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Resumo

Quando múltiplas fontes de dados estão disponíveis para serem mineradas, geralmente

é necessário um processo a priori de integração de dados. Tal processo pode ser cus-

toso e não levar a bons resultados, visto que informação importante possivelmente

será descartada. Nesta dissertação se propõe o uso de agrupamento com restrições e

agrupamento espectral como estratégias para integrar fontes de dados sem perda de

qualquer informação. O processo consiste basicamente em adicionar as fontes comple-

mentares na forma de restrições que os algoritmos de agrupamento devem satisfazer,

ou utilizá-las para aumentar a similaridade entre pares de objetos para os algoritmos

de agrupamento espectral.

Como uma aplicação concreta desta abordagem, esta dissertação foca no pro-

blema de previsão de funções enzimáticas, que é uma tarefa complexa, geralmente

realizada por meio de trabalho experimental intensivo. Agrupamentos com restrições

e espectral são empregados como meios de integração de informação proveniente de

diversas fontes, e a forma como tal informação impacta a qualidade dos resultados em

um cenário de agrupamento de enzimas é analisada. Os resultados mostram que o

uso de conhecimento de domínio melhora, em geral, a qualidade dos agrupamentos em

comparação com os resultados obtidos utilizando apenas a base de dados principal.

Palavras-chave: agrupamento com restrições, agrupamento de enzimas, agrupamento

espectral, integração de dados.
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Abstract

When multiple data sources are available for data mining, an a priori data integration

process is usually required. This process may be costly and not lead to good results,

since important information is likely to be discarded. In this master's thesis, we pro-

pose constrained clustering and spectral clustering as strategies for integrating data

sources without losing any information. The process basically consists of adding the

complementary data sources as constraints that the clustering algorithms must sat-

isfy, or using them to increase the similarity between pairs of objects for the spectral

clustering algorithms.

As a concrete application of our approach, we focus on the problem of enzyme

function prediction, which is a hard task usually performed by intensive experimental

work. We use constrained and spectral clustering as means of integrating information

from diverse sources, and analyze how this additional information impacts clustering

quality in an enzyme clustering application scenario. Our results show that the use of

such additional information generally improves the clustering quality when compared

to the results using only the main database.

Keywords: constrained clustering, data integration, enzyme clustering, spectral clus-

tering.
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Chapter 1

Introduction

In recent years, there has been a general increase in the amount of data publicly

available worldwide. This is true for various areas of knowledge, particularly in the

�eld of Bioinformatics, where massive amounts of data have been collected in the

form of DNA sequences, protein sequences and structures, information on biological

pathways, etc. This has lead to diverse and scattered sources of biological data.

Protein function prediction, and especially enzyme function prediction (which in-

volves predicting the reaction it catalyzes, its mechanisms, substrates and products),

is a very active Bioinformatics research topic. This is due to the exponential increase

in the number of proteins being discovered because of sequenced genomes, to the di�-

culties in experimentally characterizing enzyme function and mechanisms, and to the

potential biotechnological use of newly discovered enzyme functions. Predicting a pro-

tein's function is a hard task usually performed by labor-intensive experimental work

or in a semi-automatic manner using sequence homology. This problem may vastly

bene�t from clustering techniques, since they allow the creation of groups of similar

proteins that can be jointly studied. Seeing that similar proteins are likely to have

similar functions, this would facilitate function prediction.

The manner in which biological information is scattered in so many di�erent

datasets poses a challenge for clustering algorithms. Valuable information is spread

among mostly unstandardized, redundant and incomplete repositories across the World

Wide Web. The Protein Data Bank (PDB), for instance, which is a repository of three-

dimensional structural data, may have dozens or even hundreds of entries for the same

molecule. The various data sources call for data integration, which usually would be

performed before the actual clustering algorithm is applied.

1



1. Introduction 2

1.1 Data Integration

Data mining often requires data integration, which is the combination of data from

multiple sources into a coherent dataset. Various issues must be considered during

data integration, such as what is referred to as the entity identi�cation problem: how

can equivalent real-world entities from multiple data sources be matched up? Also,

some attributes representing a given concept may have di�erent names in di�erent

databases, causing inconsistencies and redundancies. Metadata may be used to help

avoid errors in schema integration [32].

An issue that must be faced is redundancy, which occurs when a given attribute

can be derived from other attributes, or when there exist inconsistencies in attribute

names. Having a large amount of redundant data may slow down or confuse the data

mining process. According to Han and Kamber [32], some redundancies can be detected

by correlation analysis, which measures how strongly one implies the other based on

the available data. A strong correlation may imply that one of the attributes can be

removed as a redundancy. One must note that correlation among attributes does not

necessarily imply that one causes the other. Apart from attribute redundancy, tuple

duplication also must be detected and dealt with. Failing to use normalized database

tables, for example, is a source of redundancy. Duplicates can also cause inconsistencies

due to inaccurate inputing or incomplete updating.

The data integration process must also deal with detecting and resolving con�icts

between data values. Di�erent sources may have di�erent attribute values for the

same real-world entity for example, possibly due to di�erent representations, scaling or

encoding [32]. The structure of the data must be carefully considered when matching

attributes from one database to another in order to ensure that any attribute functional

dependencies and constraints in the source system match those in the target system.

According to Han and Kamber [32], some challenges in data integration are the

semantic heterogeneity and structure of data. A careful integration process can help

reduce redundancies and inconsistencies in the resulting dataset, which in turn can

help improve accuracy and speed of the subsequent data mining process. However, a

careful data integration process inevitably presents a high cost.

Such a priori data integration is hard and may not lead to good results, since

important information could be discarded in the process. A solution to the problem

of integrating various data sources without losing any important information is con-

strained clustering, which is simply the process of starting from a basic clustering and
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adding the supplementary information as constraints to be satis�ed by the clustering

algorithm. This allows the clustering problem to be incrementally solved, using the

truly useful information without the cost of an a priori data integration process. Using

additional datasets in the form of constraints or to increase the similarity between a

pair of objects in a similarity matrix instead of performing a complete data integra-

tion process, as done in this thesis, saves time and computational resources, as well as

avoids that valuable data be discarded.

In this master's thesis, we use constrained clustering and spectral clustering tech-

niques as means of integrating information from diverse sources so as to verify the

manner in which additional information other than the dataset itself impacts the clus-

tering results. The chosen application scenario is that of clustering enzymes, and three

di�erent approaches are used: clustering enzyme families; clustering subfamilies when

multiple families are combined; and clustering subfamilies inside a single enzyme fam-

ily, which is the problem of determining di�erent substrate speci�cities in a family of

enzymes able to recognize the same overall substrates.

1.2 Objectives and Justi�cation

The main goal of this master's thesis is to analyze how the integration of various data

sources via constrained and spectral clustering a�ects the quality of the results in an

enzyme clustering application scenario. The speci�c objectives of the thesis are:

• The study of constrained clustering and spectral clustering techniques reported

in the literature;

• The extension of classic unconstrained clustering methods by introducing con-

straints;

• The implementation of constrained clustering and spectral clustering techniques;

• The application of constrained clustering and spectral clustering techniques to

the problem of clustering enzymes;

• The comparison of the results with those obtained by unconstrained versions of

the same clustering techniques.

The application of the proposed techniques to enzyme clustering might lead to

important information about enzyme function and structure, as well as functional
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diversi�cation acquired throughout family evolution. This type of methodology, which

joins information from diverse and possibly incomplete sources, is of great interest

because such sources complement each other.

The integration of information from multiple knowledge domains allows the

algorithms to work with as much information as possible. This is extremely relevant

to the problem of clustering enzymes by speci�city, since substrate speci�city involves

much more than just sequence similarity. The genomic context in which the genes

that code such enzymes are located should be evaluated since, in general, proteins

whose encoding genes are close to each other in the genome are more likely to have

similar functions [36]. Proteins from the same family but whose encoding genes are in

very di�erent contexts probably present substrate di�erences. This way, proteins with

high synteny in terms of genomic context should be assigned to similar clusters.

This kind of methodology is also of great interest for its ability to raise hypotheses

about the active site and the residues that determine speci�city in a family of enzymes

of unknown function, and may subsequently be useful in laboratory experiments aimed

at �nding new enzymes of biotechnological potential and reengineering of such enzymes.

The main contributions of this work are the knowledge of whether or not adding

information from external sources to the database is able to improve the clustering

quality for this application; the di�erent strategies for gathering and integrating such

additional information to the main database for this particular biological problem; and,

most importantly, the possibility of using domain knowledge to cluster enzymes.



Chapter 2

Clustering

Clustering is an important Data Mining technique which groups similar objects without

the need for any supervised information. It can be de�ned as the process of dividing a

set of objects into groups, each of which represent a signi�cant subpopulation, so that

objects within a cluster have high similarity in comparison to one another, but are very

dissimilar to objects in other clusters. Such objects may be database records, graph

nodes, words, images or any collection of individuals described by a set of attributes or

relationships [7]. According to Han and Kamber [32], a cluster of data objects may be

treated collectively as one group. Therefore, clustering may be considered as a form of

data compression.

Cluster analysis has been widely used in numerous applications, such as market

research, pattern recognition, data analysis, and image processing. It is adaptable to

changes and helps single out useful features that distinguish di�erent groups. Various

categories of clustering techniques exist, such as methods based on partitions, hierar-

chies, densities, grids and models, as well as methods for high-dimensional data and

constraint-based clustering [32].

According to Han and Kamber [32], as a Data Mining function, clustering may

be used as a stand-alone tool to gain insight into the distribution of data, to observe

the characteristics of each cluster, or to focus on a particular set of clusters for further

analysis. It may also serve as a preprocessing step for other algorithms such as char-

acterization, attribute subset selection, and classi�cation, which would operate on the

detected clusters and the selected attributes or features.

Typical requirements of clustering are scalability; the ability to deal with dif-

ferent types of attributes and to discover arbitrarily shaped clusters; minimal domain

5
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knowledge requirements in order to determine input parameters such as the desired

number of clusters; the ability to deal with noisy data and with high dimensionality;

incremental clustering and insensitivity to the order of input records; constraint-based

clustering; and interpretability and usability [32].

2.1 Partitioning Methods

In this master's thesis we study partitioning methods, whose basic idea is, given a

database of N objects, to construct K partitions of the data, with each partition

representing a cluster and K ≤ N . Partitioning methods divide the data into K

groups (i.e., clusters), which must satisfy the following requirements:

• each group must contain at least one object;

• each object must belong to exactly one group.

Given the number K of partitions to construct, a partitioning method creates an

initial partitioning, after which it uses an iterative relocation technique that attempts

to improve the partitioning by moving objects from one group to another. In general, a

partitioning is considered good if objects in the same cluster are related to each other,

whereas objects from di�erent clusters are very dissimilar [32].

Finding the global optimal partitioning would require exhaustive enumeration of

all the possible partitions. Instead, according to Han and Kamber [32], most applica-

tions adopt one of two popular heuristic methods:

• the K-Means algorithm, where each cluster is represented by the mean value of

the objects in it; or

• the K-Medoids algorithm, where each cluster is represented by one of the objects

located near the center of the cluster.

Such heuristics work well for �nding spherical-shaped clusters in small to medium-

sized databases. However, partitioning-based clustering methods need to be extended

in order to �nd clusters with complex shapes and for clustering very large databases.

Constrained clustering is a way of doing this. In this thesis, K-Means and K-Medoids

are used to work with numerical and categorical attributes, respectively. Such algo-

rithms have been chosen for this thesis in order to analyze the e�ect of integrating

domain knowledge via constraints in constrained versions of these classic and widely

applied clustering algorithms.
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2.1.1 K-Means

The idea behind the K-Means clustering method is described in Algorithm 2.1. First,

K of the N objects are randomly selected to initially represent a cluster mean or

center. Each of the remaining objects is assigned to the cluster to which it is the most

similar, based on its distance from the cluster mean. The algorithm then computes the

new mean for each cluster. This process iterates until the clusters stop changing or a

criterion function converges. K-Means is sensitive to outliers because an object with

an extremely large value may substantially distort the data distribution.

Algorithm 2.1 K-Means Clustering Algorithm [32]
Input: number of clusters K and dataset D containing N objects
1: arbitrarily choose K objects from D as the initial cluster centers
2: repeat
3: (re)assign each object to the cluster to which it is the most similar, based on the

mean value of the objects in the cluster
4: update the cluster means, i.e., calculate the mean value of the objects in each

cluster
5: until no change
Output: a set of K clusters

2.1.2 K-Medoids

Instead of taking the mean value of the objects in a cluster as a reference point, actual

objects can be picked to represent the clusters, with one representative object per

cluster. Each remaining object is clustered with the representative to which it is the

most similar. The partitioning method is then performed based on the principle of

minimizing the sum of the dissimilarities between each object and its corresponding

reference point. In general, the algorithm iterates until, eventually, each representative

object is actually the medoid (i.e., the most centrally located object) of its cluster [32].

This is the basis of the K-Medoids clustering method, described in Algorithm 2.2.

As with K-Means, the initial representative objects are arbitrarily chosen. The

iterative process of replacing representatives with nonrepresentative objects continues

as long as the quality of the resulting clustering is improved. Such quality is estimated

using a cost function that measures the average dissimilarity between an object and the

representative of its cluster. In order to determine whether or not a nonrepresentative

object orandom is a good replacement for a current representative oj, four cases must be

examined for each of the other nonrepresentative objects p:
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Algorithm 2.2 K-Medoids Clustering Algorithm [32]
Input: number of clusters K and dataset D containing N objects
1: arbitrarily choose K objects from D as the initial representative objects
2: repeat
3: assign each remaining object to the cluster with the nearest representative object
4: randomly select a nonrepresentative object orandom
5: compute the total cost S of swapping representative object oj with orandom
6: if S < 0 then
7: swap oj with orandom to form the new set of K representative objects
8: end if
9: until no change
Output: a set of K clusters

1. p currently belongs to representative object oj. If oj is replaced by orandom and p

is closest to one of the other representative objects oi, i 6= j, then p is reassigned

to oi;

2. p currently belongs to representative object oj. If oj is replaced by orandom and p

is closest to orandom, then p is reassigned to orandom;

3. p currently belongs to representative object oi, i 6= j. If oj is replaced by orandom
and p is still closest to oi, then the assignment does not change;

4. p currently belongs to representative object oi, i 6= j. If oj is replaced by orandom
and p is closest to orandom, then p is reassigned to orandom.

Each reassignment causes a change in absolute error E, so the cost function

calculates the di�erence in absolute-error value if a current representative object is

replaced by a nonrepresentative object. The total cost of swapping is the sum of

costs incurred by all nonrepresentative objects. If the total cost is negative, then oj is

replaced with orandom, since the actual absolute error E would be reduced. If the cost

is positive, the current representative object oj is considered acceptable and nothing is

changed in the iteration [32]. The process continues until no changes are made.

2.2 Constrained Clustering

Although clustering does not utilize supervised information, in various applications

there is access to additional information or domain knowledge about the types of groups

that are sought in the data. Such supplementary information may occur at object
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level in the form of complementary information about actual similarities between pairs

of objects, of class labels for a subset of the objects, or of user preferences about

the manner in which the items should be clustered; or it may occur at cluster level,

encoding knowledge about the groups themselves such as position, identity, distribution

and size. Constrained clustering emerged from the need for ways to accommodate such

information when available [7].

According to Basu et al. [7], while a clustering problem may be regarded as a sce-

nario in which there is a need to partition a dataset into K groups, for a constrained

clustering problem there is a priori knowledge about the desired partitioning. Con-

strained clustering may be seen as the process of dividing a set of N objects in some

D-dimensional space intoK signi�cant groups while satisfying the imposed constraints.

A constrained clustering algorithm may consider either strict or �exible con-

straints. In the �rst case, all constraints must be satis�ed, so that the purpose is to

minimize the objective function while satisfying the constraints. In the latter case,

the idea is to satisfy as many constraints as possible, but not necessarily all of them,

so that the algorithm's objective function provides a bias towards good clusterings,

while the constraints yield a bias towards a subset of good clusterings with additional

desirable properties [7]. In this master's thesis we are considering strict instance-level

constraints for the constrained clustering algorithms. However, the manner in which

such constraints are applied to spectral clustering may be seen as a form of applying

�exible constraints.

2.2.1 Types of Constraints

A set of instance-level constraints C consists of declarations about pairs of objects,

where a positive or must-link constraint c=(i, j) indicates that instances i and j must

be assigned to the same cluster, while a negative or cannot-link constraint c 6=(i, j)

implies they must be placed in di�erent clusters.

When constraints are available, the clustering algorithm must adapt its solution

to accommodate C instead of simply outputting the partitioning that best satis�es its

objective function [7]. Figure 2.1 presents an example of clustering that satis�es all

three pairwise constraints, in which the unconstrained algorithm produces a clustering

that prioritizes weight, while the constrained algorithm yields a completely di�erent

clustering, prioritizing height.
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Figure 2.1. Example of clustering that satis�es all constraints. Straight green
lines represent must-link constraints, while the dotted red line is a cannot-link

constraint.

