functions. We refer the reader to (Koudas et al.,

2006), for more information on the similarity functions used in this chapter.

Additionally, we also conducted experiments with the Marlin system to evaluate

the discriminative characteristics of each possible attribute combination of the Cora

and Restaurants datasets using the cosine similarity (SoftTFIDF similarity) function,
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Table 4.1. Discriminative Attribute Selection - Marlin - Cora Database

Attributes F1 (σ) Attributes F1 (σ) Attributes F1 (σ)
A 0.496 ±(0.069) AVO 0.561 ±(0.074) TVYO 0.878 ±(0.038)
AO 0.781 ±(0.233) AVYO 0.612 ±(0.100) TY 0.853 ±(0.049)
AT 0.769 ±(0.069) AY 0.373 ±(0.069) TYO 0.878 ±(0.039)
ATO 0.821 ±(0.056) AYO 0.547 ±(0.101) V 0.480 ±(0.068)
ATV 0.488 ±(0.113) O 0.653 ±(0.066) VO 0.576 ±(0.060)
ATVO 0.838 ±(0.049) T 0.847 ±(0.046) VY 0.350 ±(0.045)
ATVY 0.823 ±(0.057) TY 0.866 ±(0.040) VYO 0.397 ±(0.070)
ATY 0.796 ±(0.063) TV 0.790 ±(0.093) Y 0.048 ±(0.010)
ATYO 0.836 ±(0.053) TVO 0.867 ±(0.042) YO 0.376 ±(0.054)
AV 0.484 ±(0.067) TVY 0.836 ±(0.081) ATVYO 0.861 ±(0.046)

Table 4.2. Discriminative Attribute Selection - Marlin - Restaurants Database

Attributes F1 (σ) Attributes F1 (σ) Attributes F1 (σ)
A 0.567 ±(0.067) CS 0.007 ±(0.008) NAS 0.897 ±(0.042)
AC 0.561 ±(0.065) N 0.791 ±(0.045) NC 0.806 ±(0.053)
ACS 0.877 ±(0.212) NA 0.896 ±(0.046) NCS 0.802 ±(0.052)
AS 0.596 ±(0.078) NAC 0.900 ±(0.042) NS 0.789 ±(0.046)
C 0.003 ±(0.002) NACS 0.898 ±(0.041) S 0.003 ±(0.003)

since it was the most e�ective similarity function on both datasets. The F1 average

and standard deviation (σ) results (from 30 runs) are presented in Tables 4.1 and 4.2

. In Table 4.1, in the Attributes column, A stands for authornames, Y for year, T for

title, V for venue, and O for pagesandotherinfo. In Table 4.2, N stands for name, A for

address, C for city, and S for specialty.

Observing Table 4.1, the Marlin system found that the most discriminative at-

tribute set for the Cora dataset comprises all attributes but one, authornames. How-

ever, this result (TVYO) is statistically equivalent to that using all available at-

tributes (ATVYO). Regarding the Restaurants dataset, we can see in Table 4.2 that

the most discriminative attribute set includes name, address and city (NAC), i.e., all

attributes but one, specialty. Similarly to the former experiment, the most discrimina-

tive attribute set presents results statistically equivalent to the one using all attributes

(NCAS).

Column �Value (1)� in Table 4.3 shows the parameter setup applied to our GP

framework for this �rst set of experiments. This parameter setup was chosen after

initial tuning experiments - it provided good results and, at the same time, avoided

problems with over�tting and extensive training time requirements. Table 4.4 shows
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Table 4.3. GP Parameters: (1) Previously Fixed Evidence (2) Previously Fixed

Evidence vs Not Previously Fixed Evidence using Synthetic Datasets

Parameter Value (1) Value (2)
Max Number of Generations 20 30
Population 100 60
Initial Random Population Method Full Depth Full Depth
Reproduction Rate 20% 30%
Selection Roulette Wheel Roulette Wheel
CrossOver Rate 80% 70%
CrossOver Method Random SubTree Exchange Random SubTree Exchange
Mating (Pairing) Random Random
Mutation Rate 2% 2%
Mutation Operation Random SubTree Insertion Random SubTree Insertion
Max Random Tree Depth 5 5

Table 4.4. User-Selected Evidence - F1 Averages

Dataset Similarity Metric GP F1 (σ) Marlin F1 (σ)

Cora
String Distance 0.900 ±(0.010) 0.820 ±(0.020)
Cosine Similarity 0.880 ±(0.004) 0.870 ±(0.030)

Restaurants
String Distance 0.980 ±(0.010) 0.900 ±(0.020)
Cosine Similarity 0.980 ±(0.020) 0.900 ±(0.020)

Synthetic 3
String Distance 0.960 ±(0.020) 0.960 ±(0.030)
Cosine Similarity 0.970 ±(0.010) 0.960 ±(0.020)

the results obtained for the three datasets, Cora, Restaurants, and Synthetic 3, the last

one the �dirtiest� of the synthetic datasets we created for our experiments. We present

the F1 average and the standard deviation (σ) for both approaches. As we can see,

the deduplication function suggested by our GP-based approach outperformed Marlin

(the baseline) in the Cora dataset by 9.76% when we used the string distance func-

tion and there was a statistic tie when we used the cosine similarity function. In the

Restaurants dataset, the function suggested by our GP-based approach outperformed

the baseline by 8.88% when we used both functions. The results with the Synthetic

3 dataset were statistically equivalent for both approaches using both similarity func-

tions. Improvements in the F1 values beyond the results presented here are di�cult,

since these datasets are reasonably easy to handle. Considering that most of the repli-

cas present a well-manned pattern of errors when compared with the originals, both

approaches have no di�culty to �nd the same replicated entries, thus leading to similar

performances.

The best tree (the best individual extracted from the last generation) for the ex-
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periment with the Cora dataset, when we used the string distance similarity function,

was

GPCoraStrDist() = ((e+ d) ∗ d) + (c+ (a ∗ 2)) + d

where a, c, d, and e correspond to evidence de�ned on the attributes authornames,

title, venue, and pagesandotherinfo, respectively.

In this function, the string distance similarity function was applied to four out of

�ve attributes. Only the attribute year was not used. This happened because the

cosine similarity function, when applied to dates, is not able to properly measure the

�distance" between them. By analyzing the function, we can say that the attributes

venue (used in evidence d) and authornames (used in evidence a) are those that play

the most important role for identifying replicas in the Cora dataset, since they have

higher weights, i.e., evidence a is multiplied by 2 and evidence d appears three times.

The best tree for the experiment with the Restaurants dataset, when we used the

cosine similarity function, was

GPRestaurantCosine() = ((b+ (b+ d)) ∗ a) + 2

where a, b, and d correspond to evidence de�ned on the attributes name, address, and

specialty, respectively.

In this function, we notice that only the attribute city was not used as evidence. It

is also important to notice that address (used in evidence b) was the attribute which

received more weight in the function. This may be explained because the cosine simi-

larity function is more discriminative when applied to long multiple string attributes,

like addresses, than when applied to short strings (e.g., dates or short names).

4.4.3 Experiments with Automatically-Selected Evidence

In this second set of experiments, the evidence is not user-selected, since each attribute

could be freely paired with any of the following similarity functions: string distance

(Levenshtein distance), cosine similarity (SoftTFIDF similarity), SortWinkler, Winkler

or Jaro. This is one of the main contributions of our work that distinguishes it from
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Table 4.5. Cora and Restaurant Datasets - Automatically�Selected Evidence

Strategy

Dataset Method Training F1 (σ) Test F1 (σ)

Cora
GP User-Selected StrDist 0.900 ±(0.010) 0.890 ±(0.020)
GP User-Selected CosSim 0.880 ±(0.010) 0.880 ±(0.020)
GP Automatically-Selected 0.880 ±(0.030) 0.870 ±(0.020)
GP Automatically-Selected+ 0.900 ±(0.010) 0.910 ±(0.010)

Restaurants
GP User-Selected StrDist 1.000 ±(0.000) 0.982 ±(0.020)
GP User-Selected CosSim 1.000 ±(0.000) 0.981 ±(0.020)
GP Automatically-Selected 0.990 ±(0.001) 0.970 ±(0.020)
GP Automatically-Selected+ 1.000 ±(0.000) 0.980 ±(0.010)

Table 4.6. Training and Test Times for Cora and Restaurants Datasets -

Automatically�Selected Evidence Strategy

Dataset Method Training (min) (σ) Test (min) (σ)

Cora
GP User-Selected StrDist 1209 ±(10) 49 ±(1)
GP User-Selected CosSim 685 ±(3) 30 ±(1)
GP Automatically-Selected 1028 ±(9) 43 ±(2)
GP Automatically-Selected+ 2383 ±(10) 45 ±(3)

Restaurants
GP User-Selected StrDist 276 ±(5) 7 ±(1)
GP User-Selected CosSim 201 ±(4) 6 ±(1)
GP Automatically-Selected 266 ±(5) 5 ±(1)
GP Automatically-Selected+ 302 ±(5) 7 ±(1)

all previous proposals in the literature, which use user-selected evidence. For this,

we compared the F1 levels achieved with the best results obtained in the previous

experiment using user-selected evidence. The GP parameters were the same used in

the �rst set of experiments (see column �Value (1)� in Table 4.3) to provide a standard

setup for the comparison between the di�erent strategies (user-selected evidence and

automatically-selected evidence).

Table 4.5 shows the results of the training and test phases (F1 averages and standard

deviations). The training and test running times are presented in Table 4.6. In both

tables, GP User-Selected StrDist means our user-selected evidence strategy using the

string distance function, GP User-Selected CosSim our user-selected evidence strategy

using the cosine similarity function, and GP Automatically-Selected our automatically

selected evidence strategy. As we can see, the F1 levels achieved by GP User-Selected

StrDist, GP User-Selected CosSim and GP Automatically-Selected are similar, and all

our strategies outperformed our baseline in these two datasets, as in the previous set

of experiments.
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Also, it is important to observe that the training and test results are very similar.

This shows that our random data sampling, used to create the training data folds, was

able to capture the characteristics of the test data. Moreover, this also shows that the

suggested functions successfully generalized for the test data in these experiments and

that the provided solutions were not over�tted to the training data.

Regarding the training and test running times presented in Table 4.6, we would

like to point out that the training is performed using a small part of the available data

and the test is executed using the remaining. Also, as explained in the beginning of

this section, we are not adopting any blocking technique to avoid distortions in the

recall values and, consequently, in the F1 values. With respect to the training and test

times, the Cora dataset demands more time for both phases, since it has more entries

and, also, more raw data (long string chains). The Restaurants dataset is smaller than

the Cora one and also contains small strings. Thus, it requires less processing time,

particularly when using highly demanding similarity functions, such as that based on

the Levenshtein algorithm.

For the experiments with our GP-based approach, the best tree for the experiment

with the Cora dataset, when we used the automatically-selected evidence strategy, was

GPCoraMix() = (m) + ((p) + (2 ∗ g)).

where m, p, and g correspond, respectively, to the following list of evidence:

<venue,Winkler>, <pagesandotherinformation, Jaro>, and <year, string distance>.

In this function, only three out of the �ve attributes were used. One possible

explanation for this is the �exibility given to the evolutionary process to suggest the best

combination based on the most suitable evidence. Like in the �rst set of experiments,

the attribute venue also composes this function. However, although the attribute

year is not part of the function suggested in the previous experiment, in the function

GPCoraMix the evidence <year, string distance> received more weight than any other

one.

The best tree for the experiment with the Restaurants dataset, when we used the
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automatically-selected evidence strategy, was

GPRestaurantMix() = 4 ∗ d

where d corresponds to the evidence <name, SortWinkler>.

In this function, evidence based only on the attribute name was considered su�-

cient to deduplicate the Restaurants dataset. The weight given to this evidence may

be interpreted as a way to raise the function value in order to �t the identi�cation

boundary.

We notice that using the automatically-selected evidence strategy, the search space

was much larger due to several possible evidence combinations, making it more di�cult

to �nd better solutions. However, we kept the same GP parameter setup in this

experiment to allow a fair comparison between the results of the two strategies.

