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Resumo

Neste trabalho desenvolvemos modelos e algoritmos para problemas de planejamento
integrado de produção e logística na indústria da mineração. A partir de uma ampla
revisão bibliográfica, aborda-se o conceito de Cadeia Global de Suprimentos da Mine-
ração e discutem-se os principais problemas de Pesquisa Operacional sob a ótica da
integração de decisões de planejamento.

Decisões estratégicas são contempladas em um modelo de programação estocás-
tica multiestágio para planejamento de capacidade da Cadeia Global de Suprimentos
da Mineração. O modelo integra decisões de localização de instalações e projeto de
redes considerando as economias de escala inerentes aos investimentos em capacidade.
Um primeiro estudo indica direções para o desenvolvimento de heurísticas e algoritmos
específicos para o problema por meio de uma avaliação empírica de diferentes parâmet-
ros do pacote CPLEX. Em um segundo estudo, uma Heurística Lagrangiana é proposta
para determinar, para instâncias maiores, boas soluções viáveis para o problema em
um tempo razoável quando comparado ao CPLEX. Adicionalmente, a habilidade de
se determinar boas soluções viáveis nos momentos iniciais do processo computacional
é tratada em uma abordagem de busca local com fixação flexível de variáveis. Tal
algoritmo também é avaliado comparativamente aos demais procedimentos de solução
discutidos no texto.

Decisões táticas, por sua vez, são abordadas em um modelo matemático para
planejamento tático de vendas e operações. O modelo possui características de dimen-
sionamento de lotes em um ambiente de rede, mas apresenta fluxos necessariamente
inteiros (capacidades de trens e navios, por exemplo), níveis discretos de produção em
minas e usinas de beneficiamento, além do desbalanceamento causado por perdas de
massa inerentes ao beneficiamento de minérios e ao transporte de cargas em granel.
Um conjunto de heurísticas Relax&Fix é desenvolvido para tentar resolver instâncias
de tamanhos realistas. As estratégias propostas são capazes de produzir resultados
melhores que o CPLEX para a maioria das instâncias, em especial para aquelas com
horizontes de planejamento mais longos. O algoritmo de busca local com fixação flexível
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de variáveis também é avaliado em relação à sua habilidade de produzir boas soluções
viáveis logo no início do processo computacional.

Decisões operacionais, por fim, são brevemente abordadas por meio de um modelo
programação inteira por metas que aborda o problema de programação integrada de
curto prazo de operações de lavra, beneficiamento, estocagem e despacho de produtos de
minério de ferro em um complexo minerador. O conceito de Valor da Solução Integrada
é proposto como forma de quantificar os ganhos obtidos por meio do investimento na
solução de um problema integrado e (potencialmente) mais complexo.

Palavras-chave: Pesquisa Operacional, Cadeia de Suprimentos, Mineração.
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Abstract

In this Thesis, we develop models and algorithms applied to integrated production and
logistics problems in the mining industry. Based on an extensive literature review,
we address the Global Mining Supply Chain concept and discuss the main related
Operations Research problems under a integrated planning perspective.

Strategic decisions are evaluated in a novel multistage stochastic integer pro-
gramming model to address the capacity planning problem in a Global Mining Supply
Chain. The model integrates capacitated facility location and network design decisions
with economies of scale on the capacity costs. We analyze the characteristics of the
problem by means of an empirical study of different settings for the parameters of the
CPLEX solver. Such analysis provides pointers to the development of specific algo-
rithms and solution approaches. We then develop a Lagrangian Heuristic as a means to
determine, for large problem instances, good feasible solutions in a reasonable amount
of time when compared to CPLEX. Furthermore, the ability of determining good fea-
sible solutions in the early stages of the computation is addressed in a soft-fixing local
search framework, which is evaluated against the other solution approaches discussed.

Tactical decisions are tackled in a mixed-integer programming approach to the
integrated sales and operations tactical planning problem in a Global Mining Supply
Chain. The model has characteristics of a lot sizing problem in a network environ-
ment, but with challenging aspects related to integer flows, discrete production levels
and mass losses in concentration and transportation processes. We develop a series
of Relax&Fix strategies in order to address realistic sized problem instances. Those
strategies are able to outperform CPLEX for most of the several problem instances
considered, and with greater success in longer planning horizons. The soft-fixing local
search is also evaluated for its ability of determining good feasible solutions in the early
stages of the computation.

Operational decisions are briefly discussed in a mixed-integer goal programming
model to address the integrated short-term programming of iron ore open pits, process-
ing plants, stockyards and shipping operations. We propose the concept of the Value of
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the Integrated Solution, which determines how valuable is solving a more complex in-
tegrated decision problem given the potential losses incurred when individual decisions
are undertaken.

Keywords: Operations Research, Supply Chain, Mining.
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Resumo Estendido

Em um cenário econômico de alta competitividade, internacionalização e concentração,
a indústria da mineração apresenta-se como um ambiente extremamente fértil à apli-
cação de técnicas de Pesquisa Operacional. A complexidade das operações, os desafios
da integração entre produção e logística em toda a cadeia produtiva e os grandes inves-
timentos envolvidos motivam estudos voltados para o aumento da produtividade dos
ativos, para a redução dos custos de operação e para o aumento da geração de valor dos
empreendimentos. Dessa forma, processos de tomada decisão nos níveis operacional,
tático e estratégico, em especial aqueles fundamentados em Pesquisa Operacional, en-
contram oportunidades significativas de aplicação e captura de valor.

Dadas a complexidade e a escala dos ativos produtivos e logísticos envolvidos,
a indústria da mineração deve ser tratada como uma grande cadeia de suprimentos,
onde minas, usinas de beneficiamento, ferrovias, portos e entrepostos sejam geridos
de forma a garantir o máximo de integração e efetividade na execução das operações.
Nesse sentido, no desenvolvimento de sistemas de suporte à decisão em mineração,
a integração de diferentes estágios da cadeia e de diferentes níveis de decisão deve
ser cuidadosamente considerada. Existem ao mesmo tempo oportunidades e riscos
significativos nas interfaces existentes, seja na dimensão funcional, seja nos diferentes
níveis de decisão.

Neste trabalho, o termo planejamento é utilizado de forma ampla, abrangendo
decisões estratégicas, táticas e operacionais. O termo integração, por outro lado,
restringe-se ao aspecto funcional, ou seja, como operações em diferentes estágios da
cadeia produtiva interagem e interferem com aquelas à jusante e à montante. Desen-
volvemos e analisamos um conjunto de modelos matemáticos e algoritmos para plane-
jamento integrado de produção e logística — considerando mina, ferrovia e porto — na
indústria da mineração — sob as óticas de decisões estratégicas, táticas e operacionais.

Decisões estratégicas cobrem horizontes de longo prazo e envolvem investimentos
em capacidade de produção e distribuição, seja na abertura de novas minas, usinas,
entrepostos ou portos, seja na abertura de novas ferrovias ou extensão de ferrovias exis-
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tentes, ou mesmo na aquisição de outros ativos relacionados à produção e transporte
do minério de ferro desde as minas até os clientes finais. Como principal tipo de inves-
timento, a expansão de capacidade encontra-se associada à previsão de crescimento da
demanda por minério de ferro. No entanto, variações negativas na demanda também
podem induzir decisões quanto ao fechamento, temporário ou definitivo, de instalações
produtivas ou canais logísticos. Somadas a isso, as incertezas associadas às variações de
demanda e preços de commodities sugerem uma abordagem estocástica para a tomada
de decisões estratégicas. No Capítulo 2, esses conceitos são simultaneamente contem-
plados em um modelo estocástico multi-estágio de planejamento de capacidade sobre
toda a cadeia produtiva global da mineração. De particular interesse é a habilidade
de se desenvolverem políticas para decidir sobre a abertura, fechamento e reabertura
de instalações produtivas e canais logísticos ao longo de um horizonte de planejamento
e considerando diferentes cenários de variação de demanda. O modelo matemático
proposto é original e apresenta características de dimensionamento de lotes, projeto
de redes, localização de instalações e expansão de capacidade, demonstrando grande
complexidade computacional e exigindo métodos específicos de solução. Num primeiro
estudo, avaliamos as principais características do problema e diferentes abordagens de
solução com auxílio do pacote de otimização CPLEX. Essa avaliação aponta para as di-
reções mais promissoras de desenvolvimento de algoritmos e heurísticas para solução do
problema. Uma das abordagens possíveis, a Relaxação Lagrangiana, é então explorada
com o objetivo de se fortalecer o limite dual e derivar, por meio de uma Heurística
Lagrangiana, bons limites primais para o problema. O desempenho da heurística é
comparado com os resultados produzidos pelo CPLEX, indicando sua melhor aplica-
bilidade para instâncias de maior porte, com maior número de períodos no horizonte
de planejamento e de nós na árvore de cenários. Uma abordagem de busca local com
fixação flexível de variáveis também é proposta como alternativa para se determinar
boas soluções viáveis logo no início do processo computacional. Ambas as abordagens
são comparadas aos resultados obtidos pelo CPLEX, mostrando bons resultados para
instâncias maiores e mais complexas.

Decisões táticas, por sua vez, cobrem horizontes de médio prazo e envolvem a
alocação dos recursos de produção, estocagem e distribuição para atender as demandas
do mercado de minério de ferro. Um maior grau de detalhamento dos elementos da
cadeia produtiva da mineração torna-se necessário, uma vez que as decisões devem ser
integradas. O Capítulo 3 apresenta um modelo matemático para planejamento tático
de vendas e operações com o objetivo de integrar decisões de médio prazo ao longo de
toda a cadeia. Grandes operações de mineração normalmente dispõem de diversas mi-
nas com diferentes capacidades, além de usinas de beneficiamento e pelotização, pátios
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de estocagem, ferrovias, minerodutos, terminais portuários e entrepostos. Dependendo
das características do minério ofertado em cada mina e da demanda colocada em cada
terminal portuário, as decisões de extração, beneficiamento, blendagem e manuseio
podem utilizar diferentes instalações em diferentes estágios da cadeia produtiva. Cada
uma dessas decisões deve considerar os custos e as capacidades de produção, estocagem
e transporte de todo o sistema. Nesse sentido, um modelo de programação inteira mista
aborda o problema de planejamento tático de vendas e operações tendo os cenários
reais da indústria mineral brasileira como inspiração. O modelo tem características
de um problema de dimensionamento de lotes em uma estrutura de redes, porém com
aspectos complicadores relacionados à integralidade de determinados fluxos, ao des-
balanceamento de massa causado por perdas inerentes ao transporte e à eficiência dos
processos de beneficiamento, e às capacidades discretas de produção. Uma série de
estratégias de solução baseadas na heurística Relax&Fix são desenvolvidas como forma
de contornar a elevada complexidade computacional do problema. Apesar dos algorit-
mos não terem garantia de otimalidade, tampouco de viabilidade, algumas estratégias
são capazes de gerar resultados razoáveis em instâncias para as quais o CPLEX al-
cança limites significativamente mais fracos. O algoritmo de busca local com fixação
flexível de variáveis também é avaliado em relação à sua habilidade de produzir boas
soluções viáveis logo no início do processo computacional, mostrando novamente um
ganho modesto quando comparado ao CPLEX.

Decisões operacionais cobrem horizontes de curto prazo e envolvem a progra-
mação e o sequenciamento de operações em grau de detalhamento suficiente para ori-
entar a execução de atividades do dia-a-dia de uma mina, usina de beneficiamento,
pátio ou porto. A integração entre tais decisões é importante e pode produzir impor-
tantes resultados no que diz respeito à coordenação entre diferentes áreas operacionais
de uma mesma instalação produtiva, por exemplo. Esse é o assunto do Apêndice A, que
apresenta um modelo matemático de programação por metas inteira mista para tratar
o problema de programação de curto prazo de operações de lavra, beneficiamento,
estocagem e despacho de produtos de minério de ferro. Em grandes empresas miner-
adoras, a rígida estrutura organizacional comumente divide a gestão dessas operações
entre departamentos bastante compartimentados. Essa estrutura e as pressões do dia-
a-dia do ambiente produtivo promovem o estabelecimento de programas de produção
independentes que podem gerar resultados potencialmente subótimos para as opera-
ções de um complexo minerador. Dessa forma, o modelo busca integrar os processos
de programação de operações de curto prazo de um complexo minerador, utilizando
restrições específicas para tratar os contratos — formais ou não — que surgem nas
interfaces entre departamentos e unidades produtivas. O valor da solução integrada é
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estimado por meio da comparação entre programas gerados por decisões compartilha-
das e decisões individualizadas, evidenciando as perdas potenciais quando as restrições
de interface são ignoradas. O modelo tem características bastante específicas e exige,
assim, abordagens específicas de solução para instâncias de dimensões significativas.

O capítulo final desta Tese apresenta uma discussão sobre as principais con-
tribuições, os resultados e as inúmeras oportunidades de extensão do trabalho. É
importante ressaltar que os modelos desenvolvidos incorporaram importantes carac-
terísticas observadas em situações reais da indústria da mineração. A experiência
prática do autor e do orientador em projetos realizados na área foi fundamental nesse
sentido.

Palavras-chave: Pesquisa Operacional, Cadeia de Suprimentos, Mineração.
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Chapter 1

Operations Research applied to
integrated iron ore production and
logistics

“He forced himself to take a single step for-
ward and once he had done that the second was
a little less difficult, and the third was almost easy.”