Despite seeming simple, these pairwise constraints have interesting properties.

Must-link constraints are symmetric, re�exive and transitive, which allows for addi-

tional constraints to be inferred [9, 83]. Although the same is not true for the cannot-

link constraint set, additional cannot-link constraints can be inferred from the must-link

constraint set as described below.

Considering a graph whose nodes are instances of the dataset, whose edges (i, j)

represent must-link constraints between instances i and j, and considering CC1 and

CC2 to be connected components of this graph, it follows that:

• if there is a must-link constraint c=(x, y) where x ∈ CC1 and y ∈ CC2, then

c=(a, b) constraints can be inferred for all a ∈ CC1 and b ∈ CC2;

• if there is a cannot-link constraint c 6=(x, y) where x ∈ CC1 and y ∈ CC2, then

c 6=(a, b) constraints can be inferred for all a ∈ CC1 and b ∈ CC2 [17].

Constraints have typically been used in clustering algorithms to modify the stage

when instances are assigned to clusters, so as to impose that the constraints be satis�ed

as much as possible; or to train the algorithm's distance function either before or during

clustering. Also, constraints can be used in the initialization phase: the initial clusters

are formed so that the instances with must-link constraints are assigned to the same

cluster, while the instances with cannot-link constraints are placed in di�erent clusters,

after which an unconstrained clustering algorithm is applied [17].

2.2.2 Bene�ts and Problems of Using Constraints

Two main advantages of using constraints reported in the literature are the improve-

ment of the precision in predicting labels for all instances when constraints are gen-
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erated from few labeled data; and the generation of clusters with desirable geometric

properties [17]. Many researchers have shown that, as the number of constraints in-

creases, the precision of the clustering increases as well [5, 18, 41, 51, 83, 84]. When

considering the average of several constraint sets, the performance on label prediction

is typically higher than when constraints are not applied [17].

According to Davidson and Basu [17], two main limitations of constraint usage are

normally disregarded in the literature: feasibility and the fact that not all constraint

sets are useful. When constraints are employed, the clustering problem becomes that

of ��nding the best clustering that satis�es all of the constraints�. However, if poorly

speci�ed, the constraints could directly or indirectly contradict each other so that a

clustering that satis�es all of them does not exist. Davidson and Ravi [18] de�ne the

Feasibility Problem as �given a dataset X, a collection of constraints C, a lower bound

Kl and an upper bound Ku on the number of clusters, does there exist a partition

of X into K blocks such that Kl ≤ K ≤ Ku and all constraints in C are satis�ed?�.

The use of cannot-link constraints might make the feasibility problem intractable and,

therefore, make constrained clustering intractable.

Davidson and Ravi [19] show that the addition of cannot-link constraints may

rapidly over-restrain the constrained clustering problem so that satisfying all con-

straints becomes di�cult. The authors also show that despite having no noise and

being generated from facts, it is still possible that some constraint sets decrease the

clustering precision. According to Wagsta� et al. [85], even when the number of con-

straints remains constant, the precision of the resulting partition greatly varies. The

authors identi�ed two properties that help explain such variations: inconsistency and

incoherence. Inconsistency is the amount of con�ict between the constraints and the

algorithm's objective function and search bias. This measure quanti�es to which de-

gree the algorithm is incapable of discovering the constraints on its own. Incoherence,

on the other hand, is the amount of internal con�ict among the constraints given a

distance metric, and is algorithm independent.

Wagsta� et al. [85] examined the consequences of supplying inconsistent or in-

coherent constraints to di�erent constrained clustering methods and observed that

constraint sets more consistent with the algorithm's bias or more internally coherent

tend to produce the larger gains in precision. Therefore, for scenarios in which the

user can generate multiple constraint sets, it is advisable to select the one with the

least amount of inconsistency and incoherence. When multiple algorithms are avail-

able, choosing the one that presents the least inconsistency should help in yielding the

best quality clustering with the smallest computational e�ort.
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2.3 Spectral Clustering

Spectral clustering has become one of the most popular modern clustering algorithms.

It is simple to implement and can be e�ciently solved by standard linear algebra

software, often outperforming traditional clustering algorithms such as K-Means [81].

However, why it works and what it really does are not obvious.

Two mathematical objects are used by spectral clustering: similarity graphs and

graph Laplacians. Similarity graphs are a nice form of representing the data in case

there is no additional information other than the similarities between objects. Each

vertex vi in the graph represents a data object xi, and two vertices are connected if

the similarity sij between the corresponding data objects is positive or larger than a

certain threshold, with sij being the weight of the edge between them. The idea is

to �nd partitions of the graph such that the edges between di�erent groups have low

weights, while the edges within a cluster have high weights [81].

2.3.1 Graph Construction Methods

Several popular methods exist for transforming a set of data points with pairwise dis-

tances or similarities into a graph. All share the same goal: to model the local neighbor-

hood relationships between the data points. According to von Luxburg [81], theoretical

results on how the choice of similarity graph a�ects the spectral clustering do not exist.

The graph construction methods considered in this thesis are described below.

Fully Connected. Consists of simply connecting all pairs of vertices whose similari-

ties are positive and weighting each edge by the respective sij. Since the graph

is supposed to represent local neighborhoods, this fully connected graph is only

useful if the similarity function itself models local neighborhoods [81].

ε-Neighborhood. All vertex pairs whose similarity is larger than ε are connected.

The resulting graph is commonly considered unweighted, because weighting the

edges would not introduce more information to the graph since the similarities

between connected pairs are roughly at the same scale.

K-Nearest Neighbors (KNN). Vertex vj is connected to vertex vi if it is among

the K nearest neighbors of vi, i.e., if the edge between them is among the K

edges with the largest weights involving vi. This results in a directed graph, and

two strategies may be used to make it undirected:
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• simply ignore the directions of the edges, which yields the K-Nearest Neigh-

bors graph; or

• only connect vi and vj if they are among the K nearest neighbors of each

other, which is called Mutual KNN and yields the Mutual K-Nearest Neigh-

bors graph.

In both cases, the edges are weighted with the similarity of their endpoints. The

Mutual KNN graph is particularly well-suited if one wants to detect clusters of

di�erent densities, since it tends not to connect areas with contrasting densities.

Once the graph construction method is chosen, the values of parameters K or

ε must be determined. According to von Luxburg [81], barely any theoretical results

are known to guide this task. In case the similarity graph contains more connected

components than the number of clusters the algorithm is asked to detect, spectral

clustering will trivially return connected components as clusters. Therefore, unless one

is certain that the connected components are the correct clusters, one should make

sure that the similarity graph is either connected or only consists of few connected

components and very few or no isolated vertices.

2.3.2 Graph Laplacians

Graph Laplacians are main tools for spectral clustering, but according to von Luxburg

[81], there is no unique convention in the literature about which matrix exactly is called

the �graph Laplacian�. Consider G an undirected, weighted graph with a symmetrical

non-negative weight matrix W . The degree di of vertex vi is the sum of the weights

of the edges that involve vi. The graph's degree matrix D is a diagonal matrix, with

di, . . . , dN forming the diagonal. The two types of graph Laplacians considered in this

thesis are described below.

Unnormalized graph Laplacian. De�ned as L = D −W .

Normalized graph Laplacians. Two matrices are called normalized graph Lapla-

cians in the literature. The �rst is a symmetric matrix (Equation 2.1) and the

second is closely related to a random walk (Equation 2.2).

Lsym = D−1/2LD−1/2 = I −D−1/2WD−1/2 (2.1)

Lrw = D−1L = I −D−1L (2.2)
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Details on the properties of each Laplacian may be found in von Luxburg [81].

In this thesis, the unnormalized Laplacian matrix L and the normalized symmetric

Laplacian matrix Lsym are used for performing spectral clustering.

Di�erent spectral clustering algorithms exist, each using one of the graph Lapla-

cians, as described by von Luxburg [81]. Algorithm 2.3 is applied when using the

unnormalized Laplacian matrix L, while Algorithm 2.4 is applied when using the sym-

metric normalized Laplacian matrix Lsym.

Algorithm 2.3 Unnormalized Spectral Clustering [81]
Input: number of clusters K and similarity matrix S ∈ <N×N

1: construct a similarity graph using one of the aforementioned construction methods
and let W be its weighted adjacency matrix

2: compute the unnormalized Laplacian L
3: compute the �rst K eigenvectors ui, . . . , uK of L
4: let U ∈ <N×K be the matrix containing the vectors ui, . . . , uK as columns
5: for i = 1 . . . N do
6: let yi ∈ <K be the vector corresponding to the i-th row of U
7: end for
8: cluster the points (yi)i=1...N in <K with K-Means into clusters C1, . . . , CK

Output: clusters A1, . . . , AK with Ai = {j|yj ∈ Cj}

Algorithm 2.4 Normalized Symmetric Spectral Clustering [81]
Input: number of clusters K and similarity matrix S ∈ <N×N

1: construct a similarity graph using one of the aforementioned construction methods
and let W be its weighted adjacency matrix

2: compute the normalized symmetric Laplacian Lsym

3: compute the �rst K eigenvectors ui, . . . , uK of Lsym

4: let U ∈ <N×K be the matrix containing the vectors ui, . . . , uK as columns
5: form the matrix T ∈ <N×K from U by normalizing the rows to norm 1,
that is set tij = uij/(

∑
k u

2
ik)1/2

6: for i = 1 . . . N do
7: let yi ∈ <K be the vector corresponding to the i-th row of T
8: end for
9: cluster the points (yi)i=1...N in <K with K-Means into clusters C1, . . . , CK

Output: clusters A1, . . . , AK with Ai = {j|yj ∈ Cj}

The idea behind spectral clustering is that the change in representation from

a similarity matrix to a graph and, ultimately, to eigenvectors enhances the cluster-

properties in the data so that the clusters can be trivially detected in the new represen-

tation. Therefore, simple clustering algorithms such as K-Means can then be applied,

as in Algorithms 2.3 and 2.4.



Chapter 3

Application Scenario

Biotechnology is the use of knowledge about biological processes to solve problems

and create useful products. This �eld has emerged with the use of living organisms

in food fermentation (e.g., bread, wine, yogurt, beer), but is currently applied in a

broader sense: the use of living organisms or parts thereof in the production of goods

and services. Biotechnology has shown wide applicability in Agribusiness, in the Food

Industry and in Medicine. It is highly interdisciplinary, involving disciplines such as

Genetics, Biochemistry, Cellular Biology, Chemical Engineering, Information Technol-

ogy, and Robotics [54].

Some of the main challenges that must be faced in order to make progress in

Biotechnology are:

• recognition of protein interaction networks and metabolic pathways;
• prediction of sites in protein surfaces that interact with other biomolecules to

perform the protein's function;
• in silico identi�cation of the functions of proteins that arise with each newly

sequenced genome.

The basic steps to understand the wide spectrum of biological processes that

occur in a living organism are genome sequencing, gene identi�cation and functional

annotation of the genomic products, each of which pose their own challenges. How-

ever, experimental determination of protein functions is likely the most challenging

[87]. According to Brown et al. [11], protein functional characterization has become

the rate-limiting step in putting biological information to practical use. Large-scale

functional annotation e�orts have focused on automated strategies, since more tradi-

tional methods are only e�cient when used on small subsets of the available data.

15
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A gene classi�cation is indispensable for organizing the huge complexity of biolog-

ical relationships [34]. Genes and proteins are generally classi�ed in terms of families,

subfamilies and superfamilies in a taxonomy according to di�erent unstandardized cri-

teria, but usually based on sequential and structural similarity.

The two fundamental conditions to life are the organism's capacity to replicate

itself and its ability to catalyze reactions e�ciently and selectively [59]. Enzymes,

which are the application scenario of this thesis, are a particular category of highly

specialized proteins that catalyze the chemical reactions involved in the metabolism

of all living organisms and represent a signi�cant fraction of the proteome [27]. The

activity of a living system is controlled by enzymes, which are needed so that almost

all cellular processes can occur at signi�cant rates, since enzymes commonly accelerate

a reaction by a factor of 105 to 1017. Reactions necessary for digesting food, sending

nerve signals or contracting muscles, for example, simply would not occur at useful

rates without catalysis. This extraordinary catalytic power is much larger than that

of synthetic or inorganic catalysts [59].

A cell's individuality is largely due to the unique set of enzymes that it is geneti-

cally programmed to produce. The study of enzymes is of great practical importance.

Some diseases, for example, may be caused by excessive enzyme activity. Others, es-

pecially inheritable genetic disorders, may be related to the de�ciency or absence of

one or more enzymes. Also, the measurement of enzyme activity in blood plasma,

erythrocytes or tissue samples is important in the diagnosis of certain illnesses [59].

Enzymes are important practical tools, not only in medicine but also in the chemical

industry, food processing, and agriculture.

In this master's thesis we analyze how the use of diverse sources of domain knowl-

edge a�ects the success rate of the clustering algorithms. In our application scenario of

enzyme clustering, we consider three di�erent problems, all of which aim at determining

patterns responsible for functional di�erentiation:

• clustering enzyme families;

• clustering enzyme subfamilies inside multiple families; and

• clustering enzyme subfamilies inside a single family.

All are challenging problems. In the last case, we aim at the enzymes' sub-

strate speci�city (i.e., their ability to discriminate between a substrate and competing

molecules). We consider that an enzyme family is a group of enzymes that catalyze the

same overall reaction, and di�erent subfamilies recognize di�erent substrates as inputs

for the reaction.
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Predicting an enzyme's function involves predicting the reaction it catalyzes, its

mechanisms, substrates and products. The understanding of molecular function may be

greatly facilitated by information such as structural similarity. However, unfortunately

there is still a small fraction of structures that have been experimentally resolved

compared to the large number of available amino acid sequences. The functions of

20% of the protein families in the Pfam database [26], for instance, remain unknown.

Nevertheless, there are computational methods that allow modeling proteins that have

signi�cant degrees of identity with proteins of known structure.

Relevant Biological Concepts

Some concepts relevant to the understanding of this master's thesis and of the domain

knowledge data used are described in this section.

Homology. Two proteins are homologous if they have an evolutionary relationship,

i.e., if they descend from a common ancestor protein.

Amino Acid Residues. When an amino acid is joined to another, they both lose

elements of water so a covalent bond can form between them. Since part of

the original chemical molecule that de�nes the amino acid is lost, the resulting

molecule is called �amino acid residue� or simply �residue�.

Protein Evolution. As discussed by Nelson and Cox [59], the residues which are

essential for the activity of a given protein are conserved over evolutionary time.

The less functionally important residues may vary over time, i.e., one amino acid

may replace another, and the varying residues may provide information used

to trace evolution. Sometimes such amino acid substitutions are not random.

At some positions in the protein's amino acid sequence, the need to maintain

function may imply that only given substitutions can be tolerated.

Genomic Context. Proteins are chains of amino acids coded by genes, with each

residue being coded by a triplet of nucleotides called a codon. In turn, genes are

segments of a chromosome that correspond to the information required to produce

proteins [59]. The genomic context is the set of neighboring genes in a DNA

strand that may imply functional proximity, since close genes are commonly co-

expressed and involved in the same biological process. Therefore, proteins coded

by genes in similar genomic contexts have higher probability of being involved in
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similar functions, while proteins from the same family but whose encoding genes

are in very di�erent contexts probably present di�erent substrate speci�cities [36].

Possible measures of similarity between the genomic contexts of a pair of genes

are called synteny. In this master's thesis, genomic context forms an additional

data source to be incorporated to the main sequence-based dataset.

Sequence Alignments. Alignments are frequently used to compare biological se-

quences. A global pairwise alignment may be thought of as the process of sliding

one sequence past the other until a good match is found [59]. In case the residues

in the two sequences are identical in a given position, a positive score is assigned

to the match. The sum of the scores provides a measure of alignment quality.

Gaps may be introduced to maximize score in the case when two segments match

well between the sequences, but are separated by a di�erent number of residues

in each sequence. Penalties are applied when gaps are introduced so as to reduce

the total score of the alignment.

Instead of analyzing whether or not the residues are identical, their chemical

properties may be considered so that more conserved amino acid substitutions

receive higher scores. Amino acid substitution matrices are used to determine

what scores to assign to the many possible substitutions [59]. Figure 3.1 shows

an example of a multiple sequence alignment of �ve amino acid sequences. In

this master's thesis, multiple sequence alignments are used as attributes for the

constrained clustering algorithms and to form the basic similarity matrices for

the spectral clustering algorithms. Amino acid substitution matrices BLOSUM62

and PAM30 are utilized as similarity measures.

Figure 3.1. Example of a multiple sequence alignment. Part (a) shows �ve amino
acid sequences of di�erent lengths, while part (b) shows their multiple sequence
alignment.
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Protein Structure. The residues in a protein sequence interact with each other cre-

ating complex folding patterns that determine the protein's tertiary structure,

which is directly related to its function. Di�erent protein sequences may fold into

similar three-dimensional structures, still maintaining function. Therefore, one

can conclude that protein structures are more conserved than the corresponding

sequences. Protein families with distinct folding patterns tend to have di�erent

functions. However, it is possible to �nd proteins with very dissimilar structures

that have the same function (and vice versa) due to convergent evolution.

