
MINERAÇÃO DE PADRÕES DE CORRELAÇÃO

ESTRUTURAL EM GRANDES GRAFOS

ARLEI LOPES DA SILVA

MINERAÇÃO DE PADRÕES DE CORRELAÇÃO

ESTRUTURAL EM GRANDES GRAFOS

Dissertação apresentada ao Programa de
Pós-Graduação em Computer Science do
Instituto de Ciências Exatas da Universi-
dade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Computer Science.

Orientador: Wagner Meira Jr.

Belo Horizonte

Maio de 2011

ARLEI LOPES DA SILVA

STRUCTURAL CORRELATION PATTERN

MINING FOR LARGE GRAPHS

Dissertation presented to the Graduate
Program in Computer Science of the Uni-
versidade Federal de Minas Gerais in par-
tial fulfillment of the requirements for the
degree of Master in Computer Science.

Advisor: Wagner Meira Jr.

Belo Horizonte

May 2011

c© 2011, Arlei Lopes da Silva.
Todos os direitos reservados.

Silva, Arlei Lopes da
S586m Mineração de Padrões de Correlação Estrutural em

Grandes Grafos / Arlei Lopes da Silva. — Belo
Horizonte, 2011

xxvi, 128 f. : il. ; 29cm

Dissertação (mestrado) — Universidade Federal de
Minas Gerais

Orientador: Wagner Meira Jr.

1. Computação – Teses. 2. Mineração de dados –
Teses. 3. Teoria dos grafos. Teses. I. Orientador.
II. T́ıtulo.

CDU 519.6*73(043)

viii

Acknowledgements

First of all, I would like to thank my advisor Wagner Meira Jr. for his collabo-

ration over the past 5 years. I was an undergrad student with average grades when I

knocked Meira’s door to ask him for a position as an undergrad researcher. Since then,

he has provided me with many opportunities to learn the skills I needed to finish this

thesis and to progress in my career as a computer scientist.

I would also like to thank Mohammed J. Zaki for his guidance during the 6 months

I have spent as a visiting scholar at RPI and for the collaboration that followed. Most of

the technical contributions of this thesis were a consequence of my attempts to address

some of his comments. Thanks also to Löıc Cerf and Alberto Laender who were part

of my thesis committee and contributed to the improvement of this work.

I am honored to have worked with Adriano Pereira, Fabio Figueiredo, Fernando

Mourão, Herico Valiati, Jussara Almeida, Leonardo Rocha, Livia Simões, Löıc Cerf,

Marco Ribeiro, Marcos Gonçalves, Mariângela Cherchiglia, Mehdi Kaytoue, Nathan

Mariano, Odilon Queiroz, Pedro Calais, Walter Santos and Sara Guimarães. I would

like to give my special thanks to Adriano for his generous support since my first years

as an undergrad researcher.

Being a mastering student is much better when you have some good friends, such

as Carlos Teixeira and Charles Gonçalves, around. Thanks also to all my colleagues

from the e-Speed Lab, where I have spent a significant part of the past 5 years. In

particular, I would like to thank Bruno Coutinho for his always kind helping. Thanks

also to the staff from the Computer Science Department, specially Cida and Sônia, for

the patience and sympathy, despite of my constant lack of organization.

While I was a high school student at Cidade dos Meninos, many teachers mo-

tivated me to study hard to get into college, such as Julio, Adalberto, Katia, and

Glauceones. I am also grateful to Jairo Azevedo, founder of Cidade dos Meninos,

and the numerous contributors that support the APHDP.

During most of my undergraduate studies, I was assisted by the community from

Universidade Federal de Minas Gerais through Fundação Mendes Pimentel.

I have always received support and encouragement from my family and friends,

specially my mother Ivone, my brother Andre, my friend David and my brother Alex,

without whom I would never get anywhere close to this.

ix

“Dubium sapientiae initium.”

(Latin proverb)

xi

Resumo

Grafos têm se estabelecido como um poderoso arcabouço teórico para a modelagem de

interações em cenários variados. Enquanto a disponibilidade de dados em larga escala

motivou o desenvolvimento de tal arcabouço, o enriquecimento desses dados guia a

pesquisa em grafos na direção de novos métodos capazes de explorar essa riqueza de

forma útil. Uma representação estendida interessante de grafos é a de grafos com

atributos nos vértices. Atributos de vértices desempenham um papel importante em

diversos grafos reais. Além disso, sabe-se que, em muitos desses grafos, vértices se

organizam naturalmente como subgrafos densos. Tais subgrafos possuem signficado

relevante em diversos grafos reais, sendo denominados comunidades em redes sociais e

identificando complexos proteicos em redes de protéınas, dentre outras aplicações.

Neste trabalho, estudamos a correlação entre conjuntos de atributos e a formação

de subgrafos densos, o que denominamos mineração de padrões de correlação estrutural.

A correlação estrutural mede como um conjunto de atributos induz subgrafos densos

em grafos com atributos. Um padrão de correlação estrutural é um subgrafo denso

induzido por um conjunto de atributos em particular. Modelamos padrões de correlação

estrutural em termos de padrões de mineração de dados existentes. Com base em tal

modelagem, propomos técnicas de normalização que avaliam o quanto a correlação

estrutural de um conjunto de atributos desvia do esperado. Além disso, propomos

algoritmos eficientes e escaláveis para a mineração de padrões de correlação estrutural.

Nós mostramos que a mineração de padrões de correlação estrutural é capaz de

prover conhecimento relevante sobre a relação entre conjuntos de atributos e subgrafos

densos em grafos reais. Em particular, aplicamos os algoritmos propostos na correlação

entre palavras-chave associadas a pesquisadores e a formação de grupos de pesquisa

em redes de colaboração, no estudo de comunidades induzidas pelo gosto musical em

uma rede social, na análise de como grupos conectados de artigos emergem em torno de

tópicos de pesquisa em uma rede de citação, e na avaliação da relação entre expressão

e funcionalidade em uma rede de interação proteica. Também avaliamos o desempenho

de tais algoritmos, verificando que eles possibilitam a análise de grandes bases de dados.

xiii

Abstract

Graphs have been established as a powerful theoretical framework for modeling several

types of interactions in a variety of scenarios. While the availability of large scale data

led to the development of a framework for large scale graph analysis, the enrichment

of such data drives the graph research to new methods able to explore such richness

in a useful manner. An interesting extended graph representation is called attributed

graph. Vertex attributes play an important role in several real life graphs. Moreover,

it is broadly known that in several of these graphs vertices are organized into dense

subgraphs. Such subgraphs have a relevant meaning in several real life graphs, being

called communities in social networks and identifying protein complexes in protein-

protein interaction networks.

In this work, we study the correlation between attribute sets and the formation

of dense subgraphs in large attributed graphs, which we call structural correlation

pattern mining. The structural correlation measures how a set of attributes induces

dense subgraphs in attributed graphs. A structural correlation pattern is a dense

subgraph induced by a particular attribute set. We model the structural correlation

pattern mining in terms of existing data mining patterns. Based on such definitions,

we propose normalization approaches in order to assess how the structural correlation

of a given attribute set deviates from the expected. Moreover, we propose efficient and

scalable algorithms for structural correlation pattern mining.

We show that the structural correlation pattern mining is able to provide rele-

vant knowledge about the relation between attribute sets and dense subgraphs in real

attributed graphs. In particular, we apply the proposed algorithms to the correlation

between keywords associated with researchers and the formation of research groups

in collaboration networks, in the study of communities induced by musical taste in a

social network, in the analysis of how well connected groups of papers emerge around

research topics in a citation network, and in the evaluation of the relation between

expression and functionality in a PPI network. We also evaluate the performance of

such algorithms, verifying that they enable the analysis of large datasets.

xv

List of Figures

1.1 Illustrative example graph . 2

1.2 Co-authorship graph extracted from the DBLP digital library 2

1.3 Dense subgraph from the graph shown in Figure 1.1 5

1.4 Dense subgraph from the graph shown in Figure 1.1 6

1.5 Dense subgraph from the real graph shown in Figure 1.2 7

2.1 Set Enumeration Tree . 16

2.2 Subgraph of the 0.6-quasi-clique shown in Figure 1.3 which is not a 0.6-

quasi-clique . 16

2.3 Complete lattice for the set of attributes {A,B,C,D,E} 24

3.1 Graph from Figure 1.1, vertices 3 to 11 have the attribute A and are in

dense subgraphs, vertices 1 and 2 have the attribute A but are out of dense

subgraphs . 29

3.2 Graph from Figure 1.1, vertices 1, 3, and 6 have the attribute C and the

other vertices do not have C . 30

3.3 Graph from Figure 1.1, vertices 6 to 11 have the attribute set {A,B} and

are in dense subgraphs, the other vertices do not have {A,B} 30

3.4 Graph induced by the attribute set {search, rank} from the collaboration

graph shown in Figure 1.2. 31

3.5 Clique with the same number of vertices that the graph shown in Figure 1.1 33

4.1 Order of visit of candidate patterns in a BFS search 48

4.2 Order of visit of candidate patterns in a DFS search 48

5.1 Cumulative degree, attribute frequency, and attributes per vertex distribu-

tion (in log-log scale) for the DBLP dataset 75

5.2 Expected structural correlation computed using the simulation model (sim-

εexp) and the analytical model max-εexp . 77

xvii

5.3 Graph induced by the attribute set {search, rank} in the DBLP dataset . 78

5.4 Structural correlation pattern induced by the attribute set {search, rank},
size = 13, and γ=0.58 . 79

5.5 Structural correlation pattern induced by the attribute set

{perform, system}, size = 37, and γ=0.5 80

5.6 Inverse cumulative structural coverage (κ), structural correlation (ε), and

normalized structural correlation (δ2) . 80

5.7 Inverse cumulative degree, attribute frequency, and attributes per vertex

distribution (in log-log scale) for the LastFm dataset 82

5.8 Expected structural correlation computed using the simulation model (sim-

εexp) and the analytical model max-εexp . 84

5.9 Graph induced by the attribute set {Sufjan Stevens, Wilco} in the LastFm

dataset . 85

5.10 Structural correlation pattern induced by the attribute set {Sufjan Stevens,

Wilco}, size = 11, and γ=0.7 . 86

5.11 Structural correlation pattern induced by the attribute set {Van Morrison},
size = 34, and γ=0.52 . 86

5.12 Inverse cumulative structural coverage (κ), structural correlation (ε), and

normalized structural correlation (δ2) . 87

5.13 Inverse cumulative degree, attribute frequency, and attributes per vertex

distributions (in log-log scale) for the CiteSeer dataset 89

5.14 Expected structural correlation computed using the simulation model (sim-

εexp) and the analytical model max-εexp . 90

5.15 Graph induced by the attribute set {node, wireless} in the CiteSeer dataset 91

5.16 Structural correlation pattern induced by the attribute set {node, wireless},
size = 9, and γ=0.5 (EEBAWN - Energy-efficient Broadcasting in All-

wireless networks, SAEECATMAWN - Span: An Energy-efficient Coor-

dination Algorithm for Topology Maintenance in Ad-hoc Wireless Net-

works, ECRWAN - Energy-conserving Routing in Wireless Ad-hoc Net-

works, MEMWN - Minimum-Energy Mobile Wireless Networks, CMCP-

WSN - Connectivity Maintenance and Coverage Preservation in Wireless

Sensor Networks, GIECAR - Geography-informed Energy Conservation for

Ad-hoc Routing, MEBAWN - Minimum-energy Broadcast in All-wireless

Networks, DTCWSNDCPEOMWAN - Distributed Topology Control in

Wireless Sensor Networks with Distributed Control for Power-efficient Op-

eration in Multihop Wireless Ad-hoc Networks) 92

xviii

5.17 Structural correlation pattern induced by the attribute set

{perform, system}, size = 21, and γ=0.5 (AC - Attribute Caches,

SLCM - Systems for Late Code Modification, OTDRN - Observing TCP

Dynamics in Real Networks, TCIG - Transparent Controls for Interac-

tive Graphics, LILP - Limits of Instruction Level Parallelism, DLMR -

DECWRL/Livermore Magic Release, LTOAC6BA - Link-time Optimiza-

tion of Address Calculation on a 64-bit Architecture, LTCM - Link-time

Code Modification, MSDCDSP - Memory-system Design Considerations

for Dinamically Scheduled Processors, BMFCEG - Boolean Matching for

Full-custom ECL Gates, CWPP - Cache Write Policies and Performance,

SMCM - Shared Memory Consistency Models, CEFCGASDSM - Com-

parative Evaluation of Fine and Coarse-grain Approaches for Software

Distributed Shared Memory, RLG - Recursive Layout Generation, EDPP

- Efficient Dynamic Procedure Placement, DSDI - Drip: A Schematic

Drawing Interpreter, FPPDMA - Fluoroelastomer Pressure Pad Design for

Microelectronic Applications, TTOCC - Trade-offs in Two-level on-chip

Caching, IOCCIOCD - I/O Component Characterization for I/O Cache

Designs, VMFS - Virtual Memory vs File System, EWWWWC - Experience

with a Wireless World Wide Web Client) 93

5.18 Inverse cumulative structural coverage (κ), structural correlation (ε), and

normalized structural correlation (δ2) . 94

5.19 Inverse cumulative degree, attribute frequency, and attributes per vertex

distributions (in log-log scale) for the Human dataset 96

5.20 Graph induced by the attribute set {+SHCN086,+SHCN087,+SHCN088}
in the Human dataset . 97

5.21 Structural correlation pattern induced by the attribute set

{+SHCN086,+SHCN087,+SHCN088}, size = 7, and γ=0.5 98

5.22 Expected structural correlation computed using the simulation model (sim-

εexp) and the analytical model max-εexp . 99

5.23 Cumulative structural coverage (κ), structural correlation (ε), and normal-

ized structural correlation (δ2) . 100

5.24 Parameter sensitivity w.r.t the minimum structural correlation (εmin) . . . 102

5.25 Parameter sensitivity w.r.t the minimum normalized structural correlation

(δmin) . 103

5.26 Runtime of SCPM-BFS, Naive and SCPM-DFS w.r.t. γmin 105

5.27 Runtime of SCPM-BFS, Naive and SCPM-DFS w.r.t. min size . . . 105

5.28 Runtime of SCPM-BFS, Naive and SCPM-DFS w.r.t. σmin 106

xix

5.29 Runtime of SCPM-BFS, Naive and SCPM-DFS w.r.t. εmin 106

5.30 Runtime of SCPM-BFS, Naive and SCPM-DFS w.r.t. δmin 107

5.31 Runtime of SCPM-DFS, SCPM-BFS-SAMP and SCPM-DFS-

SAMP w.r.t. θmax . 109

5.32 Mean squared error of SCPM-SAMP-DFS w.r.t. θmax 109

5.33 Runtime of the SCPM-DFS and the Naive algorithm w.r.t. k 110

5.34 Runtime and speedup of PAR-SCPM-DFS w.r.t. the number of cores . 111

5.35 Runtime and speedup of PAR-SCPM-BFS w.r.t. the number of cores . 112

5.36 Runtime and speedup of the PAR-SAMP-SCPM-BFS w.r.t. the number

of cores . 112

5.37 Runtime and speedup of the PAR-SAMP-SCPM-DFS w.r.t. the number

of cores . 113

xx

List of Tables

1.1 Attributes of the vertices from the graph shown in Figure 1.1 5

2.1 Frequent attribute sets from the vertex attributes shown in Table 1.1 (the

minimum support set is 3) . 24

3.1 Table of Symbols . 29

3.2 Number of possible settings, expected structural correlation (εexp),

simulation-based structural correlation (sim-εexp), and analytical normal-

ized structural correlation (max-εexp) for N randomly selected vertices from

the graph 1.1 . 34

3.3 Attribute sets, with their respective values of σ, κ, and ε, from the graph

shown in Figure 1.1, for which the vertex attributes are presented in Table

1.1 if σmin = 3, γmin = 0.6, min size = 4, and εmin = 0.5 40

3.4 Structural correlation patterns, with their respective sizes (size) and densi-

ties γ, from the graph shown in Figure 1.1, for which the vertex attributes

are presented in Table 1.1 if σmin = 3, γmin = 0.6, min size = 4, and

εmin = 0.5 . 41

3.5 Attribute sets, with their respective values of σ, κ, ε, max-εexp, and δ2, from

the graph shown in Figure 1.1, for which the vertex attributes are presented

in Table 1.1 if σmin = 3, γmin = 0.6, min size = 4, and δmin = 1.0 42

3.6 Structural correlation patterns, with their respective sizes (size) and densi-

ties γ, from the graph shown in Figure 1.1, for which the vertex attributes

are presented in Table 1.1 if σmin = 3, γmin = 0.6, min size = 4, and

δmin = 1 . 42

5.1 Top-ε attribute sets from DBLP . 76

5.2 Top-δ2 attribute sets from DBLP . 77

xxi

5.3 Scatter plots of the correlations between support (σ), structural coverage

(κ), structural correlation (ε), and normalized structural correlation for dif-

ferent attribute set sizes (|S|) in the DBLP dataset 81

5.4 Top-ε attribute sets from the LastFm dataset 83

5.5 Top-δ2 attribute sets from the LastFm dataset 84

5.6 Scatter plots of the correlations between support (σ), structural coverage

(κ), structural correlation (ε), and normalized structural correlation for dif-

ferent attribute set sizes (|S|) in the LastFm dataset 88

5.7 Top-ε attribute sets from CiteSeer . 90

5.8 Top-δ2 attribute sets from the CiteSeer dataset 91

5.9 Scatter plots of the correlations among support (σ), structural coverage (κ),

structural correlation (ε), and normalized structural correlation for different

attribute set sizes (|S|) in the CiteSeer dataset 95

5.10 Top-ε attribute sets from the Human dataset 97

5.11 Top-δ2 attribute sets from the Human dataset 100

5.12 Scatter plots of the correlations among support (σ), structural coverage (κ),

structural correlation (ε), and normalized structural correlation for different

attribute set sizes (|S|) in the Human dataset 101

xxii

List of Algorithms

1 Set Enumeration Tree Algorithm . 18

2 extend . 19

3 Simulation Null Model for the Structural Correlation Algorithm 35

4 Naive Algorithm For Structural Correlation Pattern Mining 47

5 structural-correlation . 49

6 coverage-BFS . 49

7 coverage-DFS . 50

8 structural-correlation-with-sampling 54

9 check-vertex-in-quasi-clique . 55

10 find-quasi-clique-BFS . 55

11 find-quasi-clique-DFS . 56

12 top-k-structural-correlation-patterns 56

13 try-to-update-top-patterns . 58

14 SCPM Algorithm . 59

15 enumerate-patterns . 60

16 par-structural-correlation . 62

17 par-coverage-BFS . 63

18 par-coverage-DFS . 64

19 par-coverage . 65

20 par-check-vertex-in-quasi-clique . 66

21 par-find-quasi-clique-BFS . 67

22 par-find-quasi-clique-DFS . 68

23 par-find-quasi-clique . 69

24 par-top-k-structural-correlation-patterns 69

25 par-top-k-scps-thread . 70

26 par-top-k-scps-iteration . 71

27 par-try-to-update-top-patterns . 72

xxiii

Contents

Resumo xiii

Abstract xv

List of Figures xvii

List of Tables xxi

1 Introduction 1

1.1 Structural Correlation Pattern Mining 4

1.2 Contributions of This Work . 8

1.3 Outline . 9

2 Background and Related Work 11

2.1 Dense Subgraphs . 11

2.2 Quasi-clique Mining . 14

2.2.1 Vertex Pruning . 17

2.2.2 Candidate Quasi-clique Pruning 18

2.3 Frequent Itemset Mining . 22

2.4 Related Work . 25

3 Structural Correlation Pattern Mining: Definitions 27

3.1 Structural Correlation . 28

3.2 Normalized Structural Correlation . 32

3.3 Structural Correlation Patterns . 37

3.4 Structural Correlation Pattern Mining Problem 38

4 Structural Correlation Pattern Mining: Algorithms 45

4.1 Naive Algorithm . 46

4.2 Computing the Structural Correlation 47

xxv

4.3 Pruning Techniques . 51

4.4 Sampling . 53

4.5 Top-k Structural Correlation Patterns 57

4.6 The SCPM Algorithm . 60

4.7 Parallel Algorithms . 61

4.7.1 Computing the Structural Correlation 62

4.7.2 Sampling . 65

4.7.3 Top-k Structural Correlation Patterns 68

5 Experimental Evaluation 73

5.1 Case Studies . 74

5.1.1 DBLP . 75

5.1.2 LastFm . 82

5.1.3 CiteSeer . 88

5.1.4 Human . 96

5.2 Parameter Sensitivity and Setting . 102

5.3 Performance Evaluation . 103

5.3.1 Computing the Structural Correlation 104

5.3.2 Sampling . 107

5.3.3 Discovering the Top-K Structural Correlation Patterns 109

5.3.4 Parallel Algorithms . 110

5.3.5 Discussion . 113

6 Conclusions 115

6.1 Summary of Contributions . 115

6.2 Limitations . 116

6.3 Future Work . 117

Bibliography 121

xxvi

Chapter 1

Introduction

Graphs, or networks, have been established as a powerful theoretical framework for

modeling several types of interaction in a variety of scenarios. Due to its broad ap-

plicability, graphs have attracted a great interest from a wide research community,

including mathematicians, physicists, sociologists, biologists, and computer scientists.

The availability of large real graphs in the last years motivated a broad spectrum of re-

search on the properties of such graphs. Moreover, the combination of new algorithms

and powerful hardware have enabled the discovery of complex and interesting patterns

from large graphs.

A graph is usually defined as a set of vertices (or nodes) connected by a set of

edges. Figure 1.1 shows an illustrative example of a graph with 11 vertices (1-11) and

21 edges. Figure 1.2 is a real graph extracted from a digital library. Each vertex

represents an author and two vertices are connected if their respective authors have

already collaborated on a paper. From social networks to food webs, from distribution

networks to the WWW, many relevant systems can be modeled through graphs.

The study of graphs has evolved significantly since the solution of the Konigs-

berg problem by Euler in 1735, which is considered the first scientific work on graphs

in the literature. While the first studies were focused on graph theory, subsequent

studies applied graphs to the analysis of small social networks. The seminal Milgram’s

paper [Travers and Milgram, 1969], for example, showed that randomly selected indi-

viduals from Boston and Nebraska were connected to randomly selected people from

Massachusetts through a connected chain of acquaintances of average size 5.2, what is

considered the first evidence of the so called small world phenomenon. However, along

the past few years, the study of graphs has witnessed a new shift in the direction of

the analysis of large scale statistical properties of real graphs [Newman, 2003]. An ex-

tensive study of several real graphs from different domains have shown that interesting

1

2 Chapter 1. Introduction

Figure 1.1: Illustrative example graph

Figure 1.2: Co-authorship graph extracted from the DBLP digital library

properties (e.g., power-law degree distributions, high clustering coefficient, community

structure, and small diameter) are common to many of these graphs.

But what is the future of the graph research? Which graph problems and appli-

cations will challenge the research community in the upcoming time? Answering such

though-provoking questions is essential for developing long term innovative research on

3

graphs. A significant part of the research community on graphs has agreed that the

graph research is evolving towards more complex models and analysis [Newman, 2003;

Leskovec, 2008; Chakrabarti and Faloutsos, 2006].

Along its two centuries of history, the study of graphs has shifted from theory to

application, and then to large scale. However, a simple undirected graph (see Figure

1.1) has remained as the standard model on graph research. Such a simple model is

popular for two basic reasons: (1) it is powerful enough for the analysis of topological

static properties of graphs (e.g., degree distribution, clustering coefficient) and (2) it is

simple for both understanding and computational processing. Nevertheless, in recent

years, the availability of rich data from complex scenarios has motivated analyses that

are far beyond static topological properties.

Extending the standard simple graph framework is, in general terms, the topic

of this work. While the availability of large scale data led to the development of a

framework for large scale graph analysis, the availability of rich data drives the graph

research to new methods able to explore such data in a useful manner. Graphs with

directed, weighted, multi-typed, and attributed edges, for example, may provide novel

interesting knowledge in several application scenarios. Similarly, vertices may have

multiple types and attributes. Moreover, some scenarios require the study of multiple

graphs or even several snapshots of the same graph, instead of a single static graph.

Extracting useful knowledge from such complex large datasets brings new challenges

not only in terms of modeling but also efficiency and scalability. In order to address

such challenges, a new branch of data mining known as graph mining has attracted

great attention of the data mining community in recent years.

Data mining is a discipline dedicated to the extraction of useful knowledge from

large databases [Witten and Frank, 2005; Han, 2005; Tan et al., 2005; Fayyad et al.,

1996]. Such knowledge is usually expressed in the form of patterns, which are structures

for describing and predicting properties of the data [Hand et al., 2001]. Examples of

patterns include association rules, clusters, and outliers. Data mining is considered part

of the knowledge discovery process, which also includes data cleaning, data selection,

data transformation, pattern evaluation, and knowledge presentation. Graph mining

is the discovery of knowledge from graph databases. Graph mining tasks, such as

frequent subgraph mining, dense subgraph discovery, and motif detection, have great

applications in many fields. Recent research efforts on mining large complex graph

databases have led to the definition of innovative new patterns able to extract useful

knowledge from extended graph representations in an efficient and scalable fashion.

The next section introduces the problem studied in this work, which we call structural

correlation pattern mining, and may be considered one of such efforts.

4 Chapter 1. Introduction

1.1 Structural Correlation Pattern Mining

This work studies the problem of correlating vertex attributes and the existence of

dense subgraphs in an attributed graph (i.e., a graph where vertices have attributes).

We call this problem structural correlation pattern mining, since it correlates vertex

attributes and a structural (or topological) information from graphs.

Vertex attributes play an important role in several real life graphs. In social

networks, vertex attributes are useful to represent personal characteristics (e.g., age,

gender, interests). In protein-protein interaction networks, vertex attributes can rep-

resent expression or annotation data. Moreover, vertex attributes can be associated to

content (e.g., keywords, tags) in the web graph. Table 1.1 shows attributes of vertices

from the illustrative example graph shown in Figure 1.1. Each attribute is represented

through a letter in the interval A-E. Attributes for vertices shown in Figure 1.2 can be

keywords associated to each researcher and can represent their topics of interest.

It is broadly known that in several real graphs vertices are naturally organized

into dense subgraphs [Fortunato, 2010]. Dense subgraphs are sets of vertices with

high cohesion (i.e., strong connections among themselves). Such subgraphs carry an

important meaning in several real life scenarios. In social networks, people interact

more intensely inside communities, what is of great interest in social sciences [Newman,

2003; Scott, 2000; Carrington, 2005]. Web pages usually contain links to other related

pages, resulting in cyber-communities of pages and sites sharing a common interest

[Albert et al., 1999; Dourisboure et al., 2009]. Densely connected proteins in protein-

protein interaction networks define molecular complexes that are useful for functional

annotation [Spirin and Mirny, 2003]. Groups of publications citing each other can

define the related work around a established research topic [Shi et al., 2010]. Detecting

and analyzing dense subgraphs has been a long term research problem.

Figures 1.3 and 1.4 are two examples of dense subgraphs identified from the

graph shown in Figure 1.1. The subgraph from Figure 1.3 is a clique (i.e., a set of

vertices where there is an edge between each pair of vertices). A clique is the densest

possible subgraph for a given set of vertices. The subgraph shown in Figure 1.4 is not

a clique, but it has a high density (or cohesion), since only three pairs of vertices are

not adjacent. Figure 1.5 is a dense subgraph extracted from the graph shown in Figure

1.2, it represents a group of researchers with several internal collaborations.

Most of the traditional dense subgraph identification algorithms, as well as many

other algorithms for graphs, rely only on topological information (i.e., vertices and

edges). However, in many real life scenarios the relationships among entities is only one

of the sources of information available. Combining different sources of information in

1.1. Structural Correlation Pattern Mining 5

graph analysis has being argued to enable the discovery of novel interesting knowledge

from graphs, specially in the data mining and the bioinformatics literature [Silva et al.,

2010, 2012; Ge et al., 2008; Moser et al., 2007, 2009; Pei et al., 2005; Zeng et al., 2006;

Zhou et al., 2009].

vertex attributes
1 A, C
2 A
3 A, C, D
4 A,D
5 A, E
6 A, B, C
7 A, B, E
8 A, B
9 A, B
10 A, B, D
11 A, B

Table 1.1: Attributes of the vertices from the graph shown in Figure 1.1

Figure 1.3: Dense subgraph from the graph shown in Figure 1.1

This work studies the correlation between vertex attributes and the formation

of dense subgraphs, which we call structural correlation. The structural correlation

of attribute sets is based on the topology of the graphs induced by them. Attributes

with high structural correlation induce sets of vertices that are well connected among

themselves in the graph. The structural correlation generalizes the concept of social

correlation, defined by a previous work [Anagnostopoulos et al., 2008]. While the social

correlation is the co-occurrence of an attribute for two adjacent nodes in a social net-

work, the structural correlation considers co-occurrences of single or multiple attributes

6 Chapter 1. Introduction

Figure 1.4: Dense subgraph from the graph shown in Figure 1.1

inside dense subgraphs. The graph induced by an attribute set is composed by the ver-

tices that have such attribute set and the edges between these vertices. The structural

correlation of a given attribute set is the probability of a vertex to be member of a

dense subgraph inside the graph induced by such an attribute set.

Considering the graph shown in Figure 1.1, the vertex attributes shown in Table

1.1 and the dense subgraphs shown in Figures 1.3 and 1.4, the structural correlation

of the attribute C is 0, since there is no dense subgraph inside the graph induced by

the attribute C (i.e., vertices 1, 3, and 6). The structural correlation of the attribute

set {A,B} is 1, due to the fact that every vertex is a member of a dense subgraph

in the graph induced by {A,B}. From the collaboration graph shown in Figure 1.2,

taking the keywords from the tittle of the papers of each researcher as their attributes,

and considering a dense subgraph a vertex set in which each vertex is connected to, at

least, half of its other members, the structural correlation of the keyword“search”is 0.25

(i.e., 25% of the authors with the keyword “search” are members of dense subgraphs

composed of other authors who also have this keyword). Therefore, the structural

correlation can measure how keywords induce research groups in a collaboration graph.

While the structural correlation is a property of an attribute set, a struc-

tural correlation pattern is a pair (attribute set, dense subgraph). The pair ({A,B},
{6,7,8,9,10,11}) is an example of a structural correlation pattern from the graph shown

in Figure 1.1. Considering the collaboration graph from Figure 1.2, all the authors in

the dense subgraph shown in Figure 1.5 have the keywords “search” and “web”. There-

1.1. Structural Correlation Pattern Mining 7

Figure 1.5: Dense subgraph from the real graph shown in Figure 1.2

fore, such a pattern may represent a research group related to the topic web search.

Both the structural correlation function and the structural correlation pattern

definitions are based on two related hypotheses:

1. Attributes produce dense subgraphs;

2. Dense subgraphs affect the attributes of their internal vertices.

In other words, if none of the two hypotheses are true for a specific attributed

graph, the correlation between attribute sets and the existence of dense subgraphs is

random. In the specific context of social networks, both these hypotheses are well

accepted by the research community. The first hypothesis is related to the homophily

phenomena that is the tendency of similar people to be connected. The second hy-

pothesis is related to the social influence, which is the power of connected people to

affect the characteristics and behaviors of each other.