The Pillars of the Earth, Ken Follet

In today’s highly competitive, globalized and concentrated economy, the applica-
tion of Operations Research techniques in the mining industry is a promising approach.
Given the size and complexity of its production and logistics assets, the mining indus-
try must be addressed as a large-scale supply chain in which mines, processing plants,
railways, ports and supply stations must be managed in a way to ensure integrated and
effective operations. In the first chapter of this Thesis we present the fundamentals of
the Global Mining Supply Chain, inspired by the Brazilian scenario, and according to
an integrated planning approach. We use the term planning in a broad sense, which
covers strategic, tactical and operational decisions. The term integration, on the other
hand, is restricted to the functional interaction and coordination between decisions in
different stages of the supply chain. The results given in this Chapter are also presented
in the following publications:

Pimentel, B. S., Mateus, G. R., and Almeida, F. A. (2010). Mathematical
models for optimizing the global mining supply chain. In Nag, B., editor,
Intelligent Systems in Operations: Models, Methods and Applications, pages
133–163. IGI Global, Hershey, Pennsylvania.
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Pimentel, B. S., Mateus, G. R., and Almeida, F. A. (2010b). Operations
research applied to integrated iron ore production and logistics. In Opera-
tions Research in Mining Seminar, Santiago, Chile.

1.1 Introduction

Brazil figures among the most important iron ore exporters, facing at the same time
great opportunities and overwhelming challenges. On the one hand, the country has
one of the largest and richest iron ore reserves in the world as well as a technically
mature, traditional mining workforce. Also, given the elevated iron ore prices and
demand, Brazilian mining companies have shown increasingly stronger revenues and,
due to the higher economic feasibility of green field projects, unprecedented invest-
ment levels. On the other hand, there is a series of structural and economical issues
that pose significant restrictions to the effective operation of the Brazilian mining in-
dustry. Firstly, although Brazilian mines and processing plants exhibit relatively high
productivity levels, there are several constraints imposed by a limited and costly lo-
gistics infrastructure. Brazil still lacks important investments in roads, railways and
ports which, coupled with excessive public taxation and an over appreciated currency,
impose additional — and rather non-competitive — costs to the iron ore products des-
tined to exportation. Secondly, the scale and complexity of Brazilian mining operations
require a solid operations management expertise, which may not be as strong as the
available mining and metallurgical technical expertise. Thirdly, given the continuous
consolidation trends of the global mining markets, large mining companies often have
to deal with the challenge of integrating several different assets located at potentially
disperse sites and with specific capacities and managerial processes. All those issues
motivate a thorough quantitative analysis of a Global Mining Supply Chain at the
strategic, tactical and operational decision levels. An Operations Research approach
to that call is therefore a natural choice.

Although there has been significant effort in developing intelligent decision sup-
port systems for the mining industry, those are usually focused in addressing isolated
tasks such as mine development, hauling equipment dispatch, railway scheduling oper-
ations and ship queue management. An approach to the Global Mining Supply Chain,
on the other hand, requires an integrated perspective that must take into account
mine, railway and port operations, as well as domestic and international customers
and supply stations served by the appropriate logistics channels.
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1.2 An overview of mining operations

Mining is an extremely capital intensive industry and, as such, demands high efficiency
with regard to operation management decisions. There are today two important trends
that have been influencing the decision-making process in large-scale mining operations:
the continuous ore grade decrease in mines throughout the world, which impacts prod-
uct quality and processing costs; and the ever increasing pressure over operational
costs. Managerial decisions must then be quantitatively evaluated in order to account
for those issues and still attain the expected results.

The first major and critical decision in mining operations is the establishment of
a new mining venture, since it often requires the highest levels of capital investment.
Traditional evaluation of mining projects includes drilling and sampling, generating
a representative orebody model, deciding mining and processing methods, assessing
capital and operating costs and developing a technical and financial life-of-mine plan.
After establishing a feasible mining operation, another major decision involves deter-
mining the mine design and development plan. Proper mine design must account
for access opening, orebody detailing, open pit (or underground tunnel) preparation,
among other strategic decisions. In the mine development plan, detailed orebody data
is used to build a discrete block model that allows scheduling ore removal according to
the net present value, expected grade, processing plant requirements and the terrain’s
structural constraints.

Ore extraction is performed by a fleet of heavy-duty, off-road trucks and shovels,
which remove the run-of-mine (ROM) from the pits and take it to appropriate locations
— valuable ore to crushing and screening facilities and valueless material to waste
stockpiles. Since the operation of hauling equipment is rather costly, the appropriate
allocation and dispatching of trucks and shovels to load and discharge points is of
utmost importance.

Pit

Shovel

Trucks

Milling & 

screening

ROM stockpile / 

homogenization yard

Figure 1.1. The mine pit and crushing subsystem.
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Milling and screening facilities are employed to reduce ROM size according to
the requirements of the processing plants. Besides size, those requirements may also
include grade considerations, in which case the ROM may need to be blended and
homogenized. Blending may be achieved by appropriately feeding the milling and
screening facilities according to the characteristics of each mining work bench and thus
allocating hauling equipment accordingly. Another way of achieving proper blending
requires a homogenizing yard, where different ROM are properly mixed in stockpiles
so that physical and chemical properties can be homogenized. Conveyor belts are used
to transport ROM from the milling facilities to the homogenizing yard and from there
to the processing plant feed.

Processing plants enhance ore product quality by means of classification (grinding
and screening) and concentration (flotation and magnetic separation, for iron ore)
processes. Processing plant operations are aimed at maximizing mass efficiency, which
depends not only on the characteristics of the ROM offered by the mine, but also on
adequate planning and control. In the iron ore industry, pelletizing plants can also be
employed to process ultra-fine materials generated at the processing plants. Although
such ultra-fine materials are also sold as end products, they cannot be used to feed
a blast furnace directly and must, therefore, be agglomerated into pellets. Pelletizing
plants can be located at the mine complex or at the port (or even at both). The pellets
produced from pellet-feed ore and other agglomerating materials is also transferred to
the mine or port product stockyards and from there to steelmaking customers.

In the product stockyard, ore products are stored according to commercial pro-
grams and logistics (railways, roads, rivers or sea) availability. A set of stackers form
stockpiles and a set of reclaimers retrieve those stockpiles to compose specific ore prod-
uct shipments. Again, a set of conveyor belts, or even trucks and shovels of smaller
size, can be used to accomplish lot loading.

Mine product stockyard

Stacker
From processing / 

pelletizing plants

Reclaimer

Loading silo

To port

Stockpiles

Figure 1.2. The mine’s product stockyard and railroad interface.

Railroads are often used to transport ore products to the port, where exportation
takes place, or to domestic supply stations, where additional processing — usually
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screening of lumpy ore products degraded during transport — may occur before serving
local demand. Trains loaded with ore products may have to share the railway with
trains used to convey different bulk cargoes, or even with passenger trains. Railroad
capacity may thus be significantly constrained and impose important restrictions to
the overall system operations.

The port receives ore products from a set of mine complexes and, according to a
short-term program — which includes train and ship arrival, as well as stock levels and
quality —, transfers those ore products to the product stockyard, pelletizing plants,
screening plants, or even directly to awaiting ships. Additional blending may take place
during stockpile formation or ship loading. Domestic demand may also be served by
shipments originated at the port, often by rail or road.

Although some mining companies may also own and operate seaborne carriers,
the majority of commercial contracts rely on third-party freight operators to transport
ore products to offshore customers. Ports can ship ore products directly to customers
located at, or close to, other offshore ports; alternatively, shipments may be directed to
offshore supply stations, where additional blending and fine separation may take place,
or where other pelletizing plants may be located. From offshore ports and supply
stations, international demand can be served by train or road.

From 

railroad

Port product stockyard

Stacker Reclaimer

Car dumper

Ship 

loader
Ocean carrier

To maneuvering yard

To customers

Blended 

stockpiles

Figure 1.3. The port subsystem, with railroad and ocean interfaces.

Some characteristics of the commodity metals markets are essential to under-
standing the decision-making process in mining operations, especially when integrated
approaches are considered. In the base metals market, such as iron ore, transporta-
tion costs amount to a significant fraction of the commodity’s value. Usually, steel
companies establish contracts with iron ore producers, in which prices are settled in
accordance to chemical and physical characteristics of the products. Negotiated prices
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generally hold for approximately a quarter of a year, and iron ore producers are obliged
to supply a certain amount of iron ore to each contracted buyer.

1.3 An integrated perspective and the Global

Mining Supply Chain

Traditionally, a greater amount of effort has been directed towards the optimization
of mine development and its long-term production plan. However, in a continuously
consolidating industry, it is common to observe complex integrated operations involving
not only open-pit and underground mining, but also all logistics concerned with hauling
equipment dispatch, cargo composition, railroad transportation planning and traffic
control, and port handling, blending and loading. Operations Research approaches
to mining industry problems can provide management support along that functional
dimension as well as in strategic, tactical and operational decision levels. Depending on
the scenario and on the problem size, different solution approaches may be required,
with an unavoidable tradeoff between computational complexity, time and solution
quality.

The literature devoted to optimization of mining operations can be categorized
according to decision-level and functional dimensions. At the decision-level dimension,
Management Science categorizes the decision-making process according to the following
structure [Bradley et al., 1977]:

1. Strategic planning deals with long-term decisions involving managerial policies
and resource development. Decision analysis is large in scope and requires very
aggregate information. In the mining context, strategic decisions include, for
instance, the establishment of new mining ventures and capacity expansion of
existing facilities.

2. Tactical planning seeks effective resource allocation to satisfy demand require-
ments and operation constraints on a given time horizon. Decision analysis still
requires significant information aggregation. In the mining context, tactical deci-
sions include, for instance, developing mine or port production plans, or railroad
transportation plans.

3. Operations control is concerned with short-term decisions, usually involving
low-level programming and scheduling. Information generated at higher decision
levels must be disaggregated to a useful degree. In the mining context, oper-
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ational decisions involve, for instance, allocating and dispatching mine haulage
equipment, and scheduling train traffic in constrained railroads.

At the functional dimension, mining operations typically involve the following:

• Open-pit and underground mine scheduling, which involves determining an opti-
mal production schedule over the life of the mineral deposit, from the feasibility
study to the termination phase;

• Mine load and haulage equipment allocation and dispatching, which involves
effectively deploying trucks and shovels according to some performance criteria,
while maintaining a steady, reliable ore feed to the processing plants;

• Processing, which employs physical and chemical processes devoted to enhance
ore quality by performing classification, concentration and agglomeration opera-
tions;

• Blending, which involves mixing ore by appropriate stockpiling and reclaiming,
both at mine and port stockyards, in order to deliver ore at the required quality
specifications;

• Railway scheduling and dispatch, which involves effectively routing and control-
ling train movement over a line, as well as planning meeting and passing of trains
on single-line sections, while also attending to operational constraints;

• Port planning and scheduling, which involves determining an optimal plan to
satisfy shipment demand, while minimizing delays in serving the ship arrival
queue, and determining effective routes to convey ore products from the stockyard
to the ship’s holds.

A thorough analysis of Operations Research literature applied to mining operations is
given in Pimentel et al. [2010a].

Large mining operations are often composed of several mines and processing
plants, as well as stockyards, railroads, ports and supply stations, each with different
capacities. According to the demand imposed by domestic and international customers,
and depending on the characteristics of the ore products supplied by each mine, deci-
sions such as mining, processing, handling, blending and shipping may involve different
facilities at different stages of the supply chain. A Global Mining Supply Chain can
thus be defined as network of integrated facilities designed to process, using a variety
of production techniques, and distribute, using a variety of transportation modals, bulk
ore products from mines to customers, which can be (and usually are) at significant
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geographic distances. This definition is consistent with that of a global production and
supply network, as proposed by Tsiakis and Papageorgiou [2008].

Mines Processing 

plants
Ports

Domestic 

supply 

stations

Domestic 

customers

Offshore 

customers

Offshore 

supply 

stations

Processing 

plants

Figure 1.4. A Global Mining Supply Chain.

It is important to notice that end ore products in each mine may be considered
intermediate products to the supply chain, as additional blending may occur either at
the ports or at the supply stations. Supply stations may also operate as transshipment
hubs, receiving ore products from the railway and dispatching them by road, or the
other way around. Planning decisions are usually guided by expected revenue and
variable and fixed costs modeled as linear or nonlinear functions on material flows and
market conditions. In such a complex scenario, planning must be as detailed as lower
is the decision level. However, the main opportunity, and also the main challenge in
integrated planning of the mining supply chain is to explore the flexibility of the system
to yield lower costs and increased product quality, especially in times of lower demand.

When inter-temporal integration comes into play, it is common to have strategic
decisions defining high-level goals and constraints to tactical decisions, and the equiv-
alent happens between tactical and operational decisions. If considered in isolation,
decisions may turn out to be infeasible at lower levels, as higher-level decisions may
consider averaged or aggregated data. For instance, a monthly production plan may
generate infeasible daily production schedules if detailed operational time restrictions
are larger than the averaged daily capacity. An integrated approach to optimal plan-
ning in the Global Mining Supply Chain should consider the framework [Pimentel et al.,
2010b] depicted in Figure 1.5.