On the other hand, to compensate for the larger search space, we run the

automatically-selected evidence strategy with an enhanced GP parameter setup: in-

creasing the population size (including 20 new individuals) and raising the number

of generations (adding 10 more cycles) during the training phase. The results of the

experiment using our automatically selected strategy with this setup (labeled as GP

Automatically-Selected+ in Table 4.5) was able to match the results of the previous

experiments using user-selected evidence strategy.

In order to con�rm this behavior observed with real data, we conducted addi-

tional experiments using our synthetic datasets. The user-selected evidence setup used

in this experiment was built using the following list of evidence: <forename, jaro>,

<surname, jaro>, <street number, string distance>, <address1, jaro>, <address2,

jaro>, <suburb, jaro>, <postcode, string distance>, <state, jaro>, <date of birth,

string distance>, <age, string distance>, <phone number, string distance>, <social

security number, string distance>. This list of evidence, using the jaro similarity func-

tion for free text attributes and a string distance function for numeric attributes, was

chosen since it required less time to be processed in our initial tuning tests.

The setup of the automatically-selected evidence used is suggested by our GP-
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Table 4.7. Synthetic Datasets - Automatically�Selected Evidence Strategy

Dataset Method (1)Avg (σ) (2)Avg (σ) (3)Avg (σ) (4)Avg (σ)

Synthetic 1
GP User-Selected 0.987 ±(0.028) 0.945 ±(0.033) 0.958 ±(0.027) 0.945 ±(0.044)
GP Automatically-Selected 0.968 ±(0.038) 0.948 ±(0.065) 0.955 ±(0.046) 0.936 ±(0.087)
GP Automatically-Selected+ 0.993 ±(0.010) 0.979 ±(0.028) 0.983 ±(0.032) 0.982 ±(0.024)

Synthetic 2
GP User-Selected 0.967 ±(0.050) 0.935 ±(0.067) 0.943 ±(0.047) 0.951 ±(0.045)
GP Automatically-Selected 0.933 ±(0.054) 0.929 ±(0.045) 0.923 ±(0.054) 0.929 ±(0.049)
GP Automatically-Selected+ 0.978 ±(0.025) 0.977 ±(0.013) 0.967 ±(0.020) 0.975 ±(0.020)

Synthetic 3
GP User-Selected 0.959 ±(0.056) 0.928 ±(0.071) 0.956 ±(0.045) 0.953 ±(0.064)
GP Automatically-Selected 0.948 ±(0.067) 0.955 ±(0.064) 0.960 ±(0.048) 0.956 ±(0.053)
GP Automatically-Selected+ 0.995 ±(0.004) 0.996 ±(0.005) 0.988 ±(0.008) 0.991 ±(0.008)

Table 4.8. Training and Test Times for Synthetic Datasets - Automatically�

Selected Evidence Strategy

Dataset Method Training (min) (σ) Test (min) (σ)

Synthetic 1
GP User-Selected 495 ±(2) 3 ±(0.300)
GP Automatically-Selected 1070 ±(2) 2 ±(0.100)
GP Automatically-Selected+ 1885 ±(2) 2 ±(0.700)

Synthetic 2
GP User-Selected 509 ±(3) 3 ±(0.300)
GP Automatically-Selected 120 ±(2) 2 ±(0.090)
GP Automatically-Selected+ 2102 ±(4) 2 ±(0.800)

Synthetic 3
GP User-Selected 629 ±(3) 2 ±(0.0100)
GP Automatically-Selected 1312 ±(2) 3 ±(0.100)
GP Automatically-Selected+ 2665 ±(5) 4 ±(0.500)

based approach. Like in the previous experiments in this section, the aforementioned

attributes of the synthetic datasets could be freely combined with the following simi-

larity functions: string distance (Levenshtein distance), cosine similarity (SoftTFIDF

similarity), bigram, Winkler or Jaro. The GP parameters used in this experiment (see

column �Value (2)� in Table 4.3) were chosen after initial tuning experiments - they

provided good results and, at the same time, avoided problems with over�tting and

extensive training time requirements.

The results of the experiments with the synthetic datasets are presented in Table 4.7.

The result of the best individual from the training phase is labeled (1), for both the

F1 average (Avg) and standard deviation (σ). The results obtained with the best

individual from the training applied to the test datasets are presented with labels (2),

(3) and (4) (averages and standard deviations), respectively.

As we can notice, the F1 levels achieved by using the user-selected evidence and the

automatically-selected evidence strategies are again similar (averages and standard de-

viations). These results con�rm the previous observed behavior when the real datasets
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were used. This demonstrates that our GP-based approach is also able to �nd suit-

able deduplication functions when the set of evidence is not previously �xed by the

user and, therefore, frees the non�specialized user from the burden of having to choose

which similarity function should be paired with each speci�c attribute.

However, despite the good results achieved with the same parameter setup used in

the user selected evidence experiment, we conducted a second run of the automatically-

selected evidence experiment hwith an enhanced GP parameter setup (results presented

as �GP Automatically-Selected+� in Table 4.7). Due to the larger search space, we have

increased the number of generations and the population size from 30 and 50 to 50 and

80, respectively.

The results show that providing the adequate time (number of generations) and

resources (population size) to our GP-based approach, it can produce better solutions

than the both previous results (user-selected and automatically-selected evidence stra-

tegies) obtained in the experiments for which we kept the same GP parameter setup.

The training and test times for all synthetic datasets, shown in Table 4.8, are quite

similar, since they present the same characteristics (i.e., number of attributes, number

of entries, etc.).

Observing the results of this second set of experiments, we also notice that all sug-

gested functions use less evidence than the total number available. One explanation for

this behavior is that, for a given dataset, some attributes can be more discriminative

than others when combined with a speci�c similarity function. This means that our

suggested solutions would run faster than solutions provided by other record dedupli-

cation approaches that use all available evidence. Moreover, our GP-based approach

is able to �nd deduplication functions even when each evidence component <attribute,

similarity function> is not �xed a priori. This is useful for the non�specialized user,

because it does not require previously knowledge to setup such parameters.
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4.4.4 Experiments with the Replica Identi�cation Boundary

A critical aspect regarding the e�ectiveness of several record deduplication approaches

is the setup of the boundary values that classify a pair of records as replicas or not

with respect to the results of the deduplication function.

In this �nal set of experiments, our objective was to study the ability of our GP-

based approach to adapt the deduplication functions to changes in the replica identi�-

cation boundary, aiming at discovering whether it is possible to use a previously �xed

(or suggested) value for this parameter.

To evaluate how much e�ort is spent by the evolutionary process in order to adapt

the deduplication function to di�erent boundary values, we devised the following strat-

egy for the �rst experiment:

1. Fix the F1 level that should be achieved by the suggested functions.

2. Record the number of generations required by the evolutionary process to suggest

a function that reaches this F1 level objective.

We �xed the F1 level objective as 95% of the best results achieved during the

training phase in the �rst set of experiments conducted using the user-selected evidence

setup (since it provides a smaller search space) to force the evolutionary process to

suggest feasible functions. Thus, the F1 levels used were: 0.95 for the Restaurants

dataset and 0.84 for the Cora dataset (see Table 4.5).

To better control the experiment execution time, we chose the same parameter setup

used in the experiment with user-selected evidence strategy, with the cosine similarity

function being applied to both datasets, since it is faster to execute than the string

distance function. Each experiment run used a di�erent identi�cation boundary value,

as shown in Table 4.9.

The results in Table 4.9 show the number of generations that were required, in

each experiment run, for the deduplication functions to reach the �xed F1 levels. The

table also shows that our GP-based approach always generates functions that are able
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Table 4.9. Number of generations required to reach F1 above 95%

Dataset Boundary Value 2 3 5 10 15
Cora Generations 3 3 4 10 13
Restaurants 2 2 2 9 12

Table 4.10. GP Parameters: (1) Previously Fixed Evidence (2) Previously Fixed

Evidence vs Not Previously Fixed Evidence using Synthetic Datasets

Parameter Value (1) Value (2)
Max Number of Generations 20 30
Population 100 60
Initial Random Population Method Full Depth Full Depth
Reproduction Rate 20% 30%
Selection Roulette Wheel Roulette Wheel
CrossOver Rate 80% 70%
CrossOver Method Random SubTree Exchange Random SubTree Exchange
Mating (Pairing) Random Random
Mutation Rate 2% 2%
Mutation Operation Random SubTree Insertion Random SubTree Insertion
Max Random Tree Depth 5 5

to reach the �xed F1 levels, independently of the boundary value used. However, we

notice that the bigger the boundary value, the more the number of generations that

are necessary to reach the required F1 level.

To better understand the reason for the increase on the number of generations as

the boundary value increases, we devised an additional experiment using the synthetic

datasets. The strategy for this second experiment was:

1. Fix a speci�c GP parameter setup for the experiments.

2. Execute the experiments varying only the replica identi�cation boundary in each

run in order to observe how the evolutionary process behaves as the boundary

value is changed.

The parameters used in the experiment for the real and synthetic datasets are

those presented in Table 4.10, column �Value (1)� and �Value (2)�, respectively. These

experiments were conducted on both types of dataset, in order to observe how the

evolutionary process would deal with datasets presenting di�erent characteristics.

The results are presented in Table 4.11 for the Cora and Restaurants datasets, and

in Table 4.12 for the synthetic datasets. The results of the best individual from the
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Table 4.11. F1 Results: Identi�cation Boundary - Cora and Restaurant Datasets

Dataset Boundary (1)Avg (σ) (2)Avg (σ) (3)Avg (σ) (4)Avg (σ)

Cora

1 0.805 ±(0.039) 0.826 ±(0.039) 0.834 ±(0.054) 0.823 ±(0.054)
5 0.788 ±(0.052) 0.821 ±(0.055) 0.820 ±(0.046) 0.801 ±(0.074)
10 0.750 ±(0.130) 0.784 ±(0.098) 0.795 ±(0.127) 0.770 ±(0.119)
20 0.613 ±(0.269) 0.636 ±(0.265) 0.645 ±(0.271) 0.613 ±(0.275)
30 0.632 ± (0.194) 0.656 ±(0.195) 0.656 ±(0.200) 0.648 ±(0.180)
50 0.512 ±(0.268) 0.531 ±(0.271) 0.554 ±(0.282) 0.537 ±(0.279)
100 0.577 ± (0.218) 0.586 ±(0.242) 0.611 ±(0.233) 0.579 ±(0.224)

Restaurants

1 1.0 ±(0.0) 0.823 ±(0.0) 0.941 ±(0.0) 0.846 ±(0.033)
5 0.957 ±(0.135) 0.795 ±(0.128) 0.913 ±(0.086) 0.784 ±(0.140)
10 0.924 ±(0.209) 0.731 ±(0.264) 0.836 ±(0.294) 0.741 ±(0.268)
20 0.874 ±(0.202) 0.776 ±(0.063) 0.874 ±(0.115) 0.726 ±(0.182)
30 0.685 ±(0.294) 0.536 ±(0.245) 0.610 ±(0.281) 0.425 ±(0.382)
50 0.752 ±(0.311) 0.643 ±(0.254) 0.724 ±(0.288) 0.571 ±(0.367)
100 0.646 ±(0.403) 0.584 ±(0.300) 0.609 ±(0.383) 0.567 ±(0.368)

Table 4.12. F1 Results: Identi�cation Boundary using Synthetic Repositories -

Synthetic Datasets

Dataset Boundary (1)Avg (σ) (2)Avg (σ) (3)Avg (σ) (4)Avg (σ)

Synthetic 1

1 0.997 ±(0.005) 0.960 ±(0.024) 0.983 ±(0.012) 0.970 ±(0.026)
5 0.987 ±(0.028) 0.945 ±(0.033) 0.958 ±(0.027) 0.945 ±(0.044)
10 0.974 ±(0.048) 0.937 ±(0.073) 0.955 ±(0.045) 0.947 ±(0.075)
20 0.910 ±(0.071) 0.898 ±(0.086) 0.897 ±(0.087) 0.881 ±(0.077)
30 0.906 ±(0.037) 0.826 ±(0.191) 0.911 ±(0.034) 0.858 ±(0.079)
50 0.919 ±(0.056) 0.868 ±(0.087) 0.916 ±(0.051) 0.889 ±(0.052)
100 0.896 ±(0.083) 0.835 ±(0.100) 0.880 ±(0.101) 0.872 ±(0.080)