Simply put, Cuto� Scanning [74] is a method that represents three-

dimensional structure as a histogram of the number of neighbors an atom presents

within varying distances. Di�erent families have distinct folding patterns and,

consequently, characteristic histograms. Such histograms are used as attributes

for the constrained clustering algorithms in this master's thesis.

Structural Alignment. Protein structural alignments are frequently used to detect

functional similarity. Analogous to sequence alignments, the goal of a structural

alignment is to �nd maximal protein substructures that can be superposed so

as to maximize an objective score. A commonly used similarity measure is the

coordinate distance-based Root Mean Square Deviation (RMSD), which measures

the spatial Euclidean distance between superposed residues [67]. In this thesis,

structural alignments are used as an additional data source to be incorporated

to the main sequence-based dataset.

Enzyme Commission (EC) Numbers. EC numbers are a numerical hierarchical

classi�cation scheme for enzymes based on the chemical reactions they catalyze.

This system for naming and classifying enzymes was adopted by international

agreement because of ambiguities caused by previous naming systems and of the

ever-increasing number of newly discovered enzymes [59]. As a system of en-

zyme nomenclature, every EC number is associated with a recommended name

for the respective enzyme [55] and speci�es enzyme-catalyzed reactions instead

of enzymes themselves. Since the catalyzed reaction is the property that distin-

guishes enzymes from one another, it is logical to use it as the basis for enzyme

classi�cation and nomenclature.

The four levels that compose the EC number represent a progressively �ner

enzyme classi�cation. The �rst level indicates the general class of the catalyzed

reaction, the second and third levels depend on di�erent criteria related to the

chemical properties of the substrates and products of the reaction, while the
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fourth level represents the substrate speci�city [3]. The �rst level of EC number

3.4.11.4, for example, indicates the enzyme is a hydrolase, i.e., an enzyme that

uses water to break up some other molecule. The second level (3.4) indicates that

it is a hydrolase that acts on peptide bonds. The third level (3.4.11) indicates

that it is a hydrolase that cleaves o� the amino-terminal amino acid from a

polypeptide, and the complete EC number indicates it is a hydrolase that cleaves

o� the amino-terminal end of a tripeptide.

A given enzyme's EC number can therefore be predicted at four levels, with

the �rst being the easiest, since it can be done by detecting a remote homology.

However, predicting the fourth level is extremely di�cult. Schnoes et al. [68]

estimate that 85% of the annotation errors are located in the lower level of the EC

number. Rost [65] reports that less than 30% of enzyme-enzyme pairs above 50%

sequence identity have entirely identical EC numbers, while Tian and Skolnick

[77] report that pairwise sequence identity of at least 60% is required in order to

transfer all four digits of an EC number with 90% accuracy. Our two approaches

involving subfamily clustering focus on the problem of predicting the fourth level

of the EC number.

Active Sites. An enzyme's active site is the set of residues that form a cavity in

the enzyme's 3D structure where the substrate binds and the chemical reaction

takes place. Chakrabarti and Panchenko [15] studied the co-evolution of residues

in protein families and concluded that functionally important sites tend to be

conserved, while speci�city determining residues are correlated with mutations

in certain positions, leading to functional diversi�cation inside the family, thus

creating subfamilies. In this work, active sites are used both as attributes (i.e., as

a version of the main dataset) and as an additional data source to be incorporated

to the sequence-based main dataset.

Since protein sequences are the target of di�erent evolutionary pressures, certain

positions are highly conserved while others seem to tolerate more alterations, insertions

and deletions. Intuitively, multiple sequence alignments have been widely employed for

detecting such conservations. A protein's function is much more related to its (more

conserved) structure than to its sequence. However, few methods use structural data

and none, to the best of our knowledge, use various forms of domain knowledge to

cluster enzymes as in this master's thesis.



Chapter 4

Literary Review

This chapter presents the theoretical background for this thesis. Section 4.1 gathers

some research on data integration applied to Bioinformatics, Section 4.2 presents re-

search related to constrained clustering, Section 4.3 introduces research on spectral

clustering, and Section 4.4 presents some research related to the application scenario.

4.1 Data Integration

Bioinformatics and genomics cover a wide range of di�erent data formats and repre-

sentations (e.g., sequences, structures, annotations, pathways) that are derived from

experimental and in silico biological analysis and stored, used and manipulated by sci-

entists and machines [71]. This huge volume of data is usually distributed in di�erent

locations, creating the need for tools that integrate the various knowledge domains,

usually using complex information fusion processes.

Freier et al. [25] presented BioDataServer, a concept for user speci�c integration of

life science data based on a mediator architecture in conjunction with freely adjustable

data schemes. Rother et al. [66] developed COLUMBA, an integrated database of

protein annotations which was centered around proteins whose structures had been

resolved, and added as much annotations as possible to the proteins, describing their

properties such as function, sequence, classi�cation, textual description, and participa-

tion in pathways. The authors extracted annotations from seven external data sources

without attempting to remove redundancies and overlaps among them. Instead, they

viewed each data source as a proper dimension describing a protein.

21
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Do and Rahm [22] presented the GenMapper system, which physically integrated

heterogeneous annotation data in a �exible way and supported large-scale analysis of

the integrated data. The system used a generic data model to uniformly represent

di�erent kinds of annotations originating from di�erent data sources. Existing asso-

ciations between objects were explicitly used to drive data integration and combine

annotation knowledge from di�erent sources.

Yamanishi et al. [91] presented a method to infer protein networks from multiple

types of genomic data based on spectral clustering ideas and on a variant of kernel

canonical correlation analysis. According to the authors, the originality was in the

formalization of the protein network inference problem as a supervised learning

problem, and in the integration of heterogeneous genomic data within this framework.

Four types of widely available data were used: gene expressions, protein interactions

measured by yeast two-hybrid systems, protein localizations in the cell, and protein

phylogenetic pro�les. The proposed method outperformed their unsupervised protein

network inference algorithms. Later on, the authors [92] presented methodologies for

inferring enzyme networks from the integration of multiple genomic data and chemical

information in a supervised graph inference framework. The authors concluded that

the prediction accuracy of the network reconstruction consistently improved because

of the introduction of chemical constraints, the use of a supervised approach, and the

weighted integration of multiple datasets.

The resource for distribution and query of three-dimensional structure data of

the Research Collaboratory for Structural Bioinformatics (RCSB) was redesigned to

expand the functionality of the previous website by integrating and providing searcha-

bility of data from over twenty other sources covering genomic, proteomic and disease

relationships [21]. Wittig et al. [88] developed SABIO-RK, a curated database which

contained and merged information about reactions such as reactants and modi�ers,

organism, tissue and cellular location, as well as the kinetic properties of the reac-

tions. The data were manually extracted from literature and veri�ed by curators, with

concern for standards, formats and controlled vocabularies, with this process being

supported by tools in a semi-automatic manner.

In summary, in recent years there has been an increasing concern from the scien-

ti�c community about the need to integrate the various sources of biological knowledge

in order to be able to use them for improving research results and to generally put such

information to practical use.
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4.2 Constrained Clustering

Initial research in the �eld of constrained clustering proposed algorithms capable of

incorporating pairwise constraints on whether or not instances belong to clusters, and

of learning distance metrics speci�c to the problem that lead to desirable clusterings.

The �eld has expanded to include algorithms that use many other types of domain

knowledge to aid the clustering process [7]. The �rst research initiative in the �eld

proposed a modi�ed version of COBWEB [24] that imposed strict pairwise constraints

[82], followed by COP-KMeans [83], a constrained version of the well known K-Means

clustering algorithm. Following the trend of adapting existing methods, Shental et al.

[73] explored a constrained version of the Expectation Maximization (EM) algorithm.

To accommodate constraint noise or uncertainty, other methods consider �exi-

ble constraints, i.e., they aim at satisfying as many constraints as possible, but not

necessarily the entire constraint set [6, 18, 84]. One approach treats constraints as

statements about the true distance or similarity between instances. In this case, a

must-link constraint, for example, implies that the instances involved should be close,

whereas a cannot-link constraint implies they should be far enough apart so as to never

be assigned to the same cluster. This distance may or may not be consistent with the

distance implied by the feature space in which the instances reside. Such inconsistency

may occur when some attributes are irrelevant or misleading with respect to the algo-

rithm's objective function. Once the distance metric is learned, a regular unsupervised

clustering algorithm may be applied to the data using the new metric.

Various methods of distance metric learning have been developed, some limited

to learning only based on must-link constraints [5], while others may also accommodate

cannot-link constraints [41, 89]. HMRF-Kmeans incorporates both constrained cluster-

ing approaches, as straightforward constraint satisfaction and distance metric learning

are combined into a single probabilistic framework [6]. The results obtained by Xing

et al. [89] suggested that combining distance metric learning with must-link constraint

satisfaction leaded to better performance than simply learning the distance metric.

Davidson and Ravi [18, 20] also used constraints to specify interesting spatial

properties. According to the authors, the constraint referred to as δ is used when a

distance equal to or larger than δ must exist between instances of di�erent clusters,

which is equivalent to a conjunction of must-link constraints between all pairs of in-

stances that are closer together than δ. Similarly, the constraint referred to as α, which

limits the cluster diameters to at most α, is equivalent to a conjunction of cannot-link

constraints between all pairs of instances more than a distance α apart. The constraint
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the authors referred to as ε may be used when it is intended that every instance in a

cluster have at least one neighbor within a distance ε, which could be replaced by a

disjunction of must-link constraints [17].

Pensa et al. [62] presented interval constraints, which specify that a given cluster

must include instances with values in a given range. This kind of constraint applies

to attributes with real or otherwise sortable values. For hierarchical clustering, the

constraint referred to as γ may be used when it is desirable that two clusters whose

geometrical centroids are separated by a distance larger than γ cannot be joined [17].

Methods such as MPCK-Means [9] allow the user to specify individual weights

for each constraint, thus treating the problem of varying con�dence per constraint.

MPCK-Means imposes a penalty for violating constraints proportional to the weight

of the constraint that was violated.

A technique similar to constrained clustering in the sense that it also deals with

di�erent data sources is consensus or ensemble clustering. The idea of consensus clus-

tering is to combine di�erent clusterings into a single representative result which would

bring out the common organization in the di�erent datasets and reveal signi�cant dif-

ferences among them [28]. The main distinction between constrained and consensus

clustering is that the �rst uses various possibly incomplete data sources as constraints

to produce a single clustering, whereas the latter combines di�erent clusterings into a

single result.

Among the research that apply constrained clustering to biological scenarios, Zeng

et al. [94] investigated the problem of clustering genes using gene expression data with

additional information in the form of constraints generated from potentially diverse

sources of biological information. The authors adapted MPCK-Means and explored

methods of automatically generating constraints from multiple sources of data, inves-

tigating the e�ectiveness of di�erent constraint sets and demonstrating that, when

appropriate constraint sets are employed, constrained clustering yields more biologi-

cally signi�cant clusters than those produced only using gene expression data.

Schönhuth et al. [69] used a �exible version of constrained clustering [45] to

estimate a mixture model whose components were multivariate Gaussians with diagonal

covariance matrices representing courses of time of gene expression. The secondary data

consisted of occurrences of transcription binding sites in yeast genes. Lastly, Sese et al.

[70] presented a constrained itemset clustering technique that computed the optimal

cluster which maximized interclass gene expression variance between clusters based on

the restriction that only divisions expressed using common features were allowed.
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4.3 Spectral Clustering

Liu et al. [49] studied the ability of HIV-1 protease to develop mutations that conferred

multi-drug resistance, which had been a major obstacle in designing therapies against

HIV. The authors used spectral clustering on the covariance matrices resulting from

sequence covariance analysis of HIV-1 protease sequences from patients subjected to

di�erent speci�c treatments and from untreated patients. The results of the study

disclosed two distinctive clusters or correlated residues, demonstrating the possibility of

distinguishing between the correlated substitutions with appropriate clustering analysis

of sequence covariance data, and a connection between global dynamics and functional

substitution of amino acids.

Perkins and Langston [63] applied spectral graph theory methods to develop a

systematic method for gene expression threshold selection. The authors used a basic

spectral clustering method to examine the set of gene-gene relationships and select a

threshold dependent on the community structure of the data.

Li et al. [47] argued that a natural and promising approach for gene annotation

was to integrate gene microarray expressions and sequences, especially in terms of their

costs to be optimized in clustering. The authors developed an e�cient gene annotation

method with three steps containing spectral clustering over the integrated cost, based

on the idea of network modularity. According to the authors, the results indicated

an advantage in performance of their method over possible clustering or classi�cation-

based gene function annotation approaches using expressions and/or sequences.

4.4 Protein Clustering and Function Prediction

Large-scale protein functional annotation e�orts have focused on automated strategies,

since more traditional methods can only be used e�ciently on small subsets of the

available data. According to Brown et al. [11], automated analysis strategies have

inherent and serious limitations, such as the fact that it has been shown that simple

pairwise sequence comparisons are inadequate for functional classi�cation of proteins

with less than 30% to 40% identity. Thus, methods for automatic annotation must be

able to also use information from domains other than sequence data.

Active site and binding site detection based on sequence and/or structure data

are very active research �elds [4, 8, 13, 29, 30, 35, 46, 58, 60, 64, 75]. In cases when

a protein of unknown function may be linked to a superfamily of multiple foldings
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or functions, determining possible subfamilies might lead to important information

about the protein's function and structure, as well as functional diversi�cation acquired

throughout family evolution.

Livingstone and Barton [50] used multiple sequence alignments and physicochemi-

cal properties of residues to analyze conservations per group. Casari et al. [13] proposed

a sequence representation in the form of vectors and used dimensionality reduction

techniques to project such vectors in fewer dimensions and detect subgroups and func-

tionally important residues. Lichtarge and collaborators [43, 44, 48, 52, 86] proposed

Evolutionary Trace for predicting active sites and functional interfaces in proteins of

known structure. The authors manually determined the clusterings based on sequence

and structure similarity, and searched for conserved residues in each clustering as well as

in the whole family. Afterwards, they mapped these residues to the three-dimensional

structure and used them to search databases for proteins of similar function.

Hannenhalli and Russell [33] explored di�erent hidden Markov models given mul-

tiple sequence alignments of protein subfamilies to detect positions which created sub-

divisions. A great disadvantage of such methods is the need to know the subfamilies a

priori, which is a complicated task to be done manually because of the lack of exper-

imental information on subfamilies. Furthermore, this is an extremely limiting factor

when working with families of unknown function.

Sol et al. [75] presented a set of methods based on phylogenetic trees aiming at

discovering which residues were important for tree rami�cations. Later, the same group

of researchers published another method, this time phylogeny-independent [60]: Xdet,

a supervised method for detecting functional sites in conserved positions in multiple

sequence alignments. Pei et al. [61] presented a method also based on phylogenetic

trees and computed the evolutionary log-likelihood using a random model to compare

and estimate the statistical signi�cance of the predictions. SPEER [14] was another

method that proposed dividing a family into subfamilies based on alignments and on

the amino acid conservation patterns and physicochemical properties.

Capra and Singh [12] described a methodology for identifying the speci�city de-

termining positions that consisted in constructing multiple sequence alignments for

protein families, selecting the residues which were structurally close to ligands, and

�ltering by the conserved residues to detect di�erent subfamilies.

Various authors [43, 44, 48, 52, 86] mapped sequence evolutionary patterns into

structures to search for proteins of possibly similar functions. Yu et al. [93] proposed

a method that, given a multiple sequence alignment, a subfamily classi�cation based
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on Swiss-Prot [10] and a representative structure, determined surface residues that

discerned groups.

Given that the structure tends to be more conserved than the sequence and that

the number of di�erent foldings is limited [16], in many cases it is possible to identify

a homologous protein with known structure to serve as a model for a target sequence.

Such methods have proven to be increasingly reliable [56, 78, 79].

Lichtarge et al. [48] demonstrated that mutations occur more frequently in

surface residues. Residues closer to the protein's core tend to have a structural role,

while functionally important residues commonly tend to occur in the protein's surface

cavities [23]. Among the research related to function prediction, Kitson et al. [40]

proposed a pipeline for functional annotation that used PSI-BLAST [1] and extracted

information about the quality of the models built by homology. Tseng et al. [80]

used a combination between cavity residues and evolutionary data in a small set of

homologous proteins to compose a geometrical pattern that may be used in the search

for proteins of similar functions.

Freilich et al. [26] predicted Enzyme Commission numbers using only sequence

information. Other authors use structural or substrate-product information, such as

Kotera et al. [42], who reported a method that, given pairs of substrates and prod-

ucts, attributes EC numbers up to the third level. Minardi et al. [53] proposed and

implemented a methodology for determining enzyme subfamilies based on the residue

composition of the active sites of the family's homologous enzymes. Hierarchical clus-

tering [24] was used in a dataset that combined information about structural cavities

and the evolution of the family's set of sequences, aiming at determining residue com-

position patterns responsible for functional di�erentiations in a family.