A final word must be said about uncertainty issues. All operations depicted above
possess some degree of uncertainty and can significantly influence other downstream or
upstream operations in the supply chain. For instance, unexpected downtime can de-
crease the nominal capacity and availability of all production and distribution elements
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Figure 1.5. Mining decision problems according to functional and inter-temporal
dimensions.

[Lin, 2009]. Uncertainties inherent to the orebody model can influence the processing
plant throughput, both in quantity and quality, which in turn affects the expected
production portfolio and makes additional blending required at stockyards and load-
ing points. In the more general context of the supply chain, demand, market prices,
operational costs and financial risks — varying taxes, duties, exchange rates and trans-
fer prices — may vary unpredictably and with different global effects [Germain et al.,
2008]. That would significantly affect the optimal production and distribution poli-
cies determined by solely deterministic approaches. Accounting for such uncertainties
clearly brings additional complexity to an already difficult problem.

1.4 Scope and contributions

This Thesis presents a broad discussion on the most relevant planning and scheduling
problems found in the mining industry, the corresponding mathematical programming
approaches and the complex integrations that often arise in practice, but are seldom
addressed in the literature. It is important to notice that we restrict the integration
effort to the functional dimension of the Global Mining Supply Chain — that is, the
integration between production and distribution stages on the same decision level.
The integration between strategic, tactical and operational decisions — for instance,
planning and scheduling decisions for a given stage — is left as future work.

The main contributions can be described as follows:

• In this Chapter, we have brought the supply chain concept to the mining industry
scenario and discussed its inherent integrated planning problems. References to
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the corresponding mathematical programming approaches in strategic, tactical
and operational decision levels can be found in [Pimentel et al., 2010a].

• In Chapter 2, we develop a novel multistage stochastic integer programming
model to address the strategic capacity planning problem in a Global Mining
Supply Chain. The model integrates capacitated facility location and network
design decisions with economies of scale on the capacity costs. Also, the model is
sensitive to both positive and negative variations in iron ore demand and allows
the establishment of new (or capacity expansion of existing) production facilities
and logistics channels, as well as the deactivation of specific facilities and channels
in a temporary or permanent basis. We analyze the characteristics of the problem
by means of an empirical study of different settings for the parameters of the
CPLEX solver. Such analysis motivates the development of two different solution
approaches: a Lagrangian heuristic, which attempts to improving the dual bounds
and deriving quality primal bounds for the problem; and a Soft-Fixing Local
Search approach, which attempts to determine good feasible solutions early in
the solution process.

• In Chapter 3, we propose a mixed-integer programming approach to the inte-
grated sales and operations tactical planning problem in a Global Mining Supply
Chain. The model has characteristics of a lot sizing problem in a network envi-
ronment, but presents challenging aspects related to integer flows, discrete pro-
duction levels and flow conservation violations due to mass losses in processing
plants and bulk transportation. We develop and evaluate a series of Relax&Fix
strategies in order to tackle realistic sized problem instances and provide good
primal bounds for the problem. The structure of the solution process also sug-
gests the evaluation of the Soft Fixing Local Search approach as an alternative
heuristic to the problem.

• A brief discussion on operational-level problems is given in Appendix A, where
we present a mixed-integer goal programming model to address the integrated
short-term programming of iron ore open pits, processing plants, stockyards and
shipping operations. Additionally, we propose the concept of the Value of the
Integrated Solution, which determines how valuable is solving a more complex
integrated decision problem given the potential losses incurred when individual
decisions are undertaken.

We conclude the text by discussing the main results presented in this Thesis and
pointing out possible extensions and further research directions.



Chapter 2

Stochastic capacity planning in a
Global Mining Supply Chain

“ ’It will end well; almost certainly so for the
project; and with reasonable probability for you.’
’What are the figures?’ demanded Gaal.
’For the project, over 99.9%.’
’And for myself?’”

Foundation, Isaac Asimov

At the strategic level, decisions must be made regarding major capital invest-
ments on the establishment of new (or on the capacity expansion of existing) mines,
processing facilities, supply stations and logistics channels in order to satisfy increas-
ing demand. However, in times of economic distress, strategic decisions should also
consider whether or not to shutdown specific facilities in a temporary or permanent
basis. In addition, the inherent risk associated to commodities’ demand and price levels
suggest a stochastic approach to strategic decision making. Hence, in this Chapter, we
discuss those issues in a multistage stochastic mixed-integer programming model which
addresses the capacity planning problem throughout the Global Mining Supply Chain.
In a first study, we evaluate the main characteristics of the problem and broadly discuss
possible solution approaches in order to drive the development of specific algorithms
and heuristics. We explore one of such approaches, the Lagrangian Relaxation, which is
employed as a means to determine, for large problem instances, good feasible solutions
in a reasonable amount of time when compared to CPLEX. In yet another study, the
ability of determining good feasible solutions in the early stages of the computation is
addressed in a soft-fixing local search framework, which is evaluated against the other
solution approaches discussed here.

11



12
Chapter 2. Stochastic capacity planning in a Global Mining Supply

Chain

The results given in this Chapter are also presented in the following publication:

Pimentel, B. S., Mateus, G. R., and Almeida, F. A. (2011). Stochastic
capacity planning in a global mining supply chain. In IEEE Workshop
on Computational Intelligence in Production and Logistics Systems, April
2011. Paris, France.

2.1 Introduction

The present decade has shown extreme variations in ore prices and demand. Such
variations affect not only mining operations, but also all downstream production chain
up to the ore consumers. Strategic, tactical and operational decisions must then be
in accordance to market conditions, since it is the ultimate goal of any commodity
enterprise to minimize its operational cost and maximize its throughput.

The recent financial crisis has proven that developing accurate predictions of
commodities’ prices and demand can be extremely difficult. The complexity of today’s
economical dynamics, the increasing levels of uncertainty and information asymme-
try and the intricate relationships between productive and financial markets can be
overwhelming [Kimura, 2002]. Such a scenario drives the motivation of contemplating
stochastic aspects on analytics studies, especially those involving strategic decisions on
high capital expenses. In a growing economy environment, when ore prices and demand
are high, mining companies tend to invest in establishing new ventures, expanding ca-
pacity, or even consolidating the market. High selling prices improve the feasibility of
lower grade operations and of ore producers that are geographically distant from con-
sumer markets, especially if prices are significantly higher than the associated freight
costs. Customers tend to prioritize quantity over quality and there is a higher pressure
on the availability of mining production and distribution systems. However, in an un-
stable or decaying economic environment, the situation is quite the opposite. Demand
and prices drop, and customers tend to prioritize quality over quantity, with a higher
pressure on reducing mining production and distribution costs. Such dynamic scenario
has driven large scale base metals mining companies to pursue higher efficiency levels
in their global operations. Operations Research provides the basis to achieve such goals
by adequately modeling and planning operations in an integrated framework.

In this Chapter, we are interested in developing a mathematical programming
model for a stochastic capacity planning problem applied to a Global Mining Supply
Chain. In this context, strategic planning should be devoted to evaluate major capital
investments on the establishment of new (or on capacity expansion of existing) mines,
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Figure 2.1. Qualitative variation of iron ore prices, historical and forecast.

processing facilities, supply stations and logistics channels in order to satisfy increas-
ing demand. However, in times of decreasing demand, strategic decisions should also
include whether or not to shutdown specific facilities in a temporary or permanent
basis [Dias et al., 2006]. Those decisions may have to be made according to budget
limitations for each time period, which can also affect other strategic supply chain de-
cisions [Dogan and Goetschalckx, 1999]. Fixed costs, expected revenues and return on
investment are thus the main drivers to strategic decisions in the mining supply chain.
It is important to emphasize that capacity expansion and network design problems
are known to be hard to solve. When risk is considered, computational complexity is
further increased and special care must be taken when developing the mathematical
formulation and, more importantly, the solution approach.

2.2 Capacity planning

We assume the term capacity planning to encompass capacitated facility location, net-
work design and capacity expansion decisions. The first two are concerned with select-
ing the time schedule for installing resources at different locations in order to minimize,
for instance, the total discounted costs for meeting customer demands specified over a
planning horizon [Erlenkotter, 1981]. The third, on the other hand, aims at determin-
ing the additional capacity and the associated times at which it should be added so
that the net present investment is minimized [Luss, 1982].

Facility location decisions play a critical role in the strategic design of supply chain
networks. In a discrete facility location problem, the selection of the sites where new
facilities are established is restricted to a finite set of candidate locations [Melo et al.,
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2009]. In many practical situations, however, the optimal topology of the underlying
network must be determined together with the facility location decision, thus con-
figuring a capacitated facility location/network design problem [Melkote and Daskin,
2001]. Solution strategies for those problems range from Lagrangian Relaxation [Shul-
man, 1991] and decomposition [Dogan and Goetschalckx, 1999; Singh et al., 2009] to
a number of metaheuristics [Keskin and Üster, 2007].

It is important to notice that investments in capacity planning — in the form of
new facilities/channels or discrete capacity increments — commonly exhibit substantial
economies of scale. This means that any strategic investment policy should consider
the tradeoff between the economies-of-scale savings of large expansion sizes versus the
cost of installing capacity before it is actually needed. The capacity cost function is
typically concave, strictly increasing, non-negative, and often specified as a piecewise,
fixed charge linear approximation. Decisions of opening, closing and reopening facilities
and logistics channels may then share specific costs.

The mathematical formulation for the capacity planning problem in the Global
Mining Supply Chain is a novel approach that integrates lot sizing, capacity expansion,
facility location and network design decisions such as:

• ROM production levels and its corresponding transformation to sinter-feed and
pellet-feed at the processing plants, as well as the transformation of pellet-feed
in pellets at the pelletizing plants;

• Iron ore flow between mines, plants, ports, supply stations and customers using
trucks, railways, ducts or vessels;

• Dynamic capacitated facility location and network design, namely opening, shut-
ting down and reopening facilities and logistics channels according to demand;

• Incremental capacity expansion on facilities and logistics channels, original or
newly established.

It is important to notice that, since any facility should always be economically viable,
a minimum level of production must be allocated at each period in order to cover the
fixed operational costs. However, the combination of fixed charge and variable costs
adequately represents that feature. Also, depletion of iron ore reserves are assumed to
be independent on exploitation, at least for the duration of the planning horizon. The
mathematical notation follows.
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2.2.1 Mathematical notation

Sets

D : Customers (demand centers);

FO : Existing facilities, which are already opened at the beginning of the planning
horizon;

FC : Candidate facilities, which can be opened from the beginning of the planning
horizon;

F : All facilities, F = {FO ∪ FC};

LO : Existing logistics channels, LO : {(i, j)|i, j ∈ FO}, which are already opened
at the beginning of the planning horizon;

LC : Candidate logistics channels, LC : {(i, j)|i, j ∈ F}, which can be opened from
the beginning of the planning horizon;

L : All logistics channels, L = {LO ∪ LC};

Q : Ore products, raw or processed;

Ŷ : Capacity increment magnitude levels;

Ȳ : Initial capacity magnitude levels.

Parameters

T : Number of time periods;

dqti : Demand for product q at customer i and node n;

θni : Capital expense of opening i ∈ FC at time t;

θtij : Capital expense of establishing (i, j) ∈ LC at time t;

ιti : Capital expense of closing facility i ∈ F at time t;

ιtij : Capital expense of closing channel (i, j) ∈ L at time t;

πti : Capital expense of reopening facility i ∈ F at n;

πtij : Capital expense of reopening channel (i, j) ∈ L at t;

αti : Fixed operational cost for facility i ∈ F at time t;
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αtij : Fixed operational cost for channel (i, j) ∈ L at time t;

βqt : Penalties for unmet demand of product q at t;

δqti : Fixed cost of established facility capacity;

δqtij : Fixed cost of established channel capacity;

κ̄qi : Initial capacity for production of q at i ∈ FO;

κ̄ij : Initial capacity of channel (i, j) ∈ LO;

µ̂qtik : Cost of incrementing capacity at facility i, on level k ∈ Ŷ ;

µ̂tijk : Cost of incrementing capacity at channel (i, j), on level k ∈ Ŷ ;

υ̂qtik : Magnitude of capacity increment k ∈ Ŷ at facility i ∈ F ;

υ̂tijk : Magnitude of capacity increment k ∈ Ŷ at channel (i, j) ∈ L;

φi : Limit on capacity increment at facility i ∈ F ;

φij : Limit on capacity increment at channel (i, j) ∈ L;

µ̄qtik : Cost of initial capacity at i ∈ FC , level k ∈ Ȳ ;

µ̄tijk : Cost of initial capacity at (i, j) ∈ LC , level k ∈ Ȳ ;

ῡqtik : Magnitude of initial capacity k ∈ Ȳ at i ∈ FC ;

ῡtijk : Magnitude of initial capacity k ∈ Ȳ at (i, j) ∈ LC ;

σti : Production split of sinter and pellet-feed, σti ∈ [0, 1];

ρqti : Unit production cost of q at i ∈ F ;

χqtij : Unit transportation cost of q through (i, j) ∈ L;

ηqti : Process efficiency for q at i ∈ F , ηqti ∈ [0, 1].

