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�Freedom is not worth having if it does not

connote freedom to err and even to sin.

If God Almighty has given the humblest

of His creatures the freedom to err,

it passes my comprehension how human beings,

be they ever so experienced and able,

can delight in depriving other human beings

of that precious right.�

(Mahatma Gandhi)
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Resumo

A maioria dos sistemas de compartilhamento de vídeo online (SCVOs), como o

YouTube e o Yahoo! Vídeo, possuem vários mecanismos para suportar interações entre

os usuários. Um destes mecanismos é o recurso de vídeo-resposta no YouTube, que

permite ao usuário postar um vídeo em resposta a um outro vídeo. Embora cada vez

mais popular, o recurso de vídeo-resposta abre a oportunidade para que usuários não-

cooperativos introduzam �conteúdo poluído� no sistema, causando perda de e�cácia e

credibilidade do serviço, bem como desperdício de recursos do sistema. Por exemplo, os

usuários não-cooperativos, a quem nos referimos como spammers, podem postar vídeos

não relacionados em resposta a um outro vídeo (o vídeo respondido), tipicamente um

vídeo muito popular, com o objetivo de ganhar visibilidade para seus próprios vídeos.

Além disso, os usuários referidos como promotores de conteúdo postam diversos vídeos

não relacionados em resposta a um único vídeo com a intenção de aumentar a visibili-

dade deste último.

Trabalhos anteriores sobre a detecção de spammers e promotores de conteúdo no

YouTube se basearam principalmente em métodos de classi�cação supervisionados. A

desvantagem da aplicação de soluções supervisionadas para esse problema especí�co é

que, além de extremamente caras (em alguns casos, milhares de vídeos tem que ser vis-

tos e rotulados), o processo de aprendizagem tem de ser continuamente realizado para

lidar com as mudanças nas estratégias adotadas pelos usuários não-cooperativos. Neste

trabalho, exploramos o uso de estratégias semi-supervisionadas baseadas em múltiplas

visões, o que nos permite reduzir signi�cativamente a quantidade de treinamento para

detectar usuários não-cooperativos no YouTube, mas mantendo uma e�cácia similar

àquela obtida utilizando todo o treinamento. Nosso método proposto explora o fato de

que, neste problema, existe uma partição natural do espaço de atributos em sub-grupos

ou �visões�, cada uma sendo capaz de classi�car usuários, quando dados de treino su�-

cientes estão disponíveis. Além disso, propomos lidar com o problema da combinação

de visões como um problema de agregação de rankings, onde rankings baseados na

con�ança da classi�cação são combinados para decidir se um exemplo não rotulado
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deve ser incluído no conjunto de treino. Nossos resultados demonstram que somos

capazes de reduzir a quantidade de treino em cerca de 80%, sem perdas signi�cativas

na efetividade da classi�cação.

Por �m, desenvolvemos um modelo analítico para estimar os custos associados

com a utilização de diferentes métodos para identi�car usuários não-cooperativos em

SCVOs. Aplicamos este modelo em diversos cenários com o intuito de comparar nosso

melhor método proposto (um método híbrido) com um método supervisionado que

utiliza todo o conjunto de treino disponível (nosso baseline). Os resultados desta análise

mostraram que nosso método possui um custo menor de utilização do que o baseline

para grande parte dos cenários analisados.
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Abstract

Most online video sharing systems (OVSSs), such as YouTube and Yahoo! Video, have

several mechanisms for supporting interactions among users. One such mechanism is

the video-response feature in YouTube, which allows a user to post a video in response

to another video. While increasingly popular, the video-response feature opens the

opportunity for non-cooperative users to introduce �content pollution� into the system,

thus causing loss of service e�ectiveness and credibility as well as waste of system

resources. For instance, non-cooperative users, to whom we refer as spammers, may

post unrelated videos in response to another video (the responded video), typically a

very popular one, aiming at gaining visibility towards their own videos. In addition,

users referred to as content promoters post several unrelated videos in response to a

single responded one with the intent of increasing the visibility of the latter.

Previous work on detecting spammers and content promoters on YouTube has

relied mostly on supervised classi�cation methods. The drawback of applying super-

vised solutions to this speci�c problem is that, besides extremely costly (in some cases

thousands of videos have to be watched and labeled), the learning process has to be con-

tinuously performed to cope with changes in the strategies adopted by non-cooperative

users. In this work, we explore the use of multi-view semi-supervised strategies, which

allows us to reduce signi�cantly the amount of training, to detect non-cooperative users

on YouTube, while keeping high levels of e�ectiveness. Our proposed method explores

the fact that, in this problem, there is a natural partition of the feature space in sub-

groups or �views�, each being able to classify a given user when enough training data

is available. Moreover, we propose to deal with the problem of view combination as a

rank aggregation problem, where rankings based on con�dence in the classi�cation are

combined to decide whether an unlabeled example should be included in the training

set. Our results demonstrate that we are able to reduce the amount of training in

about 80% without signi�cant losses in classi�cation e�ectiveness.

Finally, we develop an analytical model to estimate the costs associated with the

utilization of di�erent methods to identify non-cooperative users in OVSSs. We here
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apply this model in di�erent scenarios in order to compare our best proposed method

(a hybrid method) with a supervised method which uses all the training data available

(our baseline). The results of this analysis showed that our method has a lower cost

when compared to the baseline for most of the analyzed scenarios.
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Resumo Estendido

Introdução

Com a popularização da Web no últimos anos, o número de pessoas que usam a

Internet cresce cada vez mais e uma parcela signi�cativa desses usuários assistem

vídeos online. Devido a essa demanda, sistemas de compartilhamento de vídeos

online (SCVOs), tais como o YouTube e Yahoo! Video estão tendo um crescimento

vertiginoso de popularidade. O fato de os usuários poderem criar seus próprios vídeos

e postá-los na Web contribui muito para a popularidade dos SCVOs. Normalmente,

SCVOs tem vários mecanismos para facilitar a recuperação dos vídeos. Um exemplo

é a possibilidade de um usuário responder a um vídeo publicando um outro vídeo em

resposta a ele, como no recurso de vídeo-resposta fornecido pelo YouTube. Um usuário

é capaz de ver todas as respostas postadas a um determinado vídeo, que supostamente

também conteria conteúdo de interesse, sem ter que fazer uma nova pesquisa.

Os fatores mencionados acima abrem espaço para ações não-cooperativas por

parte dos próprios usuários. Benevenuto et al. [2009b] encontrou evidências de

usuários não-cooperativos explorando o recurso de vídeo-resposta no YouTube. Esses

usuários postam vídeos completamente não relacionados em resposta a outros vídeos.

De acordo com Benevenuto et al. [2009a], estes usuários não-cooperativos podem ser

classi�cados em dois tipos: spammers e promotores de conteúdo. Spammers são os

usuários que postam vídeos não relacionados em resposta a vídeos populares com o

intuito de aumentar a visibilidade de seus próprios vídeos. Um promotor é um usuário

que tenta dar visibilidade para um vídeo respondido, postando um grande número de

vídeos, na sua maioria não relacionados, em resposta a ele.

Conteúdo poluído traz várias desvantagens para os SCVOs, incluindo: (1) perda

de efetividade e credibilidade do serviço, (2) desperdício de espaço, (3) desperdício de

banda, e (4) perda de efetividade de caches e redes de distribuição de conteúdo.

O primeiro e, pelo que sabemos, único esforço para abordar o problema da

poluição de conteúdo em SCVOs foi realizado em Benevenuto et al. [2009a]. Os
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autores propõem mecanismos baseados em classi�cação para identi�car os usuários

que são spammers e promotores, diferenciando-os de usuários legítimos do sistema.

Aplicando um algoritmo de classi�cação supervisionada em uma coleção de 829

usuários pré-classi�cados, os autores foram capazes de detectar a grande maioria dos

promotores, bem como uma parcela signi�cativa dos spammers.

Métodos supervisionados precisam �aprender" uma função de classi�cação através

de um conjunto de dados de treino. A desvantagem da aplicação de tais métodos para

detectar usuários não-cooperativos em SCVOs é que a geração manual da base de treino

é muito custosa, já que milhares de vídeos devem ser analisados1. Um melhor compro-

misso entre o custo e a efetividade da classi�cação pode ser conseguido com métodos

semi-supervisionados, os quais combinam uma quantidade menor de dados rotulados

com uma grande quantidade de dados não rotulados para melhorar a classi�cação.

Neste trabalho, exploramos estratégias de classi�cação semi-supervisionada com

múltiplas visões, o que nos permite reduzir signi�cativamente a quantidade de treino

necessário para identi�car spammers e promotores em SCVOs, enquanto mantendo

níveis de efetividade similares àqueles obtidos quando usando todo o treinamento.

Nossos métodos propostos exploram o fato de que, neste problema, há uma partição

natural do espaço de atributos em sub-grupos ou �visões�, cada uma sendo capaz de

classi�car um determinado usuário quando uma quantidade su�ciente de dados de

treino está disponível. Assim, é possível combinar as visões para permitir que dados não

rotulados sejam usados para aumentar um conjunto muito menor de dados rotulados.

Além disso, desenvolvemos um modelo analítico para estimar os custos associados

com a utilização de diferentes métodos para identi�car usuários não-cooperativos em

SCVOs. Aplicamos este modelo em diversos cenários com o intuito de comparar nosso

melhor método proposto (um método híbrido) com um método supervisionado que

utiliza todo o conjunto de treino disponível (nosso baseline). Os resultados desta

análise mostraram que nosso método possui um menor custo de utilização do que o

baseline para grande parte dos cenários analisados.

Abordagem Semi-supervisionada com Múltiplas

Visões

A principal idéia por trás de nossa proposta de classi�cação semi-supervisionada com

múltiplas visões é começar com um pequeno conjunto de dados rotulados como sendo

o conjunto de treino e ser capaz de expandi-lo com exemplos extraídos de um conjunto

1Em Benevenuto et al. [2009a] mais de 20.000 vídeos foram analisados manualmente.
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de dados não rotulados. O conjunto de treino expandido é então utilizado para

classi�car os objetos desejados. Durante a inserção de novos elementos ao conjunto

de treino, este e o conjunto de dados não rotulados são divididos em visões, cada

uma sendo composta de uma série de atributos dos elementos. Quando não há mais

elementos que possam ser inseridos no conjunto de treino, todas as visões do conjunto

de treino formado são integradas em uma única, a qual é utilizada como o conjunto

de treino �nal usado na classi�cação.

Algoritmo 1 Expansão do Treino Utilizando o Método Semi-supervisionado com
Múltiplas Visões
Input: O número de visões V , um conjunto C de classi�cadores Cv para cada visão v (v = 1...V ), o número

de classes K, o número de elementos M no conjunto de dados não rotulados, um conjunto L de dados
rotulados lnv com os atributos de cada visão v (v = 1...V ) para cada elemento ln (n = 1...N), e um
conjunto U de dados não rotulados um

v com os atributos de cada visão v (v = 1...V ) para cada elemento
um (m = 1...M). {N é o número de elementos no conjunto de dados rotulados}

Output: Conjunto L expandido para incluir todos os elementos iniciais bem como os novos elementos adi-
cionados pelo algoritmo.

1: repeat
2: insertion← FALSE
3: for k ← 1 to K do
4: Bk ← a fração de elementos da classe k em L
5: end for
6: for v ← 1 to V do
7: Treina Cv em Lv

8: Avalia Cv em Uv gerando as predições em Pv e as con�anças em θv {θ é um conjunto de con�anças
θm

v (k) de cada visão v da pertinência do elemento um à classe k}
9: end for
10: {I recebe os elementos a serem adicionados ao conjunto de treino juntamente com a classe predita para

cada elemento}
11: I ← De�neNovasInserções(V, K, B, M, UP, θ)
12: if |I| > 0 then
13: insertion← TRUE
14: end if
15: for i← 1 até |I| do
16: for v ← 1 até V do
17: Lv ← Lv ∪ ui

v ∈ I
18: Uv ← Uv\ ui

v ∈ I
19: end for
20: end for
21: M ← |U | {Atualiza o número de elementos no conjunto de dados não rotulados}
22: until (|U | = 0 ou insertion = FALSE)

Esta inserção de exemplos no conjunto de treino ocorre através de um processo

iterativo, como mostrado no Algoritmo 1. Em cada iteração, o classi�cador de cada

visão é treinado com os seus respectivos conjuntos de treino, e é utilizado para predizer

a classe de cada elemento do conjunto de dados não rotulados. Juntamente com

as predições, a etapa de avaliação gera também a con�ança de cada elemento em

pertencer à classe predita. Com base nas predições e na con�ança da predição de cada

classi�cador, um método é usado para determinar se existem elementos não rotulados

que podem ser inseridos no conjunto de treino e para de�nir a classe predita de

cada um desses elementos (função De�neNovasInserções). Em seguida, os elementos
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selecionados são movidos do conjunto de dados não rotulados para o conjunto de

treino e têm a sua classe atualizada para a classe predita. Este processo é repetido

até que não existam mais elementos que possam ser inseridos no conjunto de treino

ou até que o conjunto de dados não rotulados esteja vazio.

Usamos o Lazy Associative Classi�cation (LAC) como nosso classi�cador

(Veloso et al. [2006]). O LAC explora o fato de que, frequentemente, há fortes

associações entre valores de atributos e classes. Tais associações estão normalmente

escondidas nos dados de treino e, quando descobertas, podem revelar aspectos

importantes que podem ser usados para prever classes de elementos. O LAC produz

uma função de classi�cação composta por regras X → k, indicando a associação entre

um conjunto de valores de atributo X e uma classe k.

