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Resumo

Ao contrário dos documentos de textos planos, as páginas Web são comumente com-
postas de diferentes segmentos ou blocos tais como barras de navegação, formulários
de interação, seções principais, anúncios de privacidade e copyright. Este é um fato
de interesse, visto que trabalhos anteriores demonstraram que esses diferentes segmen-
tos, que podem ser identificados automaticamente nas páginas Web, podem ser usados
para melhorar atividades de recuperação de informação tais como busca, análise de
Web links, e mineração de dados na Web. Por exemplo, informação sobre os blocos
das páginas pode ser usada para estimar pesos de termos de acordo com a ocorrência
desses termos dentro dos blocos (ao invés de dentro das páginas). Como consequência,
a importância da ocorrência de um termo em uma página Web pode variar dependendo
de sua localização (ou bloco) dentro das páginas Web. Por exemplo, a ocorrência de um
termo no conteúdo principal de uma página pode ser mais importante para tarefas de
ordenação de documentos que a ocorrência deste mesmo termo no menu desta página.

Nesta tese, são investigados diferentes meios de como melhorar processos de busca
por informação em coleções de páginas Web através do uso da estrutura das páginas.
Para tanto, nós propomos: (i) um novo modelo de representação do conteúdo de Web
sites em sistema de recuperação de informação que leva em consideração a estrutura
interna das páginas; (ii) um método de identificação automática da estrutura interna
das páginas Web, de acordo com o modelo de representação do conteúdo de Web sites
proposto neste trabalho; e (iii) um conjunto de nove funções capazes de distinguir o
impacto de ocorrências de termos dentro dos blocos das páginas, on invés de dentro das
páginas completas. Estas funções, que são usadas para compilar uma versão modificada
do modelo BM25, possuem a vantagem de não requerer processos de aprendizagem nem
qualquer outro tipo de intervenção manual para computar as ordenações de respostas
para as consultas, tal como requerido por trabalhos anteriores.

Usando quatro coleções de páginas Web, foram executados experimentos para
comparar nossos métodos baseados em blocos com (i) dois modelos de recuperação de
informação baseados em blocos propostos na literatura, e com (ii) um método tradi-
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cional de ranking que não usa informação de blocos. Os resultados indicam que nossos
métodos baseados em blocos são capazes de obter ganhos de qualidade de resposta em
relação a todos os baselines, gerando ganhos médios de precisão de 5% a 20%.

Além de melhorar a efetividade da tarefa de busca, nossos métodos baseados em
blocos reduzem o tamanho do índice usado nos processos de busca em até 27.9% quando
comparado com os baselines, diminuindo os requisitos de armazenagem do sistema e o
custo de processamento das consultas.
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Abstract

Unlike plain text documents, Web pages are commonly composed of distinct segments
or blocks such as service channels, decoration skins, navigation bars, main sections,
copyright and privacy announcements. This is of interest because previous works have
demonstrated that these different segments or blocks, which can be automatically iden-
tified in Web pages, can be used to improve information retrieval tasks such as search-
ing, Web link analysis and Web mining. For instance, block information can be used to
estimate term weights according to the occurrence of the terms inside blocks (instead
of inside pages). As a consequence, the importance of each term occurrence may vary
depending on its location (or block) within the Web page. The motivation is that,
for instance, the occurrence of a term in the main contents section of a Web page is
expected to be more important for ranking purposes than an occurrence of that same
term in a menu of that page.

In this thesis, we investigate how to improve retrieval tasks by exploring the
block structure of Web pages. For that, we propose: (i) a new model for representing
the content of Web sites in information retrieval systems that takes into account the
internal structure of their Web pages and the relationship of the structural components
found on the pages; (ii) a method to automatically identify the internal structure of
the Web pages, according to the model of representing the Web sites contents proposed
in this work; and (iii) a set of 9 block-weight functions to distinguish the impact of
term occurrences inside page blocks, instead of inside whole pages. These functions,
that are used to compile a modified BM25 ranking function, have the advantage of
not requiring a learning process nor any type of manual intervention to compute the
ranking, as required by previous works.

Using 4 distinct Web collections, we ran extensive experiments to compare our
block-weight ranking formulas with 3 other baselines: (i) a BM25 ranking applied to
full pages, (ii) a BM25 ranking applied to pages after templates removal, and (iii) a
BM25 ranking that takes into account best blocks. Our methods suggest that our
block-weighting ranking method is superior to all baselines across all collections we
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used and that average gain in precision figures from 5% to 20% are generated.
Further, our methods decrease the cost of processing queries when compared to

the systems using no structural information, decreasing indexing storage requirements
and increasing the speed of query processing.
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Resumo Estendido

Ao contrário dos documentos de textos planos, as páginas Web são comumente com-
postas de diferentes segmentos ou blocos tais como barras de navegação, formulários de
interação, seções principais, anúncios de privacidade e copyright. Este fato é de inter-
esse, visto que trabalhos anteriores demonstraram que esses diferentes segmentos, que
podem ser identificados automaticamente nas páginas Web, podem ser usados para
melhorar atividades de recuperação de informação tais como busca, análise de Web
links, e mineração de dados na Web. Por exemplo, informação de bloco pode ser usada
para estimar pesos de termos de acordo com a ocorrência desses termos dentro dos
blocos (ao invés de dentro das páginas). Como consequência, a importância de cada
ocorrência de termo pode variar dependendo de sua localização (ou bloco) dentro das
páginas Web. A motivação é que, por exemplo, a ocorrência de um termo no conteúdo
principal de uma página pode ser mais importante para propósitos de ordenação de
documentos que a ocorrência deste mesmo termo no menu desta página.

Nesta tese, são investigados diferentes meios de como melhorar processos de busca
por informação em coleções de páginas Web através do uso da estrutura das páginas.
Para tanto, são propostos: (i) um novo modelo de representação do conteúdo de Web
sites em sistema de recuperação de informação que leva em consideração a estrutura
interna das páginas; (ii) um método de identificação automática da estrutura interna
das páginas Web, de acordo com o modelo de representação do conteúdo de Web sites
proposto neste trabalho; e (iii) um conjunto de 9 funções baseadas em blocos capazes
de distinguir o impacto de ocorrências de termos dentro dos blocos das páginas, on
invés de dentro das páginas completas. Estas funções, que são usadas para compilar
uma versão modificada da função de ordenação BM25, possuem a vantagem de não
requerer processos de aprendizagem nem qualquer outro tipo de intervenção manual
para computar as ordenações de respostas para as consultas, tal como requerido por
trabalhos anteriores.

Usando quatro coleções de páginas Web, foram rodados experimentos para com-
parar nossos métodos baseados em blocos com (i) dois modelos de recuperação de
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informação baseados em blocos propostos na literatura, e com (ii) um método tradi-
cional de ranking que não usa informação de blocos. Os resultados indicam que nossos
métodos baseados em blocos são aptos a melhorar os resultados em relação a todos os
baselines. Para o IG, uma de nossas coleções de Web sites adotada em nossos experi-
mentos, foi obtida uma melhoria de 0.62 para 0.75 na métrica MAP, quando comparado
nosso método com um modelo da literatura que não usa informação de blocos. Para a
coleção CNN , outra coleção de Web sites, o sistema resultou uma melhoria de 0.69 to
0.80 na métrica MAP.

Além de melhorar a efetividade de tarefas de busca, nossos métodos baseados
em blocos reduzem o tamanho da lista invertida em até 27.9% quando comparado
com os baselines, diminuindo os requisitos de armazenagem do sistema e o custo de
processamento das consultas.

Representado Web Sites como Blocos

Quando os usuários observam uma página através de um Web browser, eles podem
distinguir diferentes partes dela, tais como barras de navegação, formulários de inter-
ação, sessões principais, etc. Cada uma destas partes tem uma função particular dentro
da página, e são genericamente referenciados como blocos. Nesta seção, apresentamos
um conjunto de definições que são usadas para caracterizar a divisão das páginas em
blocos.

Definição 1. Um bloco é uma região lógica de uma página que (i) não é aninhada
com nenhum outro bloco e (ii) é representado por uma tupla (l, c), onde l é o rótulo do
bloco, representado como uma string, e c é uma porção de texto do bloco.

A divisão de uma página em um conjunto de blocos não sobrepostos deve ser
feita de acordo com a percepção dos usuários sobre a correta divisão lógica das páginas.
Neste trabalho, o rótulo l é representado como o caminho entre a raiz da árvore DOM1

da página e o bloco. A árvore DOM é uma representação hierárquica que provê meios
de descrever a estrutura e o layout das páginas Web. Ela é usualmente adotada em
trabalhos de pesquisa relacionados com a estrutura das páginas [Lin and Ho, 2002;
ching Wong and Fu, 2000].

Definição 2. Cada página Web ρn é representada como um conjunto finito de blocos
lógicos não sobrepostos ρn = {b1, ..., bk}, com k variando de acordo com a estrutura da
página.

1http://www.w3.org/DOM/
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Figura 1: Páginas de notícias ρ1 and ρ2, extraídas do site da CNN.

Definição 3. Um Web site S é representado aqui como um conjunto de páginas Web
S = {ρ1, ..., ρm}, cada um delas composta por um conjunto de blocos.

Adicionalmente, os blocos são agrupados em classes, tal como segue:

Definição 4. Uma classe de blocos C é um conjunto de blocos que pertencem a páginas
distintas de um mesmo Web site e que compartilham o mesmo rótulo, isto é,

C = {b1, b2, ..., bnC}
b1 = (lC , c1)

b2 = (lC , c2)
...

bnC = (lC , cnC)

onde nC é o número total de blocos da classe C, lC é o rótulo dos blocos de C, bi é o io

bloco da classe C, e ci é sua porção de texto.

Para ilustrar, considere as duas páginas apresentadas na Figura 1. Perceba que
cada página contém um menu em sua parte superior, que é composto por opções tais
como Home, World, US, Politics, e que é referenciado como bloco menu. Como estes
dois blocos estão em uma mesma posição em ambas as páginas, eles possuem o mesmo
caminho na árvore DOM, e por conseguinte o mesmo rótulo. Como consequência, eles
são parte de uma mesma classe de blocos. É possível notar também que blocos com
o mesmo rótulo tendem a possuir a mesma função dentro de suas respectivas páginas.
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Desta forma, as classes de blocos são usualmente compostas de blocos que pertencem
a páginas distintas de um Web site e que executam a mesma função dentro de suas
páginas. Vários exemplos de blocos que pertencem a mesma classes são mostrados na
Figura 1, onde cada página possui um bloco responsável por apresentar o título, um
bloco para apresentar o corpo de sua notícia, e um bloco para apresentar o resumo da
notícia.

Identificação dos Blocos e Classes de Blocos

Em nossa tese, apresentamos um método de segmentação automática que, baseado
nas definições apresentadas na seção anterior, produz como saída todos os blocos e
classes de blocos implicitamente presentes em um Web site. Nosso algoritmo procura
segmentar as páginas Web de acordo com a percepção dos usuários sobre como cada
página deveria ser segmentada, e sobre como os blocos deveriam ser agrupados em
classes.

A idéia de que uma página Web pode ser dividida em blocos de acordo
com as funções de cada segmento já foi apresentada em trabalhos anteriores.
Por exemplo, esta idéia motivou a criação do conceito de Pagelets, apresentada
em Bar-Yossef and Rajagopalan [2002], e o conceito de regiões coesas ou blocos, apre-
sentado por Cai et al. [2003]; Chakrabarti et al. [2008]; Kohlschütter and Nejdl [2008].
Entretanto, identificar a função de diferentes regiões de uma página Web é uma tarefa
difícil de ser realizada em uma abordagem inteiramente automática.

Até onde sabemos, todos os trabalhos anteriores sobre segmentação propuseram
métodos capazes de identificar os blocos de uma página por vez, sem considerar o
conteúdo de outras páginas de um mesmo Web site. Entretanto, considerando que
muitas páginas de um mesmo Web site compartilham uma estrutura e aparência co-
mum, trabalhamos nesta tese com a hipótese de que podemos obter uma segmentação
mais acurada se considerarmos todas as páginas de um mesmo Web site durante o
processo de segmentação destas páginas em blocos. A partir desta idéia, apresentamos
um método automático que segmenta as páginas de acordo com propriedades de todo
o Web site, ao invés de considerar apenas a informação de uma única página por vez.
Além de segmentar as páginas Web, nossa abordagem de segmentação permite-nos
agrupar os blocos em classes de blocos, que são conjuntos de blocos que possuem uma
mesma função em um conjunto de páginas, e que possuem uma importante função nos
métodos de ranking baseados em blocos, que serão introduzidos na próxima sessão.

Além do algoritmo de segmentação automática, apresentamos também uma abor-
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dagem semi-automática para identificação dos blocos e classes de blocos. Esta abor-
dagem é uma alternativa viável para obter uma alta qualidade de segmentação e é usada
como uma base de referência para avaliar a qualidade dos segmentos encontrados pelo
método de segmentação automática.

Funções Block-Weight

Em sistemas de recuperação de informação para a Web, o conteúdo das páginas é
usualmente representado como um conjunto de termos derivados ou inferidos do texto
destas páginas. Cada termo é pesado para indicar sua importância dentro de cada
página, e a efetividade de qualquer sistema de busca está diretamente relacionada com
a acurácia destes pesos.

Neste contexto, a estrutura das páginas Web pode ser usada para variar os pesos
dos termos, visto que a ocorrência de um termo t em um bloco b pode ser levada
em consideração no momento do cálculo do peso de t na página de b. Por exemplo,
para propósitos de ranking, a ocorrência de um termo em um bloco da seção principal
de uma página pode ser mais importante que uma ocorrência do mesmo termo no
menu desta página. Quantificamos esta importância através de métricas denominadas
block-weight, que calcula o peso da ocorrência de um termo em um bloco, tal como
segue:

Definição 5. A função block-weight bw(t, b) é uma métrica quantitativa associada com
o par termo-bloco [t, b] que é usada para computar o peso global do termo t em relação
à página que contém o bloco b.

Para compor as funções block-weight bw(t, b), são introduzidas duas medidas es-
tatísticas básicas, o inverse class frequency e o spread, que serão explicadas a seguir.

Definição 6. Dado uma classe de blocos C = {b1, ..., bn(C)}, contendo n(C) elementos,
e um termo t que ocorre em ao menos um bloco de C, o Inverse Class Frequency de
um termo t em C é definido como

ICF (t, C) = log
n(C)
n(t, C)

,

onde n(t, C) é o número de blocos de C onde t ocorre.
Perceba que o ICF é similar ao conceito de IDF , mas considera cada classe

como uma “coleção de documentos” separada. Como o IDF , o ICF é uma forma de
se estimar a quantidade de informação que carrega a ocorrência de um dado termo em
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uma dada classe de blocos. Ele também pode ser visto como uma medida da capacidade
do termo de discriminar um bloco de outros blocos da mesma classe.

Definição 7. O Spread de um termo t em uma página Web ρ, Spread(t, ρ), é o número
de blocos em ρ que contém t, isto é:

Spread(t, ρ) =
∑
b∈ρ

ib, onde ib =

1 se t ∈ b

0 caso contrário

A intuição por trás desta medida é que, dado um termo t de uma página Web
ρ, quanto maior o número de blocos de ρ que contém o termo t, melhor o termo t

representa o conteúdo de sua página. Por exemplo, se o termo “Firefox” aparece na
maioria dos blocos de uma dada página, haverá uma grande chance de que esta página
esteja relacionada com o famoso browser. O Spread pode ser visto como uma frequência
estrutural de um termo, agindo como um versão estrutural do fator tf adotado nos
modelos BM25 [Robertson et al., 1995] e vetorial [Sparck Jones, 1972, 1973, 1979].

A seguir são apresentadas diferentes estratégias para se computar os fatores bw

usando as definições de ICF e Spread. Estas estratégias são agrupadas em três cat-
egorias: métodos focados em classes, que atribuem um único valor de bw para todos
os termos de uma classe de blocos; métodos focados em blocos, que atribuem um único
valor de bw para todos os termos de um bloco; e métodos focados em termos, que
permitem que os valores de bw variem para termos distintos de um mesmo bloco ou
classe.

Métodos Focados em Termos

Os métodos focados em termos usam os fatores ICF e Spread para calcular os pesos
bw. Adicionalmente, propomos um terceiro método focado em termos que combina
ambas as funções Spread e ICF . As fórmulas desses métodos são listadas abaixo:

bw1(t, b) = ICF (t, Cb)

bw2(t, b) = Spread(t, ρb)

bw3(t, b) = ICF (t, Cb),×Spread(t, ρb)

onde ρb e Cb são a página e a classe do bloco b, respectivamente.
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Métodos Focados em Blocos

A idéia dos métodos focados em blocos é computar um valor médio de bw para todos os
termos de um bloco, de forma a amenizar o impacto de anomalias que podem ocorrer
quando consideramos apenas um único termo durante o cálculo dos fatores bw. Por
exemplo, um termo t que ocorre no título de uma notícia é importante mesmo que ele
não seja mencionado no corpo da notícia. No entanto, a função Spread deste termo
poderia ser baixa, visto que o mesmo só ocorre no bloco título. Este efeito pode ser
evitado usando uma média da função Spread para todos os termos do bloco.

Os métodos focados em termos introduzidos na seção anterior são usados para
criar métodos focados em blocos equivalentes, tal como mostrado na Tabela 2.

bw4(t, b) =


∑

t′∈b ICF (t′,Cb)
|b| if t ∈ b

0 otherwise

bw5(t, b) =


∑

t′∈b Spread(t
′,ρb)

|b| if t ∈ b

0 otherwise

bw6(t, b) =


∑

t′∈b Spread(t
′,ρb)×ICF (t′,Cb)
|b| if t ∈ b

0 otherwise

onde t′ é um termo e |b| é o número de termos distintos do bloco b.