8 Chapter 1. Introduction

The correlation between attribute sets and the existence of dense subgraphs is

not expected to be completely deterministic or completely random. Therefore, it is

important to provide interestingness measures for the structural correlation based on

how a given value of correlation deviates from the expected. In this work, we propose

two null models for the structural correlation function. Such models provide the ex-

pected structural correlation for a given attribute set assuming that attributes are set

to vertices randomly.

We define the structural correlation pattern mining in terms of two existing data

mining patterns: frequent itemsets and quasi-cliques. Frequent itemsets are applied

in order to deal with the large number of possible attribute sets in real attributed

graphs and quasi-cliques are used as a definition for dense subgraphs. In order to

provide efficient and scalable algorithms for the proposed problems we combine existing

strategies for frequent itemset and quasi-clique mining with new pruning, sampling and

parallelization strategies specific for the structural correlation.

The structural correlation pattern mining constitutes a new graph analysis tech-

nique for attributed graphs. It provides knowledge at the level of attribute sets, mea-

suring how they are correlated to the existence of dense subgraphs in the graph, and

also at the level of the subgraphs induced by the attribute sets (i.e., the structural cor-

relation patterns). Such a knowledge may be applied to many real graphs from several

domains, including social, information, and biological networks.

1.2 Contributions of This Work

The main contributions of this work are summarized as follows:

• Problem statement: We introduce the general problem of correlating vertex

attributes and the existence of dense subgraphs in attributed graphs. As far as

we know, there is no previous work on this problem in the literature.

• Modeling: Based on the statement of the problem, we define a structural corre-

lation function and a structural correlation pattern combining two existing data

mining patterns (frequent itemsets and quasi-cliques).

• Algorithm Design: We design and implement algorithms for structural cor-

relation pattern mining. The algorithms explore pruning, sampling and paral-

lelization as strategies in order to compute the structural correlation and identify

structural correlation patterns efficiently.

1.3. Outline 9

• Application and evaluation: We apply the structural correlation pattern min-

ing to several real datasets from different domains. Using such datasets, we eval-

uate the performance of the proposed algorithms. We also conduct case studies

in order to show the applicability of the structural correlation pattern mining in

real-life scenarios.

1.3 Outline

The remaining of this work is organized as follows:

• Chapter 2 [Background]: Summarizes existing knowledge related to the struc-

tural correlation pattern mining: dense subgraphs, quasi-clique mining, and fre-

quent itemset mining. It also gives an overview on related work in the literature.

• Chapter 3 [Structural Correlation Pattern Mining: Definitions]: Gives

formal definitions for the structural correlation function and structural correlation

pattern mining.

• Chapter 4 [Structural Correlation Pattern Mining: Algorithms]: De-

scribes algorithms for structural correlation pattern mining.

• Chapter 5 [Experimental Evaluation]: Presents case studies of the applica-

tion of the structural correlation pattern mining in real-life scenarios and also an

experimental evaluation of the proposed algorithms in terms of performance

• Chapter 6 [Conclusions]: Discusses the main conclusions and limitations of

the proposed work and also points out some future research directions.

Chapter 2

Background and Related Work

In this chapter we present an overview on important topics related to the structural

correlation pattern mining: dense subgraphs and the quasi-clique and frequent itemset

mining problems. Moreover, we discuss existing work related to the structural corre-

lation pattern mining from the literature. The structural correlation pattern mining

correlates attribute sets and the existence of dense subgraphs in an attributed graph.

While the concept of attribute set is quite simple (a set of attributes), there is no single

formal definition for a dense subgraph in the literature. There are several definitions

for dense subgraphs and we survey some of them in Section 2.1. Among the existing

definitions for dense subgraphs, we selected the quasi-clique definition. Section 2.2 de-

scribes the quasi-clique mining problem and present many existing pruning techniques

for the efficient identification of quasi-cliques in graphs. Understanding such techniques

is important, since we employ them in the algorithms presented in Chapter 4. In Sec-

tion 2.3, we overview the frequent itemset mining problem. We apply frequent itemset

mining in order to select frequent attribute sets in the structural correlation pattern

mining. Section 2.4 discusses related work on the structural correlation pattern mining.

2.1 Dense Subgraphs

The dense subgraph discovery is a multidisciplinary problem with great importance in

physics, sociology, biology and computer science. Graphs can represent several com-

plex real systems and understanding how vertices are organized into dense subgraphs

has been a popular research topic. In social networks, where vertices represent people

and edges represent social relationships (e.g., friendship, marriage, co-working), dense

subgraphs are of special interest, since they constitute communities [Scott, 2000; Car-

rington, 2005]. The World Wide Web can also be modeled as a graph, where pages

11

12 Chapter 2. Background and Related Work

interact through hyperlinks. Dense subgraphs in the web graph are groups of pages

sharing topic similarities (a.k.a. cyber-communities) [Dourisboure et al., 2009]. More-

over, dense subgraphs can also represent an effort in order to enhance the PageRank

[Brin and Page, 1998] of web pages artificially [Gyöngyi and Garcia-Molina, 2005]. Sim-

ilar to web pages, publications can be connected through citations and dense subgraphs

are useful for the discovery of topic-related publications. In biology and bioinformatics,

the study of protein-protein interaction (PPI) networks is of special interest [Spirin and

Mirny, 2003]. Proteins interact in biological processes in the cells and dense subgraphs

correspond to functional groups (i.e., proteins with similar functions) in this scenario.

The concepts of dense subgraph and graph community (a.k.a graph cluster) are

close related. A community is usually defined as a set of vertices significantly more

connected among themselves than with vertices outside it [Girvan and Newman, 2002;

Newman, 2003; Puig-Centelles et al., 2008; Newman, 2004; Fortunato, 2010]. Therefore,

a community is a dense subgraph, but a dense subgraph is not necessarily a community,

because dense subgraphs can also have a strong cohesion with the rest of the graph.

Such distinction between dense subgraphs and communities is not clear in the literature

and the use of both concepts interchangeably is not uncommon. In general, dense

subgraphs are exact definitions while communities are based on heuristics. Moreover,

most of the algorithms for community identification restrict each vertex to be member

of a single community (i.e., such algorithms identify graph partitions).

In this work, we apply a specific dense subgraph identification method (see Section

2.2) in order to compute the correlation between attribute sets and the formation of

dense subgraphs. However, it is known that the definition of a dense subgraph may

depend on the specific application scenario [Fortunato, 2010]. Although we try to

generalize the concept of dense subgraph as much as possible, it is important to notice

that some definitions of dense subgraphs can not be applied to our study. We define two

requirements for a dense subgraph identification method to be applied to the correlation

between attribute sets and the formation of dense subgraphs:

1. Detecting overlapping dense subgraphs: It is known that, in real graphs,

vertices are shared between dense subgraphs. In social networks, for example,

individuals can be members of different social circles. Restricting vertices to be

members of a single dense subgraph leads to the neglection of potentially relevant

information [Fortunato, 2010].

2. Allowing vertices not to be assigned to any dense subgraph: Several

algorithms for dense subgraph identification enforce vertices to be set to, at least,

a single dense subgraph. Despite the few recent efforts for detecting outliers [Xu

2.1. Dense Subgraphs 13

et al., 2007; Chakrabarti, 2004], which are vertices that do not belong to any dense

subgraph, it is a general assumption that such cases are exceptions. However,

our objective is to measure how attribute sets induce dense subgraphs and it

is expected that in real graphs some attribute sets induce graphs for which the

probability of a vertex to be in a dense subgraph is low.

In the remaining of this section we give several examples of dense subgraph defini-

tions that could be applied in the correlation between attribute sets and dense subgraph

formation. The simplest and most popular of them is a clique [Scott, 2000]. A set of

vertices V is a clique if there is an edge between each pair of vertices in V . Cliques of

interest are usually maximal subgraphs (i.e., they are not subsets of any other clique).

Vertices can be naturally members of multiple cliques. However, the clique definition

is too strict for real networks, which are known to be sparse [Newman, 2003]. As a

consequence, large cliques are expected to be infrequent in real graphs.

There are several relaxations of the clique definition in the literature. A quasi-

clique (see Section 2.2) is a set of vertices V such that each vertex is adjacent to a

fraction γ of the vertices in V . The k-plex and k-core definitions are similar to quasi-

cliques, but consider the absolute number of vertices adjacent to each vertex in the

subgraph [Seidman and Foster, 1978; Seidman, 1983b]. A k-plex is a maximal vertex

set V in which each vertex is adjacent to, at least, |V | − k vertices in V . A k-core is

a maximal vertex set V such that each vertex is adjacent to, at least, k vertices in V .

There are also dense subgraph definitions based on the distances between vertices, such

as n-cliques [Alba, 1973]. An n-clique is a maximal vertex set such that the distance

between its vertices is not larger than n. Similar to cliques, dense subgraphs of interest

are maximal in general.

Although most of the dense subgraph definitions are based only on internal co-

hesion, there are definitions that also consider the external cohesion. An example is

the LS-set definition [Seidman, 1983a], which is a vertex set V such that the internal

degree of each vertex in V is greater than its external degree. Hu et al. [Hu et al.,

2008] define as strong-community a vertex set V for which the internal degree of any

vertex in V exceeds its degree in any other vertex set. The same authors define a

weak-community as a vertex set V such that its total internal degree exceeds the num-

ber of edges shared between the vertices in V and the other vertex sets. Borgatti et

al. [Borgatti Martin and Stephen, 1990] consider the robustness to edge removal as a

criterion for the identification of dense subgraphs through the definition of lambda-sets.

A lambda-set is a vertex set V such that the connectivity between any pair of vertices

in V is more robust than the connectivity between a vertex in V and another vertex

14 Chapter 2. Background and Related Work

outside V .

Dense subgraphs can also be identified based on fitness measures that evaluate

how a subgraph satisfies some cohesion criteria. An example of a fitness measure for

dense subgraph identification is the intra-cluster density, which is the ratio between the

number of internal edges and the number of all possible internal edges in the subgraph.

A similar measure is the relative density of a vertex set V , which is the ratio between

the internal and the total degree of V [Fortunato, 2010].

Some community definitions that consider overlapping communities and allow

vertices not to be members of any community can also be applied in correlation between

attribute sets and dense subgraph formation. The clique percolation method [Palla

et al., 2005], for example, identifies overlapping communities through the union of k-

cliques (i.e., cliques of size k) that share k − 1 vertices. Although the method requires

the identification of the k-cliques, which is a known NP-complete problem, the limited

number of cliques in real graphs makes the method applicable in many scenarios.

Identifying dense subgraphs in graphs is an important and popular research prob-

lem. However, we could not find a single well accepted definition of a dense subgraph

in the literature. In the next section, we describe the quasi-clique mining task. Quasi-

cliques are the specific definition of a dense subgraph used in this work. Nevertheless,

other subgraph definitions can also be applied in the correlation between attribute sets

and the formation of dense subgraphs.

2.2 Quasi-clique Mining

Quasi-cliques are a natural extension of the traditional clique definition. They fulfill

the two requirements discussed in Section 2.1. In this work, we apply quasi-cliques as

definition for dense subgraphs.

DEFINITION 1. (Quasi-clique) Given a minimum density threshold γmin (0 <

γmin ≤ 1) and a minimum size threshold min size, a quasi-clique is a maximal vertex

set V such that for each v ∈ V , the degree of v in V is, at least, dγmin.(|V | − 1)e and

|V | ≥ min size.

Figures 1.3 and 1.4 are examples of a 1-quasi-clique (i.e., a clique) of size 4 and

a 0.6-quasi-clique of size 6, respectively, from the graph shown in Figure 1.1. The

subgraph shown in Figure 1.5 is a 0.6-quasi-clique from the collaboration graph from

Figure 1.2. The quasi-clique mining problem consists of identifying the set of quasi-

cliques from a graph considering minimum size and density parameters.

2.2. Quasi-clique Mining 15

DEFINITION 2. (Quasi-clique mining problem) Given a graph G(V , E), where

V is the set of vertices and E is the set of edges, a minimum density threshold γmin

(0 < γmin ≤ 1) and a minimum size threshold min size. The problem consists of

finding the set Q of quasi-cliques from G.

Quasi-cliques have shown great applicability as a definition for dense subgraphs

in the data mining literature. In [Pei et al., 2005], the authors introduce the prob-

lem of mining cross-graph quasi-cliques (i.e., set of vertices that are quasi-cliques in

every graph from a graph database). Cross-graph quasi-clique mining is useful for

cross-market customer segmentation, correlated stock discovery, joint mining of gene

expression and protein interactions, and the analysis of telecommunication data [Zeng

et al., 2006; Pei et al., 2005; Abello et al., 2002; Jiang and Pei, 2009; Hu et al., 2005;

Abello et al., 2002]. However, it is known that counting the number of quasi-cliques

from a graph is a #P-hard problem and enumerating such quasi-cliques is an NP-hard

problem, what is a challenge to the application of quasi-clique mining algorithms to

large datasets. The class of #P-hard problems is the counting analogue of the class of

NP-hard decision problems [Burgisser et al., 1997; Valiant, 1979; Garey and Johnson,

1990; Yang, 2004].

THEOREM 1. (Quasi-clique mining problem complexity). The problem of

counting the number of γ-quasi-cliques in a graph G is #P-hard and the problem of

enumerating the γ-quasi-cliques from G is NP-hard.

Proof sketch. As in Pei et al. [2005], we prove it by restriction. If γ is set to 1,

the problem of counting the number of quasi-cliques becomes equivalent to the problem

of counting the number of cliques (1-quasi-cliques) in G, that is known to be #P-hard.

#P-hard counting problems are associated to NP-hard enumeration problems [Yang,

2004; Garey and Johnson, 1990].

Figure 2.1 shows the search space for quasi-cliques considering a graph with 4 ver-

tices (1-4) through an enumeration tree representation. Each node of the enumeration

tree corresponds to a subset of vertices. According to the Theorem 1, a quasi-clique

mining algorithm will enumerate every possible subset of the vertex set (i.e., the whole

enumeration tree) in the worst case scenario. For a graph with N vertices, the height

of the tree is N , the number of nodes in the level i (0 ≤ i ≤ N) is
(
N
i

)
, and the total

number of nodes is 2N .

There exist several efficient data mining algorithms for computationally hard

problems in the literature. Such algorithms apply effective pruning techniques in order

to eliminate candidate patterns as many and as soon as possible. Many of these pruning

16 Chapter 2. Background and Related Work

Figure 2.1: Set Enumeration Tree

techniques are based on the anti-monotonicity (or downward-closure) property [Man-

nila and Toivonen, 1997; Ng et al., 1998] of patterns. However, the anti-monotonicity

property does not hold for quasi-cliques.

DEFINITION 3. (Anti-monotonicity or downward-closure property). A

property ϕ is called anti-monotone if and only if for any patterns P1 and P2, the fact

that ϕ(P1) holds implies that ϕ(P2) holds if P2 ⊆ P1.

PROPOSITION 1. (Anti-monotonicity or downward-closure property of

quasi-cliques). The anti-monotonicity (or downward-closure) property does not hold

for quasi-cliques.

Proof sketch. We prove it by a counterexample. The subgraph shown in Figure 1.4 is

a 0.6-quasi-clique but its subgraph shown in Figure 2.2 is not a 0.6-quasi-clique, since

the vertex 7 is connected to only one vertex in the subgraph.

Since quasi-cliques do not have the anti-monotonicity property, quasi-clique min-

ing algorithms require more elaborated pruning strategies for the efficient enumeration

of quasi-cliques. In the remaining of this section, we describe pruning techniques for

quasi-clique mining proposed in the literature. Such pruning techniques are based on

the quasi-clique definition and the input parameters (γmin and min size).

2.2. Quasi-clique Mining 17

Figure 2.2: Subgraph of the 0.6-quasi-clique shown in Figure 1.3 which is not a 0.6-
quasi-clique

2.2.1 Vertex Pruning

The vertex pruning techniques refer to the removal of vertices that can not be in

any quasi-clique in a graph G according to the quasi-clique definition and the input

parameters. Previous work [Pei et al., 2005; Jiang and Pei, 2009] has defined vertex

pruning strategies based on the degree of vertices and the diameter of quasi-cliques, as

stated in the following lemmas. Such techniques have as their main objective to reduce

the number of vertices to be combined in the search for quasi-cliques.

LEMMA 1. (Degree-based pruning). If the degree of a vertex v is smaller than

dγmin.(min size− 1)e, it can not be part of γmin-quasi-clique of size greater or equal to

min size [Pei et al., 2005; Jiang and Pei, 2009].

Based on Lemma 1, vertices can be pruned iteratively until no vertex can be

removed. If γmin = 0.5 and min size = 4, vertices 1 and 2 can be pruned from the

graph shown in Figure 1.1 using Lemma 1, since their degrees are smaller than 2.

LEMMA 2. (Diameter of quasi-cliques). The maximum diameter (diam(γ, α))

of a γ-quasi-clique of size α is limited by an upper-bound based on the values of γmin

and α [Pei et al., 2005; Jiang and Pei, 2009]:

diam(γmin, α)

{
≤ 2 if α−2

α−1 ≥ γmin ≥ 0.5

= 1 if 1 ≥ γmin >
α−2
α−1

18 Chapter 2. Background and Related Work

Lemma 2 can be applied to prune vertices which do not have enough neighbors

within a shortest path smaller or equal to the upper bound of the quasi-clique diameter.

LEMMA 3. (Diameter-based pruning). Let d(u, v) be the number of edges in the

shortest path between u and v, and Nk(v) be the size k neighborhood of a vertex v, i.e.,

Nk(v) = {u|d(u, v) ≤ k}. If |Ndiam(γmin,min size)(v)| < min size − 1, v can not be in

any γmin-quasi-clique of size greater or equal to min size [Pei et al., 2005; Jiang and

Pei, 2009].

According to Lemma 3, if γmin = 0.5 and min size = 6, then vertex 4 can be

removed from the graph from Figure 1.1, since diam(0.5, 6) ≤ 2 and N2(4) < 5. Similar

to Lemma 1, Lemma 3 can be applied iteratively in order to prune as many vertices

as possible. Lemma 1 and Lemma 3 can also be combined in order to maximize the

number of vertices removed. If γmin = 0.7 and min size = 4, vertices 1 and 2 can be

pruned from the graph shown in Figure 1.1 using Lemma 3, since the upper bound for

the diameter of size 4 0.7-quasi-clique is 1, and |N1(1)| and |N1(2)| are smaller than 3.

In the next section, we describe a second group of pruning techniques for quasi-

clique mining, which we call candidate quasi-clique pruning. While the vertex pruning

techniques remove vertices that can not be in any quasi-clique, the candidate quasi-

clique pruning removes sets of vertices in the search space for quasi-cliques.

2.2.2 Candidate Quasi-clique Pruning

Candidate quasi-clique pruning techniques were proposed by previous work [Pei et al.,

2005; Jiang and Pei, 2009; Zeng et al., 2006; Liu and Wong, 2008] in order to speedup

the quasi-clique mining process. Based on the quasi-clique definition and the input

parameters, such techniques are able to prune an entire branch from the set enumeration

tree that represents the search space for quasi-cliques (see Figure 2.1). The set of

possible candidates to be quasi-cliques C (i.e., nodes of the corresponding enumeration

tree) from a vertex set V can be generated through the Algorithm 1. It is based on

two vertex sets: X and candExts(X). The set X is the current vertex set, initially set

to ∅, and the set candExts(X) stores vertices to extend X, initially set as the vertex

set V . The function extend expands X recursively using vertices from candExts(X),

one at time. In order to avoid duplicated subsets, the set of new candidate extensions

is limited to those vertices greater than the new vertex inserted into X according

to some comparison criteria. The pruning techniques for quasi-clique discovery will

be described in terms of the sets X and candExts(X), and the parameters γmin and

min size. Moreover, we define as NG(v) the set of vertices adjacent to v in the input

2.2. Quasi-clique Mining 19

graph. The function indegX gives the degree of a vertex in X, i.e. indegX(v) =

|NG(v)∩X|, and exdegX gives the degree of a vertex in candExts(X), i.e. exdegX(v) =

|NG(v) ∩ candExts(X)|.

Algorithm 1 Set Enumeration Tree Algorithm
INPUT: V: Vertex set
OUTPUT: C: Power set of V
1: X← ∅
2: candExts(X)← V
3: C← X
4: C← C ∪ extend(X, candExts(X))

Algorithm 2 extend

INPUT: X, candExts(X)
OUTPUT: E
1: E← ∅
2: for all v ∈ candExts(X) do
3: candExts(newX)← {u ∈ candExts(X)|u > v}
4: newX← X ∪ {v}
5: E← E ∪ newX
6: E← E ∪ extend(newX, candExts(newX))
7: end for

The first two candidate quasi-clique pruning techniques consider the degree of

vertices in X ∪ candExts(X) in order to prune combinations of vertices that can not

be quasi-cliques. The third technique prunes vertices from candExts(X) that are not

reachable by the vertices from X according to the diameter upper-bound of a quasi-

clique, described in Lemma 2.

LEMMA 4. (Degree-based pruning for candExts). For a pair (X,

candExts(X)), if indegX(u) + exdegX(u) < dγmin.(|X| + exdegX(u))e, for a given

vertex u ∈ candExts(X), u can be pruned from candExts(X) [Zeng et al., 2006].

Considering the example graph shown in Figure 1.1, if X = {3, 4, 5},
candExts(X) = {7}, and γmin = 0.5, the vertex 7 can be pruned from candExts(X),

since indegX(7) = 1, exdegX(7) = 0, and indegX(7) + exdegX(7) < d0.5.(4 +

exdegX(7))e.

LEMMA 5. (Degree-based pruning for X). For a pair (X, candExts(X)), if

indegX(v) < dγmin.|X|e and exdegX(v) = 0, or indegX(v)+exdegX(v) < dγmin.(|X|−
1 + exdegX(u))e, for a given a vertex u ∈ X, v can be pruned from X [Zeng et al.,

2006].

Lets consider the graph from Figure 1.1, X = {4, 6, 7, 8, 9}, candExts(X) =

{10, 11}, and γmin = 0.5. According to Lemma 5, the vertex 4 can be pruned from

20 Chapter 2. Background and Related Work

X, since indegX(3) = 1, exdegX(3) = 0, and indegX(4) + exdegX(4) < d0.5.(5 − 1 +

exdegX(4))e.

LEMMA 6. (Diameter-based pruning). Let d(u, v) be the number of edges

in the shortest path between u and v, and Nk(v) be the size k neighborhood of

a vertex v, i.e., Nk(v) = {u|d(u, v) ≤ k}. For a pair (X, candExts(X)), if

u /∈
⋂
v∈X N

diam(γmin,min size)(v), for a given u ∈ candExts(X), u can be pruned from

candExts(X) [Pei et al., 2005; Jiang and Pei, 2009].

As an example, let X = {3, 4, 5, 6}, candExts(X) = {10, 11}, γmin = 0.5, and

the input graph to be the graph from Figure 1.1. The vertex 11 can be pruned from

candExts(X) based on Lemma 6, since 11 /∈ N2(3) ∩ N2(4) ∩ N2(5) ∩ N2(6). The

following 4 lemmas, proposed in [Liu and Wong, 2008], consider the upper bound of

the number of vertices that can be added to X to generate larger quasi-cliques in order

to prune quasi-clique candidates.

LEMMA 7. (Upper bound of the number of vertices from candExts that can

be added to X). Let degmin(X) = min{indegX(v) + exdegX(v)|v ∈ X}. For a pair

(X, candExts(X)), an upper bound of the number of vertices from candExts(X) which

can be included in X, Umin
X , to form a γmin-quasi-clique is given by bdegmin(X)/γminc+

1− |X|.

LEMMA 8. (Tighter upper bound of the number of vertices from can-

dExts that can be added to X). A tighter upper bound of the number of vertices

from candExts(X) that can be added to X, UX , to form a γmin-quasi-clique is given

by max{t|
∑

v∈X indeg
X(v) +

∑
1≤i≤t indeg

X(vi) ≥ |X|.dγmin.(|X| + t − 1)e, 1 ≤ t ≤
Umin
X , vi ∈ candExts}. If there is no such t, UX is set to 0.

LEMMA 9. (Pruning for candExts based on the upper bound of the num-

ber of vertices from candExts that can be added to X). For a pair (X,

candExts(X)), if UX = 0, then the entire set candExts(X) can be pruned, otherwise,

if indegX(u) + UX − 1 < dγmin.(|X|+ UX − 1)e, for a given vertex u ∈ candExts(X),

then u can be pruned from candExts(X).

Back to our example graph shown in Figure 1.1, if X = {6, 7, 8}, candExts =

{9, 10, 11}, and γmin = 0.9, then degmin(X) = 3 and Umin
X = 1. If we apply Lemma 8,

then UX = 0 and, according to Lemma 9, the set X can not be extended to generate

a larger 0.9-quasi-clique.

LEMMA 10. (Pruning for X based on the upper bound of the number of

vertices from candExts that can be added to X). For a pair (X, candExts(X)),

2.2. Quasi-clique Mining 21

if if indegX(v) +UX < dγmin.(|X|+UX − 1)e, for a given vertex v ∈ X, then v can be

pruned from X.

In order to illustrate the application of Lemma 10, let X = {1, 4, 7},
candExts(X) = {8, 11}, γmin = 0.5, and the input graph from Figure 1.1. According

to Lemmas 7 and 8, Umin
X = UX = 0. Therefore, the vertex 7 can be pruned based on

Lemma 10, since indegX(7) = 0 and 0 + 0 < d0.5(3 + 0− 1)e.
Liu and Wong [Liu and Wong, 2008] also proposed pruning rules based on the

lower bound of the number of vertices from candExts(X) to be added to X, as stated

by the following 5 lemmas.

LEMMA 11. (Lower bound of the number of vertices from candExts that

can be added to X). Let indegmin(X) = min{indegX(v)|v ∈ X}. A lower bound

LminX for the number of vertices from candExts(X) that can be added to X to form a

γmin-quasi-clique is given by min{t|indegmin(X) + t ≥ dγmin.(|X|+ t− 1)e}.

LEMMA 12. (Tighter lower bound of the number of vertices from candExts

that can be added to X). A tighter lower bound of the number of vertices from

candExts(X) that can be added to X, LX , to form a γmin-quasi-clique is given by

min{t|
∑

v∈X indeg
X(v) +

∑
1≤i≤t indeg

X(vi) ≥ |X|.dγmin.(|X| + t − 1)e, LminX ≤ t ≤
|candExts(X)|}. If there is no such t, LX = |candExts(X)|+ 1.

LEMMA 13. (Pruning for candExts based on the lower bound of the num-

ber of vertices from candExts that can be added to X). For a pair (X,

candExts(X)), if LX > UX the entire set candExts(X) can be pruned, otherwise, if

indegX(u) + exdegX(u) < dγmin.(|X|+LX − 1)e, for a given vertex u ∈ candExts(X),

u can be pruned from candExts(X).

Considering the graph from Figure 1.1, if X = {1, 4, 7}, candExts(X) = {8, 11},
and γmin = 0.5, then LminX = 2 and LX = 3, according to Lemmas 11 and 12, respec-

tively. Moreover, UX = 0, according to Lemma 8. Therefore, UX > LX and, based on

Lemma 13, X can not be extended to generate a larger quasi-clique.

LEMMA 14. (Pruning for X based on the lower bound of the number of

vertices from candExts that can be added to X). For a pair (X, candExts(X)),

if indegX(v) + exdegX(v) < dγmin.(|X|+LX − 1)e, for a given vertex v ∈ X, v can be

pruned from X.

Let X = {2, 3, 8}, candExts(X) = {9, 10, 11}, γmin = 0.5, and the graph from

Figure 1.1. The vertices 2 and 3 can be pruned from X based on Lemma 14, since

LX = 4, indegX(2)+exdegX(2) = indegX(3)+exdegX(3) = 1, and 1 < d0.5.(3+4−1)e.

22 Chapter 2. Background and Related Work

LEMMA 15. (Pruning based on critical vertices). A vertex v ∈ X is called

critical if indegX(v)+exdegX(v) = dγmin.(|X|+LX−1)e. For each critical vertex v, we

add every vertex u ∈ candExts(X), such that (u, v) ∈ E (i.e., vertices in candExts(X)

that are adjacent to v), to X [Liu and Wong, 2008].

Let X = {6, 7, 8, 9}, candExts(X) = {10, 11}, γmin = 0.6, and the graph from

Figure 1.1. According to 15, the vertex 9 is a critical vertex because LX = 1 and

indegX(9) + exdegX(9) = d0.6(4 + 1− 1)e = 3.

Liu and Wong [Liu and Wong, 2008] also generalize a technique for mining max-

imal cliques [Tomita et al., 2006] to prune non-maximal quasi-cliques. Such technique

is based on the concept of cover vertex, which is a vertex u from candExts(X) that

prevents the vertices covered by it to form a maximal quasi-clique without u.

LEMMA 16. (Pruning based on cover vertices). For a pair (X, candExts(X)),

let u ∈ candExts(X) be a vertex such that indegX(u) ≥ dγmin.|X|e. If indegX(v) ≥
dγmin.|X|e for any vertex v ∈ X such that (u, v) /∈ E (i.e., u is not adjacent to v),

then vertices in candExts(X)∩NG(u)∩ (
⋂
vinX∧(u,v)/∈E N

G) must be extended together

with u in order to form a maximal γmin-quasi-clique. Any extension of X that includes

candExts(X) ∩NG(u) ∩ (
⋂
vinX∧(u,v)/∈E N

G) but not u can be pruned.

Considering our example graph 1.1, letX = {6, 7, 8}, candExts = {9, 10, 11}, and

γmin = 0.5. Based on Lemma 16, the vertex 9 covers the vertex 11, since indegX(9) =

2 = d0.5.(3)e, and candExts(X) ∩ NG(9) ∩ NG(7) = {11}. Therefore, {6, 7, 8, 11}
can be pruned as it can not be a maximal 0.5-quasi-clique. According to Lemma 16,

the cover vertex with the largest covering can be identified in order to prune as many

extensions from X as possible.

LEMMA 17. (Lookahead pruning). Since quasi-cliques of interest are usually

maximal, for a pair (X, candExts(X)), the set X ∪ candExts(X) can be checked

before extending X. If X ∪ candExts(X) is a γmin-quasi-clique, all the extensions of

X can be pruned, since they can not be larger than |X ∪candExts(X)| [Liu and Wong,

2008].

The lookahead pruning technique is very simple but can avoid the checking of

several vertex combinations in the cases where X ∪ candExts(X) is a quasi-clique. Let

X = {6, 7, 8}, candExts(X) = {9, 10, 11}, γmin = 0.5, and the input graph be the

example graph shown in Figure 1.1. We know that {6, 7, 8, 9, 10, 11} is a 0.5-quasi-

clique (see Figure 1.4) and thus its subsets can not be maximal quasi-cliques.

In Chapter 4, we present algorithms for the structural correlation pattern mining

problem. Such algorithms apply the pruning techniques described along this section in

2.3. Frequent Itemset Mining 23

the identification of dense subgraphs induced by attribute sets. Moreover, we propose

search, pruning, sampling, and parallelization techniques for correlating attribute sets

and dense subgraphs efficiently.