Combinação dos Resultados das Múltiplas Visões

Um passo importante da abordagem semi-supervisionada com múltiplas visões é a

seleção dos elementos a serem inseridos no conjunto de treino em cada iteração, o que

é feito através da combinação dos resultados de classi�cação de cada visão (função

De�neNovasInserções no Algoritmo 1). Neste trabalho, exploramos duas estratégias

para isso: uma baseada na concordância das visões e outra baseada em um método de

agregação de listas ordenadas chamado Borda Count (Black [1963]).

Durante nossos experimentos iniciais, descobrimos que é muito importante, por

razões de efetividade da classi�cação, manter estável a distribuição de elementos

rotulados por classe, à medida que novos elementos são inseridos no conjunto de

treino. Portanto, nós calculamos a distribuição inicial de elementos entre as classes no

conjunto de treino e a usamos para restringir a inserção de novos elementos em cada

iteração. Esta distribuição está representada pelo conjunto B no Algoritmo 1.

A estratégia de concordância de visões funciona como explicado a seguir. Todos

os elementos do conjunto de dados não rotulados são analisados. Se todas as visões

concordam na predição da classe de um elemento, este se torna um candidato a

ser adicionado no conjunto de treino. Após o término do processo de seleção de

candidatos, usamos a con�ança das predições e a distribuição de elementos para a

classe em questão para determinar quais elementos do conjunto de candidatos serão

inseridos no conjunto de treino.

A estratégia com o Borda Count é baseado em um método que foi proposto

para combinar listas de candidatos em eleições e, depois, foi utilizado para resolver

problemas computacionais como a agregação dos rankings produzidos por diversas

máquinas de busca (Dwork et al. [2001]). Esta estratégia calcula valores de ranking
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proporcionais à posição de cada elemento, para todos os elementos do conjunto de

dados não rotulados, em relação a uma classe. Na fase de agregação, os valores

individuais gerados por cada visão com relação a esta mesma classe são somados. Os

elementos com os valores mais elevados de agregação de ranking, que tiveram sua

classe predita como a classe em questão por pelo menos uma visão, são selecionados

para serem inseridos no conjunto de treinamento, de forma que a distribuição dos

elementos entre as classes não seja alterada.

Observe que ambos os métodos fazem o cálculo do conjunto de elementos

selecionados para todas as classes. No entanto, o conjunto de elementos candidatos

é determinado independentemente para cada classe. Assim, diferentes estratégias

podem ser aplicadas a cada classe, dependendo das características do problema a ser

resolvido. De fato, nós exploramos abordagens híbridas (i.e., combinando estratégias)

em nossos experimentos descritos mais adiante, como veremos.

Metodologia de Avaliação

Nesta seção, descreveremos a coleção utilizada, as métricas de avaliação das soluções

e, por �m, o ambiente experimental.

Coleção de Testes

Para avaliar as abordagens propostas precisamos de uma coleção de testes composta

por usuários do sistema alvo, que no nosso caso é o YouTube. O processo de criação

desta coleção é muito custosa, uma vez que requer o esforço humano para assistir

a um número potencialmente muito grande de vídeos. Neste trabalho, utilizamos a

mesma coleção de testes descrita em Benevenuto et al. [2009a], que tem um total de

829 usuários, constituída de 641 usuários legítimos, 157 spammers e 31 promotores.

Usuários legítimos, spammers e promotores têm objetivos diferentes no sistema

e, portanto, espera-se que atuem de maneira diferente enquanto o utilizam. Tais

diferenças podem ser capturadas explorando atributos que re�itam o comportamento

de cada usuário quando utilizando o sistema. Em particular, a nossa coleção de testes

contém um total de 60 atributos por usuário, que podem ser divididos em três grupos:

atributos de vídeo, atributos de usuário e atributos da rede social estabelecida entre

os usuários através da utilização do recurso de vídeo-resposta.

Diferentemente do que é feito em Benevenuto et al. [2009a], onde os autores

aplicaram um método de classi�cação supervisionada com uma única visão, nosso

objetivo aqui é explorar abordagens semi-supervisionadas com múltipals visões.
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Assim, precisamos extrair diferentes visões da coleção de testes. Como explicado

anteriormente, a coleção já possui três grupos distintos de atributos, ou seja, atributos

do usuário, atributos de vídeo e atributos de rede social. Assim, aproveitamos esta

categorização inerente dos atributos na coleção para gerar uma visão de vídeo, uma

visão de usuário e uma visão de rede social. Cada visão inclui apenas os atributos do

grupo correspondente. Em outras palavras, a visão de vídeo tem 42 atributos, a visão

de usuário tem 10 atributos, e a visão de rede social tem 8 atributos.

Métricas Utilizadas

Nós avaliamos as abordagens de classi�cação comparando as matrizes de confusão

(Kohavi and Provost [1998]) produzidas por cada uma delas. Cada elemento da

posição (i, j) dessa matriz representa o percentual de usuários de classe i que foram

preditas, pela classi�cação, como pertencentes à classe j. Nós focamos nossa avaliação

nessas matrizes porque elas mostram melhor os compromissos entre classi�car corre-

tamente os usuários de uma classe em detrimento de classi�car erroneamente usuários

de outras classes.

Ambiente Experimental

Foi realizada uma série de experimentos com cinco abordagens de classi�cação. Três

abordagens são baseadas no método semi-supervisionado com múltiplas visões, e

exploram as duas estratégias de combinação de visões apresentadas. Para avaliar a

efetividade dessas abordagens, também consideramos dois baselines. O primeiro é

um método supervisionado com uma única visão que utiliza todos os dados de treino

disponíveis. A comparação com este baseline permite que avaliemos o compromisso

entre a quantidade de dados rotulados e a e�cácia da classi�cação. Como um

segundo baseline, consideramos o mesmo método supervisionado com uma única visão

mas que use a mesma quantidade de dados rotulados que as estratégias propostas.

A comparação com este segundo baseline nos permite avaliar o impacto sobre a

classi�cação quando incorporamos novos exemplos para o conjunto de treino.

Os experimentos de classi�cação foram realizados utilizando uma validação

cruzada de 5-folds e foram repetidos cinco vezes, usando diferentes sementes para

embaralhar o conjunto de dados original. Assim, os resultados apresentados para cada

uma das abordagens consideradas são médias das 25 execuções.
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Resultados

Esta seção apresenta o resultado mais relevante da nossa comparação das diferentes

abordagens de classi�cação consideradas. Este melhor resultado foi obtido com a

nossa abordagem híbrida (explicada mais adiante).

O objetivo aqui é conseguir o melhor compromisso entre a quantidade de

dados de treino e a efetividade de classi�cação da abordagem. Para avaliar esse

compromisso, �zemos um conjunto de experimentos iniciais com nossas estratégias

propostas, reduzindo cada vez mais a porcentagem dos dados de treino original

fornecidos como dados rotulados, deixando o restante como dados não rotulados.

Testamos várias percentagens, e descobrimos que usando apenas 20% dos dados de

treino original levou ao melhor compromisso. Assim, focamos a nossa comparação nos

resultados quando 20% do conjunto de treino original é usado como dados rotulados

pelas abordagens semi-supervisionadas.

Começamos nossas análises, considerando o desempenho do nosso baseline

treinado com todos os dados de treino disponíveis (Tabela 1). Como podemos ver,

promotores e usuários legítimos são classi�cados corretamente em quase 100% dos ca-

sos, mas apenas 53% dos spammers estão corretamente classi�cados. Uma investigação

revelou ainda que vários desses spammers são realmente muito difíceis de identi�car

com base apenas em seus comportamentos, pois eles possuem um comportamento dual,

i.e., ora agem como legítimos e ora como spammers.

Predito
Promotor Spammer Legítimo

Promotor 100% 0% 0%
Real Spammer 1.02% 53.25% 45.73%

Legítimo 0% 0.78% 99.22%

Tabela 1: Classi�cação com o Baseline 1 (Método Supervisionado com 100% de Treino)

Claramente, spammer é a classe mais difícil de prever. Na abordagem de

Concordância de Visões, existe uma concordância muito mais baixa entre as visões

com relação a essa classe especí�ca, o que pode afetar a classi�cação de todas as três

classes, uma vez que provoca a interrupção do processo de inserção de novos dados (de

todas as classes) ao conjunto de treino. Apesar disso, os resultados da Concordância

de Visões para os promotores e usuários legítimos são razoavelmente boas. Assim,

exploramos uma abordagem híbrida que aplica o algoritmo Borda Count apenas para

os spammers, mantendo a Concordância de Visões para as outras 2 classes.

A Tabela 2 mostra a matriz de confusão com os resultados da abordagem híbrida.
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Em comparação com o baseline com 100% de treino, esta abordagem é um pouco pior

na predição de promotores e usuários legítimos. No entanto, alcança um desempenho

comparável na identi�cação correta de spammers, a classe mais difícil. Estes resultados

são bastante promissores considerando a grande redução (por um fator de 5) na quanti-

dade de dados rotulados necessários. Além disso, se considerarmos a aplicação de nossa

técnica como uma ferramenta para ajudar os administradores de sistema a �ltrarem

usuários suspeitos para uma investigação (manual) posterior, acreditamos que os resul-

tados para os promotores e usuários legítimos são também muito positivos. A pequena

fração dos promotores classi�cados incorretamente foram considerados como spammers,

ou seja, eles foram estimados, pelo menos, como usuários não-cooperativos. Além disso,

a fração de usuários legítimos classi�cados incorretamente é razoavelmente pequena.

Predito
Promotor Spammer Legítimo

Promotor 96.77% 3.23% 0%
Real Spammer 3.21% 56.67% 40.13%

Legítimo 0.09% 8.15% 91.76%

Tabela 2: Classi�cação com a abordagem híbrida

Analisando os Custos de Detecção de Usuários

Não-cooperativos

Até este ponto, foram analisados os métodos de detecção de usuários não-cooperativos

(ou seja, nossos novos métodos e o baseline) em termos da e�cácia da classi�cação, ou

seja, nosso foco foi sobre a efetividade dos resultados da classi�cação. No entanto, o

uso de cada método incorre em custos para o administrador do sistema. Esses custos

podem variar dependendo do método utilizado, bem como da coleção de usuários na

qual ele é aplicado. Assim, um método que tenha uma boa efetividade não é nec-

essariamente o mais adequado, pois pode incorrer em um custo de utilização muito

elevado. Até onde sabemos, não há nenhuma análise prévia, nem estudo de tais custos

no problema sendo tratado. Além disso, não temos conhecimento de relatórios públicos

disponíveis sobre os custos reais relacionados com a classi�cação manual de vídeos e de

seus usuários, nem sobre os custos associados com os vídeos poluídos que permanecem

não detectados e, portanto, são armazenadas por sistemas reais. Assim, nesta seção,

nós desenvolvemos um modelo analítico para estimar os custos associados com a uti-

lização de diferentes métodos para identi�car os usuários não-cooperantes em SCVOs.
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Vislumbramos três diferentes componentes de custo associados à implantação

e utilização de um mecanismo para detectar os usuários não-cooperativos: (1) o

custo de treino, (2) o custo associado com os usuários não-cooperativos que não são

capturados pelo método (falso negativos) e (3) o custo (se houver) associado com

os usuários classi�cados como não-cooperativos. Nós agora introduzimos um modelo

analítico desenvolvido para capturar os três referidos componentes de custo. A Tabela

3 resume todas as variáveis usadas neste modelo. Desta forma, o custo de treino pode

ser escrito como cEval ∗ vUser ∗ nTrain, o custo dos usuários não-cooperativos que o

método não identi�cou pode ser escrito como cPollution ∗ vNC ∗ nFalseLeg e o custo dos

usuários preditos como não-cooperativos pode ser escrito como cEval ∗ vUser ∗ nNC .

Assim, o modelo do custo gerado é:

cost = cEval ∗ vUser ∗ (nTrain + nNC) + cPollution ∗ vNC ∗ nFalseLeg (1)

Notação De�nição
cEval Custo para avaliar manualmente um único vídeo

cPollution Custo associado com um único vídeo poluído deixado no sistema
nTrain Número de usuários no conjunto de treino
nTest Número de usuários no conjunto de teste
nNC Número de usuários classi�cados como não-cooperativos

nFalseLeg Número de usuários não-cooperativos classi�cados como legítimos
vNC Número médio de vídeos postados por cada usuário não-cooperativo
vUser Número médio de vídeos postados por um usuário

Tabela 3: Variáveis envolvidas no modelo de custo

Para realizar nossas análises, criamos diferentes cenários, com base nas variáveis

de entrada do modelo analítico, a �m de comparar dois métodos: o nosso melhor

método proposto (o método híbrido) e o baseline que utiliza todos os dados de treino

disponíveis. Em seguida, analisamos os custos totais associados a cada método em

cada cenário. Por questões de espaço, apresentaremos aqui apenas um dos resultados

mais interessantes que obtivemos. No cenário referente a este resultado, utilizamos

duas novas variáveis: C e T . A variável C representa a razão C = cPollution/cEval e a

variável T indica o tamanho do conjunto de teste como um múltiplo do tamanho do

conjunto de teste na nossa coleção de usuários.

Resumimos o impacto das variáveis C e T no custo total associado aos métodos

plotando, na Figura 1, a razão R do custo total associado com o método híbrido para

o custo total associado ao baseline para vários valores de C e T . Note que os valores

de R inferiores a 1 implicam em um menor custo total para o nosso método enquanto
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os valores de R maiores que 1 implicam em um custo menor para o baseline. Como

podemos ver na �gura, para valores de C iguais ou maiores que 4, ou seja, cPollution ser

pelo menos 4 vezes maior do que cEval, o método híbrido tem um custo total menor do

que o baseline para um conjunto de teste até 100 milhões de vezes maior do que é na

coleção usada, ou seja, para um conjunto de teste com até 412,5 bilhões de usuários.