Métodos Focados em Classes

Também foi experimentado o uso da média de valores de bw de todos os termos em uma
classe de blocos, ao invés da média dos valores encontrados para blocos individuais.
Desta forma, neste terceiro tipo de método para se computar os fatores bw, é atribuído
um único peso para todos os termos de uma classe de blocos. Os métodos focados em
classes propostos neste trabalho são bw7, bw8 e bw9, tal como mostrado na Tabela 3.

bw7(t, b) =


∑

t′∈v(Cb)
ICF (t′,Cb)

|v(Cb)|
if t ∈ b

0 otherwise

bw8(t, b) =


∑

b′∈Cb

∑
t′∈b′ Spread(t′,ρb′ )

|b′|
|Cb|

if t ∈ b

0 otherwise

bw9(t, b) = bw7(t, b)× bw8(t, b)
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onde b′ é um bloco, |Cb| é a quantidade de blocos da classe Cb, v(Cb) é o conjunto de
termos distintos que ocorrem em todos os blocos da classe Cb e |v(Cb)| é a sua norma.

Ordenação de Respostas Usando as Funções Block-Weight

Para incorporar a função bw(t, b) em métodos de ordenação de documentos, usamos
uma idéia previamente proposta por Robertson et al. [2004], que apresenta uma adap-
tação do modelo de recuperação de informação BM25 para lidar com documentos
com múltiplos campos. O BM25 usa a função tf(t, ρ) (frequência do termo) como
um dos fatores para o cálculo do quão bem um dado termo t descreve ou repre-
senta o conteúdo do documento (ou página) ρ (caracterização intra-documento do
termo) [Baeza-Yates and Ribeiro-Neto, 1999]. O tf de um termo t em um documento
ρ é computado como uma função do número de ocorrências de t em ρ, usualmente
atribuindo igual importância para cada ocorrência. Baseando-nos na proposta de
Robertson et al. [2004], argumentamos que o cálculo do tf de um termo t em um
documento ρ deveria levar em consideração as posições onde t ocorre em ρ, isto é, os
blocos de ρ onde ele ocorre, pesando cada ocorrência de t em cada bloco b ∈ ρ por
bw(t, b). Baseados nesta abordagem, propomos uma alternativa à forma tradicional de
cálculo do fator tf , tf ′(t, ρ), que pode ser calculado por:

tf ′(t, ρ) =
∑
b∈ρ

tf(t, b)× bw(t, b) (1)

onde tf(t, b) é a frequência do termo dentro do bloco b.
Adicionalmente, são propostas simples variantes de dois outros fatores da fórmula

do BM25. Esses fatores são o parâmetro k1, e o número de documentos onde um dado
termo t ocorre, denominado nt. Conforme mostraremos em detalhes em nossa tese,
essas variantes podem ser acoplados diretamente à fórmula do modelo BM25 original.

Resultados Experimentais

Para confirmar a eficácia de nossos métodos, realizamos experimentos de busca em
4 coleções de páginas Web denominadas IG, CNN, CNET, e BLOGs, e avaliamos o
impacto de nossos métodos na qualidade dos resultados.

Nossos métodos baseados em blocos foram comparados com 3 diferentes métodos
de recuperação de informação da literatura. O primeiro método usa o BM25 com nen-
huma informação de bloco, isto é, considera que as coleções de Web sites são formadas
por documentos planos tradicionais. Para o segundo método, removemos manualmente

xxviii



todos os templates das páginas das coleções de Web sites, e então aplicamos a função
de ordenação BM25 no conteúdo restante. Finalmente, o terceiro método foi proposto
por Cai et al. [2004b], e é baseado na junção de dois tipos de ordenação de respostas:
1) uma ordenação baseada em documentos, que usa o BM25 na coleção de documentos;
e 2) uma ordenação baseada em blocos, que é a ordenação dada pelo BM25 para o
melhor bloco de cada documento (ou página).

No entanto, concluímos através de experimentos que os três métodos citados
acima apresentam resultados similares e que, no contexto de nossas quatro coleções de
documentos, são basicamente equivalentes. Desta forma, neste resumo nos limitaremos
a mostrar os resultados de comparação entre nossos métodos baseados em blocos, e o
método BM25 tradicional.

Para comparar os resultados, adotamos duas métricas de avaliação. A primeira
métrica é chamada mean average precision (MAP), e a segunda é chamada precision
at 10 (P@10), que mede a quantidade de documentos relevantes nos 10 primeiros doc-
umentos retornados pelo método a ser avaliado [Baeza-Yates and Ribeiro-Neto, 1999].

A Tabela 4 apresenta os resultados obtidos quando modificamos o modelo BM25
para o uso das funções bw3, bw6 e bw9, e aplicamos esse modelo modificado para nossas
4 coleções de documentos segmentadas pelos métodos de segmentação automática e
semi-automática. A primeira observação importante é que os três fatores bw consider-
ados obtiveram resultados superiores à abordagem tradicional, em ambos os métodos
de segmentação. Nossos métodos de ranking baseados em blocos obtiveram melho-
rias na maioria dos casos, o que sugere que os fatores bw introduziram informação
complementar sobre a importância dos termos.

Foi observado que a performance do método bw3 é em geral ligeiramente pior
quando comparado com os fatores baseados em blocos e em classes, para ambas as
coleções. Quando comparamos os fatores baseados em blocos com os fatores baseados
em classes, observamos que eles obtiveram resultados similares para ambas abordagens
de segmentação.

Esses resultados sugerem que o modelo BM25 adaptado ao uso de dois de nos-
sos bw fatores, bw6 and bw9, foram consistentemente superior que o BM25 tradicional,
enquanto os demais métodos de ranking não proporcionaram melhorias evidentes. En-
quanto nossos experimentos não permitiram concluir qual método é melhor (bw6 ou
bw9), eles mostraram que ambas as estratégias de cálculo dos fatores bw introduzem
informação complementar sobre a ocorrência dos termos, e que melhorias significantes
podem ser obtidas quando consideramos a estrutura dos documentos em modelos de
recuperação de informação.
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IG CNN
método P@10 MAP P@10 MAP
BM25 0.594 0.621 0.612 0.691

semi- bw9 0.667(12.3%) 0.749(20.6%) 0.642(04.9%) 0.786(13.7%)
automático bw6 0.653(09.9%) 0.730(17.5%) 0.648(05.9%) 0.800(15.7%)

bw3 0.655(10.3%) 0.698(12.4%) 0.638(04.2%) 0.769(10.0%)
automático bw9 0.659(10.9%) 0.733(18.0%) 0.630(02.9%) 0.779(12.7%)

bw6 0.655(10.2%) 0.715(15.1%) 0.636(03.9%) 0.790(14.3%)
bw3 0.638 (07.4%) 0.680(09.5%) 0.628(02.6%) 0.759(09.8%)

BLOGs CNET
método P@10 MAP P@10 MAP
BM25 0.584 0.644 0.476 0.458

semi- bw9 0.604 (03.4%) 0.678(05.3%) 0.552(16.0%) 0.498(08.7%)
automático bw6 0.610 (04.4%) 0.675(04.8%) 0.558(17.2%) 0.513(12.0%)

bw3 0.588 (00.7%) 0.628 (-2.5%) 0.545(14.5%) 0.482 (05.2%)
automático bw9 0.602 (03.4%) 0.677(05.1%) 0.512(07.5%) 0.470 (02.6%)

bw6 0.604 (04.4%) 0.671(04.2%) 0.527(10.8%) 0.445 (-2.8%)
bw3 0.592 (00.7%) 0.632 (-1.8%) 0.514(08.0%) 0.459 (00.2%)

Tabela 4: Resultados obtidos quando comparamos três alternativas para se computar os
fatores bw (bw9, bw6, e bw3) com o modelo BM25 tradicional. As porcentagens indicam o

ganho médio em precisão e os resultados em negrito são estatisticamente significantes.
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Chapter 1

Introduction

Most information retrieval techniques for Web considers Web pages as indivisible and
monolithic units, i.e, they treat different portions in a Web page equally. However,
recent works have demonstrated that Web pages can be sub-divided into different
segments (or blocks), usually with different types of contents and purposes. This
work concerns the use of such block structure to improve the retrieval effectiveness
of information retrieval systems for Web collections. In this chapter, we develop and
discuss the goals and contributions of our thesis.

1.1 Information Retrieval

Information Retrieval (IR) focuses on finding information from some source of material
(usually documents) stored digitally. An information retrieval process begins when a
user enters a query into an IR system. Queries are formal statements of information
needs addressed to an IR system by the user. Given a user’s query, the goal of an IR
system is to retrieve the documents that are relevant to the user, while retrieving as
few non-relevant document as possible. Usually, this task consists of retrieving a set
of documents and ranking them according to the likeliness that they will satisfy the
user’s query.

The most popular models for ranking documents of a collection (includ-
ing Web document collections) are the vector space model [Salton and Lesk,
1968; Salton, 1971], the probabilistic relevance models [Maron and Kuhns, 1960;
Robertson and Jones, 1988; Robertson and Walker, 1994], and the statistical language
models [Ponte and Croft, 1998; Berger and Lafferty, 1999; Lafferty and Zhai, 2001].
Such models use different methods of representing queries and documents, different
schemes of term weighting, and different formulas for computing the ranking.

1
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Designing effective schemes for term weighting is a critical step in an information
retrieval system. However, finding good term weighting schemes continues to pose
a significant challenge. In this work, we propose new term weighting schemas for
Web document collections that leads to improve ranking by considering the structural
content of Web pages.

The best known term weighting schemes use weights that are a function of the
number of times the index term occurs in a document and the number of documents
in which the index term occurs. Such term weighting strategies are called tf × idf

(term frequency times inverse document frequency) schemes [Salton and McGill, 1986;
Baeza-Yates and Ribeiro-Neto, 1999]. A modern variation of these strategies is the
BM25 weighting scheme used by the Okapi system [Robertson and Walker, 1994].

Most of existing term weighting schemes (including tf × idf and BM25 weighting
schemes), to this date, consider documents as indivisible units and treat their different
portions equally. Although this approach of term weighting is appropriate for retrieval
on plain document collections, it might be too simplistic on Web document collections.
The Web pages are commonly composed by different segments (or blocks), usually with
different types of contents and purposes (see Figure 1.1). Thus, in this work we argue
that weighting schemes for information retrieval models for Web document collections
should take into account the block structure of Web pages, in order to improve their
retrieval effectiveness.

1.2 Using Structural Information to Improve

Search in Web Collections

Unlike plain text documents, Web pages are commonly composed of distinct segments
such as service channels, decoration skins, navigation bars, copyright and privacy an-
nouncements, all of which might have contents quite distinct from that in the main seg-
ment of the Web pages. These different segments, commonly referred to in the literature
as blocks, can be automatically identified in Web pages [Bar-Yossef and Rajagopalan,
2002; Cai et al., 2003; Hattori et al., 2007; Lin and Ho, 2002] and can be used to im-
prove information retrieval tasks such as ranking [Ahnizeret et al., 2004; Cai et al.,
2004b; Fernandes et al., 2007; Song et al., 2004a], Web link analysis [Cai et al., 2004a],
and Web mining [Cao et al., 2008; Kang and Choi, 2007; Li et al., 2007]. To improve
ranking, for instance, block information can be used to vary term weights according
to their occurrences inside blocks (instead of inside pages), which allows quantifying
differently the importance of the distinct occurrences of a term within a same Web
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Figure 1.1. A news page and its blocks

page. For instance, the occurrence of a term in the title of the Web page depicted on
Figure 1.1 is expected to be more important for ranking purposes than an occurrence
of that same term in a menu of that page.

In this thesis, we investigate how to improve retrieval results by exploring the
block structure of Web pages. For that, we propose (i) a new approach for representing
the content of Web sites in information retrieval systems that takes into account the
internal structure of their Web pages and the relationship of the structural components
found on the pages; (ii) a method to automatically identify the internal structure
of the Web pages, according to the approach of representing the Web sites contents
proposed in this thesis; and (iii) a set of distinct block-based term weighting schemes
divided into three types: term-level weighting, block-level weighting, and class-level
weighting methods. These schemes have the advantage of not requiring a learning
process nor any type of manual intervention to compute the ranking, as required by
previous works [Ahnizeret et al., 2004; Song et al., 2004a].

Using four Web site collections, we have run experiments to compare our block-
based term weighting schemes with (i) two other block-based retrieval models proposed
in the literature, one of them based on templates removal and the other one based on



4 Chapter 1. Introduction

a block ranking function and (ii) with a traditional ranking function that does not use
block information. The results indicate that our block-based weighting schemes lead to
improved results with regard to all baselines. For IG, one of the Web test collections
we used, an improvement from 0.62 to 0.75 in Mean Average Precision (MAP) scores
was achieved relatively to a ranking that does not take blocks into account. For CNN ,
another Web site collection we used, the improvements in MAP figures were from 0.69
to 0.80.

Further, since our block-based weighting schemes are able to quantify how im-
portant is a given term occurrence for ranking purposes, they are also able to detect
the presence of terms in the pages that has no effect on retrieval results. By identifying
and removing these entries in advance, our block-based methods allow reducing the
size of the inverted index used for retrieval by over 27%, decreasing indexing storage
requirements and the cost of processing queries.

1.3 Related Work

Before computing block-based term weight values, it is necessary to identify blocks
occurring in a Web page collection. Identifying the logical blocks that compose the
Web pages of a site is by itself a research problem known as Web page segmentation,
which counts with some solutions proposed in the literature [Kohlschütter and Nejdl,
2008; Hattori et al., 2007; Cai et al., 2003; Bar-Yossef and Rajagopalan, 2002;
Chakrabarti et al., 2001] . One of most popular solutions in the literature, proposed
by Cai et al. [2003], aims at segmenting a page by simulating visual perceptions of the
users about the page, and is referred to as the Vision-based Page Segmentation algo-
rithm (VIPS). The VIPS algorithm works by identifying visual cues in Web pages that
can be used to detect blocks such as lines, blank areas, colors, pictures, fonts types, etc.
The VIPS algorithm requires an extra human effort, since it is necessary to manually
set parameters to each page to be segmented.

In Hattori et al. [2007] the segmentation method proposed is based on calculating
the distance between content elements within the HTML tag hierarchy, i.e., the number
and the depth of HTML tags in Web. Chakrabarti et al. [2008] also consider the prob-
lem of segmenting Web pages into visually and semantically cohesive pieces. This work
is based on Kleinberg and Tardos [2002], which propose approximation algorithms for
clustering problems based on weighted graphs. For the segmentation problem proposed
by Chakrabarti et al. [2008], the weights of edges of the graph capture the likelihoods
of two regions of the Web page be placed together or apart in the segmentation, and



1.3. Related Work 5

the clusters are the blocks occurring in the pages.
Kohlschütter and Nejdl [2008] examined the problem of Web page segmentation

from a textual perspective. The key assumption in their work is that the number of
tokens in a text fragment (or more precisely, its token density) is a valuable feature for
segmentation decisions. Based on this assumption, the authors presented a Block Fu-
sion algorithm for Web page segmentation using text density metrics. The Section 3.1.2
presents the Block Fusion algorithm in details.

As far as we know, all previous segmentation methods of the literature segment
each Web page based on its content only, not considering the content of other pages
present in the same Web site. However, since many pages belonging to a same Web
site share a common structure and look and feel, we hypothesize that we can achieve a
more accurate segmentation by taking all pages of a same Web site into account when
dividing them into blocks. Based on this idea, in this thesis we present a segmentation
approach which segment pages according to properties of the whole Web site, instead
of just information from a single page. Besides segmenting the Web pages, our segmen-
tation approach enables us to cluster blocks into block classes, that are set of blocks
that have a common role on a group of pages, and that play an important function in
the structure-based term weighting schemes proposed in this thesis.

In Cai et al. [2004b], the authors study the problem of improving search results in
the presence of segmented pages. They discuss a ranking strategy that considers blocks
as passages and uses previously proposed passage level ranking strategies [Callan, 1994]
to generate the results. Their work suggests two important conclusions: (i) block
segmentation produces results that are superior to those produced by standard passage
segmentation algorithm based on paragraphs and fixed size windows, and (ii) the best
ranking was obtained by combining a similarity score based on whole page with a
similarity score based on blocks. Given this compelling result, we adopted this ranking
strategy (which is better detailed on Section 4.1.1) as one of the baselines in our
experiments.

In Song et al. [2004a] block division is used to compute an importance rank for
the blocks found in a page, using a learning approach. Spatial features such as the
position and size of blocks and content features such as the number of images and links
on each block are extracted from each block. Then, two learning algorithms, neural
network and SVM, are used to rank the blocks according to their importance. A very
similar learning approach is presented in Liu et al. [2006], with the difference that it
considers the influence of the variation of features across different pages. The methods
we here propose assign an importance weight to each block, instead of just ranking
them, and have the advantage of not requiring a training phase.
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Trotman [2005] presented a learning approach to estimate block importance val-
ues in collections of documents with the same structure. In this work, each block of
this shared structure is represented as a chromosome in a GA learning simulation.
Selective pressure is then applied to maximize mean average precision. The authors
conducted experiments with the TREC [Harman, 1993] Wall Street Journal (WSJ)
collection, and the results demonstrate an about 5% improvement in mean average
precision. The methods presented here can be applied in any Web site collection, and
not only on collections of pages with similar structure.

Experiments presented by us in Ahnizeret et al. [2004] indicate that manual as-
signment of block weights may result in an improvement on the quality of search results,
since these weights can be used to derive effective block-based term weighting methods.
However, the task of manually assigning such weights requires specialized knowledge
about the ranking function adopted in the search system, as well as a complex and
expensive human effort to evaluate the relative importance of all regions found in the
target Web site. For Web collections containing a large number of Web pages spread
across multiple Web sites, which is a common scenario, this manual assignment of block
weights may be unfeasible in practice.

To avoid some of these practical problems, we proposed in Fernandes et al. [2007]
a method for automatically computing block weight factors, as well as a block-based
ranking method based on these weights. These methods use statistical information
available in the Web page collection to compute block weights and do no require a learn-
ing process nor intensive manual intervention, as in Ahnizeret et al. [2004]; Song et al.
[2004a]. However, our method in Fernandes et al. [2007] requires the Web pages to
be clustered into page classes, i.e., sets of pages that have a common block structure,
which does require a limited amount of human effort. Even if limited, the need of
human intervention might preclude the application of our technique to very large Web
page collections.