Variables

ati : Determines whether facility i ∈ F should be operational at time t, ati ∈ {0, 1};

atij : Determines whether channel (i, j) ∈ L should be operational at time t, atij ∈
{0, 1};

bqt : Determines the amount of unmet demand for product q ∈ Q at time t;



2.2. Capacity planning 17

cti : Determines whether facility i ∈ F should be closed at time t, cti ∈ {0, 1};

ctij : Determines whether channel (i, j) ∈ L should be closed at time t, ctij ∈ {0, 1};

oti : Determines whether facility i ∈ FC should be opened at time t, oti ∈ {0, 1};

otij : Determines whether channel (i, j) ∈ LC should be established at time t, otij ∈
{0, 1};

pqti : Determines the amount of product q ∈ Q produced at facility i ∈ F at time t;

rti : Determines whether facility i ∈ F should be reopened at time t, rti ∈ {0, 1};

rtij : Determines whether channel (i, j) ∈ L should be reestablished at time t,
rtij ∈ {0, 1};

ûqti : Determines the capacity increment at facility i ∈ F at time t;

ûtij : Determines the capacity increment of channel (i, j) ∈ L at time t;

ūqti : Determines the initial capacity at facility i ∈ FC at time t;

ūtij : Determines the initial capacity of channel (i, j) ∈ LC at time t;

xqtij : Determines the amount of product q ∈ Q transported though channel (i, j) ∈
L at t;

ŷqtik : Determines the selection of technology/magnitude k ∈ Ŷ for the capacity
increment decision of producing q ∈ Q at facility i ∈ F at time t, ŷqtik ∈ {0, 1};

ŷtijk : Determines the selection of technology/magnitude k ∈ Y for the capacity
increment decision at channel (i, j) ∈ L at time t, ŷtijk ∈ {0, 1};

ȳqtik : Determines the selection of technology/magnitude k ∈ Y for the initial ca-
pacity of producing q ∈ Q at facility i ∈ FC at time t, ȳqtik ∈ {0, 1};

ȳtijk : Determines the selection of technology/magnitude k ∈ Y for the initial ca-
pacity of channel (i, j) ∈ LC at time t, ȳtijk ∈ {0, 1}.
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2.2.2 Mathematical formulation

The objective function seeks minimizing investment and operational costs throughout
the planning horizon:
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where several constraints apply, as described in the following sections.

2.2.2.1 The underlying production and transportation planning problem

For any active facility, the amount of ore produced, increased by the ore received must
be greater than the amount of ore shipped to other facilities or customers:

pqti +
∑
k

xqtki −
∑
j

xqtij ≥ 0 ∀i ∈ F, q ∈ Q, t. (2.2)

For any active facility where ore processing occurs, production must be limited by the
amount of input material available, coming from the mine proper or transferred to
other facilities:

pqti ≤ prti +
∑
k

xrtki −
∑
j

xrtij ∀i ∈ F, q ∈ Q, r ∈ Q, t. (2.3)
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It is important to notice that in some facilities, there may be coproduction of sinter-feed
and pellet-feed, what imposes additional constraints on the production of the latter:

pPF,t
i =

(
σti

1− σti

)
pSF,t
i ∀i ∈ F, t, (2.4)

including the special case σni = 0, where facility i has no concentration equipment and
thus no pellet-feed is produced. But for every product, demand must be met with ore
produced or acquired from third-parties:∑

k

xqtki ≥ dqti ∀i ∈ D, q ∈ Q, t. (2.5)

Also, production and distribution capacities are finite and limited by physical con-
straints:

0 ≤ pqti ≤ uqti ∀i ∈ F, q ∈ Q, t, (2.6)

0 ≤
∑
q

xqtij ≤ utij ∀i ∈ F, j ∈ F, t. (2.7)

And any production or transportation effort can only take place at active facilities and
logistics channels: ∑

q

pqti ≤ uq∗i a
t
i ∀i ∈ F, t, (2.8)∑

q

xqtij ≤ u∗ija
t
ij ∀(i, j) ∈ L, t (2.9)

atij ≤ ati ∀(i, j) ∈ L, i ∈ F, t. (2.10)

where uq∗i and u∗ij are known maximum theoretical capacities for facilities and logistics
channels, respectively. Also, the following nonnegativity and integrality restrictions
apply:

pqti , x
qt
ij ≥ 0 ∀i ∈ F, (i, j) ∈ L, q ∈ Q, t, (2.11)

ati, a
t
ij ∈ {0, 1} ∀i ∈ F, (i, j) ∈ L, t. (2.12)
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2.2.2.2 The dynamic facility location/network design problem

When a new facility is opened, it can be done from the beginning of the planning
horizon, according to:

ati ≤
t∑

τ=1

oτi ∀i ∈ FC , t, (2.13)

T∑
t=1

oti ≤ 1 ∀i ∈ FC . (2.14)

The establishment of new logistics channels, however, must be restricted to connections
between facilities that are or will be opened at some point within the planning horizon:

otij ≤
t∑

τ=1

oτi ∀(i, j) ∈ LC , i ∈ FC , t, (2.15)

otij ≤ 1 ∀(i, j) ∈ LC , i ∈ FC , j ∈ FO, t. (2.16)

Whenever an original facility is closed, it can be done from the beginning of the planning
horizon. On the other hand, when a candidate facility is closed, it can only be done
from t > 1, since it has to be opened at least a period before that:

cti − at−1
i + ati ≥ 0 ∀t if i ∈ FO and ∀t > 1 if i ∈ FC , (2.17)

with at−1
i = 1 if t = 1. But for both original and candidate sets, a facility can only be

closed if it has been opened before:

cti ≤ 1 ∀i ∈ FO, t, (2.18)

cti ≤
t−1∑
τ=1

oτi ∀i ∈ FC , t > 1, (2.19)

and if it was active at the end of the previous period:

cti ≤ at−1
i ∀i ∈ F, t > 1. (2.20)

If a closed facility must be reopened, it can be done from t > 1 for original facilities,
and from t > 2 for candidate ones, since they must have been opened and closed before
that:

rti − ati + at−1
i ≥ 0 ∀i ∈ FO, t > 1, (2.21)
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rti − ati + at−1
i − oti ≥ 0 ∀i ∈ FC , t > 2. (2.22)

In the latter inequality, the term oti is used to make the constraint inactive before
facility i ∈ FC is opened. And again, any facility can only be reopened if it has been
closed before:

rti ≤
t−1∑
τ=1

cτi ∀i ∈ FO, t > 1, (2.23)

rti ≤
t−1∑
τ=1

cτi ∀i ∈ FC , t > 2, (2.24)

and if it was inactive at the end of the previous period:

rti ≤ 1− at−1
i ∀i ∈ FO, t > 1, (2.25)

rti ≤ 1− at−1
i ∀i ∈ FC , t > 2. (2.26)

All facility location and network design variables are binary:

oti, c
t
i, r

t
i ∈ {0, 1} ∀i ∈ F, t. (2.27)

Analogous constraints are defined to the logistics channels whenever there is a need to
open, close or reopen them to meet the system’s requirements of material flows:

atij ≤
t∑

τ=1

oτij ∀(i, j) ∈ LC , t, (2.28)

T∑
t=1

otij ≤ 1 ∀(i, j) ∈ LC , (2.29)

ctij − at−1
ij + atij ≥ 0 ∀t if (i, j) ∈ LO and ∀t > 1 if (i, j) ∈ LC (2.30)

ctij ≤ 1 ∀(i, j) ∈ LO, t, (2.31)

ctij ≤
t−1∑
τ=1

oτij ∀(i, j) ∈ LC , t > 1, (2.32)

ctij ≤ at−1
ij ∀(i, j) ∈ L, t > 1, (2.33)

rtij − atij + at−1
ij ≥ 0 ∀(i, j) ∈ LO, t > 1, (2.34)

rtij − atij + at−1
ij − otij ≥ 0 ∀(i, j) ∈ LC , t > 2, (2.35)

rtij ≤
t−1∑
τ=1

cτij ∀(i, j) ∈ LO, t > 1, (2.36)
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rtij ≤
t−1∑
τ=1

cτij ∀(i, j) ∈ LC , t > 2, (2.37)

rtij ≤ 1− at−1
ij ∀(i, j) ∈ LO, t > 1, (2.38)

rtij ≤ 1− at−1
ij ∀(i, j) ∈ LC , t > 2, (2.39)

otij, c
t
ij, r

t
ij ∈ {0, 1} ∀(i, j) ∈ L, t. (2.40)

2.2.2.3 Capacity expansion

Throughout the planning horizon, investments can be made in order to expand capacity
from initial levels according to discrete increments:

uqti =
t∑

τ=1

ûqτi +
t∑

τ=1

ūqτi ∀i ∈ F, q ∈ Q, t, (2.41)

utij =
t∑

τ=1

ûτij +
t∑

τ=1

ūτij ∀i ∈ F, j, t, (2.42)

where ūqτi and ūτij are known for original facilities and logistics channels at the initial
period. Capacity increments at existing facilities and channels are selected from a
choice of technology and magnitude options with economies of scale:

ûqti =
∑
k∈Ŷ

υ̂qtikŷ
qt
ik ∀i ∈ F, q ∈ Q, t, (2.43)

ûtij =
∑
k∈Ŷ

υ̂tijkŷ
t
ijk ∀(i, j) ∈ L, t, (2.44)

and the same rationale applies to the initial capacity decision:

ūqti =
∑
k∈Ȳ

ῡqtikȳ
qt
ik ∀i ∈ FC , q ∈ Q, t, (2.45)

ūtij =
∑
k∈Ȳ

ῡtijkȳ
t
ijk ∀(i, j) ∈ LC , t, (2.46)

but in both cases, only one choice at each period is possible, and restricted to assets
that are or will be opened within the planning horizon:

∑
k∈Ŷ

ŷqtik ≤
t−1∑
τ=1

oτi ∀i ∈ F, q ∈ Q, t > 1 (2.47)

∑
k∈Ŷ

ŷtijk ≤
t−1∑
τ=1

oτij ∀(i, j) ∈ L, t > 1 (2.48)
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∑
k∈Ȳ

ȳqtik ≤ oti ∀i ∈ FC , q ∈ Q, t > 1 (2.49)∑
k∈Ȳ

ȳtijk ≤ otij ∀(i, j) ∈ LC , t > 1 (2.50)

(2.51)

Capacity increments must, however, be limited by practical constraints. Beyond that
limit, any capacity expansion would have to be accomplished by establishing new assets:

T∑
t=1

ûqti ≤ φ

T∑
t=1

ūqti ∀i ∈ F, q,∈ Q, t, (2.52)

T∑
t=1

ûtij ≤ φ

T∑
t=1

ūtij ∀i ∈ F, t. (2.53)

And again, the following nonnegativity and integrality restrictions apply:

ūqti , ū
t
ij ∈ Z+ ∀i ∈ FC , (i, j) ∈ LC , q ∈ Q, t, (2.54)

ûqti , û
t
ij ∈ Z+ ∀i ∈ F, (i, j) ∈ L, q ∈ Q, t, (2.55)

uqti , u
t
ij ≥ 0 ∀i ∈ F, (i, j) ∈ L, q ∈ Q, t, (2.56)

ŷqtik, ŷ
t
ijk, ȳ

qt
ik, ȳ

t
ijk ∈ {0, 1} ∀i ∈ FC , (i, j) ∈ LC , k ∈ Y, q ∈ Q, t. (2.57)

2.3 The stochastic approach

Due to the inherent uncertain behavior of the commodity market, a stochastic approach
is a natural extension to the previous formulation. We adopt the concept of decision
making under risk, in which every action leads to one of a set of possible specific
outcomes, each occurring with a probability known to the decision maker [Luce and
Raiffa, 1957]. A stochastic supply chain network design problem can then be tackled
statically or dynamically. In the static approach, the first-stage decides the network
configuration, while the recourse second-stage distributes products in an optimal fash-
ion based on the configuration decided at the first stage and on the realization of the
risky parameters [Santoso et al., 2005]. In the dynamic approach, an integer multi-stage
stochastic formulation employs a scenario tree to discretize the evolution of the risky
parameters, with fixed-charge cost functions accounting for economies of scale in ex-
pansion costs. Solution approaches include reformulation, decomposition, scenario-tree
reduction [de Oliveira et al., 2010] and metaheuristics [Ahmed et al., 2003].

In the proposed stochastic approach, we assume the random parameters to evolve
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as a discrete time stochastic process with a finite probability space. Such an informa-
tion structure can be represented by a tree T where each node n ∈ T represents a
distinguishable state of world and each path from the root node to a leaf node consti-
tutes a scenario s ∈ S. That is a rather reasonable assumption since scenario planning
[Schoemaker, 1995] has been used by organizations to design flexible strategic long-term
plans.

n

1

n   1

s = 1 s = 2 ... ... ... ... ... s = S

t = 1

.

.

.

t = T

t = tn

Figure 2.2. A general binary scenario tree.