2.3 Frequent Itemset Mining

In this section we discuss the frequent itemset mining problem [Agrawal et al., 1993;

Agrawal and Srikant, 1994; Ceglar and Roddick, 2006; Hipp et al., 2000], which is an

important research topic related to the problem of measuring the correlation between

attributes and the formation of dense subgraphs. Mining frequent itemsets is one of the

most traditional problems in data mining. Frequent itemset mining algorithms have

been integrated to several other algorithms in order to find frequent sets of items that

can be used to express a reduced set of relevant patterns. Similarly to the frequent

sequence mining and the frequent subgraph mining problems, the frequent itemset

mining is considered part of the class of frequent pattern mining problems.

Agrawal et al. introduced the frequent itemset mining problem in [Agrawal et al.,

1993]. It consists of identifying frequent itemsets in a transactional database (each

transaction is a set of items) according to a minimum support threshold.

DEFINITION 4. (Frequent itemset mining problem) Given a set of items I,

a database D =< T1, T2, . . . Tn >, where Ti ⊆ I (0 ≤ i < n), a support function such

that support(X) = |{T ∈ D|X ⊆ T}|, and a user-defined minimum support threshold

min sup. The problem consists of identifying the set of frequent itemsets F , such that

F = {X ⊆ I|support(X) ≥ min sup}.

The main challenge for frequent itemset mining algorithms is the efficient enumer-

ation of frequent itemsets from large databases. Similarly to the quasi-clique mining,

counting the number of frequent itemsets is a #P-hard problem and enumerating such

itemsets is an NP-hard problem.

THEOREM 2. (Frequent itemset mining problem complexity). Counting the

number of frequent itemsets from a database is a #P-hard problem and enumerating

the frequent itemsets is an NP-hard problem.

Proof sketch. The problem of computing the number of possible assignments of a

monotone-2CNF formula, which is #P-hard, can be reduced to the problem of mining

frequent itemsets in polynomial time, as shown in [Gunopulos et al., 2003]. The NP-

hardness of the associated enumeration problem can be directly derived [Yang, 2004].

24 Chapter 2. Background and Related Work

The enumeration of the frequent itemsets requires, in the worst case, a search

over the 2|I| − 1 possible combinations of items from the database, where I is the set

of items. Figure 2.3 shows such a search space for the set of items {A,B,C,D,E}
in the form of a lattice structure, where edges represent subset/superset relationships

between itemsets. Table 2.1 shows the list of frequent itemsets, with their respective

supports, from the vertex attributes presented in Table 1.1 for a minimum support set

to 3. Different from quasi-cliques, the anti-monotonicity property holds for frequent

itemsets. Frequent itemset mining algorithms exploit such property in order to prune

candidate itemsets in an incremental generation process.

PROPOSITION 2. (Anti-monotonicity or downward-closure property of

frequent itemsets). The anti-monotonicity (or downward-closure) property holds for

quasi-cliques.

Proof sketch. For any transaction Ti from the database, if an itemset I is contained

in Ti, then any subset of I is also contained in Ti. Therefore, the support of any subset

of I is, at least, the support of I.

attribute set support
A 11
B 6
C 3
D 3

A, B 6
A, C 3

Table 2.1: Frequent attribute sets from the vertex attributes shown in Table 1.1 (the
minimum support set is 3)

The identification of frequent itemsets has several applications. The motivational

problem for the frequent itemset mining problem was the extraction of association rules

in market transaction data [Agrawal et al., 1993; Agrawal and Srikant, 1994]. Moreover,

frequent itemsets have been applied in clustering [Zhang et al., 2010], classification

[Thabtah, 2007], and information retrieval [Pôssas et al., 2005]. The original problem

of mining frequent itemsets was further extended to the problem of mining high utility

itemsets, where utility values are associated with items in the database [Chan et al.,

2003].

There are several algorithms for frequent itemset mining in the literature [Ceglar

and Roddick, 2006; Hipp et al., 2000]. Such algorithms exploit different search strate-

gies, pruning techniques, data structures and dataset organizations in order to identify

2.4. Related Work 25

Figure 2.3: Complete lattice for the set of attributes {A,B,C,D,E}

frequent itemsets efficiently. For a survey on algorithms for frequent itemset mining

see [Ceglar and Roddick, 2006]. A comparison among several existing frequent itemset

mining algorithms is presented in [Hipp et al., 2000].

In this work, we apply frequent itemset mining in order to select attribute sets

to be evaluated in terms of their capacity of inducing dense subgraphs in an attribute

graph. In this case, each attribute is an item and an attribute set is frequent if its cor-

responding itemset is frequent. Analyzing all possible attribute sets becomes compu-

tationally infeasible if the number of attributes is large. Moreover, infrequent attribute

set may not be of interest because: (1) they cover a small part of the graph and (2)

the evidence about their correlation with the formation of dense subgraphs may not be

enough to identify a relevant pattern.

2.4 Related Work

In this section, we discuss some work related to the structural correlation pattern min-

ing from the literature. Finding communities [Girvan and Newman, 2002; Fortunato,

2010] and dense subgraphs [Gibson et al., 2005; Liu and Wong, 2008; Jiang and Pei,

2009; Zeng et al., 2006] has been a long term research topic. A community is usually

defined as set of vertices significantly more connected among themselves than with

vertices outside it [Fortunato, 2010]. On the other hand, dense subgraph definitions,

26 Chapter 2. Background and Related Work

such as cliques, are strongly based on internal cohesion and maximality.

This work applies a specific dense subgraph definition called quasi-clique (see

Section 2.2). [Pei et al., 2005] introduces the problem of mining cross-graph quasi-

cliques. They further studied the problem of mining frequent cross-graph quasi-cliques

[Jiang and Pei, 2009]. [Zeng et al., 2006] studies the problem of mining frequent co-

herent closed quasi-cliques. [Liu and Wong, 2008] studies the problem of finding the

set of quasi-cliques from a single graph, proposing several powerful pruning techniques

for quasi-clique mining. We apply the same pruning techniques described in [Liu and

Wong, 2008].

Traditional graph community and dense subgraph definitions are based on the

topology of graphs (i.e., vertices and edges). However, in several scenarios, it is ex-

pected that vertex properties may complement or be associated to the graph topol-

ogy. In the specific case of social networks, important phenomena such as homophily

[McPherson et al., 2001] and social influence [Anagnostopoulos et al., 2008] result in a

significative similarity between connected nodes. The concept of social correlation, de-

fined in [Anagnostopoulos et al., 2008], which is the co-occurrence of a particular event

for two adjacent nodes, motivated the study of the structural correlation in graphs.

Graph clustering and dense subgraph discovery methods that consider vertex

attributes as complementary information have attracted the interest of the research

community in the recent years [Moser et al., 2009; Ge et al., 2008; Zhou et al., 2009;

Mougel et al., 2010]. [Ge et al., 2008] and [Zhou et al., 2009] propose algorithms for

community detection based on the graph topology and vertex attributes. In [Moser

et al., 2009], the authors introduce the problem of mining cohesive patterns, which are

dense connected subgraphs where vertices have homogeneous attributes (or features).

[Mougel et al., 2010] considers the problem of computing maximal homogeneous cliques

in attributed graphs.

Combining structural and attribute information in graphs can be seen as a spe-

cial case of multi-relational data mining [Džeroski, 2003; Wrobel, 2000]. This class of

data mining problems deal with patterns that involve multiple relations (i.e., tables).

Multi-relational data mining is strongly related to inductive logic programming and

has interesting applications, specially in bioinformatics. In this paper, we are inter-

ested in the particular problem of correlating vertex attributes and dense subgraphs in

attributed graphs.

Assessing how vertex attributes are related to the graph topology has led to the

definition of innovative patterns. In [Silva et al., 2010], we introduce the concept of

structural correlation as a measure of how attribute sets induce dense subgraphs in

attributed graphs. [Khan et al., 2010] defines the proximity pattern mining, which

2.4. Related Work 27

evaluates the proximity among attributes in a graph. [Sese et al., 2010] proposed the

problem of finding itemset-sharing itemsets, which consists of extracting subgraphs with

commom itemsets. In [Guan et al., 2011], the authors propose a different definition

for the structural correlation, which compares the closeness among vertices induced

by a given graph against a subgraph where attributes are randomly distributed. This

work differs from [Guan et al., 2011] by considering a particular topological property

which is the organization into dense subgraphs. Moreover, we are interested in relevant

dense subgraphs to be representatives of the structural correlation at the attribute

level. Some of the main results of this thesis can be found in [Silva et al., 2012].

Along this chapter, we have discussed the main topics related to the structural

correlation pattern mining from the literature: dense subgraphs and the quasi-clique

and frequent itemset mining problems, which will be relevant for the understanding of

the subsequent chapters. We have also described related work on structural correlation

pattern mining from the literature. In the next chapter, we give formal definitions

related to the structural correlation pattern mining.

Chapter 3

Structural Correlation Pattern Mining:

Definitions

Correlating vertex attributes and the existence of dense subgraphs in large attributed

graphs is the problem studied in this work. Dense subgraphs occur in several real

graphs (e.g., social networks, biological networks) and attributes can be assigned to

vertices in many of them. In this scenario, there are some interesting questions to ask,

such as: What is the relationship between vertex attributes and the formation of dense

subgraphs? Do vertex attributes induce dense subgraphs in real graphs? For a given

graph, what are the attributes more related to the formation of dense subgraphs? And

what are the dense subgraphs induced by these attributes? Along this chapter, we

define new data mining problems in order to answer these questions.

Section 3.1 defines the structural correlation, which measures to what extent

vertices with a given attribute set are organized into dense subgraphs. More specifically,

the structural correlation of an attribute set is the probability of a vertex to be member

of a dense subgraph in the graph induced by such attributes. Moreover, we also propose

null models that give the expected structural correlation of an attribute set considering

the input graph topology, the attribute set frequency, and the quasi-clique parameters.

Based on such null models, Section 3.2 describes two normalization approaches for the

structural correlation function. The normalized structural correlation gives how the

structural correlation of an attribute set deviates from its expected value.

The concept of structural correlation pattern is defined in Section 3.3. A structural

correlation pattern is a dense subgraph for which vertices share a specific attribute set.

Therefore, while the structural correlation is an analysis at the level of attributes,

structural correlation patterns provide an analysis at the level of dense subgraphs

induced by attributes. As discussed in Section 2.2, we consider quasi-cliques as a

29

30 Chapter 3. Structural Correlation Pattern Mining: Definitions

definition for dense subgraphs.

In Section 3.4, we put the concepts of structural correlation and structural cor-

relation pattern together to define the structural correlation pattern mining problem,

which is the identification of attribute sets with high structural correlation and the

dense subgraphs induced by them.

3.1 Structural Correlation

In this section we give a formal definition for the concept of structural correlation. The

structural correlation measures the probability of vertices to be in a quasi-clique in the

graph induced by a given attribute set.

We define an attributed graph as a 4-tuple G = (V , E ,A,F) where V is the set of

vertices, E is the set of edges, A = {a1, a2, . . . an} is the set of vertex attributes, and

F : V → P (A) is a function that returns the set of attributes of a vertex. P is the power

set function. Each vertex vi in V has a set of attributes F(vi) = {ai1, ai2, . . . aip}, where

p = |F(vi)| and F(vi) ⊆ A. In Figure 1.1, we show an example of an attributed graph

where the vertex attributes are given in Table 1.1. In such graph, V = {1, 2, . . . 11},
A = {A,B,C,D,E}, (1, 4) ∈ E , and F(1) = {A,C}. In the collaboration graph

shown in Figure 1.2, V is a set of researchers, A is composed of keywords, E represents

collaborations, and F(ri) returns the set of keywords associated to the researcher ri.

Table 3.1 presents the set of symbols used along this and the upcoming chapters.

Given the set of vertex attributes A, we define an attribute set S as a subset

of A (S ⊆ A). Moreover, we denote by V(S) ⊆ V the vertex set induced by S (i.e.,

V(S) = {vi ∈ V|S ⊆ F(vi)}) and by E(S) ⊆ E the edge set induced by S (i.e.,

E(S) = {(vi, vj) ∈ E|vi ∈ V(S) ∧ vj ∈ V(S))}). Therefore, the graph G(S), induced by

S, is the pair (V(S), E(S)). Considering the graph shown in Figure 1.1, with vertex

attributes given in Table 1.1, {A}, {C}, and {A,B} are examples of attribute sets. In

Figures 3.1, 3.2, and 3.3, we show different versions of the graph from Figure 1.1 in

which vertices in the graph induced by an attribute set but not in dense subgraphs,

vertices in the graph induced by an attribute set and in dense subgraphs, and vertices

out of the induced graph are set to different shapes and collors, for the attribute

sets {A}, {C}, and {A,B}, respectively. Figure 3.4 shows the graph induced by the

keywords “search” and “rank” in the collaboration graph from Figure 1.2. For clarity,

vertices that do not have the attribute set {search, rank} are not shown.

Given the induced subgraph G(S), the structural correlation measures how its

vertices are organized into dense subgraphs. We apply quasi-cliques (see Section 2.2)

3.1. Structural Correlation 31

symbol meaning
G attributed graph
V vertex set of G
E edge set of G
A attribute set of G
F(v) set of attributes of v in G
S attribute set
V(S) {v|v ∈ V ∧ S ⊆ F(v)}
E(S) {(v, u)|v ∈ V(S) ∧ u ∈ V(S)}
G(S) (V(S), E(S))
κ(S) structural coverage of S
ε(S) structural correlation of S
σ(S) |V(S)|
σmin minimum support threshold

sim-εexp simulation-based expected ε
max-εexp analytical upper bound on the expected ε

δ1 simulation based normalized ε
δ2 analytical normalized ε
γmin minimum density threshold for quasi-cliques

min size minimum size threshold for quasi-cliques

Table 3.1: Table of Symbols

Figure 3.1: Graph from Figure 1.1, vertices 3 to 11 have the attribute A and are in
dense subgraphs, vertices 1 and 2 have the attribute A but are out of dense subgraphs

as a definition for dense subgraphs. The structural correlation is defined based on

the structural coverage function, which measures how many vertices are covered by

quasi-cliques in the graph induced by a given attribute set.

DEFINITION 5. (Structural coverage function κ) Given an attribute set S, let

q1, q2, . . . qk be the set of quasi-cliques in the graph G(S). The value of κ(S) is given

by:

κ(S) = |
⋃

0<i≤k

qi| (3.1)

32 Chapter 3. Structural Correlation Pattern Mining: Definitions

Figure 3.2: Graph from Figure 1.1, vertices 1, 3, and 6 have the attribute C and the
other vertices do not have C

Figure 3.3: Graph from Figure 1.1, vertices 6 to 11 have the attribute set {A,B} and
are in dense subgraphs, the other vertices do not have {A,B}

In Figures 3.1, 3.2, 3.3, and 3.4, vertices covered by quasi-cliques in the induced

subgraph and vertices in the induced subgraph but not covered by quasi-cliques are

set to distinct shapes and collors. The value of κ({A}), κ({C}), and κ({A,B}) are 9,

0, and 6, respectively. In the collaboration graph from Figure 3.4, κ({search, rank})
is equal to 81 if γ and min size are set to 0.5 and 10, respectively. We define the

structural correlation function for an attribute set S as the probability of a vertex v

that has S (i.e., v ∈ V(S)) to be covered by a dense subgraph in G(S).

DEFINITION 6. (Structural correlation function ε) Given an attribute set S,

3.1. Structural Correlation 33

Figure 3.4: Graph induced by the attribute set {search, rank} from the collaboration
graph shown in Figure 1.2.

the structural correlation of S, ε(S), is given by:

ε(S) =
κ(S)

|G(S)|
(3.2)

The structural correlations of the attribute sets {A}, {C}, and {A,B} are 0.82,

0, and 1, respectively. Therefore, we say that the {A,B} is more correlated with the

formation of dense subraphs than {A}, and there is no correlation between {C} and

dense subgraphs in the graph shown in Figure 1.1. Considering the graph of Figure

1.2, ε({search, rank}) is equal to 0.19.

We propose the concept of structural correlation to assess how vertex attributes

induce dense subgraphs in an attributed graph. Therefore, it enables the identification

of attribute sets that are signficantly related to the formation of dense subgraphs. In

Chapter 4 we describe algorithms for computing the structural correlation of attribute

sets efficiently. Chapter 5 presents case studies on the application of the strucutral

correlation to real datasets.

34 Chapter 3. Structural Correlation Pattern Mining: Definitions

In the next section, we discuss how the structural correlation can be affected by

the input graph, the attribute set support, and the dense subgraph parameters. Such

relationships turn it difficult to determine what is a high or a low value of structural

correlation in a given scenario. Moreover, the comparison of two attribute sets in terms

of structural correlation may be biased if we do not take into account the support of

such attribute sets. In order to address these issues, we propose two normalization

approaches based on the expected structural correlation of attribute sets.

3.2 Normalized Structural Correlation

According to Definition 6, the structural correlation is the probability of a vertex with

a given attribute set be covered by a dense subgraph. However, given the structural

correlation of an attribute set, how can we evaluate it? In other words, what can be

considered a high or low structural correlation? And how can we compare the structural

correlation of different attribute sets from the same or even from distinct graphs? In

this section, we address such questions by proposing null models for the structural

correlation. Null models provide the expected properties of a dataset given a set of

premises or assumptions. They have been applied in the identification and evaluation

of graph patterns, such as motifs [Alon, 2006] and communities [Newman, 2004]. In

the specific case of the structural correlation, a null model returns what is the expected

structural correlation of an attribute set assuming that the correlation between vertex

attributes and dense subgraphs is random. We call normalized structural correlation a

function that measures how the structural correlation of an attribute set deviates from

its expected value.

In a hypothetical scenario where there is no correlation between vertex attributes

and dense subgraphs, one could expect that the structural correlation of any attribute

set is 0. Nevertheless, the structural correlation does not depend only on how ver-

tex attributes are organized. The graph topology, the attribute set support and the

quasi-clique parameters can affect the structural correlation significantly and must be

considered by null models for the structural correlation function.

The topology of the input graph has an important impact on the structural cor-

relation of its attribute sets. We can illustrate the relationship between the graph

topology and the structural correlation by comparing the graphs shown in Figures 1.1

and 3.5, which have the same number of vertices. In the graph from Figure 3.5, vertices

are very well connected, therefore any attribute configuration in such graph will lead

to high structural correlation values. In particular, if the minimum size of a dense

3.2. Normalized Structural Correlation 35

Figure 3.5: Clique with the same number of vertices that the graph shown in Figure
1.1

subgraph is 4 and we assign a hypothetical attribute to 4 randomly selected vertices

from the graph shown in Figure 3.5, this attribute will have a structural correlation of

1. On the other hand, if we repeat the same experiment using the graph from Figure

1.1, there will be 330 possible settings with an average structural correlation of 0.05.

The expected structural correlation depends on the intrinsic dense subgraph or-

ganization from the input graph. In the case of the graph shown in Figure 3.5, for

example, we can say that the structural correlation of its attribute sets is expected to

be higher than in the graph from Figure 1.1.

The structural correlation is also affected by the support of the attribute sets.

In general, the more frequent attribute sets are the more likely they present a high

structural correlation. Considering the example graph shown in Figure 1.1, Table 3.2

presents the expected structural correlation (i.e., the average structural correlation)

of a random subgraph of size σ, for σ varying from 4 to 11. We can notice that the

36 Chapter 3. Structural Correlation Pattern Mining: Definitions

larger is σ, the higher is the expected structural correlation. Since the support of the

attribute sets has a positive impact on the structural correlation, it is necessary to

consider this impact in the design of null models for the structural correlation.

σ # possible settings εexp sim-εexp max-εexp
4 330 0.05 0.06 0.32
5 462 0.16 0.2 0.47
6 462 0.30 0.46 0.59
7 330 0.46 0.48 0.69
8 165 0.60 0.70 0.75
9 55 0.70 0.70 0.80
10 11 0.77 0.55 0.81
11 1 0.82 0.82 0.82

Table 3.2: Number of possible settings, expected structural correlation (εexp),
simulation-based structural correlation (sim-εexp), and analytical normalized structural
correlation (max-εexp) for N randomly selected vertices from the graph 1.1

Moreover, the dense subgraph parameters can also affect the structural correlation

of attribute sets. In this work, we apply quasi-cliques as a definition for dense subgraphs

(see Section 2.2). The parameters used in the identification of quasi-cliques are the

minimum size (min size) and density (γmin). In general, the larger is the minimum size

of quasi-cliques and the highest is the minimum density, the lower is the probability of

finding a quasi-clique in the graph and, as a consequence, the lower will be the structural

correlation. In the example graph shown in Figure 1.1, for which the vertex attributes

are presented in Table 1.1, if min size and γmin are set to 4 and 0.5, respectively, the

structural correlation of the attribute A is 0.82. However, if we increase min size to

5, the structural correlation of A is 0.54 and if we increase γmin to 0.7, the structural

correlation of A is reduced to 0.36. Since the dense subgraph parameters affect both the

structural correlation of the attribute sets and their expected values, by comparing the

structural correlation and the expected structural correlation, we may provide results

that are less sensitive to specific dense sugraph parameters.

In order to compute the expected structural correlation of attribute sets, consid-

ering the impact of the input graph, the attribute set support, and the dense subgraph

parameters, we propose two null models. Such models give an estimate of the expected

structural correlation (εexp) of an attribute set with a support σ in a graph G according

to the quasi-clique parameters (γmin and min size).

We assume that the input graph G comprises the object of interest, i.e., it is

the “population” graph. Assume that we are given the attribute set support value

σ(S) (independent of the actual attribute set S). To compute the expected structural

3.2. Normalized Structural Correlation 37

correlation, our sample space is the set of all vertex subsets of size σ(S) drawn randomly

from G. The statistic of interest is the mean structural correlation value, εexp. That

is, the expected probability that a random vertex in a given sample induces dense

subgraphs (quasi-cliques) in that sample of size σ(S). The quasi-clique parameters,

γmin and min size, are assumed to be fixed as well.

Since an analytical formulation for the expected structural correlation is not

known, its exact computation requires averaging the structural correlation over the

complete set of possible settings of a hypothetical attribute to random vertices from

the input graph. The number of possible settings is
(|V|
σ

)
, where σ is the support of the

attribute set, a prohibitive computation for real large graphs. An alternative solution is

to generate a limited number (r) of random settings and compute the average structural

correlation as an approximation for the expected structural correlation. Algorithm 3

is a high-level description of such alternative, which we call simulation null model for

the structural correlation. It applies a function random-vertices that selects σ random

vertices from G. Each selected vertex is checked to be in a quasi-clique, according

to the quasi-clique parameters, through the is-in-quasi-clique function. The average

fraction of vertices in quasi-cliques for r simulations is returned as the expected struc-

tural correlation. We define the simulation-based normalized structural correlation as

follows.

Algorithm 3 Simulation Null Model for the Structural Correlation Algorithm
INPUT: G, σ, γmin, min size, r
OUTPUT: sim-εexp
1: i← 0
2: sim-εexp ← 0
3: while i < r do
4: V← random-vertices(G,σ)
5: n← 0
6: for all v ∈ V do
7: if is-in-quasi-clique(v,V ,γmin,min size) then
8: n← n+ 1
9: end if

10: end for
11: sim-εexp ← εexp + (n/σ)
12: i← i + 1
13: end while
14: sim-εexp ← sim-εexp/r

DEFINITION 7. (Simulation-based normalized structural correlation).

Given an attribute set S with support σ(S), the simulation-based expected structural

correlation of S is given by:

δ1(S) =
ε(S)

sim-εexp(σ(S))
(3.3)

38 Chapter 3. Structural Correlation Pattern Mining: Definitions

Although the simulation null model constitutes a much faster strategy than the

complete enumeration of all possible vertex settings to compute the expected structural

correlation, it may still be too expensive in real contexts. Therefore, we propose a sec-

ond more efficient analytical null model for computing the expected structural correla-

tion. The analytical null model for the structural correlation gives a theoretical upper

bound on the structural correlation of an attribute set based on the quasi-clique defini-

tion. The idea is that a vertex must have a minimum degree of dγmin.(min size− 1)e
in order to be member of a γmin-quasi-clique of minimum size min size. Consequently,

the probability of a vertex to have a degree of dγmin.(min size − 1)e in a random

subgraph of size σ from G gives an upper bound on the expected structural correlation.

Given a randomly selected size σ subgraph Gσ from G, the degrees of v in G and

Gσ are related according to Theorem 3.

THEOREM 3. (Probability of a vertex that have a degree α in G to have

a degree β in Gσ). If a random vertex v from G with degree α is selected to be part

of Gσ, the probability of such vertex to have a degree β in Gσ is given by the following

binomial function:

F (α, β, ρ) =

(
α

β

)
.ρβ.(1− ρ)α−β (3.4)

where ρ is the probability of a specific vertex u from G to be in Gσ, if v is already taken:

ρ =
σ − 1

|V| − 1
(3.5)

Proof sketch. There are α vertices adjacent to v in G, thus, the probability of v to

have a degree of exactly β in Gσ is the probability of selecting β out of α vertices to be

part of Gσ. Since v is already selected, the probability of selecting any remaining vertex

from G is given by equation 3.5.

Based on Theorem 3, we define an upper bound on the expected structural

correlation, which is the probability of a vertex to have a degree of, at least,

dγmin.(min size− 1)e in Gσ.

THEOREM 4. (Upper bound on the expected structural correlation). Given

the quasi-clique parameters γmin and min size, the expected structural correlation of

an attribute set with support σ is upper bounded by:

max-εexp(σ) =
m∑
α=z

p(α).
α∑
β=z

F (α, β, ρ) (3.6)

3.3. Structural Correlation Patterns 39

where z = dγmin.(min size− 1)e, m is the maximum degree of vertices from G, and p

is the degree distribution of G.

Proof sketch. Given a vertex with degree α in G, the probability of such vertex to

have a degree of, at least, dγmin.(min size− 1)e in Gσ is the sum of the expression 3.4

over the degree interval from dγmin.(min size−1)e to α. If we multiply this sum by the

probability of a vertex with degree α from G to be in Gσ, i.e., p(α), it gives the probability

of any vertex with degree α from G to have a degree of, at least, dγmin.(min size− 1)e
in Gσ. Equation 3.6 is the sum of such products over the vertex degrees higher than

dγmin.(min size− 1)e.

Similarly to the simulation model, we define the analytical normalized structural

correlation as follows:

DEFINITION 8. (Analytical normalized structural correlation). Given an

attribute set S with support σ(S), the analytical structural correlation is given by:

δ2(S) =
ε(S)

max-εexp(σ(S))
(3.7)

Table 3.2 shows the simulation-based expected ε (sim-εexp) and the upper bound

on the expected structural correlation (max-εexp) for the example graph shown in Figure

1.1 varying the value of σ from 4 to 11. The value of r was set to 10% of the number of

possible settings. Considering the attributes presented in Table 1.1, δ1({A}), δ1({C}),
and δ1({A,B}) are equal to 1, 0, and 2.08, and δ2({A}), δ2({C}), and δ2({A,B}) are

equal to 1, 0, and 1.69, respectively. In the Section 5.1, we study the normalized

structural correlation of attribute sets from real databases.

It is important to notice that the function max-εexp is monotonically non-

decreasing, i.e. max-εexp(σ1) is greater than max-εexp(σ2) if and only if σ1 ≥ σ2. We

also assume that sim-εexp is monotonically non-decreasing for sufficiently high values

of r. Such property will be applied further in this work.

3.3 Structural Correlation Patterns

The structural correlation is a property that correlates attribute sets and dense sub-

graphs in an attribute graph. Therefore, such property provides an analysis at the

level of the attribute sets. Nevertheless, in several scenarios, it is relevant to provide

also knowledge at the level of the dense subgraphs induced by attribute sets. We call

40 Chapter 3. Structural Correlation Pattern Mining: Definitions

structural correlation pattern a dense subgraph that is homogeneous in terms of an

attribute set.

DEFINITION 9. (Structural correlation pattern). A structural correlation pat-

tern is a pair (S, V), where S is an attribute set (S ⊆ A), and V is a quasi-clique

from the graph induced by S (V ⊆ V(S)), given the quasi-clique parameters γmin and

min size.

Considering the attributed graph of Figure 1.1, for which the vertex attributes are

shown in Table 1.1, ({A,B},{6, 7, 8, 9, 10, 11}) is an example of a structural correlation

pattern. Figure 1.4 shows the dense subgraph composed by vertices in such pattern.

The subgraph from Figure 1.5 represents an example of a real structural correlation

pattern, with the keywords “search” and “web” as attributes, from the collaboration

graph shown in Figure 1.2.

An important aspect related to the enumeration of structural correlation patterns

is its computational cost, which may be prohibitive for large datasets. For a set of vertex

attributes A, the number of possible non-empty attribute sets is 2|A|−1. Moreover, the

search space of non-empty quasi-cliques has, in the worst case, 2|V| − 1 combinations

of vertices, as described in Section 2.2. Therefore, the number of structural correlation

patterns is (2|A| − 1).(2|V| − 1), in the worst case. In order to limit both the search

space and the number of structural correlation patterns returned to the user, we propose

the identification of only the structural correlation patterns for which their respective

attribute sets satisfy minimum support and structural correlation thresholds. Our

argument is that in real graphs a great part of the structural correlation patterns do not

constitute good representatives for the structural correlation at the attribute set level.

In other words, most of the structural correlation patterns do not generalize a significant

correlation between attribute sets and dense subgraphs in the input graph. In the next

section, we formalize two versions of the the structural correlation pattern mining

problem, which aggregate both the concept of structural correlation and structural

correlation pattern into new data mining tasks.

3.4 Structural Correlation Pattern Mining Problem

The structural correlation pattern mining problem is a new graph mining problem

proposed in this work. It formalizes the general idea of extracting knowledge about how

vertex attributes and dense subgraphs are correlated in attributed graphs. Therefore,

in this section, we finish the important process of turning an abstract information need

into a well-defined graph pattern.

3.4. Structural Correlation Pattern Mining Problem 41

In Section 3.1, we proposed the structural correlation as a measure of how a given

attribute set induces dense subgraphs in an attributed graph and argued that such

function provides knowledge at the level of attribute sets. Moreover, in Section 3.3, we

defined structural correlation patterns as a materialization of the structural correlation

at the level of dense subgraphs. At this point, we put the structural correlation and

structural correlation pattern definitions together in order to provide knowledge at

both levels.

In general terms, the structural correlation pattern mining comprises the identi-

fication of: (1) The attribute sets significantly correlated with the formation of dense

subgraphs, and (2) the dense subgraphs induced by such attribute sets.

DEFINITION 10. (Structural correlation pattern mining problem). Given

an attributed graph G(V , E ,A,F), a minimum support threshold σmin, minimum quasi-

clique density γmin and size min size, and a minimum structural correlation εmin,

the structural correlation pattern mining consists of identifying the set of structural

correlation patterns (S,V) from G, such that S is an attribute set for which σ(S) ≥
σmin, ε(S) ≥ εmin, and V is a γmin-quasi-clique for which V ⊆ V(S) and |V | ≥
min size.