In this thesis, we present an improvement of the method presented
by Fernandes et al. [2007] that removes the need to cluster the Web pages. Fur-
ther, we introduce eight variants of the block-based term weighting scheme proposed
in Fernandes et al. [2007] and run a more extensive set of experiments. Our results
indicate that our enhanced block-weighting methods lead to superior results when
compared to (i) a method that uses no block information, (ii) a method based on
templates removal, and (iii) another block-based ranking method in the literature.
Further, we present a new completely automatic Web page segmentation algorithm
that was designed to fulfill the requirements of the block-weighting methods presented
in this work.
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Several authors have proposed methods for using the structure of Web pages for
identifying noisy content. For instance, Bar-Yossef and Rajagopalan [2002] proposed a
mechanism for segmenting Web pages into blocks, termed as Pagelets, and classifying
them into useful or noisy content. In their work, the authors considered that any
information present on a page template is noisy and should be disregarded. Template
removal has also proposed in other works as Vieira et al. [2006]; Yi et al. [2003].

The experimental results in these works [Bar-Yossef and Rajagopalan, 2002;
Vieira et al., 2006; Yi et al., 2003] suggest that template removal methods can be used
to improve results, an observation that is not confirmed by our experimental results in
this work. Since the removal of templates can be considered as an structural informa-
tion, we included a search system that does not index template contents as one of the
baselines in our experiments.

1.4 Thesis Contributions

This thesis focuses in the use of structural organization of Web pages to improve the
retrieval effectiveness of information retrieval systems for Web sites. Thus, this work
aims to provide answers to the following research questions:

• How to identify the structural organization of pages in a Web site?

• How to use such a structural organization to improve ranking results when search-
ing for information on Web collections?

To answer the first question, we propose a new approach for representing the
contents of the pages in a Web site, and a new method for detecting internal structure
of Web pages. To answer the second question, we propose new block-based schemes
for computing the weight of the index terms in each Web page of a collection. These
weights are computed by analyzing the influence that each occurrence of a term in a
page must have about the overall weight of the term in that page.

At last, the major contributions of this thesis are, therefore:

• A new approach for representing Web sites in information retrieval systems based
on the internal structure of their Web pages. This new model of representing the
pages of a Web site captures important informations about how the content is
organized within the site, and is a key piece of our work (Chapter 2).
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• A new automatic segmentation algorithm which, based on our approach of rep-
resenting Web sites contents, produces as output all the blocks and block classes
implicitly present in a Web site (Chapter 3).

• New block-based weighting schemes designed to search on Web collections, that
aim at to improve retrieval tasks by estimating terms weights according to the
location of their occurrences within the pages (Chapter 5).

• An adaptation of the BM25 ranking formula based on the work of Robertson et al.
[2004], that adjusts the BM25 to the use of our block-based weighting schemes
(Chapter 6).

1.5 Publications

The following is a list of publications for which the author has been either a primary
author or a co-author, and which are related to, or have influenced, the work in this
thesis.

1. K. Ahnizeret, D. Fernandes, J.M.B. Cavalcanti, E.S. de Moura, and A. Silva
"Information retrieval aware web site modelling and generation", Proceedings
of the 23th Internacional Conference on Conceptual Modeling, Shangai, China,
2004.

This paper proposes an approach to Web site modelling and generation of Enter-
prise search engines, combining application modelling and information retrieval
techniques. Our assumption is that giving search engines access to the informa-
tion provided by conceptual representations (or block segmentation) of the Web
site improves their performance and accuracy. We demonstrate this proposal by
describing a Web site modelling language that represent both traditional mod-
elling features and information retrieval aspects (such as block importance), as
well as presenting experiments to evaluate the resulting intrasite search engine
generated by our method.

2. D. Fernandes, E.S. de Moura, B. Ribeiro-Neto, A.S. da Silva, Marcos André
Gonçalves. "Computing Block Importance for Searching on Web Sites", Pro-
ceedings of the 16th International Conference on Information and Knowledge
Management, Lisbon, Portugal, 2007. ACM Press.

In this paper we consider the problem of using the block structure of a Web
page to improve ranking results when searching for information on Web sites.
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Given the block structure of the Web pages as input, we propose a method for
computing the importance of each block (in the form of block weights) in a Web
collection. The experiments presented in this paper show that our method may
allow a significant improvement in the quality of search results.

3. Figueiredo Flavio , Edleno Moura, Jussara Almeida, Marcos André Gonçalves,
Belém Fabiano, Henrique Pinto, David Fernandes, Marco Cristo. "Evidence of
Quality of Textual Features on the Web 2.0", Proceedings of the 18th Inter-
national ACM Conference on Information and Knowledge Management, Hong
Kong, 2009. ACM Press.

This work aims at assessing the relative usefulness for IR tasks of different tex-
tual features available on the Web 2.0. Four features (title, tags, description
and comments) were analyzed in four different popular applications (CiteULike,
Last.FM, Yahoo! Video, and Youtube). Each feature was evaluated according its
usage, amount of information, content diversity, descriptive and discriminative
power.

4. Flavio Figueiredo, Fabiano Belém, Henrique Pinto, Jussara Almeida, Marcos
André Gonçalves, David Fernandes, Virgilio Almeida. "Evidências de Qualidade
de Atributos Textuais na Web 2.0" Proceedings of the Simpósio Brasileiro de
Sistemas Multimédia e Web (Webmedia), Fortaleza, Brazil, 2009.

Another investigation on the quality of the different textual features available on
the Web 2.0. The three aspects evaluated are: usage, descriptive and discrimi-
native power of each feature.

1.6 Thesis Outline

The text of this thesis is organized as follows. Chapter 2 introduces a new approach
for representing Web Sites contents, based on the internal structure of their pages.
Chapter 3 presents the automatic segmentation algorithm which, based on the repre-
senting definitions proposed on Chapter 2, produce as output all the blocks and classes
of blocks implicitly present in a Web site. Chapter 4 gives some background on infor-
mation retrieval models, and describe some techniques of the literature of using block
structure in retrieval tasks. Chapter 5 presents our block-based weighting functions.
Chapter 6 discusses how we use these block-weight functions to compute a raking,
the evaluation metrics we used during experimentation, and discusses the performance
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evaluation we conducted. Finally, Chapter 7 presents some conclusions and directions
for future work.



Chapter 2

Representing Web Sites as Block
Components

When users observe a page through a Web browser, they can distinguish different parts
in the page such as navigation bars, decoration skins, interaction forms, copyrights,
main section, each one with a particular role within the pages. This suggests that
Web pages can be divided into portions, that are frequently referred to as blocks.
Identifying this logical elements of Web pages is a research problem known as Web
page segmentation.

This Chapter introduces a new approach for representing Web Sites contents
based on the block structure of their pages. This approach is able to capture important
information about how the content is organized within the site, and is a key piece of
our work. Further, this Chapter presents some basic definitions which are useful for
better characterizing the problem addressed here and for supporting the explanation
of our work.

2.1 The DOM Tree Representation

Each Web page contains a hierarchical representation called DOM (an acronym to
Document Object Model) tree, that defines the logical structure and the layout of the
page. Figure 2.1 depicts a fragment of HTML code and its corresponding DOM tree.
The DOM tree of an HTML document contains objects called element nodes or tags
(such as <body> and <p>). Each tag has a name property that specifies the function
of the object within the page, and a list of attributes that defines the behavior of the
function performed by the tag. To exemplify, the name and the list of attributes of the
most-left object of the DOM tree depicted on Figure 2.1 are div and {align=right,

11
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class=c1}, respectively. As depicted in Figure 2.1, each tag can have a textual content
assigned to it. Textual content do not constitute new nodes of DOM structure.

Figure 2.1. A DOM tree example (lower level tags are omitted)

2.2 Representing Web Sites Contents

Unlike plain text documents, Web pages usually encompass multiple regions such as
navigation bars, decoration stuffs, copyrights, advertisements and contact information.
Each of these produce a visually cohesive and continuous region on the browser window,
play a particular role within the page, and are generically referred to as blocks. To
characterize the division of Web pages into blocks in formal terms, we introduce the
following definitions.

Definition 1. A block b is a self-contained logical region within a Web page that (i)
is not nested within any other block and (ii) is represented by a pair (l, c), where l is
the label of the block, represented as a string, and c is the portion of text of the block.
That is,

b = (l, c)

It follows that a Web page might be divided into a set of non-overlapping blocks, subject
to the interpretation of a human analyst or to the behavior of the segmentation method
adopted. To represent the label l we use the root-to-block path in the Web page DOM
tree (see Figure 2.2).

Definition 2. We represent each Web page ρn as a finite set of (non-overlapping)
logical blocks ρn = {b1, ..., bk}, with k varying according to the page structure.
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Figure 2.2. The label of a block in a Web page is represented as the root-to-block
path in the page DOM tree.

The definition of blocks we adopt here allows several types of partitions for a given
Web page, and even the DOM tree of the page may be considered as a partition itself,
although with a very high level of granularity. Since our block definition admit that
any arbitrary subtree of a DOM structure be assigned as a block, the decision of how to
divide a page into blocks should be done by the segmentation algorithm. In this work,
we adopt the criterium that the division of a Web page into a set of non-overlapping
blocks must be performed according to the perception of users about the best logical
division of the page.

Notice that, according our block definition, if a node of a DOM tree belongs to a
particular block, then all descendants of that node also belong to that particular block.
Entire or partial overlap between blocks in the DOM tree is not allowed. Figure 2.3
depicts the DOM tree of a very simple Web page, and a set of possible blocks of the
page.

Block 

html

body

div span div

div

width=20

height=200

bgcolor=white

bgcolor=red

div

width=160

Block 

Block 

Block Block 

DOM tree

Figure 2.3. The DOM tree of a very simple Web page, and a set of possible
blocks found in the page.
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Definition 3. A Web site S is represented here as a set of Web pages S = {ρ1, ..., ρm},
each of them composed of a set of blocks.

Further, blocks of distinct pages can be clustered into classes as follows:

Definition 4. A block class C is a set of blocks that belong to distinct pages of a given
Web site and that share a same label, i.e.,

C = {b1, b2, ..., bnC}b1 = (lC , c1)

b2 = (lC , c2)
...

bnC = (lC , cnC)

where nC is the total number of blocks in class C, lC is the common label, bi is the ith

block in class C, and ci is its corresponding portion of text.

To illustrate, consider the two Web pages depicted on Figure 2.4. Notice that each page
contains a menu at the top composed of options such as Home, World, US, Politics,
which we refer to as menu blocks. Since these menu blocks are in the same position
in both pages, they have a common root-to-block path and thus, a same label. As a
consequence, they are part of a same block class. We also notice that blocks with the
same label tend to have the same role within their respective pages. That is, a block
class is usually composed of blocks that belong to distinct pages of a Web site and that
play the same role within the site. Various examples of blocks that belong to the same
class occur in the news pages depicted in Figure 2.4, such as blocks that represent the
title, the news body, the summary of the news in the page.

Figure 2.4. News pages ρ1 and ρ2, extracted from CNN Web site.
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Identifying Blocks and Block
Classes

This Chapter presents the automatic segmentation algorithm which, based on the
definitions presented on Chapter 2, produces as output all the blocks and block classes
implicitly present in a Web site. Our algorithm tries to segment Web pages close to
the perception of users about how each page should be divided into blocks and how
these blocks should be clustered into block classes.

The idea that a Web page can be divided into blocks according to their role was
presented in previous work. For instance, this idea motivates the concept of Pagelets
presented in Bar-Yossef and Rajagopalan [2002], and the concept of cohesive regions
or blocks in Cai et al. [2003]; Chakrabarti et al. [2008]; Kohlschütter and Nejdl [2008].
However, identifying the role of the different regions of a Web page is a hard task to
accomplish in a completely automatic way.

Besides considering the concept of blocks, the approach for representing Web Sites
contents we have presented in Chapter 2 also considers the concept of block classes,
that are set of blocks that have a common role on a group of pages. In order to identify
the block classes, our segmentation algorithm takes the whole set of pages into account
when dividing each Web page into blocks. For instance, let us consider a menu that
occurs in multiple pages of a given Web site. Since the menu has the same function
within each page it occurs, we can say that these occurrences form a block class. Thus,
the segmentation algorithm should assign equal labels for all menus of all pages where
it appears as a block.

Besides the automatic segmentation algorithm, we also present in this Chapter
a semi-automatic approach to identify blocks and block classes. This approach is a
viable alternative to obtain a high quality segmentation and is used in this thesis as a

15
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reference to evaluate the quality of the segments found by the automatic segmentation
method.

3.1 Traditional Web Page Segmentation

Approaches for automatic Web page segmentation consider a variety of methods and
exploit different characteristics of the pages [Chen et al., 2001; Kovacevic et al., 2002;
Cai et al., 2003]. In this Section, we describe two of the most prominent segmentation
methods of the literature. We start by presenting the VIPS method, that is one of
most popular solutions to this problem.

3.1.1 VIPS - Vision-based Page Segmentation Algorithm

In Cai et al. [2003], the authors propose the Vision-based Page Segmentation algorithm
(VIPS), in which various visual cues are taken into account to achieve an accurate
segmentation. When the users view a Web page through a Web browser, they get a 2D
presentation which provides many visual elements to help distinguish different parts
of the page, such as titles, menus, images, tables, etc [Yu et al., 2003]. VIPS tries to
segment a Web page by simulating these visual perceptions of the users.

For VIPS, a Web page Ω is defined by a triple Ω = (O,Φ, δ). O = {Ω1,Ω2, ...,ΩN}
is a finite set of (non-overlapping) blocks. Each block can be recursively viewed as a
sub-page associated with sub-structure induced from the whole page structure. Φ =

{ϕ1, ϕ2, ..., ϕN} is a finite set of visual separators, including horizontal separators and
vertical separators. δ is a function that indicates if two blocks in O share a separator
and therefore are adjacent (δ = O ×O → Φ ∪NULL).

Since each Ωi is a sub-page of the original page, its content structure is sim-
ilar to Ω. Recursively, VIPS defines Ωt

s = (Ot
s,Φ
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s = Ω1
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st, ...,Ω
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s∪NULL, where Ωt
s is the tth object in the block

level s.
VIPS associates a degree of Coherence (DoC) for each block Ωi, to indicate the

degree of granularity of the block. We can control the granularity obtained in a seg-
mentation process by pre-defining the Permitted Degree of Coherence (PDoC), which
works as a threshold of the DoC value.

From the root element in the DOM tree structure of a Web page (as discussed
in Section 2.1, the DOM tree is a hierarchical representation that provides a means to
describe the structure and layout of Web pages), VIPS performs the following iterative
process to identify the blocks of the page:
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Phase 1: Visual Block Extraction

VIPS starts by obtaining information about each tag in the DOM structure (such as
type of tag, position, color, font size, font weight, etc). Based in such an information,
VIPS starts extracting the most evident blocks contained in the current subtree. Ex-
amples of visual cues that are used by VIPS to identify the blocks in this phase (for a
more complete list, refer to Cai et al. [2003]):

• Tag cue: Tags such as <HR> are often used to separate different topics from visual
perspective.

• Color cue: VIPS divides a DOM node if its background color is different from one
of its children’s.

• Text cue: If most of the children of a DOM node are Text nodes, VIPS does not
divide it.

At the end of this phase, for each node that represents a visual block, its DoC
value is set according to its intra visual difference.

Phase 2: Visual Separator Detection

In this phase, VIPS finds the separators between the nodes found in phase 1. A
separator is represented by a pair (Ps, Pe), where Ps is the start pixel and Pe is the end
pixel. Each separator has a weight indicating its visibility. To calculate Ps, Pe, and
separator weight values, VIPS uses the renderer embedded in the Internet Explorer
Web browser1.

Phase 3: Content Structure Construction

After the actual separators are detected, the blocks on the same sides of all the separa-
tors are merged and represented as a node in the content structure. This process starts
from the separators with the highest weight, and it iterates until all separators with
minimum weights are met. The DoC of each node is defined. After that, each node is
checked whether it meets the granularity requirement. For every node that fails, VIPS
returns to phase 1 to further construct the sub content structure within the node. If
the DoC of all the nodes is smaller than PDoC, the iterative process is then stopped
and the vision-based content structure for the whole page is obtained.

1Internet Explorer is a trademark of Microsoft Corporation
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As VIPS uses the renderer embedded in the Internet Explorer Web browser to
segment pages, it is difficult to analyze the complexity of this algorithm. However, since
each page must be rendered (like in a browser) prior to analysis, the VIPS algorithm
is naturally too slow to be incorporated into ranking methods for big Web collections.

3.1.2 A Densitometric Approach to Web Page Segmentation

Kohlschütter and Nejdl [2008] examined the problem of identifying the block structure
of Web pages from a textual perspective. Numerous observations confirm that the
creation process of language (spoken or written) follows some probabilistic regulari-
ties and statistical laws, in particular Zipf’s law (the frequency of a term is inversely
proportional to its rank), Frumkina’s law (when dividing text into segments of almost
the same size, the frequency of a particular word follows a negative hypergeometric
distribution) and the Altmann’s law (the longer a linguistic construct, the smaller its
constituents, and vice versa). The authors argue that such low-level properties of text
constitute valuable features for segmentation decisions.

To illustrate, the authors define a Web page segmentation algorithm based on
Altmann’s findings [Antic et al., 2005] about the length dependence of neighbored sen-
tences within a text flow, and their corresponding findings on the text density. The
method proposed by the authors uses the number of tokens in a text fragment (or
more precisely, its token density) instead of DOM-structural information. For that,
they model a Web page as a series of text portions interleaved by a sequence of one or
more tags, regardless of their meaning. They call such a sequence a gap. This simplifies
the segmentation problem in distinguishing the gaps which separate two segments from
gaps which do not.

For conducting the segmentation, a text-based density measure ρ(s) was
introduced, derived from the pixel-based density of Computer Vision-based ap-
proaches [Stockman and Shapiro, 2001]. Basically, it counts the number of tokens
|Ts| in a particular text segment s divided by the number of lines |Ls| covered after
word-wrapping the text at a fixed column width wmax (the empirically estimated op-
timal value for English text is between 80 and 90 characters). Due to the side effect
of having an incompletely filled last line after wrapping, the latter is not taken into
consideration unless it is the only line in the segment:

T ′
s = {t|t ∈ Tl, lfirst(s) ≤ l < llast(s)} (3.1)
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ρ(s) =

{
|T ′

s|
|Ls|−1

, if |Ls| > 1

|Ts|, otherwise
(3.2)

where t is a term, l is a line identification, Tl is the set of terms in line l, lfirst(s)

and llast(s) are the identifications of the first and the last lines of the text segment s,
respectively.