Figura 1: Custos totais em função das variáveis C e T

Conclusões

Nesta dissertação exploramos algoritmos de classi�cação semi-supervisionados com

múltiplas visões para identi�car usuários não-cooperativos em SCVOs. Foram avali-

adas três abordagens, construídas a partir de dois diferentes métodos para combinação

dos resultados das múltiplas visões. Em comparação com métodos supervisionados,

nossa melhor abordagem alcançou um custo-benefício muito mais favorável entre

identi�car usuários não-cooperativos e a quantidade de treino necessária.

Além disso, construímos um modelo de custo para comparar quantitativamente

nosso melhor método com o baseline utilizado. A análise desse modelo mostrou que,

quando o custo de manter um vídeo de poluição no sistema for pelo menos quatro vezes

maior que o custo de avaliação manual de um vídeo, nossa abordagem proposta tem

menor custo mesmo para bases de teste até 100 milhões de vezes maior que a utilizada

neste trabalho. Essa suposição é plausível, já que, na prática, espera-se que realmente

o custo de avaliação de um vídeo seja bem menor que o custo de manter um vídeo

poluído no sistema.
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Chapter 1

Introduction

In this chapter, we discuss the main motivation and arguments that support this work.

We also brie�y describe our work and explicitly state our contributions.

1.1 The Problem

With the popularization of the Web in the last few years, the number of people that use

the Internet is increasingly growing. A signi�cant portion of these users watch online

videos. According to comScore [2010a], 84.48% of the Internet audience in the United

States watched online videos in March 2010, being responsible for displaying more than

31 billion videos in the period. Because of this demand for online videos, online video

sharing systems (OVSSs), such as YouTube and Yahoo! Video1, are experiencing a

vertiginous growth of popularity. Among these sites, YouTube is the one that most

stands out, being responsible for providing 41.8% of the total amount of videos watched

in the period mentioned above. The fact that users may create their own videos and

post them on the Web, passing from the role of viewers of the content to the role of

content creators, greatly contribute to the popularity of OVSSs. According to YouTube

[2010], every minute, 24 hours of video is uploaded to YouTube. Moreover, according

to comScore [2010b], YouTube is the second site in number of queries received in March

2010. Typically, OVSSs have several mechanisms to facilitate the retrieval of videos.

One such mechanism is a search engine, where the user types keywords in order to

�nd videos related to an information need. Another mechanism consists of various

ordered lists of top-videos, each one sorted according to a certain criterium, such as

number of times a video was viewed or number of comments that a video received. Yet

another mechanism consists of relationships established among users and/or videos.

1http://www.youtube.com, http://www.video.yahoo.com
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For example, each user can have a list of friends or a list of favorite videos. Thus,

a user can retrieve the favorite videos of her friends very easily. Another example is

the ability of a user to respond to a video by posting a related video in response to

it, as in the video-response feature provided by YouTube. A user is able to watch all

the responses posted to some desired video, which supposedly would contain related

content also of interest, without having to make a new search2.

Figure 1.1: Example of spammers

The three aforementioned factors (1) popularization of OVSSs, (2) the possibility

for users to post their own videos, and (3) the mechanisms of video retrieval, make

room for non-cooperative actions by the users themselves. Previous work has found

evidence of non-cooperative users exploiting the video-response feature in YouTube

Benevenuto et al. [2009b]. Such users basically post completely unrelated videos in

response to previously uploaded videos. One example of such actions is a video con-

2YouTube also provides a related video list, associated with each video, which is created according
to a proprietary algorithm.
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taining advertisement of adult content posted in response to a video of a very popular

soccer game. According to Benevenuto et al. [2009a], those non-cooperative users can

be classi�ed into two types: spammers and content promoters. Spammers �t exactly

in the previous example, since they are users who post unrelated videos in response to

popular videos in order to increase the visibility of their own videos, as can be seen

in Figure 1.1. A promoter is a user who tries to gain visibility towards her own video

by posting a large number of videos, mostly unrelated, in response to it, aiming at

boosting the number of video-responses of the target video and making it enter more

quickly in the top-list of most responded videos. An example of promoters is shown

in Figure 1.2. Similarly, the same types of non-cooperative actions may occur in other

features, such as the comments posted by users.

Figure 1.2: Example of promoters

Content pollution brings several disadvantages to OVSSs, including: (1) loss of

service e�ectiveness and credibility, as users, when navigating through the system, may

be faced with an unacceptable amount of polluted content, (2) waste of space as the

system has to store all the polluted content, (3) waste of bandwidth as users may

watch at least a portion of a video to determine that it is pollution, and (4) loss of

e�ectiveness of caches and content distribution networks that the OVSSs employ to

replicate popular content (i.e., videos in the top-lists) so as to improve the service
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provided to users.

The �rst and, to the best of our knowledge, unique e�ort to address the problem

of content pollution in OVSSs was done in Benevenuto et al. [2009a]. The authors

propose classi�cation-based mechanisms to identify users who are spammers and pro-

moters, di�erentiating them from legitimate users of the system. Applying a supervised

classi�cation algorithm to a collection of 829 pre-classi�ed users, the authors were able

to detect the vast majority of the promoters as well as large fraction of the spammers.

Supervised methods need to �learn" a classi�cation function through a set of

training data. The drawback of applying such methods to detect non-cooperative

users in YouTube is that the manual generation of the training base is very costly,

as thousands of videos must be watched. For instance, in Benevenuto et al. [2009a],

the authors mention that more than 20,000 videos were manually classi�ed in order to

build the collection of 829 users. Moreover, the learning process has to be continuously

performed, usually with di�erent training sets, to cope with changes in the strategies

adopted by non-cooperative users. Alternatively, unsupervised methods require no

training data at all, although the lower cost comes at the expense of a lower classi�ca-

tion e�ectiveness. A better tradeo� between cost and classi�cation e�ectiveness may

be achieved with semi-supervised methods, which combine a smaller amount of labeled

data with a large amount of unlabeled data to improve classi�cation.

1.2 Proposed Method

In this work, we explore multi-view semi-supervised classi�cation strategies, which

allow us to reduce signi�cantly the amount of training needed to detect spammers and

content promoters in OVSSs. The main idea behind multi-view strategies is to use

di�erent representations for each element of the problem, so that each representation

constitutes a view. For example, in the e-mail domain there are at least two views:

(1) attributes extracted from the e-mail content; and (2) attributes extracted from

the social network established between senders and receivers. This way, we can use

a di�erent classi�er for each view and combine the results of each one. Multi-view

algorithms rely on the assumptions that the views are compatible and uncorrelated.

Intuitively, a problem has compatible views if all examples are labeled identically by

each view. On the other hand, two views are uncorrelated if, given the label of any

example, its description in each view is independent, i.e., each feature is presented only

in one view in a way that the views have disjoint feature sets.

Our proposed methods explore the fact that, in this problem, there is a natu-
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ral partition of the feature space in sub-groups (views), each being able to classify a

given user when enough training data is available. Thus, the assumptions necessary

for multi-view algorithms to work well are satis�ed in our context, thus justifying the

utilization of this approach. Thus, it is possible to combine the views to allow unla-

beled data to be used to augment a much smaller set of labeled samples. We explore

two strategies for combining the results from multiple views and selecting which un-

labeled samples should be included in the training set. One strategy is based on the

agreement of views regarding the label of an unlabeled sample, whereas the other is

based on a rank aggregation strategy in which rankings based on the con�dence in

the classi�cation are combined. We applied our methods to the same user collection

used in Benevenuto et al. [2009a]. Our results demonstrate that we are able to re-

duce the amount of training by a factor of 5 without signi�cant losses in classi�cation

e�ectiveness.

1.3 Costs of Detecting Non-cooperative Users

The use of each non-cooperative user detection method incurs in costs to the system

administrator. Such costs may vary depending on the method employed as well as on

the user collection on which it is applied. Thus, a method that has a good e�ectiveness

is not necessarily the most suitable, because it may incur in a very high utilization cost.

To the best of our knowledge, there is no previous analysis nor study of such costs in the

context we are interested. Moreover, we are not aware of publicly available reports on

actual costs related to the manual classi�cation of videos and of their users nor on the

costs associated with the polluted videos that remain undetected and thus are stored

by real systems. Thus, in this work, we develop an analytical model to estimate the

costs associated with the utilization of di�erent methods to identify non-cooperative

users in OVSSs. Also, we apply this model in di�erent scenarios in order to compare

our best proposed method (a hybrid method) with a supervised method which uses

all the training data available (our baseline). The results of this analysis showed that

our method has a lower cost when compared to the baseline for most of the analyzed

scenarios.

1.4 Organization of the Dissertation

This dissertation is organized in seven chapters. The remainder of this work is orga-

nized as follows. Next chapter discusses related work. Chapter 3 presents an overview
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of our multi-view method, describing the two view combination strategies and the

classi�er adopted. Chapter 4 describes our evaluation methodology, whereas the most

representative results are discussed in Chapter 5. Chapter 6, presents an analytical

model developed to estimate the costs associated with the utilization of di�erent meth-

ods to identify non-cooperative users in OVSSs. Finally, Chapter 7 o�ers conclusions

and directions for future work.

1.5 Publications

The following publication is a direct contribution of this dissertation. It has been

awarded with the José Mauro Castilho award as the best paper of the XXV Simpósio

Brasileiro de Banco de Dados, by the Sociedade Brasileira de Computação.

• Langbehn, H. R., Ricci, S, Gonçalves, M. A., Almeida, J. M., Pappa, G. L.,

Benevenuto, F. A Multi-view Approach for Detecting Non-Cooperative Users in

Online Video Sharing Systems. Journal of Information and Data Management,

v. 1, p. 313-328, 2010.



Chapter 2

Related Work

In this chapter, we discuss related work. First, we report some e�orts related to

content pollution in di�erent domains of application. Then, we focus our attention

on the speci�c problem of video pollution. Finally, we describe some related work on

multi-view semi-supervised learning.

2.1 Content Polution

Content pollution has been found in various applications and domains. Web spam

is a type of pollution that is manifested through the creation of (typically fake) web

pages. These spam web pages, typically useless for human visitors, are built so as

alter or in�ate the results of link analysis algorithms (e.g. PageRank Brin and Page

[1998]) used by search engines. The ultimate goal is to mislead search engines into

erroneously lead users to certain sites. In Fetterly et al. [2004], the authors propose to

use statistical analysis of various web page properties, such as linkage structure and

page content, to locate spam web pages. The idea is that certain classes of spam pages,

in particular those that are machine-generated, diverge in some of their properties

from the properties of "legitimate" web pages. The authors found that outliers in

the statistical distribution of these properties are highly likely to be web spam. In

Castillo et al. [2007], the authors propose to identify hosts of spam pages through the

use of the Web graph topology, by exploiting the link dependencies among Web pages.

They characterize the web pages according to attributes taken from the Web graph

itself and to text attributes extracted from pages of each host. They found that linked

hosts tend to belong to the same class: either both are spam or both are non-spam.

Strategies to semi-automatically separate good web pages from spam are proposed in

Gyöngyi et al. [2004]. The basic idea is to start with a number of manually classi�ed

7
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good seeds, and then exploit the link structure of the web to discover other pages that

are likely to be good as well. The authors obtained good results, showing that their

method can e�ectively �lter out spam from a signi�cant fraction of the Web, based on

a seed set of less than 200 sites.

In the e-mail domain, a characterization of tra�c with the goal of identifying

and quantifying properties that distinguish legitimate e-mails from e-mail spams is

presented in Gomes et al. [2007]. The authors identify a number of characteristics,

such as e-mail arrival process, e-mail size distribution and temporal locality of e-mail

recipients, which can be used to separate legitimate tra�c from spam, and conjecture

that such di�erences are due to inherent di�erences in the way legitimate users and

spammers behave: whereas the former are typically driven by bilateral relationships,

spamming is typically a unilateral action, driven by the goal of reaching as many users

as possible. In Xie et al. [2008], the authors use features extracted from the content

of e-mails, such as the time when the e-mail was sent, the sender IP address and

URLs contained in the e-mail body, to identify URLs that lead to spam web pages as

well as IP addresses of botnet hosts. Botnets are programs that are distributed across

multiple computers and used to send a large number of spams in a short period of time.

The authors developed a spam signature generation framework which does not require

pre-classi�ed training data or white lists, and outputs high quality regular expression

signatures that can detect botnets spam with a low false positive rate.

In Thomason [2007], the author addresses the presence of spam in blogs, claiming

they are due to the combination of three factors, namely, the existence of several means

to create a spam on a blog (e.g., blog post, comments, etc), the potential of reaching a

large number of people with a single spam, and the limitation of anti-spam technology

available at the time for blogs. The author also evaluates the e�ectiveness of two e-mail

anti-spam tools in classifying blog comment spams, and showed that statistical anti-

spam solutions developed for e-mails are e�ective in detecting blog comment spam.