Synthetic 2

1 0.970 ±(0.046) 0.940 ±(0.066) 0.950 ±(0.039) 0.956 ±(0.041)
5 0.967 ±(0.050) 0.935 ±(0.067) 0.943 ±(0.047) 0.951 ±(0.045)
10 0.930 ±(0.081) 0.920 ±(0.077) 0.919 ±(0.084) 0.923 ±(0.079)
20 0.834 ±(0.088) 0.813 ±(0.082) 0.825 ±(0.110) 0.845 ±(0.088)
30 0.857 ±(0.110) 0.789 ±(0.118) 0.845 ±(0.106) 0.844 ±(0.089)
50 0.876 ±(0.087) 0.833 ±(0.070) 0.871 ±(0.066) 0.859 ±(0.084)
100 0.823 ±(0.113) 0.809 ±(0.088) 0.823 ±(0.108) 0.812 ±(0.121)

Synthetic 3

1 0.987 ±(0.012) 0.966 ±(0.026) 0.971 ±(0.022) 0.978 ±(0.022)
5 0.959 ±(0.056) 0.928 ±(0.071) 0.956 ±(0.045) 0.953 ±(0.064)
10 0.881 ±(0.129) 0.838 ±(0.146) 0.876 ±(0.126) 0.883 ±(0.120)
20 0.882 ±(0.114) 0.856 ±(0.111) 0.882 ±(0.105) 0.879 ±(0.125)
30 0.872 ±(0.089) 0.828 ±(0.088) 0.865 ±(0.076) 0.885 ±(0.073)
50 0.864 ±(0.079) 0.832 ±(0.069) 0.878 ±(0.062) 0.877 ±(0.064)
100 0.828 ±(0.069) 0.787 ±(0.084) 0.861 ±(0.047) 0.829 ±(0.078)

training phase is labeled (1) and those obtained in the test phase are labeled (2), (3)

and (4) respectively, all of them with average (Avg) and standard deviation (σ) values.

As we can see from these tables, the deduplication functions found when using

smaller identi�cation boundaries present higher F1 average and smaller standard devi-

ation values, in both the training and testing phases. The increase on the value of the
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Table 4.13. Boundary Variation - Tree Adaptation during Training - Cora

Dataset

Boundary Value F1 Value Tree Coding
1 0.841 + ∗ ∗c ∗ ∗ca+ cd+ de ∗ ∗ac ∗ ee
1 0.822 ∗ ∗ ac++cd ∗ d ∗ ec
5 0.819 ∗++ae− 7− /add ∗ ∗cd/ad
5 0.811 − ∗+a6c− /ba+ b− dc
10 0.803 ∗c∗∗∗+cc++∗ce∗2b+−4c∗b∗∗b∗caac∗3a
10 0.781 /∗∗+∗+∗abaca−b∗a+dac/−∗aca∗a+da
20 0.785 ∗ − ∗ac ∗ −da ∗ d− ea− ∗8− 5 ∗ ad ∗ ab
20 0.690 ++−b+ c+ cc ∗+cc+6d ∗+ ∗ ∗ ∗ ae+ be+

−aa+ cac+ 6e
30 0.724 ∗/∗++e8−bc−c−−bdd−aa/−+ae/1c/1/1c
30 0.691 ∗/− /a8/b1b1− /bbc+ /e8+ //− c ∗ 7 ∗ cd−

/bbc8− db
50 0.694 − ∗+d+ ed ∗ ∗a77 +−ee+ e ∗ 47
50 0.692 / + ∗ae ∗ /ab + ∗ ∗ e7 + bc + + ∗ ∗e7 + bc +

−a1− /eb ∗ ea++bcc+ ∗eac− /aac
100 0.709 /− /a+ ec− e/+ 4++41e− e1 ∗ /+ 4c/+

4e+ ec−−e1− ec
100 0.782 −/ ∗ 8 ∗ ∗ad7− 1 ∗ c1 + /8c− c1

Table 4.14. Boundary Variation - Tree Adaptation during Training - Restaurants

Dataset

Boundary Value F1 Value Tree Coding
1 1.0 /− 8/2a− ∗2a/2a
1 1.0 ∗+ a− aa1
5 1.0 /+ ∗a ∗ ∗add ∗+eed/e+ ∗a ∗ da ∗ ∗daa
5 0.909 + ∗+da4−−+ aa+ 1e+ d1
10 1.0 + ∗+dd ∗ a ∗+db ∗ a ∗ a5− ∗d5 ∗ ca
10 0.888 + ∗+d ∗ cd ∗ a5− ∗d ∗+ ∗ d5ba ∗ bb
20 0.981 + ∗+++gbek + gf ∗+9k + fl
20 0.976 + ∗++ gek + ef ∗+9k + fl
30 1.0 ∗/−a∗/e−/∗1a∗aa/∗−ac/ce/−ce+3da−ab
30 0.750 +a///e+b+8a+a+8//e+b+8∗ea+∗ea+

+/7c∗e+e6−+d/−ba−ba∗e4−/−ba−baa
50 1.0 /−+a/d+b///ec−9b∗+ed+1b+cb−+ab+1b
50 0.888 −/∗/−dd−∗∗ccca−∗dca−∗b∗ba/dd∗/−cadc
100 1.0 ///b// + cc + cc + //bc/ + ///c + bebc1ca +

cb/−a11//bc/b/e/+///c+beb+cc1+b/c+cc
100 0.888 −//a+ dc− a//a+ dc/a+ dc/+ cc//a/a−

/aab/a+ dc
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Table 4.15. Boundary Variation - Tree Adaptation during Training - Synthetic

Dataset 1

Boundary Value F1 Value Tree Coding
1 1.0 ∗g ∗ i+ ∗ ∗ fdda
1 1.0 − ∗+ci ∗ i ∗+ ∗ kgg ∗ al/ ∗ cl ++ihc
5 1.0 ++ ∗ad+ hk ++fgh
5 1.0 ∗+ ∗bf + f + ∗bfk −+ii− ig
10 0.991 +++i/bl/fl + ∗ie ∗ 8l
10 0.985 ∗++ ∗ bg + ∗bgb++gb8l
20 0.976 / ∗ − − h/hlh ∗ ∗a+ h+ a/al + aa− a//all
20 0.994 ++−+−dh+ j+ j+ ddl+ l+ dd ∗+li+h8
30 0.934 //−∗ ∗ kk ∗ /kg/kg−∗ ∗ kkk/kgg−∗kk/kg
30 0.988 ∗ ∗ ∗b ∗ ll − 6b+− ∗ d ∗ ∗ll − 6bc ∗ g9
50 0.925 ∗///d/d− dj − //jcdj − gl0//g8/df
50 0.957 ∗ ∗ ∗f4− 6i+ ∗+ ∗l0iii+ gi
100 0.934 ∗+−hgg//− gg8− kg
100 0.900 −/− i−h/−1i−h∗hl0−h∗hl0∗/gc−∗hl0i

Table 4.16. Boundary Variation - Tree Adaptation during Training - Synthetic

Dataset 2

Boundary Value F1 Value Tree Coding
1 0.988 ∗l ∗ i+ f + ∗bg − lf
1 0.996 ∗f ∗ i+f+∗b+ l+∗ll−∗∗∗lg+b−kfff− lf
5 0.979 ∗ ∗ ∗gd ∗ fl ++9ak
5 0.998 ∗+ ∗kl + fi++fl ∗ jb
10 0.975 ∗++ ∗ dbi ∗ a ∗ jh+ g ∗ k5
10 0.998 ∗ ∗+jd+ f ∗ ib+ ∗l ∗ l5 ∗ ∗+ fk + f ∗ bdk
20 0.908 / ∗−++gk−−k33g−k/− ek−−k/−k3−

kk ++gk − k3
20 0.960 +/− ∗ − −cdd0d− ∗ldd//dh ∗ /h− cdd
30 0.864 + ∗ ∗ + / − cc − cie ∗ ff ∗ +h − ccf/ − c +

+h ∗ + − +eeie ∗ +f − cc ∗ +/ − cc − cie ∗
fff − ∗f ∗+h− ccff

30 0.967 //l ∗ −1l ∗ 96 ∗ −1l − 1l
50 0.989 ∗/+ /l− l ∗ ll ∗+/l− l ∗ ll ∗ ∗ib ∗+3 ∗+/d−

l ∗ ll ∗ ∗ib ∗+3 ∗ ca ∗ gla ∗ dll− i ∗ li ∗ ∗kb ∗ dg
50 0.933 +− //+ jd− /jljl/ek − //+ gg − /jljl/ek
100 0.961 //h/− ∗l//hee//heee− ∗l ∗ lll
100 0.947 +/////c3−f ∗∗bf/lbll−f ∗ lf ∗−−f ∗ lff ∗

+/ − del ∗ −d//ll − f ∗ ∗blf − 3 + / − de +
/lb/cl ∗ −d//fl − f ∗ ∗blf/lb/cl
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Table 4.17. Boundary Variation - Tree Adaptation during Training - Synthetic

Dataset 3

Boundary Value F1 Value Tree Coding
1 0.987 / ∗ ∗ ∗ lll + l ∗ ∗ ∗ ∗/lkll + l ∗ ll ∗ lg/lk
1 0.966 ∗+ ∗ij ∗+ ∗ ∗ ∗ iidc ∗ idi ∗ ∗dbd
5 0.966 + ∗+dl + hf + ∗+ f ∗ fjll
5 0.984 + ∗+dl + hl + a ∗+aaf
10 0.976 − ∗+b ∗ a+ gk ∗ 6i/a6
10 0.976 − ∗+b ∗ a+ gk ∗ 6i/b6
20 0.981 + ∗+++gbek + gf ∗+9k + fl
20 0.976 + ∗++ gek + ef ∗+9k + fl
30 0.980 ∗f/−1−//−//gc−6i+dkc−6i∗+ek+ld−1l
30 0.985 ∗f/− g−−f − l− //gc− 6− 4e ∗+ek+ id ∗

+ek + ie− 1
50 0.965 /∗∗e∗−+bak∗l∗−+g∗lf∗j∗e∗−+baa∗l∗−+

∗li∗lf∗jg∗b/∗lf−∗lff∗b/∗lf−∗lffg−∗lff
50 0.962 / ∗ ∗f ∗ − + bak ∗ l ∗ − + ∗li ∗ lf − d ∗ ja ∗

b/ ∗ lf − ∗lffg − ∗lff
100 0.937 //b− /bbl − /bbl
100 0.938 +1///b− l1− l1− l − aa

boundary led to smaller F1 values and to unstable standard deviation values, as can

be observed in the results for the testing phase.

A possible explanation for this behavior can be drawn by the following facts:

1. The replica identi�cation boundary is always a positive value.

2. The values of the evidence instances (the result of applying a string function to

an attribute pair) vary from 0.0 to 1.0.

3. In the case of a perfect match for all attributes, the summation of all evidence

instance values would be equal to the number of attributes used as evidence and

their total multiplication would be equal to 1.

4. Not all attribute pairs must reach a perfect match in order to be considered a

replica.

Our GP-based approach tries to combine distinct evidence to maximize the �tness

function results, and one major factor that might impact the results is the replica
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00,10,20,30,40,50,60,70,80,91
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F1 Values
Generations X F1 Values Boundary 1Boundary 5Boundary 10Boundary 20Boundary 30Boundary 50Boundary 100

Figure 4.1. Fittest Individual E�ort - Generations X F1 Values - Cora Dataset

identi�cation boundary value. Thus, if the chosen boundary value is out of the reach

of a possible e�ective evidence combination, this candidate solution (deduplication

function) will fail in the task of identifying replicas.

In addition, this deduplication function must also take into account some errors

that may be present in the dataset. The consequence is that not every evidence ins-

tance reaches the maximum similarity value (1.0) on a valid match and therefore, their

summation or multiplication does not reach the number of attributes available.