The segmentation algorithm presented in Kohlschütter and Nejdl [2008] is based
on a merge strategy called Block-Fusion. Adjacent text fragments of similar text den-
sity (interpreted as “similar class”) are iteratively fused until the blocks’ densities (and
therefore the text classes) are distinctive enough. Using various settings, including a
rule-based approach, the authors show that the resulting block structure closely resem-
bles a manual segmentation, achieving a segmentation performance better than those
achieved by Chakrabarti et al. [2008], which is another recente work that approached
the Web page segmentation problem from a graph-theoretic perspective.

Unlike for the VIPS algorithm, computing Block-Fusion complexity is a trivial
task. Assuming there are N atomic blocks on a page, the cost per iteration is N − 1

comparisons and a maximum of N − 1 fusions per iteration occur. The total number
of operations for a maximum of k iterations until convergence therefore is:

(N − 1) + (N − 1− 1) + · · ·+ (N − k − 1) = O(N) (3.3)

3.1.3 Discussion

Figure 3.1. Traditional segmentation purpose: given a single Web page as input,
to divide the page in a set of logical blocks.

As far as we know, all previous segmentation methods of the literature (including
the methods proposed by Kohlschütter and Nejdl [2008] and Cai et al. [2003]) segment
each Web page based on its content only, not considering the content of other pages
present in the same Web site (see Figure 3.1). However, since many pages belonging
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to a same Web site share a common structure and look and feel, we hypothesize that
we can achieve a more accurate segmentation by taking all pages of a same Web site
into account when dividing them into blocks. Based on this idea, we here present a
segmentation approach which segment pages according to properties of the whole Web
site, instead of just information from a single page.

Besides segmenting the Web pages, our segmentation approach enables us to
cluster blocks into block classes, that are set of blocks that have a common role on
a group of pages, and that play an important function in the structure-based term
weighting schemes proposed in this thesis.

3.2 A New Approach for Web Page Segmentation

Algorithm 1 describes our automatic segmentation process, which tries to approximate
the perception of users about how each page should be divided into segments and
how these segments should be clustered into segment classes. It takes the set of pages
S found in the Web site as input and produces as output a set of segment classes.
Our segmentation algorithm is divided into three phases, that will be discussed in the
following sections.

3.2.1 Phase 1: Pre-processing Web Pages

The first phase of our algorithm takes as input the pages of the site. The DOM trees of

the pages are pre-processed to allow a representation that is closer to the final goal of

automatically dividing the pages into segments. Such representation aggregates further

information about each node and adjusts the DOM trees to be used in the second phase

of the algorithm. Figure 3.2 depicts a segment of HTML code and the pre-processed

version of its DOM tree. To simplify, only the leftmost node of the Figure depicts the

additional information introduced by the pre-processing phase. This example is used

in the following sections to show how each individual page is pre-processed (see Lines

1 to 4). The function PreProcess of our algorithm consists in four main operations

which are described on the following.
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Algorithm 1 Segment(S)
1: { Phase 1: Pre-processing Web Pages}
2: for each pi ∈ S {i is the number of a page} do
3: ρi ← preProcess(pi);
4: end for
5: { Phase 2: Constructing the SOMtree}
6: SOMtree ← ∅;
7: for each ρi ∈ S {i is the number of a page} do
8: for each node Nρ ∈ ρi traversed in pre-order do
9: if ∃Ns ∈ SOMtree | Ns.label = Nρ.label then

10: Ns.counter ← Ns.counter + 1;
11: if Nρ.f lag then
12: Append i in Ns.pageList;
13: end if
14: else
15: insertNewNode(SOMtree,Nρ,i);
16: end if
17: end for
18: end for
19: {Phase 3: Refining the SOMtree }
20: for each node Ns ∈ SOMtree traversed in pre-order do
21: if Ns is a internal node AND Ns.pageList 6= ∅ then
22: for each node ns ∈ descendants(Ns) traversed in pos-order do
23: if distance(Ns,ns)< α AND ns is a leaf node then
24: Append ns.pageList to Ns.pageList;
25: Remove ns from SOMtree;
26: end if
27: end for
28: end if
29: end for
30: for each node Ns ∈ SOMtree traversed in pos-order do
31: if ns.counter < β, ∀ns ∈ children(Ns) then
32: for each ns ∈ children(Ns) do
33: Remove ns from SOMtree;
34: Add ns.pageList to Ns.pageList;
35: Add ns.counter value to Ns.counter;
36: end for
37: end if
38: end for
39: {Each node Ns of SOMtree represents now a block class, where Ns.pageList contains the list of blocks of

Ns, and Ns.label contains the label of the blocks}
40: Return the SOMtree

Figure 3.2. An example of HTML code and the pre-processed version of its
DOM tree.
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Creating the node labels

Given a page ρ, its DOM tree is a structure that represents the hierarchical relation-

ship between the tags found in the page. Each tag is represented by a node N that

contains information about the name of the tag (N.name) and a list of its attributes

(N.attr), where each attribute is composed by a pair of name (N.attr.name) and value

(N.attr.value). We use this information to recursively define the label of each node N

(N.label) as the concatenation of its N.name, N.attr.name field values and the label

value of its parent in the DOM tree (considering it as empty when the node is the

root of the tree), separating each token in the concatenation by a slash. Whenever two

sibling nodes get equal values assigned by this strategy, we distinguish them by adding

a sequential number to their label values, so that each node has a unique label.

For instance, in the leftmost node of Figure 3.2, the value of name is “div”

and the only value of attribute name is “class”, thus attr.name={“class”}. Its label

is “1/div/class/body/html”. The value “1” is added because there is a second node

that would get the same label (see the rightmost div tag). This node is the identified

by “2/div/class/body/hmtl” in our representation. For the node labelled as “img” in

the Figure, the label is “img/body/html”.

Labelling tags associated to textual content

Although information about textual content is not included in the DOM tree, it is

useful for our segmentation algorithm. Thus, we add to each node N a boolean value

(N.flag), which indicates whether it has textual content assigned to it (N.flag = true)

or not(N.flag = false).

Dealing with nested content

Our segmentation algorithm assumes that only the leaf nodes of a DOM tree may have

textual content assigned to them. Thus, whenever we find internal nodes with textual
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content, we do not represent their children in our DOM tree representation, and thus

it becomes a leaf node. The textual content associated to the removed tags is then

associated to this new leaf node.

For instance, let us consider the second tag <div> in DOM tree of Figure 3.3.

Notice that such a tag contains a text directly attached to it (Last year in Orlando...).

Besides, inside this text there is a tag <a>, that also has a textual content (anchor

text). In this case, we say that the content of <a> is nested to the content of <div>.

Therefore, the tag <a> is removed from our DOM tree representation.

Anchor text

<div>
<div class=fullcontent>

Last year in Orlando...
<a href=link>
Iphone Killer

</a>
Rather, a Sprint spokeswoman
called it...

</div>
</div>

Nested content

Figure 3.3. Example of tag with nested content.

Dealing with recurrent regions

Another change we perform in the DOM trees is to remove sequences of tags disposed

in a recurrent (or regular) way. In the DOM tree of a typical Web page, it is very

common to find regions with a quite regular structure. Let us consider the Web page

depicted in Figure 3.4. Notice that the menu signalized by the arrow 2 is formed by

a set of links disposed in a vertical bar. As the set of tags that separate two adjacent

links is always the same, we can say these tags are disposed in a regular or recurrent

way.

Regions with recurrent structure commonly contain a list of items highly related

to each other such as list of links, products, or paragraphs (notice that the regions
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2 1

3

Figure 3.4. Recurrent structures: the regions pointed by the arrows contain sets
of items (be links or books) disposed in a regular or recurrent way.

signalized by the arrows 1 and 3 are also examples of regions with recurrent structures).

Thus, each list has a single purpose within their respective pages and then would

probably be seen by an user as a single segment. In this way, the DOM subtree of

these regions is represented by a single node in our DOM tree representation, in order

that all textual content of the subtree with recurrent structure become directly linked

to this node. This process is depicted in Figure 3.5.

Figure 3.5. Recurrent substructures of the DOM trees are not represented in
our DOM tree representation.
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Identifying recurrent structures in the DOM tree of Web pages is a procedure com-

monly adopted in information extraction research area [Liu et al., 2003; Mehta et al.,

2005; Álvarez et al., 2008], that regards the generation of wrappers able to extract par-

ticular information from Web documents. The motivation is that the information to be

extracted is often placed in a particular order, and repetitive patterns can be found in

these Web pages when multiple records aligned together. For instance, Chang and Lui

[2001] propose a linear algorithm based on Patricia trees [Frakes and Baeza-Yates, 1992]

to identify repeated patterns in a DOM tree given as input. Algur and Hiremath [2006]

also deals with the problem of identification and extraction, and propose a algorithm

based on the visual clue information to identify recurrent regions.

3.2.2 Phase 2: Constructing the SOMtree

The second phase of the Algorithm 1 creates an auxiliary hierarchical structure named

SOMtree (SOM is an acronym to Site Object Model) that summarizes the DOM trees

of all pages found in a Web site (see lines 5-18).

Each node Ns of the SOMtree contains the same information found in a node

Nρ of our DOM tree representation, but has two extra fields: Ns.counter, with the

number of pages where it occurs in the site (i.e., the number of pages that contain a

node Nρ such that Nρ.label = Ns.label); and Ns.pageList, with the list of pages where

it occurs associated to textual content in the site. Notice that the size of Ns.pageList

may be smaller than the value of Ns.counter, since only tags occurrences associated

with textual content are inserted in Ns.pageList. A single tag may occur in a page

associated to content and appear in a second page without any content.

As an example of a SOMtree construction, consider a very simple Web site S

formed by only two pages, ρ1 and ρ2, depicted in Figure 3.6. A SOMtree for this site

can be defined by merging ρ1 and ρ2 in a single structure. Phase 2 of our algorithm

starts by reading the page ρ1, through a pre-order traversal (lines 8-17). For each
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node Nρ of ρ1, the algorithm checks if the SOMtree already have a node Ns such that

Ns.label = Nρ.label (see line 9). However, since the SOMtree is created empty (see

line 6), all nodes Nρ found in this first page are merged into SOMtree through the

function insertNewNode, that is called on line 15, and detailed in Algorithm 2. The

insertion point is guided by the value of Nρ.label. Function insertNewNode assigns

the value of Nρ.label to Ns.label, and assigns 1 to Ns.counter. If Nρ has textual content

(Nρ.f lag = true), then function insertNewNode also adds the id of page ρ1 (value 1)

to the pageList of the node Ns.

Figure 3.6. An example of a SOMtree construction. The pageList values are
depicted below each node of this structure.

After that, the algorithm reads the second page of S, ρ2, to merge it into SOMtree.

In Figure 3.6, we can see that this page starts with the tag <html>. In the line 9, it

is verified that the SOMtree has already a node Ns with the label html, and thus

the algorithm only updates the information of Ns (lines 10-12): its counter value is



3.2. A New Approach for Web Page Segmentation 27

incremented.

In Figure 3.6, we see that our page representation of ρ1 and ρ2 diverge below the

nodes div on right. Below this node, the page ρ1 has the nodes h1 and pre, and the

page ρ2 has the nodes h1 and p. As the nodes h1 have the same path in the DOM tree

of both pages, then they result in a single node in the SOMtree. On the other hand, the

nodes pre (in ρ1) and p (in ρ2) occur only once in their respective pages. Thus, each

of them results in a different node in the SOMtree. The counter of these two nodes is

1 in both cases.

Algorithm 2 insertNewNode(SOMtree, Nρ, i)
1: Create a empty node Ns;
2: Ns.label = Nρ.label;
3: Ns.counter = 1;
4: if Nρ.f lag then
5: Ns.pageList = {i};
6: end if
7: Insert Ns in SOMtree according to Ns.label

The complexity of the second phase of our segmentation algorithm is O(|ρ| ×P ),

where P is the number of pages of the Web collection, and |ρ| is the number of nodes

(or tags) of the pages. In other words, the insertion of a page into SOMtree has a linear

complexity in the number of nodes of that page.

3.2.3 Phase 3: Refining the SOMtree

The third phase of our algorithm has the goal of removing nodes of the SOMtree that

would be considered by a human as internal parts of one or more segments of the

site. By removing these nodes, that we refer to as noisy nodes, the SOMtree become a

structure formed only by nodes that belong to the label (root-to-segment path) of one

or more segments, and each each leaf node of this new structure will refer to a distinct

segment class of the site.

To better illustrate what is a noisy node, lets consider that there is a table inside

the body of a news. This table would probably be considered by a human as part of
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a single block containing the body of the news. However, when including this page in

the SOMtree, the content of the table would create new nodes in the structure, and

thus would let the segmentation system to consider the table as a separate block.

When analyzing the results produced by Phase 2 of our segmentation algorithm

for several samples, we realized that in general, these noisy segments occur when a

given set of pages has a region with pure textual content, while another set of pages

has textual content mixed with other type of information in the same region, such as

a table containing text, or a different textual style. When humans see such variations,

they can easily realize that the region has the same function in both sets of pages.

However, the small structural differences introduced affect the representation of the

site in the SOMtree. The main goal of the third phase of our algorithm is to remove

the noisy nodes, what is done by applying two different heuristics.

The first heuristic performs a join of nested nodes that have textual content and

that occur close in the SOMtree. The distance adopted is the difference in the depth

between the two nested nodes analyzed. We noticed that as this distance increases,

also increases the chance that nodes represent different block classes of the site. On the

other hand, when this distance is small, it is mostly due to small variations in pages,

and thus the nodes probably represent the same block class.

The ideal value for this distance, represented by the threshold α in Algorithm 1,

can be empirically set through experiments. An alternative to avoid the necessity of

such threshold is to use a clustering algorithm to group the pages of the site according

to their templates [Vieira et al., 2009; Crescenzi et al., 2005, 2003]. After clustering

the pages, we can run the algorithm 1 for each cluster. This procedure would avoid the

presence of pages with large differences in their structure as input to the segmentation

algorithm, and then would allow all nested content to be joined, without a risk of joining

blocks of pages with distinct structure. On the other hand, the use of clustering would

make the segmentation process more expensive and the results we obtained by using

our heuristic were good enough for avoiding such extra computational cost.
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As an example, consider the SOMtree segment depicted in Figure 3.7(a). Notice

that this segment contains two nodes, div and p, and that the p node is descendant of

the div node. As one can see, there is a small variation in the structure in this region

of the pages, since a set of pages contain textual content connected to the first node

(div), and another set of pages contain textual content associated to the second node

p.

p

80

...

20

#20

...

div

80

...

#80

...

#60

...

div

a b

Figure 3.7. (a) A SOMtree segment example and (b) its pruned version, con-
sidering a α threshold equal to 6. Notice that, instead of presenting the list of
documents in each leaf element node, this figure presents only the number of
documents in each list.

Line 23 of the algorithm 1 verifies whether the distance between these two nodes

is smaller than the threshold α or not. If it is smaller, then the pageList of the

descendant node is appended to the ancestor, and the descendant node is deleted

from the SOMtree(lines 24-25). On the other side, if this distance is greater than the

threshold α, then we assume that these nodes refer to distinct segment classes. In

our experiments, we empirically set the value 6 for this threshold based on training

experiments. Considering this value for the threshold α, the node p depicted in Figure

3.7(a) must be pruned during the refining process, and its pageList merged to the

pageList of the node div. The result of this process is depicted in Figure 3.7(b).

Notice that, although the join can fail in some cases, it does not cause a significant

change in the final result of the method, since if we set threshold α too high, the only

change is that a few blocks with different classes may be joined in a single class. On the

other hand, if we set it too low, some small differences in the structure of pages may
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cause the split of blocks considered by humans as single blocks. While these changes

may contribute to result in a set of block classes different from the ones produced by

humans, the impact of these changes for ranking purposes is expected to be small for

Web sites with regular structure, since only a few pages would have a few changes in

our proposed term weighting scheme.

To obtain the complexity of this heuristic, consider that the pos-order transversal

performed on line 22 is limited by the descendentes of the node Ns whose distance to

Ns is at most α (see line 23). Considering that each node of a SOMtree can have at

most k children, the maximum number of steps of each transversal performed on line

22 is:

1 + k + k2 + k3 + ...+ kα =
α∑

i=0

ki =
1− kα+1

1− k

That is a geometric serie. However, since k tend to be very small when compared

to the number of nodes of the SOMtree, we can consider it as a constant value. In

this case, the number of steps performed by each transversal of the line 22 is actually

O(1). Thus, the complexity of the first heuristic is defined by the complexity of the

transversal performed on line 20, that is linear on the number of nodes of the SOMtree.

The second heuristic joins all the children of a node N to it whenever all of them

have counter value smaller than a threshold β (lines 31-37). In our experiments, the

value of β was empirically set to eight, as described in Section 6.2.2. This parameter is

related to the minimum quantity of elements in a block class in order to allow safe use

of our block-based term weighting methods. To illustrate, consider the node div and

p of the SOMtree segment depicted in Figure 3.8(a). Assuming that the counter value

of its children (nodes pre and p) are lower than the value of the threshold β, then such

nodes would be pruned during the refining process, and their pageList merged to the

pageList of the node div. The result of this process is depicted in Figure3.8(b).

Notice that the children of a node N can be joined to their parent only when all
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div

12

...

#12

...

a b

div

p

12

...

6

#6

...

pre

6

#6

...

Figure 3.8. (a) A SOMtree segment example and (b) its pruned version, con-
sidering a β threshold equal to 8.

of them have counter value smaller than the threshold β. The purpose of this rule is to

avoid the generation, during this stage of the refining process, of new nested nodes with

textual content. Thus, even after this second phase of the refining process, some nodes

might remain with counter value smaller than the threshold β. To illustrate, consider

the SOMtree segment depicted on Figure 3.9). Considering a β threshold equal to 8,

the nodes pre and p can not be pruned, since the count value of the node pre is bigger

than the threshold.

div

p

80

...

6

#6

...

pre

80

#80

...

Figure 3.9. A SOMtree segment example, where the node p remains with the
counter value smaller than the threshold β after the refining process.