Tian et al. [76] presented EFICAz, an application for enzyme function infer-

ence that combined di�erent methods based on family-dependent sequential similarity

cuto�s, on the presence of patterns of functionally relevant domains and on the identi-

�cation of discriminant residues. Afterwards, the authors added improvements to the

method [2, 3]. Yamanishi et al. [90] proposed a method to predict potential EC num-

bers for substrate-product pairs or uncharacterized reactions, focusing on predicting

the three �rst levels of the EC number.

The results of this research indicate that methods for predicting active sites or

protein functions based on structure and other types of domain knowledge are more

appropriate than those based only on sequence data, and that there exist constraints

to be applied to the problem of clustering enzymes by speci�city.



Chapter 5

Methodology

This chapter describes the methodology applied in this master's thesis. The main steps

are outlined below.

1. Database preparation. Construction of a main database containing the amino acid

sequences, as well as the gathering of additional data sources comprising infor-

mation regarding three-dimensional structures, active sites and genomic contexts

of enzyme families that include subfamilies of di�erent substrate speci�cities;

2. Data preprocessing. Execution of sequence and structural alignments, along with

the study of methods for calculating genomic context synteny;

3. Algorithm design. De�nition of the constraints and of the constrained and spec-

tral clustering methods more appropriate for the problem at hand;

4. Implementation and application of constrained and spectral clustering algorithms.

Development of constrained versions of classic clustering methods and application

of such algorithms to the problem of enzyme clustering;

5. Evaluation. Analysis of the results of applying constrained clustering to the ap-

plication scenario and comparison with unconstrained versions of the algorithms.

Furthermore, analysis of the results of employing spectral clustering with the ad-

ditional data sources and comparison with the results of using simply the main

sequence-based database.

28
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5.1 Data Sources

Three enzyme families are studied in this master's thesis, namely nucleotidyl cyclases,

protein kinases and serine proteases. Each family has a di�erent number of subfamilies:

Nucleotidyl cyclases: adenylate cyclases and guanylate cyclases;

Protein kinases: serine/threonine kinases and tyrosine kinases, which will be referred

to as serthrkinases and tyrkinases, respectively, in the remainder of the text;

Serine proteases: chymotrypsins, elastases, kallikreins and trypsins.

5.1.1 Main Dataset

The main database consists of the enzymes with known Enzyme Commission (EC)

numbers. The information provided by Moss [55] was used to de�ne the EC numbers

for each of the three enzyme families, as shown in Table 5.1. In order to achieve a

more reliable dataset to use as ground truth for analyzing the clustering results, we

are considering only the enzymes that had a reviewed status in the Universal Protein

Resources (UniProt) repository [37] at the time of the data collection, i.e., the enzymes

that had been manually annotated and reviewed. This is due to the fact that automatic

annotation methods might introduce annotation errors, which would jeopardize the

analysis of the results.

Table 5.2 shows the number of enzymes in each subfamily after applying the

aforementioned �ltering process, which yields 56 nucleotidyl cyclases, 83 protein kinases

and 102 serine proteases, totalizing 241 enzymes.

Table 5.1. Enzyme Commission numbers according to Moss [55].

Family Subfamily EC Number(s)

Nucleotidyl Cyclases
Adenylates 4.6.1.1
Guanylates 4.6.1.2

Protein Kinases
Serthrkinases 2.7.11.1
Tyrkinases 2.7.10.{1, 2}

Serine Proteases

Chymotrypsins 3.4.21.1
Elastases 3.4.21.{36, 37, 71}
Kallikreins 3.4.21.{34, 35, 118}
Trypsins 3.4.21.4
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Table 5.2. Number of enzymes in each subfamily.

Family Subfamily Enzymes

Nucleotidyl Cyclases
Adenylates 4
Guanylates 52

Protein Kinases
Serthrkinases 73
Tyrkinases 10

Serine Proteases

Chymotrypsins 4
Elastases 13
Kallikreins 21
Trypsins 64

The resulting databases comprise each enzyme's UniProt identi�cation, EC num-

ber and amino acid sequence. If di�erent enzymes catalyze the same reaction, they

receive the same EC number. UniProt identi�ers, on the other hand, uniquely specify

a protein by its amino acid sequence.

Given the subfamily labels derived from the EC numbers, the goal is to analyze

how information from di�erent data sources is able to aid an unsupervised clustering

process to discover the actual subfamilies as determined by the labels.

5.1.2 Additional Data Sources

Besides the amino acid sequences, additional information on each enzyme in the

database was gathered. The �rst two external sources of data are the tertiary structure

model and the active site of each enzyme, provided by Minardi et al. [53]. The aligned

active sites were obtained using Fpocket [31], a software that calculates structural cavi-

ties, and MultiProt [72], a software that superpositions structures. Active site residues

belong to the enzyme family's most conserved structural cavities.

The third external data source comprises the genomic contexts for some of the

enzymes. To obtain this information, the complete genomes of several organisms were

downloaded from NCBI Entrez Genome1. Then, a mapping from GeneID to UniProt ID

was performed, which was necessary since our databases use UniProt identi�ers, while

the genomes only present GeneIDs. To build the genomic context for the enzymes

present in the genomes, a �ve-gene window was used. Thus, we consider that the

genomic context of a given enzyme is simply an array containing the �ve proteins

that come before it and the �ve that follow it in the genome, resulting in a total of
1Available at http://www.ncbi.nlm.nih.gov/sites/genome
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ten proteins besides the enzyme itself. Unfortunately, we were unable to obtain the

genomic context for all enzymes in our dataset.

The last additional data source is the set of vectors produced by applying Cuto�

Scanning [74] to the structural model of each enzyme. This consists of calculating

the Euclidean distance in angstroms between all pairs of amino acid residues in the

enzyme's 3D structure. Then, the number of pairs whose distance to each other is less

than a given cuto� is calculated. When this cuto� is varied, a vector is created so that

each position in an enzyme's vector denotes the number of residue pairs within a given

distance of each other. Therefore, each enzyme has a vector that represents its folding,

i.e., the manner in which the residues are positioned in its 3D structure. Such vectors

comprise important information that is complementary to the amino acid sequences.

5.2 Generating Constraints

This section describes in detail the methods used to create constraints based on each

of the additional data sources. Apart from clustering each of the enzyme families

separately in the search for the subfamilies, we also cluster all of them combined,

either seeking the eight subfamilies or the three families.

5.2.1 Structural Alignment Based-Constraints

MultiProt [72] was used to perform pairwise structural alignments between the tertiary

structure models of the enzymes in all three families. Because it is a heuristic method

and searches not only for global alignments but for local alignments as well, MultiProt

outputs more than one alignment. The Root Mean Square Deviation (RMSD) of the

�rst result reported by MultiProt, which corresponds to the largest alignment found,

is used to analyze the structural similarity between the pair of enzymes. Since the

RMSD for aligning enzyme A to enzyme B may di�er from that of aligning enzyme B

to enzyme A, the average of the two results is used as the structural similarity score

for the enzyme pair. The smaller the RMSD, the better the alignment and the more

similar the enzymes are.

The RMSDs for each pair of enzymes in each family, as well as in all three

families combined, were analyzed in the search for cuto�s that could be used to generate

pairwise constraints. Since strict constraints (i.e., constraints that must be satis�ed)

are being considered in this thesis, this search was for the cuto�s that did not yield any
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false positives, i.e., the RMSD thresholds that would not lead to must-link constraints

between enzymes from di�erent subfamilies or cannot-link constraints between enzymes

from the same subfamily.

In order to generate must-link constraints, the following must hold: if the RMSD

of the alignments between an enzyme pair is at most X, then the enzymes belong to

the same subfamily. Therefore, a must-link constraint exists between them, placing

both enzymes in the same cluster. Similarly, for cannot-link constraints it must hold

that if the RMSD of the alignments between a pair of enzymes is at least Y , then

they belong to di�erent subfamilies and a cannot-link constraint exists between them,

causing the enzymes to be placed in di�erent clusters.

Table 5.3 presents each family's zero false positive RMSD thresholds for creating

must-link (ML) and cannot-link (CL) constraints. The must-link cuto� is the largest

RMSD value between a pair of enzymes from the same subfamily, while the cannot-link

cuto� is the smallest value between pairs of enzymes belonging to di�erent subfamilies.

Table 5.3. RMSD cuto�s in angstroms (Å) that yield zero false positive
constraints for each family.

Family ML CL

Nucleotidyl Cyclases 0.42 1.08
Protein Kinases 0.76 1.50

Serine Proteases

Chymotrypsins 0.58 0.32
Elastases 0.61 0.30
Kallikreins 0.25 0.74
Trypsins 0.25 0.86

All Three Families 0.25 1.50

In order to create constraints in a more general fashion, we employ cuto�s that

are valid for all three families as well as for the original dataset, which also includes

unreviewed enzymes. Therefore, we use thresholds RMSD ≤ 0.25Å for creating must-

link constraints and RMSD ≥ 1.62Å for cannot-link constraints. Table 5.4 presents

the number of pairwise constraints generated for each enzyme family before and after

expanding the constraint set using the transitivity property described in Section 2.2.1.

Unfortunately, these cuto�s do not yield any structural alignment-based must-

link constraints for the protein kinases family, nor cannot-link constraints for any of

the three families. This can be explained by the fact that families and subfamilies are

determined by function, and there exist proteins with very di�erent structures and,

consequently, whose alignments have high RMSD values, that still present the same
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Table 5.4. Number of structural alignment-based constraints created for each
family before and after transitively expanding the constraint set.

Family
Before After

ML CL ML CL

Nucleotidyl Cyclases 6 0 6 0
Protein Kinases 0 0 0 0
Serine Proteases 347 0 390 0

All Three Families 353 18, 822 396 18, 824

function. The opposite may also occur. Therefore, the cannot-link cuto� was set at a

high RMSD level so that it would not lead to cannot-link constraints between enzymes

annotated as being in the same subfamily.

The cannot-link cuto� could have been lowered so as to create constraints inside

each family, but that would also go against the idea of generality because if a lower

cuto� had been applied to the original set of enzymes, which includes automatically

annotated enzymes, we would have ended up creating cannot-link constraints between

enzymes annotated as belonging to the same subfamily. This would have inserted con-

tradiction into the constraint set, making the strict constraint approach intractable,

as it would be impossible to satisfy all constraints. When considering all three fam-

ilies combined, however, several cannot-link constraints are created between pairs of

enzymes belonging to di�erent families and, consequently, to di�erent subfamilies.

5.2.2 Genomic Context-Based Constraints

After obtaining genomic contexts for some enzymes of each family as previously de-

scribed, we observed that if two enzymes have at least one protein in common between

their genomic contexts, it always happens that they belong to the same subfamily.

Therefore, must-link constraints are created between each pair of enzymes whose ge-

nomic contexts have at least one protein in common. Table 5.5 shows the number of

pairwise constraints created for each family before and after expanding the constraint

sets with the transitivity property.

Very few genomic context-based must-link constraints are created due to the fact

that most of the enzymes in our dataset do not appear in the genomes we had access to.

Nevertheless, additional constraints might be created using the transitivity property

when combined with other constraint sets.
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Table 5.5. Number of genomic context-based must-link constraints created for
each family before and after transitively expanding the constraint set.

Family Before After

Nucleotidyl Cyclases 3 3
Protein Kinases 3 3
Serine Proteases 50 57

All Three Families 56 63

5.2.3 Active Site-Based Constraints

Since the active sites of all enzymes in a given family are aligned, they all have the same

number of residues. That said, two strategies are employed to create active site-based

constraints: must-link constraints are created between all pairs of enzymes with 100%

identical active sites, and between all pairs with active sites at least 95% identical.

We considered the strategy of creating cannot-link constraints between all pairs

of enzymes with less than a given percentage of active site identity. A 30% cuto�, for

example, would create some constraints for the protein kinases family. However, if we

were to apply the same strategy to the original database, which also contains automat-

ically annotated enzymes, cannot-link constraints would have been created between

enzymes annotated as being in the same subfamily, thus introducing contradiction

to the constraint set and making the problem intractable. Therefore, only must-link

constraints are created using active site information.

Because the number of residues in the active sites slightly varies between families,

Clustal X [39] was used to perform multiple sequence alignment of the active sites so

that the same strategies could be applied when clustering the three families altogether.

Table 5.6 presents the number of pairwise constraints created in each case for each

family, before and after expanding the constraint sets with the transitivity property.

Table 5.6. Number of active site-based must-link constraints created for each
family before and after transitively expanding the constraint sets.

Family Before After
100% 95% 100% 95%

Nucleotidyl Cyclases 88 249 88 434
Protein Kinases 10 12 10 12
Serine Proteases 50 158 50 296

All Three Families 148 419 148 742
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5.3 Constrained Clustering Algorithms

In order to analyze the e�ect of integrating multiple data sources into the clustering

process as constraints, we study constrained and unconstrained versions of well known

clustering algorithms K-Medoids and K-Means. The unconstrained versions are im-

plemented as described by Han and Kamber [32], while the constrained versions are

adapted from COP-KMeans [83].

5.3.1 Constrained K-Medoids

Constrained and unconstrained versions of K-Medoids have been implemented because

the main data source, which consists of the amino acid sequences, is categorical. Clus-

tering algorithms require that all objects have the same attributes in order for the

di�erence between each attribute of an object pair to have a meaning, so the distance

or similarity between them can be calculated. Since the lengths of the sequences vary,

multiple sequence alignments were performed between all sequences in each family us-

ing Clustal X [39], and the results are used as the enzymes' attributes for K-Medoids.

A multiple sequence alignment was also performed among the enzymes from all three

families in order to apply K-Medoids to the approaches that involve clustering families

and clustering subfamilies inside multiple families.

Using multiple sequence alignments as attributes is a straightforward approach,

since sequence information is much more readily available than structural data. Re-

gardless, we also test using the active sites as attributes instead. This way we are able

to assess how the use of structural information as the main dataset to which constraints

are added compares to using the more common sequence information.

Three di�erent similarity measures are used for these categorical attributes: BLO-

SUM62 and PAM30, which are amino acid substitution matrices commonly used in

protein sequence alignments, and the complement of the Hamming distance, which is

simply the number of identical residues in the sequences, excluding gaps.

The classic (unconstrained) K-Medoids clustering algorithm was previously de-

scribed in Chapter 2 and detailed in Algorithm 2.2. Algorithm 5.1 illustrates the

constrained K-Medoids algorithm implemented in this thesis. In line 7, a nonrepresen-

tative object onr can replace a representative or if there are no must-link constraints

between onr and any object belonging to a di�erent cluster, as well as no cannot-link

constraints between onr and any object in the cluster represented by or.
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Algorithm 5.1 Constrained K-Medoids Algorithm
Input: number of clusters K, dataset D containing N objects and constraint set C
1: expand constraint set C using the transitivity property
2: build initial representative set R arbitrarily choosing K objects from D such that

must-link constraints do not exist between representatives
3: build initial nonrepresentative set NR with the remaining objects
4: run constrainedClustering(R, NR, C) to obtain total similarity S of the clustering
5: repeat
6: for each representative or ∈ R and each nonrepresentative onr ∈ NR do
7: if onr can replace or then
8: switch or and onr and run constrainedClustering(R, NR, C) to obtain the

total similarity S ′ of the new clustering
9: if S ′ > S then

10: the new clustering is better, so it replaces the current one, with S ⇐ S ′

11: end if
12: end if
13: end for
14: until the total similarity S converges
Output: a set of K clusters
constrainedClustering(R, NR, C)

1: for each representative or ∈ R do
2: if a nonrepresentative onr ∈ NR has a must-link constraint with or then
3: assign onr to the cluster represented by or
4: end if
5: end for
6:

7: for each remaining nonrepresentative onr ∈ NR do
8: if onr has a must-link constraint with any already clustered object oi then
9: assign onr to the same cluster as oi

10: else
11: assign onr to the cluster with the nearest representative or for which a cannot-

link constraint does not exist between onr and the objects already in the cluster
12: end if
13: end for
14: return the total similarity S of the clustering
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5.3.2 Constrained K-Means

K-Means has been implemented so as to take advantage of the information provided

by the previously described Cuto� Scanning [74] vectors, which are created using a

step of 0.2Å varying from 0Å to 30Å. Therefore, each vector has 151 positions, with

the �rst element being the number of residue pairs in the enzyme's three-dimensional

structure whose alpha-carbons are virtually in the same position (0Å distance), the

second element being the number of pairs whose alpha-carbons are at most 0.2Å apart,

and so on. The vectors are either normalized or not.

Squared Euclidean distance is used as the distance measure for these numerical

attributes. The classic K-Means clustering method was detailed by Algorithm 2.1 in

Chapter 2. The constrained version of the algorithm implemented in this thesis is

illustrated in Algorithm 5.2.