Besides the input graph G, the structural correlation pattern mining is based on

4 parameters which act as restrictions for the patterns to be generated. Therefore, it

is relevant to describe the role played by each one of these parameters, which can be

summarized in terms of three desired effects: ensuring the significance, scaling down

the number of patterns, and reducing the computational cost of the enumeration of

these patterns:

• σmin: Regarding the significance of the structural correlation, the σmin parameter

prunes infrequent attribute sets, what is desired, since there might be not enough

evidence of the structural correlation of them. Moreover, σmin plays an important

role on scaling down the number of attribute sets delivered to the user because a

huge amount of patterns may be overwhelming in practical applications. But σmin

reduces not only the number of patterns generated, it also reduces the number of

attribute sets for which the structural correlation will be computed, diminishing

the computational cost of the structural correlation pattern mining task both in

terms of processing time and memory requirements.

• γmin and min size: The minimum quasi-clique density and size avoid the gener-

ation of quasi-cliques which are not significant because they are too small and/or

sparse. The quasi-clique parameters also shrink the number of patterns generated,

42 Chapter 3. Structural Correlation Pattern Mining: Definitions

since dense and large quasi-cliques are expected to be infrequent in real graphs.

Similar to the σmin parameter, the reduction of the number of quasi-cliques also

affects the computational cost of the quasi-clique discovery, leveraging the prun-

ing capacity of the rules described in Section 2.2.

• εmin: The minimum structural correlation is a new parameter that is specific for

the structural correlation pattern mining problem. In terms of significance, by

setting εmin, the user may specify what is considered a representative structural

correlation in the specific application scenario, distinguishing relevant patterns

from the not relevant ones. The number of patterns delivered to the user can

also be reduced according to εmin, what enables the user to regulate the number

of patterns generated according to its needs. Regarding the computational cost,

in Section 4.3, we describe pruning techniques based on εmin.

From a data mining perspective, the structural correlation pattern mining inte-

grates two existing data mining problems: the frequent itemset mining (see Section

2.3) and the quasi-clique mining (see Section 2.2). Attribute sets can be seem as item-

sets and are pruned based on a minimum support threshold. Structural correlation

patterns are quasi-cliques induced by attribute sets. The concept of structural corre-

lation works as an aggregating element, introducing novel knowledge regarding how

vertex attributes induce dense subgraphs in an attributed graph. Moreover, the struc-

tural correlation pattern mining problem brings new algorithmic challenges in terms of

efficiency and scalability requirements, which will be discussed in Chapter 4.

In order o exemplify the structural correlation pattern mining task, we consider

the attributed graph shown in Figure 1.1, for which the vertex attributes are shown

in Table 1.1. The parameters σmin, γmin, min size and εmin are set to 3, 0.6, 4, and

0.5, respectively. Table 3.3 shows the attribute sets discovered, with their respective

supports (σ), structural coverages (κ), and structural correlations ε. In Table 3.4, we

present the structural correlation patterns discovered, with their respective sizes (size)

and densities (γ).

attribute set σ κ ε
A 11 9 0.82
B 6 6 1.0

A, B 6 6 1.0

Table 3.3: Attribute sets, with their respective values of σ, κ, and ε, from the graph
shown in Figure 1.1, for which the vertex attributes are presented in Table 1.1 if
σmin = 3, γmin = 0.6, min size = 4, and εmin = 0.5

3.4. Structural Correlation Pattern Mining Problem 43

pattern size γ
({A},{6, 7, 8, 9, 10, 11}) 6 0.60

({A},{3, 4, 5, 6}) 4 1
({A},{3, 4, 6, 7}) 4 0.67
({A},{3, 5, 6, 7}) 4 0.67
({A},{3, 6, 7, 8}) 4 0.67

({B},{6, 7, 8, 9, 10, 11}) 6 0.60
({A,B},{6, 7, 8, 9, 10, 11}) 6 0.60

Table 3.4: Structural correlation patterns, with their respective sizes (size) and densities
γ, from the graph shown in Figure 1.1, for which the vertex attributes are presented
in Table 1.1 if σmin = 3, γmin = 0.6, min size = 4, and εmin = 0.5

Similar to the quasi-clique mining and the frequent itemset mining, counting the

number of structural correlation patterns is #-P-hard and enumerating such patterns

is an NP-hard problem, as stated by the following theorem.

THEOREM 5. (Structural correlation pattern mining problem complexity).

The problem of counting the structural correlation patterns from a graph G is #-P-hard

and the problem of enumerating the structural correlation patterns from G is NP-hard.

Proof sketch. It can be proved by restriction. If we set a generic attribute a to each

vertex from G, set F(v) = {a} for every v ∈ V, and set σmin to 1 and εmin to 0, then

the structural correlation pattern mining problem becomes equivalent to the quasi-clique

mining problem, which is proved to be #P-hard (see Theorem 1). It is known that NP-

hard enumeration problems are associated to #P-hard counting problems [Yang, 2004].

The application of the structural correlation pattern mining task to large

databases requires efficient and scalable algorithms. In Chapter 4, we study algorithms

for the structural correlation pattern mining problem.

In Section 3.2, we discussed how the structural correlation can be normalized

through null models that give the expected structural correlation of a given attribute

set. Following the same idea, we may also define a normalized structural correlation

pattern mining problem.

DEFINITION 11. (Normalized structural correlation pattern mining prob-

lem). Given an attributed graph G(V , E ,A,F), a minimum support threshold σmin,

minimum quasi-clique density γmin and size min size, a minimum structural correla-

tion εmin and a minimum normalized structural correlation δmin, the normalized struc-

tural correlation pattern mining consists of identifying the set of structural correla-

tion patterns (S,V) from G, such that S is an attribute set for which σ(S) ≥ σmin,

44 Chapter 3. Structural Correlation Pattern Mining: Definitions

ε(S) ≥ εmin, δ(S) ≥ δmin, and V is a γ-quasi-clique for which V ⊆ V(S) and

|V | ≥ min size.

The only difference between the standard and the normalized version of the struc-

tural correlation pattern mining problem is that the second one applies a minimum

normalized structural correlation threshold (δmin). The value of δ can be based on

the simulation or the analytical null model (see Section 3.2). Table 3.5 shows the at-

tribute sets discovered from the graph presented in Figure 1.1 , with their respective

supports (σ), structural coverages (κ), structural correlations ε, upper bounds on the

expected structural correlations (max-εexp), and analytical normalized structural corre-

lations (δ2). The parameters used are the same of the previous example. The minimum

normalized structural correlation threshold δmin is set to 1.0. The structural correlation

patterns for each attribute set, with their respective sizes (size) and densities (γ), can

be found in Table 3.6.

attribute set σ κ ε max-εexp δ2
B 6 6 1.0 0.59 1.69

A, B 6 6 1.0 0.59 1.69

Table 3.5: Attribute sets, with their respective values of σ, κ, ε, max-εexp, and δ2, from
the graph shown in Figure 1.1, for which the vertex attributes are presented in Table
1.1 if σmin = 3, γmin = 0.6, min size = 4, and δmin = 1.0

pattern size γ
({B},{6, 7, 8, 9, 10, 11}) 6 0.60

({A,B},{6, 7, 8, 9, 10, 11}) 6 0.60

Table 3.6: Structural correlation patterns, with their respective sizes (size) and densities
γ, from the graph shown in Figure 1.1, for which the vertex attributes are presented
in Table 1.1 if σmin = 3, γmin = 0.6, min size = 4, and δmin = 1

Counting the number of normalized structural correlation patterns and enumer-

ating such patterns are also #-P-hard and NP-hard problems, respectively. Such proof

is very similar to the one presented in Theorem 5 (setting δmin to 0, instead of εmin)

and will be omited.

This section formalized the structural correlation pattern mining problem, which

is a new graph mining problem proposed by this work. Along this chapter, we discussed

the problem of correlating vertex attributes and the formation of dense subgraphs start-

ing from the attribute set level and then considering the dense subgraphs that express

such a correlation. The concepts proposed were illustrated through both instructive

3.4. Structural Correlation Pattern Mining Problem 45

and real examples whenever possible. In the next chapter, we study the structural

correlation pattern mining problem from an algorithmic perspective, designing efficient

and scalable algorithms in order to enable the analysis of real large graphs.

Chapter 4

Structural Correlation Pattern Mining:

Algorithms

This chapter presents algorithms for structural correlation pattern mining. In the

previous chapter, we defined the structural correlation and the normalized structural

correlation pattern mining problems. Moreover, we showed that such problems bring

interesting computational challenges in terms of performance, since they belong to the

class of NP-hard problems. In order to enable the processing of large graphs in a

feasible time, we propose several techniques for efficient structural correlation pattern

mining.

We start with a naive algorithm, described in Section 4.1, that is a straightfor-

ward combination of a frequent itemset mining and a quasi-clique mining algorithm. In

Section 4.2 we focus on the problem of computing the structural correlation of an at-

tribute set, which is a subproblem of both the structural correlation and the normalized

structural correlation pattern mining problems. Two search strategies for computing

the structural correlation are presented.

In Section 4.3, we propose pruning techniques for attribute sets in the structural

correlation pattern mining. Such techniques have as objective to enhance the perfor-

mance of structural correlation pattern mining algorithms without compromising their

correctness. Section 4.4 proposes the computation of the structural correlation using

sampling. The idea is to estimate the structural correlation of an attribute set based

on a sample of vertices from its induced graph. Section 4.5 studies how the reduction of

the number of structural correlation patterns to be identified may lead to a significant

reduction of the time required to enumerate such patterns. We propose the identifica-

tion of the top-k structural correlation patterns in terms of size and density, where k

is a user-defined parameter.

47

48 Chapter 4. Structural Correlation Pattern Mining: Algorithms

Finally, in Section 4.7, we design parallel algorithms for structural correlation

pattern mining. The popularization of multi-core computers in the recent years moti-

vates the development of algorithms able to exploit the shared memory parallelism in a

scalable fashion. The proposed algorithms are extensions of the sequential algorithms

for structural correlation pattern mining to a multi-core environment and may enable

the analysis of even larger graphs.

4.1 Naive Algorithm

The structural correlation pattern mining can be seen as a combination of two existing

data mining problems: the quasi-clique and the frequent itemset mining. Therefore, a

quasi-clique and a frequent itemset mining algorithm may be integrated into a naive

algorithm for structural correlation pattern mining. Algorithm 4 is a high-level de-

scription of this naive algorithm.

The naive algorithm for structural correlation pattern mining receives the at-

tributed graph G, the minimum support threshold σmin, the minimum density thresh-

old γmin, the minimum size of a dense subgraph min size, the minimum structural

correlation threshold εmin, and the minimum normalized structural correlation thresh-

old δmin as parameters, and gives as output the set of structural correlation patterns

P from G. It identifies the frequent attribute sets from the attributed graph using

the function frequent-attribute-sets, which is a direct application of a frequent itemset

mining algorithm. The specific frequent itemset mining algorithm applied in this work

is the Eclat algorithm [Zaki, 2000]. For each frequent attribute set S, the algorithm

identifies the set of quasi-cliques Q from the induced graph G(S) using the function

quasi-cliques, which is a direct application of a quasi-clique mining algorithm. We ap-

ply the Click algorithm [Liu and Wong, 2008] for quasi-clique mining. If the structural

correlation of an attribute set S satisfies the minimum structural correlation and nor-

malized structural correlation thresholds, a structural correlation pattern (S, q), where

q is a quasi-clique from G(S), is included into the set of structural correlation patterns

(P) for each quasi-clique q ∈ Q. Since the naive algorithm receives both εmin and δmin,

it solves both the standard and the normalized version of the structural correlation

pattern mining problem.

The proposed algorithms are straightforward extensions of existing data mining

algorithms. Nevertheless, along the remaining of this chapter, we design new algorithms

for the problems defined in the last chapter. Such algorithms are based on idea of min-

ing structural correlation patterns in two steps.The first step computes the structural

4.2. Computing the Structural Correlation 49

Algorithm 4 Naive Algorithm For Structural Correlation Pattern Mining
INPUT: G, σmin, γmin, min size, εmin

OUTPUT: P
1: I ← frequent-attribute-sets(G, σmin)
2: P ← ∅
3: for all S ∈ I do
4: Q ←quasi-cliques(G(S), γmin,min size)
5: if ε(Q, S) ≥ εmin then
6: for all q ∈ Q do
7: P ← P ∪ (S, q)
8: end for
9: end if

10: end for

correlation of the attribute sets. In the second step, the structural correlation patterns

are identified. The first step can be performed more efficiently than the second one and

we consider this a property in order to speedup the proposed algorithms. Moreover, in

several scenarios, the enumeration of the complete set of structural correlation patterns

may not be a requirement. In such scenarios, computing only the structural correla-

tion of the attribute sets may result in significative performance gains in comparison to

solving the original structural correlation pattern mining problem. Along this chapter,

we also study the problem of identifying a smaller set of most interesting structural

correlation patterns. In the next section, we discuss the computation of the structural

correlation of attribute sets.

4.2 Computing the Structural Correlation

Computing the structural correlation is the first step in solving the structural corre-

lation pattern mining and normalized structural correlation pattern mining problems

(see Section 3.4). As discussed along chapter 3, the structural correlation is an analysis

at the attribute set level, since it evaluates how a particular attribute set induces dense

subgraphs in an attributed graph. The normalized structural correlation is a simi-

lar task, but it normalizes the structural correlation based on the expected structural

correlation of a given attribute set (see Section 3.2).

The structural correlation of an attribute set S is the probability of a vertex to be

in a dense subgraph in the graph induced by S (G(S)). The naive algorithm, described

in the last section, compute the structural correlation based on the complete set of

dense subgraphs in G(S). However, the computation of the structural correlation of an

attribute set does not require the enumeration of the complete set of dense subgraphs

from its induced graph. For each vertex, the only necessary information is whether it

is or not covered by, at least, one dense subgraph. Since a vertex can be member of

50 Chapter 4. Structural Correlation Pattern Mining: Algorithms

several dense subgraphs, we may compute the structural correlation of an attribute set

more efficiently by not enumerating the complete set of dense subgraphs,

As discussed in Section 2.2, the search space of quasi-cliques can be represented

by a set enumeration tree, such as the one shown in Figure 2.1. As long as enumerating

the complete set of dense subgraphs is not necessarily a requirement, we should study

different strategies for traversing the search space for dense subgraphs in order to

check whether each vertex is, at least, in one dense subgraph. If a vertex set contains

only vertices already known to be in dense subgraphs, it can be pruned. Since the

set enumeration tree is a graph, traditional graph search strategies can be applied to

examine which vertices are covered by dense subgraphs. A breadth-first search (BFS)

algorithm for the computation of the structural correlation of an attribute set traverses

the set enumeration tree in a breadth-first order, starting from the root and visiting

the smaller vertex sets before the larger ones. Figure 4.1 shows how vertices from the

enumeration tree presented in Figure 2.1 are visited in a breadth-first search. On the

other hand, a depth-first search (DFS) strategy for computing the structural correlation

extends vertex sets as much as possible. In Figure 4.2, we show how the set enumeration

tree from Figure 2.1 is traversed in DFS.

Figure 4.1: Order of visit of candidate patterns in a BFS search

Figure 4.2: Order of visit of candidate patterns in a DFS search

Algorithm 5 describes, in high-level, the computation of the structural correla-

tion function. Such algorithm receives an induced graph (G(S)), a minimum density

threshold (γmin), the minimum size of dense subgraphs (min size), and the minimum

structural coverage threshold (κmin) as parameters and returns the structural correla-

tion (ε). The minimum structural coverage is the minimum number of vertices covered

by dense subgraphs in the graph induced by a given attribute set and can be directly

derived from εmin. The function vertex-pruning integrates the vertex pruning rules

described in Section 2.2 and returns those vertices that were not pruned. The set

4.2. Computing the Structural Correlation 51

Algorithm 5 structural-correlation
INPUT: G, γmin, min size, κmin

OUTPUT: ε
1: candExts(X)← vertex-pruning(V(S), γmin,min size)
2: if |candExts(X)| ≤ κmin then
3: ε← 0
4: else
5: if searchStrategy = BFS then
6: K ← coverage-BFS(candExts(X),G(S), γmin,min size)
7: else
8: if searchStrategy = DFS then
9: K ← coverage-DFS(candExts(X),G(S), γmin,min size)

10: end if
11: end if
12: ε← |K|/|G(S)|
13: end if

candExts(X) is initialized as the set of vertices V(S), excluding those ones pruned by

the vertex-pruning function. The BFS or the DFS strategy can be applied according to

the variable searchStrategy. The value of ε is the ratio of the size of the coverage (K)

to the size of the induced subgraph (G(S)). We examine in more detail the functions

coverage-BFS and coverage-DFS in the remaining of this section.

Algorithm 6 coverage-BFS

INPUT: candExts(X), G(S), γmin, min size
OUTPUT: K
1: X ← ∅
2: qcCands← ∅
3: qcCands.enqueue((X, candExts(X)))
4: K ← ∅
5: while qcCands 6= ∅ do
6: q ← qcCands.dequeue()
7: if candidate-quasi-clique-pruning(q.X, q.candExts(X),G(S), γmin,min size) = FALSE then
8: if is-quasi-clique(q.X ∪ q.candExts(X), γmin,min size) then
9: K ← K ∪ (q.X ∪ q.candExts(X))

10: else
11: if is-quasi-clique(q.X, γmin,min size) then
12: K ← K ∪ q.X
13: end if
14: for all v ∈ q.candExts(X) do
15: t.candExts(X)← {u ∈ q.candExts(X)|u > v}
16: t.X ← q.X ∪ v
17: if t.X ∪ t.candExts(X) * K then
18: qcCands.enqueue(t)
19: end if
20: end for
21: end if
22: end if
23: end while

The function coverage-BFS, described by Algorithm 6, computes the coverage K

using BFS. It receives the set candExts(X), an induced graph G(S), and the quasi-

clique parameters γmin and min size. The coverage K, composed by the vertices

in G(S) that are covered by quasi-cliques, is returned as output. The data structure

qcCands is a queue initialized with the pair (X, candExts(X)). The set X is initialized

52 Chapter 4. Structural Correlation Pattern Mining: Algorithms

as empty. New patterns are inserted and processed in a first-in-first-out (FIFO) order.

For each pair q = (X, candExts) dequeued, the function candidate-quasi-clique-pruning

applies the candidate quasi-clique pruning rules described in Section 2.2. This function

returns TRUE if a vertex from the set q.X is pruned and FALSE, otherwise. In

case a vertex from q.X is pruned, the pair q is pruned too, otherwise, a lookahead

checking is performed. If q.X ∪ q.candExts(X) is a quasi-clique, then each vertex

v ∈ q.X ∪ q.candExts(X) is included into the coverage set K. If X is a quasi-clique,

then each vertex v ∈ q.X is added to K. Moreover, new extensions of q are generated

and those extensions that contain, at least, one vertex not in K are enqueued into

qcCands. Such procedure is repeated until qcCands becomes empty.

Algorithm 7 coverage-DFS

INPUT: candExts(X), G(S), γmin, min size
OUTPUT: K
1: X ← ∅
2: qcCands← ∅
3: qcCands.push((X, candExts(X)))
4: K ← ∅
5: while qcCands 6= ∅ do
6: q ← qcCands.pop()
7: if candidate-quasi-clique-pruning(q.X, q.candExts(X),G(S), γmin,min size) = FALSE then
8: if is-quasi-clique(q.X ∪ q.candExts(X), γmin,min size) then
9: K ← K ∪ (q.X ∪ q.candExts(X))

10: else
11: if is-quasi-clique(q.X, γmin,min size) then
12: K ← K ∪ q.X
13: end if
14: for all v ∈ q.candExts(X) do
15: t.candExts(X)← {u ∈ q.candExts(X)|u > v}
16: t.X ← q.X ∪ v
17: if t.X ∪ t.candExts(X) * K then
18: qcCands.push(t)
19: end if
20: end for
21: end if
22: end if
23: end while

The function coverage-DFS (Algorithm 7) is very similar to the function coverage-

BFS, but while the first identifies the coverage K from an induced graph G(S) using

DFS, the second one applies BFS. The data structure qcCands, used to manipulate

the pairs (X, candExts(X)) is a stack, instead of a queue. Therefore, new pairs are

pushed into and popped out of qcCands until it becomes empty.

The next sections present pruning, sampling, and parallelization strategies for

structural correlation pattern mining. Such strategies may be combined with the search

strategies presented in this section in the design of efficient algorithms. In Chapter 5

we study the performance of the algorithms described along this chapter using real

datasets.

4.3. Pruning Techniques 53

4.3 Pruning Techniques

In the last section, we presented an algorithm for computing the structural correla-

tion of an attribute set. In this section, we propose pruning techniques for structural

correlation pattern mining. The objective of these pruning techniques is to reduce

the execution time of the structural correlation pattern mining algorithms without

compromising its correctness.

A traditional approach for the enumeration of patterns that are combinations

of smaller patterns (e.g., itemsets, sequences, subgraphs) is the use of a level-wise

enumeration strategy. In the case of attribute sets, for example, an attribute set {A,B}
can be generated through the combination of the attribute sets {A} and {B}. Figure

2.3 shows subset/superset relationships in a lattice representation of the search space

of itemsets. Several algorithms that exploit such type of search space apply pruning

techniques based on the anti-monotonicity property (see Definition 3). Nevertheless,

the anti-monotonicity property does not hold for attribute sets in structural correlation

pattern mining.

PROPOSITION 3. (Anti-monotonicity or downward-closure property of

attribute sets in the structural correlation pattern mining). The anti-

monotonicity (or downward-closure) property does not hold for attribute sets in struc-

tural correlation pattern mining.

Proof sketch. We prove it by counterexample. Lets consider the example graph

shown in Figure 1.1 and the parameters σmin, γmin, min size, and εmin be set to 3,

0.6, 4, and 0.9, respectively. In such setting, ε({A}) = 0.82 and ε({A,B}) = 1.

Therefore, ({A}, V) is not a structural correlation pattern for any V ⊆ V(A), but

({A,B}, 6, 7, 8, 9, 10, 11) is a structural correlation pattern.

Similar to the structural correlation pattern mining, the anti-monotonicity prop-

erty also does not hold for attribute sets in normalized structural correlation pattern

mining problem.

PROPOSITION 4. (Anti-monotonicity or downward-closure property of

attribute sets in the normalized structural correlation pattern mining).

The anti-monotonicity (or downward-closure) property does not hold for attribute sets

in structural correlation pattern mining.

Proof sketch. We prove it by counterexample. Lets consider the example graph shown

in Figure 1.1 and the parameters σmin, γmin, min size, and δmin be set to 3, 0.6, 4,

and 1.2, respectively. In such setting, δ2({A}) = 1 and δ2({A,B}) = 1.64. Therefore,

54 Chapter 4. Structural Correlation Pattern Mining: Algorithms

({A}, V) is not a normalized structural correlation pattern for any V ⊆ V(A), but

({A,B}, 6, 7, 8, 9, 10, 11) is a normalized structural correlation pattern.

As discussed in Section 2.2, several pruning strategies in data mining are based on

the anti-monotonicy property. However, since the anti-monotonicity property does not

hold for attribute sets in the standard and normalized versions of the structural cor-

relation pattern mining, we define new specific pruning rules for structural correlation

pattern mining. The first strategy allows the pruning of vertices during the level-wise

enumeration of attribute sets.

THEOREM 6. (Vertex pruning for attribute sets). Let KSi
be the coverage of

an attribute set Si and KSj
be the structural coverage of an attribute set Sj, if Si ⊆ Sj,

then KSj
⊆ KSi

.

Proof sketch. It can be proved by contradiction. Lets suppose that there exists a

vertex v such that v ∈ KSj
and v /∈ KSi

. Since v ∈ KSj
, there exists a dense subgraph

V ⊆ V(Sj), such that v ∈ V . Moreover, if v /∈ KSi
, there does not exist a dense

subgraph U ⊆ V(Si) such that v ∈ U . Nevertheless, if Si ⊆ Sj, then V(Sj) ⊆ V(Si),

what implies that V ⊆ V(Si) (contradiction).

Based on Theorem 6, we can prune any vertex that is not part of a dense subgraph

in the graph induced by an attribute set of size i before extending it to generate

attribute sets of size i+ 1. Attribute sets can also be pruned based on an upper bound

of the structural correlation function, as stated by Theorem 7.

THEOREM 7. (Attribute set pruning based on the upper bound of the

structural correlation). For two attribute sets Si and Sj, if Si ⊆ Sj and σ(Sj) ≥
σmin, then ε(Sj) ≤ ε(Si).|V(Si)|/σmin
Proof sketch. According to Theorem 6, ε(Si).|V(Si)| ≥ ε(Sj).|V(Sj)|, since every

vertex covered by a dense subgraph in V(Sj) is also covered by a dense subgraph in

V(Si). Moreover, since σ(Sj) ≥ σmin, ε(Sj) is upper bounded by ε(Si).|V(Si)|/σmin
based on the definition of the structural correlation function ε (see Definition 6).

We apply Theorem 7 like an apriori-based pruning [Agrawal and Srikant, 1994;

Agrawal et al., 1993]. Given an attribute set Si, of size i, if ε(Si).|V(Si)|/σmin < εmin,

then Si is not included in the set of attribute sets to be combined for the generation of

size i + 1 attribute sets. Theorem 7 guarantees that there does not exist an attribute

set Sj, such that Si ⊆ Sj and ε(Sj) ≥ εmin. A similar pruning rule can be formulated

based on the normalized structural correlation function definition.

4.4. Sampling 55

THEOREM 8. (Attribute set pruning based on the upper bound of the

normalized structural correlation). For two attribute sets Si and Sj, if Si ⊆
Sj, εexp is a monotonically non-decreasing, and σ(Sj) ≥ σmin, then δ(Sj) ≤
ε(Si).|V(Si)|/(εexp(σmin).σmin)

Proof sketch. According to Theorem 7, ε(Sj) ≤ ε(Si).|V(Si)|/σmin. Furthermore,

since σ(Sj) ≥ σmin and εexp is monotonically non-decreasing, εexp(σ(Sj)) ≥ εexp(σmin).

Therefore, δ(Sj) ≤ ε(Si).|V(Si)|/(εexp(σmin).σmin).

Theorem 8 is applied similarly to Theorem 7. If δ(Si).|V(Si)|/(εexp(σmin).σmin) <

δmin, then the attribute set Si, of size i, is not included in the set of attribute sets to

be combined for the generation of size i+ 1 attribute sets.

The proposed pruning techniques are applied in order to allow an efficient mining

of structural correlation patterns. Pruning is the first effort in order to compute the

structural correlation and identify structural correlation patterns efficiently. In the next

section, we describe how the structural correlation may be computed using sampling.

4.4 Sampling

Sampling is a statistical technique for drawing conclusions about a population of in-

terest based on a sample of such data [Wonnacott and Wonnacott, 1985]. In general,

sampling is applied when the entire population is not known or is too large to be

considered. A sample is a subset of the original population and it is expected to be

informative about the total population.

In section 3.4, we described the structural correlation pattern mining and proved

its NP-hardness. In particular, computing the structural correlation of attribute sets

is a computationally expensive task. In this section, we study how sampling can be

applied in order to reduce the execution time for computing the structural correlation.

Since sampling techniques are subject to errors, it is important to provide guarantees

regarding how close the estimation given is from the structural correlation based on

the entire population.

There are several sampling techniques in the literature [Wonnacott and Wonna-

cott, 1985; Anderson and Finn, 1996]. Such techniques have as main objective to select

samples that are representative of the population. We apply a traditional sampling

strategy called random sampling, which is the random selection of n items from a pop-

ulation of size N. In a random sampling, every subset of size n has the same probability

of being selected among the
(
N
n

)
possible subsets. Random sampling is known to work

very well in several scenarios, including frequent pattern mining [Zhao et al., 2006;

56 Chapter 4. Structural Correlation Pattern Mining: Algorithms

Zaki et al., 1997]. Since the structural correlation pattern mining applies a minimum

support threshold in order to evaluate only the frequent attribute sets, we expect that

sampling might work well in the structural correlation mining.

For a given attribute set S, the set of vertices from the graph induced by S (V(S))

is defined as the population. Algorithm 5 computes the exact structural correlation of

a given attribute set S using the entire population of vertices V(S). Nevertheless, we

propose a faster computation of the structural correlation of an attribute set S using

a random sample Z ⊆ V(S). Since the structural correlation function is a proportion,

we estimate the structural correlation of S by the proportion of vertices from Z that

are in dense subgraphs. The margin of error, which is a measure of the sampling error,

of such a random sampling with a 100(1-α) confidence interval is given by:

error = zα/2

√
ε(1− ε)(|V(S)| − |Z|)
|Z|(|V(S)| − 1)

(4.1)

where the value of zα/2 is the 1− α/2-quantile of a normal distribution.

Algorithm 8 is a high-level description of an algorithm for computing the struc-

tural correlation of an attribute set S using sampling. The algorithm receives the

attribute set S, the attributed graph G, the dense subgraph parameters γmin and

min size, and the maximum margin of error accepted θmax. The output of the al-

gorithm is the structural correlation of S w.r.t. the input parameters. New random

vertices are checked to be in dense subgraphs through the function check-vertex-in-

quasi-clique until the margin of error θmax is reached. Vertices known to be part of

dense subgraphs are not checked more than one time. We decided not to show such

optimization to keep the pseudo-code simple and concise.

The function check-vertex-in-quasi-clique, described by Algorithm 9, receives a

vertex v, an induced graph G(S), and the dense subgraph parameters min size and

γmin. It returns TRUE if v is in a quasi-clique in the induced graph G(S), and FALSE,

otherwise. The set X is initialized with v and the set of candidate extensions of X,

candExts(X), is initialized with the vertices from G(S) (V(S)). A vertex may be

checked to be in a quasi-clique using a BFS or a DFS strategy. The function find-

quasi-clique-BFS receives X, candExts(X), G(S), γmin, and min size as parameters

and returns TRUE if it finds, at least, one quasi-clique that is an extension of X by

vertices from candExts(X) and FALSE, otherwise. Similar to the function coverage-

BFS, the function find-quasi-clique-BFS, described by Algorithm 10 applies a BFS

strategy in the search for quasi-cliques. The function find-quasi-clique-DFS, which is

described by Algorithm 11 applies a DFS strategy to find a quasi-clique containing v.

4.5. Top-k Structural Correlation Patterns 57

Algorithm 8 structural-correlation-with-sampling
INPUT: S, G, γmin, min size, θmax, κmin

OUTPUT: ε
1: U ← vertex-pruning(V(S), γmin,min size)
2: if |U | ≤ κmin then
3: ε← −1
4: else
5: θ ← 1
6: n← 0
7: Z ← ∅
8: κ← 0
9: while θ > θmax do

10: v ← new-random-vertex(G(S))
11: Z ← Z ∪ v
12: if check-vertex-in-quasi-clique(v,G(S), γmin,min size) then
13: κ← κ+ 1
14: end if
15: θ ←margin-of-error(Z, κ, |G(S)|)
16: end while
17: ε← κ/n
18: end if

Algorithm 9 check-vertex-in-quasi-clique

INPUT: v, G(S), γmin, min size
OUTPUT: is-in-qc
1: candExts(X)← {u ∈ V(S)|u 6= v}
2: X ← {v}
3: is-in-qc ← FALSE
4: if searchStrategy = BFS then
5: is-in-qc ← find-quasi-clique-BFS(X, candExts(X),G(S), γmin,min size)
6: else
7: if searchStrategy = DFS then
8: is-in-qc ← find-quasi-clique-DFS(X, candExts(X),G(S), γmin,min size)
9: end if

10: end if

In Section 5.3.2, we evaluate the sampling algorithm for computing the structural

correlation proposed in this section in terms of both execution time and error. The

next section discusses the problem of discovering structural correlation patterns and

presents an algorithm for the discovery of the top structural correlation patterns from

an attributed graph in terms of size and density.