Since the transversal of the line 30 is performed on all nodes of the SOMtree,

then this second heuristic has also a linear complexity - O(NSOM), where NSOM is, as

before, the total number of nodes of the SOMtree.

The result of the algorithm after the refining is a set of block classes that are

described by the SOMtree (see Figure 3.10). Each leaf node N of the final SOMtree

represents a block class, with label N.label and occurring in pages N.pageList. From
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Figure 3.10. After the refining process each leaf node of the SOMtree refers to
a block class of the Web Site.

the structure of the SOMtree it is possible to define how each page is partitioned into

blocks by performing a matching between the SOMtree and the DOM tree of the page.

In the next chapter, we show ranking methods that take this structural information

into account.

3.3 A Semi-automatic Approach for Identifying

Blocks and Block Classes

In this Section we present a semi-automatic technique for identifying blocks and block

classes occurring in a Web site. This approach is a viable alternative to obtain a high

quality segmentation and its results can be used as a reference to check the quality

of results provided by our automatic segmentation algorithm. This segmentation ap-

proach is based on the Vision-based page segmentation algorithm (VIPS), proposed

by Cai et al. [2003] and discussed on Section 3.1.1.

The first step of our semi-automatic technique is to cluster the pages of the

Web site according to their internal structure. This procedure, that is illustrated on

Figure 3.11, can be made either manually or automatically, through some techniques
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available on literature [Vidal et al., 2006; Chehreghani et al., 2008; Crescenzi et al.,

2005]. Notice that this clustering procedure places pages with the same set of blocks

in a same cluster. In other words, after the pages are clustered, for every block found

in given page ρ of a cluster P there is a block with the same label (root-to-block path)

in all other pages of P .

...

Cluster of pages

Figure 3.11. Clustering the pages of a Web site according to their internal
structure.

After the pages are clustered, the VIPS algorithm is used to segment the pages

of each cluster through a manual selection of the parameter PDoC (described in Sec-

tion 3.1.1). Since the pages of a same cluster have a similar block structure, all of

them can be segmented through the same PDoC value. Further, to assert the quality

of the segmentation, whenever users do not agree with the segmentation performed

by the VIPS algorithm, they can adapt the division of the blocks to their perception

about how it should be performed. Hence, this semi-automatic process requires an

extra human effort, since it is necessary to identify the clusters (manually or not), to

manually set the parameter PDoC for each cluster found in the collection, and adjust

the segmentation performed by VIPS (if needed).

Notice that, in this segmentation approach, each page cluster has a particular

set of block classes. For instance, consider a menu that occurs in all pages of a given

Web site. Since the menu has the same label in all pages, the automatic segmentation

approach identifies these occurrences as a single block class. However, in the semi-

automatic approach, each page cluster has a particular block class containing the menu
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of the pages. As one can see, this difference between the segmentation approaches affect

only the block classes containing blocks of the templates of the pages

3.3.1 Evaluating Segmentation Algorithms

In this section we discuss methods of evaluating the quality of the segments found by

segmentation algorithms. The evaluation metrics presented in this section are used in

Section 3.4 to evaluate the quality of the blocks found by the fully automatic segmen-

tation algorithm proposed in this thesis. According to Kohlschütter and Nejdl [2008],

a segmentation algorithm must be evaluated according to its ability of segmenting Web

pages close to the perception of users about how these pages should be divided into

blocks. Thus, to compare different segmentation algorithms, we use statistic measures

to evaluate the agreement between a collection of blocks manually identified by spe-

cialists, and the collection of blocks obtained by each segmentation technique we want

to compare.

Since each token in a document is assigned to only one block, mea-

sures of agreement between two partitions, like the Adjusted Rand index (Ad-

jRAND) [Hubert and Arabie, 1985; Vinh et al., 2009], can be used [Chakrabarti et al.,

2008]. The Adjusted RAND index between two partitions measures the fraction of

pairs of terms that are either grouped together (in a same block) or placed in separate

blocks in both partitions. Hence, the higher the Adjusted RAND index between the

segmentation output (obtained by the algorithm we want evaluate) and a manually

labeled segmentation, the better the segmentation quality of the algorithm.

Given a set of n terms T = {t1, t2, . . . , tn}, suppose U = {u1, u2, . . . , uR} and

V = {v1, v2, . . . , vC} represent two different partitions of the terms in T such that⋃R
i=1 ui =

⋃C
j=1 vj = T and ui∩u′

i = vj ∩ v′j = ∅ for 1 ≤ i 6= i′ ≤ R and 1 ≤ j 6= j′ ≤ C.

Suppose that U is our manually labeled segmentation and V is the set of segments

obtained by the segmentation technique we want evaluate. The contingency Table 3.1
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U/V v1 v2 . . . vC Sums
u1 n11 n12 . . . n1C a1
u2 n21 n22 . . . n2C a2
...

...
... . . . ...

...
uR nR1 nR2 . . . nRC aR

Sums b1 b2 . . . bC

(3.4)

Table 3.1. Notation for the contingency table for comparing partitions U and
V .

can be formed to indicate group overlap between U and V (nij denotes the number of

common terms in blocks ui and vj: nij = |ui

⋂
vj|).

Let a be the number of pairs of terms that are placed in the same block in U and

in the same block in V , b be the number of pairs of terms in the same block in U but

not in the same block in V , c be the number of pairs of terms in the same block in

V but not in the same block in U , and d be the number of pairs of terms in different

blocks in both partitions. The quantities a and d can be interpreted as agreements,

and b and c as disagreements. The Rand index [Rand, 1971] between two partitions is

given by:

RI =
a+ d

a+ b+ c+ d
(3.5)

The Rand index lies between 0 and 1 (when the two partitions agree perfectly, the

Rand index is 1). A shortcoming with the Rand index is that the expected value of the

Rand index of two random partitions does not take a constant value (say zero). The

adjusted Rand index proposed by Hubert and Arabie [1985] is the corrected-for-chance

version of the Rand index, and its formula is presented below:

ARI =

(
n
2

)
(a+ d)− [(a+ b)(a+ c) + (c+ d)(b+ d)](
n
2

)2 − [(a+ b)(a+ c) + (c+ d)(b+ d)]
(3.6)
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or, considering the notation of the contingency table 3.1:

ARI =
∑
i,j

(
nij

2

)
− [

∑
i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

)
1
2
[
∑

i

(
ai
2

)
+
∑

j

(
bj
2

)
]− [

∑
i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

) (3.7)

AdjRAND adjusts the values of RAND index so that it is upper bounded by 1 and,

and scores a value close to 0 for a random segmentation.

The second metric we use to evaluate segmentation algorithms is the Average

Mutual Information [Strehl and Ghosh, 2003; Strehl et al., 2000]. Mutual information

is a measure of the quantity of information shared between two partitions, and provides

an indication of the shared information between two different segmentations of a same

page. Let T the set of n terms occurring in a Web page, and suppose ϕ1 and ϕ2

represent two different partitions of T , with κ1 and κ2 blocks respectively. Let X

and Y be the random variables described by ϕ1 and ϕ2. If X and Y are independent

random variables, then X have no information about Y , and vice versa. In this case,

we say the mutual information between the variables is zero. On the other hand, if X

and Y are identical, then all information of X is contained in Y , i.e., the knowledge

of X add nothing to the knowledge of Y , and vice versa. In this case, we say that the

mutual information if given by the amount of information, or entropy, of X.

Let I(X;Y ) denote the mutual information between X and Y , and H(X) denote

the entropy of X. Based on the previous idea, the mutual information measure can be

expressed by: I(X,Y) = H(X) - H(X|Y).

There is no upper bound for I(X;Y ), so for easier interpretation and com-

parisons, a normalized version of I(X;Y ) that ranges from 0 to 1 is desirable.

Hence, Strehl and Ghosh [2003] proposed the definition of normalized mutual infor-

mation (NMI) using geometrical mean:

NMI(X,Y ) =
I(X, Y )√
H(X)H(Y )

(3.8)

Equation above needs to be estimated by the sampled quantities provided by the par-
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titions. Thus, in practice, the normalized mutual information between two clusterings

is given by:

NMI(ϕ1, ϕ2) =

∑κ1

h=1

∑κ2

l=1 nh,l log(
n·nh,l

nhnl
)√

(
∑κ1

h=1 nh log
nh

n
)(
∑κ2

l=1 nl log
nl

n
)

(3.9)

where n is the total number of terms, nh is the number of terms in block h, nl the

number of terms in block l and nh,l the number of terms in both blocks h and class

l. The NMI value is 1 when partitions agree perfectly, and close to 0 for a random

partitioning.

3.4 Experimental Results

To validate our automatic segmentation algorithm we performed experiments on 4 real

Web collections namely IG, CNN, CNET, and BLOGs:

• IG Collection: The first collection contains 34,460 pages crawled from IG (see

www.ig.com.br), that is one of the largest Brazilian Web portals. This collection

is composed of a recipe site, a forum site, and a news Web site, as detailed in

Table 3.2.

• CNN Collection: The second collection is a crawling of the international edition

of CNN.com (see www.cnn.com), and is composed of 16,257 Web pages.

• CNET Collection: This collection was obtained by crawling four Web sites affili-

ated to the CNET Web portal (see www.cnet.com): CNET News, that provides

news, blogs, and special reports about technology; CNET Download, composed

by a large set of pages containing free downloads; CNET Shopper, which is a

virtual shop of tech products; and CNET Reviews, composed by a set of pages

containing reviews of products.
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Collection Site Number of Pages Domain

IG

News 26,466 www.ultimosegundo.com.br
Forum 6,389 www.jornaldedebates.com.br
Recipe 1,605 www.panelinha.com.br
Total 34,460

CNN News site 16,257 www.cnn.com
Total 16,257

CNET

News 131,474 www.news.com
Downloads 99,186 www.downloads.com
Reviews 64,142 reviews.cnet.com
Shopper 57,968 www.shopper.com
Total 352,770

BLOGs

Boing Boing 14,173 www.boingboing.net
CNET 8,054 news.cnet.comtech-blogs
Engadget 6,343 www.engadget.com
Gizmodo 4,454 us.gizmodo.com
Google 1,050 googleblog.blogspot.com
Life Hacker 3,997 www.lifehacker.com
Mashable 7,410 www.mashable.com
Slash Film 5,376 www.slashfilm.com
Tech Crunch 3,198 www.techcrunch.com
Total 54,055

Table 3.2. The set of Web sites crawled for each document collection.

• BLOGs Collection: The fourth collection was obtained by crawling the posts of 9

popular blogs from the top popular list presented in Technorati Blog 2. Table 3.2

presents the list of the crawled blogs.

3.4.1 Segmenting the Collections

In this Section we present statistics about the segmentation process of the pages of

each collection adopted in the experiments. The pages of each collection was seg-

mented by using the semi-automatic approach (discussed in section 3.3), the SOMtree

based approach (discussed in section 3.2), and the Block-fusion method (proposed

by Kohlschütter and Nejdl [2008] and described in section 3.1.2). We use the results

obtained by the semi-automatic approach as a reference to evaluate the quality of

2http://technorati.com/blogs/top100
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results provided by the automatic segmentation algorithms, through the metrics we

introduced in Section 3.3.1.

3.4.1.1 Semi-automatic segmentation

We start by presenting statistics about the segmentation process performed by the

semi-automatic approach (presented in Section 3.3). To assert the quality of the seg-

mentation, the clustering of the Web pages according to their block structure was

performed manually. Table 3.3 presents the total number of blocks and block classes

found by this method. This table also shows the number of blocks found in small

classes, that are block classes containing less than β (8) elements. Notice that the

small classes found by this segmentation approach are derived from page clusters con-

taining less than β pages. For instance, the structure of the main page of a Web site

tend to differ from all other pages of the same Web site. In this case, each block found

in the main page will generate a distinct block class, each one with just one block.

As one can see in Table 3.3, the semi-automatic method has found no small classes

in BLOGs collection, since it is formed only by posts of their respective blogs, and all

posts from each crawled blog tend to have the same set of blocks. In this way, for each

block found in a given page of the BLOGs collection, there are many other blocks with

the same label occurring in other pages of this collection.

Figure 3.12 shows the distribution of the number of blocks on the block classes

found in four collections. Notice that some block classes have the same number of

blocks. This happens when the block classes belong to the same cluster of pages.

3.4.1.2 Automatic Segmentation

Table 3.4 presents the total number of blocks, block classes, and the number of blocks

present in small block classes found by the automatic segmentation approach. We can

see that, despite the number of pages in CNN collection be smaller than the other

collections, the number of block classes found in this collection is relatively high when
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Semi-automatic segmentation approach
Collection Site B Classes Blocks Blocks SC

IG

News 104 406,965 23
Forum 101 201,325 15
Recipe 41 25,443 17
Total 246 633,733 55

CNN News site 158 257,139 17
Total 158 257,139 17

CNET

News 129 1,834,661 18
Downloads 115 1,494,135 15
Reviews 50 800,860 17
Shopper 79 682,473 19
Total 373 4,812,129 69

BLOGs

Boing Boing 22 311,806 0
CNET 16 128,864 0
Engadget 33 209,319 0
Gizmodo 12 53,448 0
Google 19 19,950 0
Hacker 12 47,953 0
Mashable 22 163,020 0
Slash Film 13 69,888 0
Tech Crunch 12 38,376 0
Total 161 1,042,624 0

Table 3.3. The number of blocks and block classes found by the semi-automatic
approach in all Web site collections. Table also shows the number of blocks found
in small classes, i.e., block classes with less than β elements (Blocks SC).

compared with those found in other collections. This happens because blocks with

the same role in the CNN collection may have two or more versions of labels (root-

to-block path), i.e., it is possible to exist two or more block classes formed by blocks

with the same role in such collection. For instance, news pages found in the CNN

collection usually contain tables, graphics, photos and other illustrative components in

different parts of their text. However, such characteristic of the CNN collection does

not significantly interfere in the quality of the weights obtained by block-based term

weighting methods, since each block class continues to be formed by blocks with the

same role.

On the other hand, notice that the number of block classes found in BLOGS

collection is quite small, if compared with those found in other collections. Again, this
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Figure 3.12. Number of blocks in each block classes found in four document
collection.

happens because such collection is formed only by posts of their respective blogs, and

the posts of a same blog tend to have the same block structure. Thus, since there is

not a big variety of blocks from post to post, the number of block classes found in each

blog of this collection tend to be quite small.

We can also see that the results of the automatic segmentation were far different

from the semi-automatic method for CNET collection. When checking the results, we

realized that this is due to irregularities in the page structures found in CNET which

affects the automatic identification of recurrent structures (see Section 3.2.1). Such

irregularities do not affect the semi-automatic method since a human can easily deal

with them. For instance, each product page of the CNET Shopper has a list of virtual

markets that sell that product. The semi-automatic method identified the list of each
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Automatic segmentation approach
Collection Site B Classes Blocks Blocks SC

IG

News 797 1,017,960 887
Forum 256 366,202 212
Recipe 42 20,350 10
Total 1,095 1,404,512 1,109

CNN News site 1,945 597,301 1,911
Total 1,945 597,301 1,911

CNET

News 2,155 6,287,577 5,568
Downloads 916 3,182,811 800
Reviews 1,563 6,320,501 620
Shopper 2,953 9,667,676 690
Total 7,587 25,458,565 7,678

BLOGs

Boing Boing 59 421,074 9
CNET 194 415,108 85
Engadget 69 282,681 16
Gizmodo 77 119,728 37
Google 14 14,503 0
Hacker 54 93,046 56
Mashable 500 560,079 367
Slash Film 213 145,151 283
Tech Crunch 203 97,669 176
Total 1,383 2,149,039 1,029

Table 3.4. The number of blocks and block classes found by our automatic
segmentation approach in all Web sites of the four collections. Table also shows
the number of blocks found in small classes, i.e., block classes with less than β
elements (Blocks SC).

product page as a single block, and identified the set of lists of all product pages as

a single block class. However, the set of tags used to display the virtual markets of a

same list can be different to each other (for instance, if a virtual market was evaluated

for one or more users, then it requires additional tags to be displayed). Since the tags of

the lists of virtual markets are not disposed in a regular or recurrent way, each virtual

market becomes a single block. Since this type of irregularity is very common in pages

of the CNET collection, the number of blocks found by the automatic method is bigger

then that found by the semi-automatic method.

An important point to observe in Table 3.4 is that in all collections just a few

blocks where grouped into classes with less than β elements. For instance, from the
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total of 1, 404, 512 blocks found in IG, only 1, 109 were grouped into classes with less

than β elements, which is less than 0.08% of the total number of blocks found. In CNN

the number is less than 0.03%, in CNET less than 0.3%, and in BLOGS it is less than

0.05% of the blocks found.

Figure 3.13 shows the distribution of the number of elements on the block classes

found in the four collections. Notice that, unlike the graphs presented in Figure 3.12,

these distributions do not present big set of block classes with the same number of

blocks, since the automatic segmentation approach does not work with the page cluster

concept.
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Figure 3.13. Number of blocks in each block classes found on in four document
collection.

To provide examples of how the Web sites were segmented by the automatic

approach, we present examples of blocks found in typical Web pages of the BLOG and

the CNET collection. The screenshots in Figures 3.14 and 3.15 show a page extracted



44 Chapter 3. Identifying Blocks and Block Classes

Figure 3.14. A typical page present on the Engadget blog, from BLOG collec-
tion.

from the BLOG and the CNET collection, respectively. We numerated the blocks to

facilitate their references through the text of this thesis.

We performed some experiments to compare the quality of the segments

found by our automatic segmentation algorithm with those found by the al-
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gorithm proposed by Kohlschütter and Nejdl [2008]. As described in Sec-

tion 3.1.2, Kohlschütter and Nejdl [2008] approached the Web page segmentation prob-

lem from a textual perspective, and achieved a segmentation performance better than

those achieved by Chakrabarti et al. [2008], which is another recent work of the liter-

ature.

To compare the quality of the segments, we used the statistic measures Adjusted

RAND Index and Average Mutual Information, described in Section 3.3.1. By using

these statistics, we evaluated the agreement between the collection of blocks identi-

fied by the semi-automatic approach, and the collection of blocks obtained by each

automatic method we want to compare.