Moreover, it is important to notice that, usually, not every evidence is used in the

�nal solutions, as we can see on the results shown in Tables 4.13, 4.14, 4.15, 4.16 and

4.17. In these tables, we show some examples of the best individuals from the training

phase (trees are presented in the pre-order output), despite the di�erent boundary

values. This was done in order to observe how the deduplication functions that evolved

aiming at di�erent boundary values managed to reach similar F1 levels.

Observing Tables 4.13, 4.14, 4.15, 4.16 and 4.17, we can also notice that setting

a far distant positive boundary value forces our GP-based approach to create more

elaborated functions. In Figures 4.1, 4.2, 4.3, 4.4 and 4.5, we can notice that as the

boundary value increases, the evolutionary process requires more time (in number of

generations) to raise the F1 values. When the functions evolve using lower boundaries,

the F1 levels reach higher values in earlier generations.
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00,10,20,30,40,50,60,70,80,91
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F1 Values
Generations X F1 Values Boundary 1Boundary 5Boundary 10Boundary 20Boundary 30Boundary 50Boundary 100

Figure 4.2. Fittest Individual E�ort - Generations X F1 Values - Restaurants

Dataset

00,10,20,30,40,50,60,70,80,91
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

F1 Values
Generations X F1 Values Boundary 1Boundary 5Boundary 10Boundary 20Boundary 30Boundary 50Boundary 100

Figure 4.3. Fittest Individual E�ort - Generations X F1 Values - Synthetic

Dataset 1

This behavior occurs because these functions need to adjust themselves to keep

the similarity values at the same (or close to the) level of the chosen boundary. In

Tables 4.13, 4.14, 4.15, 4.16 and 4.17 it is possible to see that the suggested functions

resulted from lower boundary values (1 and 5) are able to keep the function �nal results

in a lower value range (close to 1.0) by using direct multiplications and summations

on the available attributes.

However, the suggested functions resulting from the evolutionary process that used

higher boundary values (10, 20, 30, 50 and 100) became progressively more elaborated,

in some cases using multiplications and sums with integer values and increasing the

number of nodes in the trees. At the same time, these functions do not always succeed in
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00,10,20,30,40,50,60,70,80,91
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

F1 Values
Generation X F1 Values Boundary 100Boundary 50Boundary 30Boundary 20Boundary 10Boundary 5Boundary 1

Figure 4.4. Fittest Individual E�ort - Generations X F1 Values - Synthetic

Dataset 2

00,10,20,30,40,50,60,70,80,91
1 5 9 13 17 21 25 29

F1 Values
Generations X F1 Values Boundary100Boundary 50Boundary 30Boundary 20Boundary 10Boundary 5Boundary 1

Figure 4.5. Fittest Individual E�ort - Generations X F1 Values - Synthetic

Dataset 3

reaching suitable F1 results, presenting low F1 averages and higher standard deviations.

For this reason, choosing boundary values that minimize this e�ort saves processing

time, since more complex functions require more time to be found.

The results of this �nal set of experiments show that our GP-based approach gener-

ates satisfactory solutions (deduplication functions) if the replica identi�cation boun-

dary is set to a value as close to 1 as possible.

4.5 Remarks on the Results

Based on the results of our experiments, we can make the following remarks:
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1. It is not necessary to use every single evidence in order to identify replicas. In

speci�c datasets, just some attributes are su�cient to carry out this task. More-

over, some attributes may be more discriminative than others when combined

with a speci�c similarity function.

2. Speci�c dataset characteristics can be revealed by GP when the best evidence is

discovered. As a consequence, an evidence that is useful for a speci�c dataset,

may not be for another one.

3. We notice that when using our GP-based approach, the user does not have to

worry about the problem of choosing which similarity function should be paired

with a speci�c attribute. Our approach is able to automatically �nd the most

suitable combinations, leading to similar results when compared with the previ-

ously �xed evidence experiment.

4. We noticed that it may be possible to automatically suggest a replica identi�-

cation boundary when using our GP-based approach. The use of small values,

particularly setting the value of the boundary to 1, was shown to be a suitable

choice in our experiments.





Chapter 5

Impact of the GP Parameter Setup on

Record Deduplication

To identify and remove replicas present in data repositories is a very expensive task.

This happens since this task demands signi�cant computational power in order to

execute all requested record comparisons. For this reason, proposed methods for record

deduplication must accomplish their goals considering that they should also be as

e�cient as possible.

In Chapter 4, we presented our GP-based approach to record deduplication. How-

ever, despite the good results obtained by it, bad choices of the GP parameters can

a�ect the performance of our approach. For example, some parameter con�gurations

may cause the record deduplication task to demand more time and resources than

would be really necessary. On the other hand, using the most suitable values for the

GP parameters can lead to faster and more e�cient solutions.

In this chapter, we present the results of an experimental study that shows how the

selection of GP parameters can impact the performance of the record deduplication

task (de Carvalho et al., 2008b). Our experiment results show that di�erent GP setups

can cause signi�cant di�erence over the e�ort required to obtain suitable solutions.

Moreover, the range of the F1 averages for good and bad parameter setups can reach

63
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up to 30%.

With this study, we intend to provide some guidelines for setting the parameters

of our GP-based approach to record deduplication. We diminish the user e�ort on

setting the GP parameters for this problem, since we provide detailed explanations on

the parameters and what is the impact of each one over the �nal results.

Here, we present the results of the experiments conducted with our GP-based ap-

proach in order to evaluate the impact of the choice of some GP parameters in the

results of record deduplication. The results of this evaluation are important because

they can be used to suggest to the users the most e�cient way to setup the GP para-

meters in order to identify replicas in data repositories.

This evaluation will comprise experiments with the following GP parameters: pop-

ulation size, number of generations, selection method, pairing method, reproduction

and crossover proportion, mutation rate, and the initial random tree creation method.

The standard parameter setup used is presented in Table 5.1. This parameter setup

and the evidence used in our experiments were based on a setup that allowed a fair

experiment for comparing the evidence selection strategies presented in the previous

chapter. Each experiment will vary only one parameter at a time, using this setup as

the ground base for further comparisons.

5.1 The Experimental Dataset

In the experiments described in this chapter, we adopted the same synthetic dataset

generator, SDG (Christen, 2005), used in the experiments presented in Chapter 4.

Thus, for our experiments, we created a synthetic dataset containing 2.000 records.

This dataset contains four �les of 500 records (300 originals and 200 duplicates), with a

maximum of seven duplicates based on one original record (using a Poisson distribution

of duplicate records), and with maximum of four modi�cations in a �eld and �ve in

the full record. The records in this dataset have the following �elds (or attributes):
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Parameter Value
Number of Generations 30
Population Size 50
Initial Random Tree Creation Method Ramped Half-and-Half
Reproduction Proportion 30%
Selection Method Roulette Wheel
Mating (Pairing) Method Random
CrossOver Proportion 70%
CrossOver Method SubTree Exchange
Mutation Rate 7%
Mutation Operation SubTree Insertion
Max Initial Random Tree Depth 3

Table 5.1. Standard GP Setup

forename, surname, street number, address1, address2, suburb, postcode, state, date of

birth, age, phone number, and social security number.

The use of a synthetic dataset in our experiments made it possible to better evaluate

the impacts in quality of the �nal solutions as a result of the changes in the parameter

setup we suggest, since the existing errors and their characteristics are known. All

experiments involved the following two steps: (1) the GP framework chooses one or

more �les for training purposes and (2) the GP framework tests the results of the

training step on all remaining �les.

For all experiments, we present the mean and standard deviation values after ten

runs, using folded cross validation. Likewise the experiments described in the previous

chapter, we do not used any blocking technique in order to avoid recall value distortions

that might occur when splitting the dataset in smaller blocks and, therefore, a�ect the

evaluation of our GP-based method suggested solutions.

5.2 Population and Generation Size

In this experiment, we handled the two most time impacting parameters of a GP

system: the number of individuals that are processed in each generation and the maxi-

mum number of generations of the evolutionary process. Since each experiment requires
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Parameter Options (1)Avrg (1)StDev (2)Avrg (2)StDev (3)Avrg (3)StDev (4)Avrg (4)StDev

Population Size

10 0.642 0.432 0.649 0.424 0.661 0.425 0.662 0.428
20 0.798 0.289 0.791 0.289 0.802 0.314 0.796 0.309
30 0.831 0.108 0.816 0.147 0.840 0.101 0.841 0.121
50 0.910 0.071 0.920 0,060 0.929 0.066 0.921 0,077
70 0.955 0.054 0.951 0.053 0.963 0.042 0.964 0.037
100 0.974 0.028 0.981 0.012 0.975 0.017 0.981 0.015

Generation Size

10 0.782 0.172 0.797 0.181 0.813 0.175 0.814 0.169
20 0.922 0.069 0.928 0.058 0.935 0.047 0.930 0.055
30 0.910 0.071 0.920 0,060 0.929 0.066 0.921 0,077
40 0.947 0.064 0.949 0.063 0.954 0.054 0.954 0.066
50 0.926 0.071 0.946 0.057 0.939 0.046 0.940 0.055
60 0.959 0.036 0.969 0.024 0.962 0.031 0.968 0.023
70 0.951 0.047 0.954 0.049 0.957 0.038 0.958 0.042

Table 5.2. Population and Generation Size - F1 Averages and Standard Devia-

tions

training on learning datasets, the larger the values of these parameters, the more time

will be required for the training phase. This becomes a real concern when applying GP

to a problem that is also time demanding such as record deduplication. Moreover, if

the experiment lasts longer than necessary, the solutions may end up over-�tted (over-

specialized in the learning dataset). However, if lower values are used, the GP process

will not be able to �nd good solutions. For this reason, it is important to choose the

most suitable values for these parameters in order to achieve the desired goal.

The results of the experiments are presented in Table 5.2. The result of the best

individual of the training phase is labeled as (1)Avrg and (1)StDev, for the average

and standard deviation respectively. The results obtained in the test phase are labeled

as (2), (3) and (4), corresponding to each test �le described before. The results of the

other experiments are presented in tables with a similar structure.

The results in Table 5.2 show that increasing the number of both individuals and

generations leads to gains in the F1 averages, and also to more stable results (lower

standard deviations). However, it can be noticed that beyond a certain number of

generations and population individuals, 40 and 50 respectively in our synthetic dataset,

there is an substantial increase on the e�ort necessary to obtain better results. For

example, we need an increase of about 40% in the population size (50 to 70) to obtain

gains of about 5% in the quality of the deduplication process. We can also observe that,
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at the indicated values (40 for generations and 50 for population), our approach has

already reached a stable result level, as can be seen by the low values of the standard

deviation in the training and test datasets. Using much higher values than these would

take substantive additional time and demand signi�cantly more resources to obtain

small F1 gains. If, however, the user has the time and resources for increasing the size

of the population, this may lead to additional gains. On the other hand, increasing the

number of generations may increase the chance of over�tted solutions.

5.3 Crossover�Reproduction Proportion and Pairing

Methods

In this experiment, we deal with the parameters that usually impact the diversity of

the solutions during the course of the evolutionary process: (1) the proportion between

individuals that are reproduced and the ones that su�er genetic modi�cation, and

(2) the methods used to pair the individuals (during the crossover operation). Our

objective is to suggest a �genetic pool� size by �nding good reproduction and crossover

rates for record deduplication, and also the most suitable way of pairing the individuals.

For this, we used three well known strategies (described in Chapter 3): random pairing,

ranking pairing and the mirror pairing.

Regarding the result of the reproduction and crossover proportion experiments,

Table 5.3 shows that the 90-10 ratio leads to the highest F1 averages and also to the

most stable results (e.g., it presents the lowest standard deviations). Close results can

be obtained also using the 80-20 and 70-30 rations, however, they are less stable. This

behavior may be explained because the 90-10 ratio creates a genetic pool size more

suitable for spawning good individuals.