4.5 Top-k Structural Correlation Patterns

A structural correlation pattern is a quasi-clique induced by a given attribute set, as

described in Section 3.3. Structural correlation patterns are useful as representatives

of the structural correlation at the level of dense subgraphs. Nevertheless, enumerating

structural correlation patterns is a computationally expensive task, specially for large

graphs. In this section, we study how to reduce the computational cost of enumerating

the set of structural correlation patterns by restricting the output set to only the most

interesting patterns.

58 Chapter 4. Structural Correlation Pattern Mining: Algorithms

Algorithm 10 find-quasi-clique-BFS

INPUT: (X, candExts(X), G(S), γmin, min size
OUTPUT: found
1: qcCands← ∅
2: qcCands.enqueue((X, candExts(X)))
3: found ← FALSE
4: while qcCands 6= ∅ do
5: q ← qcCands.dequeue()
6: if candidate-quasi-clique-pruning(q.X, q.candExts(X),G(S), γmin,min size) = FALSE then
7: if is-quasi-clique(q.X, γmin,min size) then
8: found ← TRUE
9: return

10: end if
11: for all v ∈ q.candExts(X) do
12: t.candExts(X)← {u ∈ q.candExts(X)|u > v}
13: t.X ← q.X ∪ v
14: qcCands.enqueue(t)
15: end for
16: end if
17: end while

Algorithm 11 find-quasi-clique-DFS

INPUT: X, candExts(X), G(S), γmin, min size)
OUTPUT: found
1: qcCands← ∅
2: qcCands.push((X, candExts(X)))
3: V ← ∅
4: found ← FALSE
5: while qcCands 6= ∅ do
6: q ← qcCands.pop()
7: if candidate-quasi-clique-pruning(q.X, q.candExts(X),G(S), γmin,min size) = FALSE then
8: if is-quasi-clique(q.X, γmin,min size) then
9: found ← TRUE

10: return
11: end if
12: for all v ∈ q.candExts(X) do
13: t.candExts(X)← {u ∈ q.candExts(X)|u > v}
14: t.X ← q.X ∪ v
15: if t.X ∪ t.candExts(X) * V then
16: qcCands.push(t)
17: end if
18: end for
19: end if
20: end while

In Sections 4.2, 4.3, and 4.4, we focused on the problem of computing the struc-

tural correlation of attribute sets efficiently. Computing the structural correlation of

attribute sets is the first step in structural correlation pattern mining. In particular,

the proposed algorithms are based on the principle that it is not necessary to discover

the complete set of dense subgraphs in order to assess the structural correlation of

an attribute set S. However, if an attribute set S satisfies the minimum structural

correlation threshold, according to the structural correlation pattern mining definition

(see Section 3.4), the set of structural correlation patterns induced by S is generated

as output.

We propose to restrict the number of structural correlation patterns returned to

4.5. Top-k Structural Correlation Patterns 59

Algorithm 12 top-k-structural-correlation-patterns

INPUT: G(S) ,k, γmin, min size
OUTPUT: C
1: C ← ∅
2: qcCands← ∅
3: q.X ← ∅
4: q.candExts(X)← vertex-pruning(V(S), γmin,min size)
5: qcCands.push(q)
6: while qcCands 6= ∅ do
7: q ← qcCands.pop()
8: if |q.X|+ |q.candExts(X)| ≥ min size then
9: if candidate-quasi-clique-pruning(q.X, q.candExts(X),G(S), γmin,min size) = FALSE then

10: if |q.X|+ |q.candExts(X)| ≥ min size then
11: if is-quasi-clique(q.X ∪ q.candExts(X)), γmin,min size then
12: min size← try-to-update-top-patterns(q.X ∪ q.candExts(X), C,min size)
13: else
14: if is-quasi-clique(q.X, γmin,min size) then
15: min size← try-to-update-top-patterns(q.X, C,min size)
16: end if
17: for all v ∈ q.candExts(X) do
18: t.candExts(X)← {u ∈ q.candExts(X)|u > v}
19: t.X ← q.X ∪ v
20: qcCands.push(t)
21: end for
22: end if
23: end if
24: end if
25: end if
26: end while

the user for two reasons:

• Performance: The enumeration of the structural correlation patterns induced

by a given attribute set S is the enumeration of the complete set of quasi-cliques

from the graph induced by S. For frequent attribute sets, the induced graphs

may be very large and enumerating their quasi-cliques may be prohibitive.

• Volume of patterns generated: For frequent attribute sets, the number of

structural correlation patterns may be large. Most of these patterns are expected

to have sizes and densities close to the minimum size and density thresholds,

respectively. On the other hand, in practice, the most interesting patterns are

the largest and densest ones.

Algorithm 12 identifies the top-k structural correlation patterns induced by an

attribute set S. It receives the induced graph G(S), the value of k, and the dense

subgraph parameters γmin and min size. The algorithm returns the top-k structural

correlation patterns in terms of size and density. The size is the primary criterion. If

two patterns have the same size, the density is used as secondary criterion.

We apply a DFS strategy to traverse the set of structural correlation pattern

candidates. Differently from the problem of computing the structural correlation, a

60 Chapter 4. Structural Correlation Pattern Mining: Algorithms

BFS strategy does not make sense for discovering structural correlation patterns, since

we are interested in the largest patterns. The set of candidate quasi-cliques qcCands is

a stack initialized with the pair (X, candExts(X)), where X = ∅ and candExts is the

set of vertices from V(S) that are not removed by the vertex pruning rules described

in Section 2.2.1. New pairs (q.X, q.candExts(X)) are pushed into and popped out

of qcCands until it is empty. If a given pair can produce a pattern larger than the

minimum size min size, this pair is a candidate top-k pattern. The function candidate-

quasi-clique-pruning prunes vertices from q.X and q.candExts. If any vertex from q.X

is pruned, this function returns TRUE and the pair is pruned, otherwise it returns

FALSE. If q.X∪q.candExts(X) is a quasi-clique, the algorithm tries to update the set of

top-k patterns through the function try-to-update-top-patterns. If q.X∪q.candExts(X)

is not a quasi-clique, the algorithm checks whether q.X is a quasi-clique and, if so, it

tries to update C. Moreover, if q.X ∪ q.candExts(X) is not a quasi-clique, new quasi-

clique candidates are pushed into qcCands by extending q.X (lines 17-21).

Algorithm 13 try-to-update-top-patterns
INPUT: V , C, min size, k
OUTPUT: min size
1: for all q ∈ C do
2: if V ⊆ q then
3: return
4: end if
5: end for
6: for all q ∈ C do
7: if q ⊆ V then
8: C ← C − {q}
9: end if

10: end for
11: if |C| < k then
12: C ← C ∪ {V }
13: if |C| < k then
14: return
15: else
16: q ← smallest-and-sparsest-pattern(C)
17: min size← |q|
18: return
19: end if
20: end if
21: q ← smallest-and-sparsest-pattern(C)
22: if |V | ≥ |q| OR (|q| = |V | AND γ(q) < γ(V)) then
23: C ← C − {q}
24: C ← C ∪ {V }
25: q ← smallest-and-sparsest-pattern(C)
26: min size← |q|
27: return
28: end if

The function try-to-update-top-patterns, described by Algorithm 13, manages the

insertion of new top-k structural correlation patterns into the set C. It receives a

candidate quasi-clique V to be inserted, the current set of top-k patterns C, the current

minimum size for patterns min size, and the value of k as parameters and returns an

4.5. Top-k Structural Correlation Patterns 61

updated value of min size. Since structural correlation patterns are maximal, if a

candidate pattern V is a subset of any pattern in C, it is not inserted. For the same

reason, any subset of V is removed from C. The function smallest-and-sparsest returns

the smallest and sparsest patterns from C. In case C has less than k patterns, V is

inserted into C. Otherwise, if V is larger, or has the same size but is denser, than the

smallest and sparsest pattern from C, it replaces such pattern. Moreover, if C has k

patterns, the value of min size is updated to the size of the smallest pattern from C.
The top-k structural correlation patterns can be enumerated more efficiently than

the complete set of patterns because already known patterns are used to prune the

search space for new ones. The effectiveness of this pruning depends on the value of

min size. High values of min size may enable the pruning of a significant number of

candidate top-k patterns. In the next section, we describe the SCPM algorithm, which

aggregates the search, pruning, and sampling techniques discussed in the last sections

and also applies the algorithm for the identification of the top-k structural correlation

patterns proposed in this section.

Algorithm 14 SCPM Algorithm
INPUT: G, σmin, γmin, min size, εmin, δmin, k, θmax

OUTPUT: P
1: P ← ∅
2: T ← ∅
3: I ←frequent-attributes(G, σmin)
4: for all S ∈ I do
5: if θmax > 0 then
6: if εmin > δmin.εexp(σ(S)) then
7: ε← structural-correlation-with-sampling(S,G(S), γmin,min size, εmin.σ(S), θmax)
8: else
9: ε← structural-correlation-with-sampling(S,G(S), γmin,min size, δmin.εexp(S).σ(S), θmax)

10: end if
11: else
12: if εmin > δmin.εexp(σ(S)) then
13: ε← structural-correlation(G(S), γmin,min size, εmin.σ(S))
14: else
15: ε← structural-correlation(G(S), γmin,min size, δmin.εexp(S).σ(S))
16: end if
17: end if
18: if ε ≥ εmin AND ε/εexp(S) ≥ δmin then
19: Q ← top-k-structural-correlation-patterns(G(S), k, γmin,min size)
20: for all q ∈ Q do
21: P ← P ∪ (S, q)
22: end for
23: end if
24: if ε > 0 AND ε.σ(S) ≥ εmin.σmin AND ε.σ(S) ≥ δmin.εexp(σmin).σmin then
25: T ← T ∪ S
26: end if
27: end for
28: P ← P∪ enumerate-patterns(T ,G, σmin, γmin,min size, εmin, δmin, k, θmax)

62 Chapter 4. Structural Correlation Pattern Mining: Algorithms

Algorithm 15 enumerate-patterns
INPUT: T , G, σmin, γmin, min size, εmin, δmin ,k, θmax

OUTPUT: T
1: P ← ∅
2: for all Si ∈ T do
3: R ← ∅
4: for all Sj ∈ T do
5: if i > j then
6: S ← Si ∪ Sj

7: if σ(S) ≥ σmin then
8: if θmax > 0 then
9: if εmin > δmin.εexp(σ(S)) then

10: ε← structural-correlation-with-sampling(S,G(S), γmin,min size, εmin.σ(S), θmax)
11: else
12: ε← structural-correlation-with-sampling(S,G(S), γmin,min size, δmin.εexp(S).σ(S), θmax)
13: end if
14: else
15: if εmin > δmin.εexp(σ(S)) then
16: ε← structural-correlation(G(S), γmin,min size, εmin.σ(S))
17: else
18: ε← structural-correlation(G(S), γmin,min size, δmin.εexp(S).σ(S))
19: end if
20: end if
21: if ε ≥ εmin AND ε/εexp(S) ≥ δmin then
22: Q ← top-k-structural-correlation-patterns(G(S), k, γmin,min size)
23: for all q ∈ Q do
24: P ← P ∪ (S, q)
25: end for
26: end if
27: if ε > 0 AND ε.σ(S) ≥ εmin.σmin AND ε.σ(S) ≥ δmin.εexp(σmin).σmin then
28: R← R∪ S
29: end if
30: end if
31: end if
32: end for
33: P ← P∪ enumerate-patterns(R,G, σmin, γmin,min size, εmin, δmin, k, θmax)
34: end for

4.6 The SCPM Algorithm

At this point, we are able to define an algorithm for structural correlation pattern

mining and normalized structural correlation pattern mining. The SCPM (Structural

Correlation Pattern Mining) algorithm combines the pruning techniques described in

Section 4.3, the search strategies for computing the structural correlation presented in

Sections 4.2 and 4.4, and the technique for the identification of the top-k structural

correlation patterns discussed in this section. The SCPM algorithm (Algorithm 14) re-

ceives the graph G, the minimum support threshold σmin, the minimum density thresh-

old γmin, the minimum size threshold min size, the minimum structural correlation

threshold εmin, the minimum normalized structural correlation threshold δmin, the num-

ber of top structural correlation patterns k to be identified, and the maximum margin

of error accepted θmax as parameters. It gives as output the set of structural correlation

patterns (S, V) from G such that σ(S) ≥ σmin, ε(S) ≥ εmin, δ(S) ≥ δmin, the margin

of error of the structural correlation is limited to θmax, V ∈ V(S), |V | ≥ min size,

4.7. Parallel Algorithms 63

γ(V) ≥ γmin and V is one of the top-k structural correlation patterns induced by S in

terms of size and density. Since the SCPM algorithm receives both a minimum struc-

tural correlation and a minimum normalized structural correlation, it is able to solve

the standard and the normalized version of the structural correlation pattern mining

problem.

The initial set of attribute sets is composed by the attributes with a support at

least σmin (line 3). If some error is accepted, the structural correlation of attribute

sets is computed using sampling (see Algorithm 8), otherwise, the exact structural

correlation is computed by the function structural-correlation (see Algorithm 5). Both

the structural-correlation and the structural-correlation-with-sampling functions can

have their κmin parameter set to εmin.σ(S) or δmin.εexp(S).σ(S). The highest parameter

is selected to maximize pruning. The pruning rules for attribute sets based on ε and

δ (see Section 4.3) are applied in line 24. Pruned attributes are not included into

the set of attributes T to be extended. The attribute sets that satisfy εmin and δmin

have their top-k structural correlation patterns identified through the function top-k-

structural-correlation-patterns. Size one attribute sets are extended by the function

enumerate-patterns.

Algorithm 15 is a high-level description of the function enumerate-patterns. It

receives the same set of input parameters of the SCPM algorithm, and also the set of

patterns to be extended T , and returns the set of structural correlation patterns (S, V)

that have attribute sets extended from those in T regarding G, σmin, εmin, δmin, θmax,

min size, γmin and k. New attribute sets are extended through the union of existing

ones (line 6). The enumerate-patterns function calls itself recursively (line 33) until

all valid attribute sets are generated. Attribute sets are enumerated in DFS order, as

follows:

{A}, {B}, {C}, {D}, {A,B}, {A,C}, {A,D}, {A,B,C}, {A,B,D}, ...
In the next section, we propose parallel algorithms for structural correlation pat-

tern mining. Such algorithms exploit multiple processors in a shared memory environ-

ment in order to enable the analysis of large attributed graphs in a feasible time.

4.7 Parallel Algorithms

In the recent years, the availability of computers with multiple processing units has mo-

tivated the development of parallel algorithms [Wilkinson and Allen, 2004]. In general

terms, a parallel algorithm is able to exploit multiple processing units concurrently as

means to achieve high performance. Parallel algorithms are of special interest in data

64 Chapter 4. Structural Correlation Pattern Mining: Algorithms

Algorithm 16 par-structural-correlation

INPUT: G(S), γmin ,min size, κmin

OUTPUT: ε
1: numActiveThreads← 0
2: X ← ∅
3: K ← ∅
4: candExts(X)← vertex-pruning(V(S), γmin,min size)
5: if |candExts(X)| ≤ κmin then
6: ε← −1
7: else
8: q ← (X, candExts(X))
9: if searchStrategy = BFS then

10: globalQCCandsQ.enqueue(q)
11: for t = 1 to numThreads do
12: par-coverage-BFS(globalQCCandsQ,K,G(S), γmin,min size, numActiveThreads, numThreads)
13: end for
14: else
15: if searchStrategy = DFS then
16: globalQCCandsS.push(q)
17: for t = 1 to numThreads do
18: par-coverage-DFS(globalQCCandsS,K,G(S), γmin,min size, numActiveThreads, numThreads)
19: end for
20: end if
21: end if
22: ε← |K|/|G(S)|
23: end if

mining, since they can provide the ability of processing massive datasets and reduce the

computing time. In the particular case of graph mining, parallel algorithms has been

argued to enable the mining of graph patterns from large graph databases [Buehrer

et al., 2006].

This section presents parallel algorithms for structural correlation pattern min-

ing. Along the last sections, we have presented sequential algorithms for computing

the structural correlation and identifying top-k structural correlation patterns. We

parallelize such algorithms to a shared memory environment. The parallelization strat-

egy applied in all the algorithms is the work pool pattern [Kumar et al., 1994]. More

specifically, candidate dense subgraphs to be processed are managed through a global

and several local work pools (one per thread), as will be detailed in the next sections.

4.7.1 Computing the Structural Correlation

In Section 4.2, we proposed two strategies for computing the structural correlation

of an attribute set. Such strategies differ by the order in which the candidate dense

subgraphs are visited (DFS or BFS). This section presents parallel versions of these

algorithms.

Algorithm 16 is a high-level description of a parallel algorithm for computing

the structural correlation. It receives the graph G(S), the minimum density γmin, the

minimum size min size, and the minimum structural coverage κmin as parameters and

4.7. Parallel Algorithms 65

Algorithm 17 par-coverage-BFS

INPUT: globalQCCands, K, G(S), γmin, min size, numActiveThreads, numThreads
1: while TRUE do
2: lock L1
3: if |qcCands| > 0 then
4: q ← globalQCCands.dequee()
5: localQCCands.enqueue(q)
6: numActiveThreads← numActiveThreads+ 1
7: else
8: if numActiveThreads = 0 then
9: unlock L1

10: BREAK
11: end if
12: end if
13: unlock L1
14: if |localQCCands| > 0 then
15: while TRUE do
16: q ← localQCCands.dequee()
17: newQCCands← ∅
18: par-coverage(q.X,q.candExts(X),K,G(S),γmin,min size,newQCCands)
19: localQCCands.enqueue(newQCCands)
20: if |localQCCands| = 0 then
21: lock L1
22: numActiveThreads← numActiveThreads− 1
23: unlock L1
24: BREAK
25: end if
26: lock L1
27: if numActiveThreads < numThreads AND |globalQCCands| = 0 then
28: globalQCCands.enqueue(localQCCands)
29: localQCCands← ∅
30: numActiveThreads← numActiveThreads− 1
31: unlock L1
32: end if
33: unlock L1
34: end while
35: else
36: SLEEP
37: end if
38: end while

returns the structural correlation of the attribute set S, which induced the graph G(S).

The algorithm applies a BFS or a DFS strategy according to a variable searchStrategy.

The search strategy determines the data structure and the coverage computation func-

tion used by the algorithm. While the BFS uses a queue (globalQCCandsQ) and the

function par-coverage-BFS, the DFS uses a stack (globalQCCandsS) and the function

par-coverage-DFS. The respective coverage computing function is called in parallel for

each thread (i.e., execution unit).

The function par-coverage-BFS, described by Algorithm 17, receives a queue

globalQCCands, the coverage K (initially set as empty), the induced graph G(S),

the minimum density γmin, the minimum size min size, the number of active threads

numActiveThreads (initially set to 0), and the number of threads numThreads as pa-

rameters. When the function is finished, the set K contains the coverage set from G(S)

with regard to the parameters. Different threads execute the function par-coverage-BFS

66 Chapter 4. Structural Correlation Pattern Mining: Algorithms

Algorithm 18 par-coverage-DFS

INPUT: globalQCCands, K, G(S), γmin, min size, numActiveThreads, numThreads
1: while TRUE do
2: lock L1
3: if |qcCands| > 0 then
4: q ← globalQCCands.pop()
5: localQCCands.push(q)
6: numActiveThreads← numActiveThreads+ 1
7: else
8: if numActiveThreads = 0 then
9: unlock L1

10: BREAK
11: end if
12: end if
13: unlock L1
14: if |localQCCands| > 0 then
15: while TRUE do
16: q ← localQCCands.pop()
17: newQCCands← ∅
18: par-coverage(q.X,q.candExts(X),K,G(S),γmin,min size,newQCCands)
19: localQCCands.push(newQCCands)
20: if |localQCCands| = 0 then
21: lock L1
22: numActiveThreads← numActiveThreads− 1
23: unlock L1
24: BREAK
25: end if
26: lock L1
27: if numActiveThreads < numThreads AND |globalQCCands| = 0 then
28: globalQCCands.push(localQCCands)
29: localQCCands← ∅
30: numActiveThreads← numActiveThreads− 1
31: unlock L1
32: end if
33: unlock L1
34: end while
35: else
36: SLEEP
37: end if
38: end while

concurrently.

Each thread has the access to the shared queue globalQCCands and the vari-

able numActiveThreads controlled by a lock variable L1. Dense subgraph candi-

dates (q.X, q.candExts(X)) are dequeued from globalQCCands and enqueued into

localQCCands, which is the local queue of a thread. Candidates from the local

queue are processed through the function par-coverage (Algorithm 19) that updates

the coverage K and returns a new set of dense subgraph candidates based on the pair

(X, candExts(X)) received as input. These new pairs are enqueued into the local queue

iteratively. Whenever its local queue is empty, a thread becomes inactive and tries to

get new pairs from the global queue. If not succeeded, the thread sleeps for some time.

A thread that finds another one inactive enqueues its entire local queue into the global

queue, becomes inactive, and tries to get a new dense subgraph candidate from the

global queue. A thread is finished when the global queue is empty and all the other

4.7. Parallel Algorithms 67

Algorithm 19 par-coverage

INPUT: X, candExts(X), K,G(S), γmin, min size, newqcCands
1: if candidate-quasi-clique-pruning(X, candExts(X),G(S), γmin,min size) = FALSE then
2: if is-quasi-clique(X ∪ candExts(X), γmin,min size) then
3: lock
4: for all v ∈ X ∪ candExts(X) do
5: K ← K ∪ v
6: end for
7: unlock
8: else
9: if is-quasi-clique(X, γmin,min size) then

10: lock L2
11: for all v ∈ X do
12: K ← K ∪ v
13: end for
14: unlock L2
15: end if
16: for all v ∈ candExts(X) do
17: t.candExts(X)← {u ∈ q.candExts(X)|u > v}
18: t.X ← q.X ∪ v
19: lock L2
20: if t.X ∪ t.candExts(X) * K AND |t.X ∪ t.candExts(X)| ≥ min size then
21: newqcCands← newqcCands ∪ t
22: end if
23: unlock L2
24: end for
25: end if
26: end if

threads are inactive.

The Algorithm 18 computes the coverage using a DFS strategy. It is very sim-

ilar to the Algorithm 17 but uses stacks (one local and another global), instead of

queues. The function par-coverage (Algorithm 19), which is applied by the func-

tions par-coverage-BFS and par-coverage-DFS, receives the sets X and candExts(X),

the minimum size and density of dense subgraphs (γmin and min size), and the set

newQCCands that will contain the extensions of (X, candExts(X)) at the end of the

execution. A lock variable L2 restricts the access to the coverage set K to a single

thread at time.

The algorithms described along this section compute the structural correlation

of attribute sets using multiple threads concurrently as means to achieve high perfo-

mance. In the next section, we present a parallel algorithm for computing the structural

correlation of attribute sets using sampling.

4.7.2 Sampling

This section describes a parallel version of the sampling technique for computing the

structural correlation presented in Section 4.4. Instead of computing the structural

correlation of the an attribute set S considering the complete induced graph G(S), we

proposed estimating such a correlation using a sample of vertices from G(S). Therefore,

68 Chapter 4. Structural Correlation Pattern Mining: Algorithms

Algorithm 20 par-check-vertex-in-quasi-clique

INPUT: v, G(S), γmin, min size
OUTPUT: found
1: globalQCCands← ∅
2: numActiveThreads← 0
3: X ← vertex-pruning({v}, γmin,min size)
4: candExts(X)← vertex-pruning(V(S), γmin,min size)
5: if X 6= ∅ then
6: q ← (X, candExts(X))
7: if searchStrategy = BFS then
8: globalQCCands.enqueue(q)
9: for t = 1 to numThreads do

10: par-find-quasi-clique-BFS(globalQCCands,G(S), γmin,min size, found, numActiveThreads,
numThreads)

11: end for
12: else
13: if searchStrategy = DFS then
14: globalQCCands.push(q)
15: for t = 1 to numThreads do
16: par-find-quasi-clique-DFS(globalQCCands,G(S), γmin,min size, found, numActiveThreads,

numThreads)
17: end for
18: end if
19: end if
20: end if

checking whether a vertex is a member of a dense subgraph is a basic operation of the

sampling technique for computing the structural correlation. The parallel version of

the proposed technique performs this checking concurrently.

The function par-check-vertex-in-quasi-clique (Algorithm 20) receives a vertex v,

to be checked to be in, at least, one dense subgraph, the induced graph G(S), and

the quasi-clique parameters, γmin and min size, as parameters (similar to the function

check-vertex-in-quasi-clique). It returns TRUE if v is in a dense subgraph in G(S) and

FALSE, otherwise. Given a vertex v, it can be verified to be in a dense subgraph using

a BFS or a DFS strategy. The BFS strategy, implemented by the function par-find-

quasi-clique-BFS, traverses the search space of subgraphs using BFS. Similarly, the

function par-find-quasi-clique-DFS searches for dense subgraphs using DFS. Since the

function par-check-vertex-in-quasi-clique is very similar to the function par-structural-

correlation (Algorithm 16), we will not provide much detail on it.

Algorithms 21 and 22 are high-level descriptions of functions par-find-quasi-clique-

BFS and par-find-quasi-clique-DFS, respectively. Function par-find-quasi-clique-BFS

receives a queue globalQCCands, an induced graph G(S), dense subgraph parame-

ters (γmin and min size), a boolean variable found, the number of active threads

numActiveThreads, and the number of threads numThreads. The variable found

is initialized as FALSE and will be set as TRUE in case a quasi-clique is found and

FALSE, otherwise. The number of active threads numActiveThreads is initialized as 0.

The function par-find-quasi-clique-DFS receives the same parameters, except the fact

4.7. Parallel Algorithms 69

Algorithm 21 par-find-quasi-clique-BFS

INPUT: globalQCCands, G(S), γmin, min size, found, numActiveThreads, numThreads
1: while TRUE do
2: lock L1
3: if |qcCands| > 0 AND found = FALSE then
4: q ← globalQCCands.dequee()
5: localQCCands.enqueue(q)
6: numActiveThreads← numActiveThreads+ 1
7: else
8: if numActiveThreads = 0 then
9: unlock L1

10: BREAK
11: end if
12: end if
13: unlock L1
14: if |localQCCands| > 0 then
15: while TRUE do
16: q ← localQCCands.dequee()
17: newQCCands← ∅
18: par-find-quasi-clique(q.X,q.candExts(X),G(S),γmin,min size,newQCCandsfound)
19: localQCCands.enqueue(newQCCands)
20: if |localQCCands| = 0 OR found =TRUE then
21: lock L1
22: numActiveThreads← numActiveThreads− 1
23: unlock L1
24: BREAK
25: end if
26: lock L1
27: if numActiveThreads < numThreads AND |globalQCCands| = 0 then
28: globalQCCands.enqueue(localQCCands)
29: localQCCands← ∅
30: numActiveThreads← numActiveThreads− 1
31: unlock L1
32: end if
33: unlock L1
34: end while
35: else
36: SLEEP
37: end if
38: end while

that the structure globalQCCands is a stack, instead of a queue. In both functions, a

lock variable L1 restricts the access to globalQCCands and numActiveThreads to a

single thread at time.

The function par-find-quasi-clique, presented in Algorithm 23, checks whether

vertex sets are quasi-cliques and generates new quasi-clique candidates. It is applied

by the functions par-find-quasi-clique-BFS and par-find-quasi-clique-DFS. The variable

found, shared by multiple threads, has its access managed by the lock variable L2.

When a dense subgraph is found, the variable found is set to TRUE and all threads

can finish the search for a dense subgraph.

The algorithms presented in this section compute the structural correlation of

an attribute set using sampling and exploiting multiple processors in order to enable

the processing of large graphs efficiently. In the next section, we propose a parallel

algorithm for the identification of top-k structural correlation patterns in terms of size

70 Chapter 4. Structural Correlation Pattern Mining: Algorithms

Algorithm 22 par-find-quasi-clique-DFS

INPUT: globalQCCands, G(S), γmin, min size, found, numActiveThreads, numThreads
1: while TRUE do
2: lock L1
3: if |qcCands| > 0 AND found = FALSE then
4: q ← globalQCCands.pop()
5: localQCCands.push(q)
6: numActiveThreads← numActiveThreads+ 1
7: else
8: if numActiveThreads = 0 then
9: unlock L1

10: BREAK
11: end if
12: end if
13: unlock L1
14: if |localQCCands| > 0 then
15: while TRUE do
16: q ← localQCCands.pop()
17: newQCCands← ∅
18: par-find-quasi-clique(q.X,q.candExts(X),G(S),γmin,min size,newQCCandsfound)
19: localQCCands.push(newQCCands)
20: if |localQCCands| = 0 OR found =TRUE then
21: lock L1
22: numActiveThreads← numActiveThreads− 1
23: unlock L1
24: BREAK
25: end if
26: lock L1
27: if numActiveThreads < numThreads AND |globalQCCands| = 0 then
28: globalQCCands.push(localQCCands)
29: localQCCands← ∅
30: numActiveThreads← numActiveThreads− 1
31: unlock L1
32: end if
33: unlock L1
34: end while
35: else
36: SLEEP
37: end if
38: end while

and density.

4.7.3 Top-k Structural Correlation Patterns

The identification of the top-k, instead of the complete set of structural correlation

patterns, was proposed in Section 4.5 with the goals of reducing both the computational

cost of enumerating such patterns and the volume of patterns generated to the user.

Nevertheless, the search space of top-k structural correlation patterns may still be too

large in real settings. Therefore, a parallel algorithm may achieve high performance by

searching for top-k structural correlation patterns concurrently.

Algorithm 24 is the pseudocode of the function par-top-k-structural-correlation-

patterns, which identifies top-k structural correlation patterns from an induced graph.

It receives the induced graph G(S) , the value of k, and the dense subgraph parameters,

4.7. Parallel Algorithms 71

Algorithm 23 par-find-quasi-clique

INPUT: X, candExts(X), G(S), γmin, min size, newqcCands, found
1: if candidate-quasi-clique-pruning(q.X, q.candExts(X),G(S), γmin,min size) = FALSE then
2: if is-quasi-clique(q.X ∪ q.candExts(X), γmin,min size) then
3: lock L2
4: found← TRUE
5: unlock L2
6: end if
7: if is-quasi-clique(q.X, γmin,min size) then
8: lock L2
9: found← TRUE

10: unlock L2
11: end if
12: if found = FALSE then
13: for all v ∈ q.candExts(X) do
14: t.candExts(X)← {u ∈ q.candExts(X)|u > v}
15: t.X ← q.X ∪ v
16: if |t.X ∪ t.candExts(X)| ≥ min size then
17: newqcCands← newqcCands ∪ t
18: end if
19: end for
20: end if
21: end if

Algorithm 24 par-top-k-structural-correlation-patterns

INPUT: G(S), k, γmin, min size
1: globalQCCands← ∅
2: numActiveThreads← 0
3: X ← ∅
4: candExts(X)← vertex-pruning(V(S), γmin,min size)
5: q ← (X, candExts(X))
6: globalQCCands.push(q)
7: for t = 1 to numThreads do
8: par-top-k-scps-thread(globalQCCands,G(S), γmin,min size, k, C,D, numActiveThreads, numThreads)
9: end for

10: C ← join(C,D, k)
11: return C

γmin and min size, and returns the top-k structural correlation patterns (C). Similar

to its sequential version, function par-top-structural-correlation-patterns applies a DFS

strategy in the search for structural correlation patterns.