The results for Adjusted RAND Index is depicted on Figure 3.16. To compose

each curve of the Figure (for instance, the curve SOM Tree in IG collection graph),

we computed the Adjusted RAND index achieved by the method of the curve for each

page of the collection, and then plotted these values in increasing order. For instance,

considering the graphs for IG collection, the kth page of the curve SOM Tree refers to a

page segmented by our automatic segmentation method that achieved the kth smaller

Adjusted RAND index.

As one can see, these graphs show that our method achieved a segmenta-

tion performance better than those achieved by Kohlschütter and Nejdl [2008], in

all collections. As expected, the CNET collection presented the smaller agree-

ment between the semi-automatic and automatic approaches. However, even for

this collection, our automatic approach presented a segmentation performance better

than Kohlschütter and Nejdl [2008].

The results for Average Mutual Information is depicted on Figure 3.17. The

conclusions are similar to those found by Adjusted RAND Index measure.
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Figure 3.15. A typical page present on the reviews Web site, from CNET
collection.
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Figure 3.16. Adjusted RAND Index graphs found for IG, CNN, BLOGs and
CNET collections.
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Chapter 4

Information Retrieval and Web

page Segmentation

Information retrieval models establish different paradigms to provide users with those

documents that satisfy their information needs. It is important to understand the

foundations of the principal models in order to develop a more accurate appreciation

of their relative strengths and shortcomings. In this Chapter, we briefly discuss IR

models and introduce the basis of the information retrieval problem we try to address

in this thesis. For that, we quickly describe the concept of term weighting, provides an

overview of two of the major textual retrieval models in the literature (Vector Space

and BM25 models), and introduce the problem of using the block structure of Web

pages to improve ranking results when searching for information on Web collections.

4.0.2 Term Weighting

Classical information retrieval models consider that each Web page or document is

represented as a set of keywords called index terms. An index term is simply a

pre-selected word which can be used to refer and describe the content of a docu-

ment. Usually, index terms are nouns or noun groups. In the Web, however, some

49
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search engines use all the words in a document as index terms. Given a set of index

terms, we notice that not all terms are equally useful for describing the document con-

tents [Baeza-Yates and Ribeiro-Neto, 1999]. The importance of a term in a document

is captured through the assignment of numerical weights.

Definition 5. The weight of a term t in a document dj is captured through the assign-

ment of a numerical value wt,j ≥ 0 associated to the pair (t, dj). If an index term t

does not occurs in the document dj, then wt,j = 0.

The weight (or importance) wt,j measures the ability of the index term t for

describing the content of dj document. The wt,j factors create a term-document matrix,

that is one of the key pieces of evidence used for computing similarities between queries

and documents. In the case of a collection of Web pages, other key pieces of evidence

come from information provided by link analysis, such as the page rank [Brin and Page,

1998; Page et al., 1998] or authority of a Web page [Kleinberg, 1999]. However, when

the collection is composed of Web pages of a pre-selected set of sites or domains, link-

analysis is not of great help and the term weights become the central foundation for

the ranking system [Fernandes et al., 2007].

4.0.3 The Vector Space Model

The vector space model [Sparck Jones, 1972, 1973, 1979] represents documents and

queries as vectors in a T -dimensional Euclidean space, where T is the number of distinct

index terms in the document collection.

~dj = (w1,j, w2,j, w3,j, . . . , wT,j)

~q = (w1,q, w2,q, w3,q, . . . , wT,q) (4.1)

where wt,j is the weight of the term t in the document dj, and wt,q the weight of t in
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the query q.

The term weights in the document vectors are given by two parameters: (i)

tf(t, j), computed as the number of times that the term t occurs in a document dj,

and (ii) idf(t), that is a function of the number of documents where the term t occurs.

Thus, the weight of an index term t in a document dj is given by:

wt,j = tf(t, j)× idf(t) = tf(t, j)× log
N

nt

(4.2)

where N is the total number of documents in the collection, and nt is the number of

documents that contains the term t. In spite of the success of this term weighting

formulation, it has a disadvantage in Web scenario, since it does not considers the

locations of the term t within the page dj to compute the wt,j factor [Fernandes et al.,

2007].

The ranking of a document with regard to query is defined as the vector distance

measure between their respective vector representations. This ranking is assumed to be

correlated with the probability of relevance of the document. In practice, the distance

measure is defined as the cosine of the angle between the vectors:

sim(dj, q) =
~dj • ~q

|~dj| × |~q|
=

∑t
t=1 wt,j × wt,q√∑t

t=1 w
2
t,j ×

√∑t
t=1 w

2
t,q

(4.3)

where wt,q corresponds to the weight of term t in query q, whose definition is equivalent

to the weight of a term in a document. The factors |~dj| and |~q| correspond to the norm

of document and query vectors, respectively. The ranking calculation is not affected

by ~q because its value is the same for all documents.

4.0.4 The BM25 Model

The BM25 (Best Match 25) is a model based on the probabilistic retrieval framework

developed by Robertson et al. [1995], and is one of the most successful information
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retrieval models in literature. The BM25 weighting scheme is a function of the number

of occurrences of the term in a document, in the whole collection, and a function of

the document length. In the original BM25 method, the similarity ranking sim(dj, q)

of a document dj with regard to a user query q is given by

sim(dj, q) =
∑

t∈dj∧t∈q

(k1 + 1)× tf(t, dj)

k1

(
(1− b) + b

|dj |
dj

)
+ tf(t, dj)

× log
N − nt + 0.5

nt + 0.5
(4.4)

where tf(t, dj) is a function based on the occurrences of the term t in the document

dj, |dj| corresponds to a document length function, dj is the average document length,

N is the number of documents in the collection, and nt is the number of documents

containing the term t. Further, k1 and b are free parameters, whose values can be

fine-tuned experimentally to a particular collection.

4.0.5 Discussion

The tf (term frequency) factor used by the Vector Space and BM25 model consider

that all occurrences of a term in a page are equally useful for estimating the importance

of the term in the page. On the other side, there are types of blocks, such as menus,

advertisements, and blocks containing information not associated with the main topics

or themes of a Web page, whose contents should be considered of less importance in the

ranking formula. This is one piece of information that we can factor into the ranking

by applying the approach we propose in this thesis.
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4.1 Using Block Information to Improve Ranking

Results

Several authors have presented methods that rely on using block information to improve

results effectiveness of information retrieval systems. We select some of these works to

present in this section.

4.1.1 Block-based Web Search

In Cai et al. [2004b], the authors use block information to investigate how to take

advantage of block-level evidence to improve retrieval performance in the Web context.

According to the authors, the content of a Web page is usually much more diverse

compared with traditional plain text document and encompasses multiple regions with

unrelated topics. Moreover, for the purpose of browsing and publication, non-content

materials, such as navigation bars, decoration stuffs, interaction forms, copyrights, and

contact information, are usually embedded in Web pages. Instead of treating a whole

Web page as an unit of retrieval, the paper argues that such characteristics of Web

pages make the block a more effective mechanism for information retrieval.

The major shortcoming of treating a Web page as a single semantic unit is that it

does not consider multiple topics in a page [Cai et al., 2004b]. For example, if the query

terms occurs at regions with different topics, it could cause low retrieval precision. So,

the authors argue that a Web page with a region of high density of matched terms is

likely to be more relevant than a Web page with matched terms distributed across the

entire page even if it has higher overall similarity. On the other hand, a highly relevant

region in a Web page may be obscured because of low overall relevance of that page.

The authors present a ranking strategy where the blocks are processed as semantic

passages and then apply previously proposed passage level ranking strategies [Callan,

1994] to evaluate the possible improvements obtained in ranking quality with their
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method. Thus, the authors propose to compute two scores for each document of a

collection: one for the whole document, and another considering the blocks as units.

The two scores are then combined by using the function:

score(dj, q) = α rankdoc(dj, q) + (1− α) rankbestblock(dj, q) (4.5)

where rankdoc is the rank given by BM25 to the document dj for query q and

rankbestblock(dj, q) is the rank given by BM25 to the best ranked block of dj when

considering blocks as retrieval units. The parameter α should be adjusted through

a training process, which is a disadvantage of this approach when compared to our

method.

Cai et al. [2004b] presents a interesting method of using block information in

the ranking strategy, and we adopted it as one of the baselines in our experiments.

However, a shortcoming regarding this ranking strategy is that it do not distinguish

noise from informative blocks. Thus, if the query terms occurs at the templates of the

pages, it could cause low retrieval precision. This shortcoming is illustred in Figure

(see figure 4.1).

4.1.2 Block-level Link Analysis

Another interesting work based on the block concept is Cai et al. [2004a]. The authors

of this paper proposed two novel link analysis algorithms called Block Level PageRank

(BLPR) and Block Level HITS (BLHITS) which treat blocks as information units.

These novel algorithms of link analysis are also based in the assumption that a single

Web page often contains multiple semantics and the different parts of the Web page

have different importance in that page. Therefore, links in high important blocks

should be more important than those in low important blocks. In other words, a user

might prefer to follow links in important blocks.

To compute the block importance values, Cai et al. [2004a] uses the assumption
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Weather Forecast

Olympic torch

Figure 4.1. Document that would have high similarity with queries “Weather
forecast” and “Olympic torch” when applying the method presented by Cai et al.
[2004b]

that some blocks with big size and centered position are probably more important than

those blocks with small size and margin position. However, the authors admit that

incorporating more advanced block importance models, such as the schemes described

in Song et al. [2004a,b], they expect that a better result might be achieved.

4.1.3 Improving Pseudo-Relevance Feedback Using Block

Information

Pseudo-relevance feedback, also known as local feedback or blind feedback, is a tech-

nique commonly used to improve retrieval effectiveness [Efthimiadis, 1996; Yu et al.,

2003]. Its basic idea is to extract expansion terms from the top-ranked documents

to formulate a new query for a second retrieval of the documents. Through a query

expansion, some relevant documents missed in the initial round can then be retrieved

to improve the overall performance.

The effect of pseudo-relevance feedback strongly depends on the quality of selected

expansion terms. If the words added to the original query are unrelated to the query,
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the quality of the retrieval is likely to be degraded. However, a typical Web page

contains various types of materials that are not related to the topic of the Web-page,

such as navigation blocks, decoration blocks and interaction blocks [Yu et al., 2003].

Therefore, Yu et al. [2003] suggests combine page segmentation methods with

pseudo-relevance feedback algorithm according to the following steps:

Phase 1: Initial Retrieval

An initial list of ranked Web pages is obtained by using any traditional information

retrieval methods.

Phase 2: Page Segmentation

In this step, a page segmentation method (Yu et al. [2003] used VIPS algorithm) is

applied to divide retrieved Web pages into segments. Since it is very expensive to

process all retrieved Web pages, the authors suggest select a few (e.g. 80) top pages

for segmentation. The candidate segment set is made up of these resulting segments.

Phase 3: Segment Selection

This step aims to choose most relevant segments from the candidate segment set. Some

ranking methods are used to sort the candidate segments and the top (e.g. 20) segments

are selected for expansion term selection in the next step.

Phase 4: Expansion Term Selection

Using an approach similar to the traditional pseudo-relevance feedback algorithm to

select expansion terms. The difference is that expansion terms are selected from the

selected segments instead of from the whole Web pages.

The experimental results demonstrated that by partitioning a Web page into

segments, better query expansion terms can be selected to improve the overall retrieval

performance.
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4.1.4 Learning Block Importance Models for Web Pages

In Song et al. [2004a,b] the authors use VIPS algorithm to identify the blocks of a Web

page, and then compute an importance rank of the blocks through a learning approach.

Spatial features, such as position and size of blocks, and content features, such as the

number of images and links on each block, are extracted from each block. Then, two

learning algorithms, neural network and SVM, are used to learn about what features

can be used to differentiate the important parts from unimportant parts of a Web page.

According to the authors, Web designers would like to put the most important

information in the center, put the navigation bar on the header or the left side and the

copyright on the footer. Thus, the importance of a block would be a reflection of the

spatial features like position, size, etc. The authors used 4 spatial features to judge the

importance of the blocks:

{BlockCenterX, BlockCenterY, BlockRectWidth, BlockRectHeight}

where BlockCenterX and BlockCenterY are the coordinates of the center point of the

block and BlockRectWidth, BlockRectHeight are the width and height of the block.

The authors also argue that the contents of the blocks would be also useful to

judge their importance. For example, the spatial features of both of the two solid circles

in Figure 4.2 are similar. But one contains a picture, a highlighted title and some words

to describe a news headline and another contains pure hyperlinks pointing to other top

stories. Based on the contents of the blocks, would be possible to differentiate their

importance. The following 9 features are used by Song et al. [2004a] to represent the

content of a block:

{ImgNum, ImgSize, LinkNum, LinkTextLength, InnerTextLength,

InteractionNum, InteractionSize, FormNum, FormSize}

where ImgNum and ImgSize are the number and size of images contained in the block.

LinkNu and LinkTextLength are the number of hyperlinks and anchor text length of the



58 Chapter 4. Information Retrieval and Web page Segmentation

Figure 4.2. Spatial and content features can be used to differentiate the impor-
tance of blocks

block. InnerTextLength is the number of words. InteractionNum, and InteractionSize

are the number and size of elements with the tags of <INPUT> and <SELECT>. FormNum

and FormSize are the number and size of element with the tag <FORM>. According to

the authors, all of these content features can be related to the importance of the blocks.

These content features were also normalized by the feature values of the whole

page. For example, the LinkNum of a block is normalized by the link number of the

whole page.

Therefore, Song et al. [2004a,b] suggests that the importance of a block is a func-
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tion of its features, and can be formalized as:

< block features >→ block importance (4.6)

The learning method was employed for labelling the blocks with the following 4-level

importance values:

• Level 1: noisy information such as advertisement, copyright, decoration, etc.

• Level 2: useful information, but not very relevant to the topic of the page, such

as navigation, directory, etc.

• Level 3: relevant information to the theme of the page, but not with prominent

importance, such as related topics, topic index, etc.

• Level 4: the most prominent part of the page, such as headlines, main content,

etc.

In Chapter 5 we propose some methods of assigning an importance degree to

each block, instead of just ranking the blocks according with fixed importance labels.

Further, our proposed methods can also be used to also rank blocks if necessary, with

the advantage of not requiring a training phase.

4.1.5 Template Removal

Several authors have proposed methods for using the Web pages structure for iden-

tifying blocks that contain little or no information to offer readers, and that are

then considered as noise or irrelevant content [Yi et al., 2003; Vieira et al., 2006;

Yin and Lee, 2004; Bar-Yossef and Rajagopalan, 2002; Fu et al., 2007]. To illus-

trate, Bar-Yossef and Rajagopalan [2002] proposed a mechanism for segmenting Web

pages into blocks, represented there as Pagelets, and then classifying them into useful or

noise content. In their work, authors considered any information present on templates
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Figure 4.3. RIPB’s informative block cluster recognition process

of the pages as noise and proposed to disregard such an information when processing

the content of Web pages. Fu et al. [2007] also proposed a method to discover template

content without supervision. The basic assumption is that Web pages in one site are

always generated by a common template or layout. Once the templates occurring in a

set of sample pages are summarized, it is possible discover the template occurring in

the other pages of the site.

Since the removal of templates can be considered as an structural information, we

included a search system that does not index template contents as one of the baselines

in our ranking experiments.

4.1.6 Information Extraction

One of the main problems in most automatized information extraction methods is the

difficulty in discriminating the blocks that contain the most important information

on a page (informative blocks), from the noise blocks, that contains irrelevant infor-

mation such as advertisements, menus, or copyright statements [Debnath et al., 2005;

Kang and Choi, 2007].

To solve this problem, Kang and Choi [2007] proposes the RIPB (Recognizing

Informative Page Blocks) algorithm that detects the informative blocks in a Web page

by exploiting the visual block segmentation scheme. The informative block recognition

process of the RIPB method is shown in the figure 4.3. Such a method uses VIPS
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Figure 4.4. The process of block clustering of RIPB

[Cai et al., 2003] to segment the Web pages, and then groups related blocks with similar

structures into a block cluster by using an edit distance method. The clustering process

is shown in Figure 4.4.

After creating the clusters, RIPB recognizes the clusters with informative blocks.

Such clusters contain the blocks with important information that would be the target

of information extraction. The main idea of RIPB is to recognize the informative block

clusters by measuring the number of tokens and the cluster area size. This measure is

made by the equation below:

Score(C) = (1− β) · |Ci|+ β · imgi (4.7)

where Ci is a cluster of blocks, |Ci| is the number of tokens on cluster Ci, imgi is the

total area of the cluster Ci, and β is the weight value for balancing the importance

between the number of tokens and the cluster area.

Gibson et al. [2007] address the problem of identifying the portions of news-source

Web-pages (blocks) that contain relevant content i.e. the news article itself. The

approach of this work is to divide the original Web document into a sequence blocks (the

authors developed their own method of segmentation) and then categorize each block
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as Content or NotContent. Given this formulation as a sequence labelling problem,

three different statistical machine learning methods was employed for labelling the

blocks: Conditional Random Fields (CRF), Maximum Entropy Classifiers (MaxEnt),

and Maximum Entropy Markov Models (MEMM).

Gibson et al. [2007] used 11 different feature types to make the classification:

1. Words. This is a set of features, one for each token that appears in the block.

The value for each feature for a given block instance is the number of times that

token occurs in the block.

2. Inverse Stop-Wording. Number of tokens of a given block that occur in a list of

English stop words. This feature can help to identify that English prose was being

used in a block without becoming too dependent upon the particular vocabulary

of an article.

3. Named Entities. A count of the named entities in a block, grouped by the following

types: person, organization, location, date, time, monies, and percentages.

4. Title Casing. Features are generated when every token in a block begins with an

upper case letter or when any token begins with a lower case letter.

5. Anchor Percentage. The percentage of tokens in a block contained within an

anchor tag.

6. Title Matching. If some tokens in a block match with the tokens contained in

the <title> of the document then the percentage of the title that matched is

recorded.

7. Ancestor Tags. The names of the parent and grandparent (if present) tags of a

block.

8. Descendant Tags. The names any descendant tags found within a block.
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9. Sibling Tags. The names of the previous and next sibling tags of the current block

(if present).

10. Word Count. A single feature capturing the count of the tokens found in a block.

11. After Image Tag. A feature that indicates if an <img> appears before the current

block and after the previous one. This feature is intended to exclude photo

captions from inclusion in the content.