Algorithm 5.2 Constrained K-Means Algorithm
Input: number of clusters K, dataset D containing N objects and constraint set C
1: expand constraint set C using the transitivity property
2: build initial cluster center set A arbitrarily choosing K objects from D such that

must-link constraints do not exist between them and they are preferably not in-
volved in cannot-link constraints

3: repeat
4: for each object o ∈ D do
5: �nd the objects with which o has a must-link constraint, forming subset ML
6: assign all objects oML ∈ML to the cluster whose current objects do not have

cannot-link constraints withML and whose center is closest toML (using the
sum of the distances from the center to oML)

7: end for
8: update the cluster centers by calculating the mean value of the objects in each

cluster
9: until the clustering converges
Output: a set of K clusters

5.4 Spectral Clustering

This section elucidates all the decisions that were made for each step necessary to

perform spectral clustering, as outlined in Section 2.3.
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5.4.1 Similarity Matrices

The same data used by the constrained clustering algorithms are employed to build

the similarity matrices for spectral clustering. Several similarity matrices are adopted,

involving all data sources previously used for creating constraints and their combina-

tions. The initial or basic similarity matrices, to which the additional data sources

are integrated, consist of the similarity scores between pairs of aligned amino acid se-

quences (the same used as attributes by K-Medoids) calculated using the same three

similarity measures: BLOSUM62 and PAM30 amino acid substitution matrices, and

the complement of the Hamming distance. Each of these three initial matrices (one

for each similarity measure) is linearly normalized for each enzyme family. The matrix

diagonal, which includes the similarities of each enzyme with itself, are not included

in this normalization in order to prevent that such high similarities push the other

normalized similarities to zero.

Three strategies are used for integrating the additional datasets containing infor-

mation on structural alignments, genomic contexts, and active sites:

1. Using the same cuto�s applied for creating constraints as described in

Section 5.2. In this case we add 1 to the similarity between i and j if there exists

a must-link constraint between them, and subtract 1 from their similarity in case a

cannot-link constraint exists. Example: consider similarity sij = 0.6 according to

the initial BLOSUM62 similarity matrix. If the RMSD of the structural alignment

between i and j is less than or equal to the established RMSD cuto� for creating

must-link constraints (RMSD ≤ 0.25), then sij = 1.6 in the modi�ed similarity

matrix. Similarly, if a cannot-link constraint existed between the pair, the new

similarity would be sij = −0.4. However, negative values are truncated to zero

since the similarity matrix must be non-negative.

2. Using the actual values from the additional datasets. In this case, the

percentage of identical amino acids between the active sites and/or the number

of di�erent proteins in common between the genomic contexts are added to the

initial similarity. The normalized RMSD of the structural alignment between

the pair is subtracted from the similarity, since the larger the RMSD, the less

similar the enzymes are. Again, the new similarity is truncated to zero in case

the subtraction produces a negative value.

3. Enforcing edges after the graph is constructed. In this case, if there is

a cannot-link constraint between a pair of enzymes according to the previously
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described cuto�s, the similarity between them is set to zero, guaranteeing that an

edge does not exist between them in the graph. Similarly, if there is a must-link

constraint between them but their similarity has been set to zero after applying

the graph construction method, the similarity is reset to the value in the initial

similarity matrices (i.e., those with purely the normalized BLOSUM62, PAM30,

and Hamming scores). This makes no di�erence when using the fully connected

graph, but might create additional edges for the other graph construction meth-

ods, guaranteeing that an edge exists between a pair of enzymes for which a

must-link constraint exists.

For each enzyme family, all three initial similarity matrices are studied, as well

as all combinations of additional data sources for all three integration strategies. This

yields 63 similarity matrices for each family and 87 matrices when all three families are

combined, in which case structural alignment-based cannot-link constraints exist.

5.4.2 Graph Construction Methods

As described in Section 2.3, four graph construction methods are used in this thesis: the

fully connected graph, K-nearest neighbors (KNN), mutual KNN and ε-neighborhood.

The fully connected graph is simply the similarity matrix with negative values trun-

cated to zero. The other methods, however, require parameters K and ε to be de�ned.

Three parameter values are used for the ε-neighborhood graph construction

method. To determine the ε values for each enzyme family, the average of each column

of the initial similarity matrices (i.e., purely the normalized BLOSUM62, PAM30, and

Hamming scores) is calculated. The diagonal of the matrix (i.e., the similarity of an en-

zyme with itself) is excluded when calculating this average, so that it does not in�uence

the choice of ε values . Afterwards, the averages are sorted and the quartiles are used

as the parameter values. Therefore, the three ε values are the median of the averages,

which splits the sorted average set into two subsets, and the median of each subset.

Thus, the ε values are determined such that 25% (�rst quartile), 50% (second quar-

tile), and 75% (third quartile) of the average similarities are below ε. There are three ε

values for each family and each of the initial similarity matrices, as shown in Table 5.7.

A similar approach is used for de�ning K for KNN and mutual KNN: the values

of K are determined as the ceilings of 25%, 50%, and 75% of the total number of

neighbors, i.e., the total number of enzymes in the family minus one. Therefore, there

are three values of K for each family. It may happen that there are multiple candidates
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Table 5.7. ε values for the ε-neighborhood graph construction method.

Enzyme Family Matrix 25% 50% 75%

Nucleotidyl cyclases
BLOSUM62 0.28819 0.32216 0.34808
Hamming 0.33636 0.36493 0.39924
PAM 0.38032 0.40627 0.41788

Protein kinases
BLOSUM62 0.55463 0.61767 0.62875
Hamming 0.69899 0.78401 0.79662
PAM 0.66180 0.72643 0.73690

Serine proteases
BLOSUM62 0.41872 0.43227 0.44709
Hamming 0.64547 0.66020 0.69676
PAM 0.57139 0.58705 0.59929

All 3 Families
BLOSUM 0.57385 0.62411 0.62781
Hamming 0.71971 0.79222 0.81868
PAM 0.67612 0.73055 0.73603

for theKth neighbor of vertex i, since more than one vertex may be at the same distance

from vi. In this case, all the candidates at the Kth smallest distance from vertex i

are added as its neighbors, resulting in more neighbors than the speci�ed value of K.

Table 5.8 shows the values of K used for each family for both KNN and mutual KNN.

Table 5.8. K values for KNN and mutual KNN graph construction methods.

Enzyme Family Total Neighbors 25% 50% 75%

Nucleotidyl cyclases 55 14 28 42
Protein kinases 82 21 41 62
Serine proteases 101 26 51 76
All 3 Families 240 60 120 180

5.4.3 Graph Laplacian Matrices

As stated in Section 2.3, two spectral clustering algorithms are applied, one considering

the unnormalized graph Laplacian matrix and the other using the normalized symmet-

ric graph Laplacian matrix. The Laplacian matrices are calculated as described in that

section, and Matlab R2010a is used to calculate the eigenvalues and eigenvectors of the

Laplacians. The matrix built from using the K �rst eigenvectors as columns, where K

is the desired number of clusters, is the input for unconstrained K-Means.
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5.5 Parameter Settings

As previously described, the attributes (i.e., feature vectors) used by K-Medoids are

either the enzymes' amino acid sequences or their active sites, with multiple sequence

alignments in both cases. The complement of the Hamming distance and amino acid

substitution matrices BLOSUM62 and PAM30 are used by K-Medoids as similarity

measures, and by spectral clustering to build the initial similarity matrices to which

the additional data sources are integrated. For K-Means, the attributes are the 151-

dimension distance vectors produced by Cuto� Scanning, either normalized or not, and

squared Euclidean distance is used as the algorithm's distance metric.

For all algorithms, when clustering each family separately, the number of clusters

K is the actual number of subfamilies in each family, namely K = 2 for nucleotidyl

cyclases and protein kinases, and K = 4 for serine proteases. This corresponds to the

approach of clustering subfamilies inside a single enzyme family. When clustering all

three families combined, we analyze results for K = 8, which is the total number of

subfamilies and corresponds to clustering subfamilies inside multiple families, as well

as the results for K = 3, so as to verify the performance of the algorithms at separating

the three enzyme families, which is the third and last approach of this thesis.

When applying constrained and spectral clustering to the application scenario,

all additional data sources and combinations thereof are studied. Furthermore, many

parameter con�gurations exist for each algorithm, as depicted below.

• Constrained K-Medoids: the factors to be considered are the constraint set

being applied, the similarity measure (BLOSUM62, PAM30 or the Hamming

distance), and what information is employed as attributes for the enzymes (either

amino acid sequences or active sites, both aligned);

• Constrained K-Means: the parameters are the constraint set being applied

and whether or not the attributes (i.e., the distance vectors) are normalized;

• Spectral Clustering: the four parameters to be considered are the similarity

measure (same options as K-Medoids), the graph construction method (fully

connected, ε-neighborhood, KNN or mutual KNN), the type of graph Laplacian

(unnormalized or normalized symmetric); and the similarity matrix given as input

to the algorithms.

All possible parameter con�gurations are studied for each algorithm and for each

enzyme family. The results are discussed in Chapter 6.
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5.6 Evaluation Criteria

Di�erent groups of clustering validation indexes exist, namely external, internal and

relative validation. Simply put, external validation employs criteria that are not in-

herent to the dataset such as a priori knowledge about the data; internal validation

employs criteria derived from the dataset such as intra and intercluster distances, while

relative validation compares clusterings generated by di�erent algorithms or by di�er-

ent parameter con�gurations for the same algorithm. In this thesis, the clustering

results are being compared to the ground truth provided by the Enzyme Commission

(EC) numbers. Therefore, external validation is used to analyze the clusters.

External criteria measure whether or not the objects being clustered are randomly

structured. Among the measures commonly used when applying external validation,

in this work three measures are employed in order to compare the results of the various

settings, all of which are based on the purity of the clusters in comparison to the

actual partitions (i.e., the true (sub)families as determined by the EC numbers): purity,

entropy and the ratio between them, which we call EP-Ratio. The probability ρij that

cluster ci contains objects from partition pj is given by Equation 5.1, where |ci| is the
number of objects (i.e., enzymes) in cluster ci.

ρij =
|ci ∩ pj|
|ci|

(5.1)

Purity Pi of cluster ci is the maximum value of ρij, whereas the purity of the

whole clustering is the weighted sum of the purity of each cluster as shown in Equation

5.2, where |c| is the total number of objects. Purity quanti�es to what extent a cluster

contains entities from a given partition. Therefore, the larger the purity, the better the

clustering. However, since maximum purity would be achieved if each object was put

in its own cluster, extra measures are required to analyze the results.

PC =
∑ |ci|
|c|
Pi (5.2)

Entropy is a popular supervised learning metric that measures the amount of

uncertainty associated with a cluster assignment. It is based on the probability that

cluster ci contains objects from partition pj. The smaller the entropy, the better the

clustering, with a perfect clustering having zero entropy. Each cluster's entropy Ei is

given by Equation 5.3, while the entropy for the entire clustering is the weighted sum

of the individual cluster entropies, as shown in Equation 5.4.
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Ei = −
∑

ρij log2 ρij (5.3)

EC =
∑ |ci|
|c|
Ei (5.4)

The EP-Ratio, which is the main measure we use to analyze the quality of the

clustering results, is simply the ratio between entropy and purity. Therefore, the closest

the EP-Ratio is to zero, the better the clustering.

5.7 Assessment Methodologies

This section describes the two methodologies employed in this thesis to analyze the

obtained clustering results.

5.7.1 Comparison of Paired Observations

In order to analyze the e�ect of each constraint set and combinations thereof, the EP-

Ratios for thirty replications of the constrained clustering algorithms are compared

against the EP-Ratios of the clusterings obtained by the unconstrained algorithms. In

order to do so, paired observations are employed in a straightforward analysis: the two

sets of EP-Ratios (one for each version of the algorithm) are treated as a sample of

thirty pairs, each corresponding to the same random seed in each algorithm.

The di�erence between the values in each EP-Ratio pair and the con�dence inter-

val of such di�erences are calculated. In case the con�dence interval includes zero, the

quality of the result obtained by the constrained algorithm is not signi�cantly di�erent

from the clustering found by the unconstrained version of the algorithm at the given

level of con�dence [38]. In this thesis we consider 99% and 95% con�dence intervals.

5.7.2 General Full Factorial Designs

The goal of an experimental design is to obtain the maximum information with the

minimum number of experiments. A proper experiment analysis helps single out the

e�ects of various factors that might a�ect the performance, as well as allows to deter-

mine if a given factor has a signi�cant e�ect or if the di�erence in results is simply due

to random variations caused by measurement errors or uncontrolled parameters [38].
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Details on general full factorial designs may be found in the work of Jain [38].

Simply put, the model for a K-factor full factorial design contains 2K − 1 e�ects: it

estimates the e�ect that each factor has on the response variable (i.e., the clustering's

EP-Ratio) as well as the e�ect of each interaction between factors.

The model for three factors A, B and C with a, b and c levels (i.e., values),

respectively, and r replications is given by Equation 5.5, where yijkl is the response

obtained by lth replication of the experiment with factors A, B and C at levels i, j

and k, respectively; µ is the mean response; αi is the e�ect of factor A at level i; βj
is the e�ect of factor B at level j; ξk is the e�ect of factor C at level k; γABij is the

e�ect of the interaction between A and B at levels i and j; γABCijk is the e�ect of the

interaction between A, B and C at levels i, j and k, and so on. Lastly, eijkl is the error

of the lth replication when factors A, B and C are at levels i, j and k, and is simply

the di�erence between the observed value and the value calculated by the model.

yijkl = µ+ αi + βj + ξk + γABij + γACik + γBCjk + γABCijk + eijkl (5.5)

The parameters can be estimated from the means taken along the dimensions,

such that the grand mean is µ = ȳ...., the e�ect of factor A at level i is αi = ȳi... − ȳ....,
the e�ect of the interaction between A and B at levels i and j is γABij = ȳij..− ȳ.... and
so on. The error in the lth replication of the experiment is given by eijkl = yijkl − ȳijk.

In order to estimate the variation of the response variable that each factor is

responsible for, the sums of squares must be calculated using Equation 5.6, where a, b

and c are the numbers of levels that parameters A, B and C have, respectively, and r

is the number of replicates.∑
ijkl

y2ijkl =

abcrµ2 + bcr
∑
i

α2
i + acr

∑
j

β2
j + abr

∑
k

ξ2k + (5.6)

cr
∑
ij

γ2ij + br
∑
ik

γ2ik + ar
∑
jk

γ2jk +

r
∑
ijk

γ2ijk +
∑
ijkl

e2ijkl

This is equivalent to Equation 5.7, where the various sums of squares have been

appropriately placed with their corresponding terms in Equation 5.6.
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SSY =

SS0 + SSA+ SSB + SSC + (5.7)

SSAB + SSAC + SSBC +

SSABC + SSE

The total variation SST is given by Equation 5.8, and can be divided into parts

explained by each factor and factor interactions and an unexplained part attributed to

experimental errors. The percentage of variation explained by a factor or an interaction

can be used to measure the importance of the corresponding e�ect. The percentage

explained by factor A, for example, can be calculated by SSA
SST

[38].

SST

= SSY − SS0 (5.8)

= SSA+ SSB + SSC + SSAB + SSAC + SSBC + SSABC + SSE

The statistical signi�cance of a factor is tested by dividing its sum of squares (SS)

by its degrees of freedom to obtain its mean square (MS). The degrees of freedom are

given in Equation 5.9, in the same order as the sums of squares appear in Equation

5.7. Therefore, MSE = SSE
abc(r−1) , MSA = SSA

a−1 , MSAB = SSAB
(a−1)(b−1) , and so on.

abcr =

1 + (a− 1) + (b− 1) + (c− 1) + (5.9)

(a− 1)(b− 1) + (a− 1)(c− 1) + (b− 1)(c− 1) +

(a− 1)(b− 1)(c− 1) + abc(r − 1)

If the ratio MSA
MSE

is larger than the F -distribution table value of F[a−1,abc(r−1)],

where a − 1 and abc(r − 1) are the degrees of freedom of factor A and of the error,

respectively, as shown in Equation 5.9, then the e�ect of factor A is statistically signif-

icant at the given level of con�dence. The same process, which is called the F-test, is

applied to evaluate the e�ect of other factors and interactions, using the appropriate

degrees of freedom. The F-test makes various assumptions (e.g., the errors are normally

distributed) which are detailed in Jain [38]. In this thesis 99% con�dence is considered

for performing the F-test.
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Results and Discussion

Both constrained and spectral clustering are performed using all additional data sources

and combinations thereof. We �rst integrate each type of domain knowledge separately

in order to assess the e�ect it has on clustering quality. Additionally, all combinations

of data sources are applied in order to analyze the improvement multiple additional

knowledge domains provide, as well as the e�ect of increasing the number of constraints.

6.1 Constrained Clustering Results

This section presents the results for the constrained clustering algorithms. Table 6.1

shows the codes used for each constraint set described in Section 5.2. Thirty repetitions

are performed for each algorithm and each parameter con�guration, and all following

tables present the average EP-Ratios of the constraint sets that yield results signi�-

cantly di�erent from those produced by the unconstrained algorithms according to the

paired observations comparison, with at least a 95% level of con�dence. Asterisks indi-

cate the di�erence is signi�cant at the 95% level of con�dence but not at the 99% level,

while hyphens indicate the di�erences are not signi�cant. The best results are in bold.

Table 6.1. Codes used for each constraint set.