In Section 4.5 we discussed how the minimum size threshold (min size) can be

updated during the search for top-k patterns based on the a current set of patterns

identified, what enables the pruning of candidate patterns that can not be as large as

the ones already identified. Since structural correlation patterns are maximal, a new

pattern will replace its subsets in the current set of top-k patterns. Nevertheless, while

a new pattern can replace only one subpattern from the current set of top-k patterns in

the sequential algorithm, a parallel algorithm can allow the replacement of two or more

patterns by a new pattern. In such a situation, these subpatterns may increase the

value min size and some valid top-k patterns can be pruned while these subpatterns

are not replaced.

We guarantee the correctness of the parallel algorithm for the discovery of the

72 Chapter 4. Structural Correlation Pattern Mining: Algorithms

Algorithm 25 par-top-k-scps-thread

INPUT: globalQCCands, G(S), γmin, min size, k, C, D, numActiveThreads, numThreads
1: while TRUE do
2: lock L1
3: if |qcCands| > 0 then
4: q ← globalQCCands.pop()
5: localQCCands.push(q)
6: numActiveThreads← numActiveThreads+ 1
7: else
8: if numActiveThreads = 0 then
9: unlock L1

10: BREAK
11: end if
12: end if
13: unlock L1
14: if |localQCCands| > 0 then
15: while TRUE do
16: q ← localQCCands.pop()
17: newQCCands← ∅
18: par-top-k-scps-iteration(q.X,q.candExts(X),C,D,G(S),γmin,min size,newQCCands,k)
19: localQCCands.push(newQCCands)
20: if |localQCCands| = 0 then
21: lock L1
22: numActiveThreads← numActiveThreads− 1
23: unlock L1
24: BREAK
25: end if
26: lock L1
27: if numActiveThreads < numThreads AND |globalQCCands| = 0 then
28: globalQCCands.push(localQCCands)
29: localQCCands← ∅
30: numActiveThreads← numActiveThreads− 1
31: unlock L1
32: end if
33: unlock L1
34: end while
35: else
36: SLEEP
37: end if
38: end while
39: return C

top-k structural correlation patterns by using an auxiliary set D, instead of only a

single set of top-k patterns C. A structural correlation pattern that can be joined with

an existing pattern in C into a larger pattern is inserted in D, and not C. Therefore, a

new pattern can not replace more than one pattern from C. The value of min size is

updated considering only C and patterns can be moved from D to C whenever they do

not compromise the results. The resulting set of top-k structural correlation patterns

C is combined with D through the function join (line 10).

The function par-top-k-scps-thread, described by Algorithm 25, is executed by the

threads concurrently. It is similar to the function par-coverage-DFS (Algorithm 18).

A global stack globalQCCands is shared by all threads and the access to it and to

the number of active threads (numActiveThreads) is managed by a lock variable L1.

Moreover, each thread has its own stack (localQCCands). Candidate dense subgraphs

4.7. Parallel Algorithms 73

Algorithm 26 par-top-k-scps-iteration

INPUT: X, candExts(X), C, D, G(S), γmin, min size, newqcCands, k
1: lock L2
2: local min size getsmin size
3: unlock L2
4: if |q.X|+ |q.candExts(X)| ≥ min size then
5: if candidate-quasi-clique-pruning(X, candExts(X),G(S), γmin, local min size) = FALSE then
6: if |q.X|+ |q.candExts(X)| ≥ local min size then
7: if is-quasi-clique(X ∪ candExts(X)), γmin, local min size then
8: lock L3
9: min size← try-to-update-top-patterns(X ∪ candExts(X), C,D, local min size)

10: unlock L3
11: else
12: if is-quasi-clique(X, γmin,min size) then
13: lock L3
14: min size← try-to-update-top-patterns(X, C,D,min size)
15: unlock L3
16: end if
17: for all v ∈ candExts(X) do
18: t.candExts(X)← {u ∈ q.candExts(X)|u > v}
19: t.X ← X ∪ v
20: newqcCands.push(t)
21: end for
22: end if
23: end if
24: end if
25: end if

can be popped from the global to the local stack, or the other way around, depending

on whether one of them is empty. At each iteration over the local stack localQCCands,

the function par-top-k-scps-thread-iteration (Algorithm 26) checks whether a candidate

vertex set is a structural correlation pattern, updating the set of top-k-structural cor-

relation pattern C and generating new candidate subgraphs that are pushed into the

local stack.

The function par-try-to-update-top-patterns (Algorithm 27) inserts new top-k pat-

terns into C. It also updates the value of min size according to the patterns in C. The

auxiliary set D stores candidate top-k patterns that can be combined with patterns

from C in the generation of larger patterns. A new top-k pattern V can not be a subset

of any pattern in C or D. Moreover, subsets of V in C and D are removed, since struc-

tural correlation patterns are maximal. New patterns are first inserted into D and,

then, the algorithm checks whether patterns from D can be combined with patterns

from C into larger patterns. This checking is performed by the function candidate-

quasi-clique-pruning, which returns TRUE if the vertex set t ∪ q can not be extended

by vertices from a set V(S)−(t∪q) into a quasi-clique for any pattern q ∈ C. If t∪q can

not produce a larger pattern, then t is removed from D and inserted into C. Patterns

from D that do not satisfy the minimum size threshold min size are also removed. If

the size of C is larger than k, it is reduced by the removal of its smallest and sparsest

patterns. The value of min size returned is updated to the size of the smallest and

74 Chapter 4. Structural Correlation Pattern Mining: Algorithms

Algorithm 27 par-try-to-update-top-patterns
INPUT: V , C, D, min size, k
1: for all q ∈ C ∪ D do
2: if V ⊆ q then
3: return min size
4: end if
5: end for
6: for all q ∈ C do
7: if q ⊆ V then
8: C ← C − {q}
9: end if

10: end for
11: for all q ∈ D do
12: if q ⊆ V then
13: D ← D − {q}
14: end if
15: end for
16: D ← D ∪ {V }
17: for all t ∈ D do
18: if |t| ≥ min size then
19: for all q ∈ C do
20: if candidate-quasi-clique-pruning(t ∪ q,V(S)− (t ∪ q),G(S), γmin,min size) = TRUE then
21: D ← D − {t}
22: C ← C ∪ {q}
23: end if
24: end for
25: else
26: D ← D − {t}
27: end if
28: end for
29: while |C| > k do
30: q ← smallest-and-sparsest-pattern(C)
31: C ← C − {q}
32: end while
33: if |C| = k then
34: C ← C − {q}
35: C ← C ∪ {V }
36: q ← smallest-and-sparsest-pattern(C)
37: return |q|
38: end if
39: return min size

sparsest pattern from C whenever the size of C is k.

The parallel algorithms presented along this and the previous sections can replace

their sequential versions in the SCPM algorithm (Algorithm 14). Therefore, the search,

pruning, and sampling techniques can be combined with the parallel algorithms in order

to produce an efficient and scalable algorithm.

In this chapter, we have studied the structural correlation pattern mining from an

algorithmic perspective. Algorithms for computing the standard and the normalized

structural correlation of attribute sets, and for identifying the top-k structural correla-

tion patterns have been proposed and discussed. Pruning, sampling, and parallelization

strategies for structural correlation have been applied in order to enable the analysis

of large datasets in a feasible time. These algorithms are available as open-source1. In

1http://code.google.com/p/scpm/

http://code.google.com/p/scpm/

4.7. Parallel Algorithms 75

the next chapter, we present an experimental evaluation of such algorithms.

Chapter 5

Experimental Evaluation

This work proposes the analysis of the correlation between attribute sets and dense

subgraphs in large attributed graphs. We have argued that such an analysis may

provide relevant knowledge regarding the relationship between attributes and the graph

topology in real graphs. Moreover, in Chapter 4, we proposed algorithms for structural

correlation pattern mining. This chapter presents an extensive experimental evaluation

of the structural correlation pattern mining both in terms of the knowledge it provides

and the performance of the proposed algorithms.

Section 5.1 presents case studies on the correlation between attribute sets and

dense subgraphs. The relevance of the knowledge provided by the structural correlation

pattern mining is shown using real attributed graphs from different domains. The

datasets used are a collaboration graph, a music social network, a citation graph and

a PPI network. We give an overview on the properties of attribute sets and show

interesting structural correlation patterns discovered from each dataset. The results

are discussed based on the characteristics of the specific application scenarios.

In Section 5.2, we study different input parameters of structural correlation pat-

tern mining algorithms using a real dataset. The idea is to show how these parameters

affect the patterns identified by the algorithm, providing guidelines for a proper setting

of them.

The performance evaluation of the proposed algorithms is presented in Section

5.3. The main goal of this evaluation is to study the execution time of these algorithms

in terms of their input parameters. Along Chapter 3, we gave theoretical bounds for the

complexity of algorithms for the structural and the normalized structural correlation

pattern mining problems. In this chapter we show how the techniques described in

Chapter 4 enable the processing of large graphs in a feasible time.

77

78 Chapter 5. Experimental Evaluation

5.1 Case Studies

In this work, we study the problem o correlating attribute sets and the formation

of dense subgraphs in attributed graphs, what we call structural correlation pattern

mining. This analysis may provide relevant knowledge in several real-life scenarios. In

order to show the applicability of the structural correlation pattern mining, in the next

sections, we perform several case studies on the correlation between attribute sets and

dense subgraphs in real datasets from different domains.

The datasets used in the case studies are a collaboration graph, a social net-

work, a citation network and a PPI network. In the collaboration graph, vertices are

researchers, edges are collaborations and attributes are keywords associated with re-

searchers. In the social network, vertices are people, edges represent friendship and

vertex attributes are artists listened to. In the citation network, vertices represent

papers, citations are edges, and attributes are terms from papers. We also apply the

structural correlation pattern mining to a PPI network, where vertices represent genes,

edges represent protein-protein and gene interactions, and attributes are tissues where

genes are expressed.

For each dataset, we characterize important aspects related to the structural

correlation pattern mining. The degree, attribute frequency and attributes per vertex

distributions are plotted in log-log scale, since they are expected to be heavy-tailed.

We also enumerate the top structural correlation and normalized structural correlation

patterns discovered. For some attribute sets, we show the graphs induced by them.

The expected structural correlation values for different supports using the simu-

lation and analytical models, proposed in Section 3.2, are analyzed for each dataset.

The estimates given by the analytical model, which are upper bounds of the expected

structural correlation, are compared against the simulation results. For all datasets,

we apply the analytical-based normalized structural correlation, given by Definition 8.

The structural correlation patterns presented in the case studies are the largest

ones induced by the top structural correlation or normalized structural correlation

attribute sets. In some cases, we also show the largest structural correlation patterns

discovered overall. Such patterns are analyzed in terms of the specific domain of their

respective datasets.

The attribute sets are characterized in terms of the structural coverage, structural

correlation, and normalized structural correlation distributions. Such distributions are

plotted in semi-log or log-log scale, since they are expected to be heavy-tailed. We

also study the correlation among these three functions. Such an analysis may produce

insights about the relation among these functions and, as a consequence, assess the

5.1. Case Studies 79

value added by each of them in comparison to the others.

5.1.1 DBLP

In the attributed graph extracted from the DBLP1 digital library, each vertex represents

an author and two authors are connected if they have co-authored a paper. The

attributes of authors are terms that appear in the titles of papers authored by them2. In

the DBLP dataset an attribute set defines a topic (i.e., set of terms that carry a specific

meaning in the literature) and a dense subgraph is a community. Therefore, a structural

correlation pattern is a community in a given topic. The proposed application is very

related to the problems of topic discovery [Pons-Porrata et al., 2007] and expert group

search in social networks [Lappas et al., 2009], since a structural correlation pattern

defines a group of researchers that have already worked together and have expertise

in a given topic. It is important to notice that attributes are considered as a bag-

of-words. Therefore, some combinations of words may not be semantically valid. A

possible solution for this problem would be the use of n-grams, instead of single terms

as attributes.

The DBLP dataset contains 108,030 vertices, 276,658 edges, and 23,285 at-

tributes. Figure 5.1 shows the cumulative degree, the attribute frequency and the

attributes per vertex distribution for the DBLP dataset. We can notice that such dis-

tributions present heavy-tailed behavior. As a consequence, we can expect that few

vertices are in large quasi-cliques, few attributes cover a wide set of vertices and few

vertices are covered by many structural correlation patterns.

Table 5.1 shows the top 10 attribute sets in terms of structural correlation dis-

covered from the DBLP dataset. The minimum size (min size) and density (γmin)

parameters were set to 10 and 0.5, respectively. The minimum support threshold

(σmin) was set to 400. The attribute set {grid, applic} presents the highest structural

correlation (0.26), i.e., 26% of the authors that have the keywords “grid” and “applic”

are inside a small community of researchers of size, at least, 10 where each of them

have collaborated with half of the other members.

The structural correlation is affected by the support of the attribute sets. The

higher is the support, the higher is the expected structural correlation of an attribute

set. Figure 5.2, shows the expected structural correlation for different support values

in the DBLP dataset. The input parameters are the same used to generate the results

shown in Table 5.1. As described in Section 3.2, we propose two models for estimating

1http://www.informatik.uni-trier.de/~ley/db
2The set of attributes was reduced by stemming and removal of stop words.

http://www.informatik.uni-trier.de/~ley/db

80 Chapter 5. Experimental Evaluation

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000

c
o
u
n
t

degree

(a) degree

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000
c
o

u
n

t

#vertices

(b) attribute frequency

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000

c
o
u
n
t

#attributes

(c) attributes per vertex

Figure 5.1: Cumulative degree, attribute frequency, and attributes per vertex distribu-
tion (in log-log scale) for the DBLP dataset

S size σ κ ε
grid applic 2 840 222 0.26
grid servic 2 599 138 0.23

environ grid 2 525 113 0.21
queri xml 2 615 127 0.21

search web 2 1031 209 0.20
search rank 2 420 81 0.19

dynam simul 2 469 90 0.19
queri data 2 1540 295 0.19

chip system 2 702 132 0.19
data stream 2 1073 198 0.18

Table 5.1: Top-ε attribute sets from DBLP

the expected structural correlation: the simulation and the analytical model. For the

simulation model, we executed 1000 simulations for each support value and show also

the standard deviation of the expected structural correlation estimated. The analytical

upper bound is not tight w.r.t. the simulation results, but presents a similar growth,

which shows that it enables accurate comparisons between the structural correlation

of attribute sets.

Based on the proposed analytical model, Table 5.2 shows the top attribute

sets in terms of analytical normalized structural correlation (δ2). The attribute set

{search, rank} has the highest normalized structural correlation (635,349), i.e., the

structural correlation of this attribute set is 635,349 times the upper bound of its ex-

pected structural correlation given by the analytical model. Different from the top ε

attribute sets, the top δ2 attribute sets have relatively low support. Figure 5.3 presents

the graph induced by {search, rank} in the DBLP dataset. Vertices in and out of dense

subgraphs are set to distinct colors and shapes. In general, dense subgraphs cover the

5.1. Case Studies 81

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10
 0

 50

 100

 150

 200
si

m
−

ε
e
xp

 x
 1

0
−

4

m
a
x−

ε
e
xp

 x
 1

0
−

4

σ x 10
3

sim−εexp
max−εexp

Figure 5.2: Expected structural correlation computed using the simulation model (sim-
εexp) and the analytical model max-εexp

S size σ κ ε δ2
search rank 2 420 81 0.19 635,349
perform file 2 404 57 0.14 555,067

structur index 2 404 57 0.14 555,067
search mine 2 413 57 0.14 490,932

us xml 2 400 43 0.11 442,638
search web data 3 424 58 0.14 431,589

base search analysi 3 414 49 0.12 416,385
model internet 2 401 40 0.10 406,059

process data databas 3 416 49 0.12 405,363
perform distribut parallel 3 416 47 0.11 388,818

Table 5.2: Top-δ2 attribute sets from DBLP

densest components of the induced graph. The concept of structural correlation, de-

fined in this work, assesses how attribute sets induce dense subgraphs in attributed

graphs.

The attribute sets shown in Tables 5.1 and 5.2 are related to known research top-

ics in Computer Science. Moreover, it is relevant to analyze the communities induced

by keywords with high structural correlation. Figure 5.4 shows a structural correla-

tion pattern induced by the attribute set {search, rank}. Several researchers in the

discovered group work, have already worked or have visited Microsoft Research Asia

(Jun Yan, Benyu Zhang, Ning Liu, Zheng Chen, Wensi Xi, Weiguo Fan, Wei-Ying Ma,

82 Chapter 5. Experimental Evaluation

Figure 5.3: Graph induced by the attribute set {search, rank} in the DBLP dataset

Shuicheng Yan, Qiang Yang). Weiguo Fan and Edward Fox are professors at Virginia

Tech. Wensi Xi got his PhD from Virginia Tech, advised by Weiguo Fan.

The structural correlation pattern shown in Figure 5.5 is the largest pattern found

in the DBLP dataset, which is induced by the attribute set {perform, system}. Most

of the researchers in this pattern3 have collaborated while involved in the Center for

Supercomputing Research and Development at the University of Illinois at Urbana-

Champaign. Moreover, the pattern found also includes several members of a project

named Commom Runtime Support for High Performance Parallel Languages4, which

involved Syracuse University, University of Maryland, Indiana University, University

of Rochester, University of Texas (Austin), University of Florida, and Rice University.

We checked the homepages of the researchers that compose the discovered pattern and

found that they have topics related to systems performance as their interests. Moreover,

3David Padua, Rudolf Eigenmann, Jay Hoeflinger, David Kuck, Pen-Chung Yew, Edward David-
son, Harry Wijshoff, Kyle Gallivan, Willian Jalby, Allen Maloney, Randall Bramley, Greg Jaxon,
Duncan Lawrie, Chuan-Qi Zhu, Jeff Konicek, U Yang, Perry Emrath, Zhiyuan Li, T Murphy, John
Andrews, Stephen Turner, Dennis Gannon, Constantine Polychronopoulos

4Geoffrey Fox, Sanjay Ranka, Michael Scott, Allen Malony, James Browne, Alok Choudhary,
Rudolf Eigenmann, Ian Foster, Dennis Gannon, Tomasz Haupt, Carl Kesselman, Wei Li, Monica Lam,
Thomas LeBlanc, David Padua, Constantine Polychronopoulos, Joel Saltz, Alan Sussman, Katherine
Yelick

5.1. Case Studies 83

both the research center and the project that motivated the collaborations among the

researchers have topics related to systems performance as their research lines.

Figure 5.4: Structural correlation pattern induced by the attribute set {search, rank},
size = 13, and γ=0.58

An overview of the structural coverage, the structural correlation and the nor-

malized structural correlation in DBLP is shown in Figure 5.6. Figures 5.6a, 5.6b, and

5.6c show the inverse cumulative distribution of the structural coverage, the structural

correlation, and the normalized structural correlation, respectively. The three distribu-

tions are in semi-log scale and have a slope characteristic of exponential functions. In

other words, most of the attribute sets have relatively low structural coverage, struc-

tural correlation and normalized structural correlation, while few attribute sets present

high values for these functions.

Table 5.3 shows the correlations among the structural coverage, the structural

correlation and the normalized structural correlation in DBLP. As expected, smaller

attribute sets have higher supports. Moreover, the structural coverage is positively

correlated with the support. However, in general, high support attribute sets do not

have high structural correlation and the correlation between the support and the nor-

malized structural correlation is negative, i.e., the higher the attribute set support, the

lower the normalized structural correlation. Different from the structural correlation,

the normalized structural correlation is not biased towards high support attribute sets.

84 Chapter 5. Experimental Evaluation

Figure 5.5: Structural correlation pattern induced by the attribute set
{perform, system}, size = 37, and γ=0.5

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250 300 350 400 450

c
o
u
n
t

κ

(a) structural coverage

 1

 10

 100

 1000

 10000

 0.05 0.1 0.15 0.2 0.25 0.3

c
o
u
n
t

ε

(b) structural correlation

 1

 10

 100

 1000

 10000

1 2 3 4 5 6

c
o
u
n
t

δ x 10
4

(c) normalized structural correla-
tion

Figure 5.6: Inverse cumulative structural coverage (κ), structural correlation (ε), and
normalized structural correlation (δ2)

The structural coverage is also positively correlated with the structural correlation

function in DBLP. In other words, the higher is the structural coverage, the higher is

the structural correlation of attribute sets. A similar pattern does not occur for the

correlation between the structural coverage and the normalized structural correlation.

In general, top δ2 attribute sets have low structural coverage. In particular, larger

5.1. Case Studies 85

κ ε δ2

σ

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 50 100 150 200 250 300 350 400 450

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 0.05 0.1 0.15 0.2 0.25 0.3

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100000 200000 300000 400000 500000 600000 700000

κ

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.05 0.1 0.15 0.2 0.25 0.3

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100000 200000 300000 400000 500000 600000 700000

ε

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 100000 200000 300000 400000 500000 600000 700000

Table 5.3: Scatter plots of the correlations between support (σ), structural coverage (κ),
structural correlation (ε), and normalized structural correlation for different attribute
set sizes (|S|) in the DBLP dataset

attribute sets do not have high structural coverage but some of them present high

normalized structural correlation.

Since the normalized structural correlation is the ratio of the structural corre-

lation to the expected structural correlation, which is a function that increases with

the support, the high normalized structural correlation attribute sets are those with

both high structural correlation and low support. Attribute sets with high normalized

structural correlation have low support, but the opposite is not necessarily true. The

correlations among structural coverage, structural correlation, and normalized struc-

tural correlation give a better understanding of the characteristics of each of these

86 Chapter 5. Experimental Evaluation

functions. Also, this analysis may support the user in setting the input parameters

properly. We are not interested in the semantics behind these correlations.

Many other author attributes could be considered in this study. In particular,

it would be interesting to consider location and affiliation as attributes in the iden-

tification of interesting correlations between attribute sets and dense subgraphs in

collaboration networks [Menezes et al., 2009].

5.1.2 LastFm

LastFm5 is an online social music network. In LastFm, users can get connected to

their friends and submit song information directly from their music players through a

plug-in. Based on this information, LastFm provides several interesting services, such

as recommendation, personalized radios, user and artist (singer or group) similarities,

among others. We used a sample of the LastFm users crawled through an API provided

by the LastFm. In the LastFm network, vertices represent users and edges represent

friendships. The attributes of a vertex are the artists the respective user has listened

to. An attribute set in the LastFm dataset represents, in a more general interpretation,

a musical taste (i.e., set of artists) and a dense subgraph is a community. Structural

correlation patterns in the LastFm network are an interesting mechanism to identify

musically-oriented communities. Exploring such communities may be of special interest

for advertising.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100

c
o
u
n
t

degree

(a) degree

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06

c
o
u
n
t

#vertices

(b) attribute frequency

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

c
o
u
n
t

#attributes

(c) attributes per vertex

Figure 5.7: Inverse cumulative degree, attribute frequency, and attributes per vertex
distribution (in log-log scale) for the LastFm dataset

The LastFm dataset contains 272,412 vertices, 350,239 edges, and 3,929,101 at-

tributes. Figure 5.7 shows the inverse cumulative degree, attribute frequency and

5http://www.last.fm

http://www.last.fm

5.1. Case Studies 87

attributes per vertex distributions for the LastFm dataset. The three distributions

present heavy tails. Only 59% of the users have two or more friends and the user with

most friends has 80. Similarly, 50% of the users have listened to less than 230 artists,

while the top listener has listened to 21,417 artists. The most popular artist is the band

Radiohead (with 121,892 listeners) but most of the artists (61%) have been listened by

only one user, what is not a surprise since the artist name is defined by the user and

is subject to errors.

S size σ κ ε
Radiohead 1 121,892 13,362 0.11
Coldplay 1 118,053 11,116 0.09
Beatles 1 109,037 10,228 0.09

Red Hot Chili Peppers 1 105,984 9,217 0.09
Metallica 1 83,587 6,405 0.08

Death Cap for Cutie 1 82,025 6,065 0.07
Beck 1 83,360 6103 0.07
Muse 1 94,382 6,792 0.07

Nirvana 1 100,604 7192 0.07
The Shins 1 68,480 4874 0.07

Table 5.4: Top-ε attribute sets from the LastFm dataset

Table 5.4 shows the top 10 attribute sets in terms of structural correlation dis-

covered from the LastFm dataset. The minimum size (min size) and density (γmin)

parameters were set to 5 and 0.5, respectively. The minimum support threshold (σmin)

was set to 27,000. In general, the top attribute sets are the most frequent ones. The

top ε attribute set corresponds to the band Radiohead, which is also the most popu-

lar band. As discussed in Section 3.2, frequent attribute sets are more likely to cover

dense subgraphs than the low frequency ones. However, if we consider the normalized

structural correlation, which takes into account the expected structural correlation

of an attribute set, the top patterns change significantly. Figure 5.8 shows the ex-

pected structural correlation for support values varying from 20,000 to 100,000. Each

simulation-based expected structural correlation value corresponds to an average from

1000 simulations. Table 5.5 shows the top normalized structural correlation attribute

sets from the LastFm dataset. The top δ2 attribute set {Sufjan Stevens,Wilco} includes

the American singer and songwriter Sufjan Stevens and the American band Wilco. Ac-

cording to LastFm, these two bands have high similarity. Sufjan Stevens is a frequent

member of the top δ2 attribute sets.

Figure 5.9 shows the graph induced by the attribute set {Sufjan Stevens,Wilco}.
Vertices inside and outside dense subgraphs are set to different colors and shapes. For

clarity, we removed vertices with degree lower than 2. By visualizing vertices inside and

88 Chapter 5. Experimental Evaluation

 0

 5

 10

 15

 20

 25

 30

 2 4 6 8 10
 0

 50

 100

 150

 200

 250

 300
si

m
−

ε
e
xp

 x
 1

0
−

3

m
a
x−

ε
e
xp

 x
 1

0
−

3

σ x 10
4

sim−εexp
max−εexp

Figure 5.8: Expected structural correlation computed using the simulation model (sim-
εexp) and the analytical model max-εexp

S size σ κ ε δ2
Sufjan Stevens, Wilco 2 28,798 1,224 0.04 1.14

Sufjan Stevens, Of Montreal 2 28,621 1,188 0.04 1.13
Beirut 1 27,605 1,067 0.04 1.11

Sufjan Stevens, Decemberists, Beatles 3 27,415 1,046 0.04 1.11
Neutral Milk Hotel, Sufjan Stevens 2 29,260 1,231 0.04 1.10

Sufjan Stevens, Flaming Lips, Beatles 3 27,571 1,048 0.04 1.09
Animal Collective 1 33,555 1,757 0.05 1.09

Broken Social Scene, Neltral Milk Hotel 2 27,308 1,014 0.04 1.09
Radiohead, Spoon, Sufjan Stevens 3 27,113 976 0.04 1.06

Neltral Milk Hotel, Radiohead, Beatles 3 28,776 1,126 0.04 1.04

Table 5.5: Top-δ2 attribute sets from the LastFm dataset

outside structural correlation patterns, we can understand how the structural correla-

tion captures the relationship between attributes and the formation of dense subgraphs.

An example of a structural correlation pattern induced by {Sufjan Stevens,Wilco} is

shown in Figure 5.10. We omit the user names due to privacy issues. The largest

structural correlation pattern found in the LastFm dataset is presented in Figure 5.11.

It represents a community of 34 users who have listened to the Northern Irish singer

and songwriter Van Morrison. Finding such a large and dense community in a graph

where only 59% of the users have at least two friends is a very interesting result. By

correlating artists and the emergence of communities in Lastfm, we can add semantic

5.1. Case Studies 89

value to these communities.

Figure 5.9: Graph induced by the attribute set {Sufjan Stevens, Wilco} in the LastFm
dataset

A general view of the properties of the attribute sets from LastFm is shown in

Figure 5.12. The inverse cumulative distribution of the structural coverage (log-log

scale), the structural correlation (semi-log scale), and the normalized structural cor-

relation (semi-log scale) are presented in Figures 5.12a, 5.12b, and 5.12c, respectively.

The shape of the distributions, in their respective scales, show that while the struc-

tural coverage may follow a power-law distribution, the structural correlation and the

normalized structural correlation are expected to follow a exponential distribution.

We also study the correlations between the different functions for the analysis

of attribute sets discussed in this work: the support (σ), the structural coverage (κ),

the structural correlation (ε), and the normalized structural correlation (δ2). Table 5.6

shows the scatter plots of the correlation between each pair of these functions. Each

point in a scatter plot corresponds to an attribute set, and attribute sets of different

sizes (i.e., number of attributes) are distinguished by color. The support of the attribute

sets is very correlated with their structural coverage and structural correlation, but

not with the normalized structural correlation. Such results are in accord with the

previous analysis of the top normalized structural correlation attribute sets. Although

90 Chapter 5. Experimental Evaluation

Figure 5.10: Structural correlation pattern induced by the attribute set {Sufjan
Stevens, Wilco}, size = 11, and γ=0.7

Figure 5.11: Structural correlation pattern induced by the attribute set {Van
Morrison}, size = 34, and γ=0.52

5.1. Case Studies 91

 1

 10

 100

 1000

 10000

 100000

 100 1000 10000 100000

c
o
u
n
t

κ

(a) structural coverage

 1

 10

 100

 1000

 10000

0.1

c
o
u
n
t

ε

(b) structural correlation

 1

 10

 100

 1000

 10000

 100000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

c
o
u
n
t

δ

(c) normalized structural correla-
tion

Figure 5.12: Inverse cumulative structural coverage (κ), structural correlation (ε), and
normalized structural correlation (δ2)

all the attribute sets evaluated have a correlation with dense communities higher than

expected, some less frequent attribute sets present a structural correlation far above

the expected.

The low correlation between the attribute set support and its normalized struc-

tural correlation deserves a deeper discussion. Considering single artists, it is not

surprising that very popular artists do not have a structural correlation much higher

than expected. The low degree of most of the users in the LastFm graph (see Figure

5.7a) turns it difficult to an artist to become very popular without the “help” of low

degree users. In other words, the graph topology acts as a strong limitation for the nor-

malized structural correlation of popular artists. Moreover, the structural correlation

of attribute sets is related to social influence and homophily [Anagnostopoulos et al.,

2008], two important social patterns, and less popular artists are expected to depend

more on such social patterns. Popular artists have access to other means to main-

tain and increase their popularity, such as tv appearances and advertisements. In the

case of attribute sets that combine more than one artist (e.g, {Sufjan Stevens,Wilco}
and {Neural Milk Hotel,Radiohead,Beatles}), their low support reduces their expected

structural correlation. However, some of these attribute sets hold a relatively high

structural correlation resulting in high values of normalized structural correlation.