Figure 2.2 illustrates a binary scenario tree. Nodes at any given level are all
related to the same time period t of the planning horizon. Each scenario s is thus
represented by the path from node 1 to the corresponding leaf node. Also, for each
node n, there can be only one parent node n 	 1. Let p(.) be a function describing
the probability of realizing a given event or state and let (i, j) represent a transition
between any consecutive nodes i and j in the tree. The probability of the realization
of any node p(n) is then given by:

p(n) =
∏

(i,j)∈Q(n)

p(i, j),

where Q(n) represents the set of (i, j) transitions in the scenario tree starting from
the root node and reaching node n. That means that any node can be realized with
the joint probability of every previous transitions within the path from the root of the
scenario tree. For node n in Figure 2.2, we have p(n) = p (1, n	 1) × p (n	 1, n).
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The mathematical model then takes the general form:

z = min
∑
n∈T

p(n)cnxn

Axn ≥ bn

x ≥ 0,

The formulation presented in the following section is based on the form above. One
should notice that the sum of the probabilities of all nodes at a same level of the
scenario tree (the same time period) must equal 1, since at any time period, only one
possible state of the world can be realized. However, the same does not apply to the
sum of all p(n), n ∈ T in the scenario tree. Alternatively, one could also consider the
probabilities of each scenario s, that is, the probability that a given path starting at
the root node would reach a particular leaf node n. That would require the model to
take the form:

z = min
∑
s∈S

∑
n∈ ~Q(s)

p(s)cnxn

Axn ≥ b

x ≥ 0,

where, ~Q(s) is the sequence of transitions in scenario s ∈ S. This form, nevertheless,
requires that

∑
s∈S p(s) = 1. These two general forms are, of course, equivalent.

The above discussion is also related to two distinct approaches to formulate a
stochastic capacity planning problem. A first option is to define decision variables for
every scenario at every time period within the planning horizon. In this case, a sub-
script s would have to be added to every parameter and every decision variable, which
in turn would demand an explicit formulation of the nonanticipativity constraints. A
second option, on the other hand, is to define decision variables for each node of the
scenario tree, addressing the realizations of the random variables up to that node,
and to implicitly consider the nonanticipativity constraints. In this work, we use this
approach since it has the advantage of eliminating duplicate constraints and avoiding
the nonanticipativity constraints which, although not representing significant compu-
tational gains, provides a more concise formulation. In both options, however, there is
the challenge of determining a consistent scenario tree, which can become overwhelm-
ingly complex for longer planning horizons. Thus, with the explicit inclusion of the
nonanticipativity constraints, a scenario-based, multi-period stochastic program can be
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recast in the form of an equivalent large-scale deterministic program [Dupacová, 1999].
It is important to notice that any combination of risky parameters can be consid-

ered in the scenario tree. Of course, the larger that number, the harder it is to model
the scenario tree, the more complex becomes its inherent structure and the larger is
the problem size [Heitsch and Römisch, 2009].

2.3.1 Mathematical formulation

In the proposed stochastic mathematical formulation, we assume, without loss of gen-
erality, ore demand to be the only risky parameter — in general supply chains, several
other parameters may also be considered risky, such as supplies, processing, transporta-
tion, shortage and capacity expansion costs [Azaron et al., 2008]. That means that each
node at the scenario tree describes a possible realization of an expected demand level
occurring with a known probability. In order to recast the formulation in a stochastic
setting, the following must be considered in the model:

S : Set of scenarios;

T : A scenario tree and all its nodes;

n : A node in the scenario tree;

n	 1 : (Unique) Predecessor of node n;

P(n) : Path from the root node of the scenario tree to node n; if n is a leaf node,
then P(n) is a scenario;

p(n) : Probability of node n.

Hence, instead of time periods, each parameter and variable must be indexed according
to the corresponding node of the scenario tree. Any sequence of time periods must be
recast as a path within the tree. For instance, the relationship:

cti ≤
t−1∑
τ=1

oτi ∀i ∈ FC , t > 1,

must be recast in the stochastic settings as:

cni ≤
∑

m∈P(n	1)

omi ∀i ∈ FC , n > 1.
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In order to make the formulation more concise, we assume that variables and parame-
ters of the form ∗qni are associated to facility i ∈ F , while variables and parameters of
the form ∗qnijk are associated to logistics channel (i, j) ∈ L. The stochastic mixed-integer
program then follows:

Minimize ∑
n∈T

p(n)

(∑
q

∑
i

ρqni p
qn
i +

∑
i

αni a
n
i +∑

q

∑
i

∑
j

χqnij x
qn
ij +

∑
i

∑
j

αnija
n
ij+∑

q

∑
k

∑
i

µ̂qnik ŷ
qn
ik +

∑
q

∑
k

∑
i

µ̄qnik ȳ
qn
ik +∑

k

∑
i

∑
j

µ̂nijkŷ
n
ijk +

∑
k

∑
i

∑
j

µ̄nijkȳ
n
ijk+∑

q

∑
i

δqni u
qn
i +

∑
i

∑
j

δniju
n
ij+∑

i

θni o
n
i +

∑
i

ιni c
n
i +

∑
i

πni r
n
i +

∑
i

∑
j

θnijo
n
ij +

∑
i

∑
j

ιnijc
n
ij +

∑
i

∑
j

πnijr
n
ij

)
, (2.58)

Subject to

pqni +
∑
k

xqnki −
∑
j

xqnij ≥ 0 ∀i ∈ F, q ∈ Q, n ∈ T , (2.59)

pqni ≤ prni +
∑
k

xrnki −
∑
j

xrnij ∀i ∈ F, q, r ∈ Q, n, (2.60)

pPF,n
i =

(
σni

1− σni

)
pSF,n
i ∀i ∈ F, n, (2.61)∑

k

xqnki + bqni ≥ dqni ∀i ∈ D, q ∈ Q, n, (2.62)

0 ≤ pqni ≤ uqni ∀i ∈ F, q ∈ Q, n, (2.63)

0 ≤
∑
q

xqnij ≤ unij ∀(i, j) ∈ L, n, (2.64)∑
q

pqni ≤ uq∗i a
n
i ∀i ∈ F, n, (2.65)∑

q

xqnij ≤ u∗ija
n
ij ∀(i, j) ∈ L, n, (2.66)



28
Chapter 2. Stochastic capacity planning in a Global Mining Supply

Chain

anij ≤ ani ∀(i, j) ∈ L, i ∈ F, n, (2.67)

pqni , x
qn
ij ≥ 0 ∀i ∈ F, (i, j) ∈ L, q ∈ Q, n, (2.68)

ani , a
n
ij ∈ {0, 1} ∀i ∈ F, (i, j) ∈ L, n, (2.69)

ani ≤
∑

m∈P(n)

omi ∀i ∈ FC , n, (2.70)

∑
n∈s

oni ≤ 1 ∀i ∈ FC , s ∈ S, (2.71)

onij ≤
∑

m∈P(n)

omi ∀(i, j) ∈ LC , i ∈ FC , n, (2.72)

onij ≤ 1 ∀(i, j) ∈ LC , i ∈ FC , j ∈ FO, (2.73)

cni − an	1
i + ani ≥ 0 ∀n if i ∈ FO and ∀n > 1 if i ∈ FC , (2.74)

cni ≤ 1 ∀i ∈ FO, n, (2.75)

cni ≤
∑

m∈P(n	1)

omi ∀i ∈ FC , n > 1, (2.76)

cni ≤ an	1
i ∀i ∈ F, n, (2.77)

rni − ani + an	1
i ≥ 0 ∀i ∈ FO, n > 1, (2.78)

rni − ani + an	1
i − oni ≥ 0 ∀i ∈ FC , n > 3, (2.79)

rni ≤
∑

m∈P(n	1)

cmi ∀i ∈ FO, n > 1, (2.80)

rni ≤
∑

m∈P(n	1)

cmi ∀i ∈ FC , n > 3, (2.81)

rni ≤ 1− an	1
i ∀i ∈ FO, n > 1, (2.82)

rni ≤ 1− an	1
i ∀i ∈ FC , n > 3, (2.83)

oni , c
n
i , r

n
i ∈ {0, 1} ∀i ∈ F, n, (2.84)

uqni =
∑

m∈P(n)

ûqmi +
∑

m∈P(n)

ūqmi ∀i ∈ F, q ∈ Q, n, (2.85)

ûqni =
∑
k∈Ŷ

υ̂qnik ŷ
qn
ik ∀i ∈ F, q ∈ Q, n, (2.86)

ūqni =
∑
k∈Ȳ

ῡqnik ȳ
qn
ik ∀i ∈ FC , q ∈ Q, n, (2.87)∑

k∈Ŷ

ŷqnik ≤
∑

m∈P(n	1)

omi ∀i ∈ F, q ∈ Q, n, (2.88)

∑
k∈Ȳ

ȳqnik ≤ oni ∀i ∈ FC , q ∈ Q, n, (2.89)∑
n∈P(s)

ûqni ≤ φi
∑
n∈P(s)

ūqni ∀i ∈ F, q ∈ Q, n, (2.90)
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ûqni , ū
qn
i ≥ 0 ∀i ∈ F, (i, j) ∈ L, q ∈ Q, n, (2.91)

uqni , u
n
ij ≥ 0 ∀i ∈ F, (i, j) ∈ L, q ∈ Q, n, (2.92)

ŷqnik , ȳ
qn
ik ∈ {0, 1} ∀i ∈ FC , (i, j) ∈ LC , q ∈ Q, n. (2.93)

Analogous constraints are defined to the logistics channels but omitted for the sake of
clarity.

2.3.2 A simple example

In order to illustrate the functionalities of our Stochastic Capacity Planning mathemat-
ical model, we present a simple example with one original facility (1), one candidate
facility (2) and a single customer (d) demanding a single product. In Figure 2.3 below,
Facility 1 (the shaded one) is already opened at the beginning of the planning horizon,
while Facility 2 (the white, dotted one) is a candidate facility. Facility 1 and Channel

1

2

d
u1d=100

 = $2.0u1 = 100

 = $2.0

u2=100/200

= $1.0

 = $1,000

u2d=100/200

= $1.0

 = $1,000

Figure 2.3. A simple example with two facilities: original and candidate.

1-d both have initial capacities of 100 units. Increments on capacity can be of 20 or
40 units, costing $10 and $15, respectively, but limited to a total 50% increase on ini-
tial capacity for facilities and logistics channels alike. This means that if the demand
increases up to 50% of the original capacity of Facility 1, there would be no need to
open the candidate Facility 2, nor the candidate Channel 2-d. On the other hand, if
more than a 50% increase on Facilty 1’s original capacity is needed, then Facility 2 and
Channel 2-d would be required. Variable costs are $2.0 for Facility 1 and Channel 1-d,
and $1.0 for Facility 2 and Channel 2. All fixed costs are $1,000; opening, closing and
reopening costs are $1,000, $10 and $50, respectively.

The behavior of the expected demand during a three-period planning hori-
zon is represented by the scenario tree shown in Figure 2.4. Each node in the set
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T = {1, 2, 3, 4, 5, 6, 7} represents one possible demand configuration and its respective
probability of realization. From the root node, there are two possible outcomes, rep-
resented by nodes 2 and 3, which can be realized according to probabilities 0.7 and
0.3, respectively. From node 2, two other transitions with probabilities 0.2 and 0.8
are possible. Each transition yields a new demand configuration with joint probability
from the root: node 4, with 0.7× 0.2 = 0.14 and node 5, with 0.7× 0.8 = 0.56 proba-
bilities. The same rationale applies to node 3 and its children: node 6 with probability
0.3× 0.3 = 0.09 and node 7 with probability 0.3× 0.7 = 0.21. The joint probabilities
are shown in parentheses, below the demand levels on each node in Figure 2.4. The

4
150

(0.14)

5
50

(0.56)

6
250

(0.09)

7
300

(0.21)

2
10

(0.7)

3
20

(0.3)

1
1000.7 0.3

0.2 0.8 0.3 0.7

Figure 2.4. A scenario tree representing the risky demand on three periods and
four scenarios, hence seven nodes. Demand levels are positioned below the node
labels, with their respective probability in parentheses.

high variances in demand are such that different investment policies may be devised
for each scenario, resulting in adequate demand/capacity ratios, or in idle capacity, or
even in exceeding demand, which would imply in contractual penalties or third-party
ore purchasing at unfavorable prices. Those undesirable costs are represented by the
β parameter, which is initially set to a relatively high value in order to induce the
network design dynamics.

In a stochastic program, decisions must be hedged against all scenarios in order
to build a robust solution, as given in Table 2.1. At t = 1, since demand is higher
than the available capacity in Facility 1 (including the 50% increment limit), Facility 2
must be activated. However, at t = 2 two very different demand levels may take place,
which derive rather different policies for scenarios 1-2-4 and 1-2-5 and scenarios 1-3-6
and 1-3-7. In the former set, when demand drops, as in node 2, the more expensive
Facility 1 must be closed and shall remain like that until it is needed again at node 4.
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In the latter, demand increases consistently and the corresponding capacity increments
are required at nodes 6 and 7.

Table 2.1. Stochastic solution for the example problem, β = 3000.

n=1, d=160, b=0 a o c r p;x ū û

1 1 — 0 0 60 — 0
2 1 1 0 0 100 100 0
1-d 1 — 0 0 60 — 0
2-d 1 1 0 0 100 100 0

n=2, d=10, b=0 a o c r p;x ū û

1 0 — 1 0 0 — 0
2 1 0 0 0 10 0 0
1-d 0 — 1 0 0 — 0
2-d 1 0 0 0 10 0 0

n=3, d=200, b=0 a o c r p;x ū û

1 1 — 0 0 100 — 0
2 1 0 0 0 100 0 0
1-d 1 — 0 0 100 — 0
2-d 1 0 0 0 100 0 0

n=4, d=150, b=0 a o c r p;x ū û

1 1 — 0 1 50 — 0
2 1 0 0 0 100 0 0
1-d 1 — 0 1 50 — 0
2-d 1 0 0 0 100 0 0

n=5, d=50, b=0 a o c r p;x ū û

1 0 — 0 0 0 — 0
2 1 0 0 0 50 0 0
1-d 0 — 0 0 0 — 0
2-d 1 0 0 0 50 0 0

n=6, d=250, b=10 a o c r p;x ū û

1 1 — 0 0 140 — 40
2 1 0 0 0 100 0 0
1-d 1 — 0 0 140 — 40
2-d 1 0 0 0 100 0 0

n=7, d=300, b=60 a o c r p;x ū û

1 1 — 0 0 140 — 40
2 1 0 0 0 100 0 0
1-d 1 — 0 0 140 — 40
2-d 1 0 0 0 100 0 0

It can be seen that it is impossible, under risk, to devise a policy that is ideal under
all circumstances. Again, the stochastic solution must be well-hedged, building some
flexibility to meet the risky demand at all scenarios. It is also important to emphasize
that the β parameter has a strong influence on how much the model allows demand
shortages. As β increases, however, the model becomes more intolerant to shortage
penalties and hence investments on capacity become more economically attractive. If
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β = 5000, for instance, all required capacity investments are made and no shortages
would be allowed.