Another approach is taken by Lin et al. [2008], who use the temporal dynamics of

attributes extracted from the content of blog posts to identify spam blogs. They use

three main ideas in their blog spam detection framework. First they represent the blog

temporal dynamics using self-similarity matrices. Second, they show that the blog

temporal characteristics reveal important attribute correlations, depending on type of

the blog. Third, they propose to else use temporal structural properties computed

from self-similarity matrices across di�erent attributes. These features are combined

with content based features extracted from di�erent parts of the blog, like URLs and

post content. To test the method, they use an SVM-based spam blog detector using

the proposed features, reaching 90% accuracy on real world data sets.
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Some other e�orts focus on detecting non-cooperative behavior in online social

networks. In Lee et al. [2010], the authors propose and evaluate a honeypot-based

approach for uncovering social spammers in online social systems, with the goal of

preserving community value. They call honeypots information systems resources that

monitor spammers' behaviors and log their information. Their proposed method has

two key components: (1) the deployment of social honeypots for harvesting deceptive

spam pro�les from social networking communities; and (2) statistical analysis of the

properties of these spam pro�les for creating spam classi�ers to actively �lter out

existing and new spammers. The authors found that the deployed social honeypots

identify social spammers with low false positive rates and that the harvested spam data

contains signals that are strongly correlated with observable pro�le features. Based on

these features, they used machine learning based classi�ers for identifying previously

unknown spammers with high precision and a low rate of false positives. In Wang

[2010], the author studies Twitter as an example of spam bots detection in online

social networking sites. He proposes a machine learning approach to distinguish the

spam bots from normal ones. The author uses two kind of features: (1) graph-based

features, to explore followers and friend relationship among users; and (2) content-based

features, which are extracted from users' most recent 20 tweets. Experiments show

that the detection system is e�cient and accurate to identify spam bots in Twitter.

In Gao et al. [2010], the authors present a study to quantify and characterize spam

campaigns launched using accounts on online social networks. They used a dataset

of asynchronous �wal� messages between Facebook users and found some interesting

results: (1) more than 70% of all non-cooperative wall posts advertise phishing sites;

(2) more than 97% of the non-cooperative accounts are compromised 1 accounts, rather

than �fake� accounts created solely for the purpose of spamming; and (3) when ajusted

to the local time of the sender, spamming dominates the actual wall post activity in

the early morning hours, when normal users are asleep.

There are also non-cooperative users in product sites. Lim et al. [2010] propose a

behavioral approach to detect review spammers who try to manipulate review ratings

on some target products or product groups. They identify several characteristic be-

haviors of review spammers and model these behaviors so as to detect the spammers.

They, also, propose scoring methods to measure the degree of spam for each reviewer

and apply them on an Amazon review dataset. Their results show that the proposed

ranking and supervised methods are e�ective in discovering spammers. Also, they show

that the detected spammers have more signi�cant impact on ratings compared with

1The main account of its owner, which is used also in non-spam tasks.
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the unhelpful reviewers.

Many previously proposed strategies for identifying and combating content pol-

lution on the Web are based on evidence extracted from textual descriptions of the

content, treating the text as a set of objects with associated attributes, and then us-

ing some classi�cation method to identify polluted content Heymann et al. [2007]. A

framework to detect spam in tagging systems is proposed in Koutrika et al. [2007]. As

tagging systems are gaining popularity, they become more susceptible to tag spam.

Misleading tags can be generated in order to increase the visibility of some resources

or simply to confuse users. They introduce a framework for modeling tagging sys-

tems and user tagging behavior. They also describe a method for ranking documents

matching a tag based on taggers' reliability. Using the proposed framework, they study

the behavior of existing approaches under non-cooperative attacks and their ranking

method. Some other strategies are based on image processing algorithms to detect

spam in images. An example of this strategy is presented in Wu et al. [2005] where

image attributes are used in conjunction with attributes taken from the text of e-mails

to improve e-mail spam detection. The authors analyzed a large collection of spam

e-mail containing images and identi�ed a number of useful visual features for this ap-

plication. Their results showed that the proposed system can add signi�cant �ltering

power to the existing text based anti-spam �lters.

2.2 Video Pollution

The �rst evidence of the occurrence of non-cooperative behavior on the use of the

video-response feature on YouTube was raised in Benevenuto et al. [2009b]. In that

article, the authors present a comprehensive characterization of the properties of the

YouTube video-response network, that is, the network that emerges from video-based

user interactions. In Benevenuto et al. [2009a], the same authors further characterize

the behavior of three classes of users, namely, legitimate users, spammers and content

promoters. They exploit several attributes based on the users' pro�les, the users' social

behavior in the system (i.e., the relationships established among them) and the videos

posted by the users as well as their target (responded) videos to classify users into

one of the three classes. Adopting a supervised classi�cation algorithm, they were able

to detect the vast majority of promoters (over 95% of accuracy). While a signi�cant

amount of spammers were detected, the proposed method also missed a large fraction

of them, which were incorrectly considered legitimate users. The false negatives may

be due to spammers who exhibit a dual behavior, acting similarly to legitimate users
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some of the time.

The results presented in Benevenuto et al. [2009a] leave two venues for further

exploration, namely, improving the detection of spammers and reducing the cost of

building the training set. The former seems to require the use of content-based tech-

niques to extract semantics and compare pairs of videos. This is outside the scope of

this work. Here, we are concerned with the second problem, that is, reducing the cost

of building the training data without degrading classi�cation e�ectiveness.

2.3 Multi-view Semi-supervised Learning

We here cover some work on multi-view semi-supervised learning. Our goal is not to

exhaustively cover the literature but only to describe the most related e�orts.

As previously mentioned, supervised classi�cation algorithms require a training

phase in which all examples must be previously manually labeled. This classi�cation is

very costly and requires the involvement of a large number of people to be held on time.

In Blum and Mitchell [1998], the authors present a multi-view approach for classi�ca-

tion of web pages, where the labeling cost is reduced. However, the proposed approach

assumes that there is total agreement in the classi�cation performed from each view,

which may not always be the case. A less constrained multi-view classi�cation ap-

proach is proposed in Christoudias et al. [2008]. The authors use a conditional entropy

criterion to detect di�erences in the predictions of the classi�ers. When divergence is

identi�ed in any sample, the sample is �ltered, i.e., removed from the unlabeled data set

and placed in a data set that will not be used. After this process, none of the samples

in the unlabeled data set has divergences and, therefore, the multi-view classi�cation

approach can be used normally. The work described in Hovelynck and Chidlovskii

[2010] is the only one we were able to �nd that exploits multi-view classi�cation to

solve problems involving social networks aspects. Particularly, the proposed method is

applied to the problem of distinguishing responsive documents (i.e., those relevant in

the context of a legal case) in a corpus of e-mails (Enron Corpus). The authors consider

two views: (1) the text representation of the e-mails; and (2) the social network that is

implicit in the group of people communicating with each other. In a very recent work

(Perez et al. [2011]), the authors exploit the Borda Count method to combine results

from di�erent classi�ers in the context of face recognition. Borda Count is a method

to agregate ranked lists (Black [1963]) that was previously proposed to combine lists

of candidates in elections. More details about this method is given in Section 3.2. The

authors make some improvements in the Borda Count algorithm through the use of
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a weighted count and a threshold to eliminate low scores from the process. As far

as we know, this is the only other approach to exploit the Borda Count method for

multi-view learning.

We here extend the work presented in Benevenuto et al. [2009a] by proposing

multi-view classi�cation approaches to reduce the labeling cost for detecting non-

cooperative users in OVSNs. As in Christoudias et al. [2008], our approaches consider

that there may be divergence in the classi�cations of each view. We here deal with

divergence adopting two strategies, namely: (1) considering only elements for which

all views agreed in the classi�cation, i.e., disregarding elements whose classi�cation

diverged and (2) exploring the con�dence of each view's prediction and taking, among

elements whose classi�cations diverged, only those with the largest aggregated con�-

dence for a given class using certain ranking aggregation strategies. Moreover, we also

propose hydrid solutions combining both strategies. These solutions are much simpler

than the one adopted in Christoudias et al. [2008] and, as will be shown in Chapter 5,

lead to very good results.



Chapter 3

Multi-View Semi-Supervised

Approach to Detect

Non-Cooperative Users

In this chapter, we present an overview of our multi-view semi-supervised approach to

detect spammers and content promoters on OVSSs (Section 3.1). Then, we present

our proposed methods to combine the results from di�erent views, a step required by

the semi-supervised algorithm (Section 3.2). Finally, we brie�y present the classi�er

we used in each view (Section 3.3).

3.1 Overview of our Approach

The main idea behind our proposed multi-view semi-supervised classi�cation is start

with a small set of labeled data as the training set while still being able to expand it

with examples extracted from a set of unlabeled data. The expanded training set is

then used to classify the desired objects. During the insertion of new elements into

the training set, the training set and the unlabeled set are partitioned into views.

Each view consists of a number of attributes of the elements in the training set. In

other words, each element in the training set is present in all views, represented by

a di�erent set of attributes in each of them. Take, for instance, the classi�cation of

YouTube users performed in Benevenuto et al. [2009a]. We can say that the authors

explore three di�erent views of each user, namely: the user pro�le, her social network,

and the objects owned by or target by her. When no more elements can be inserted

into the training set, all the views of the �nal training set are integrated into a single

13
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one, which is used as the �nal training data used in the classi�cation. The idea is that,

to work, the predictions of the classi�ers trained with data from each view (hereafter

also called the �views�) should be compatible, i.e., all samples are labeled identically

by all or most of the views, and the elements' representations in the views should be

uncorrelated, i.e., each element is described by a di�erent and disjoint set of attributes

in each view.

This introduction of examples into the training set occurs through an iterative

process, according to Algorithm 1. In each iteration of the algorithm, the classi�er of

each view v is trained with its corresponding training set Lv, and is used to predict

the class of each element um
v in the unlabeled dataset Uv. Along with the predictions,

the evaluation step also gives the con�dence θm
v (k) of each element um

v being of class k.

The con�dence will be better explained in Section 3.3, where the classi�er is presented.

Based on the predictions of each classi�er, a method is used to determine whether

there are unlabeled elements that can be inserted into the training set and to give the

�nal predicted class for each of these elements, which is done by the GetNewInser-

tions function. As an input, the GetNewInsertions function also uses the fraction of

elements belonging to each class in the original training set, computed in lines 3-5 of

the algorithm. This can guide some policies about how many elements from each class

should be incorporated as training data, as we shall see in Section 3.2. Then, selected

items have their class updated to the �nal predicted class and are incorporated into the

training set and removed from the unlabeled data set. In other words, each selected

example um
v has its class updated and is removed from the unlabeled data set of each

view Uv and inserted into the training set of each view Lv. This process is repeated

until either no more elements can be inserted into the training set or the unlabeled

data set is empty. The methods used for the selection of elements to be included in the

training set de�ne the view combination strategy adopted. We discuss the strategies

considered in this work in the next section.

For the speci�c problem of detecting non-cooperative users on OVSSs, our pro-

posed multi-view semi-supervised approach can be applied to: (1) decrease the amount

of training data needed by the classi�er as well as (2) increase the quality of the clas-

si�cation process. Semi-supervised approaches can start with much smaller training

set than the ones used in supervised approaches, since they can add more examples

to the training set by applying the iterative process described in Algorithm 1. Indeed,

semi-supervised approaches require only enough examples from each class to allow the

classi�ers to execute (reasonably) well in the �rst iteration of the algorithm, and select

new examples to be introduced in the training set. How many examples is enough for

the classi�er depends on a variety of factors, like how discriminative the attributes of
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Algorithm 1 Multi-view Semi-supervised Training Expansion

Input: The number of views V , a set C of classi�ers Cv for each view v (v = 1...V ),
the number of classes K, the number of elements M in the unlabeled data set, a set
L of labeled samples lnv with the attributes from each view v (v = 1...V ) for each
element ln (n = 1...N), and a set U of unlabeled samples um

v with the attributes
from each view v (v = 1...V ) for each element um (m = 1...M). {N is the number
of elements in the labeled data set}

Output: Set L expanded to include all initial elements as well as new elements added
by the algorithm.

1: repeat

2: insertion← FALSE
3: for k ← 1 to K do

4: Bk ← the fraction of elements from class k in L
5: end for

6: for v ← 1 to V do

7: Train Cv on Lv

8: Evaluate Cv on Uv giving predictions in Pv and con�dences in θv {θ is a set
of the con�dences θm

v (k) from each view v of the pertinence of element um to
class k}

9: end for

10: {I receives elements that can be added to the training data along with the
predicted class for each element}

11: I ← GetNewInsertions(V,K, B, M,UP, θ)
12: if |I| > 0 then
13: insertion← TRUE
14: end if

15: for i← 1 to |I| do
16: for v ← 1 to V do

17: Lv ← Lv ∪ ui
v ∈ I

18: Uv ← Uv\ ui
v ∈ I

19: end for

20: end for

21: M ← |U | {Update the number of elements in the unlabeled data set}
22: until (|U | = 0 or insertion = FALSE)
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the examples given are.

Our approach can also help improving the classi�cation e�ectiveness by letting us

introduce a 4th view - a video content view - composed of attributes extracted from the

video itself. As discussed in Section 2, this might improve the detection of spammers.

However, given that we do not have access to a test collection with video content based

attributes, we leave this task for future work. In this paper, our focus is on applying the

proposed approach to reduce as much as possible the amount of training data required

by the classi�er without loss in the quality of the classi�cation.

3.2 Combining Results from Multiple Views

An important step of the multi-view semi-supervised approach is how to select

the elements to be inserted into the training set on each iteration, i.e., function

GetNewInsertions in Algorithm 1. This function is responsible for combining the

classi�cation results of di�erent views, that is, assigning a label to each element, and

then selecting those, according to certain criteria, that should be added to the training

set. Elements that are not selected remain as part of the unlabeled data set. Several

strategies can be adopted to perform this task. We here explore two such strategies:

one is based on view agreement and the other is based on a method to aggregate ranked

lists called Borda Count (Black [1963]). The view agreement approach was chosen be-

cause of its simplicity and possibility of obtaining good results when the concordance

between the views is high enough. However, this approach may not work well when the

concordance between views is low. Because of this, we also chose to use an approach

based on Borda Count algorithm. Borda Count uses each view separately, generating

a rank for each view. Only in the end of the process the ranks are aggregated. Thus,

borda count is expected to work well even when the concordance between views is low.