Regarding the changes in the pairing methods, the mirror pairing presents the

highest F1 averages in the training and test datasets. However, the results of the

random pairing are statistically similar to the mirror pairing in terms of both average
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Parameter Options (1)Avrg (1)StDev (2)Avrg (2)StDev (3)Avrg (3)StDev (4)Avrg (4)StDev

Crossover�Reproduction Proportion

90-10 0.952 0.039 0.952 0.039 0.955 0.038 0.954 0.039
80-20 0.919 0.102 0.926 0.086 0.915 0.108 0.925 0.088
70-30 0.910 0.071 0.920 0.060 0.929 0.066 0.921 0.077
50-50 0.797 0.180 0.798 0.207 0.816 0.179 0.841 0.151

Pairing Method

Random 0.910 0.071 0.920 0.060 0.929 0.066 0.921 0.077
Ranking 0.898 0.124 0.910 0.133 0.904 0.141 0.907 0.147
Mirror 0.927 0.077 0.937 0.081 0.943 0.063 0.948 0.060

Table 5.3. Crossover�Reproduction Proportion and Pairing Method - F1 Aver-

ages and Standard Deviations

Parameter Options (1)Avrg (1)StDev (2)Avrg (2)StDev (3)Avrg (3)StDev (4)Avrg (4)StDev

Selection Method

Wheel 0.910 0.071 0.920 0,060 0.929 0.066 0.921 0,077
Tournament 0.933 0.077 0.940 0.076 0.941 0.065 0.939 0.081
Random 0.953 0.023 0.947 0.032 0.958 0.026 0.955 0.024
Greedy 0.917 0.086 0.915 0.098 0.918 0.081 0.925 0.084
Ranking 0.977 0.014 0.975 0.024 0.975 0.023 0.974 0.022

Mutation Rate

10% 0.944 0.052 0.949 0.046 0.952 0.040 0.950 0.040
5% 0.889 0.122 0.905 0.117 0.907 0.099 0.906 0.110
3.3% 0.910 0.071 0.920 0,060 0.929 0.066 0.921 0.077
2.5% 0.853 0.218 0.856 0.231 0.882 0.196 0.869 0.206
2% 0.924 0.051 0.934 0.044 0.929 0.046 0.933 0.048

Table 5.4. Selection Method and Mutation Rate - F1 Averages and Standard

Deviations

and standard deviations. We can also point out that the random method is slightly

more stable in some cases. One additional advantage of the random pairing is that it

is easier to implement, saving sorting operations that are required by the other two

methods.

5.4 Selection Method and Mutation Rates

In this experiment, we have changed the values of the parameters that are responsible

for the GP ability to adapt the individuals to speci�c goals during the evolutionary

process: the methods used for selecting individuals for future populations and how

often the mutation occurs during the evolutionary process. The selection methods

used in our experiments were: roulette wheel, tournament, random, greedy and ranking.

Regarding the mutation rates, our main aim was to �nd the most adequate mutation

rate for record deduplication.

As we can see in Table 5.4, the ranking selection method presented the best F1

averages and the lowest standard deviations. However, this result can be considered
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Parameter Options (1)Avrg (1)StDev (2)Avrg (2)StDev (3)Avrg (3)StDev (4)Avrg (4)StDev

Initial Tree Creation Method
Half-and-Half 0.910 0.071 0.920 0,060 0.929 0.066 0.921 0,077
Full Depth 0.968 0.017 0.977 0.015 0.974 0.011 0.980 0.013
Grown 0.818 0.217 0.832 0.225 0.827 0.228 0.829 0.226

Table 5.5. Initial Tree Creation Method - F1 Averages and Standard Deviations

statistically similar to those of the random and tournament selection methods. One

explanation for this outcome may be particular characteristics of the record dedupli-

cation problem. Since the ranking selection method uses only the �ttest individuals

at each generation, it might have accelerated the convergence process (in this particu-

lar problem) towards the most suitable solutions, whereas the other selection methods

might have slowed the convergence speed when mixing the genetic content of good and

bad individuals.

Regarding the changes in the mutation rates, both, the 2% and 10% rates, presented

statistically equivalent solutions. This behavior can be explained by the crossover

disruptive e�ect (Banzhaf et al., 1998) over the relative small population, used in

the standard experiment setup, that might have nulli�ed the most impacting changes

created by the mutated individuals. In other words, the crossover operation might be

enough in this environment to �nd the most suitable solutions.

5.5 Initial Random Tree Creation Method

In this �nal experiment, we studied the impact that the initial random trees have on

the GP solutions at the end of the process. We used the most commonly methods

found in GP systems: ramped half-and-half, full depth and grown.

As we can see from Table 5.5, the full depth method leads to the highest F1 averages,

and also to the most stable results (lowest standard deviations). The ramped half-and-

half method presents results that are statistically similar to the full depth, but with

slightly higher standard deviation values. The grown method presents the lowest F1

averages and a very unstable behavior.

These results can be explained by the fact that the initial (and usually larger) trees
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created by the full depth and ramped half�and�half methods provide an initial solution

that spreads better over the search space, when compared with the smaller trees that

usually result from the grown method.

5.6 Remarks on the Results

Based on the results of our experiments, we can make the following remarks:

1. Beyond a certain level, it is necessary a substantial increase in the number of

generations and in the population size in order to obtain small gains in F1 values.

In our experiments, this level is reached when the values of the generation and

population sizes are, respectively, 40 and 50. However, bad choices (small values)

for these parameters can deteriorate the F1 results in more than 30%.

2. The most suitable crossover�reproduction proportion found in our experiments

was 90-10. Good results can also be obtained using 80-20 and 70-30, however,

the most stable results were achieved by the 90-10 proportion.

3. Albeit the better averages of the mirror pairing method, there is no statistically

advantage over the other pairing methods used in our experiments. Thus, our

suggestion is to use the most straightforward method, random pairing, in order

to save computational time.

4. Ranking selection presents the best results among the selection methods experi-

mented. Compared with the method that presented the worst result, it provides

an improvement of up to 4% in F1 average values.

5. Higher mutation rates provide statistically similar results when compared with

lower ones. This might mean that the crossover operation, in this problem,

already creates a good diversity among the population. This fact leads to our

suggestion of keeping the mutation rate at the lower value of 2%, in order to save

computational time.
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6. In GP, a good strategy to reach suitable �nal results is to improve the way the

evolutionary process starts, in our case, the way the initial population is created.

Our experiments with initial random tree creation methods suggest the use of

the full depth method. By only changing this parameter, the di�erence between

the worst and the best F1 averages varied over 10% in some cases.





Chapter 6

An Evolutionary Approach to Schema

Matching

The schema matching problem can be de�ned as the task of �nding semantic rela-

tionships between schema elements (e.g., relation attributes or XML tags) from two

distinct data repositories (e.g., relational tables or XML �les). Solving this problem is

key in many data integration environments that use large and complex data sources,

such as heterogeneous databases, data warehouses, and web data repositories. This

problem usually occurs due to the number of di�erent possibilities of expressing the

same real world concepts when modeling a data repository. It can also arise when

di�erent data modeling paradigms (e.g., the ER and object oriented models) are used

to model distinct applications in a same domain.

Despite the existence of elaborated tools that usually provide advanced graphic

resources for helping with this task, the matching between elements from the candidate

schemas is usually �hand crafted�, i.e., the user has to specify, manually, the actual

matches. Thus, this is a labor intensive, very expensive, and error prone process.

As discussed in Chapter 2, to overcome this situation, several alternative tools

based on automatic or semi-automatic approaches have been proposed (Dhamankar

et al., 2004; Doan et al., 2001; Hernández et al., 2001; Madhavan et al., 2001; Milo

73
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and Zohar, 1998). These approaches aim at combining di�erent pieces of evidence

extracted from the repository structures, the stored data, and even external resources

(i.e., semantically related datasets, web catalogs, ontologies, etc.) to provide informa-

tion about the semantic relationships.

However, in some real world scenarios it may not be possible to use evidence such as

these. There are speci�c situations in which no information about the schema structure

is available (for instance, in cases where the schema is not known) or the information

is limited, such as in the case of semistructured data (Rahm and Bernstein, 2001).

In this information-restricted scenario, only the data instances may be available for

use. Indeed, schema matching approaches that rely only on data instances are the

unique option for this task in unfavorable scenarios, such as fraud detection, crime

investigation, counter-terrorism, and homeland security. Most often, data repositories

manipulated in such scenarios are deliberately deprived from any form of identi�cation

or structural clues to make it di�cult to be processed and analyzed.

Another complex issue we need to deal with is that most real-world situations in-

volve complex matches. Di�erently from the task of �nding 1-1 matches (that represent

a relationship between single elements from distinct schemas), identifying complex mat-

ches is a more challenging problem. This happens because complex matches require

�nding combinations of existing elements in one schema that are related to combina-

tions of elements into another, as illustrated in Figure 6.1. Thus, in such situations,

the search space of possible solutions is unbounded (Dhamankar et al., 2004).

In this chapter, we propose an evolutionary approach1 that aims at automatically

�nding complex matches between schema elements of two semantically related data

repositories. Since we only exploit the data stored in the repositories for this task, we

rely on matching strategies that are based on record deduplication and information

retrieval techniques to �nd complex schema matches.

The reason for adopting an evolutionary approach is the size of the search space

1Our approach adopts concepts and ideas that are strongly inspired by genetic programming, but
does not use the �classic� data structures usually adopted for representing the solutions.
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Figure 6.1. Semantic Relationships between Repository Schemas: Complex

Matches

given name surname street number address 1 address 2 suburb

rosie leslie 26 coranderrk street rowethorpe hill end

katherine hand 18 derrington crescent homewood kingsthorpe

M. white 23 prescott street bonbeach

Table A

Table B

full name Age address area

rosie leslie 43 coranderrk 26, rowethorpe hi end

katherine hand 33 derrington crescent 18 , homewood kingsthorpe

M. white 39 prescott str bonbeach

Table B

resulting from the large number of possible semantic relationships existing between

element combinations from two schemas. Evolutionary techniques are known for their

capability to e�ciently �nd suitable answers to a given problem, without having to

explore the entire space of solutions and when there is more than one objective to be

accomplished (Banzhaf et al., 1998) (in our case, �nding several di�erent valid matches

at the same time).

The goal of our approach is to �nd semantic relationships between schema elements,

in a restricted scenario in which it might not be possible to use all information due to the

absence of structural data or to the high cost of obtaining it (e.g., for security reasons),

or even when useful schema information is limited, as in the case of semistructured

data. Alternatively, our approach can improve the results of other approaches (e.g.,

(Dhamankar et al., 2004)) that combine di�erent pieces of information, such as schema

structure, attribute labels, schema domain, and data instances.

Our evolutionary approach is able to identify complex matches with high accuracy,

despite the restriction on the use of structural information. Other approaches that

only explore stored data instances, such as (Doan et al., 2001) and (Li and Clifton,

2000), are not able to �nd complex matches even when using external information (e.g.,

training examples).
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As pointed out in Chapter 2, a more recent work (Warren and Tompa, 2006) de-

scribes a speci�c multi-column string matching approach that actually performs data

mappings between schema elements, i.e., it identi�es the operations that are required

to transform a set of schema elements into another one. However, the authors point out

that their approach requires the existence of some common data between the reposito-

ries in order to �nd a solution. Additionally, that approach also needs some external

information, such as an initial set of attributes that were previously matched, in order

to solve complex mappings.

To demonstrate the e�ectiveness of our approach, we conducted an experimental

evaluation using real and synthetic datasets. The results of this evaluation show that

our approach was able to �nd complex matches, in some cases all of them, in three

di�erent scenarios: when the repositories do not share any common data, when the

repositories partially share some data, and when the same data can be found in both

repositories but in di�erent formats or di�erently structured. More precisely, our ap-

proach achieved 100% accuracy in the synthetic datasets and up to 60% in the real

ones, in the task of �nding complex matches (more details on these experiments in

Section 6.2). Our results are competitive when compared to those achieved by a more

elaborated (hybrid) approach (Dhamankar et al., 2004) (using the same real datasets)

that relies on both schema and actual data to �nd complex matches.