Code Constraint Set

CL Structural Alignment-Based Cannot-Links
ML Structural Alignment-Based Must-Links
GC Genomic Context-Based Must-Links

100AS 100% Identical Active Site-Based Must-Links
95AS 95% Identical Active Site-Based Must-Links

46
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6.1.1 K-Medoids with Multiple Sequence Alignments

In this subsection we present and discuss the results of applying K-Medoids using

the multiple sequence alignments as attributes, as described in Section 5.3.1. Each

individual constraint set and each combination of constraint sets are employed. For

the general full factorial design, two factors are considered: the similarity measure

(BLOSUM62, PAM30, or Hamming distance) and the constraint set being employed.

Clustering Subfamilies Inside a Single Family

Based on the paired observations comparison, although constrained versions of K-

Medoids achieve improvements for the protein kinases and serine proteases families

when compared to the unconstrained algorithm, none of the constraint sets yield re-

sults signi�cantly di�erent from those produced by unconstrained K-Medoids for any

of the three measures at the 95% con�dence level. This can be explained by the small

number of constraints created, and suggests that the unconstrained algorithm's objec-

tive function is able to satisfy the constraints naturally, indicating that the constraints

are consistent with it. However, signi�cant di�erences exist when applying the con-

straint sets for nucleotidyl cyclases and for all three families combined, as follows.

The average EP-Ratios for the constraint sets with signi�cant results compared

to the unconstrained K-Medoids for the nucleotidyl cyclases family are presented in

Table 6.2. When the complement of the Hamming distance is used as the algorithm's

similarity measure, 100% identical active site-based constraints and their combination

with genomic context-based constraints actually yield worse results (i.e., higher EP-

Ratios) than the unconstrained version, which means that the subfamilies are more

mixed in the resulting clusters. Using 95% identical active site-based constraints, as

well as their combination with genomic context-based constraints, produces better

results (i.e., lower EP-Ratios) than the unconstrained version for any of the similarity

measures. When the similarity measure is either BLOSUM62 or PAM30, all four

constraint sets yield better results than the unconstrained algorithm.

Regarding the general full factorial design, for the nucleotidyl cyclases family,

79.68% of the variation in EP-Ratio is explained by the constraint set, 15.24%, by the

interaction between constraint set and similarity measure, and 5%, by the similarity

measure. Since the smaller the EP-Ratio, the better the clustering is, the best con-

straint set is that with the largest negative e�ect on EP-Ratio. Using no constraint

sets has a positive e�ect, which means the use of constraints improves the results. For
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Table 6.2. K-Medoids with MSA - Nucleotidyl Cyclases.

Constraint Set BLOSUM62 Hamming PAM30

Unconstrained 0.3186 0.3186 0.3186

100AS 0.3142 0.3268 0.3142
GC & 100AS 0.3142 0.3268 0.3142
95AS 0.3050 0.3050 0.3050
GC & 95AS 0.3050 0.3050 0.3050

this family, the best constraint sets are the 95% identical active site-based constraints

and their combination with genomic context-based constraints, which is in accordance

with the results in Table 6.2.

For the protein kinases family, the results of the general full factorial design show

that all of the variation in EP-Ratio is explained by the similarity measure. This

is likely due to the very small number of constraints created for this family, which

the unconstrained algorithm's objective function satis�es on its own. For the serine

proteases family, the only parameter which is signi�cant according to the F-test is the

similarity measure. Both are in accordance with the paired observations comparison,

which concluded that none of the constraint sets yields results signi�cantly di�erent

from the unconstrained algorithm.

Clustering Subfamilies Inside Multiple Families

Table 6.3 presents the average EP-Ratios for the constraint sets with signi�cant results

based on the paired observations comparison when all three families are combined and

K = 8, which is the total number of subfamilies. Many structural alignment-based

cannot-link constraints exists when the enzyme families are combined.

When using BLOSUM62 as the algorithm's similarity measure, the resulting clus-

ters are either worse or not signi�cantly di�erent from those obtained by the uncon-

strained K-Medoids, unless the cannot-link constraint set is added, in which case the

results are always better. When using PAM30 or the complement of the Hamming

distance as similarity measures, all constraint sets lead to improved clusters, except

when using genomic context-based constraints, structural alignment-based must-links

and their combination, in which case the results are not signi�cantly di�erent from

unconstrained clustering. For the Hamming distance, the results of using the combi-

nation of structural alignment-based must-link constraints and 100% identical active

site-based constraints is signi�cant at 95% con�dence, but not at the 99% level.
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Table 6.3. K-Medoids with MSA - All 8 Subfamilies.

Constraint Set BLOSUM62 Hamming PAM30

Unconstrained 0.9143 1.0974 0.9792

100AS - 1.0838 0.9604
GC & 100AS - 1.0131 0.9573
95AS 0.9272 1.0086 0.9511
ML & 100AS - 1.0869* 0.9604
GC & 95AS 0.9342 1.0145 0.9511
ML, GC & 100AS - 1.0002 0.9584
ML & 95AS 0.9272 1.0086 0.9511
ML, GC & 95AS 0.9342 1.0145 0.9511

CL & GC 0.8926 1.0079 0.9071
CL & 100AS 0.8798 0.9941 0.8973
CL, GC & 100AS 0.8777 0.9236 0.8973
CL & ML 0.8926 1.0056 0.9071
CL, ML & GC 0.8926 1.0103 0.9071
CL & 95AS 0.8752 0.9092 0.8913
CL, ML & 100AS 0.8806 0.9909 0.8965
CL, GC & 95AS 0.8762 0.9210 0.8913
CL, ML, GC & 100AS 0.8800 0.9217 0.8966
CL, ML & 95AS 0.8752 0.9092 0.8913
CL, ML, GC & 95AS 0.8762 0.9210 0.8913

The general full factorial design shows that 48.79% of the variation in EP-Ratio is

explained by the similarity measure, 36.12%, by the constraint set and 12.74%, by the

interaction between them. The best constraint sets, i.e., those with the largest negative

e�ects, are the set that combines structural alignment-based cannot-link constraints

with 95% identical active site-based constraints and its combination with structural

alignment-based must-link constraints, which agrees with the results in Table 6.3. Us-

ing no constraint sets has a positive e�ect on EP-Ratio, implying that the use of

constraints improves the results.

Clustering Families

Based on the paired observations comparison, when clustering in the search for the

three families instead of the subfamilies (i.e., K = 3), the result of adding the cannot-

link constraint set stands out. The constraint sets with signi�cant results are shown in

Table 6.4. The average EP-Ratio for unconstrained K-Medoids is fairly high, and most

sets of must-link constraints improve it. However, perfect clusters are found when the
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cannot-link constraint set is applied, no matter which must-link constraint set is used.

This implies that K-Medoids is able to perfectly separate the three enzyme families

when using structural information in the form of cannot-link constraints. The cases

involving cannot-link constraints have been omitted from the table because they all

yield perfect clusters (i.e., the EP-Ratios are zero) for any of the similarity measures.

Table 6.4. K-Medoids with MSA - All 3 Families.

Constraint Set BLOSUM62 Hamming PAM30

Unconstrained 0.4542 0.8393 0.4929

GC - 0.8383 -
100AS 0.4430 - 0.4814
GC & 100AS 0.4430 - 0.4814
95AS 0.4202 0.7745 0.4583
ML & 100AS 0.4430 - 0.4814
GC & 95AS 0.4202 0.7762 0.4583
ML, GC & 100AS 0.4430 - 0.4814
ML & 95AS 0.4202 0.7879 0.4583
ML, GC & 95AS 0.4202 0.7651 0.4583

The results of the general full factorial design show that 84.37% of the variation

in EP-Ratio is explained by the constraint set, 7.98%, by the similarity measure and

7.36%, by the interaction between them. The constraint sets with the largest negative

e�ects are all those which involve cannot-link constraints, since perfect clusters are

obtained when they are applied. Using no constraint sets has a positive e�ect on

EP-Ratio, again suggesting that using constraints improves the clustering results.

Summary

When clustering subfamilies in the nucleotidyl cyclases family, the signi�cant improve-

ments occur when using active site-based and genomic context-based constraint sets.

This shows that using active sites obtained from enzyme structures and the genomic

context of the corresponding genes (when available) can aid the problem of predicting

the fourth and most challenging level of the EC number, which represents substrate

speci�city. The e�ect of using constraint sets may not have been signi�cant for the other

two families because of the small number of constraints we were able to generate. Both

structural and genomic context data are still rare in comparison with sequence data.

However, structural genome initiatives such as the Protein Structure Initiative (PSI)1

1http://www.structuralgenomics.org/
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and the several genome projects that exist worldwide will contribute to expand the

amount of available data. This information can then be used to further improve these

results, since even small numbers of additional constraints could imply larger constraint

sets when combined with those that already exist because of the transitivity property.

For the problems of clustering families or subfamilies in multiple families, the

e�ect of the cannot-link constraints is very noticeable, even leading to perfect clusters

in the �rst case. Structural alignment-based cannot-link constraints are very useful

since they add structural information that the sequence-based attributes do not carry,

allowing the separation into (sub)families based on structural dissimilarity. It is likely

that cannot-link constraints would have had the same positive e�ect when clustering

subfamilies inside a single family, however, unfortunately, we were unable to create

them in this case, as previously discussed. Another factor that contributes to the

larger e�ect of the cannot-link constraint set is simply the large number of constraints.

The results in general attest to the importance and signi�cance of using infor-

mation from knowledge domains other than sequence data alone, which constitutes

the main database, since sequence similarity does not imply functional similarity. The

cases in which the constrained clustering produces results worse than the unconstrained

clustering seem to agree with Davidson and Ravi [19], who state that, despite not pre-

senting contradictions and being generated from facts, it is still possible that some

constraint sets decrease the clustering precision.

6.1.2 K-Medoids with Active Sites

Since amino acid sequences are much more readily available than protein structures,

using the results of a multiple sequence alignment as attributes is a straightforward

approach. However, in this work we also study the use of active sites as attributes.

Since inside each enzyme family the active sites are already aligned, we simply repeat

the process employed when multiple sequence alignments are used as attributes.

When combining all three families, however, there are small di�erences in the

number of residues in the active sites of enzymes from di�erent families. Since the clus-

tering algorithms require that all objects be described by the same attributes, which in

our case are the positions in the active sites, we perform a multiple sequence alignment

in order to be able to compare residues at the same position in the active sites of all

enzyme pairs. In this case, active site-based constraints are not employed, since the

information they would add is already embedded in the attributes. For the general full

factorial designs the factors are the similarity measure and the constraint set applied.
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Clustering Subfamilies Inside a Single Family

For the protein kinases family, only genomic context-based constraints were created,

since none of the enzyme pairs have an RMSD smaller or equal to the cuto� em-

ployed. Based on the comparison of paired observations, the results yielded by these

constraints are not signi�cantly di�erent from those of the unconstrained algorithm

for any of the similarity measures. This can be explained by the very small number

of constraints generated for this family, which the unconstrained algorithm's objective

function satis�es naturally.

For the nucleotidyl cyclases family, using structural alignment-based constraints

does not produce results signi�cantly di�erent from the unconstrained K-Medoids for

any of the similarity measures. For PAM30, the results of using genomic context-

based constraints are non-signi�cant, and using the combination of genomic context-

based and structural alignment-based constraints yields worse results than when no

constraints are applied. For BLOSUM62 and the complement of the Hamming dis-

tance, using genomic context-based constraints and their combination with struc-

tural alignment-based constraints produces signi�cantly better results than the uncon-

strained algorithm. The average EP-Ratios for the constraint sets with signi�cant re-

sults are shown in Table 6.5. All constraint sets produce signi�cantly better results than

the unconstrained K-Medoids for the serine proteases family, as shown in Table 6.6.

Table 6.5. K-Medoids with Active Sites - Nucleotidyl Cyclases.

Constraint Set BLOSUM62 Hamming PAM30

Unconstrained 0.3770 0.3784 0.3872

GC 0.3721 0.3734 -
ML & GC 0.3733 0.3687 0.3936

Table 6.6. K-Medoids with Active Sites - Serine Proteases.

Constraint Set BLOSUM62 Hamming PAM30

Unconstrained 0.4216 0.3624 0.4485

GC 0.3007 0.2889 0.3003
ML 0.3121 0.3030 0.3541
ML & GC 0.2926 0.2697 0.3049
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The results of the general full factorial designs show that, for the nucleotidyl

cyclases family, 57.6% of the variation in EP-Ratio is explained by the similarity mea-

sure, 9.65%, by the interaction between similarity measure and constraint set, and

2.33%, by the constraint set alone. The constraint set with the largest negative e�ect

is the genomic context-based constraint set, followed by its combination with structural

alignment-based constraints, which agrees with the results in Table 6.5. Using no con-

straints at all has a positive e�ect on EP-Ratio, indicating that the use of constraints

improves the clustering quality.

For the protein kinases family, 24.16% of the variation in EP-Ratio is explained

by the similarity measure, 1.32%, by the interaction between similarity measure and

constraint set, and 0.76% by the constraint set. Again, the small importance of the

constraint set is likely because of the very small number of constraints created for this

family. The constraint set with the largest negative e�ect is the genomic context-based

constraint set, while using no constraints at all has a positive e�ect. For the serine

proteases family, 52.02% of the variation in EP-Ratio is explained by the constraint

set, 7.85%, by the similarity measure, and 3.43%, by the interaction between them.

The constraint sets with the largest negative e�ects are the genomic context-based

constraint set and its combination with the structural alignment-based constraints,

which agrees with the results in Table 6.6. Again, using no constraints has the largest

positive e�ect, implying that constraints improve the clustering quality.

Clustering Subfamilies Inside Multiple Families

When all three families are combined, structural alignment-based cannot-link con-

straints exist. Based on the comparison of paired observations, signi�cantly better

results are produced by all constraint sets when clustering all eight subfamilies, as

shown in Table 6.7.

The result of the general full factorial design shows that 22.27% of the variation

in EP-Ratio is explained by the similarity measure, 17.74%, by the constraint set and

1.31%, by the interaction between them. The constraint set with the largest nega-

tive e�ect is the one that combines structural alignment-based cannot-link and must-

link constraints with genomic context-based constraints. Both the genomic context-

based constraint set and its combination with structural alignment-based must-link

constraints also have large negative e�ects, which agrees with the results in Table

6.7. Not using constraints at all has the largest positive e�ect, showing that using

constraints improves the clustering quality.
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Table 6.7. K-Medoids with Active Sites - All 8 Subfamilies.

Constraint Set BLOSUM62 Hamming PAM30

Unconstrained 0.2812 0.2805 0.3312

GC 0.2329 0.2441 0.2662
ML 0.2355 0.2479 0.2897
ML & GC 0.2273 0.2418 0.2705

CL & GC 0.2338 0.2476 0.2684
CL & ML 0.2355 0.2537 0.2897
CL, ML & GC 0.2281 0.2391 0.2721

Clustering Families

When using active sites as attributes for clustering in the search for the three fami-

lies, perfect clusters are obtained for all similarity measures and both constrained and

unconstrained versions of K-Medoids. This can be explained by the active site being

directly responsible for the enzyme's function, which in turn is what determines en-

zyme families. Therefore, using active sites as attributes may be considered as a way

of separating enzyme families. Unfortunately, this information is often unavailable.

The results for the general full factorial design show that 84.37% of the variation

in EP-Ratio is explained by the constraint set, 7.98%, by the similarity measure and

7.36%, by the interaction between them. The largest negative e�ect is obtained by

all constraint sets involving the cannot-link constraints, which yield perfect clusters.

Using no constraints at all has a positive e�ect, which implies the use of constraints

improves the clustering quality.

Summary

When using the active sites as attributes, most of the signi�cant improvements are

obtained when using either the genomic context-based constraints or their combination

with structural alignment-based constraints. This attests to the quality of genomic

context information, since it allows to di�erentiate enzymes belonging to the same

family but with di�erent substrate speci�cities. Also, the improvements involving

combinations of constraint sets again suggest that larger numbers of constraints lead

to better results.

Even when using active site information as the basis for the clustering, adding

information from other knowledge domains still improves the results. This shows the

potential that using data from many di�erent domains has on clustering enzymes and
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predicting their function. Again, the cases in which constrained clustering yields results

worse than unconstrained clustering are in agreement with the statement of Davidson

and Ravi [19] that some constraint sets might decrease the clustering precision.

6.1.3 K-Means with Distance Arrays

In this section we present and discuss the results of applying K-Means using the 151-

dimension vectors as attributes and applying all constraint sets and their combinations.

The attributes are either normalized or not. For the general full factorial design, the

factors are the constraint set and the normalization mode (i.e., whether or not the

attributes are normalized).

Clustering Subfamilies Inside a Single Family

Based on the comparison of paired observations, none of the constraint sets yield

results signi�cantly di�erent from those produced by the unconstrained K-Means for

the protein kinases family when the attributes are unnormalized. However, perfect

clusters are achieved for both constrained and unconstrained versions of K-Means when

we normalize the attributes.