The correlation between the structural coverage and the structural correlation

function is very clear. The more an attribute set covers dense subgraphs, the higher is

its structural correlation. Nevertheless, similar to the support, high values of structural

coverage do not necessarily lead to high normalized structural correlations. The cor-

relation between the structural correlation and the normalized structural correlation

92 Chapter 5. Experimental Evaluation

κ ε δ2

σ

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 0 2000 4000 6000 8000 10000 12000 14000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 0 0.02 0.04 0.06 0.08 0.1 0.12

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

κ

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 0.02 0.04 0.06 0.08 0.1 0.12

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

ε

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Table 5.6: Scatter plots of the correlations between support (σ), structural coverage (κ),
structural correlation (ε), and normalized structural correlation for different attribute
set sizes (|S|) in the LastFm dataset

gives a better hint of the behavior of the δ2 function in the LastFm dataset. Top δ2

attribute sets have an intermediate structural correlation that is significantly higher

than expected if we consider their low supports.

5.1.3 CiteSeer

CiteSeerX6 is a scientific literature digital library and search engine. The two main

topics CiteSeerX focuses on are computer and information sciences. It provides sev-

6http://citeseerx.ist.psu.edu

5.1. Case Studies 93

eral features such as publication and author search, citation statistics and metadata

extraction. We build a citation graph from CiteSeerX as of March of 2010. In the

CiteSeer graph, papers are represented by vertices and citations by undirected edges.

Each paper has as attributes terms extracted from its abstract7. Like in the DBLP

graph, attribute sets represent topics in the CiteSeer, however, its dense subgraphs

define groups of related work (i.e., a set of papers with several citations among them),

instead of communities. This application can be useful in digital libraries, specially

in search. Keywords given by a user can be associated to existing topics and sets of

structural correlation patterns can be returned by the digital library in order to provide

a detailed view on the topic by identifying which sets of papers are closely related (i.e.,

they are in the same dense subgraph).

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000

c
o
u
n
t

degree

(a) degree

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06

c
o
u
n
t

#vertices

(b) attribute frequency

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000

c
o
u
n
t

#attributes

(c) attributes per vertex

Figure 5.13: Inverse cumulative degree, attribute frequency, and attributes per vertex
distributions (in log-log scale) for the CiteSeer dataset

The CiteSeer dataset has 294,104 vertices, 782,147 edges, and 206,430 attributes.

Figure 5.13 shows the inverse cumulative degree, attribute frequency and attributes

per vertex distributions for the CiteSeer dataset. The vertex degree and attribute

frequency distributions are characterized by heavy tails. The attribute per vertex

distribution is more homogeneous than the others, since abstract lengths are usually

limited by minimum and maximum lengths. Most of the vertices have, at most, 50

attributes and, surprisingly, one vertex has 326 attributes.

The parameters used in the generation of the results for this case study are

σmin = 2000, min size = 5, and γmin = 0.5. Table 5.7 shows the top structural cor-

relation attribute sets from the CiteSeer dataset. The attribute set {network, sensor}
has the highest structural correlation (0.47). In general, the top attribute sets are

7The set of attributes was reduced by stemming and stop words removal.

94 Chapter 5. Experimental Evaluation

related to subject computer networks. We also evaluate the attribute sets from the

CiteSeer dataset in terms of the normalized structural correlation. In Figure 5.22, it

is shown the expected structural correlation for different support values in CiteSeer.

The results for the simulation model are the average expected structural correlation

for 1000 simulations.

S size σ κ ε
network sensor 2 3276 1545 0.47

network hoc 2 2744 1279 0.47
ad network hoc 3 2725 1198 0.44
network rout 2 5084 2063 0.41

network wireless 2 5242 2073 0.40
node wireless 2 2086 737 0.35
protocol rout 2 2134 749 0.35
ad network 2 3563 1218 0.34

program logic 2 5895 1939 0.33
memori cach 2 2150 697 0.32

Table 5.7: Top-ε attribute sets from CiteSeer

 0

 2

 4

 6

 8

 10

 12

 14

 0 6 12 18 24 30
 0

 20

 40

 60

 80

 100

 120

 140

si
m

−
ε
e
xp

 x
 1

0
−

3

m
a
x−

ε
e
xp

 x
 1

0
−

3

σ x 10
3

sim−εexp
max−εexp

Figure 5.14: Expected structural correlation computed using the simulation model
(sim-εexp) and the analytical model max-εexp

Table 5.8 shows the top normalized structural correlation patterns from CiteSeer.

The attribute set {node, wireless} has the highest normalized structural correlation

(164.40). In general, the top δ2 attribute sets are related to known topics in computer

5.1. Case Studies 95

science. Figure 5.15 shows the graph induced by the attribute set {node, wireless} in

CiteSeer. Vertices inside and outside dense subgraphs (i.e., in structural correlation

patterns) are set to different colors and shapes. We can notice that vertices in dense

subgraphs comprehend a densely connected core of the graph, which is surrounded by

less connected vertices.

S size σ κ ε δ2
node wireless 2 2086 737 0.35 164.40
protocol rout 2 2134 749 0.35 157.57
memori cach 2 2150 697 0.32 143.83
network hoc 2 2744 1279 0.47 141.22

protocol wireless 2 2048 593 0.29 138.70
ad network hoc 3 2725 1198 0.44 134.65

network node rout 3 2075 523 0.25 118.26
optim queri 2 2094 535 0.26 118.17

perform instruct 2 2111 536 0.25 115.95
paper ad network 3 2081 485 0.23 108.86

Table 5.8: Top-δ2 attribute sets from the CiteSeer dataset

Figure 5.15: Graph induced by the attribute set {node, wireless} in the CiteSeer
dataset

A particular structural correlation pattern induced by the attribute set

{node, wireless} is shown in Figure 5.16. By checking the titles of the papers rep-

96 Chapter 5. Experimental Evaluation

Figure 5.16: Structural correlation pattern induced by the attribute set
{node, wireless}, size = 9, and γ=0.5 (EEBAWN - Energy-efficient Broadcasting in
All-wireless networks, SAEECATMAWN - Span: An Energy-efficient Coordination Al-
gorithm for Topology Maintenance in Ad-hoc Wireless Networks, ECRWAN - Energy-
conserving Routing in Wireless Ad-hoc Networks, MEMWN - Minimum-Energy Mobile
Wireless Networks, CMCPWSN - Connectivity Maintenance and Coverage Preserva-
tion in Wireless Sensor Networks, GIECAR - Geography-informed Energy Conservation
for Ad-hoc Routing, MEBAWN - Minimum-energy Broadcast in All-wireless Networks,
DTCWSNDCPEOMWAN - Distributed Topology Control in Wireless Sensor Networks
with Distributed Control for Power-efficient Operation in Multihop Wireless Ad-hoc
Networks)

resented by the vertices in the pattern, we can verify that their subjects are related to

wireless networks. We have also read the abstract of this papers and confirmed that

they are good representatives for the attribute set {node, wireless} and its respec-

tive related topics. The paper entitled Energy-efficient Broadcasting in All-wireless

networks appears twice in the pattern due to a duplicate entry for this paper in the

CiteSeer dataset.

Figure 5.17 presents the largest structural correlation pattern discovered in the

CiteSeer dataset. This pattern was induced by the attribute set {perform, system}
and is composed by 21 vertices. The papers included in the pattern cover topics such

as caching (e.g., Attribute Caches, Tradeoffs in Two-level on-chip Caching), memory

management in general (e.g., Memory-system Design Considerations for Dynamically

5.1. Case Studies 97

Figure 5.17: Structural correlation pattern induced by the attribute set
{perform, system}, size = 21, and γ=0.5 (AC - Attribute Caches, SLCM - Systems
for Late Code Modification, OTDRN - Observing TCP Dynamics in Real Networks,
TCIG - Transparent Controls for Interactive Graphics, LILP - Limits of Instruction
Level Parallelism, DLMR - DECWRL/Livermore Magic Release, LTOAC6BA - Link-
time Optimization of Address Calculation on a 64-bit Architecture, LTCM - Link-time
Code Modification, MSDCDSP - Memory-system Design Considerations for Dinami-
cally Scheduled Processors, BMFCEG - Boolean Matching for Full-custom ECL Gates,
CWPP - Cache Write Policies and Performance, SMCM - Shared Memory Consis-
tency Models, CEFCGASDSM - Comparative Evaluation of Fine and Coarse-grain
Approaches for Software Distributed Shared Memory, RLG - Recursive Layout Gen-
eration, EDPP - Efficient Dynamic Procedure Placement, DSDI - Drip: A Schematic
Drawing Interpreter, FPPDMA - Fluoroelastomer Pressure Pad Design for Microelec-
tronic Applications, TTOCC - Trade-offs in Two-level on-chip Caching, IOCCIOCD -
I/O Component Characterization for I/O Cache Designs, VMFS - Virtual Memory vs
File System, EWWWWC - Experience with a Wireless World Wide Web Client)

Scheduled Processors, Shared Memory Consistency Models), computer networks (e.g.,

Observing TCP Dynamics in Real Networks, Experience with a Wireless World Wide

Web Client), processor design (e.g., Boolean Matching for Full-custom ECL Gates), and

instruction level optimization (e.g., Systems for Late Code Modification, Limits of In-

struction Level Parallelism). We found also two papers not related to the topic systems

performance in this pattern. The papers entitled Transparent Controls for Interactive

Graphics and Fluoroelastomer Pressure Pad Design for Microelectronic Applications

98 Chapter 5. Experimental Evaluation

had their abstract incorrectly extracted by CiteSeerX. Terms describing the laboratory

where the respective works were developed, which is a computer systems laboratory,

were included in the abstracts.

 1

 10

 100

 1000

 10000

 100000

 0 2000 4000 6000 8000 10000

c
o
u
n
t

κ

(a) structural coverage

 1

 10

 100

 1000

 10000

 100000

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

c
o
u
n
t

ε

(b) structural correlation

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140 160 180

c
o
u
n
t

δ

(c) normalized structural correla-
tion

Figure 5.18: Inverse cumulative structural coverage (κ), structural correlation (ε), and
normalized structural correlation (δ2)

A general characterization of the attribute sets from CiteSeer in terms of struc-

tural coverage, structural correlation, and normalized structural correlation is shown

in Figure 5.18. The three distributions are in semi-log scale. We can notice that both

the structural coverage, the structural correlation and the normalized structural corre-

lation distributions are heavy-tailed. Similar results were found for the DBLP and the

Lastfm dataset.

In Table 5.9, we study the correlations among the structural coverage, the struc-

tural correlation and the normalized structural correlation function for attribute sets

of different sizes in the CiteSeer dataset. The support of the attribute sets is very

correlated with their structural coverage (i.e., attribute sets with high support have, in

general, high structural coverage). However, the same does not occur for the structural

correlation and the normalized structural correlation functions. High support attribute

sets do not necessarily have high structural correlation. Moreover, the top δ2 attribute

sets have low support.

Top structural correlation attribute sets have intermediate support, since high κ

attribute sets are usually very frequent and present low structural correlation. Consid-

ering the normalized structural correlation, we can notice that it is negatively corre-

lated with the structural coverage. In other words, the higher the structural coverage,

the lower is the normalized structural correlation. This property is a consequence of

the definition of normalized structural correlation, which considers how the structural

5.1. Case Studies 99

correlation of an attribute set is higher than expected, given its support, the graph

topology and the dense subgraph parameters.

High values of normalized structural correlation are usually related to high val-

ues of structural correlation. However, the opposite is not true. Attribute sets with

high structural correlation but also high support may have low normalized structural

correlations, since their structural correlations are not as higher than expected as some

attribute sets with high structural correlation and low support.

κ ε δ2

σ

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100 120 140 160 180

κ

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 20 40 60 80 100 120 140 160 180

ε

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 20 40 60 80 100 120 140 160 180

Table 5.9: Scatter plots of the correlations among support (σ), structural coverage (κ),
structural correlation (ε), and normalized structural correlation for different attribute
set sizes (|S|) in the CiteSeer dataset

100 Chapter 5. Experimental Evaluation

5.1.4 Human

The Human dataset combines a gene network extracted from the BIOGRID database8

and a human tissue expression dataset [Shyamsundar et al., 2005]. In a gene network,

each vertex is a gene and edges represent protein-protein and genetic interactions. In

the specific case of the Human dataset, the genes in the network are from the Homo

sapiens species. Gene and protein interactions are related to gene biological functions,

i.e., genes are connected according to their interactions in biological processes. Gene

expression data determines the level of expression of a gene in a set of tissues or cells,

which is a result of a microarray experiment [Shyamsundar et al., 2005]. Our dataset

is based on the dataset from [Moser et al., 2009].

We create two attributes, corresponding to positive (> 0.5) and negative (< 0.5)

normalized values, for each tissue. A gene expressed positively on the tissue SHCN060,

for example, will have the attribute +SHCN060. It has been argued that the combined

analysis of gene interaction and expression data is more promising than the individual

analysis [Moser et al., 2009; Grigoriev, 2001; Hanisch et al., 2002; Ulitsky and Shamir,

2007]. In the Human dataset, an attribute set represents a set of tissues and a dense

subgraph represents a module [Hartwell et al., 1999]. Therefore, through the analysis

of the correlation between attribute sets and the formation of dense subgraphs, we can

assess relationships between gene functionality and expression.

 1

 10

 100

 1000

 10000

 1 10 100 1000

c
o
u
n
t

degree

(a) degree

 1

 10

 100

 1000

 1 10 100 1000 10000

c
o
u
n
t

#vertices

(b) attribute frequency

 1

 10

 100

 1000

 10000

 1 10 100 1000

c
o
u
n
t

#attributes

(c) attributes per vertex

Figure 5.19: Inverse cumulative degree, attribute frequency, and attributes per vertex
distributions (in log-log scale) for the Human dataset

The Human dataset contains 3,628 vertices, 8,924 edges, and 230 attributes.

Figure 5.19 shows the inverse cumulative degree, attribute frequency and attributes

per vertex distributions for the Human dataset. While the degree distribution of the

8http://thebiogrid.org

5.1. Case Studies 101

genes presents a heavy tailed behavior, the attribute frequency and the attribute per

vertex distributions present considerably high minimum values followed by heavy tails.

S size σ κ ε
+SHCN086 +SHCN087 +SHCN088 3 328 58 0.18

+SHCN088 1 910 152 0.17
+SHCN078 +SHCN080 +SHCN088 3 1328 54 0.16

+SHCN060 +SHCN078 2 303 48 0.16
+SHCN087 +SHCN088 2 523 81 0.15
+SHCN080 +SHCN088 2 433 67 0.15

+SHCN078 +SHCN087 +SHCN88 3 316 48 0.15
+SHCN080 +SHCN087 +SHCN088 3 343 52 0.15

+SHBW148 1 864 130 0.15
+SHCN060 +SHCN086 2 326 49 0.15

Table 5.10: Top-ε attribute sets from the Human dataset

Figure 5.20: Graph induced by the attribute set
{+SHCN086,+SHCN087,+SHCN088} in the Human dataset

Table 5.10 shows the top 10 attribute sets in terms of structural correlation dis-

covered from the Human dataset. The minimum size (min size) and density (γmin)

parameters were set to 5 and 0.5, respectively. The minimum support threshold (σ)

was set to 300. In general, the top attribute sets are composed by attributes corre-

sponding to positive genes in tissues related to the lymphatic system. The lymphatic

102 Chapter 5. Experimental Evaluation

system is part of the immune system and includes the tonsil (SHCN078, SHCN086,

SHCN088), the thymus (SHCN068, SHBW148), the spleen (SHCN060), and the lymph

nodes (SHCN087, SHCN073, SHCN080). The immune system is considered one of the

most important vertebrate-specific evolutionary traits [Beck and Habicht, 1996] and

it is interesting to notice that genes related to this system present a more cohesive

structure. Previous studies have found evidences of the influence of the evolutionary

process over PPI networks. In particular, the robustness of such networks to errors

[Jeong et al., 2001; Albert et al., 2000; Albert, 2005] and the conservation of cohesive

modules across species [Wuchty et al., 2003] may be related to the high structural

correlation of immune system-related tissues.

The attribute set {+SHCN086,+SHCN087,+SHCN088} presents the highest

structural correlation (0.18) in the Human dataset. Figure 5.20 shows the graph in-

duced by such attribute set. Vertices inside and outside structural correlation patterns

are set to distinct colors and shapes. Vertices with degree 0 are not shown. We can

notice that structural correlation patterns play an important role as components of a

dense core of the graph, while the rest of the graph is barely connected.

Figure 5.21: Structural correlation pattern induced by the attribute set
{+SHCN086,+SHCN087,+SHCN088}, size = 7, and γ=0.5

The subgraph shown in Figure 5.21 is a particular structural correlation pattern

induced by the attribute set {+SHCN086,+SHCN087,+SHCN088}. According

5.1. Case Studies 103

to the Gene Ontology9, the genes CD4, CD28, ITK, LAT, LCK, ITK, and SYK are

involved in the immune response process, what explains the occurrence such a structural

correlation pattern in a set of tissues related to the lymphatic system.

We also analyze attribute sets from the Human dataset in terms of the normalized

structural correlation (see Section 3.2). In the specific case of this dataset, the nor-

malization approach is useful to assess how unexpected is it to find a given correlation

between a set of tissues and the existence of modules. Figure 5.22 shows the expected

structural correlation (γ=0.5, min size=5) using the simulation and the analytical

models. The simulation results are an average from 1000 executions.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000
 0

 50

 100

 150

 200

 250

 300

si
m

−
ε
e
xp

 x
 1

0
−

3

m
a
x−

ε
e
xp

 x
 1

0
−

3

σ

sim−εexp
max−εexp

Figure 5.22: Expected structural correlation computed using the simulation model
(sim-εexp) and the analytical model max-εexp

Table 5.11 presents the top 10 δ2 attribute sets from the Human dataset. It is

interesting to notice that the top 3 ε attribute sets were conserved (see Table 5.10).

Moreover, new attribute sets, such as {+SHCN068,+SHCN078}, were included due

to their high structural correlation considering their low supports. Tables 5.10 and

5.11 provide the main properties of the top patterns in terms of structural correla-

tion. However, it is relevant to give a broader view of the attribute sets. Figure 5.23

presents the inverse cumulative structural coverage, structural correlation and normal-

9http://www.geneontology.org

http://www.geneontology.org

104 Chapter 5. Experimental Evaluation

ized structural correlation distributions for the Human dataset. The distributions are

plot in semi-log scale and present heavy-tailed behavior.

S size σ κ ε δ2
+SHCN086 +SHCN087 +SHCN088 3 328 58 0.18 2.09

+SHCN060 +SHCN078 2 303 48 0.16 2.08
+SHCN078 +SHCN080 +SHCN088 3 1328 54 0.16 1.96
+SHCN078 +SHCN087 +SHCN88 3 316 48 0.15 1.90

+SHCN068 +SHCN078 2 303 43 0.14 1.86
+SHBW148 +SHCN087 +SHCN088 3 310 45 0.15 1.85

+SHCN060 +SHCN073 2 302 42 0.14 1.84
+SHCN078 +SHCN086 +SHCN087 3 312 45 0.14 1.83

+SHCN60 +SHCN86 2 326 49 0.15 1.80
+SHCN080 +SHCN086 +SHCN088 3 329 49 0.15 1.76

Table 5.11: Top-δ2 attribute sets from the Human dataset

 1

 10

 100

 1000

 10000

 25 50 75 100 125 150 175 200 225

c
o
u
n
t

κ

(a) structural coverage

 1

 10

 100

 1000

 10000

 0.1 0.2

c
o
u
n
t

ε

(b) structural correlation

 1

 10

 100

 1000

 10000

 0 0.5 1 1.5 2 2.5

c
o
u
n
t

δ

(c) normalized structural correla-
tion

Figure 5.23: Cumulative structural coverage (κ), structural correlation (ε), and nor-
malized structural correlation (δ2)

Table 5.12 shows the correlation between support, structural coverage, structural

correlation, and normalized structural correlation in the Human dataset through scatter

plots. The support of the attribute sets is significantly correlated with their structural

coverage, but not with the structural correlation and the normalized structural cor-

relation. In other words, structural correlation patterns associated to more frequent

attribute sets cover more vertices, but it does not lead to a significant correlation be-

tween such attribute sets and the formation of dense subgraphs. Moreover, despite the

low support of extended attribute sets, of size 4, for example, some of them have high

values of structural correlation and normalized structural correlation.

In general, attribute sets with high structural correlation have intermediate or

high structural coverage. However, only intermediate values of structural coverage

5.1. Case Studies 105

κ ε δ2

σ

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 0.5 1 1.5 2 2.5

κ

 0

 50

 100

 150

 200

 250

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

 0

 50

 100

 150

 200

 250

 0 0.5 1 1.5 2 2.5

ε

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 0.5 1 1.5 2 2.5

Table 5.12: Scatter plots of the correlations among support (σ), structural coverage (κ),
structural correlation (ε), and normalized structural correlation for different attribute
set sizes (|S|) in the Human dataset

are associated to a high normalized structural correlation, what is a direct result of

the impact of the support over the structural coverage and the structural correlation

function. While the correlation between frequent attribute sets and the formation of

dense subgraphs may be biased (see Section 3.2), some low support attribute sets have

a significant structural correlation if we consider their intermediate or low support.

Moreover, attribute sets with high normalized structural correlation have also high

structural correlation, but the opposite is not necessarily true.

106 Chapter 5. Experimental Evaluation

5.2 Parameter Sensitivity and Setting

We now assess how different input parameters affect the output of structural correla-

tion pattern mining. Our objective is to provide guidelines for setting the parameters

of SCPM. Figures 5.24 and 5.25 show the average structural correlation and normalized

structural correlation, respectively, of the complete output (global) and the top-10%

attribute sets from the SmallDBLP dataset varying the γmin, min size, and σmin pa-

rameters. SmallDBLP is a smaller version of the DBLP dataset with 32,908 vertices,

82,376 edges, and 11,192 attributes. Default values for γmin, min size, and σmin are

0.5, 10 and 100. The results show that more restrictive quasi-clique parameters (i.e.,

high values of γmin and min size) reduce the average ε but may increase δ, since dense

subgraphs become less expected. Moreover, high values of σmin are related to high

values of structural correlation ε. However, such attribute sets also present high values

of εexp, leading to low values of normalized structural correlation δ.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.5 0.6 0.7 0.8 0.9 1

a
v
e

ra
g

e
 ε

γmin

global
top−10%

(a) ε x γmin

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 10 11 12 13 14 15

a
v
e

ra
g

e
 ε

min_size

global
top−10%

(b) ε x min size

 0

 0.05

 0.1

 0.15

 100 150 200 250 300 350

a
v
e

ra
g

e
 ε

σmin

global
top−10%

(c) ε x σmin

Figure 5.24: Parameter sensitivity w.r.t the minimum structural correlation (εmin)

SCPM is an exploratory pattern mining method, and thus reasonable values for

the different parameters can be obtained by searching the parameter space. The min-

5.3. Performance Evaluation 107

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 0.5 0.6 0.7 0.8 0.9 1

a
v
e

ra
g
e

 δ

γmin

global
top−10%

(a) δ x γmin

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 10 11 12 13 14 15

a
v
e

ra
g

e
 δ

min_size

global
top−10%

(b) δ x min size

10
3

10
4

10
5

10
6

10
7

 100 150 200 250 300 350

a
v
e

ra
g
e

 δ

σmin

global
top−10%

(c) δ x σmin

Figure 5.25: Parameter sensitivity w.r.t the minimum normalized structural correlation
(δmin)

imum density parameter, γmin, and the minimum quasi-clique size, min size, will de-

pend on the application. For σmin, a useful guideline is to select values that produce

a significant expected structural correlation. Infrequent attribute sets may not be ex-

pected to induce any dense subgraph. The other parameters (εmin, δmin, and k) have

as objectives to speedup the algorithm and must be set according to the available

computational resources and time.

5.3 Performance Evaluation

In the last sections, we performed case studies in order to show the applicability of the

structural correlation pattern mining in real-life scenarios. This section assesses the

structural correlation pattern mining from a performance perspective. We evaluate the

algorithms proposed in Chapter 4 using real datasets and varying the input parameters.

As discussed in Section 3.4, both the structural correlation pattern mining and

the normalized structural correlation pattern mining problems are NP-hard. Therefore,

108 Chapter 5. Experimental Evaluation

such tasks require efficient algorithms to enable the processing of large real datasets.

Along Chapter 4, we have proposed several techniques in order to improve the perfor-

mance of the algorithms for the structural correlation pattern mining. In this section,

we evaluate such techniques in terms of their execution time.

The datasets used in the performance evaluation of the proposed algorithms are

a smaller version of the DBLP dataset (SmallDBLP), and a bigger version (DBLP),

which has 108,030 vertices, 276,658 edges, and 23,285 attributes. All experiments

presented in this section were executed on a 16-core Intel Xeon 2.4 Ghz with 50GB

of RAM. Each result is an average of five executions of a given algorithm using the

respective input parameters.

5.3.1 Computing the Structural Correlation

In Section 4.1, we have presented a naive algorithm for structural correlation pattern

mining. Algorithm 4 computes the structural correlation of attribute sets by enumer-

ating the complete set of dense subgraphs from the graph induced by a given attribute.

However, in Section 4.2, we proposed the two search strategies for computing the

structural correlation, which is a subproblem of the standard and normalized struc-

tural correlation pattern mining problems. This section evaluates the performance of

three algorithms for such task using the SmallDBLP dataset.

We compare the SCPM-DFS, the SCPM-BFS, and the naive algorithm for

structural correlation pattern mining, which we call Naive. The SCPM-DFS al-

gorithm is a version of the SCPM algorithm using a DFS strategy. Similarly, the

SCPM-BFS algorithm is a version of SCPM using a BFS strategy. The SCPM algo-

rithm is described in Section 4.2. We vary each parameter of the algorithms keeping

the others constant. Default values for the minimum size threshold γmin, the minimum

size threshold min size, and the minimum support threshold σmin are set to 0.5, 11,

and 100. Moreover, the minimum structural correlation threshold εmin, the minimum

normalized structural correlation threshold δmin, and the number of top structural cor-

relation patterns k to be generated are set to 0.1, 1, and 5, respectively, unless stated

otherwise.

Figure 5.26 shows the runtime of the SCPM-DFS, the SCPM-BFS, and the

naive algorithm for structural correlation pattern mining (Naive) for different values

of γmin. The values of min size, σmin, εmin, δmin, and k were set to 11, 100, 0.1,

1, and 5, respectively. We can notice that the SCPM-DFS algorithm outperforms

the SCPM-BFS and the Naive algorithm for small values of γmin. Moreover, the

SCPM-BFS algorithm performs better than the Naive algorithm.

5.3. Performance Evaluation 109

 10

 100

 1000

 10000

 100000

 0.5 0.6 0.7 0.8 0.9 1

ru
n
tim

e
 (

se
c)

γmin

SCPM−BFS
Naive

SCPM−DFS

Figure 5.26: Runtime of SCPM-BFS, Naive and SCPM-DFS w.r.t. γmin

 100

 1000

 10000

 100000

 11 12 13 14 15

ru
n
tim

e
 (

se
c)

min_size

SCPM−BFS
Naive

SCPM−DFS

Figure 5.27: Runtime of SCPM-BFS, Naive and SCPM-DFS w.r.t. min size

Figure 5.27 compares the runtime of the SCPM-DFS, the SCPM-BFS, and the

Naive algorithm varying the minimum size threshold min size. The parameters γmin,

σmin, εmin, δmin, and k were set to 0.5, 100, 0.1, 1, and 5, respectively. In general, the

SCPM-DFS algorithm achieves the best results, being more efficient than the SCPM-

BFS and the Naive algorithm. The SCPM-BFS algorithm is, again, significantly

faster than the Naive algorithm.

In Figure 5.28, we present the runtime of the SCPM-DFS, the SCPM-BFS and

110 Chapter 5. Experimental Evaluation

 100

 1000

 10000

 100000

 150 200 250 300 350

ru
n
tim

e
 (

se
c)

σmin

SCPM−BFS
Naive

SCPM−DFS

Figure 5.28: Runtime of SCPM-BFS, Naive and SCPM-DFS w.r.t. σmin

 100

 1000

 10000

 100000

 0.1 0.15 0.2 0.25

ru
n
tim

e
 (

se
c)

εmin

SCPM−BFS
Naive

SCPM−DFS

Figure 5.29: Runtime of SCPM-BFS, Naive and SCPM-DFS w.r.t. εmin

the Naive algorithm for structural correlation pattern mining varying the minimum

support threshold σmin. The values of γmin, min size, εmin, δmin and k were set to 0.5,

11, 0.1, 1, and 5, respectively. The SCPM-DFS algorithm is the most efficient for all

values of σmin.

We also compare the SCPM-DFS, the SCPM-BFS and the Naive algorithm

for computing the structural correlation w.r.t. the minimum structural correlation

threshold εmin. The SCPM-BFS and the SCPM-DFS algorithms apply a pruning

5.3. Performance Evaluation 111

technique for attribute sets based on the upper bound on structural correlation (see

Theorem 7). Therefore, it is interesting to see how such algorithms make use of the

εmin parameter in order to improve their performances. Figure 5.29 shows the running

time of the algorithms for different values of εmin. The γmin, min size, σmin, δmin,

and k parameters were set to 0.5, 11, 100, 1 and 5, respectively. The SCPM-DFS

algorithm provided the best results, followed by the SCPM-BFS.

 100

 1000

 10000

 100000

 10 20 30 40 50

ru
n
tim

e
 (

se
c)

δmin

SCPM−BFS
Naive

SCPM−DFS

Figure 5.30: Runtime of SCPM-BFS, Naive and SCPM-DFS w.r.t. δmin

Similarly to εmin, attribute sets may also be pruned based on a minimum normal-

ized structural correlation threshold (see Theorem 8). In Figure 5.30, we compare the

Naive, the SCPM-BFS and the SCPM-DFS algorithm varying the value of δmin.

The γmin, min size, σmin, εmin, and k parameters were set to 0.5, 11, 100, 0.1 and 5,

respectively. In general, the SCPM-DFS algorithm presents the best results. For low

values of δmin, the SCPM-BFS algorithm is outperformed by the Naive algorithm.

Based on the results obtained in this section, the SCPM-DFS algorithm (i.e., the

SCPM algorithm using a DFS strategy) is the most efficient algorithm for computing

the structural correlation. Moreover, both the SCPM-BFS and the SCPM-DFS

algorithms may take advantage of the εmin and the δmin parameters in order to execute

faster, due to the pruning techniques proposed in Section 4.3.

5.3.2 Sampling

In the last section, we evaluated three algorithms for computing the structural cor-

relation in terms of execution time varying several input parameters. This section

112 Chapter 5. Experimental Evaluation

studies the sampling strategies for computing the structural correlation proposed in

Section 4.4. Such sampling techniques may enable the computation of the structural

correlation of attribute sets using a limited sample of vertices from their respective

induced graphs. The deviations of the sampled results from those obtained considering

the entire population are estimated by their margin of error. The dataset used in this

evaluation is the SmallDBLP dataset.

The sampling techniques are evaluated in terms of the execution time of the

algorithms and the average error of their estimates for the structural correlation of

attribute sets. More specifically, we are interested in how the maximum estimated error

accepted (θmax) affects the performance and the accuracy of the proposed algorithms.

In Section 4.4, we described two sampling techniques for computing the structural

correlation, one based on a DFS and other based on a BFS strategy for checking whether

a vertex is a member of a dense subgraph. We call SCPM-SAMP-DFS the version

of the SCPM algorithm that computes the structural correlation using sampling and

DFS. The SCPM-SAMP-BFS algorithm computes the structural correlation using

sampling and BFS. The values of γmin, min size, σmin, εmin, δmin, and k are set to 0.5,

11, 100, 0.1, 1, and 5 respectively. Every result is an average of five executions.