6.1 Proposed Approach

In this section, we describe our evolutionary approach to schema matching. Thus, �rst

we present the schema matching solution representation we adopt for supporting the

evolutionary process and brie�y describe how genetic operations are applied during

this process. Then, we explain two matching strategies we adopt in our approach to

combine and compare the available data with the goal of �nding and evaluating matches

in di�erent situations. The �rst is a record-oriented strategy that is based on a record
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deduplication method that we have proposed (de Carvalho et al., 2008a), whereas the

second is an attribute-oriented strategy that employs information retrieval techniques.

The choice of which matching strategy to use depends on the data integration scenario

considered, as we shall explain in the next section when describing our experiments.

6.1.1 Schema Match Solution Representation

The basic blocks that we use to build the solutions (schema matches) for our problem

are the schema elements. A schema element can be seen as a property inherent to an

entity, or associated with that entity, for data representation purposes (e.g., the name

of a person and the price of an item). Hence, for example, in a relational table, a

schema element corresponds to an attribute (column) of this table.

Schema elements can be grouped into one or more sets. A set of schema elements

comprises one or more schema elements. However, for our purposes, such a set can

only hold schema elements that belong to the same element data class. An element

data class aggregates elements that are manipulated in the same way, by methods or

operations that make sense only for that data class2. For example, we can list the

following element classes and some of their possible operations:

• Strings: concatenation, subtraction, substitution, insertion, replacement;

• Dates: summation, subtraction, comparison (e.g., equal to, after than, before

than);

• Numbers: summation, division, subtraction, multiplication, exponentiation;

• Sound streams: concatenation, insertion, substitution, normalization;

• Images: color substitution, transposition;

2We notice, for instance, that two schema elements of type string belong to the same data
class, no matter their de�ned length.
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Figure 6.2. A Match Representation Example
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The relationships between schema elements, i.e., a match, is represented by two

combination trees and a similarity measure. A combination tree describes how a set

of schema elements from a repository may be combined to match another schema

element or a speci�c set of schema elements from another one. For example, a pair of

combination trees can be used to �nd a match between schema elements that represent

personal names in two distinct repositories. The similarity measure is used to evaluate

the quality of the match. We further elaborate on this issue later.

All combination trees must be formed by schema elements that belong to the same

data classes, which are represented by tree leaves. The internal nodes of the combi-

nation trees are functions and operators that are able to manipulate schema element

instances from the same data class of the leaves. Thus, we can say that a combination

tree is from data class X if their schema elements (their leaves) are all from data class

X. In our modeling, both combination trees in a match must comprise elements from

the same data class. By using a list of relationships between combination trees from dif-

ferent repositories, we produce a schema matching solution, which in our evolutionary

approach is modeled as a unique individual in a population.
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To illustrate this representation, consider two data repositories A and B as shown

in Figure 6.2. Repository A comprises four schema elements (forename, surname, age,

and fulladdress) and, repository B, six (fullname, age, streetname, streetname, city, and

postalcode). Since we do not use any structural information (such as attribute labels),

the schema elements are labeled in our approach by id numbers (Figure 6.2(a)), 1 to

4 and 1 to 6 in repositories A and B, respectively. For the sake of simplicity, in our

example we consider all schema elements as being of the same class. We also show

how our combination trees (Figure 6.2(c)) may represent one of the several schema

matches (Figure 6.2(b)) found between repositories A and B. Notice that id numbers

identify the leaf nodes (schema elements) in the combination trees and the Winkler

similarity measure is used to evaluate the matches.

In our next example, shown in Figure 6.3, the individual comprises two matches

(in our experiments, the number of matches that correspond to an individual is usu-

ally bigger) that are instantiated as randomly generated trees (Banzhaf et al., 1998).

Notice that match M1 does not make any sense because it matches personal names

with addresses whereas match M2 also presents some problems as it tries to match a

combination of forename, surname and age (attributes 1, 2, and 3) in repository A

with a combination of fullname and streetname (attributes 1 and 3, respectively) in

repository B, being again a bad match.

This schema matching solution representation (with several matches represented

by lists of combination trees within an individual) aims at enabling our evolutionary

process to search for several valid matches at the same time (e.g., M1 and M2 in our

example). Since there are several matches within an individual, the search for good

matches occurs more or less in parallel, since a good individual must have several good

matches. This avoids the undesired side e�ect of having GP looking for a unique single

�best match� using as many attributes as possible. We in fact observed this behavior in

an early version of our approach when we modeled each individual as a single match.

Moreover, we adopt this structure (list of combination trees) for representing
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Figure 6.3. Random Generated Individual with Two Schema Matches
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relationships between schema elements because it is suitable for genetic opera-

tions (Banzhaf et al., 1998; Koza, 1992). As we use a generational algorithm (Banzhaf

et al., 1998), within each cycle the population of individuals is handled by genetic

operations (such as selection, mutation, and crossover) to create new individuals with

new and di�erent characteristics from its predecessors. Figure 6.4 illustrates how the

crossover operation (Step 6 of the generational algorithm described in Chapter 3) cre-

ates new individuals in our approach. As we can see, �rst two individuals are selected

from the population (Figure 6.4(a)). Then, matches related to the same repository

are paired (1A with 2A and 1B with 2B) (Figure 6.4(b)). Next, a list of crossover

operations (C1, C2, C3 and C4) is scheduled between combination trees from di�e-

rent individuals (Figure 6.4(c)). Figure 6.4(d) zooms in the C1 crossover operation

between the combination trees related to repository A. Finally, matches are paired

(Figure 6.4(e)) to form the new individuals (1A with 1B and 2A with 2B) which are

then combined to be used in the next round of the evolutionary process.

The similarity measure resulting from each match evaluation is used to classify

the combination trees as a valid match or not. This similarity measure is calculated

by means of a similarity function that should be chosen according to the data class

of the combination trees. For instance, if the combination trees combine strings, the

similarity function (e.g., a string distance function or Jaro similarity function) should

be able to measure how similar two strings are. The higher the value returned by
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Figure 6.4. Crossover Operation
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this function, the higher the probability that the combination trees represent a valid

semantic relationship between the two repositories. However, there are several of such

matches possible, thus leading to a huge search space for the evolutionary approach to

�nd the best solutions.

In order to control the search for possible solutions, we need to narrow the evolution-

ary process. This is done by restricting the application of the crossover and mutation

operations only to matches that involve combination trees comprising schema elements

from the same data class. This avoids schema elements from di�erent data classes to

appear in the same combination tree and, therefore, prevents the evolutionary pro-

cess to evaluate individuals that lead to invalid solutions. Also, during the creation

of the initial population, we do not allow the same schema element to appear in more

than one combination tree of the same individual. This constraint is somewhat main-

tained by the evolutionary process itself, since its violation would imply in matchings

of lower quality within an individual. This is another indirect bene�t of our solution

representation.

The �nal solution is computed by taking the results of the evaluations over all
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matches of each single individual. For this, we use as our �tness function the average

of the summation of the individual similarity values obtained by all matches in the

candidate solution. The higher the similarity of all matches, the more accurate is the

�nal solution.

However, there are several ways of computing these similarity values for the �tness

function. In our approach, in order to deal with di�erent data scenarios, we devise

two distinct matching strategies to �nd and compute values between the matches: a

record-oriented strategy that is based on our record deduplication approach described

in Chapter 4, and an attribute-oriented strategy that exploits information retrieval

techniques. We detail these strategies in the following sections.

6.1.2 Record-oriented Strategy

As discussed in Chapter 4, a record deduplication process aims at identifying in a data

repository records that refer to the same real world entity or object in spite of mis-

spelling words, typos, di�erent writing styles or even di�erent schema representations

or data types. Thus, when repositories share some data about the same real-world

entities, we can combine the data associated with several schema elements to identify

whether two or more entries in a repository are replicas or not. We accomplish this by

using functions that combine schema elements using our schema matching representa-

tion. If we are able to �nd schema element combinations that lead to a positive record

replica identi�cation, this means we have successfully identi�ed valid schema matches.

Thus, in this strategy, each schema element E is combined in a combination tree

with other schema elements from its same data class. For example, a very simple linear

combination of schema elements may be expressed by the concatenation of several

string schema elements, such as E1 + E2 + E3 + E4. The tree input is a set of schema

elements, all belonging to the same data class and whose instances are extracted from

the data repository, and its output is a combined schema element whose data class is

the same of the leaves. In other words, when using the record-oriented strategy, the
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Figure 6.5. Match M2 Fitness Evaluation using a String Similarity Measure
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trees encode how the schema element instances are combined, one repository entry at

time, as illustrated in Figure 6.5.

As we can see, the output of the combination tree from one repository is compared

with the output of the combination tree from the other repository, using a simila-

rity function compatible with them: if the resulting similarity value is above a chosen

boundary, the matching is considered valid; otherwise, the matching is considered in-

valid (de Carvalho et al., 2008a). In the example shown in Figure 6.5, the results

obtained from each tree are used to build �output� tables. Then, the entries of these

tables are pairwise compared using a previously de�ned similarity function (for exam-

ple, based on the Winkler similarity measure), as illustrated in Figure 6.5(a). Finally,

the average of the similarity values found comparing the table entries (MScore in Fig-

ure 6.5(b)) is used as a score to determine whether the schema match is valid or not.

The �tness of the individual is the average of the scores of all matches that it beholds.

6.1.3 Attribute-oriented Strategy

Another possibility for determining similarities between two schema elements (or com-

binations of them) is to consider the whole content of an schema element (or attribute)
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Figure 6.6. Match M2 Fitness Evaluation using the Cosine Similarity Measure
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as a single uni�ed content for comparison purposes. As we shall see later, this is useful

when the schemas being matched are semantically related but share no data in common

(i.e., data about a same entity). In this case, we rely on the classic vector space model

(Baeza-Yates and Ribeiro-Neto, 1999) widely used in information retrieval as the basis

for the similarity comparisons. The choice of this model is twofold: (1) it is easy to

implement and usually provides an e�ective solution for text similarity problems and

(2) its cosine function allows ranking the matches found between schema elements (or

their combinations) from both repositories based on their degree of similarity, which is

important to establish which are the most likely valid matches.

For example, consider two schema elements (or combinations) An and Bm from

repositories A and B, respectively. Each one of these schema elements is represented

by a set of terms extracted from their respective instances in A and B. The similarity

between An and Bm is determined by the degree of similarity between their respetive

sets of terms An and Bm and is given by

sim(An, Bm) =

∑t
i=1wi,n × wi,m√∑t

i=1w
2
i,n ×

√∑t
i=1w

2
i,m

(6.1)

where, for a term ki in the set Bm, wi,n is the weight associated with the pair (ki,An),
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wi,m is the weight associated with the pair (ki,Bm), and t is the number of terms in

the sets An and Bm. If sim(An, Bm) is greater than a similarity threshold previously

speci�ed, the schema elements are considered a valid match.

The weight wi,n is given by

wi,n = fi,n × idfi (6.2)

where fi,n is the normalized frequency of the term ki found in An and idfi is the Inverse

Document Frequency (IDF) of the term ki that indicates its importance of the term ki

inside An.

The normalized frequency fi,n is given by

fi,n =
freqi,n

maxl(freql,n)
(6.3)

where freqi,n is the raw frequency of the term ki found in the schema element An (i.e.,

the number of times that the term ki is found in An) and maxl(freql,n) is the biggest

frequency among the frequencies of the terms ki, that are found in An.

The IDF value idfi is given by

idfi = log
N

ni

(6.4)

where N is the total number of schema elements considered and ni is the number of

schema elements in which the term ki appears.

Finally, the weight wi,m is given by

wi,m = (0.5 +
0.5× freqi,m
maxl(freql,m)

)× idfi (6.5)

where freqi,m is the raw frequency of the term ki found in Bm and maxl(freql,m)

is the biggest frequency among the frequencies of the terms ki found in Bm. The
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two constant values 0.5 were suggested by Salton and Buckely (ibdi (Baeza-Yates and

Ribeiro-Neto, 1999)) to balance the relevance of terms in a document collection. Since

then, these values have been successfully used in the implementation of virtually all

practical information retrieval systems.