2.4 Model analysis

Having presented the mathematical formulation for the problem and having illustrated
its functionality with a simple example, we evaluate the computational issues associated
to solving a more realistic test instance (Figure 2.5) which is inspired in Brazilian
large-scale iron ore operations. Our Global Mining Supply Chain has three systems,
each comprised of pits, processing plants, railroads, ports and supply stations with
some degree of interoperability. We are interested in evaluating how the quality of

System B

System A

System C
Mine/processing plant

Port/supply station

Demand center

Transshipment node

Original

Candidate

Figure 2.5. The Global Mining Supply Chain used in the tests.

the solution is influenced by the demand/capacity ratio and the size of the scenario
tree. Also, we compare different solution approaches — from standard Branch&Cut to
evolutionary heuristics. All runs use CPLEX 12.2 in an Intel Xeon E5520 workstation
with four cores (up to eight threads), 2.27GHz and 16GB RAM.
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2.4.1 Demand/capacity ratio

Since most of the integer variables are dedicated to incrementing or establishing new
capacity at specific locales of the Global Mining Supply Chain, it is fair to expect that
solving the model should become harder as the need to increment capacity or open new
facilities increases. This assumption is evaluated for the test instance with the binary
scenario tree of Figure 2.4, a time limit of one hour and a large enough penalty for
demand shortages, so that the model would always try to use all available capacity ex-
pansion options. The demand/capacity ratio considers not only the initially established
capacity, but also the additional capacity available from incrementing or establishing
new facilities and channels. Data from Table 2.2 indicates that as the demand/capacity
ratio increases up to 100%, so does the time needed to achieve optimality. As demand
exceeds the overall capacity, however, the shortage variables bni assume all unmet de-
mand and solution time drops back to values of lower demand/capacity ratios. Different

Table 2.2. Influence of the demand/capacity ratio on solution quality.

Ratio Time (s) Gap

5% 47 0.00%
30% 187 0.00%
45% 1,540 0.00%
90% 3,600 0.01%
120% 66 0.00%
150% 16 0.00%

demand configurations and variance, even for the same demand/capacity ratios, can
of course have a different effect on solution quality. In Section 2.5.3 we further explore
those issues.

2.4.2 Size of the scenario tree

It is clear that the size of the problem increases exponentially with the size of the
scenario tree. Here, we extend the binary tree shown in Figure 2.4 32 scenarios (6 time
periods in the planning horizon). Although this is not a typically large number — one
could be interested in planning for 10 or more time periods, resulting in 512 or more
scenarios —, it is sufficient for the analytical purposes of this Section. Demand and
probabilities are varied in such a way as to exercise all functionalities of the model1.

It can be seen from Table 2.3 that the larger the scenario tree, the higher the
solution gap. When CPLEX is used with its default settings and a one-hour time limit,

1All data and source codes in OPL format can be provided by the author.
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Table 2.3. Influence of the scenario tree size on solution quality.

Periods Scenarios Time (s) Gap Binaries

2 2 87 0.00% 2,940
3 4 3,600 0.01% 7,776
4 8 3,600 0.77% 17,532
5 16 3,600 3.25% 36,948
6 32 3,600 26.16% 76,164

a 26.16% solution gap is achieved for the test instance. After 30 hours of processing, the
resulting gap would still be around 2%. This suggests that specific solution approaches
should be evaluated, especially for large-scale instances. That is the subject of next
section.

2.4.3 Solution approaches

The Stochastic Capacity Planning Problem has a structure that shares characteristics
of facility location, network design, capacity expansion and lot sizing. Such a structure
may suggest specific solution procedures. A first step on this investigation is to evaluate
the influence of specific CPLEX settings on the quality of the solution [Pimentel et al.,
2011]. All runs are performed over the test instance in a 32 scenario planning horizon,
again with a time limit of one hour. Table 2.4 shows the results for different CPLEX
settings, each applied individually and, in bold, the resultant best effort for a selection
of parameters that achieved the most interesting results. With the default settings,
CPLEX usually decides whether or not to apply several additional algorithms during
the solution process, often increasing the intensity of each algorithm if that seems to
improve the solution. It is important to emphasize that each test over the default
settings varies only the parameter indicated.

A few insights may be derived here. First, we notice that increasing the pre-
processing efforts with symmetry breaking [Sherali and Smith, 2001] or probing —
checking for logical implications of pre-fixing binary variables before processing the
root node — provide no significant improvement and, in some cases, may even yield
very poor results.

Regarding the application of non-default settings for the CPLEX’s built-in search
heuristics, results are also not significantly improved. Although local branching [Fis-
chetti and Lodi, 2003] would be expected to produce quality solutions at early stages of
the computation, most of the one-hour time limit is consumed by that procedure with
no significant improvement on the first incumbent. The node heuristic, on the other
hand, tries to construct a feasible solution from the current (fractional) Branch&Cut
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node. Increasing the frequency of the node heuristic also consumes a significant amount
of the time available for the search without improving the objective. Eliminating
the node heuristic completely, however, ultimately prevents a feasible solution to be
found. A similar behavior is achieved with the Relaxation Induced Neighborhood
Search (RINS) [Danna et al., 2005]. RINS explores a neighborhood of the current in-
cumbent by formulating the search as a mixed integer subproblem and truncating the
number of nodes explored in the search tree. Although not a particularly expensive
procedure, applying the RINS heuristic at each new incumbent does not significantly
improve the solution. On the other hand, not applying it altogether yields very poor
results.

Table 2.4. Influence of CPLEX Parameters on Solution Quality

Configuration CPLEX Gap CPLEX UB
Defaults 26.16% 30,332,805
MIP Probing Level

None feasible, but too high a gap
Higher than default feasible, but too high a gap

Symmetry Breaking
None 42.44% 38,911,562
Higher than default no improvement

RINS Frequency
None feasible, but too high a gap
Higher than default no improvement

Local Branching (on) feasible, but too high a gap
Node Heuristic Frequency

None no feasible solution
Higher than default no improvement
Highest (every node) feasible, but too high a gap

a MIP Priority (Decreasing Cost) 23.55% 29,295,957
b MIP Emphasis (Feasibility) 22.77% 29,051,366
c Cutting Plane Algorithms (None) 15.12% 26,230,505
d Solution Polishing (5/6) 12.76% 25,674,320

Combined Settings I (a, b, c, d) 2.53% 22,866,143
Combined Settings II (c, d) 7.54% 24,098,179
Combined Settings III (a, c) 2.30% 22,871,765
Combined Settings IV (b, c) 2.67% 22,871,068
Combined Settings V (a, b, c) 2.54% 22,864,688

Better performance can be obtained by tackling CPLEX’s MIP strategy param-
eters. When the MIP Emphasis parameter is set to feasibility, CPLEX attempts to
generate more feasible solutions early in the solution process, at some sacrifice in speed
of proving optimality. However, better solution gaps are achieved in the process. Other
settings of MIP Emphasis do not further improve the solution. On another approach,
setting the priority to decreasing cost coefficients when deciding which variable to
branch on at a node, shows some improvement when compared to the no-priority de-
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fault settings.

The default settings include the application of standard cutting-plane algorithms
in an attempt to improve the efficiency of the solution procedure. Results show that
when cutting planes are not applied, solution quality can be significantly improved.
A closer look into the solution logs shows that a large number of cuts is generated
at the initial node without improving the incumbent. The default Branch&Cut pro-
cedure then reaches the one-hour time limit having explored a few 500 nodes. This
suggests a more detailed investigation of CPLEX’s cutting plane algorithms. Without

Table 2.5. Analysis of cutting plane algorithms applied to the stochastic capacity
planning problem.

Algorithm # Applied Solutions Nodes Objective CPLEX Gap

MCF 51 117 6,163 24,476,179 8.97%
Clique – 161 9,596 26,230,505 15.12%
GUB Covers – 158 9,506 26,230,630 15.12%
Zero-Half – 158 9,506 26,230,630 15.12%
Implied 3,231 31 9,430 26,341,425 15.40%
Gomory 459 52 8,039 26,603,175 15.92%
Disjunctive – 65 10,156 26,863,809 17.12%
Covers 34 162 7,897 27,022,724 17.59%
Path Cuts 210 147 6,629 28,617,590 22.17%
Flow Covers 2,467 52 746 30,871,086 27.45%
MIR 2,630 41 388 feasible, but too high gap

cutting planes, the simpler Branch&Bound algorithm is able to explore more than
17,000 nodes within the time limit, thus yielding a much better performance. It is
important to notice that CPLEX ultimately addresses the problem as a generic integer
program. Hence, besides trying to develop problem-specific valid inequalities[Melkote
and Daskin, 2001], it would be interesting to apply techniques specially developed for
multi-stage stochastic problems, such as the combination of inequalities that are valid
among individual scenarios [Guan et al., 2009].

Metaheuristics can also be used in an attempt to improve solution quality. Solu-
tion polishing is a general purpose, coarse-grained evolutionary approach built within
a large-neighborhood search framework [Rothberg, 2007]. We devote 50 minutes of the
one-hour time limit to the traditional Branch&Cut procedure and the last 10 minutes
to solution polishing. One can observe a significant improvement on solution quality
within a short computation time. This indicates that further investigating specific
metaheuristic approaches to such a problem structure may also be an interesting re-
search direction. Alternatively, local search methods [Bai et al., 2010] could be used as
an attempt to improve feasible solutions. Since local search focuses on the combina-
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torial aspects of the problem and polishing works with a population of solutions. The
first could provide better results when facing tighter primal bounds.

One obvious approach, however, is to try combining the settings which produced
the best results. We provide five of those combinations — all with no cutting plane
algorithms — also in shown Table 2.4. Combination I applies Branch&Bound, decreas-
ing cost coefficients, feasibility emphasis and one-sixth time-limit polishing. One can
observe a significant improvement in the solution quality, with a 2.53% gap. However,
an examination of the solution logs shows a very small contribution of polishing to
the result. We then put together Branch&Bound and one-sixth time-limit polishing
in Combination II in order to show that polishing does work better with worse primal
bounds. This indicates that exact methods should be carefully considered when devel-
oping specific solution procedures. Combinations III and IV use plain Branch&Bound
with decreasing cost priority for variables and feasibility emphasis, respectively. Re-
sults are relatively similar but slightly favour the usage of the decreasing cost priority.
The benefits of providing an adequate ordering for the variables to be branched greatly
compensate the computational cost involved in determining that ordering. It is also
clear that in such a complex problem, it is better to concentrate efforts in determining
quality feasible solutions early in the process, as driven by the feasibility MIP empha-
sis. Finally, in Combination V, decreasing cost priority, feasibility MIP emphasis and
plain Branch&Bound are used together but with no significant improvement compared
to the previous combinations. The additional computational cost does not compensate
the benefits over the solution gap achieved by Combination III.

2.5 A Lagrangian Relaxation approach

We propose a Lagrangian Relaxation [Fisher, 1981] approach to strengthen the dual
bounds — and possibly derive good approximate primal bounds — for the stochas-
tic capacity planning problem. The basic idea is to relax and dualize a subset of
constraints in order to derive a Lagrangian problem which should be easier to solve
and whose optimal value is a dual bound on the optimal value of the original prob-
lem. Lagrangian Relaxation has been invoked in decomposition approaches for general
multistage stochastic problems [Parpas and Rustem, 2007] as well as network design
problems [Tanonkou et al., 2008]. The main advantages of this method are its simplic-
ity and the ability to, when coupled with a primal heuristic, provide a feasible solution
and a measure of the optimality gap for the original problem.

In this work, we explore the structure of the proposed stochastic capacity plan-
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ning problem and dualize constraints which provide a good tradeoff between the quality
of the Lagrangian dual and the complexity of the relaxed problem. The proposed La-
grangian Heuristic then attempts to build a primal feasible solution to the Lagrangian
subproblem. A number of experiments are made in order to assess the heuristic’s
behavior against CPLEX.

2.5.1 Constraint dualization

Given a general optimization problem:

z = min cx

Ax ≥ b

Dx ≥ e

x ∈ Zn+,

the basic idea of the Lagrangian Relaxation is to relax and dualize specific sets of
constraints in order to derive a relaxed problem of the form:

z(λ) = min cx+ λ (e−Dx)

Ax ≥ b

x ∈ Zn+
λ ≥ 0,

where λ is the Lagrangian multiplier associated to constraints Dx ≥ e. Since z(λ)

provides a lower bound to the original optimization problem, we are interested in
determining the best lower bound over the possible values of λ — which is achieved by
solving the Lagrangian dual problem [Wolsey, 1998]. One common approach to do so
is the subgradient algorithm, to be detailed later on in this Chapter.