Figure 5.31 compares the execution time of the SCPM-DFS, the SCPM-

SAMP-BFS, and the SCPM-SAMP-DFS algorithm for different values of θmax.

SCPM-DFS computes the exact structural correlation and their execution time does

not depend on θmax. We can notice that the use of sampling implies in a significant

reduction of the execution time of the algorithms when compared to SCPM-DFS.

Moreover, SCPM-DFS-SAMP outperforms SCPM-BFS.

It is also relevant to consider the accuracy of the estimates produced by the

sampling techniques. Figure 5.32 shows the mean squared error of the estimates of the

structural correlation using sampling. Since both SCPM-SAMP-BFS and SCPM-

SAMP-DFS presented similar results in terms of average error, we decided to omit

the results for SCPM-SAMP-BFS. The use of sampling for computing the structural

correlation produces accurate results. As expected, the θmax parameter regulates the

average error of the estimates provided.

The results discussed in this section show that estimating the structural correla-

tion of attribute sets through sampling is a good alternative, both in terms of execution

time and accuracy. The estimates obtained have a low average error and can be com-

puted efficiently. In the next section, we evaluate the algorithm for the discovery of

the top-k structural correlation patterns, proposed in Section 4.5.

5.3. Performance Evaluation 113

 100

 1000

 0.01 0.1 1

ru
n
tim

e
 (

se
c)

θmax

SCPM−DFS
SCPM−BFS−SAMP
SCPM−DFS−SAMP

Figure 5.31: Runtime of SCPM-DFS, SCPM-BFS-SAMP and SCPM-DFS-
SAMP w.r.t. θmax

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.01 0.1 1

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

θmax

Figure 5.32: Mean squared error of SCPM-SAMP-DFS w.r.t. θmax

5.3.3 Discovering the Top-K Structural Correlation Patterns

In Section 4.5, we proposed the enumeration of a limited set of most interesting struc-

tural correlation patterns as an alternative to the generation of the complete set of

patterns. The main motivation for this approach is the high computation cost of dis-

covering quasi-cliques (see Section 2.2 for more details). This section evaluates our

algorithm for identifying the top structural correlation patterns in terms of size and

114 Chapter 5. Experimental Evaluation

density.

Figure 5.33 shows the execution time of the Naive and the SCPM-DFS algo-

rithms varying the number of top structural correlation patterns to identified (k). Since

the Naive algorithm always computes the complete set of structural correlation pat-

terns, it is not affected by the value of k. The results for the SCPM-BFS algorithm

are not presented because the focus of this section is on the evaluation of the technique

for the discovery of the top-k patterns, which is applied by both the SCPM-DFS

and the SCPM-BFS. The parameters γmin, min size, σmin, εmin, δmin and k are set

to 0.5, 11, 100, 0.1, and 1, respectively. The inset also shows the execution time of

SCPM-DFS using a linear scale for the y-axis.

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12 14 16

ru
n
tim

e
 (

se
c)

k

SCPM−DFS
Naive

Linear scale

Figure 5.33: Runtime of the SCPM-DFS and the Naive algorithm w.r.t. k

It is interesting to notice that the running time of the SCPM-DFS algorithm

presents a decreasing cost when k is increased. In other words, the highest is the value

of k, the lower is the cost of increasing it by one unit. As expected, by setting low

values of k, the execution time of the algorithm can be reduced significantly.

In the next section, we evaluate the parallel algorithms for structural correla-

tion pattern mining presented in Section 4.7. We study the execution time and the

scalability of such algorithms varying the number of processors available.

5.3.4 Parallel Algorithms

In Section 4.7 we proposed parallel algorithms for computing the structural correlation

of attribute sets and for identifying the top-k structural correlation patterns in terms

5.3. Performance Evaluation 115

of size and density. The main motivation for the design of parallel algorithms for

structural correlation pattern mining is the high computational cost associated to such

tasks, as discussed in Chapter 3. This section evaluates how the proposed algorithms

perform in terms of execution time and scalability using the SmallDBLP dataset. The

evaluations consider only the part of the respective algorithm that has been parallelized.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 1 2 4 8
 0

 2

 4

 6

 8

ru
nt

im
e

(s
ec

)

sp
ee

du
p

#cores

Figure 5.34: Runtime and speedup of PAR-SCPM-DFS w.r.t. the number of cores

Figure 5.34 shows the runtime and the scalability of the parallel DFS algorithm

for structural correlation pattern mining (PAR-SCPM-DFS) for different numbers

of cores. The parameters γmin, min size, σmin, εmin, δmin and k were set to 5, 0.5,

400, 0.1, 1, and 5, respectively. We can notice that the algorithm scales well while the

number of cores increases. PAR-SCPM-DFS is up to 6 times faster than SCPM-DFS

when 8 cores are available.

In Figure 5.35, we evaluate the runtime and the scalability of the parallel BFS

algorithm for structural correlation pattern mining (PAR-SCPM-BFS) varying the

number of cores. The values of γmin, min size, σmin, εmin, δmin, and k were set to

7, 0.5, 400, 0.1, 1, and 5, respectively. PAR-SCPM-BFS presents a super linear

speedup (i.e., it is more than p times faster its sequential version when p cores are

available). When using two cores, the algorithm is about 80 times faster than its

sequential version. Nevertheless, such results are due to the poor performance of the

SCPM-BFS algorithm, as discussed in Section 5.3.1.

In Figure 5.36, we present the runtime and the speedup of PAR-SAMP-SCPM-

BFS, which is a parallel sampling algorithm for structural correlation pattern mining,

varying the number of cores available. The values of γmin, min size, σmin, εmin, and

116 Chapter 5. Experimental Evaluation

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1 2 4 8
 0

 40

 80

 120

 160

 200

 240

ru
nt

im
e

(s
ec

)

sp
ee

du
p

#cores

Figure 5.35: Runtime and speedup of PAR-SCPM-BFS w.r.t. the number of cores

 0

 700

 1400

 2100

 2800

 3500

 1 2 4 8
 0

 2

 4

 6

 8

ru
nt

im
e

(s
ec

)

sp
ee

du
p

#cores

Figure 5.36: Runtime and speedup of the PAR-SAMP-SCPM-BFS w.r.t. the num-
ber of cores

θmax were set to 3, 0.5, 400, 0, and 0.01 respectively. PAR-SAMP-SCPM-BFS

scalability is worse than PAR-SCPM-BFS and PAR-SCPM-DFS. When 8 threads

are available, PAR-SAMP-SCPM-BFS is only 2.71 times faster than its sequential

version. This result may be due to insufficient parallelism [Kumar et al., 1994]. Similar

results were found for PAR-SAMP-SCPM-DFS, as shown in Figure 5.37. In general,

the benefits of parallelization to sampling algorithms are small.

5.3. Performance Evaluation 117

 0

 700

 1400

 2100

 2800

 3500

 1 2 4 8
 0

 2

 4

 6

 8
ru

nt
im

e
(s

ec
)

sp
ee

du
p

#cores

Figure 5.37: Runtime and speedup of the PAR-SAMP-SCPM-DFS w.r.t. the num-
ber of cores

This section evaluated the performance of parallel algorithms for structural cor-

relation pattern mining using real datasets. We have shown that all the algorithms can

take advantage of multiple processors in order to improve their execution times. How-

ever, the combination of sampling and parallelization in structural correlation pattern

mining has not achieved good scalability in general.

5.3.5 Discussion

This chapter studied the structural correlation pattern mining in terms of the applica-

bility of the proposed patterns and the performance of the presented algorithms. Real

datasets were applied in order to characterize the knowledge provided by the structural

correlation pattern mining. Moreover, we have evaluated the pruning, sampling, and

parallelization strategies discussed in Chapter 4. The results show that such strategies

may enable the analysis of large datasets efficiently.

The next chapter concludes this work summarizing its main contributions and

limitations. Moreover, some directions for future research are proposed.

Chapter 6

Conclusions

In this work, we studied the problem of correlating vertex attributes and dense sub-

graphs in large attributed graphs. Vertex attributes play an important role in several

real graphs. Moreover, many of these graphs are known to be organized into dense

subgraphs, which are sets of vertices strongly connected among themselves. Therefore,

attributed graphs may enable the discovery of relevant knowledge regarding the rela-

tionships between vertex attributes and dense subgraphs. This chapter summarizes the

main contributions, limitations, and future research directions of this thesis.

6.1 Summary of Contributions

This thesis describes the study of the correlation between attribute sets and the for-

mation of dense subgraphs, which we call structural correlation pattern mining. The

main contributions of this work can be summarized as follows:

• General problem proposal: We propose the general problem of correlating

vertex attributes and the existence of dense subgraphs in attributed graphs. As

far as we know, there is no previous work on this problem in the literature. The

objective of the structural correlation is to measure how a set of attributes induces

dense subgraphs in large attributed graphs. A structural correlation pattern is a

dense subgraph induced by a particular attribute set. Therefore, the structural

correlation pattern mining provides knowledge at both the level of the attribute

sets and the dense subgraphs induced by them.

• Modeling: Based on the problem proposal, we defined a structural correlation

function and a structural correlation pattern combining two existing data mining

119

120 Chapter 6. Conclusions

patterns (frequent itemsets and quasi-cliques). Moreover, we proposed normal-

ization approaches in order to assess how the structural correlation of a given

attribute set deviates from the expected. The structural correlation pattern min-

ing is shown to be NP-hard, requiring efficient and scalable algorithm for its

application to large datasets.

• Algorithm design: We designed algorithms for structural correlation pattern

mining. The algorithms explore different search, pruning, sampling, and paral-

lelization strategies to compute the structural correlation efficiently. Moreover,

we proposed the identification of the top structural correlation patterns, instead

of the complete set of structural correlation patterns, in order to enable the pro-

cessing of large graphs in a feasible time.

• Applications and evaluation: We applied the structural correlation pattern

mining to several real datasets from different domains. Using such datasets, we

evaluated the performance of the proposed algorithms. We also conducted case

studies in order to show the applicability of the structural correlation pattern min-

ing in real-life scenarios. We found attribute sets with structural correlation much

higher than expected in all datasets studied. Such attribute sets carry a relevant

knowledge about the relation between attributes and dense subgraphs. More-

over, the structural correlation patterns discovered provide interesting knowledge

regarding the dense subgraphs induced by attribute sets.

6.2 Limitations

At this point, it is important to highlight the main limitations of this work. We address

some of the these limitations as future work in the next section. We summarize the

limitations of this work as follows:

• Performance: Along this thesis, we argued that the proposed algorithms en-

able the analysis of large attributed graphs. In our case studies, we applied the

proposed algorithms to attributed graphs with hundreds of thousands of vertices,

edges, and attributes. However, we know that the proposed algorithms may not

be able to process some real datasets. We tried to analyze an attributed graph

generated from the Wikipedia, with 3,135,812 vertices, 54,877,914 edges, and

1,756,599 attributes, for example, without success.

• Applications: In this work, we applied the structural correlation pattern min-

ing to several real datasets from different domains. The case studies presented

6.3. Future Work 121

provided qualitative insights regarding the applicability of the structural correla-

tion pattern mining to real-life attributed graphs. On the other hand, we know

that it would be relevant to verify the applicability of the structural correlation

pattern mining quantitatively. In particular, the use of the structural correlation

and structural correlation patterns to new and existing problems is of special

interest.

• Comparison with other methods: The proposal of the structural correlation

pattern mining is one of the contributions of this work. In an extensive search for

similar methods in the literature, we could not find any equivalent problem. Re-

lated problems include the graph clustering, specially the versions of the problem

that consider not only the graph topology but also the vertex attributes. In this

work, we did not compare the proposed patterns with any existing data mining

pattern from the literature.

6.3 Future Work

In the development of this work, we identified several directions for future research.

We summarize them as follows:

• Pruning: One of the contributions of this work is the proposal of pruning tech-

niques for the structural correlation pattern mining. Nevertheless, we could find

other pruning opportunities that were not explored in this work. In particular,

the fact that the structural correlation patterns induced by an attribute set Si

are subsets of the structural correlation patterns induced by an attribute set Sj,

such that Sj ⊆ Si, can be used as basis for new pruning techniques. Moreover, it

would be relevant to mine closed and maximal structural correlation patterns as

means to reduce the number of patterns generated as output.

• Distributed algorithms: As mentioned in the last section, we could find a very

large dataset that could not be processed by the proposed algorithms for struc-

tural correlation pattern mining. Such dataset motivates the design of distributed

algorithms for structural correlation pattern mining. Distributed algorithms may

handle datasets even larger than the ones used in this work.

• Diversity measures for structural correlation patterns: In this work, we

proposed mining the top-k largest and densest structural correlation patterns in

order to reduce both execution time and output volume. However, we noticed

122 Chapter 6. Conclusions

that some top patterns are very similar, which is a motivation to the applica-

tion of diversity measures in the identification of the most interesting structural

correlation patterns.

• More complex attribute sets: Attribute sets are considered as a bag-of-words

in structural correlation pattern mining. Nevertheless, more complex models may

enhance the description power of structural correlation patterns. In particular,

attribute sets may be n-grams or multivalued attributes. Moreover, structural

correlation patterns may be mined considering multiple relations, as in multi-

relational data mining [Džeroski, 2003; Wrobel, 2000].

• Applications: As discussed in the last section, one of the main limitations of

this work is the absence of quantitative evidences of the utility of the structural

correlation pattern mining. Nevertheless, we identified several existing problems

that can be solved using the knowledge provided by the structural correlation

pattern mining, such as:

– Graph clustering: Structural correlation patterns can be applied in the

identification of graph clusters regarding both the graph topology and vertex

attributes. In particular, we believe that such patterns can be percolated

(i.e., merged recursively) in the generation of clusters that have high co-

hesion and are composed by vertices that share attribute sets significantly

correlated with the formation of dense subgraphs.

– Relational learning: The knowledge provided by the structural corre-

lation pattern has promising applications in relational learning problems.

In link prediction, for example, attribute sets can be weighted according

to their structural correlation in order to predict the connections between

vertices considering both the graph structure and vertex attributes that in-

duce dense subgraphs. Moreover, in vertex classification problems, vertices

may be assigned to one or more classes based not only on the classes of their

neighbors, but also on how such classes are related to the formation of dense

subgraphs.

– Graph summarization and visualization: Structural correlation pat-

terns may be considered as new entities that represent their respective ver-

tices. Since each structural correlation pattern has an attribute set asso-

ciated with it, such entities may be labelled based on the attributes that

induced them. Therefore, a new graph in which vertices are structural cor-

relation patterns, edges are connections among vertices from different pat-

6.3. Future Work 123

terns, and vertex attributes are the attribute sets that induced the respective

pattern, may be used as a summarized view of the original attributed graph.

Moreover, such graph may be visualized, enabling a better understanding of

the relationships between attributes and dense subgraphs.

Bibliography

Abello, J., Resende, M. G. C., and Sudarsky, S. (2002). Massive quasi-clique detection.

In Proceedings of the Latin American Symposium on Theoretical Informatics, pages

598--612.

Agrawal, R., Imieliński, T., and Swami, A. (1993). Mining association rules between

sets of items in large databases. In Proceedings of the International Conference on

Management of Data, pages 207--216.

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules in large

databases. In Proceedings of the International Conference on Very Large Databases,

pages 487--499.

Alba, R. (1973). A graph-theoretic definition of a sociometric clique. The Journal of

Mathematical Sociology, 3(1):113--126.

Albert, R. (2005). Scale-free networks in cell biology. Arxiv preprint q-bio/0510054.

Albert, R., Jeong, H., and Barabási, A. (1999). Internet: Diameter of the world-wide

web. Nature, 401(6749):130--131.

Albert, R., Jeong, H., and Barabási, A. (2000). Error and attack tolerance of complex

networks. Arxiv preprint cond-mat/0008064.

Alon, U. (2006). An Introduction to Systems Biology: Design Principles of Biological

Circuits. Taylor & Francis, New York, NY, USA.

Anagnostopoulos, A., Kumar, R., and Mahdian, M. (2008). Influence and correlation

in social networks. In Proceedings of the International Conference on Knowledge

Discovery and Data Mining, pages 7--15.

Anderson, T. and Finn, J. (1996). The new statistical analysis of data. Springer Verlag,

New York, NY, USA.

125

126 Bibliography

Beck, G. and Habicht, G. (1996). Immunity and the invertebrates. Scientific American,

275(5):60.

Borgatti Martin, G. and Stephen, P. (1990). LS sets, lambda sets and other cohesive

subsets. Social Networks, 12(4):337--357.

Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual web search

engine. Comput. Netw. ISDN Syst., 30:107--117.

Buehrer, G., Parthasarathy, S., and Chen, Y.-K. (2006). Adaptive parallel graph

mining for cmp architectures. In Proceedings of the International Conference on

Data Mining, pages 97--106.

Burgisser, P., Clausen, M., and Shokrollahi, M. (1997). Algebraic complexity theory.

Springer Verlag, New York, NY, USA.

Carrington, P. J. (2005). Models and Methods in Social Network Analysis (Structural

Analysis in the Social Sciences). Cambridge University Press, New York, NY, USA.

Ceglar, A. and Roddick, J. F. (2006). Association mining. ACM Comput. Surv.,

38(2):1--42.

Chakrabarti, D. (2004). Autopart: parameter-free graph partitioning and outlier de-

tection. In Proceedings of the European Conference on Principles and Practice of

Knowledge Discovery in Databases, pages 112--124.

Chakrabarti, D. and Faloutsos, C. (2006). Graph mining: Laws, generators, and algo-

rithms. ACM Comput. Surv., 38(1):2.

Chan, R., Yang, Q., and Shen, Y.-D. (2003). Mining high utility itemsets. In Proceed-

ings of the International Conference on Data Mining, pages 19--22.

Dourisboure, Y., Geraci, F., and Pellegrini, M. (2009). Extraction and classification of

dense implicit communities in the web graph. ACM Trans. Web, 3(2):1--36.

Džeroski, S. (2003). Multi-relational data mining: an introduction. SIGKDD Explor.

Newsl., 5(1):1--16.

Fayyad, U. M., Piatetsky-Shapiro, G., and Smyth, P. (1996). Advances in knowledge

discovery and data mining. pages 1--34. American Association for Artificial Intelli-

gence, Menlo Park, CA, USA.

Bibliography 127

Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3-5):75--

174.

Garey, M. R. and Johnson, D. S. (1990). Computers and Intractability; A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA.

Ge, R., Ester, M., Gao, B. J., Hu, Z., Bhattacharya, B., and Ben-Moshe, B. (2008).

Joint cluster analysis of attribute data and relationship data: The connected k-center

problem, algorithms and applications. ACM Trans. Knowl. Discov. Data, 2(2):1--35.

Gibson, D., Kumar, R., and Tomkins, A. (2005). Discovering large dense subgraphs

in massive graphs. In Proceedings of the International Conference on Very Large

Databases, pages 721--732.

Girvan, M. and Newman, M. (2002). Community structure in social and biological

networks. Proceedings of the National Academy of Sciences, 99(12):7821--7826.

Grigoriev, A. (2001). A relationship between gene expression and protein interactions

on the proteome scale: analysis of the bacteriophage T7 and the yeast Saccharomyces

cerevisiae. Nucleic Acids Research, 29(17):3513--3519.

Guan, Z., Wu, J., Zhang, Q., Singh, A., and Yan, X. (2011). Assessing and ranking

structural correlations in graphs. In Proceedings of the International Conference on

Management of Data, pages 937--948.

Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H., and Sharma,

R. S. (2003). Discovering all most specific sentences. ACM Trans. Database Syst.,

28(2):140--174.

Gyöngyi, Z. and Garcia-Molina, H. (2005). Link spam alliances. In Proceedings of the

International Conference on Very Large Databases, pages 517--528.

Han, J. (2005). Data Mining: Concepts and Techniques. Morgan Kaufmann, San

Francisco, CA, USA.

Hand, D. J., Smyth, P., and Mannila, H. (2001). Principles of data mining. MIT Press,

Cambridge, MA, USA.

Hanisch, D., Zien, A., Zimmer, R., and Lengauer, T. (2002). Co-clustering of biological

networks and gene expression data. Bioinformatics, 18(1):145--154.

Hartwell, L., Hopfield, J., Leibler, S., Murray, A., et al. (1999). From molecular to

modular cell biology. Nature, 402(6761):47--52.

128 Bibliography

Hipp, J., Güntzer, U., and Nakhaeizadeh, G. (2000). Algorithms for association rule

mining — a general survey and comparison. SIGKDD Explor. Newsl., 2(1):58--64.

Hu, H., Yan, X., Huang, Y., Han, J., and Zhou, X. J. (2005). Mining coherent dense

subgraphs across massive biological networks for functional discovery. Bioinformat-

ics, 21:213--221.

Hu, Y., Chen, H., Zhang, P., Li, M., Di, Z., and Fan, Y. (2008). Comparative def-

inition of community and corresponding identifying algorithm. Physical Review E,

78(2):26121--26127.

Jeong, H., Mason, S., Barabási, A., and Oltvai, Z. (2001). Lethality and centrality in

protein networks. Nature, 411(6833):41--42.

Jiang, D. and Pei, J. (2009). Mining frequent cross-graph quasi-cliques. ACM Trans.

Knowl. Discov. Data, 2(4):1--42.

Khan, A., Yan, X., and Wu, K.-L. (2010). Towards proximity pattern mining in large

graphs. In Proceedings of the International Conference on Management of Data,

pages 867--878.

Kumar, V., Grama, A., Gupta, A., and Karypis, G. (1994). Introduction to paral-

lel computing: design and analysis of algorithms. Benjamin-Cummings Publishing,

Redwood City, CA, USA.

Lappas, T., Liu, K., and Terzi, E. (2009). Finding a team of experts in social networks.

In Proceedings of the International Conference on Knowledge Discovery and Data

Mining, pages 467--476.

Leskovec, J. (2008). Dynamics of large networks. PhD thesis, Pittsburgh, PA, USA.

Liu, G. and Wong, L. (2008). Effective pruning techniques for mining quasi-cliques. In

Proceedings of the European conference on Machine Learning and Knowledge Dis-

covery in Databases, pages 33--49.

Mannila, H. and Toivonen, H. (1997). Levelwise search and borders of theories in

knowledge discovery. Data Min. Knowl. Discov., 1(3):241--258.

McPherson, M., Smith-Lovin, L., and Cook, J. (2001). Birds of a feather: Homophily

in social networks. Annual Review of Sociology, 27(1):415–444.

Bibliography 129

Menezes, G. V., Ziviani, N., Laender, A. H., and Almeida, V. (2009). A geograph-

ical analysis of knowledge production in computer science. In Proceedings of the

International Conference on World Wide Web, pages 1041--1050.

Moser, F., Colak, R., Rafiey, A., and Ester, M. (2009). Mining cohesive patterns from

graphs with feature vectors. In Proceedings of the International Conference on Data

Mining, pages 593–604.

Moser, F., Ge, R., and Ester, M. (2007). Joint cluster analysis of attribute and rela-

tionship data withouta-priori specification of the number of clusters. In Proceedings

of the International Conference on Knowledge Discovery and Data Mining, pages

510--519.

Mougel, P.-N., Plantevit, M., Rigotti, C., Gandrillon, O., and Boulicaut, J.-F. (2010).

Constraint-based mining of sets of cliques sharing vertex properties. In Proceedings

of the Workshop on Analysis of Complex Networks, pages 48--62.

Newman, M. E. J. (2003). The structure and function of complex networks. SIAM

Review, 45(2):167--256.

Newman, M. E. J. (2004). Detecting community structure in networks. The European

Physical Journal B - Condensed Matter and Complex Systems, 38(2):321--330.

Ng, R. T., Lakshmanan, L. V. S., Han, J., and Pang, A. (1998). Exploratory mining

and pruning optimizations of constrained associations rules. In Proceedings of the

International Conference on Management of Data, pages 13--24.

Palla, G., Derényi, I., Farkas, I., and Vicsek, T. (2005). Uncovering the overlap-

ping community structure of complex networks in nature and society. Nature,

435(7043):814--818.

Pei, J., Jiang, D., and Zhang, A. (2005). On mining cross-graph quasi-cliques. In Pro-

ceedings of the International Conference on Knowledge Discovery and Data Mining,

pages 228--238.

Pons-Porrata, A., Berlanga-Llavori, R., and Ruiz-Shulcloper, J. (2007). Topic discovery

based on text mining techniques. Inf. Process. Manage., 43(3):752--768.

Pôssas, B., Ziviani, N., Meira, Jr., W., and Ribeiro-Neto, B. (2005). Set-based vector

model: An efficient approach for correlation-based ranking. ACM Trans. Inf. Syst.,

23(4):397--429.

130 Bibliography

Puig-Centelles, A., Ripolles, O., and Chover, M. (2008). Surveying the identification

of communities. Int. J. Web Based Communities, 4(3):334--347.

Scott, J. P. (2000). Social Network Analysis: A Handbook. Sage Publications, London,

UK.

Seidman, S. (1983a). LS sets as cohesive subsets of graphs and hypergraphs. Mathe-

matical Social Sciences, 6(1):87--91.

Seidman, S. (1983b). Network structure and minimum degree. Social Networks,

5(3):269--287.

Seidman, S. and Foster, B. (1978). A graph-theoretic generalization of the clique

concept. The Journal of Mathematical Sociology, 6(1):139--154.

Sese, J., Seki, M., and Fukuzaki, M. (2010). Mining networks with shared items. In

Proceedings of the International Conference on Information and Knowledge Man-

agement, pages 1681--1684.

Shi, X., Leskovec, J., and McFarland, D. A. (2010). Citing for high impact. In Pro-

ceedings of the Joint Conference on Digital Libraries, pages 49--58.

Shyamsundar, R., Kim, Y., Higgins, J., Montgomery, K., Jorden, M., Sethuraman, A.,

Van De Rijn, M., Botstein, D., Brown, P., and Pollack, J. (2005). A DNA microarray

survey of gene expression in normal human tissues. Genome Biology, 6(3):22--29.

Silva, A., Meira, Jr., W., and Zaki, M. J. (2010). Structural correlation pattern mining

for large graphs. In Proceedings of the Workshop on Mining and Learning with

Graphs, pages 119--126.

Silva, A., Meira, Jr., W., and Zaki, M. J. (2012). Mining attribute-structure correlated

patterns in large attributed graphs. PVLDB, 5(5):466--477.

Spirin, V. and Mirny, L. A. (2003). Protein complexes and functional modules in molec-

ular networks. Proceedings of the National Academy of Sciences, 100(21):12123–

12128.

Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Introduction to Data Mining.

Addison-Wesley Longman Publishing, Boston, MA, USA.

Thabtah, F. (2007). A review of associative classification mining. Knowl. Eng. Rev.,

22(1):37--65.

Bibliography 131

Tomita, E., Tanaka, A., and Takahashi, H. (2006). The worst-case time complexity

for generating all maximal cliques and computational experiments. Theor. Comput.

Sci., 363:28--42.

Travers, J. and Milgram, S. (1969). An experimental study of the small world problem.

Sociometry, 32(4):425--443.

Ulitsky, I. and Shamir, R. (2007). Identification of functional modules using network

topology and high-throughput data. BMC Systems Biology, 1(8):1--17.

Valiant, L. (1979). The complexity of computing the permanent. Theoretical Computer

Science, 8(2):189--201.

Wilkinson, B. and Allen, M. (2004). Parallel Programming: Techniques and Ap-

plications Using Networked Workstations and Parallel Computers (2nd Edition).

Prentice-Hall, Upper Saddle River, NJ, USA.

Witten, I. and Frank, E. (2005). Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann, San Francisco, CA, USA.

Wonnacott, T. and Wonnacott, R. (1985). Introductory statistics. Wiley, New York,

NY, USA.

Wrobel, S. (2000). Relational data mining. pages 74--99. Springer-Verlag New York,

Inc., New York, NY, USA.

Wuchty, S., Oltvai, Z., and Barabási, A. (2003). Evolutionary conservation of motif

constituents in the yeast protein interaction network. Nature Genetics, 35(2):176--

179.

Xu, X., Yuruk, N., Feng, Z., and Schweiger, T. A. J. (2007). Scan: a structural

clustering algorithm for networks. In Proceedings of the International Conference on

Knowledge Discovery and Data Mining, pages 824--833.

Yang, G. (2004). The complexity of mining maximal frequent itemsets and maximal

frequent patterns. In Proceedings of the International Conference on Knowledge

Discovery and Data Mining, pages 344--353.

Zaki, M. J. (2000). Scalable algorithms for association mining. IEEE Trans. on Knowl.

and Data Eng., 12:372--390.

132 Bibliography

Zaki, M. J., Parthasarathy, S., Li, W., and Ogihara, M. (1997). Evaluation of sampling

for data mining of association rules. In Proceedings of the International Workshop

on Research Issues in Data Engineering, pages 42--51.

Zeng, Z., Wang, J., Zhou, L., and Karypis, G. (2006). Coherent closed quasi-clique

discovery from large dense graph databases. In Proceedings of the International

Conference on Knowledge Discovery and Data Mining, pages 797--802.

Zhang, W., Yoshida, T., Tang, X., and Wang, Q. (2010). Text clustering using frequent

itemsets. Know.-Based Syst., 23(5):379--388.

Zhao, Y., Zhang, C., and Zhang, S. (2006). Efficient frequent itemsets mining by

sampling. In Proceedings of the Conference on Advances in Intelligent IT, pages

112--117.

Zhou, Y., Cheng, H., and Yu, J. X. (2009). Graph clustering based on struc-

tural/attribute similarities. PVLDB, 2(1):718–729.

	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Structural Correlation Pattern Mining
	1.2 Contributions of This Work
	1.3 Outline

	2 Background and Related Work
	2.1 Dense Subgraphs
	2.2 Quasi-clique Mining
	2.2.1 Vertex Pruning
	2.2.2 Candidate Quasi-clique Pruning

	2.3 Frequent Itemset Mining
	2.4 Related Work

	3 Structural Correlation Pattern Mining: Definitions
	3.1 Structural Correlation
	3.2 Normalized Structural Correlation
	3.3 Structural Correlation Patterns
	3.4 Structural Correlation Pattern Mining Problem

	4 Structural Correlation Pattern Mining: Algorithms
	4.1 Naive Algorithm
	4.2 Computing the Structural Correlation
	4.3 Pruning Techniques
	4.4 Sampling
	4.5 Top-k Structural Correlation Patterns
	4.6 The SCPM Algorithm
	4.7 Parallel Algorithms
	4.7.1 Computing the Structural Correlation
	4.7.2 Sampling
	4.7.3 Top-k Structural Correlation Patterns

	5 Experimental Evaluation
	5.1 Case Studies
	5.1.1 DBLP
	5.1.2 LastFm
	5.1.3 CiteSeer
	5.1.4 Human

	5.2 Parameter Sensitivity and Setting
	5.3 Performance Evaluation
	5.3.1 Computing the Structural Correlation
	5.3.2 Sampling
	5.3.3 Discovering the Top-K Structural Correlation Patterns
	5.3.4 Parallel Algorithms
	5.3.5 Discussion

	6 Conclusions
	6.1 Summary of Contributions
	6.2 Limitations
	6.3 Future Work

	Bibliography