The main di�erence between the record- and the attribute-oriented strategies lies

on the way each match similarity is calculated for an individual. Thus, in the attribute-

oriented strategy, each tree encodes the instructions on how to handle the data (ex-

tracted from actual instances) in order to �ll a space vector. The vector now �repre-

sents� the tree output, as illustrated in Figure 6.6(a). The vectors (from both trees in

each match) are then compared using the cosine similarity function. This calculated

similarity is now the match score, MScore, shown in Figure 6.6(b). If this score is

above a chosen boundary, the match is considered valid; otherwise, the match is con-

sidered invalid. Likewise the record-oriented strategy, the �tness of the individual is

the average of the scores of all matches that it beholds.

6.1.4 Selecting the Best Matches

During the evolutionary process, the combination trees are manipulated by means of

genetic operations. At each generation, each individual is inspected to assess how it

solves the matching problem. This is accomplished by calculating its �tness. Thus,

each schema match (for instance, M1 and M2 in our example) found for an individual

is evaluated.

This continuous process creates several possible ways of building matches with

di�erent combinations of schema elements. This happens because of the several possible

distinct trees that might be created, some spawning very good matches, others very

bad ones. However, only the best individuals are selected for further generations, since

they include the best schema matches.

At the end of the process, the best individuals are chosen to compose a ranking

of the best schema matches, as illustrated in Figure 6.7. The best matches found in
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Figure 6.7. Selecting the Best Matches for the User Output List
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each individual are then extracted and a single list is created and processed to remove

eventual repetitions, since the same match solution may appear in distinct individuals.

Finally, this list is translated to a human-readable format and returned as the result

of the schema matching process.

6.2 Experiments

In this section, we discuss the results of the experiments conducted to evaluate our

evolutionary approach to schema matching. There were three sets of experiments:

1. Experiments with repositories that partially share the same data (partially over-

lapped data scenario): The objective is to evaluate how our approach performs

when there is some overlapping data in the repositories, despite di�erent repre-

sentations and possible errors, such as typos and phonetic errors. This is usually

a common situation in real-world schema matching cases.

2. Experiments with repositories that present the same data (fully overlapped data

scenario): The objective is to evaluate our approach when the repository data
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instances are fully mapped, i.e., for each entity in the �rst repository, there is at

least one corresponding entry in the second one.

3. Experiments with repositories that do not share the same data (disjoint data

scenario): The objective is to evaluate how our evolutionary approach, using

our proposed attribute-oriented strategy, performs when the repositories do not

share any common data. This is the most di�cult case for any instance-level

schema matching approach, since there is not any correponding entry between

the repositories.

Our experimental evaluation adopts the same accuracy metric used in (Dhamankar

et al., 2004), that is, the fraction of all target schema elements whose candidate match

is correct, as given by:

Accuracy = NumberOfCorrectlyIdentifiedMatches
NumberOfMatches

For conducting these experiments, we have implemented a prototype schema match-

ing system that consists of two modules: a 1-1 match searcher and a complex match

searcher.

6.2.1 Datasets

In our experiments, we used two real datasets widely employed for evaluating schema

matching approaches (Dhamankar et al., 2004; Lee et al., 2007; Madhavan et al., 2005).

Both datasets (Real Estate and Inventory) were obtained from the Illinois Semantic

Integration Archive3. These real datasets were used only in the disjoint data scenario

experiment, since they do not present any overlapping data. Despite relatively small,

these datasets are �de facto standards� used by several schema matching approaches

and their use allows a direct comparison with them. In addition, we generated other

datasets using the Synthetic Dataset Generator (SDG) (Christen, 2005) available in

the Febrl package.
3http://pages.cs.wisc.edu/~anhai/wisc-si-archive/
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Since real data is not easily available for experimentation, due to privacy and con�-

dentiality constraints, we used the synthetic datasets to conduct a larger set of exper-

iments to evaluate our approach. SDG generates datasets containing personal names

(based on frequency tables for given forenames and surnames), addresses (based on

frequency tables for localities, postcodes, street numbers, etc.), phone numbers, and

personal number ids (like the social security number). Moreover, SDG is able to sim-

ulate real errors such as attribute swapping, typos, and phonetic errors. Thus, the

generated synthetic datasets present anomalies that occur in real-world repositories.

For our experiments, we generated three synthetic datasets with the following at-

tributes: forename, surname, street number, address1, address2, suburb, postal-code,

state, date of birth, age, phone number, and social security number. These synthetic

datasets are much larger than the Real Estate and Inventory datasets and present the

following characteristics:

• The synthetic dataset 4 (Synthetic 4) was generated for experiments that deal

with the partially overlapped data scenario. It consists of two �les, each one with

2000 entries, with 10% of the entries being shared between them.

• The synthetic dataset 5 (Synthetic 5) was generated for experiments that deal

with the full overlapped data scenario. It consists of two �les, each one with 2000

entries, with all entries being shared between them.

• The synthetic dataset 6 (Synthetic 6) was generated for experiments that deal

with the disjoint data scenario. It consists of two �les, each one with 2000 entries,

with no common entries between them.

In order to introduce complex matches in the synthetic datasets, we have com-

bined some schema elements (forename + surname and address1 + address2 + street

number) in one of the �les of each generated dataset, similarly as we �nd in the Real

Estate and Inventory datasets. We notice, however, that none of the datasets include
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Table 6.1. Dataset Characteristics

Characteristic Synthetic 4, 5, 6 Real Estate Inventory

Total of Elements in File A 12 32 44
Total of Elements in File B 7 19 38
Total of 1-1 Matches 7 7 27
String Matches 3 6 11
Numerical Matches 4 1 16
Total of Complex Matches 2 12 11
String Matches 2 5 4
Numerical Matches 0 7 7

Table 6.2. GP Parameters: (1) Partially Overlapped (2) Fully Overlapped (3)

Disjoint

Parameter Value (1) Value (2) Value (3)
Max Number of Generations 20 20 20
Population 100 100 200
Reproduction Rate 20% 20% 20%
Selection Ranking Ranking Ranking
CrossOver Rate 80% 80% 80%
CrossOver Method Random Exchange Random Exchange Random Exchange

Mating (Pairing) Random Random Random
Mutation Rate 2% 2% 2%
Max Random Tree Depth 3 3 3
Similarity Function Levenshtein Distance Sort Winkler Cosine Similarity
Similarity Boundary 0.90 0.85 0.95
Number of Matches in a Individual 6 6 6

complex matches on numerical schema elements. Table 6.1 summarizes the matching

characteristics4 of all datasets.

For each data scenario, di�erent datasets and parameter setups (evolutionary pa-

rameters and similarity functions options) were used. We present this information in

Table 6.2.

We ran our experiments in a workstation with the following hardware and software

con�guration: Pentium Core 2 Duo Quad (2 Ghz) processor, with a 4 GB RAM DDR2

memory and a 320 GB SATA hard drive, and running a 64-Bits FreeBSD 7.1 Unix-

based operational system.

4In Table 6.1, by numerical matches we mean matches involving numerical values in gen-
eral, as well as dates and other numeric types that require some conversion.
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6.2.2 Basic Steps

In order to allow a fair comparison, each experiment performs the following steps:

1. An initial list of schema elements from both �les is provided to our matching

system. In the current version of our system, we consider all schema elements as

strings in order to evaluate how our approach performs in this situation. Dealing

with other types of elements is left for future work.

2. Our 1-1 match searcher processes the initial list of schema elements. Here, all

1-1 combinations of schema elements are tested in order to �nd the simplest or

most obvious matches. The valid 1-1 matches are identi�ed and removed from

the list. This step helps improving the results of the complex match searcher,

since it prunes the list of schema elements to be considered.

3. The complex match searcher receives the list of schema elements from the 1-1

match searcher and starts the evolutionary process. However, di�erently from

what is done by the 1-1 match searcher in the previous step, the complex match

searcher compares combinations of schema elements (combination trees). This

enables the complex match searcher to �nd both 1-1 (eventually not found before)

and complex matches.

4. A ranking of the best matches is returned as a list that comprises the schema

element sets and their respective similarity values.

6.2.3 Partially Overlapped Data Scenario

This �rst set of experiments evaluates the capability of our evolutionary approach to

�nd complex matches in partially overlapped data repositories. In this case, our schema

matching system has to deal with some �noise� during the search process, since there

is no external evidence or structural information available to be used. This is the most

common real-world scenario (Rahm and Bernstein, 2001). We used only the Synthetic
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Table 6.3. Results: Partially Overlapped Data Scenario

Matches Accuracy
All 1-1 Matches 57%
String 1-1 Matches 100%
Numeric 1-1 Matches 24%
All Complex Matches 75%
String Complex Matches 75%

4 dataset for these experiments, since there is no partially overlapped data in the Real

Estate and Inventory datasets.

In this scenario, our searchers employ the record-oriented strategy to �nd the most

similar schema element combinations by comparing the corresponding instances stored

in both �les. The most similar combination is considered a possible replica, thus it is

used for matching purposes.

Table 6.3 shows the results for the partially overlapped data scenario using Leven-

shtein, a well known edit distance function, as the similarity function. This function

was the most e�ective among many others (e.g., Winlker, Jaro and Soundex) we used

in our set of experiments. The similarity boundary value for this experiment was em-

pirically chosen after initial tuning tests and its value was set to 0.9, since it maximized

the e�ectiveness of the Levenshtein function.

Our 1-1 match searcher was able to �nd 57% of all matches. As we can see, most

of the unidenti�ed matches are numeric ones, which is mainly due to the fact that

we have treated all schema elements as strings. As a consequence, the unidenti�ed

1-1 matches increased the search space of the complex match searcher. On the other

hand, the complex matching searcher found 75% of the complex matches. This result

includes mostly complex matches involving addresses and one partial match5 involving

personal names.

We notice that �nding semantic relationships among numeric schema elements is

a problem by itself. Even in elaborated hybrid systems, such as iMAP (Dhamankar

et al., 2004), this is considered a separate task. For instance-level approaches, like

5A partial match is a complex match that misses one or more schema elements.
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ours, speci�c strategies for identifying existing data patterns, other than those based

on �nding common terms and word frequencies, must be deployed.

6.2.4 Fully Overlapped Data Scenario

This set of experiments evaluates the capability of our evolutionary approach to �nd

complex matches in fully overlapped data repositories. This means that the compar-

isons always take place between entries that correspond to the same real-world entities.

This scenario is a special or particular case of the partially overlapped data scenario,

in which the disjoint data is removed (or ignored) in order to improve the search e�ec-

tiveness.

For the same reason discussed above, we used in these experiments only the Syn-

thetic 5 dataset. We have performed several runs with this dataset and noticed that it

is not required to use all its entries in order to reach good results. For instance, using

only 500 entries we were able to obtain similar results when using all entries available

in the �les. This can be explained by the fact that both match searchers only compare

entries corresponding to the same real-world entities, which considerably reduces the

matching e�ort.

Table 6.4 shows the results for the fully overlapped data scenario. Likewise, these

results were also obtained after a set of experiments using several di�erent similarity

functions. In this scenario the Winkler similarity function was the most e�ective. This

function returns an approximate string matching measure using the Winkler string

comparator on the word-sorted input strings (if there are more than one word in the

input strings), which improves the results for swapped words. This also improves the

e�ectiveness of our searchers, because it reduces the space of possible solutions, since

we are looking for matches between schema elements, and not for the actual map-

pings between them (which can be done with tools like the one described in (Warren

and Tompa, 2006)). In the previous set of experiments, the most e�ective similarity

function was a speci�c edit distance (Levenshtein) function because the partially over-
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Table 6.4. Results: Fully Overlapped Data Scenario

Matches Accuracy
All 1-1 Matches 100%
Strings 1-1 Matches 100%
Numeric 1-1 Matches 100%
All Complex Matches 100%
String Complex Matches 100%

lapped data scenario requires a �ne-grain replica identi�cation process. The similarity

boundary value for this experiment was also empirically chosen after initial tuning tests

and its value was set to 0.85, since it maximized the e�ectiveness of the Sort Winkler

similarity function.

As shown in Table 6.4, our 1-1 match searcher was able to identify all 1-1 matches.