Table 6.8 shows the average EP-Ratios of the constraint sets that yield signi�cant

results for the nucleotidyl cyclases family. Using genomic context-based constraints or

their combination with structural alignment-based constraints produces worse results

than the unconstrained K-Means for both normalized and unnormalized attributes.

When normalizing the attributes, using 95% identical active site-based constraints and

their combination with genomic context-based constraints yield better results than

when no constraints are employed. The improvement of using 100% identical active

site-based constraints is signi�cant at the 95% con�dence level, but not at the 99% level.

Table 6.8. K-Means - Nucleotidyl Cyclases.

Constraint Set Unnormalized Normalized

Unconstrained 0.3702 0.3965

GC 0.3726 0.3979
ML & GC 0.3726 0.3979
100AS - 0.3848*
95AS - 0.3583
GC & 95AS - 0.3604
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For the serine proteases family, none of the constraint sets produce results signif-

icantly di�erent at the 99% con�dence level. However, at 95% con�dence level, using

95% identical active site-based constraints yields better results for both normalized

and unnormalized attributes, as shown in Table 6.9. Using structural alignment-based

constraints and their combination with 95% identical active site-based constraints yield

worse results than the unconstrained K-Means.

Table 6.9. K-Means - Serine Proteases.

Constraint Set Unnormalized Normalized

Unconstrained 1.0307 1.0095

95AS 0.9720* 0.9550*
ML - 1.0914*
ML & 95AS - 1.0867*

Regarding the general full factorial design results, for the nucleotidyl cyclases

family, 12.09% of the variation in EP-Ratio is explained by the constraint set, 4.69%, by

the normalization mode, and 3.63%, by the interaction between them. The constraint

set with the largest negative e�ect is the 95% identical active site-based constraint

set. Using no constraints at all has a positive e�ect, implying that using constraints

improves the clustering quality.

For the protein kinases family, the factorial design results are that 97.12% of

the variation in EP-Ratio is explained by the normalization mode. The constraint

sets have no e�ect at all. This, again, can be attributed to the very small number

of constraints generated for this family, which the algorithm's objective function is

capable of satisfying on its own. For the serine proteases family, only the e�ect of the

constraint set is signi�cant according to the F-test. However, it explains only 5.66% of

the variation in EP-Ratio. The constraint set with the largest negative e�ect is the 95%

identical active-site based constraint set, which agrees with the results in Table 6.9.

Using no constraints at all has a positive e�ect, which means constrained clustering

leads to better results.

Clustering Subfamilies Inside Multiple Families

Based on paired observations comparison, when clustering all eight subfamilies, none

of the constraint sets yield signi�cant results when the attributes are normalized. For

unnormalized attributes, however, almost all constraint sets yield improved results

when compared to unconstrained K-Means, as shown in Table 6.10. Only the results
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for four constraint sets are non-signi�cant at a 95% con�dence level; four are signi�cant

at the 95% con�dence level but not at 99% con�dence; and all others are signi�cant

with 99% con�dence, especially when the cannot-link constraint set is applied.

Table 6.10. K-Means - All 8 Subfamilies.

Constraint Set Unnormalized Normalized

Unconstrained 0.6754 0.6181

GC 0.6557* -
100AS 0.6375* -
GC & 100AS 0.6287* -
95AS 0.5998 -
GC & 95AS 0.5902 -
ML & 95AS 0.5903 -
ML, GC & 95AS 0.6036* -

CL & GC 0.5767 -
CL & 100AS 0.5888 -
CL, GC & 100AS 0.5760 -
CL & ML 0.5726 -
CL, ML & GC 0.5628 -
CL & 95AS 0.5706 -
CL, ML & 100AS 0.5698 -
CL, GC & 95AS 0.5406 -
CL, ML, GC & 100AS 0.5602 -
CL, ML & 95AS 0.5592 -
CL, ML, GC & 95AS 0.5478 -

The results of the general full factorial design show that 3.23% of the variation

in EP-Ratio is explained by the interaction between the constraint set and the nor-

malization mode, and 2.56%, by the constraint set. The e�ect of the normalization

mode alone is not signi�cant according to the F-test. Two constraint sets have the

largest negative e�ects: the one that combines structural alignment-based cannot-link

and must-link constraints, genomic context-based constraints and 100% identical active

site-based constraints; and the one that combines structural alignment-based cannot-

link constraints with genomic context-based and 95% identical active site-based con-

straints. Using no constraint sets at all has a positive e�ect, again suggesting the use

of constraints improves the clustering quality.
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Clustering Families

When clustering in the search for the three families, applying the cannot-link constraint

set always yields better results than when no constraints are used with or without

normalizing the attributes according to the comparison of paired observations. When

the attributes are normalized, all must-link constraint sets yield better results, as shown

in Table 6.11. Whenever the cannot-link constraint set is employed, perfect clusters

are achieved for 29 of the 30 repetitions, so that the score is 0.1214 for all combinations

of constraint sets and both normalized and unnormalized attributes. Therefore, the

results when using cannot-link constraints were omitted from the table.

Table 6.11. K-Means - All 3 Families.

Constraint Set Unnormalized Normalized

Unconstrained 0.5353 0.6431

GC - 0.5481
GC & 100AS - 0.5481
ML & GC - 0.5481
GC & 95AS - 0.5137
ML, GC & 100AS - 0.5481
ML, GC & 95AS - 0.5137

The results of the general full factorial design show that the only parameter whose

e�ect is signi�cant according to the F-test is the constraint set, which explains 8% of

the variation in EP-Ratio. The constraint sets with the largest negative e�ects are

all those involving the cannot-link constraints, which is in agreement with Table 6.11.

Again, using no constraint has a positive e�ect on the EP-Ratio, suggesting constrained

clustering improves the clustering results.

Summary

The di�erence observed between normalized and unnormalized attributes is due to the

fact that, in the latter case, the e�ect is that each attribute (i.e., position in the vector)

has a di�erent weight in the clustering algorithm's distance function. Because of the

manner in which the vectors are created (the last position corresponds to the number of

amino acid pairs within the largest distance from each other), discrepancies in the last

positions of the vectors have higher weights. The constraint sets are less e�ective when

unnormalized attributes are used, except when clustering subfamilies inside multiple
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families, in which case none of the constraint sets produce results signi�cantly di�erent

from unconstrained K-Means with normalized attributes. When normalizing the at-

tributes, the best results are obtained when using the active site-based constraint sets.

In the case of clustering the three families, active site-based constraints combined

with genomic context-based, as well as their combination with structural alignment-

based constraints yield the best results, especially when the cannot-link constraint set

is applied. Again, this suggests that the more constraints, the better the clustering

quality, i.e., the more additional information we gather from external data sources, the

better the results of enzyme clustering and function prediction. However, as stated by

Davidson and Ravi [19], it is possible that some constraint sets decrease the clustering

precision, even if they are based on facts and there is no contradiction among them.

6.2 Spectral Clustering Results

This section presents the results obtained applying spectral clustering to the problem

of clustering enzymes by speci�city. The same codes described in Table 6.1 are used

to identify the data sources being integrated to the initial similarity matrices, which

contain purely the normalized BLOSUM62, PAM30 or Hamming scores. The exception

is the active site data, simply represented by AS instead of 95AS and 100AS. Addition-

ally, Table 6.12 shows the codes that identify the possible manners in which the data

sources are integrated to the initial similarity matrices, as described in Section 5.4.

Table 6.12. Codes used for each manner of adding the data sources to the initial
similarity matrices.

Code Integration Method

cutoff Using the same cuto�s applied for creating constraints
value Using the actual values from the additional datasets
edges Enforcing edges after the graph is constructed

Regarding the general full factorial design, there are four parameters that vary

for spectral clustering, as detailed in Section 5.4:

• the similarity measures, with three di�erent values (BLOSUM62, PAM30, or the

complement of the Hamming distance);

• the graph construction method, with four options (fully connected, KNN, mutual

KNN and ε-neighborhood) and three values for K and ε, totalizing ten methods;
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• the type of graph Laplacian, with two options (unnormalized or normalized sym-

metric Laplacian);

• the similarity matrix, with 21 di�erent similarity matrices for each family and

29 when all three families are combined. The larger number of matrices when

the families are combined is due to the existence of structural alignment-based

cannot-link constraints.

This yields the total of 1, 260 parameter con�gurations for each enzyme family and

1, 740 con�gurations when all three families are combined. Furthermore, there are ten

repetitions for each con�guration. In order to analyze the results of all these con�g-

urations, a general full factorial design with four factors [38] was built for each family.

6.2.1 Full Factorial Designs with Four Factors

This subsection describes the results of the full factorial designs for each of the enzyme

families and for when they are combined. Table 6.13 lists the four factor codes and

which parameter they represent.

Table 6.13. Codes used for each parameter.

Code Parameter

A Similarity Measure
B Similarity Matrix
C Graph Laplacian
D Graph Construction Method

Nucleotidyl Cyclases

The analysis of variance for enzyme family nucleotidyl cyclases at the 99% con�dence

level is shown in Table 6.14, which contains the factor or interaction, its sum of squares

(SS), the percentage of the total variation in response variable (i.e., EP-Ratio) that it

explains, its mean square (SS) and the F-test values. The F-test results show that the

e�ects of all factors and all interactions are signi�cant at this level of con�dence, since

all calculated values are larger than the corresponding F-distribution table values.

The most important individual parameter is D, which represents the graph con-

struction method and explains 18.33% of the variation in EP-Ratio. The interaction

between graph construction method and similarity matrix, and the triple interaction
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Table 6.14. ANOVA Table for Nucleotidyl Cyclases.

Factor SS % Explained MS
F-Test

Calculated Table

A 0.5285 1.84 0.2643 1257.7689 4.65
B 0.4717 1.64 0.0236 112.2521 1.92
C 1.2277 4.27 1.2277 5843.3858 6.69
D 5.2729 18.33 0.5859 2788.6436 2.44
AB 1.4301 4.97 0.0358 170.1669 1.63
AC 0.0061 0.02 0.0031 14.6206 4.65
AD 0.9508 3.30 0.0528 251.4301 1.97
BC 0.3230 1.12 0.0018 8.5418 1.92
BD 5.6629 19.68 0.0315 149.7453 2.30
CD 1.4595 5.07 0.1622 771.8794 2.44
ABC 0.1565 0.54 0.0039 18.6214 1.63
ABD 6.4132 22.29 0.0178 84.7922 2.30
ACD 0.1649 0.57 0.0092 43.6159 1.97
BCD 1.4926 5.19 0.0083 39.4688 2.30
ABCD 0.8269 2.87 0.0023 10.9328 2.30
Error 2.3825 8.28 0.0002 - -

between them and the similarity measure are even more signi�cant, since they explain

19.68% and 22.29% of the variation in EP-Ratio, respectively. Since the smaller the

EP-Ratio, the better the clustering is, the best value for a given parameter is the one

with the largest negative e�ect. That said, the best graph construction method is

mutual KNN with K set as 75% of the neighbors (e�ect of −0.0341), closely followed

by the mutual KNN with K = 50% of the neighbors, which has the e�ect of −0.0323.

Protein Kinases

Table 6.15 presents the analysis of variance for enzyme family protein kinases at the 99%

con�dence level. The F-test results show that the e�ects of all factors and combinations

thereof are statistically signi�cant.

Again, the most important individual factor is the graph construction method,

which explains 13.67% of the variation in EP-Ratio. The interaction between graph

construction method and similarity matrix is even more signi�cant, explaining 17.12%

of the variation. The method with the largest negative e�ect for the protein kinases

family is mutual KNN with K = 50% of the neighbors (with e�ect −0.0626), followed

by mutual KNN with K = 25% of the neighbors, which has an e�ect of −0.0551.
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Table 6.15. ANOVA Table for Protein Kinases.

Factor SS % Explained MS
F-Test

Calculated Table

A 0.8471 0.29 0.4235 154.2458 4.65
B 19.0601 6.68 0.9530 347.0747 1.92
C 9.1827 3.22 9.1827 3344.2473 6.69
D 38.9937 13.67 4.3326 1577.8992 2.44
AB 5.0603 1.77 0.1265 46.0728 1.63
AC 1.3706 0.48 0.6853 249.5802 4.65
AD 9.1763 3.22 0.5098 185.6622 1.97
BC 3.6198 1.27 0.0201 7.3239 1.92
BD 48.8362 17.12 0.2713 98.8089 2.30
CD 9.7144 3.41 1.0794 393.0975 2.44
ABC 4.3325 1.50 0.1083 39.4466 1.63
ABD 33.6975 11.81 0.0936 34.0896 2.30
ACD 7.5621 2.65 0.4201 153.0024 1.97
BCD 35.0350 12.28 0.1946 70.8854 2.30
ABCD 27.6709 9.69 0.0769 27.9929 2.30
Error 31.1377 10.91 0.0027 - -

Serine Proteases

The analysis of variance for enzyme family serine proteases at the 99% con�dence level

is presented in Table 6.16. The F-test results show all e�ects are statistically signi�cant.

For this family, the most important individual factor is also the graph construction

method, which explains 30.75% of the variation in EP-Ratio. The method with the

largest negative e�ect is mutual KNN with K = 25% of the neighbors, which has an

e�ect of −0.6853, followed by mutual KNN with K = 50% of the neighbors, with an

e�ect of −0.2719.

Clustering Subfamilies Inside Multiple Families

The analysis of variance for clustering all eight subfamilies when the three families are

combined is presented in Table 6.17. All e�ects are statistically signi�cant according

to the F-test results.

The most important individual factor is the graph construction method, which

is responsible for 32.29% of the variation in EP-Ratio. The interaction between the

graph construction method and the similarity matrix is also very important, explaining
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Table 6.16. ANOVA Table for Serine Proteases.

Factor SS % Explained MS
F-Test

Calculated Table

A 2.3093 0.06 1.1546 29.8903 4.65
B 232.6511 6.05 11.6326 301.1311 1.92
C 488.8935 12.71 488.8935 12655.9512 6.69
D 1182.4165 30.75 131.3796 3401.0144 2.44
AB 34.4082 0.89 0.8602 22.2681 1.63
AC 10.4604 0.27 5.2302 135.3933 4.65
AD 24.7356 0.64 1.3742 35.5738 1.97
BC 100.8773 2.62 0.5604 14.5078 1.92
BD 318.8938 8.29 1.7716 45.8621 2.30
CD 535.6238 13.93 59.5138 1540.6283 2.44
ABC 16.6310 0.43 0.4158 10.7632 1.63
ABD 95.4977 2.48 0.2653 6.8671 2.30
ACD 85.9104 2.23 4.7728 123.5531 1.97
BCD 196.2639 5.10 1.0904 28.2259 2.30
ABCD 81.8236 2.13 0.2273 5.8838 2.30
Error 438.0589 11.39 0.0386 - -

37.21% of the variation. The graph construction methods with the largest negative

e�ects are mutual KNN with K = 25% of the neighbors (e�ect of −1.8687), the fully

connected graph (e�ect of −1.7576) and mutual KNN with K = 50% of the neighbors

(e�ect of −1.6255).

Clustering Families

The analysis of variance for clustering all three families combined, with K = 3, is

presented in Table 6.18. The F-test results show that all e�ects are statistically sig-

ni�cant. When clustering families, the most important individual factor is, again, the

graph construction method, which is responsible for 35% of the variation in EP-Ratio.

The interaction between graph construction method and similarity matrix is also im-

portant, since it explains 27.69% of the variation. The graph construction methods

with the largest negative e�ects are mutual KNN with K = 25% of the neighbors (ef-

fect of −2.1833), the fully connected graph (e�ect of −2.0343) and mutual KNN with

K = 50% of the neighbors (e�ect of −1.5032).
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Table 6.17. ANOVA Table for All Eight Families.

Factor SS % Explained MS
F-Test

Calculated Table

A 1577.6151 1.54 788.8076 1786.5279 4.65
B 8510.6875 8.33 293.4719 664.6689 1.74
C 223.9324 0.22 223.9324 507.1724 6.69
D 32990.7408 32.29 3665.6379 8302.1065 2.44
AB 996.0645 0.98 17.1735 38.8954 2.30
AC 24.7444 0.02 12.3722 28.0211 4.65
AD 2879.6872 2.82 159.9826 362.3361 1.97
BC 225.5799 0.22 0.8643 1.9575 1.74
BD 38017.3647 37.21 145.6604 329.8984 2.30
CD 489.5291 0.48 54.3921 123.1898 2.44
ABC 130.2645 0.13 2.2459 5.0867 2.30
ABD 5338.6705 5.23 10.2273 23.1633 2.30
ACD 466.6421 0.46 25.9246 58.7151 1.97
BCD 1694.8759 1.66 6.4938 14.7074 2.30
ABCD 1438.7559 1.41 2.7562 6.2425 2.30
Error 7152.8031 7.00 0.4415 - -

General Results

The analysis of paired observations was employed to compare the results obtained

when using the initial similarity matrices (i.e., those containing purely the normalized

BLOSUM62, PAM30 or Hamming scores) against the similarity matrices that combine

all information possible. There is one of such matrices for each combination of similarity

measure and strategy for integrating additional data sources (i.e., using cuto�s, values

or edges as described in Section 5.4). In most cases, the more �informed� similarity

matrices yield results signi�cantly better than the initial matrices, which shows the

potential and importance of using information from diverse knowledge domains for

clustering enzymes and predicting their function, since sequence similarity alone does

not imply functional similarity or substrate speci�city. There are, however, few cases

in which the results are worse than those produced when using the initial matrices.