The mathematical formulation presented in Section 2.3.1 indicates that some
specific restrictions are responsible for coupling the lot-sizing, network-design and ca-
pacity expansion subproblems, being therefore good candidates for dualization. Nev-
ertheless, we perform a thorough preliminary analysis of several possible relaxations
in order to determine the one which provides the best tradeoff between the quality of
the dual bounds and the corresponding computational complexity required to obtain
those bounds. The procedure involves solving different relaxed problems, each defined
by the simple elimination of a given subset of constraints (which is equivalent to set-
ting the corresponding Lagrangian multipliers to zero) and comparing the dual bounds
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obtained. According to this procedure, the best tradeoff is given by the relaxation of
the following constraints:∑

q

pqni ≤ uq∗i a
n
i ∀i ∈ F, n, (2.94)∑

q

xqnij ≤ u∗ija
n
ij ∀(i, j) ∈ L, n, (2.95)

ûqni =
∑
k∈Ŷ

υ̂qnik ŷ
qn
ik ∀i ∈ F, q ∈ Q, n, (2.96)

ûnij =
∑
k∈Ŷ

υ̂nijkŷ
n
ijk ∀(i, j) ∈ L, n, (2.97)

ūqni =
∑
k∈Ȳ

ῡqnik ȳ
qn
ik ∀i ∈ FC , q ∈ Q, n, (2.98)

ūnij =
∑
k∈Ȳ

ῡnijkȳ
n
ijk ∀i ∈ LC , n. (2.99)

The effect of relaxing the above constraints on the Lagrangian subproblem is that the
activation variables and the dynamic network design variables become disconnected and
thus may be set to incoherent values. Also, the capacity variables become unbounded
and reflect the value of the corresponding production and transportation variables.
That requires the following inequations to be added to the relaxed problem:

uqni ≤ (1 + φi) κ̄
q
i ∀i ∈ FO, q ∈ Q, n, (2.100)

unij ≤ (1 + φij) κ̄ij ∀(i, j) ∈ LO, n, (2.101)

uqni ≤ (1 + φi) max
k
ῡqnik ∀i ∈ FC , q ∈ Q, k ∈ Ȳ , n, (2.102)

unij ≤ (1 + φi) max
k
ῡnijk ∀(i, j) ∈ LC , k ∈ Ȳ , n. (2.103)

Those inequations are redundant in the original formulation, but provide a theoretical
upper bound on the capacities of the relaxed problem.

2.5.2 A Lagrangian Heuristic

The proposed Lagrangian Relaxation approach is applied as part of a heuristic pro-
cedure that iteratively approximates the Lagrangian dual solution z∗LD using the sub-
gradient method and, whenever that dual bound is improved, a greedy algorithm is
applied to determine a feasible solution z∗ for the problem. Both bounds are then used



40
Chapter 2. Stochastic capacity planning in a Global Mining Supply

Chain

to update the Lagrangian multipliers according to a step size given by:

µk = εk
(z∗ − z∗LD)

‖e−Dx‖2 ,

where the parameter εk is a scalar satisfying 0 ≤ εk ≤ 2. The subgradient algorithm is
terminated if one of the following conditions is achieved:

1. If z∗ = z∗LD (or z∗ − z∗LD < ξ): an optimal solution has been determined by the
Lagrangian Heuristic.

2. If the subgradient tends to zero (or ‖e−Dx‖ < ξ), the step size is undefined and
the procedure stops with the currently best Lagrangian dual and primal feasible
solutions.

3. As the parameter εk tends to zero, so does the step size µk. Below a certain
threshold εk < ξ, the algorithm is terminated since no further improvement on
the Lagrangian dual should be expected. A limit on the number of iterations
may yield that same effect.

Algorithm 1 below formalizes the proposed approach.
Roughly speaking, the greedy feasibility algorithm used to determine z∗ can be

described as follows:

1. Search for facilities and channels in which production and transportation occur
and determine the corresponding activity variables ani and anij.

2. According to the variation on the activity variables, determine the opening (oni
and onij), closure (cni and cnij) and reopening (rni and rnij) variables for every facility
and channel, again at every node of the scenario tree.

3. Whenever new facilities or channels are opened, determine their initial capacities
according to the largest activity level observed among all applicable scenarios;
take into account the limit on the maximum initial capacity and the possible
increments — (1 + φi) and (1 + φij) — that can be performed in subsequent
nodes.

4. Whenever the activity level exceeds the capacity available on facilities and chan-
nels, determine the minimum necessary capacity increment in order to match
that activity level, again observing the maximum capacity limits.
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Algorithm 1: Lagrangian Heuristic
Input: Problem z = min {p(n)cnxn : Anxn ≥ bn, Dnxn ≥ en}, the original stochastic capacity

planning problem.
1: Let λ be the vector of Lagrangian multipliers.
2: Let zLD = min {p(n) [cnxn + λ (en −Dnxn)] : Anxn ≥ bn} be the relaxed problem
3: obtained by dualizing constraints Dx ≥ e represented by equations (2.94)-(2.99).
4: Let z∗LD ← 0.
5: Let z∗ ←∞.
6: Let k ← 1.
7: Solve zLD(λk).
8: if zLD > z∗LD then
9: z∗LD ← zLD.
10: Execute greedy feasibility algorithm and determine z∗.
11: end if
12: if z∗LD fails to increase after 30 iterations then
13: εk+1 = εk/2.
14: end if
15: Calculate the step size µk = εk

(z∗−z∗
LD)

‖e−Dx‖ .
16: Update Lagrangian multipliers as λk+1 = λk + µk (e−Dx(λ)).
17: if (z∗ − z∗LD) < ξ then
18: z∗ optimal, go to step 25 and terminate.
19: else if ‖e−Dx‖ < ξ then
20: subgradient is null, go to step 25 and terminate.
21: else if εk < ξ then
22: go to step 25 and terminate.
23: end if
24: Increment k and go back to step 7.
25: Calculate optimality gap as

(
1− z∗

LD

z∗

)
.

Output: z∗LD, z∗ and optimality gap.

5. Finally, having established the network infrastructure, recalculate all production,
transportation and demand shortage variables (now as a linear problem) and
determine a feasible solution z∗.

Algorithm 2 formalizes the greedy feasibility heuristic.

2.5.3 Numerical evaluation

In this section we evaluate how the proposed Lagrangian Heuristic behaves over a set
of different problem instances. The implementation is based on IBM ILOG CPLEX
Optimization Studio 12.2 and all tests use the same workstations described in Section
2.4. For these tests, however, we propose a different set of problem instances than
the ones used in Section 2.4. Ternary scenario trees are more consistent to the expert
evaluation commonly performed in scenario planning, since a decision maker may be
interested in three possible outcomes of any course of action: a realistic one, a pessimist
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Algorithm 2: Greedy Feasibility Algorithm
Input: Solution to zLD at iteration k.
1: Let ani , anij , oni , onij , cni , cnij , rni , rnij , ū

qn
ik , ū

n
ijk, û

qn
ik , û

n
ijk initially set to zero.

2: Given pqni and xqnij from zLD, determine new values for the above variables as follows:
3: Determine activity variables:
4: ∀i ∈ F, q ∈ Q,n ∈ N :
5: pqni > 0 −→ ani = 1;
6: ∀(i, j) ∈ L, q ∈ Q,n ∈ N
7: xqnij > 0 −→ anij = 1, ani = 1, anj = 1;
8: Determine opening variables:
9: ∀i ∈ FC , n ∈ N :
10: ani = 1 and

∑
m∈P (n) o

m
i = 0 −→ oni = 1;

11: ∀(i, j) ∈ LC , n ∈ N
12: anij = 1 and

∑
m∈P (n) o

m
ij = 0 −→ onij = 1;

13: Determine closure variables:
14: ∀i ∈ F, n ∈ N :
15: ani < an	1

i −→ cni = 1;
16: ∀(i, j) ∈ L, n ∈ N
17: anij < an	1

ij −→ cnij = 1;
18: Determine reopening variables:
19: ∀i ∈ F, n ∈ N :

20: ani > an	1
i and

∑
m∈P (n) c

A(m)
i ≥ 1 −→ rni = 1;

21: ∀(i, j) ∈ L, n ∈ N :

22: anij > an	1
ij and

∑
m∈P (n) c

A(m)
ij ≥ 1 −→ rnij = 1;

23: Determine initial capacity:
24: ∀i ∈ FC , n ∈ N, k ∈ Ȳ :

25: oni = 1 −→ ȳqnik∗ = 1 and ūqni = ῡqnik∗ , where k∗ = argk min
{(
ῡqnik −

p∗

1+φi

)
≥ 0
}

and
p∗ = max {pqmi : m ∈ (s ∈ S : s ⊃ n)},

26: ∀(i, j) ∈ LC , n ∈ N, k ∈ Ȳ :

27: onij = 1 −→ ȳnijk∗ = 1 and ūnij = ῡnijk∗ , where k∗ = argk min
{(
ῡnijk − x∗

1+φij

)
≥ 0
}

and

x∗ = max
{∑

q x
qm
ij : m ∈ (s ∈ S : s ⊃ n)

}
;

28: Determine capacity increment in original facilities and channels:
29: ∀i ∈ FO, n ∈ N, k ∈ Ŷ , uqni =

(
κ̄qi +

∑
m∈P(n) û

qm
i

)
, δ = (pqni − u

qn
i ) :

30: δ > 0 −→ ŷqnik∗ = 1, where k∗ = argk min {0 ≤ (υ̂qnik − δ) ≤ u
q∗
i };

31: ∀(i, j) ∈ LO, n ∈ N, k ∈ Ŷ , uqnij =
(
κ̄ij +

∑
m∈P(n) û

m
ij

)
, δ =

(∑
q x

qn
ij − u

n
ij

)
:

32: δ > 0 −→ ŷnijk∗ = 1, where k∗ = argk min
{

0 ≤
(
υnijk − δ

)
≤ u∗ij

}
;

33: Determine capacity increment in new facilities and channels:
34: ∀i ∈ FC , n ∈ N, k ∈ Ŷ , uqni =

(∑
m∈P(n	1) ū

qm
i +

∑
minP(n) û

qn
i

)
, δ = (pqni − u

qn
i ) :

35: δ > 0 −→ ŷqnik∗ = 1, where k∗ = argk min {0 ≤ (υ̂qnik − δ) ≤ u
q∗
i };

36: ∀i ∈ L, n ∈ N, k ∈ Ŷ , unij =
(∑

m∈P(n	1) ū
m
ij +

∑
minP(n) û

n
ij

)
, δ =

(∑
q x

qn
ij − u

n
ij

)
37: δ > 0 −→ ŷnijk∗ = 1, where k∗ = argk min

{
0 ≤

(
υnijk − δ

)
≤ u∗ij

}
;

38: Fix above variables and re-solve to determine corrected values for pqni , xqnij and bqni ;
Output: z∗, a feasible solution to z.

and an optimistic one [Schoemaker, 1995], each with specific realization probabilities.
The ternary scenario trees are built as follows:

1. We assume every node in the scenario tree to have three children with individual
probabilities 0.1, 0.7 and 0.2.

2. For any node n other than the root node, we associate a probability which can
be determined as the joint probability of every node within the path from the
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root node, or
∏

m∈P(n) p(m).

3. Regarding the probabilistic behavior of the demand, we wish to be able to control
the magnitude of its variance throughout the scenario tree. Given a parameter
ϕ = [0, 1] and starting from an initial, known demand value at the root node,
we decrease by ϕ the demand of the child node with 0.1 probability, we keep
constant the demand of the child node with 0.7 probability and we increase by ϕ
the demand of the child node of 0.2 probability.
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Figure 2.6. An example of building a ternary tree with probabilities 0.1, 0.7
and 0.2 and ϕ = 0.25.

Figure 2.6 illustrates the procedure described above. Demand is assumed to be
low at the beginning of the planning horizon, tending to increase up to the overall
system’s capacity (including all possible expansions and extensions provided by the
model) until the end of planning horizon2.

The numerical experiments designed to evaluate the Lagrangian Heuristic use
two of those ternary scenario trees with different values for ϕ: 0.25 and 0.50. The
idea behind that choice is to provide us with some indication regarding the heuristic’s
robustness to increasing variance and magnitude of the demand figures within the
scenario tree. We consider scenario trees of increasing size, from 3 to 7 periods in the
planning horizon (respectively from 4 to 1,093 nodes and from 3 to 729 scenarios).

2All data and source codes in OPL format can be provided by the author.
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Tables 2.6 e 2.7 below show the results of the Lagrangian Heuristic for the scenario
trees constructed with ϕ = 0.25 and ϕ = 0.50 respectively. Each line presents the length
of the planning horizon T , the corresponding number of scenarios S in the scenario tree,
the linear relaxation zLR for the problem instance, the Lagrangian dual z∗LD and the
primal bound z∗ obtained by the Lagrangian Heuristic, the corresponding optimality
gap and the computing time. All runs are limited to 1,000 iterations, except for

Table 2.6. Results of the Lagrangian Heuristic for scenario tree with ϕ = 0.25.