Even matches involving numeric schema elements (treated as strings) were identi�ed.

This happened because the comparisons were performed between entries corresponding

to the same real-world entities and the numerical values for each entry were mostly the

same ones in both �les, allowing the correct matching. The complex match searcher

was also able to identify all existing matches. Moreover, since we have used the Sort

Winkler similarity function, some of the correct answers found in the output solution

presented the same schema elements, but with di�erent concatenation sequences (e.g.,

forename after surname). For matching purposes, this is not a problem because the

�nal solution includes the correct schema elements.

These results show that the e�ectiveness of our match searchers was improved by the

speci�c characteristics of the fully overlapped data scenario. In this scenario, the match

searchers only have to identify subsets of schema elements that are able to improve

the overall similarity results. In the previous experiments, with partially overlapped

data, our searchers also need to deal with di�erent entities during the comparisons.

Comparisons involving di�erent entities may mislead the replica identi�cation, being,

therefore, considered as �noise� for the searchers.
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6.2.5 Disjoint Data Scenario

This last set of experiments evaluates the capability of our evolutionary approach to

�nd schema matches in disjoint data repositories. This means that they do not share

entries that correspond to the same real-world entities and, therefore, cannot be used

as �rules� for identifying semantic relationships. For this reason, it is the most di�cult

scenario for any schema matching system based on the instance-level approach (Rahm

and Bernstein, 2001).

Since the repositories do no share entries that correspond to the same real-world

entities, we cannot use our record-oriented strategy in this scenario. Hence, we use

instead our attribute-oriented strategy, which considers a similarity function derived

from the classic vector space model.

The rationale of this strategy is to �nd matches between schema elements that pre-

sent similar term frequencies and share common terms (e.g., personal names, addresses

and product descriptions). For this, we compare text vectors that are assembled using

all data instances stored in the repository that are associated with a combination of

schema elements. The higher the similarity value between the text vectors, the higher

the likelihood of the schema element combinations being related to each other. The

similarity boundary for this experiment was empirically chosen after initial tuning tests

and its value was set to 0.95, since it maximized the e�ectiveness of the cosine similarity

function.

We used the Synthetic 6, Inventory and Real Estate datasets in these experiments.

However, we notice that the two real datasets are too small (only 100 entries), since

they were created using real data, aiming at experiments with hybrid schema matching

approaches. Considering that real datasets are usually much larger, we overcome this

situation by using a synthetic dataset whose data better resembles that found in real

applications.

Table 6.5 shows the results of our experiments in the disjoint data scenario. We

use the acronyms RS, INV and ST3 when referring to the Real Estate, Inventory
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Table 6.5. Results: Disjoint Data Scenario

Matches Accuracy
RS All 1-1 Matches 85%
RS String 1-1 Matches 100%
RS Numeric 1-1 Matches 0%
RS All Complex Matches 25%
RS String Complex Matches 60%
RS Numeric Complex Matches 0%

INV All 1-1 Matches 40%
INV String 1-1 Matches 100%
INV Numeric 1-1 Matches 0%
INV All Complex Matches 20%
INV String Complex Matches 56%
INV Numeric Complex Matches 0%

ST6 All 1-1 Matches 42%
ST6 String 1-1 Matches 100%
ST6 Numeric 1-1 Matchings 0%
ST6 All Complex Matches 100%
ST6 String Complex Matches 100%

and Synthetic 6 datasets, respectively. Our 1-1 match searcher missed all matches

involving numeric and date schema elements (age, birth dates, prices and discounts) in

all datasets. However, it was able to identify all 1-1 matches involving string schema

elements in all datasets.

The complex match searcher found 60%, 56% and 100% of the complex matches, in-

volving string schema elements, in the Inventory, Real Estate and Synthetic 6 datasets,

respectively. Similarly to the results in the partially overlapped data scenario, most of

the complex matches found involve addresses and the partial matches involve schema

elements associated with personal names. Some examples of matches found are:

• Inventory dataset: ship-address = (ship-address + ship-postal-code) + (ship-city

+ ship-country)

• Real Estate dataset: house-address = (house-street + house-city) + house-zip-

code

• Synthetic 6 dataset: full-name = forename + surname

Thus, as we can see, despite the fact that the repositories do not share any common

data, our evolutionary approach was capable of successfully handling the information
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extracted from the data instances in order to identify semantic relationship among the

string schema elements existing in the repositories.

However, it should be noted that, when using our attributed-oriented strategy, it

may be di�culty to �nd a match in situations such as:

• Type mismatch. It is di�cult to match semantic related schema elements that

adopt di�erent data types (e.g., boolean (true, false) and string (yes, no));

• Numeric schema elements. When numeric element schemas have di�erent ranges

(e.g., between 0 and 1 in one repository and between 10 and 1.000 in the other

one) or any calculation is required for �nding the matches (like in the case of

numeric complex matches (Dhamankar et al., 2004)), our strategy is unable to

identify any relationship between the schema elements;

• Data classes with distinct data representations. It is di�cult to �nd matches

between semantic related schema elements whose data classes adopt distinct data

representations (e.g., months represented by their names in one repository and

by numbers in the other one).

6.3 Remarks on the Results

Based on the results of our experiments, we can make the following remarks:

1. Our record-oriented strategy is e�ective in the partially and fully overlapped

scenarios, being able to identify numerical matches in several cases (mostly in

the fully overlapped scenario).

2. Both our record- and attribute-oriented strategies managed to �nd complex mat-

ches. Moreover, our attribute-oriented also found them in the disjoint data sce-

nario. Thus, our approach is the �rst instance-based approach that achieves such

results.
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3. Although our attribute-oriented strategy can also be used in the partially and

fully overlapped data scenarios, the record-oriented strategy is more e�ective

on them, as we identi�ed in preliminary experiments. This is explained by the

fact that our record-oriented strategy does not face the di�culties the attribute-

oriented strategy does when identifying numerical matches.

4. The results achieved by our schema matching strategy are similar to the ones

reported by iMAP (Dhamankar et al., 2004). For the Real Estate dataset, iMAP

and our record-oriented strategy found 58% and 20% (60% of the string matches)

of all matches, respectively. In the Inventory dataset, both iMAP and our record-

oriented strategy found 20% of all matches. These results are noticeable, since

our strategy does not use any structural information other than the class of the

schema elements, which can be easily determined by a simple data inspection.
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Conclusions

Data integration is one of the oldest topics in database research, however, there is not

yet a �complete and single� solution for some problems related to it (e.g., schema match-

ing and record deduplication). What makes these problems hard to solve are situations

caused by semantic heterogeneity, such as erroneous relationships between schema ele-

ments and the existence of replicated data in repositories created by the aggregation of

di�erent sources. These situations usually require more storage devices and consume

more processing power and energy for handling and managing information.

For these reasons, there has been a large investment from companies and govern-

ment institutions on the development of e�ective solutions to these problems (Bell

and Dravis, 2006; Wheatley, 2004). However, despite the fact that this investment is

producing some results (as reported in a recent data quality survey (Bell and Dravis,

2006)), most of the existing solutions are based on approaches that are highly de-

pendent of human supervision (e.g., tuning parameter values for commercial record

deduplication systems) or are even manually crafted (e.g., a schema matching manu-

ally carried out by a database designer). As a consequence, these are labor intensive,

very expensive, and error prone solutions.

In this thesis, we aimed at providing solutions to data integration related problems

by means of evolutionary techniques. Our GP-based approach to record deduplication

99
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and our evolutionary approach to schema matching are able to automatically provide

e�cient and high accuracy solutions by using the available resources more e�ciently,

besides being able to handling most of the problems related to parameter setup as

demonstrated by our experiments.

7.1 Summary of Results

As the �rst contribution of this thesis, we proposed a GP-based approach to record

deduplication. Our approach is able to automatically suggest deduplication functions

based on evidence present in the data repositories. The suggested functions properly

combine the best evidence available in order to identify whether two distinct record

entries represent the same real-world entity.

As shown by our experiments, our approach achieves competitive results when com-

pared with Marlin, a state-of-the-art SVM based system used as baseline. Moreover,

our suggested functions use fewer evidence which means that they are computationally

less demanding. Additionally, regarding our better results, unlikely most deduplication

approaches described in the literature that use exactly the same similarity function for

all available attributes, ours is capable of combining distinct similarity functions ac-

cording to the attribute types. Thus, our approach is able to automatically choose the

best function for each speci�c case, which is, certainly, one of the reasons of our better

results.

Other signi�cant result from our experiments is that our GP-based approach is

able to automatically �nd suitable deduplication functions, even when the best evi-

dence (similarity function and record attribute) is not previously known. This is useful

for the non-specialized user, who does not have to set up the best evidence for the

replica identi�cation task. This is one of the main contributions of our approach, that

distinguishes it from all previous proposals in the literature which require user-selected

evidence for their initial setup.
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We also presented the results of experiments on the replica identi�cation boundary

value, using real and synthetic datasets. Our experiments show that our GP-based

approach is able to adapt the deduplication functions generated during the evolutionary

process to di�erent replica identi�cation boundary values used to classify a pair as a

match or not. Moreover, the results suggest that the use of a �xed and small lower

boundary value eases the evolutionary e�ort and also leads to better solutions.

As our second contribution, we proposed a novel evolutionary approach to schema

matching. Our approach is able to automatically �nd relationships between schema

elements from two semantic related repositories. It adopts matching strategies that ex-

ploit record deduplication and information retrieval techniques to �nd complex schema

matches using only the actual data stored in the repositories. To the best of our

knowledge, our proposed approach is the �rst instance-level approach that deals with

complex matches.

Our experimental results show that our evolutionary approach to schema matching

is able to identify complex matches with high accuracy. In our experiments, it was

able to �nd complex matches in three di�erent data repository scenarios, when the

repositories partially share some data, when the same data can be found in both

repositories and when the repositories do not share any common data, achieving for

string complex matches 100% of accuracy in synthetic datasets and up to 60% in real

datasets.

7.2 Future Work

There are several possible research directions from the results presented in this thesis.

Since our contributions address problems related to both the semantic and instance

integration phases of the data integration process, we divided our future work sugges-

tions, as follows:

• Extend the range of use of our GP approach for record deduplication by:
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� Conducting additional experiments using di�erent repositories (e.g., syn-

thetic and real data) to �nd which situations (or scenarios) our proposed

GP-approach would not be the most adequate alternative to the user. Since

record deduplication is a very expensive and computationally demanding

task, it is important to know what are the cases for which our approach

would not be the most suitable alternative.

� Improving the e�ectiveness of the solutions by employing clustering tech-

niques to the �nal solution provided by the record deduplication process.

This additional step might be able to �nd missing replicas that were not

identi�ed during the deduplication itself.

� Improving the e�ciency of the GP training phase by selecting the best

training examples (Gonçalves et al., 2009). Selecting the most representa-

tive examples can minimize the training e�ort required by our GP-based

approach without a�ecting the �nal solution quality.

• Extend the range of use of our evolutionary approach to schema matching by:

� Experimenting with datasets from other domains in order to evaluate how

our proposed approach deals with additional repositories with di�erent num-

ber of attributes and actual data characteristics (e.g., di�erent data types

and languages). Other repositories may require di�erent tuning for the

parameters in our attribute- and record-oriented strategies. Moreover, ad-

ditional experiments may discover if these parameters can be automatically

suggested, thus, freeing the user from the burden of tuning them.

� Investigating other techniques, such as user-feedback, to improve schema

matching results when dealing with numeric and date data classes, type

mismatch situations, and also disjoint data repositories.

� Investigating how our schema matching strategies can bene�t from using ad-

ditional information provided by existing metadata such as data frequencies,



7.2. Future Work 103

average size of speci�c attribute instances, etc.

� Developing a schema level or hybrid evolutionary approach to schema match-

ing based on the ideas proposed in our evolutionary instance-based approach.

Instance-based approaches face di�culties on some scenarios, for instance,

when handiling numeric data, that can be overcome by using structural in-

formation. It is possible to modify the representation we proposed for the

schema matching problem to combine evidence from both the actual data

and the repository structure.
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