We do not further investigate other combination strategies since our focus is to �nd a

method that works well in our context, not to �nd the best method for the problem in

hand. As we will see in Chapter 5, these two approaches satisfy this criterium.

Before introducing each strategy, we �rst address one of the criteria used to

select elements to be inserted into the training set, which is applied by both strategies.

During our initial experiments we found that it is very important, for the sake of

classi�cation e�ectiveness, to keep the distribution of the number of labeled elements

per class roughly stable as new elements are inserted into the training set. In the

speci�c problem of classifying non-cooperative users in OVSSs, user collections (and

the one used here in particular) tend to be very skewed Benevenuto et al. [2009a] as
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most users tend to be legitimate. Thus, there is a natural bias towards the larger

class. If we do not keep the class distribution roughly stable in the training set, this

bias will tend to increase even more, compromising the classi�cation e�ectiveness for

the smaller classes, which is, in the speci�c case, what we care most. Therefore, we

compute the initial distribution of elements across classes in the training set, speci�ed

as the fractions B of elements in each class, and use it to constrain the insertion of new

elements in each iteration.

Algorithm 2 GetNewInsertions_ViewAgreement

Input: The number of views V , the number of classes K, a set B with the initial
fraction Bk of elements from each class k, k = 1...K, the number of elements M
in the unlabeled data set, a set U of unlabeled samples um

v with the attributes
from each view v, v = 1...V , for each element um, m = 1...M , a set P of the class
predictions Pm

v from each view v, v = 1...V , for each element um, m = 1...M , and
a set θ of the con�dences θm

v (k) from each view v of the pertinence of element um

to class k.
Output: Set I with the elements selected to be inserted along with the predicted class

of each element.
1: for k ← 1 to K do

2: Sk ← {} { Sk will contain candidate elements of class k to be considered for
insertion}

3: end for

4: for m← 1 to M do

5: if Pm
r = Pm

s , ∀r, s ∈ V, r 6= s then
6: {All views agree on class predicted for element um}
7: k ← Pm

r {k gets the class predicted by all views for element um}
8: Sk ← Sk ∪ um

9: end if

10: end for

11: I ← GetElementsByCon�dence(B, θ, S) {Select elements from each Sk with largest
general con�dence, constrained by class distribution B}

We now describe each considered strategy to combine the results from all views.

The View Agreement strategy works as shown in Algorithm 2. For each element um in

the unlabeled data set, um is selected provided that all views agree on the class predicted

for it (say, class k). If selected, um is inserted into the set of candidate elements for the

predicted class, Sk. Note that we can not insert um directly into the I set, or else we

might change the distribution of elements across classes in the training set. After the

candidate selection process �nishes, we use the con�dence of the predictions θ and the

target class distribution B to determine which elements from the sets of candidate S

will be inserted into I, what is done by the GetElementsByCon�dence function. We do

so by choosing the elements from each Sk with largest general con�dence, constraining
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the number of selected elements from each set so as to keep the distribution of elements

across classes as close as possible to B. If any class does not have any agreement, or if

the number of agreements is too small to keep the classes distribution unchanged, what

is measured by the size of each Sk, the GetElementsByCon�dence function returns an

empty set to I, which usually implies in stop the whole process. We can calculate the

general con�dence in the prediction of each element um in several ways. We here use

the sum of the con�dences of each view for the predicted class. For example, if there

are V = 2 views, and the class predicted (by both views) for element um is k, then

the general con�dence θm in the prediction of element um will be the con�dence of the

view 1 for element um being from class k plus the con�dence of view 2 for element um

being from class k, that is θm = θm
1 (k) + θm

2 (k). Alternatively, we could weight the

con�dence from each view by a factor re�ecting the trust we have in it.

Algorithm 3 GetNewInsertions_BordaCount

Input: The number of views V , the number of classes K, a set B with the initial
fraction Bk of elements from each class k, k = 1...K, the number of elements M
in the unlabeled data set, a set U of unlabeled samples um

v with the attributes
from each view v, v = 1...V , for each element um, m = 1...M , a set P of the class
predictions Pm

v from each view v, v = 1...V , for each element um, m = 1...M , and
a set θ of the con�dences θm

v (k) from each view v of the pertinence of element um

to class k.
Output: Set I with the elements selected to be inserted along with the predicted class

of each element in I.
1: I ← {}
2: for k ← 1 to K do

3: Qk ← 0 {Qk will contain the total aggregated ranking values Qm
k for each element

um, produced by all views for class k. Qk values are initially set to zero.}
4: for v ← 1 to V do

5: sortedUv(k)← Sort U by θv(k), in ascending order
6: for m← 1 to M do

7: Qm
k ← Qm

k +GetRankingValue(um
k ,sortedUv(k)) {Aggregate ranking values

for um
k obtained with all views for class k}

8: end for

9: end for

10: Sort U by Qk values, in descending order {Sort U according to �nal aggregated
ranking values}

11: Sk ←GetElementsByRank(Bk, U, P ) {Get the �rst elements of U sorted by the
aggregated ranking values in Qk keeping the initial proportion of classes}

12: I ← I ∪ Sk

13: U ← U \ Sk

14: M ← |U | {Update the number of elements in the unlabeled data set}
15: end for
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The Borda Count strategy is based on a method previously proposed to combine

list of candidates in elections and later used to solve computational problems such as

the aggregation of rankings produced by multiple search engines Dwork et al. [2001].

It was thus originally proposed in a very di�erent context, and, to the best of our

knowledge, this is the �rst work that explores its use in the context of multi-view

classi�cation. The advantage of this strategy is that is more resilient to issues related

to the magnitude of the absolute values of the con�dence in the prediction of elements

in classes, which for some classes may be very low/high or may not help distinguish

much between several classes (e.g., close con�dence for all classes). These issues may

a�ect any method which rely on the absolute values of the con�dence (e.g., summation,

average, max, min, etc). The strategy is presented in Algorithm 3. It calculates K

ranking aggregation values for each element um in the unlabeled data set. Each such

value corresponds to the aggregation of the rankings generated by each view v with

respect to each class k (k = 1...K). The algorithm considers one class at a time and,

for each element, it gets the con�dence of the prediction of each view with respect to

the class under consideration. Then, for each view, the algorithm sorts the elements,

in increasing order, according to the con�dence of the view for that class (line 5),

so that the last element is the one with the highest con�dence in that view for that

class. The sorted elements get a ranking value according to the position occupied by

them in the rank (function GetRankingValue), with elements in last positions getting

higher values. These values are summed up for all views (line 7) to give a �nal value

of the aggregation of the di�erent ranks for a class. This �nal value is used to sort

the elements again, in descending order (line 10). The top elements of this �nal rank,

i.e., the ones with the higher rank aggregation values, which had its class predicted

as k for at least one view, are selected to be inserted into the training data set in a

way that the distribution of elements across classes B is not changed, what is done by

the GetElementsByRank function (line 11). Like with the View Agreement strategy, a

weighted sum of the ranking values could also be applied.

Notice that, for the sake of simplicity, both Algorithms 2 and 3 present the

computation of set I for all classes. However, the set of candidate elements of each

class k selected to be added to the training data, Sk, is determined independently for

each class. Thus, di�erent strategies can be applied to di�erent subsets of the classes,

depending on the characteristics of the problem being solved. In fact, we do explore

such a hybrid approach in our experiments described in Chapter 5, as we shall see.

In the following section, we present a brief description of the classi�er used in our

proposed multi-view method.
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3.3 The Classi�er

We use Lazy Associative Classi�cation (LAC) (Veloso et al. [2006]) as our classi�er.

Usually, the training data has strong associations between attribute values and classes,

which can be used for the sake of predicting classes for elements. These associations

may be hidden in the data meaning that they need to be explicitly revealed. LAC

exploits this fact by trying to uncover such associations, with the goal of improving

the classi�cation e�ectiveness.

LAC produces a classi�cation function composed of rules X → k, indicating the

association between a set of attribute values X and a class k. In the following, we

denote as R an arbitraty rule set. Similarly, we denote as Rk a subset of R that is

composed of rules predicting class k. A rule X → k is said to match element um if

X ⊆ um, (i.e., element um contains all attribute-values in X) and this rule is included

in Rm
k . That is, Rm

k is composed of rules predicting class k and matching element um.

As we can note, Rm
k ⊆ Rk ⊆ R.

LAC learns the classi�cation function in two broad steps:

• Demand-Driven Rule Extraction: During the rules extraction, the number

of rules obtained from the training data may be too large. To avoid this problem,

LAC extracts rules on a demand driven fashion, i.e., it uses information about

elements in the test set to project the search space for rules. In other words,

LAC �lters the training data according to the attribute-values of element um in

the test set, and extracts rules from this �ltered training data. Thus, only rules

that carry information about element um are extracted from the training data,

drastically bounding the number of possible rules, what allows an e�cient rule

extraction.

• Prediction: Some rules have stronger associations than others. To measure the

strength of an association, LAC uses a statistic called con�dence (Agrawal et al.

[1993]). The con�dence of the rule X → k is given by the conditional probability

of k being the class of element um, given that X ⊆ um.

Using a single rule to predict the correct class may be prone to error. Instead, the

probability of k being the class of element um is estimated by combining rules in

Rm
k . More speci�cally, each rule X → k ∈ Rm

k is a vote given by features in X for

class k. The weight of a vote X → k depends on the strength of the association

between X and k, which is given by θ(X → k). To estimate the probability of k

being the class of element um, the weighted votes for k are summed and the result

is averaged by the total number of votes for k, as expressed by the score function
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shown in Equation 3.1 (where rx ⊆ Rm
k and |Rm

k | is the number of rules in Rm
k ).

Thus, s(k, um) gives the average con�dence of the rules in Rm
k . Obviously, the

higher the con�dence, the stronger the evidence of class membership.

s(k, um) =

∑|Rm
k |

x=1 θ(rx)

|Rm
k |

(3.1)

The estimated probability of k being the class of element um, denoted as �p(k|um),

is simply obtained by normalizing s(k, um), as shown in Equation 3.2. A higher

value of �p(k|um) indicates a higher likelihood of k being the class of element um.

The class associated with the highest likelihood is �nally predicted as the class

for element um.

�p(k|um) =
s(k, um)∑K
l=1 s(l, um)

(3.2)

We note that in Algorithms 1, 2 and 3, we denoted by θm
v (k) the con�dence of

view v on predicting class k for element um. Thus, θm
v (k) is indeed the value of

�p(k|um) for view v's classi�er.





Chapter 4

Evaluation Methodology

In this chapter, we describe how the multi-view semi-supervised classi�cation method,

presented in the previous chapter, is applied to detect non-cooperative users, namely

spammers and content promoters, in OVSSs. We start by describing, in Section 4.1,

our user test collection, introducing the views considered by our approaches and their

associated attributes. Next, the metrics used in the evaluation of our solutions are

introduced in Section 4.2, whereas the experimental setup is presented in Section 4.3.

4.1 User Test Collection

In order to evaluate our proposed approaches to identify spammers and content pro-

moters in OVSSs, we need a test collection composed of users of the target system,

which in our case is YouTube. In this collection, all users must be pre-classi�ed into

legitimate users, spammers or promoters. The process of building such a collection is

very expensive, as it requires human e�ort in watching a potentially very large number

of videos. Thus, we here use the same user collection presented in Benevenuto et al.

[2009a], which was built primarily through a crawling of YouTube followed by a selec-

tion of a subset of the crawled users to be manually classi�ed.

The crawling phase consisted of collecting a sample of users involved in interac-

tions through the use of YouTube video-response, i.e., users who had posted or received

video-responses. This crawling, performed in January 2008, gathered a total of 264,460

users, 381,616 responded videos and 701,950 video-responses. Users were gathered by

starting with a number of seeds and following their interactions via video-responses

(i.e., snowball strategy), thus building, at the end, a video response user network.

In the manual classi�cation phase, a selected user was labelled as a �spammer" if

she posted at least one video-response that was considered unrelated to the responded

23
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video. She was labeled as �promoter" if she posted several videos in response to a

responded video with the aim of promoting this responded video. A user who is neither

promoter nor spammer was labeled as �legitimate". The user test collection built from

the manual classi�cation has a total of 829 users, consisting of 641 legitimate users,

157 spammers and 31 promoters. These users have posted 20,644 video-responses to

9,796 responded videos. This collection has the following characteristics: (1) it has a

signi�cant number of users from all three classes, (2) it includes, but is not limited to,

non-cooperative users with aggressive strategies, as these are the users who generate the

most pollution in the system and (3) includes legitimate users with di�erent behaviors.

In the following ,we present the user attributes gathered in our collection as well as

the multiple views extracted from these attributes and adopted by our classi�cation

approaches.

4.1.1 Collection Attributes

Legitimate users, spammers and promoters have di�erent goals in the system and

are, thus, expected to act di�erently while using the system. Such di�erences may

be captured by exploring a number of attributes that re�ect how each user uses the

system. In particular, our user test collection contains a total of 60 attributes per user,

which can be divided into three groups: video attributes, user attributes and attributes

of the social network established among the users through the use of the video-response

feature.