In Li et al. [2007] is presented a visual segmentation-based data record extraction

(VSDR) method to extract data records from Web pages. Given a Web page, the VSDR

method consists of following steps: (i) segment the page into blocks (using VIPS); (ii)

remove the noisy blocks such as navigational bar blocks, dropdown menu blocks, etc.;

and (iii) in the remaining blocks, identify the data records.

The VSDR applies some heuristics to identify noisy blocks. For instance, a block

is considered as a noisy content if the number of contiguous link blocks is at least 5

and the ratio of the number of link blocks (including both text links and image links)

to the number of all blocks in the same level in DOM tree is greater than a specific

threshold. These noisy tree are removed before extracting data records.

Similarly, the VSDR method considers that blocks containing text boxes, drop-

down menus, and/or action buttons, and occupying a relatively small area of the whole

page, are noise blocks.





Chapter 5

Block-Weight Functions

In Web IR systems, the content of a Web page is usually represented as a collection

of terms derived or inferred from the text of the page. For ranking purposes, these

terms are usually weighted to indicate their importance within each page, such that

the effectiveness of any IR system is directly related to the accuracy of these term

weights.

In this context, the block structure of Web pages may be used to alter the overall

weight of the term in a page. To illustrate, the occurrence of a term in the block title

of a Web page, as the one depicted in Figure 5.1, can be made more important than

an occurrence of the same term in the menu of that page. To quantify the importance

of a term in a block we define a block-weight function, which computes the weight of

the term occurrence in the block, as follows:

Definition 6. The block-weight function bw(t, b) is a quantitative metric associated

with the term-block pair [t, b] which we use to compute a weight for term t relative to

the page that contains block b.

To compute a block-weight function bw(t, b), we introduce two basic statistical mea-

sures, the inverse class frequency and the spread, as follows.

65
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Figure 5.1. A news page and its blocks.

5.1 Inverse Class Frequency and Spread

These two measures are variants of the inverse document frequency (IDF ) and term

frequency (TF ) factors used in the Vector Space Model [Salton et al., 1975], as follows.

Definition 7. Given a block class C = {b1, ..., bnC}, containing nC elements, and a

term t that occurs in at least one block of C, the Inverse Class Frequency (ICF) of a

term t in C is defined as

ICF (t, C) = log
nC

nt,C
(5.1)

where nt,C is the number of blocks of C in which t occurs.

Notice that ICF is similar to IDF , but considers each block class as a separate
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“collection of documents”. Using Shannon’s entropy [Shannon, 1948], it quantifies how

much information is associated with the occurrence of a given term in a given block

class. It can also be interpreted as a measure of how well the term discriminates a

block from other blocks. To illustrate, let us consider the block menu of the Web page

depicted in Figure 5.1. Since this block is derived from the template of the CNN Web

site, it includes the term “politics”, which also occurs in many other blocks of the block

class Menu. In this case, the term “politics” will have low ICF value in the block class

Menu, which indicates that the this occurrence of the term is not very discriminative.

As a counterpoint, let us consider the term “telescope”, which occurs in the title

of the Web page depicted in Figure 5.1. Since this term occurs infrequently in page

titles, it will have a high ICF value. We say that the occurrence of the term “telescope”

in a page title is a very discriminative event.

Definition 8. The Spread of a term t in a Web page ρn, Spread(t, ρn), is the number

of blocks in ρn that contain t, that is:

Spread(t, ρn) =
∑
b∈ρn

i, where i =


1 if t ∈ b

0 otherwise
(5.2)

The intuition behind this measure is that, given a term t and a Web page ρn, the

greater the number of blocks of ρn that contain the term t, the better the term t

represents the contents of the Web page. For instance, if the term “Firefox” appears in

most of the blocks of a given page, there is a high chance that this page is related to

the famous browser (this effect can be seen in Figure 5.2). The Spread can be seen as

the structural frequency of the term, acting as an structural version of the TF factor

adopted in the Vector Space Model.

In the immediate following, we propose different strategies to compute block-

weight factors bw using the definitions of ICF and Spread. These strategies are grouped

into three categories: class-level strategies, which assign a unique bw value to all terms
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Firefox termFirefox termTerm Firefox

Figure 5.2. A page where the term Firefox is spread in its blocks.

in a block class; block-level strategies, which assign a unique bw value to all terms in

a block; and term-level strategies, which allow the bw values to vary for distinct terms

inside a block.

5.2 Term-level Strategies

The term-level strategies use the ICF and Spread factors to compute bw weights as

follows. Given a term t and a block b, a first form to compute the bw factor is

bw1(t, b) = ICF (t, Cb) (5.3)

where Cb is the block class of block b. A second form to compute the bw factor is

bw2(t, b) = Spread(t, ρb) (5.4)

where ρb is the Web page that b belongs to. Further, we also explore a third form of

the bw factor that combines both spread and ICF as follows:

bw3(t, b) = ICF (t, Cb),×Spread(t, ρb) (5.5)
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5.3 Block-Level Strategies

The idea here is to compute an average bw value for all terms in a block, one that

allows smoothing the impact of anomalies that may arise when looking just for a single

term. For instance, a term t that appears in a news title, as in Figure 5.1, is important

even if it is not mentioned in the body of the news. However, the spread of such term

across all blocks in the page would be low. This effect can be avoided by using an

average spread value for all terms in the block.

The term-level strategies we introduced previously can now be used to create

equivalent block-level methods, as follows.

bw4(t, b) =


∑

t′∈b ICF (t′,Cb)
|b| if t ∈ b

0 otherwise
(5.6)

where |b| is the size of block b. Also,

bw5(t, b) =


∑

t′∈b Spread(t
′,ρb)

|b| if t ∈ b

0 otherwise
(5.7)

We further combine these two block-level strategies to obtain

bw6(t, b) =


∑

t′∈b Spread(t
′,ρb)×ICF (t′,Cb)
|b| if t ∈ b

0 otherwise
(5.8)

5.4 Class-Level Strategies

We also experiment the use of average values in a whole class of blocks, instead of

looking at individual blocks. Thus, in this third strategy for computing bw factors,

terms in a block class are assigned an unique weight. For instance, all page title terms

in a Web site are assigned a unique bw weight.
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We first define the function bw7 of a class C as the average value of ICF values

for all terms that occur in block class C. This gives an estimate of how discriminative

is the occurrence of each term in a class on average, and is computed as:

bw7(t, b) =


∑

t′∈v(Cb)
ICF (t′,Cb)

|v(Cb)|
if t ∈ b

0 otherwise
(5.9)

where v(Cb) is the vocabulary composed of the distinct terms that appear in all blocks

of class Cb and |v(Cb)| is its size.

We also experimented with a strategy based on the average value of the block-

level metric bw5 of all blocks in a class. This new class-level metric, referred to as bw8,

is computed as follows:

bw8(t, b) =


∑

b′∈Cb

∑
t′∈b′ Spread(t′,ρb′ )

|b′|
|Cb|

if t ∈ b

0 otherwise
(5.10)

where b′ is a block variable whose block size is given by |b′|, Cb is the block b class, and

|Cb| is the number of blocks in it.

Finally, we also introduce a class-level metric based on the combination of bw7

and bw8, as follows:

bw9(t, b) = bw7(t, b)× bw8(t, b) (5.11)

5.5 Dealing with Block Classes with Few Elements

A practical problem that arises when applying term weighting schemes based on the

structure of pages is the occurrence of block classes that contain just a few elements.

This is a problem specially for computing ICF values. For instance, it is not possible

to determine whether any given term is common or not in a block class with only 1 or
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2 blocks.

The threshold β, also adopted in the automatic segmentation algorithm (Sec-

tion 3.2) is adopted in our experiments to indicate the minimum quantity of blocks

that a class must have in order to allow a properly computation of ICF values. The

value of β threshold was set through experiments described in Section 6.2.2 and was set

to 8. For term occurrences in block classes containing less than 8 blocks, we assign an

intermediate ICF value obtained by computing the average of the ICF values found

on the document collection. Notice that this heuristic changes just a few pages in the

collections, since it is applied only to block classes with small number of elements. In

our experiments, less than 0.05% of the blocks were in classes with less than 8 blocks.

5.6 Block-Weight Values and Their Meaning

Table 5.1 illustrates values of block-based and class-based bw factors computed for the

page of the BLOGs collection depicted in Figure 3.14. We observe distinct properties

of our block-weighs functions, as follows:

1. Functions bw4 and bw7 (ICF based strategies) yield low values to term occurrence

in blocks that are part of the template of the site, such as blocks 1, 2, 3, 9, 10,

and 14. These blocks are not useful for distinguishing a page from other pages

in the site.

2. Blocks that contain information that humans would usually consider important

are assigned higher values by all block-weight functions. This is the case of block

4, for instance, which acts as a page title.

3. Functions bw6 and bw9 stress the impact of specific block types by assigning very

high values to the page title (block 4), high values to the main contents section

(block 5) and tags section (block 8), intermediary values to the user comments

section (block 11), and low values to the remaining blocks.
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bw Factors
Blocks bw4 bw5 bw6 bw7 bw8 bw9

1 0.0001 2.4285 0.0003 0.0000 2.1902 0.0000
2 0.0000 5.3333 0.0000 0.0000 5.2350 0.0000
3 0.0000 4.4000 0.0000 0.0000 4.5529 0.0000
4 6.5988 4.8333 31.8945 8.0726 5.2013 41.9884
5 1.5246 3.6000 5.4886 1.9064 3.9491 7.5287
6 2.2942 2.4000 5.5062 4.4214 2.7695 12.2455
7 3.9600 2.5816 10.2234 7.6453 2.7937 21.3591
8 3.8632 2.9285 11.3136 8.2209 2.9587 24.3241
9 0.0000 1.0000 0.0000 0.0000 1.0004 0.0000

10 0.0244 1.9186 0.0469 0.0268 1.8621 0.0500
11 2.8076 1.6213 4.5520 7.7667 1.5067 11.7023
12 0.9553 2.4931 2.3818 0.9993 2.6658 2.6641
13 2.2035 2.0260 4.4646 2.7203 2.1750 5.9169
14 0.0000 3.5217 0.0000 0.0000 3.5638 0.0000
15 2.9731 1.9277 5.7314 3.4839 1.9844 6.9137

Table 5.1. Examples of bw factors assigned to blocks found in the Web page
depicted in Figure 3.14, extracted from the BLOGs collection.

Table 5.2 illustrates values of block-based and class-based bw factors computed

for the page of the CNET collection depicted in Figure 3.15. As one can see, the

properties of these bw factors are similar to those enumerated for the Table 5.1.

These examples illustrate that the weight assignments generated by our methods

are usually meaningful to humans. Notice that the number of classes to analyze in

the experiments is too high to report, since we have several hundred of block classes.

Further, it is also difficult to show examples of term-level weights, since they assign

different weights for each term occurrence in the page.

Since the bw9 and bw6 methods yield the more intuitive bw values, and present

a bigger capability to discriminate noise from useful information, we only consider the

combined methods (including the term-level bw3 strategy) in our ranking experiments,

which will be discussed in the following chapter.
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bw Factors
Blocks bw4 bw5 bw6 bw7 bw8 bw9

1 1.2010 1.4000 1.6814 7.3415 1.3883 10.1924
2 0.3126 3.3333 1.0419 0.4129 3.5989 1.4860
3 2.7125 9.0000 24.4125 9.4814 8.5198 80.7800
4 0.0000 2.0000 0.0000 0.0000 2.0435 0.0000
5 0.0000 1.0000 0.0000 0.0000 1.2855 0.0000
6 4.4852 10.000 44.8520 9.4952 9.4654 89.8762
7 0.4765 2.7500 1.3103 0.8201 2.9844 2.4476
8 0.3900 4.7500 1.8525 3.5666 5.0028 17.8432
9 0.5217 3.2857 1.7141 4.5606 3.3337 15.2034

10 3.3834 3.1176 10.5480 8.0418 2.5623 20.6057
11 0.0000 1.0000 0.0000 0.0000 0.5356 0.0000
12 2.7724 1.1856 3.2869 7.3504 1.2706 9.3398
13 2.0839 4.0000 8.3356 9.3764 4.1492 38.9041
14 1.4606 4.0344 5.8926 8.1832 3.8400 31.4237
15 0.2942 3.1428 0.9246 3.0774 3.6761 11.3127
16 0.9018 2.1935 1.9780 9.2998 1.7369 16.1530

Table 5.2. Examples of bw factors assigned to blocks found in the Web page
depicted in Figure 3.15, extracted from the CNET collection.





Chapter 6

Ranking Using Block-Weight

Functions

In this chapter, we present a simple approach of integrating block-weight functions

into BM25 ranking formula. As we show through extensive experiments we ran on

the 4 Web collections described in Chapter 3, the deployment of our block-weight

functions may allow a significant improvement in the quality of search results. We ran

experiments to compare the quality of search results when using our methods to the

quality obtained when using (i) a BM25 ranking applied to full pages, (ii) a BM25

ranking applied to pages after templates removal, and (iii) a BM25 ranking that takes

into account best blocks. These experiments suggest that our block-weighting ranking

method is superior to all baselines across all collections we used and that average gain in

precision figures from 5% to 20% are generated. Further, our methods decrease the cost

of processing queries when compared to the systems using no structural information,

decreasing indexing storage requirements and increasing the speed of query processing.

75
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6.1 BM25 Extension for Using bw Information

To incorporate the bw(t, b) information in a ranking function, we use an idea previously

described by Robertson et al. [2004], which suggests an adaptation of the BM25 ranking

formula for dealing with documents that have multiple fields.

In the original BM25 model, the similarity ranking sim(ρ, q) of a document (page)

ρ with regard to a user query q is given by the Formula 4.4. As described in Sec-

tion 4.0.5, the BM25 ranking model uses term-frequency factors tf computed relatively

to the whole document (or page) ρ. Based on the proposal by Robertson et al. [2004]

we argue that the computation of tf factors could be done relatively to the blocks that

compose a document (page) ρ. This leads to an alternative term-frequency formula

computed as

tf ′(t, ρ) =
∑
b∈ρ

tf(t, b)× bw(t, b) (6.1)

where tf(t, b) is the term frequency of t in block b of document ρ, and bw(t, b) is one

of our block-weight function, as defined in Chapter 5.

As discussed in Robertson et al. [2004], the k1 parameter in Equation 4.4 controls

the impact of the tf factor in BM25 ranking formula. The adoption of term-frequency

factors tf ′, in place of tf factors, might require a distinct fine-tuning of the parameter

k1. For this, we optimize k1 considering the composite factor

k1 ×
tf ′

tf
(6.2)

where tf ′ and tf are average values computed over all term occurrences in the document

collection.

Additionally, we also adjust the value of nt (see Equation 4.4) to count all pages

ρ for which tf ′(t, ρ) > 0, instead of counting all pages ρ for which tf(t, ρ) > 0. This

adjusted page count is referred to as n′
t. Notice that, in this scheme, only pages that
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have a block b such that bw(t, b) > 0 will be considered in the computation of n′
t.

Given all the considerations above, the similarity ranking sim(ρ, q) of a document

or page ρ with regard to a user query q is modified as follows:

sim(ρ, q) =
∑

t∈ρ∧t∈q

(k1 × tf ′

tf
+ 1)× tf ′(t, ρ)

k1 × tf ′

tf

(
(1− b) + b |ρ|

ρ

)
+ tf ′(t, ρ)

× log
N − n′

t + 0.5

n′
t + 0.5

(6.3)

where the term-frequency tf ′(t, ρ) is given by Equation 6.1, with bw factors computed

using Equations (5.3) to (5.11).

6.2 Experimental Results

To assert the usefulness of our methods, we performed search experiments on the Web

collections described in Section 3.4 (IG, CNN, CNET, and BLOGs), and evaluated the

impact of our methods on the quality of results.

6.2.1 Experimental Setup

To perform the ranking experiments, we compose 50 test queries for each Web collection

described in Section 3.4. The set of test queries for the IG collection is composed of 50

popular queries extracted from a log of queries submitted to the IG Web search service.

Relevance assessments for these queries were made by 85 volunteers from 5 different

Brazilian universities. A pooling method [Hawking and Craswell, 1998; Hawking et al.,

1999] was used to collect relevance judgments. For each of the 50 queries, we composed

a query pool formed by the union of the top 20 documents retrieved by each ranking

method considered in our experiments, and then presented those documents in random

order to the users. To avoid noise and erroneous judgements, each document retrieved

by a given query was evaluated by three distinct volunteers. We considered a document

as relevant to a query when at least two of the volunteers considered it as relevant
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to that query. The relevance evaluations were gathered by presenting the following

question to the volunteers: “If you wish to make a query (in a search engine) about

the proposed theme (a query extracted from the log), would this page fit the profile

of your research?”. In case of a positive answer, the user classified the document as

relevant to the query.

The queries used for experimentation with CNN, BLOGs and CNET collections

were proposed by 50 volunteers who were able to read and understand English texts,

such that each volunteer wrote a single query for each collection. We then inspect

the proposed queries to ensure that all of them are representative. As in the IG

collection, for each query submitted we computed a pool formed by the union of the

top 20 results of all the methods we considered, and then presented those documents

in random order to the users. The relevance evaluations were gathered by presenting

the following question to the volunteers: “The content of the document below attend

the type of content you wanted when you formulated your query?”

6.2.2 Determining the Threshold β

A first question that should be addressed when using our block-based weighting schemes

is to determine the threshold β, which is adopted both by the SOM tree based seg-

mentation and by our ranking methods. We used the semi-automatic segmentation

algorithm to study the impact of choosing different values of β.

The number of elements in a block class affect most the methods based on ICF

and could also affect the bw8, since it is an average of values found in a block class.

Further, it is difficult to study the impact the number of elements in a class in term-

level or block-level bw factors. Thus, we decided to study such impact only in the

class-level bw factors proposed by us, bw7, bw8 and bw9.

To analyze the impact of the number of elements of a block class in the compu-

tation of such bw factors, we randomly selected blocks from block classes found by the
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semi-automatic method in IG and CNN, varying the number of samples taken from

each class in the experiment. Instead of computing the bw factors using the whole block

classes found in these collections, we computed the weight using only the samples.