6.2.2 Fixing the Graph Construction Method

The previous tables show that for all cases, whether clustering each enzyme family sep-

arately or all three families combined, the most important individual factor is the graph

construction method. Therefore, we �xed the graph construction method, repeating
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Table 6.18. ANOVA Table for All Three Families.

Factor SS % Explained MS
F-Test

Calculated Table

A 24.2774 0.02 12.1387 28.8688 4.65
B 11192.2849 10.01 385.9409 917.8625 1.74
C 970.0224 0.87 970.0224 2306.9525 6.69
D 39126.6717 35.00 4347.4079 10339.2082 2.44
AB 538.0619 0.48 9.2769 22.0628 2.30
AC 120.3282 0.11 60.1641 143.0851 4.65
AD 2565.2407 2.29 142.5134 338.9319 1.97
BC 740.1353 0.66 2.8358 6.7442 1.74
BD 30947.7766 27.69 118.5739 281.9979 2.30
CD 2056.1202 1.84 228.4578 543.3289 2.44
ABC 622.5089 0.56 10.7329 25.5255 2.30
ABD 5490.5831 4.91 10.5184 25.0153 2.30
ACD 547.7616 0.49 30.4312 72.3729 1.97
BCD 6451.8033 5.77 24.7196 58.7892 2.30
ABCD 3571.2902 3.19 6.8416 16.2709 2.30
Error 6811.7411 6.09 0.4205 - -

the analysis varying only the other three factors. The mutual KNN with K = 50%

of the neighbors was chosen, since it is consistently among the best for all cases. Ad-

ditionally, the analysis of a given family was repeated �xing the graph construction

method as the best for that particular family. This always involves a mutual KNN,

only varying the K among the families: K = 75% of the neighbors for the nucleotidyl

cyclases family; K = 50% for the protein kinases; and K = 25% for serine proteases

and when all three families are combined.

Nucleotidyl Cyclases

The analysis of variance for the nucleotidyl cyclases family when �xing the graph con-

struction method as mutual KNN with K = 50% of the neighbors is shown in Table

6.19. The e�ect of factor C (i.e., the graph Laplacian) has been omitted because it is

non-signi�cant according to the F-test. The most important individual parameter is

the similarity matrix, which explains 34.63% of the variation in EP-Ratio. The largest

percentage of variation, however, is explained by the interaction between similarity

measure and similarity matrix: 56.39%. The similarity matrices with the largest nega-

tive e�ects are AS_value and AS_GC_value, which, using the codes in Tables 6.1 and

6.12, correspond to the matrices that contain active site information, and both active
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site and genomic context information, respectively. In both cases such information has

been integrated to the initial similarity matrices (i.e., those containing only the normal-

ized BLOSUM62, PAM30, or Hamming scores) using the actual values as described in

Section 5.4. Using the initial similarity matrices has a positive e�ect on the EP-Ratio,

which means that adding information to the initial sequence similarity-based matrices

improves the clustering quality.

Table 6.19. ANOVA Table for Nucleotidyl Cyclases with mutual KNNK = 50%.

Factor SS % Explained MS
F-Test

Calculated Table

A 0.6359 7.39 0.3179 7931.3994 4.65
B 2.9817 34.63 0.1491 3719.0175 1.92
AB 4.8559 56.39 0.1214 3028.3544 1.63
AC 0.0012 0.01 0.0006 14.7655 4.65
BC 0.0045 0.05 0.0002 5.5695 1.92
ABC 0.0398 0.46 0.0009 24.7912 1.63
Error 0.0909 1.06 4E-5 - -

When using mutual KNN with K = 75% of the neighbors, which is the best for

this family, the e�ect of the graph Laplacian is signi�cant, but only explains 0.03%

of the variation in EP-Ratio. Also, the percentages explained by the factors and in-

teractions are somewhat di�erent, but maintain the same order of importance as with

mutual KNN with K = 50%. The best similarity matrix is, again, AS_value, closely

followed by AS_GC_value. The e�ect of using the initial similarity matrices is, again,

positive, implying that using additional information yields better clusterings.

Protein Kinases

Table 6.20 presents the results of the analysis of variance for protein kinases using mu-

tual KNN with K = 50% of the neighbors, which is also the best graph construction

method for this family. Again, factor C (i.e., the graph Laplacian) has been omitted be-

cause it is non-signi�cant according to the F-test. The most important individual factor

is the similarity matrix, which explains 26.58% of the variation in EP-Ratio. The inter-

action between similarity matrix and similarity measure is also important, explaining

24.53% of the variation. The best similarity matrix for this family is ML_AS_value,

which contains information on structural similarity and percentage of active site iden-

tity. Using the initial similarity matrices has a positive e�ect, which implies the extra

information improves the clustering quality.
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Table 6.20. ANOVA Table for Protein Kinases with mutual KNN K = 50%.

Factor SS % Explained MS
F-Test

Calculated Table

A 1.5695 2.18 0.7847 141.6027 4.65
B 19.1608 26.58 0.9580 172.8734 1.92
AB 17.6817 24.53 0.4420 79.7646 1.63
AC 0.6747 0.94 0.3373 60.8712 4.65
BC 8.9482 12.41 0.4474 80.7328 1.92
ABC 11.4604 15.89 0.2865 51.6992 1.63
Error 12.5689 17.44 0.0055 - -

Serine Proteases

The analysis of variance for the serine proteases family using mutual KNN with

K = 50% of the neighbors is presented in Table 6.21. Factor A (i.e., the similarity mea-

sure) and its combination with factor B (i.e., the similarity matrix) have been omitted

because their e�ects are non-signi�cant according to the F-test. The most important

individual parameter is the similarity matrix, which explains 40.83% of the variation in

EP-Ratio. The e�ect of the graph Laplacian is also important, explaining 33.91% of the

variation. The best similarity matrix is AS_GC_value, closely followed by AS_value,

which contain active site and genomic context information, and active site information,

respectively. Using the initial similarity matrices has a positive e�ect on the EP-Ratio,

implying that the additional information helps achieve better clusterings.

Table 6.21. ANOVA Table for Serine Proteases with mutual KNN K = 50%.

Factor SS % Explained MS
F-Test

Calculated Table

B 203.1473 40.83 10.1574 313.8662 1.92
C 168.7086 33.91 168.7086 5213.1555 6.69
AC 1.3759 0.2766 0.6879 21.2580 4.65
BC 46.2327 9.29 2.3116 71.4303 1.92
ABC 2.4291 0.49 0.0607 1.8765 1.63
Error 73.3972 14.75 0.0324 - -

When using mutual KNN with K = 25% of the neighbors, which is the best

for the family, the results are di�erent. Both factor A and its interaction with factor

B have signi�cant e�ects, explaining 4.53% and 15.98% of the variation in EP-Ratio,

respectively. The interaction between factors A and C is non-signi�cant. The order

of importance according to the percentage of variation explained by the factors or
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interactions is very di�erent than when using K = 50% of the neighbors: 51.78% of the

variation in EP-Ratio is unexplained and attributed to experimental errors; 15.98% is

explained by the interaction between similarity measure and similarity matrix; 15.45%,

by the similarity matrix; 4.92%, by the interaction between the three factors; 4.53%, by

the similarity measure; 3.99%, by the interaction between similarity matrix and graph

Laplacian; and 3.33%, by the graph Laplacian. With either graph construction method,

however, the most important individual parameter is the similarity matrix. The best

similarity matrix in this case is AS_value, closely followed byML_AS_GC_value (i.e.,

the matrix containing the most information possible) and AS_GC_value. Using the

initial similarity matrices has a negative e�ect, implying that some matrices containing

additional data yield worse clusterings and some yield better clusterings than the initial

similarity matrices.

Clustering Subfamilies Inside Multiple Families

Table 6.22 shows the analysis of variance for clustering all eight subfamilies when

the three families are combined, using mutual KNN with K = 50% of the neigh-

bors. The interaction between factors A (i.e., the similarity measure) and C (i.e.,

the graph Laplacian) has been omitted because its e�ect is non-signi�cant according

to the F-test. Again, the most important individual factor is the similarity matrix,

responsible for 16.52% of the variation in EP-Ratio. The percentage of variation un-

explained by the parameters and attributed to experimental error is high. The best

similarity matrix isML_AS_value, followed by CL_ML_cuto�, CL_ML_GC_cuto�,

CL_ML_AS_cuto�, CL_ML_AS_GC_cuto� and AS_GC_value. When clustering

the three families combined, the e�ect of the cannot-link structural alignment-based

constraints stands out, just as it does for constrained clustering. Using the initial simi-

larity matrices has a positive e�ect, implying, yet again, that the additional information

improves the clustering results.

When using mutual KNN with K = 25% of the neighbors, which is the best

graph construction method for when all three families are combined, the interaction

between A and C is signi�cant, but explains only 1.05% of the variation in EP-Ratio.

The percentages explained by the factors and interactions are di�erent than when

K = 50% of the neighbors: 57.52% of the variation in EP-Ratio is unexplained and

attributed to errors; 13.83% is explained by the similarity matrix; 11.23%, by the triple

interaction between the factors; 6.24%, by the interaction between similarity measure

and similarity matrix; 5.35%, by the interaction between similarity matrix and graph
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Table 6.22. ANOVA Table for All Eight Subfamilies with mutual KNN K =
50%.

Factor SS % Explained MS
F-Test

Calculated Table

A 469.2121 9.19 234.6061 301.6215 4.65
B 843.7189 16.52 29.0938 37.4044 1.74
C 31.0993 0.61 31.0993 39.9829 6.69
AB 667.6988 13.08 11.5120 14.8005 2.30
BC 338.5828 6.63 11.6753 15.0103 1.74
ABC 232.3492 4.55 4.0060 5.1503 2.30
Error 2520.1241 49.35 0.7778 - -

Laplacian; 3.16%, by the similarity measure; and 1.62%, by the graph Laplacian. With

both graph construction methods, the similarity matrix is the most important individ-

ual factor. The best similarity matrix is ML_AS_value, followed by AS_GC_value

and AS_value. Using the initial matrices has, again, a positive e�ect on EP-Ratio.

Clustering Families

Table 6.23 shows the analysis of variance for clustering all three families using mutual

KNN with K = 50% of the neighbors. Factor C (i.e., the graph Laplacian) has been

omitted because its e�ect is non-signi�cant according to the F-test. The most impor-

tant individual factor is the similarity matrix, responsible for and impressive mark of

65.03% of the variation in EP-Ratio. The best similarity matrices are CL_AS_cuto�,

CL_AS_GC_cuto�, CL_ML_AS_cuto� and CL_ML_AS_GC_cuto�, closely fol-

lowed by AS_GC_value and AS_value. Using the initial matrices has a positive e�ect

on EP-Ratio, again suggesting adding information improves the clustering results.

Table 6.23. ANOVA Table for All Three Families with mutual KNN K = 50%.

Factor SS % Explained MS
F-Test

Calculated Table

A 2189.7551 9.53 1094.8776 1784.3894 4.65
B 14940.4138 65.03 515.1867 839.6315 1.74
AB 2526.6426 10.99 43.5628 70.9969 2.30
AC 19.8925 0.09 9.9463 16.2100 4.65
BC 436.5224 1.89 15.0525 24.5319 1.74
ABC 874.2677 3.81 15.0736 24.5663 2.30
Error 1988.0208 8.65 0.6136 - -
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When using mutual KNN with K = 25% of the neighbors, which is the best

graph construction method when clustering all three families, the e�ect of the graph

Laplacian is signi�cant and explains 4.98% of the variation in EP-Ratio. The percent-

ages explained by the factors and interactions are di�erent than when K = 50% of the

neighbors: 22.33% of the variation is explained by the interaction between similarity

measure and similarity matrix; 22.27%, by the similarity matrix; 19.31%, by the triple

interaction between the factors; 10.09%, by the interaction between similarity matrix

and graph Laplacian; 9.47%, by the similarity measure; 6.76% is unexplained and at-

tributed to experimental errors; and 4.79% is explained by the interaction between

similarity measure and graph Laplacian. The similarity matrix is the most important

individual parameter for both graph construction methods. The best similarity ma-

trix in this case is ML_GC_value, followed by ML_AS_value and AS_GC_value.

The initial matrices have a negative value, which shows that some of the �informed�

similarity matrices yield worse results.

Discussion

All the above results show that the factor that explains most of the variation in EP-

Ratio is the similarity matrix. In each case there is a speci�c matrix that presents

the largest negative e�ect, i.e., is the best option. However, the best matrix is always

one that involves additional information other than the basic sequence similarity repre-

sented by the normalized BLOSUM62, PAM30, or Hamming scores. In most cases, the

e�ect of using the initial similarity matrices (i.e., those containing purely normalized

BLOSUM62, PAM30, or Hamming similarities) increases the EP-Ratio, which implies

that they lead to poor quality results in comparison to the matrices containing domain

knowledge. This attests to the importance of introducing information from di�erent

sources and domains to the problem of clustering enzymes by speci�city, since sequence

similarity alone does not imply functional similarity, let alone substrate speci�city.

The results indicate that using the actual values is the best of the three strategies

for integrating the additional data sources we considered, since most of the similarity

matrices that yield the best results were constructed by adding the data in this way.

Also, the active site information stands out, since it is always involved in the best

similarity matrices. Since the enzyme's active site is the area where the reaction it

catalyzes takes place, this information is very important and valuable to the problem

of clustering enzymes by substrate speci�city. This serves to underline the importance

of adding information to the process other than the basic sequence similarity.



Chapter 7

Conclusions

Bioinformatics is an active research �eld with virtually endless data sources, since new

information on biological processes is constantly being discovered. Unfortunately, this

invaluable data are scattered throughout the World Wide Web, so that combining the

various information sources is a challenge in itself.

Despite the various structural genomics initiatives, which aim at obtaining protein

structures in large scale, the structures of the majority of newly discovered enzymes will

remain unknown for a long time. In this master's thesis, we use constrained and spectral

clustering techniques to integrate multiple data sources without the need for a full

complex and expensive a priori data integration process. This kind of method, which

combines information from diverse and possibly incomplete sources and knowledge

domains, is of great importance for annotating (i.e., predicting the function of) newly

discovered enzymes, especially when the more common sequence data are used as

basis. This is due to the fact that an enzyme's function is determined by many factors

besides its amino acid sequence. Therefore, the use of information from di�erent and

complementary knowledge domains can likely improve the quality of the annotations.

In this work we veri�ed that the use of such additional information, which in our

case involves three-dimensional structure, genomic context and active site data, is in

fact able to improve the quality of the results of clustering enzymes based on sequence

information. Our experimental results for both constrained and spectral clustering

show that the additional data source which yields the largest improvements compared

to using only the main sequence-based dataset is the one containing active site informa-

tion. This may be explained by the fact that an enzyme's active site is directly related

to its function, as well as its substrate speci�city. Active site information even leads to
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perfect clusters when clustering all three families using active sites as attributes for both

constrained and unconstrained K-Medoids, which shows the quality of active site infor-

mation for clustering enzyme families. When clustering the enzymes into subfamilies,

though, even when the valuable active site information is used as attributes, integrat-

ing information from other knowledge domains still improves the clustering quality,

showing that the more information is integrated, the better the results. Unfortunately,

this highly useful active site information is often unavailable.

The structural alignment-based cannot-link constraints also stand out, since they

are often involved in the best constraint sets and similarity matrices when all three

families are combined, even leading to perfect clusters when clustering families using

constrained K-Medoids. This attests to the quality of introducing structural informa-

tion to a sequence-based dataset, since structure is much more related to function than

sequence, and function, in turn, is what determines families and subfamilies. These

results also suggest that the more constraints and, consequently, the more domain

knowledge that is integrated to the problem of clustering enzymes, the better the qual-

ity of the results. Also, the spectral clustering results suggest that integrating the

domain knowledge via the values in the additional dataset is better than using cuto�s

to boost pairwise similarity or to alter edges in the similarity graphs.

This framework is valuable and appropriate for this application scenario because

it allows using the most readily available information (i.e., the amino acid sequences)

as foundation, while the additional information is integrated in order to improve the

clustering quality, even if such information is limited to a subset of the original dataset.

Future Work

As future work, we intend to collect all reviewed enzymes with known Enzyme Com-

mission numbers and structures in order to perform large-scale experiments, as well as

validate the constraint generation strategies, especially those involving cuto�s. Also,

we intend to apply the proposed strategies to the EzCatDB database [57], which clas-

si�es enzyme catalytic mechanisms based on data derived from PDB entries.

Additionally, we intend to expand this research to �exible constraints and to

other domains of biological information such as substrate-product pairs, enzyme folding

patterns and ligand binding sites. Also, we intend to apply other types of clustering

algorithms such as COBWEB [24], which is a hierarchical clustering technique, and

adapt them to use constraints.
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