The video attributes associated with a user relate to features of the videos posted

by her as well as the videos responded by her (i.e., the videos that were target of her

video-responses). The video features considered are: the duration, the number of views,

the number of comments received, ratings, number of times that the video was selected

as favorite, number of honors, and number of external links from the video. Note that

these attributes serve as indicators of the quality of a video, as perceived by the user

community. Three groups of these attributes were created. The �rst group contains

aggregated information from all the videos posted by the user, which may indicate how

others see the contributions of this user. The second group contains information only

of the video responses posted by the user, which are precisely those videos that can be

pollution. The latter group considers only responded videos to which the user posted

video-responses. For each of these groups were considered the sum and average of each

attribute, totaling 42 video attributes.

The user attributes consist of individual features of user behavior, extracted from

the user's pro�le on the system. Ten attributes are used: number of friends, number
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of videos uploaded, number of videos watched, number of videos added as favorites,

number of video responses posted, number of video-responses received, number of sub-

scriptions, number of subscribers, average time between uploads and maximum number

of videos uploaded within 24 hours.

The attributes of the user's social network capture the social relations established

among users through video-responses, which is one of the several social networks that

emerge among users on YouTube. This network is modelled as a directed graph, where

each node represents a user, and a edge (i, j) indicates that the corresponding user ui

posted at least one video in response to some video of user uj. The 5 attributes of

social network included in our user collection are: clustering coe�cient, betweenness,

reciprocity, assortativity and UserRank.

The clustering coe�cient of node i, cc(i), is the ratio of the number of existing

edges between i's neighbors to the maximum possible number, and captures the com-

munication density between the user's neighbors. The betweenness is a measure of

the node's centrality in the graph, i.e., nodes appearing in a larger number of shortest

paths between any two nodes have higher betweenness than othersNewman and Park

[2003]. The reciprocity R(i) of node i measures the probability of the corresponding

user ui receiving a video-response from each other user to whom she posted a video-

response, i.e., R(i) = |OS(i)∩IS(i)|
|OS(i)| , where OS(i) is the set of users to whom ui posted a

video-response, and IS(i) is the set of users who posted video-responses to ui. Node as-

sortativity is de�ned, as in Castillo et al. [2007], as the ratio between the node (in/out)

degree and the average (in/out) degree of its neighbors. Node assortativity was com-

puted to the four types of (in/out)degree-(in/out)degree correlations. The PageRank

Brin and Page [1998] algorithm, commonly used to assess the popularity of a Web page,

was applied to the video-response user graph built from the collection. The computed

metric, called UserRank, indicates the degree of participation of a user in the system

through interactions via video-responses. In total, 8 social network attributes were

used.

4.1.2 Multi-View Collection

Unlike in Benevenuto et al. [2009a], where authors applied a single-view supervised

classi�cation method, our goal here is to explore multi-view semi-supervised ap-

proaches. Thus, we need to extract di�erent views from the user collection. As

explained in the previous section, the collection already has three separate groups

of attributes, namely user attributes, video attributes and social network attributes.

Thus, we take this inherent categorization of the user attributes in the collection to
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generate a video view, a user view and a social network view. Each view includes only

the attributes of the corresponding group. In other words, the video view consists

of 42 attributes, the user view has 10 attributes, and the social network view has 8

attributes.

4.2 Evaluation Metrics

We evaluate the classi�cation approaches by comparing mainly the confusion matrices

Kohavi and Provost [1998] produced by each of them. A confusion matrix is illustrated

in Table 4.1. Each element in position (i, j) of this matrix represents the percentage of

users from class i (i.e., row i) that were predicted, by the classi�cation, as being of class

j (i.e., column j). We choose to focus our evaluation on these matrices because they

better expose the tradeo�s between correctly classifying users of one class at the expense

of misclassifying users of the others. These tradeo�s are particularly interesting for

the speci�c task of classifying YouTube users as either legitimate or non-cooperative.

We envision our approaches being used to help system administrators by ��agging"

suspicious users for further (possibly manual) investigation. In that case, we believe

that it is preferable to improve the detection of non-cooperative users even if it comes at

the expense of misclassifying some legitimate users as non-cooperative. These wrongly

classi�ed legitimate users will have the chance to be cleared out later. In contrast, non-

cooperative users who are misclassi�ed as legitimate may escape undetected as manual

investigation of the large number of (predicted) legitimate users is highly unlikely.

Thus, when comparing the classi�cation approaches in Section 5, we focus mainly on

the confusion matrices, thus allowing us to better assess the tradeo�s between correctly

classifying legitimate and non-cooperative users.

In addition to the confusion matrices, we also consider the F1 metric Yang [1999],

commonly used to evaluate information retrieval tasks. F1 is de�ned as a function of

precision and recall. The precision (p) of a class k is the ratio of the number of

users correctly classi�ed to the total number of users predicted to be of class k (e.g.,

pspammer = e/(b + e + h) in Table 4.1). The recall (r) of a class k is the ratio of the

number of users correctly classi�ed to the number of users in class k (e.g. rspammer =

e/(d + e + f)). The F1 metric is the harmonic mean between both precision and

recall, de�ned as F1 = 2pr/(p + r). There are two variations of F1, namely Micro-F1

and Macro-F1. Macro-F1 values are computed by �rst calculating F1 values for each

class in isolation, as illustrated above for spammers, and then averaging over all classes.

Therefore, Macro-F1 considers equally important the classi�cation e�ectiveness in each
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class, independently of the relative size of the classes, being thus more adequate when

the class distribution is very skewed. Since our user test collection is inherently very

skewed towards legitimate users1, we consider only Macro-F1 in our evaluation.

Predicted
Promoter Spammer Legitimate

Promoter a b c
True Spammer d e f

Legitimate g h i

Table 4.1: Example of confusion matrix

4.3 Experimental Setup

We ran a series of experiments with �ve classi�cation approaches. Three approaches are

based on the proposed multi-view semi-supervised method, and explore the two view

combination strategies introduced in Section 3.2. To evaluate the e�ectiveness of these

approaches, we also consider two baselines. The �rst one is a single-view supervised

method using all the training data available. The comparison against this baseline

allows us to evaluate the tradeo� between amount of labeled data and classi�cation ef-

fectiveness. As a second baseline, we consider the same single-view supervised method

which takes the same amount of labeled data as the proposed strategies. The compar-

ison against this second baseline allows us to evaluate the impact on the classi�cation

of incorporating new examples into the training set. Note that we do not compare our

proposed multi-view semi-supervised approaches with other semi-supervised methods,

leaving this for future work. Note also that here our goal is to �nd a method capable of

reducing the amount of training needed without signi�cant losses in the quality of the

classi�cation, what we achieve with the utilization of this three proposed multi-view

semi-supervised approaches.

All �ve classi�cation approaches use the LAC classi�er (Section 3.3) and our user

collection (Section 4.1) consisting of 60 attributes. For the multi-view semi-supervised

approaches, we separated these attributes into 3 views, as discussed in Section 4.1.2.

Note that, unlike in Benevenuto et al. [2009a], where the authors used a Support Vector

Machine (SVM) classi�er, we here choose to use LAC. This choice is mainly because the

estimated probabilities of a user being in a class, essential to the multi-view approaches,

were found to be much more reliable, according to some initial experiments comparing

1We do expect any other user collection of the same type, being representative of the entire user
population, to contain a much larger number of legitimate users than of spammers and promoters.
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SVM and LAC. Moreover, we also found that LAC achieved somewhat better results,

when 100% of training data is used.

The classi�cation experiments were performed using a 5-fold cross validation.

The original sample is partitioned into 5 sub-samples. In each test, four of the sub-

samples are used as training data and the remaining one is used as test data. For the

semi-supervised approaches, the training data is further partitioned into labeled and

unlabeled data sets, and used as explained in Section 3.1. This process is repeated 5

times, with each of the 5 sub-samples used exactly once as the test data. The entire

5-fold cross validation is repeated 5 times, using di�erent seeds to shu�e the original

data set. Thus, the classi�cation results reported in the next section for each considered

approach are averages of 25 runs.



Chapter 5

Experimental Results

This chapter presents the most relevant results of our comparison of the di�erent

classi�cation approaches considered. All reported results are averages of 25 runs, as

explained in the previous chapter. In all experiments, the test sets (one fold per run) are

kept the same for all evaluated approaches. Reported results have standard deviations

under 5% of the means.

5.1 Initial Analyses

As explained in Section 4.3, for experimental purposes, when evaluating the multi-

view semi-supervised approaches, we need to partition the original training data in

each experiment (i.e., 4 folds) into labeled and unlabeled data in order to simulate

the situation in which we have a small amount of labeled data for a large amount of

unlabeled samples. The goal is to achieve the best tradeo� between the amount of

training data, which should be minimum, and the e�ectiveness of the approach, which

should be as close as possible to that of the supervised method using all the available

training data. In order to evaluate this tradeo�, we ran a set of initial experiments

with our proposed multi-view strategies, increasingly reducing the percentage of the

original training data provided as labeled samples for the strategies, while leaving the

remaining amount as unlabeled. We tested various percentages (from 40% to 10%),

and found that using only 20% of the original training data (and leaving 80% of it as

unlabeled) led to the best tradeo�, as shown in Tables 5.1, 5.2, 5.3 and 5.4.

29
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Predicted
Promoter Spammer Legitimate

Promoter 94.84% 3.23% 1.94%
True Spammer 4.10% 55.26% 40.64%

Legitimate 0% 5.58% 94.42%

Table 5.1: Classi�cation with 40% of Training Data

Predicted
Promoter Spammer Legitimate

Promoter 95.48% 3.23% 1.29%
True Spammer 3.33% 54.74% 41.92%

Legitimate 0.06% 6.18% 93.76%

Table 5.2: Classi�cation with 30% of Training Data

Predicted
Promoter Spammer Legitimate

Promoter 96.77% 3.23% 0%
True Spammer 3.21% 56.67% 40.13%

Legitimate 0.09% 8.15% 91.76%

Table 5.3: Classi�cation with 20% of Training Data

Predicted
Promoter Spammer Legitimate

Promoter 52.26% 43.23% 4.52%
True Spammer 0.64% 55.90% 43.46%

Legitimate 0.03% 6.77% 93.20%

Table 5.4: Classi�cation with 15% of Training Data

We can see that 20% of the original training set is the smallest amount of labeled

data required to produce competitive results in comparison with the supervised ap-

proaches. When we further reduce it to 15% of the original training set, the fraction of

correctly classi�ed promoters drops sharply to only 52%. The classi�er requires a min-

imal amount of examples of each class to learn the needed patterns to identify speci�c

types of behavior. If a particular class does not have enough examples, the classi�er

will not have enough information about the elements of this class, thus incurring in mis-

classi�cations. When we used only 15% of the original training set as labeled data, the

number of promoters, the smallest class, used for learning, was very small (just three

examples), compared with the amount of promoters when we used 20% of the training

set (�ve examples). Thus, in the �rst iteration of the semi-supervised algorithm, there
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were incorrect insertions of promoters into the training set, i.e., promoters are inserted

as erroneous examples of other classes. This error caused the number of incorrect in-

sertions of promoters to increase further over the additional iterations, which explains

the veri�ed loss in the e�ectiveness of the classi�er, mostly due to the misclassi�ed

promoters. Next, we focus our comparison on the results when 20% of the original

training set is used as labeled data by the multi-view semi-supervised approaches and

by the second baseline.

(a) Legitimate Users (b) Spammers (c) Promoters

Figure 5.1: Prediction of classes by each view

Before presenting our classi�cation results, we note that, for both multi-view

approaches explored in this work, only two views were considered when introducing

new examples into the training data: the user view and the video view. The social

network view was disregarded because initial classi�cation experiments applying each

view in isolation indicated that it is insu�cient to distinguish between di�erent user

classes, presenting very poor classi�cation e�ectiveness. These results are illustrated in

Figure 5.1, which shows the intersections, percentage-wise, of the predictions of each

view in the �rst iteration of the multi-view semi-supervised method on the unlabeled

set. Figure 5.1a), which refers to the performance on predicting legitimate users, shows

that all predictions are inside the social network view, regardless of the predictions of

the other views. This means that the social network view predicts all users as legitimate

users. The large percentage found in the intersections of the three views in Figure 5.1a)

re�ects the fact that most users are in fact legitimate, which makes it easier to predict

for this class. More importantly, in Figures 5.1b) and 5.1c), all predictions are outside

the scope of the social network view, implying that it is not able to predict any user

as either promoter or spammer. Obviously, there is no agreement with the other views

regarding these classes. We note that, while the social network view was disregarded
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while adding new elements into the training data, all 60 attributes are used in the �nal

classi�cation of the test sets. The same holds for the two (supervised) baselines.

5.2 Baseline Results

We start our analyses by considering the performance of our baselines, i.e., classi�ers

trained with all training data available (Table 5.5) and with the same 20% used by

the multi-view approaches (Table 5.6). For the �rst baseline, promoters and legitimate

users are classi�ed correctly in almost 100% of the cases, but only 53% of spammers are

correctly classi�ed, on average1. A further investigation revealed that several of these

spammers are indeed very hard to identify based only on their behaviors as they act

very similarly to legitimate users2. There is a strong assumption in the collection used

in this work that may also contribute to the high amount of misclassi�ed spammers.

If a user posts a single polluted video, she is considered a spammer, even if she posts

a lot of legitimate videos. Regarding the second baseline, Table 5.6 shows that it

produces results that are in fact worse than the previous ones, mainly with regards

to the classi�cation of spammers. In particular, the fraction of correctly identi�ed

spammers (in the diagonal) dropped by more than 20%. Moreover, the fractions of

promoters and of spammers that were misclassi�ed as legitimate users increases by at

least the same factor. As discussed in Section 4.2, such loss in classi�cation performance

is particularly worrisome as those users would probably escape undetected.