Thus, let Bn be the set of blocks obtained when we randomly select n blocks from

each block class existing in a Web site collection. For instance, the set B2 has 2 blocks

of each block class of the original collection (with exception of the blocks classes that

contains only one block, that will derive a single block in set B2). Following the same

idea, we create sets of blocks B4, B6, B8... and so on, until n = 50.

We then studied the similarity between the ranking obtained when computing

the weight based on each sample sets (B2,B4,B6, ...,B50) and the ranking obtained

when computing the weight based on the whole collection. We use the Kendall tau

distance [Fagin et al., 2003] to compute the similarity between rankings. The Kendall

tau distance between two ranked lists is a metric that counts the number of pairwise

agreements between the lists. Closer rankings have Kendall tau similarity close to 1,

and value 1 means completely equal ranking.

Figure 6.1 shows the results of Kendall tau obtained when varying the samples

used to compute the weights in CNN (a) and IG: (b) when using bw7, bw8 and bw9 as

bw factors. Notice that for the three bw factors studied, in both collections, the ranking

obtained quickly converges to the one obtained when computing the bw factors taking

the whole collections as input. Particularly, we observed that the rankings are almost

similar when taking samples with more than eight elements. Further, the differences in

the ranking grow fast as the as we reduce the number of elements. Thus, we assigned

the value 8 to the threshold β in our experiments.

6.2.3 Baselines

We adopted 3 different baselines to evaluate the impact of our methods on the search

results. The first baseline uses BM25 [Robertson and Walker, 1994] with no block
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information, which is similar to considering the collection as a plain text collection.

This baseline, whose ranking is based on Equation 4.4, is referred to as BM25 in

our experiments. The BM25 parameters were set to k1 = 1.2 and b = 0.75, which

are reasonable values that work well for most collections [Robertson et al., 1996;

Robertson and Walker, 2000].

In the second baseline method, we manually removed all the templates for the

Web pages, and then applied the BM25 ranking formula in Equation 4.4 to the re-

maining contents. This second baseline method will be referred to as BM25NT,

which means BM25 without templates. Notice that the first two baselines do not use

block information.

The third baseline is the method proposed in Cai et al. [2004b] that computes

two rankings to each user query: 1) a document-based ranking (DR), given by BM25

(Equation 4.4), in which whole documents are considered; and 2) block-based ranking

(BR), that is the ranking given by BM25 to the best-ranked block of each document

(or page). The two rankings are then combined as follows:

sim(ρ, q) = α rankDR(ρ, q) + (1− α) rankBR(ρ, q) (6.4)

where rankDR(ρ, q) is the position of the document ρ in the BM25 document-based

ranking for query q, and rankBR(ρ, q) is the position of the document ρ in the BM25

block-based ranking for query q. In our experiments the best values obtained for α

were 0.4 for IG and 1 for the other collections. This method will be referred in the

experiments as BM25BB (BM25 with best blocks). This approach was chosen because

it is an alternative ranking strategy proposed in the literature [Cai et al., 2004b] which

also attempts to take advantage of structural information to improve results.
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6.2.4 Ranking Results

To compare the various ranking formulas, we adopted two evaluation metrics. The first

metric is the traditional mean average precision (MAP) and the second if precision at

10 (P@10), which measures the amount of relevant documents in the top 10 answers

provided on each system [Baeza-Yates and Ribeiro-Neto, 1999].

6.2.4.1 Comparing the Baseline Ranking Formulas

Our first set of experiments aim at comparing ranking results generated by the BM25

and BM25BB baselines. Table 6.1 depicts the results baselines to the four collections

adopted. As one can see, the performance of BM25 and BM25BB baselines are the

same for collections CNN, BLOGs and CNET and very similar for the IG collection.

This is because the training phase yielded α = 1 for the first three collection and

α = 0.4 for the IG collection (see Equation 6.4). These results suggest that, in many

cases, the block retrieval ranking by BM25BB is not useful to improve retrieval, and

that the use of block information is not always a guarantee of better results.

Methods P@10 MAP
IG BM25 0.593 0.621

BM25BB 0.581 0.625
CNN BM25 0.612 0.691

BM25BB 0.612 0.691
BLOGs BM25 0.584 0.644

BM25BB 0.584 0.644
CNET BM25 0.476 0.458

BM25BB 0.476 0.458

Table 6.1. Results obtained by BM25 and BM25BB baselines.

Next, we compare results obtained by the BM25 and BM25NT baselines. Table

6.2 depicts the results achieved by the two baselines for the four collections adopted. As

one can see, it is not clear which ranking method is better for the IG, CNN and BLOGs

collections. For CNET collection, the Wilcoxon test revealed that the improvements

obtained by BM25NT were statistically significant at p < 0.05, when using P@10.
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However, the improvements obtained in the CNET collection are consequence of a

peculiarity of its query set, which contains many terms that appear in the templates

of pages. When checking the results, we realized that BM25NT is superior to the

BM25 baseline only for these queries. That is, despite the general belief that template

removal may improve the quality of search results [Vieira et al., 2006; Yin and Lee,

2004], our results suggest that, in view of the queries we used for experimentation, the

improvements are not consistent across various sites, and that template removal is able

to achieve superior results only in special cases.

Methods P@10 MAP
IG BM25 0.593 0.621

BM25NT 0.571 0.649
CNN BM25 0.612 0.691

BM25NT 0.602 0.704
BLOGs BM25 0.584 0.644

BM25NT 0.594 0.632
CNET BM25 0.476 0.458

BM25NT 0.534 0.481

Table 6.2. Results obtained by BM25 and BM25NT (BM25 removing tem-
plates).

We conclude that our three baselines, BM25, BM25NT and BM25BB, yield sim-

ilar results and that, in the context of our 4 test collections, are basically equivalent.

Thus, in the remaining of our experiments, we considered just the BM25 baseline.

6.2.4.2 Results for the Block-Weight Ranking Formulas

Table 6.3 presents the results obtained when we modify the BM25 ranking formula to

use the bw3, bw6 and bw9 weighting functions, according to Equation 6.3, and apply

them to our 4 test collections segmented by both semi-automatic and automatic al-

gorithms. The first important observation is that the three bw factors yield improved

results relative to the alternative of using no bw factor, for both segmentation meth-

ods. Our block-based ranking methods achieve improvements in most of the cases,
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which suggests that the bw factors introduce complementary information about the

importance of specific term occurrences inside blocks of the page.

We applied the Wilcoxon statistical test with a 95% confidence level to analyze

the results. The statistically significant results are represented in bold in Table 6.3.

We first consider the values obtained with the collections segmented by the semi-

automatic approach, which is expected to provide the best segmentation results and

thus is useful to compare the methods in a scenario which minimizes noisy provided

by possible segmentation errors. For this segmentation approach, the bw6 and bw9

achieved significant improvements for all metrics when compared to BM25 without bw

factors for the IG, CNN and CNET collections. For BLOGs, the improvement of these

two methods was significant only for the MAP metric. Considering the term-based bw3

method, the results are statistically significant for all metrics with the IG and CNN

collections. For BLOGs, the improvements obtained by bw3 are not significant in both

P@10 and MAP metrics; and for CNET, only for P@10 the results are significant.

For the automatic segmentation approach, the bw6 and bw9 achieved significant

improvements for all metrics when compared to BM25 without bw factors only for

the IG and CNN collections. As for semi-automatic segmentation approach, the im-

provement of these two methods in BLOGs collection was significant only for the MAP

metric. On the other hand, the results of bw6 and bw9 methods in CNET collection

were significant only for the P@10 metric, which is a result quite different from those

found in semi-automatic approach. We also observe that the performance of bw3 is

significant for all metrics only for CNN collections. For IG, the improvements obtained

by the term-based method are significant only for MAP metric. For BLOGs, the im-

provements of these method are not significant in both P@10 and MAP metrics; and

for CNET, only for P@10.

Table 6.4 presents a comparison between the results of the automatic and semi-

automatic segmentation for our method using bw6 and the bw9 factors. The values

obtained for most cases are higher when using the semi-automatic method. However,
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IG CNN
bw factor P@10 MAP P@10 MAP

BM25 0.594 0.621 0.612 0.691
semi- bw9 0.667(12.3%) 0.749(20.6%) 0.642(04.9%) 0.786(13.7%)

automatic bw6 0.653(09.9%) 0.730(17.5%) 0.648(05.9%) 0.800(15.7%)
bw3 0.655(10.3%) 0.698(12.4%) 0.638(04.2%) 0.769(10.0%)

automatic bw9 0.659(10.9%) 0.733(18.0%) 0.630(02.9%) 0.779(12.7%)
bw6 0.655(10.2%) 0.715(15.1%) 0.636(03.9%) 0.790(14.3%)
bw3 0.634 (06.7%) 0.680(09.5%) 0.628(02.6%) 0.759(09.8%)

BLOGs CNET
bw factor P@10 MAP P@10 MAP

BM25 0.584 0.644 0.476 0.458
semi- bw9 0.604 (03.4%) 0.678(05.3%) 0.552(16.0%) 0.498(08.7%)

automatic bw6 0.610 (04.4%) 0.675(04.8%) 0.558(17.2%) 0.513(12.0%)
bw3 0.588 (00.7%) 0.628 (-2.5%) 0.545(14.5%) 0.482 (05.2%)

automatic bw9 0.602 (03.4%) 0.677(05.1%) 0.512(07.5%) 0.470 (02.6%)
bw6 0.604 (04.4%) 0.671(04.2%) 0.527(10.8%) 0.445 (-2.8%)
bw3 0.592 (00.7%) 0.632 (-1.8%) 0.514(08.0%) 0.459 (00.2%)

Table 6.3. Results obtained when using the three alternative bw factors and us-
ing no bw factor (BM25). The percentages indicates the average gains in precision
figures and results in bold are statically significant.

the fully automatic method has the advantage of not requiring manual intervention at

any point of the segmentation process. Further, we applied Wilcoxon statistical test

to compare the results and concluded that the difference is not significant in most of

the cases (values where the difference between the automatic and the semi-automatic

methods is significant are represented with bold in the winner option). From the

results, we can say that the automatic method performed worse in CNET .

When investigating the cause for the worse performance of the automatic method

in CNET, we realized that it is due a single problem. As discussed in Section 3.4.1.2,

the segmentation process of the CNET collection has fail due to small differences in the

structure of pages, fact that created a larger number of blocks in that collection. This

fact occurred due the many number of lists (such as a list of virtual markets that sell

the product of a page in the CNET Shopper) that the semi-automatic segmentation

approach identified as a single block, while the automatic approach identified as a set

of blocks (one block to each element of the list). We found that such irregularities
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do not affect the ICF factor, but affect significantly the Spread based measures, since

these lists do not belongs to the main sections of the pages, and then many terms of

them received a spread degree bigger than the terms of the main regions.

These results suggest that the BM25 ranking formula modified using two of our

bw factors, bw6 and bw9, were consistently superior to the BM25 baseline, while the

BM25NT and BM25BB baselines provided no clear improvements. While our exper-

iments do not allow concluding which method is better (bw6 or bw9), they show that

both strategies of computing bw factors introduce complementary information about

the term occurrences, and that significant improvements can be obtained when consid-

ering the structure of documents in information retrieval models.

semi-automatic automatic
Collection bw Factor P@10 MAP P@10 MAP

IG bw9 0.667 0.749 0.659 0.733
bw6 0.653 0.730 0.655 0.715

CNN bw9 0.642 0.786 0.630 0.779
bw6 0.648 0.800 0.636 0.790

BLOGS bw9 0.604 0.678 0.602 0.677
bw6 0.610 0.675 0.604 0.671

CNET bw9 0.552 0.498 0.512 0.470
bw6 0.558 0.513 0.527 0.445

Table 6.4. Comparison between results obtained when using the automatic and
the semi-automatic segmentation methods.

6.2.5 Index Pruning Using bw Factors

The bw factors quantify how important is a given term occurrence for ranking purposes.

In this context, when bw = 0 for all occurrences of a term t in a given page ρ, i.e.,

tf ′(t, ρ) = 0, the presence of the term in the page has no effect on retrieval results. By

identifying and removing these entries from the inverted file index we can prune the

index and reduce its size, which also allows speeding up query processing [Moura et al.,

2008].
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In this section, we study the use of bw3, bw6 and bw9 weights to prune index

entries. Notice that the amount of pruning performed by each one of these strategies

is determined by the ICF factor associated to them. For instance, for the term-level

strategy, whenever a given term t occurs in all blocks of a class C (i.e., ICF (t, C) =

0), then bw3(t, b) = bw1(t, b) = 0 ∀b ∈ C. For the block-level strategy, bw6(t, b) =

bw4(t, b) = 0 only when all terms of b also occurs in all other blocks of the class of b.

At last, for the class-level strategy, bw9(t, b) = bw7(t, b) = 0 only when the content of

all blocks of C is equal.

Table 6.5 shows the percentage of deleted index entries obtained with the three

bw schemes. As one can see, the percentage of pruning obtained with bw6 and bw9

weights is similar. With bw3 weights, the percentage of pruning is higher, particularly

in the case of the CNET collection. This happens because, for bw6 and bw9 methods,

the terms of a block or class are pruned only when all of then have ICF value equal to

zero. For instance, for bw6, if a single term of a block has ICF bigger than zero, then

the content of the block cannot be pruned. On the other side, bw3 is a measure based

on ICF value of only one term, so as this method prune all terms of the index with

ICF value equal to zero.

bw3 bw6 bw9

IG 27.9% 20.5% 19.7%
CNN 12.1% 08.3% 07.2%

BLOGs 22.6% 11.1% 12.0%
CNET 34.5% 10.4% 09.3%

Table 6.5. Percentual of deleted index entries performed by bw3, bw6 and bw9

methods.
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Figure 6.1. Kendall tau distance between ranking results obtained when com-
puting bw factors based on the whole collection and ranking of results ob-
tained when computing bw factors based on the blocks available on collections
B2,B4,B6, ...,B200. (a) The graph obtained from IG collection; and (b) the graph
obtained from CNN collection.





Chapter 7

Conclusions and Further Work

In this chapter, we present a brief summary of the achievements of this work. In Section

7.1, is presented a the summary of this work and a final analysis of the results obtained

here. Following, in Section 7.2, we present directions for further research.

7.1 Thesis Summary

In this work, we proposed methods that improve the quality of search results by taking

advantage of structural information available on Web site collections. For that, we

proposed (i) a new approach for representing Web sites in information retrieval systems

based on the internal structure of their Web pages; (ii) a method of analyzing Web

pages to automatically detect their internal structure; and (iii) new term weighting

schemas for Web document collections that leads to improve ranking by considering

the location (or block) of the terms occurrences within the Web pages.

Previous approaches of using page structure information to improve the quality

of results in Web search have shown the potential of the technique. However, if uncov-

ering page structure requires a costly manual segmentation, the technique becomes not

practical. In this thesis, we proposed a fully automatic method of page segmentation

to identify the major constituent blocks of a Web page and also to cluster blocks found

89
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in a Web site into block classes. As we show through experiments, our segmentation

method yields results that are close to the perception of users about how each page

should be divided into blocks, and achieved a segmentation performance better than

those achieved by Chakrabarti et al. [2008], which is an recent work of the literature

that approached the Web page segmentation problem from a textual perspective.

Starting with basic intuitions provided by the concepts of term frequency and

inverse document frequency, we proposed 9 block-weight functions to distinguish the

impact of term occurrences inside page blocks, instead of inside whole pages. We used

two types of measures to compose the block-weight functions. One of them measure

the amount of information that carries an occurrence of a term in the a block class,

adopting a metric we call Inverse Class Frequency, or ICF . The second type of measure

captures how spread is a term in the blocks of a Web page, adopting a metric we call

Spread. This measure is based on the assumption that blocks with terms spread also

in other blocks have a higher chance of being more related to the main subject of their

respective pages, implying also in higher weights.

The block-weight functions are then used to compute a modified BM25 rank-

ing function. We compare the effectiveness of our functions against three baselines,

by running extensive experiments on 4 Web collections. The first did not consider

any structural (block) information. The second one applied a template removal pre-

processing. And the third one used a training process to optimize the combination of

ranks when considering the whole documents and the blocks as retrieval units. Our

results suggest that our block-weighting functions incorporate complementary infor-

mation on the occurrence of terms inside blocks and, because of that, yield superior

results relatively to all three baselines across all 4 Web collections we used, and the

average gain in precision figures from 5% to 20% are generated.

Also of interest, our experiments suggest that the simple removal of templates

from Web pages does not necessarily lead to improved results. Indeed, for 3 of our test

collections, results obtained with template removal were equivalent to results without
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template removal, for the queries we experimented with.

7.2 Further Work

Block information can be applied to other interesting applications that were not consid-

ered in this work. For instance, it can be used to indicate blocks with useless content,

which can negatively impact the performance of searching tasks. The detection and

removal of noisy content will be considered in future works. Further, we are also in-

terested in studying the impact of block importance information on other information

retrieval tasks, such as clustering, filtering tasks and classification of documents.

As discussed in Chapter 3, the results of our automatic segmentation algorithm

were far different from the semi-automatic method for CNET collection. When checking

the results, we realized that this is due to irregularities in the page structures found in

CNET, which affect the automatic identification of recurrent structures. To resolve this

problem, we pretend to study new methods for identifying these recurrent regions in the

DOM trees of Web pages. An idea is to use information extraction techniques that aim

to identifying recurrent regions to extract particular information from Web documents

containing multiples records aligned in a regular way [Liu et al., 2003; Mehta et al.,

2005; Álvarez et al., 2008].

We are also interested in experimenting with some variations of the ideas pro-

posed in this thesis. For instance, our methods work only with flat block divisions in

the Web page collection, which suggests that they can be expanded to process Web

page collections in which the page structure is modelled as a hierarchy, including the

possibility of nested blocks.

Finally, we are interested in studying the impact of using block information when

searching on the Web. To do this, we are working on new block-weight functions

based on link information and anchor-text. Preliminary results suggest that anchor

text can also be useful to identify the importance of the occurrence of a given term in a
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block. Eiron and McCurley [2003] found that anchor texts is typically less ambiguous

than other types of texts; thus they could can be used to produce a good representation

of Web pages. Glover et al. [2002] reached the same conclusion. Our idea is to use

anchor texts to identify how well the terms of a block or block class represent the

content of Web pages. The first results obtained with this approach are promising.
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