Predicted
Promoter Spammer Legitimate

Promoter 100% 0% 0%
True Spammer 1.02% 53.25% 45.73%

Legitimate 0% 0.78% 99.22%

Table 5.5: Classi�cation with Baseline 1 (Supervised Method with 100% of Training
Data)

1We should notice that these results are slightly di�erent from those reported in Benevenuto et al.
[2009a] because the classi�ers used are di�erent: we here use LAC, whereas the previous work used
SVM.

2We found no clear distinction between the values of several attributes of such spammers and the
typical values of the same attributes in legitimate users.
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Predicted
Promoter Spammer Legitimate

Promoter 96.13% 1.29% 2.58%
True Spammer 3.46% 41.92% 54.62%

Legitimate 0% 2.57% 97.43%

Table 5.6: Classi�cation with Baseline 2 (Supervised Method with 20% of Training
Data)

5.3 Semi-supervised Results

Table 5.7 shows the confusion matrix obtained with the multi-view classi�cation based

on the View Agreement strategy. The problem with this approach is that the views do

not agree with regard to the majority of spammers and promoters, as can be (partially)

seen in Figures 5.1b) and 5.1c). Recall that the process of adding new samples to the

training set stops once no agreement is obtained with respect to any class. Thus, this

approach ends up adding only a small number of new promoters and spammers to

the training set, limiting its e�ectiveness. When it comes to promoters, in spite of

the small agreement rate, this approach is still able to add enough of them during

all iterations of the algorithm so as to keep the initial proportions (see discussion in

Section 3), because the number of promoters in the initial training set is very small.

The real problem is with spammers. Figures 5.1b) and 5.1c) show that the agreement

between the two views is even lower for this class. As consequence, the process of

introducing new samples into the training set stops after only a few iterations of the

algorithm (maximum of two, in our experiments), and very few new spammers (and

users in general) are included in the training set. Thus, similarly to the baseline with

20% of the training set, this approach is very ine�ective in the prediction of spammers.

Moreover, semi-supervised approaches may add to the training set a few number of

samples with incorrect classes. When the process continues for several iterations, this

problem may become less prominent, if the majority of the insertions are correct.

However, since here the number of iterations is very small, any sample inserted with

the wrong class may signi�cantly impact the classi�er in its future decisions, ultimately

leading it to wrong predictions. This is specially important in the case of promoters,

as the number of elements of that class is very small.

Clearly, spammers is the most di�cult class to predict, by both baselines and by

the View Agreement approach. We should note that the much lower agreement between

the two views with regard to that speci�c class may ultimately impact the multi-view

classi�cation of all three classes, as it causes the earlier interruption of the process of
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Predicted
Promoter Spammer Legitimate

Promoter 89.68% 7.10% 3.23%
True Spammer 3.21% 43.59% 53.21%

Legitimate 0% 3.13% 96.87%

Table 5.7: Classi�cation with the View Agreement Approach

adding new samples (of all classes) to the training set. As a matter of fact, we did

observe in our experiments that the great disagreement between views for spammers

is the main factor limiting the continuity of the training expansion process. In spite

of that, we note that the results of that approach for promoters and legitimate users

are reasonably good (Table 5.7), as they are based on enough agreement with higher

con�dence. Thus, we next explore a hybrid approach that applies the Borda Count

algorithm, described in Section 3.2, only for spammers, keeping the View Agreement

strategy for the other 2 classes. In other words, we create the candidate sets of le-

gitimate users and promoters according to the agreement between the two views (as

in Algorithm 1) and the candidate set of spammers according to the �nal aggregated

ranking produced by Algorithm 2. We then select users from each set according to

the corresponding criteria (con�dence for legitimate users and promoters, and rank for

spammers), keeping the relative proportions similar as in the initial training set.

Table 5.8 shows the confusion matrix with the results of this hybrid approach.

In comparison with the baseline with 100% of training, this approach is only slightly

worse in predicting promoters and legitimate users. However it achieves comparable

(and, in some folds, slightly better) performance when it comes to correctly identifying

spammers, the hardest class. These results are indeed quite promising considering the

great reduction (by a factor of 5) on the required amount of labeled data. Moreover,

given the envisioned application of our technique as a tool to help system adminis-

trators by �ltering suspicious users for further (manual) investigation, we believe the

results for promoters and legitimate users are also quite positive. The small fraction of

misclassi�ed promoters were considered as spammers, that is, they were predicted at

least as non-cooperative users. Moreover, the fraction of misclassi�ed legitimate users

is reasonably small. The misclassi�cation of such users could be reversed during man-

ual investigation. Speci�cally for the collection used in this work, the reduction in the

required amount of labeled data means that 530 less users need to be manually evalu-

ated, while the increase of misclassi�ed legitimate users means that only 10 additional

legitimate users (7.37% of them) need to be manually evaluated after the classi�ca-

tion process. In very large user collections, this tradeo� needs to be better studied.
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However, it is always worth to remind the various costs associated with the action of

spammers which justify a more aggressive approach towards identifying them. There

are direct costs associated with the use of bandwidth, network, and cache, and indirect

costs due to a possible loss of credibility and reputation of the service from the dissat-

isfaction of the users, which are perhaps even worse than the direct costs. Because of

this, a small increase in the number of users that have to be manually inspected later

is acceptable, provided there is an increase in the amount of spammers being identi�ed

correctly. In comparison with the baseline with 20% of training, our approach is able

to improve spammer detection by 35%, at the cost of only a slight degradation (6%) in

the correct classi�cation of legitimate users. We should also note that, in comparison

with the basic View Agreement approach, the hybrid strategy improved the correct

classi�cation of both classes of non-cooperative users, indicating that, indeed, the very

low agreement of both views with regard to spammers impacted the classi�cation of

both classes.

Predicted
Promoter Spammer Legitimate

Promoter 96.77% 3.23% 0%
True Spammer 3.21% 56.67% 40.13%

Legitimate 0.09% 8.15% 91.76%

Table 5.8: Classi�cation with the Hybrid Borda Count / View Agreement Approach

For sake of completeness, we also experimented with the Borda Count approach

applied to all three classes, as can be seen in Table 5.9. The use of Borda Count

approach for the three classes has proved to be worse than the hybrid approach used

before, erroneously classifying 27% of promoters and 57% of spammers. The Borda

count uses each view con�dence individually in the sense that it �rst produces a ranking

of users for each view before the rank aggregation takes place. Thus, misclassi�cations

with high con�dence (e.g., spammers classi�ed as legitimates with high con�dence) may

cause wrong insertions into the training data that can be avoided when the insertions

are based on the high levels of agreement that occur speci�cally for the legitimate and

promoters classes, as observed in our datasets. Thus, the additional spammers and

promoters incorrectly added to the training set when compared to the view agreement

approach, caused an overall drop in the classi�cation e�ectiveness.
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Predicted
Promoter Spammer Legitimate

Promoter 72.90% 16.13% 10.97%
True Spammer 2.18% 42.95% 54.87%

Legitimate 0% 4.08% 95.92%

Table 5.9: Classi�cation with the Borda Count Approach

Finally, we also analyze the performance of the methods under the macro-F1

metric. The results for the supervised method with 100% and 20% of training data

are 0.86 and 0.78, respectively. In comparison, the macro-F1 results for the View

Agreement and the Hybrid approaches are, respectively, 0.77 and 0.8. Thus, in terms

of this metric, the multi-view approach combining View Agreement and Borda Count

strategies is slightly better than the other approaches using the same amount of training

(20%), and it is only around 7% worse than the classi�er with 5 times more training

data. Nevertheless, if the correct classi�cation of non-cooperative users is favored at

the expense of misclassifying legitimate users, the results in Tables 5.5-5.8 show much

more clearly the superiority of the proposed Hybrid View Agreement / Borda Count

approach.
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Analyzing the Costs of

Detecting Non-cooperative Users

Up to this point, we have analyzed the non-cooperative user detection methods (i.e.,

our new methods and the baseline) in terms of classi�cation e�ectiveness, i.e., our focus

was on the quality of classi�cation results. However, the use of each method incurs

in costs to the system administrator. Such costs may vary depending on the method

employed as well as on the user collection on which it is applied. Thus, a method that

has a good e�ectiveness is not necessarily the most suitable, because it may incur in a

very high utilization cost. To the best of our knowledge, there is no previous analysis

nor study of such costs. Moreover, we are not aware of publicly available reports on

actual costs related to the manual classi�cation of videos and of their users nor on the

costs associated with the polluted videos that remain undetected and thus are stored

by real systems. Thus, in this chapter, we develop an analytical model to estimate the

costs associated with the utilization of di�erent methods to identify non-cooperative

users in OVSSs. We here apply this model in di�erent scenarios in order to compare

two methods: our best proposed method (the hybrid method) and the baseline that

uses all the training data available. Next, we �rst introduce our analytical cost model

(Section 6.1) and then use it to evaluate the costs associated with the two methods

(Section 6.2).

6.1 Analytical Cost Model

We envision three di�erent cost components associated with the deployment and uti-

lization of a mechanism to detect non-cooperative users: (1) the training cost, (2) the

cost associated with the non-cooperative users which are not caught by the method

37
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(false negatives) and (3) the cost (if any) associated with the users predicted as non-

cooperative. We discuss each cost component next.

If a supervised detection method, such as the ones analyzed in this work, is used,

each video owned by the users in the training set must be viewed and manually classi�ed

as either spam or not. As result of this labeling, the users themselves must be manually

classi�ed as either spammer, promoter or legitimate user. This manual classi�cation

incurs in a cost to the system administrator, which is here referred to as the training

cost. A second cost component relates to the non-cooperative users who are not caught

by the method. Such false negatives incurs in costs to the system administrator in

several ways. As mentioned in Chapter 5, there are direct costs associated with the use

of storage and network resources to deliver the spams posted by such users to other

users when they inadvertedly request them. There are also indirect costs related to a

possible loss of credibility and reputation of the service caused by user dissatisfaction.

Such indirect costs are perhaps even more signi�cant and certainly harder to estimate.

Finally, the third cost component is associated with the users that are classi�ed as

non-cooperative by the method. As mentioned in Chapter 5, the idea is that system

administrators will use the techniques showed in this work to �lter suspicious users

for further (manual) investigation. Therefore, this pos-processing does generates extra

costs which are directly proportional to the number of users that the method classi�es

as non-cooperative.

We now introduce an analytical model developed to capture the three aforemen-

tioned cost components. Table 6.1 summarizes all the variables used in our model.

Notation De�nition
cEval Cost to evaluate a single video

cPollution Cost associated with a single polluted video left in the system
nTrain Number of users in the training set
nTest Number of users in the test set
nNC Number of users classi�ed as non-cooperative

nFalseLeg Number of non-cooperative users classi�ed as legitimate
vNC Average number of videos posted by each non-cooperative user
vUser Average number of videos posted by a user

Table 6.1: Variables involved in the cost model

The training cost depends on three factors, namely, the cost of evaluating a single

video (cEval), the average number of videos posted by a user (vUser) and the number

of users in the training set (nTrain). Thus, the training cost is de�ned as the product

of these three factors, that is:
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cTrain = cEval ∗ vUser ∗ nTrain (6.1)

The cost associated with the false negatives depends on three factors, namely, the

cost associated with a single polluted video left in the system (cPollution), the average

number of videos posted by each non-cooperative user (vNC) and the number of non-

cooperative users classi�ed as legitimate (nFalseLeg). The cost associated with false

negatives is thus de�ned as the product of these three variables, being de�ned as:

cFN = cPollution ∗ vNC ∗ nFalseLeg (6.2)

The cost associated with users classi�ed as non-cooperative depends on three

factors, namely, the cost to manually evaluate a single video (cEval), the average number

of videos posted by a user (vUser) and the number of users classi�ed as non-cooperative

(nNC). The cost to manually evaluate all videos of users classi�ed as non-cooperative

is thus given by:

cNC = cEval ∗ vUser ∗ nNC (6.3)

Given the de�nition of each cost component (Equations 6.1, 6.2 and 6.3), the

total cost associated with the utilization of a given method is de�ned as:

cost = cTrain + cFN + cNC (6.4)

Rearranging the variables, we can simplify the model and write it as:

cost = cEval ∗ vUser ∗ (nTrain + nNC) + cPollution ∗ vNC ∗ nFalseLeg (6.5)

We note that the values of almost all variables on which our model relies, de-

�ned in Table 6.1, depend on the speci�c detection method and user collection used.

For example, methods that produce di�erent classi�cation results, i.e., that classify a

di�erent number of users as being of each class lead to di�erent values of variables

nFalseLeg and nNC . Moreover, methods that uses di�erent amounts of training impact

on variable nTrain. Also, di�erent user collections impact variables vNC and vUser, as

the users in di�erent collections may di�er in terms of number of videos posted. The

cost variables, cEval e cPollution, on the contrary, do not depend neither on the method

nor on the user collection, but rather on several other aspects. For example, cEval

captures the cost to manually evaluate a single video, which is hard to estimate, be-

cause we do not know how much money an OVSS would pay to a person to watch and
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classify a single video. Also, cPollution captures the costs associated with the storage

and bandwidth resources wasted by the system with polluted content in addition to

other indirect costs associated with loss of system reputation. As we are not aware of

publicly available estimates of absolute values (e.g., in dollars) of either cost variable,

we here assume such costs are de�ned in terms of a pre-de�ned cost unit u.

In sum, given the values of the input variables in Table 6.1, parameterized to

de�ne speci�c scenarios of interest and to address a given detection mechanism, our

model can be used to estimate the total cost (in the given cost unit u) associated

with the utilization of that method. In the next section, we design di�erent scenarios

by parameterizing our model based on statistics extracted from our user collection

(presented in Chapter 4) and based on the classi�cation results produced by each of

the two analyzed methods, which were discussed in Chapter 5.

6.2 Cost Analyses

In this section, we use the analytical model to analyze and compare the costs associated

with two methods: the baseline, which uses all available training data, and our best

proposed method, i.e., the hybrid Borda Count / View Agreement approach. This

analysis is performed over the same user collection used in the experiments presented

in Chapter 5, which was introduced in Chapter 4.

As mentioned in the previous section, almost all the variables shown in Table

6.1 are determined by the collection itself and by the detection method used, with the

exception of variables cEval and cPollution. Given our selected user collection, Table 6.2

shows the values of each of the variables for the two analyzed detection methods. As we

can see, three variables, namely vNC , vUser, and nTest, depend only on the collection,

and thus have the same values regardless of the method used. The values of the other

three variables are de�ned based on the speci�c detection method used.

Variable Value for Baseline Value for Hybrid Method
nTrain 16,600 3,317
nTest 4,125 4,125
nNC 604 885

nFalseLeg 357 313
vNC 13.83 13.83
vUser 24.64 24.64

Table 6.2: Values of Most Variables of Analytical Model for the given Collection and
Method
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To perform our analyses, we create di�erent scenarios, based on the input vari-

ables of the analytical model. We then analyze the total costs associated with each

method in each scenario. In each scenario we will use some ratios between the variables

involved in the cost model. These ratios are shown in Table 6.3. The �rst set of scenar-

ios is designed to analyze the impact of the ratio C = cPollution/cEval on the total cost as-

sociated with each method. This ratio represents the relative cost of manual evaluation

of a single video with respect to the cost of keeping a single polluted video in the system.

Thus, we use the values of each variable in Table 6.2 to estimate the total cost associ-

ated with each method, for various values of C. The results are shown in Figure 6.1.

Ratio De�nition
C C = cPollution/cEval

V V = vNC/vUser

F F = nFalseLeg/nNC

Table 6.3: Ratios Used in the Analyzed Scenarios

Figure 6.1: Total Costs as Functions of C = cPollution/cEval

For small values of C, i.e., when cPollution is much smaller than cEval, the

training cost dominates the total cost associated with each method (Equation 6.5).
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Therefore, the baseline has a higher cost in this case, as it uses a much larger training

set. As C increases, the cost associated with non-cooperative users that are not caught

by the method becomes more signi�cant, and starts dominating the total costs. Again,

in this case, the baseline also has a higher total cost than the hybrid method as, accord-

ing to our discussion in Chapter 5, it lets more non-cooperative users pass undetected,

thus having a larger number of false negatives (i.e., higher value of nFalseLeg). Indeed,

as shown in Figure 6.1, the hybrid approach always incurs in a lower total cost than

the baseline. For example, for C = 0.01, the baseline incurs in a total cost that is 309%

larger than the cost associated with the hybrid method. Similarly, for C = 100 and

C = 1000, the total costs associated with the baseline are 71% and 21% larger than the

costs of our hybrid method, respectively. In sum, considering the scenarios built using

the variable values de�ned in Table 6.2, the baseline always incurs in more costs to the

system administrator than the hybrid method independent of the ratio cPollution/cEval.

Another factor that might impact the costs of each method is the size of the

test set (nTest), as it a�ects the number of users classi�ed as non-cooperative (nNC)

and the number of non-cooperative users classi�ed as legitimate (nFalseLeg). We now

analyze the total costs of each method varying the size of the test set. To do so, we �x

C = 1, and de�ne a new variable T which indicates the size of the test set as a multiple

of the size of the test set in our user collection (i.e., T = 1, implies nTest = 4, 125,

whereas T = 2, implies nTest = 8, 250). For this analysis, we assume test sets that,

despite larger, keep the same fractions of users from each class as in the test set of

our user collection, and, thus, that each method produces similar classi�cation results

(percent-wise) as observed in our original collection (Chapter 5). This assumption of

the maintainance of the relative distribution of the classes' proportions is also assumed

by most machine learning algorithms in order to guarantee the generalization of results.

The results are shown in Figure 6.2.

For small values of T , the hybrid method has a lower total cost in comparison

with the baseline because the training cost dominates the total cost (Equation 6.5). As

T increases, the cost associated with the number of users classi�ed as non-cooperative

becomes more signi�cant. In this case, the hybrid method has a higher total cost than

the baseline, because, according to the results discussed in Chapter 5, it classi�es more

users as spammers, i.e., has a higher value of nNC . Thus, the two curves intersect when

the test set is 52 times larger than it is in the collection we are using. This means that if

we consider the variables cEval and cPollution having the same value, the baseline incurs

in lower total cost than the hybrid method when the test set has at least 214,500 users.

This value may vary depending of the value of the C variable.
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Figure 6.2: Total Costs as Functions of T (size of test set as multiple of test set in our
collection)

We turn back to our analysis of the cost ratio C, considering now a test set 100

times larger than the one in the collection used. The results are shown in Figure 6.3.

Note that both X and Y axes are in logarithmic scales. As expected, in this case, the

hybrid method is not always better than the baseline. For small values of C, the cost

associated with the users classi�ed as non-cooperative dominates the total cost. The

hybrid method has a somewhat higher cost than the baseline, because it predicts more

users as non-cooperative. For example, for C = 0.01 the hybrid method has a total

cost that is 19% higher than the costs associated with the baseline. As C increases,

the cost associated with false negatives becomes the dominant cost component. As

consequence, the baseline incurs in a higher cost than the hybrid method, because it

leads to more false negatives, i.e., has a higher value of nFalseLeg. For example, for

C = 100 the baseline has a total cost that is 13% higher than the costs associated with

the hybrid method.
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Figure 6.3: Total Costs as Functions of C = cPollution/cEval for T = 100

Figure 6.4: Total Costs as Functions of C and T variables
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We summarize the impact of variables C and T on the total costs associated with

the methods by plotting, in Figure 6.4, the ratio R of the total cost associated with

the hybrid method to the total cost associated with the baseline for various values of C

and T . Note that values of R lower than 1 imply in a lower total cost for our method

whereas values of R greater than 1 imply in a lower cost for the baseline. As we can

see in the Figure, for values of C equal to or larger than 4, i.e., cPollution is at least 4

times larger than cEval, the hybrid method has a lower total cost than the baseline for

a test set up to 100 million times bigger than it is in the collection used, i.e., for a test

set having up to 412.5 billion users. This value of C is plausible, since, in practice, it is

expected that cPollution would have higher values than cEval in most situations, because

of the inumerous factors involved in the value of cPollution, as discussed in Section 6.1.

Now we will analyze the total costs associated with each method in two sets of

scenarios. First, we analyze the costs as we vary V = vNC/vUser, i.e., the ratio of the

average number of videos posted by each non-cooperative user to the average number

of videos posted by a user. Afterwards, we analyze the cost of each method as we

vary the ratio F = nFalseLeg/nNC , that is, the ratio of the number of non-cooperative

users that are not detected to the number of users classi�ed as non-cooperative. To

compute the costs, we �rst need to choose a value for the cost ratio C. Since this value

is only a multiplicative factor in the computation of the cost, di�erent values of C will

only make the curves intersect at di�erent points in the graph, but will not change

the general behavior of the curves. Thus, we choose to use the value C = 10, since in

practice it is expected cPollution to be bigger than cEval.

We start analyzing the costs of each method as a function of V (Table 6.3. As

we did for C, we analyze the costs for two sizes of test sets, namely, T = 1 (size equal

to the test set in our collection) and T = 100. Figure 6.5 shows the total costs of each

method as functions of V , �xing a test set with size T = 1. If we check the cost model

(Equation 6.5), we can see that when we consider cEval and vUser both equal to 1 and

vary the value of vNC (which is exactly what we do in this scenario) the cost model has

a behavior similar to when we vary the C variable. In other words, for small values of

V , the training cost dominates the total cost, and thus the hybrid method has a lower

total cost than the baseline. As V increases, the false negatives starts to dominate

the total cost, which again makes the hybrid method have a lower total cost than the

baseline. Thus, the curves in Figure 6.5 are expected to have a similar behavior to the

ones in Figure 6.1, i.e., the hybrid method is expected to always have a lower total

cost than the baseline. For example, for V = 0.01, the baseline has a total cost that is

307% higher than the cost associated with the hybrid method. Similarly, for V = 100

the baseline has a total cost that is 18% higher than the cost associated with the
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hybrid method. The values of V may vary in di�erent collections, since the users may

have di�erent behaviors in each OVSS. Particularly, in our collection V = 0.56 meaning

that legitimate users post almost twice more videos when compared to non-cooperative

users, as we can see in Table 6.2.

Figure 6.5: Total Costs as Functions of V = vNC/vUser for T = 1

The results for T = 100, shown in Figure 6.6, exhibit similar patterns to those

obtained as function of C for the same size of test set (Figure 6.3). In other words,

for small values of V , the cost associated with the users classi�ed as non-cooperative

dominates the total cost. Thus the hybrid method has a higher total cost than the

baseline. As V increases, the cost associated with the false negatives starts to dominate

the total cost. As consequence, the total cost associated with the baseline increases,

becoming larger than the costs of the hybrid method. Indeed, Figure 6 shows that the

baseline incurs in a lower total cost than the hybrid method for values of V smaller

than 0.25, and the hybrid method incurs in a lower total cost than the baseline for

values of V larger than 0.75. To ilustrate this, for V = 0.01, the hybrid method has

a total cost that is 18% higher than the cost associated with the baseline, and for

V = 100 the baseline has a total cost that is 14% higher than the cost associated with

the hybrid method.
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Figure 6.6: Total Costs as Functions of V = vNC/vUser for T = 100

Figure 6.7: Total Costs as Functions of V and T
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Figure 6.7 shows the ratio R of the total cost associated with the hybrid method

to the total cost associated with the baseline for various values of V and T . Once

again, values of R lower than 1 imply in a lower total cost for our method whereas

values of R greater than 1 imply in a lower cost for the baseline. As we can see in

the �gure, for values of V equal to or larger than 0.7, the hybrid method has a lower

total cost for test sets with sizes up to 100 million times bigger than the size of the

test set in the collection used, i.e., for a test set having up to 412.5 billion users. This

means that when the average number of videos posted by each non-cooperative user is

equal, greater or slightly lower than the average number of videos posted by a user, the

hybrid method will have a lower cost than the baseline for the aforementioned sizes of

the test sets.

Figure 6.8: Total Costs as Functions of F = nFalseLeg/nNC

As a last set of scenarios, we analyze the costs of each method as function of the

ratio F = nFalseLeg/nNC (Table 6.3), that is, the ratio of the number of non-cooperative

users that are not detected to the number of users classi�ed as non-cooperative. In this

case, di�erent sizes of the tests set do not change the total cost. This is because we

assume that both methods produce similar results (percent-wise) for di�erent sizes of

test sets. In other words, we assume that even though the absolute values of nFalseLeg



6.2. Cost Analyses 49

and nNC change as the size of the test set increases, their ratio F remains �xed.

Therefore, Figure 6.8 shows the costs obtained as functions of F . Note that, for small

values of F , the training cost dominates the total cost, leading to a higher cost for the

baseline. For example, for F = 0.01 the baseline has a total cost that is 400% higher

than the costs associated with the hybrid method. As F increases, the cost associated

with false negatives starts dominating the total cost, and once again, the total costs

associated with the baseline is higher. For example, for F = 1, 000 the baseline has a

total cost that is 149% higher than the costs associated with the hybrid method.

In sum, based on our analyses, we conclude that, for test sets much larger than

the one we have in the collection used, the hybrid method is a good choice, obtaining

lower costs than the baseline in a good portion of the scenarios analyzed. In particular,

focusing on the impact of C and T and keeping the other variables �xed at the values

extracted from our collection, we �nd that if C has a value larger than or equal to 4,

the hybrid method has a lower cost than the baseline for test sets up to 100 million

times larger than the one we used. This value of the C variable is plausible, since it

is expected that cPollution has a higher value than cEval and, sometimes, a much higher

value.
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Conclusions and Future Work

Our proposed method explores a multi-view semi-supervised classi�cation algorithm,

which requires a much smaller amount of training data than previously proposed su-

pervised methods. We evaluate two approaches, built from two di�erent strategies for

combining results from multiple views, using a sample of pre-classi�ed users and a set of

user behavior attributes. In comparison with supervised methods, our best approach,

which combines the View Agreement and the Borda Count view combination strate-

gies, achieves a much more favorable tradeo� between detecting non-cooperative users

and reducing amount of training data, at the possible expense of a slight increase in

the fraction of misclassi�ed legitimate users. In particular, it achieves comparable per-

formance, particularly on detecting spammers (the hardest class), with 5 times fewer

training data than the supervised method.

Furthermore, we developed an analytical cost model to compare our best method

with the baseline used. The analysis of this cost model in di�erent scenarios showed

that our proposed approach has a lower cost than the baseline in the majority of the

cases. An interesting result is that when the cost of not identifying a video pollution in

the system is at least four times greater than the cost of manual evaluation of a video,

our proposed approach has a lower cost than the baseline for testing sets having up to

412.5 billion users.

As future work, we intend to build a new, much larger, user test collection as

well as explore the use of a fourth view - the video content view - as means to further

improve spammer detection, by more clearly distinguishing them from legitimate users.

We also plan to test other strategies to combine views and test other hybrid approaches,

combining these new strategies with the ones we used in this work. Finally, we want

to integrate our methods with active learning methods applied to each view. In other

words, we want to use an active learning approach to select, from each view, wich

51
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elements will be added to the training set. This could reduce even further the need for

training.
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