T S zLR z∗LD z∗ Gap Iter. Time (s)

3 9 7,430,984 7,430,518 7,974,851 6.83% 1,000 3,111
4 27 9,944,929 9,942,471 10,714,650 7.21% 1,000 14,490
5 81 12,478,440 12,472,272 13,533,509 7.84% 1,000 45,446
6 243 15,030,290 15,017,426 16,381,346 8.33% 1,000 221,870
7 729 17,602,610 17,566,939 19,281,646 8.89% 300 735,769

Table 2.7. Results of the Lagrangian Heuristic for scenario tree with ϕ = 0.50.

T S zLR z∗LD z∗ Gap Iter. Time (s)

3 9 7,968,985 7,503,145 8,224,179 8.77% 1,000 3,106
4 27 10,101,670 10,093,714 11,164,690 9.59% 1,000 14,644
5 81 12,753,100 12,735,990 14,223,416 10.46% 1,000 45,684
6 243 15,472,720 15,435,332 17,425,503 11.42% 1,000 229,808
7 729 18,273,850 18,142,638 20,779,377 12.68% 300 749,191

those with 729 scenarios, which were terminated after 300 iterations due to the much
longer computing times3. The tables show that the proposed Lagrangian Heuristic
can at most approximate the linear relaxation bounds for the problem, but not once
in our tests does it provide better lower bounds than the linear relaxation. Also, by
comparing the corresponding results with ϕ = 0.25 and ϕ = 0.50, one can notice that
increased variance and magnitude of demand in the scenario trees tends to increase the
problem complexity, as it can be inferred from the larger solution gaps of the latter.

Tables 2.8 and 2.9 show the corresponding results of the optimization using
CPLEX. Here, we set the solver to run with approximately the same time limits
allowed for the heuristic procedure. It can be seen that, for the smaller problem sizes,
CPLEX easily outperforms the Lagrangian Heuristic. That can be explained, in part,
by a closer examination of the solutions provided by the greedy feasibility algorithm,
which show much higher costs due to demand shortage penalties — a consequence, for

3In fact, one could choose to run the algorithm for virtually any number of iterations. The limit is
actually in the amount of time the workstation must be exclusively dedicated to solving the problem.
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Table 2.8. Performance of CPLEX for scenario tree with ϕ = 0.25.

T S CPLEXLB CPLEXUB Gap Time (s)

3 9 7,883,339 7,937,825 0.69% 3,110
4 27 10,519,354 10,606,686 0.82% 14,489
5 81 13,063,345 13,367,450 2.27% 45,498
6 243 15,576,668 16,188,634 3.78% 222,895
7 729 18,182,600 20,415,600 6.78% 663,456+

Table 2.9. Performance of CPLEX for scenario tree with ϕ = 0.50.

T S CPLEXLB CPLEXUB Gap Time (s)

3 9 7,980,966 8,042,528 0.77% 3,110
4 27 10,709,384 10,828,741 1.10% 14,643
5 81 13,398,237 13,772,149 2.71% 45,798
6 243 16,210,565 16,805,754 3.54% 229,802
7 729 18,348,900 21,670,100 15.33% 27,642++

instance, of enforcing limited initial capacities on new facilities and channels that oper-
ated under much less strict restrictions in the Lagrangian dual solution — and higher
long-term established capacity costs — since capacity decisions are always based on
the immediate needs. Nevertheless, the exponential increase in both memory and time
required by CPLEX to find good feasible solutions cannot be taken for granted — both
problem instances with 729 scenarios proved extremely difficult to compute. For the
ϕ = 0.25 tree, CPLEX stalled for a long time (at least three days) before printing
out any evolution on the process. Then, the high levels of swapping observed in the
workstation draw us to an early termination. For the ϕ = 0.25 tree, results are even
more troublesome. The swapping caused the working station’s operating system to
stop responding altogether before reaching eight hours of processing.

A more detailed view of the approximation provided the Lagrangian Heuristic is
illustrated in Figure 2.7. There we show the evolution of the lower and upper bounds
obtained by the Lagrangian Heuristic for each problem instance of the scenario tree
with ϕ = 0.25. Though not shown here, a similar behavior is perceived with ϕ = 0.50.
It is interesting to notice that very early in the computation do the bounds display
more significant improvement. That behavior can be explained by the steeper decrease
on the evolution of the upper bounds rather than the smoother increase on evolution
of the lower bounds. The graph also suggests that, though being outperformed by
CPLEX on the long run, the Lagrangian Heuristic may yield more interesting results
in the early stages of computation.

In order to further explore the behavior depicted above, we perform an assess-
ment of the computational effort required by CPLEX in determining a solution when
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Figure 2.7. Evolution of the lower and upper bounds obtained by the Lagrangian
Heuristic for the scenario tree with ϕ = 0.25. Each instance is identified by the
number of scenarios and by a different shaded area on the graph.

limited to the time required for the Lagrangian Heuristic to reach a reasonable level of
stabilization, say, after running 100 iterations. Tables 2.10 and 2.11 hence show that

Table 2.10. Results obtained with the Lagrangian Heuristic limited to 100
iterations and with CPLEX set to the corresponding time limit; tests performed
on the scenario tree with ϕ = 0.25.

T S z∗LD z∗ LHGap CPLEXLB CPLEXUB CPLEXGap Time (s)

3 9 7,411,269 7,984,816 7.18% 7,854,822 7,938,724 1.06% 298
4 27 9,922,241 10,745,678 7.66% 10,310,186 10,696,386 3.61% 1,305
5 81 12,448,900 13,533,509 8.01% 12,910,259 13,529,545 4.58% 4,887
6 243 14,990,446 16,397,505 8.58% 15,213,177 17,995,252 15.46% 22,188
7 749 17,519,461 19,322,989 9.33% 17,809,500 21,313,900 16.44% 126,295

in the early stages of computation, the Lagrangian Heuristic may yield better upper
bounds than CPLEX when working significantly larger problem instances, which is
emphasized by the figures in bold. In fact, although we have considered a 100-iteration
threshold, our logs show that optimality gaps around 9% are already available for the
7-period problem instance at the tenth iteration (approximately 10,200 seconds of pro-
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Table 2.11. Results obtained with the Lagrangian Heuristic limited to 100
iterations and with CPLEX set to the corresponding time limit; tests performed
on the scenario tree with ϕ = 0.50.

T S z∗LD z∗ LHGap CPLEXLB CPLEXUB CPLEXGap Time (s)

3 9 7,482,267 8,288,998 9.73% 7,968,389 8,042,528 0.92% 300
4 27 10,070,059 11,254,532 10.52% 10,538,063 10,880,329 3.15% 1,278
5 81 12,708,200 14,229,253 10.69% 13,319,878 14,202,873 6.22% 4,743
6 243 15,403,625 17,438,025 11.67% 15,551,457 19,127,146 18.69% 22,972
7 729 18,130,482 20,779,377 12.75% 18,348,900 21,670,100 15.33% 27,642+

cessing time) of the Lagrangian Heuristic. That fact suggests the use of the Lagrangian
Heuristic as a means to obtaining reasonable feasible solutions in less CPU time than
CPLEX. Those initial feasible solutions could then be used as a starting solution for
the solver’s Branch&Cut procedure, or even for refining metaheuristics.

2.6 Soft-Fixing Local Search

The previous section has shown that alternative solution approaches, such as the La-
grangian Heuristic, may yield interesting results when compared to CPLEX, specially
in the early stages of the computation of large problem instances. Since we are still
interested in using CPLEX as an inherent part of the solution process, in this Section
we study yet another alternative solution approach inspired on well-known local search
metaheuristics. The main idea behind the proposed method is to use CPLEX “as a
black-box tool to explore solution subspaces defined by the introduction of (invalid)
linear inequalities” and then, starting from an (poor, but easily obtained) incumbent,
trying to improve it in a short amount of time before feeding it to the solver’s exact
Branch&Cut algorithm. The approach is inspired on the local branching framework
[Fischetti and Lodi, 2003] in the sense of the local search effect provided by the local
branching constraint, but without considering the strategic external branching frame-
work required to configure an exact solution method.

2.6.1 The algorithm

Several heuristic methods are based on the (hard) variable fixing approach, which
(iteratively) uses a black-box solver to quickly obtain (possibly infeasible) solutions
and then applies some procedure to fix (some of) its binary variables to cleverly chosen
values. One advantage of such methods is that the problem size is reduced after each
fixing, therefore allowing the solver to handle smaller problems which, ideally, could
be solved to optimality with less effort.
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A critical issue, however, is the choice of which variables to fix. Since bad fixings
may compromise the entire search procedure by establishing less promising solution
subspaces, we are interested in fixing a relevant number of variables without losing
the possibility of finding good feasible solutions. Here, we borrow the definitions of
Fischetti and Lodi [2003] in their local branching paper by considering the mixed-
integer program:

z = min cx

Ax ≥ b

xj ∈ {0, 1} ∀j ∈ B 6= ∅,

xj ∈ Zn+ ∀j ∈ G,

xj ≥ 0 ∀j ∈ C,

where the variable index set is partitioned into (B,G, C) being, respectively, the index
set of binary variables and the possibly empty sets of general integer and continuous
variables. Also, given a feasible reference solution x̄ of z, let S̄ = {j ∈ B : x̄j = 1} be
the binary support of x̄, namely, the set of binary variables valued one in the reference
solution. For a given positive integer parameter k, we define a neighborhood N (x̄, k)

of x̄ as the set of feasible solutions of z satisfying the additional soft fixing constraint:∑
j∈S̄

(1− xj) +
∑
j∈B\S̄

xj ≤ k, (2.104)

where the first term in the left-hand side accounts for the number of binary variables
changing their values to one, while the second term accounts for the number of binary
variables changing their values to zero, both with respect to x̄.

We then develop a procedure to, starting from an initial incumbent x̄, iteratively
search for improved feasible solutions within the neighborhood N (x̄, k). In this pro-
cedure, whenever a better feasible solution is found, the search restarts from that new
improved solution, again considering a neighborhood of size k. On the other hand, if the
procedure fails to determine an improved solution, the neighborhood size is expanded
by a factor of, say, dk/2e and the previously searched, unfruitful region is eliminated
by the addition of the constraint:∑

j∈S̄

(1− xj) +
∑
j∈B\S̄

xj ≥ k + 1. (2.105)

Figure 2.8 illustrates the proposed approach. Starting from an initial feasible solution
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x̄0, we add constraint (2.104) to the model and solve it again, if possible to optimality,
obtaining an improved solution x̄1. The procedure is then repeated, providing improved
solutions x̄2 and x̄3. However, while searching neighborhood N (x̄3, k), the procedure
fails to determine an improved solution. We then increase k by dk/2e and add constraint
(2.105) to the model and define an expanded neighborhood N (x̄3, k + 1, dk + k/2e),
which is represented by the shaded area around x̄3. Fortunately, an improved solution
x̄4 is found, followed by x̄5 and x̄6. And again, while searching neighborhood N (x̄6, k),
the procedure fails to determine an improved solution. Then, after expanding the
neighborhood around x̄6 for another three trials without finding an improved solution,
the procedure is terminated — either because it has reached a given threshold on
the number of neighborhood expansions, or because it has reached a given time limit.
According to the characteristics described above, we name this procedure soft-fixing
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Figure 2.8. An illustrative diagram of the soft fixing local search approach.

local search and give its formal representation in Algorithm 3.

2.6.2 Numerical evaluation

In order to assess the behavior of the proposed soft-fixing local search algorithm, we
devise a set of experiments based on the premise that interesting results are expected in
the early stages of the computation. According to the description given in the previous
section, the following parameters should be observed when running the algorithm:

• the contents of the binary variable subset B ⊆ B considered in the procedure;
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Algorithm 3: Soft-Fixing Local Search
Input: Problem z = {min cx : Ax ≥ b, x ∈ B} , B ∈ B.
1: Let k = k0 be the initial neighborhood size.
2: Let γ ∈ (0, 1) be an acceptable optimality gap for the solution of each subproblem.
3: Let v0 = (−∞, k).
4: Let f = (xi, v0, γ) be a function returning the solution to z, starting from solution xi and with

added constraints (2.105) with lower bound −∞ and (2.104) with upper bound k0.
5: Let x̄0 = f (∗, (−∞,+∞) , 0.9) be an initial feasible solution to z obtained by setting a relative

MIP gap of 90% to the original z problem.
6: Let e← 0 be the number of neighborhood expansions and E the limit on that parameter.
7: Let t← 0 be the elapsed time and T be the amount of time allowed for computation.
8: Let i← 0 be the number of iterations.
9: Let x∗ be the best solution found to z.
10: while t < T and e < E do
11: x̄i+1 = f (x̄i, v, γ).
12: if x̄i+1 < x̄i then
13: x∗ = xi.
14: i← i+ 1.
15: k = k0.
16: v = (−∞, k).
17: else
18: v = (k + 1, k + dk/2e).
19: k ← k + dk/2e.
20: end if
21: end while
22: If there is still any time left for computation, use it to prove x̄i’s optimality.
23: if (T − t) > 0 then
24: v = (−∞,+∞).
25: x∗ = f (x̄i, v, 0.0001).
26: end if
Output: x∗.

• the quality of the initial incumbent k0, which is obtained by setting a high relative
MIP gap on the original problem z;

• the initial neighborhood size, k0, which influences the both the complexity and
the quality of the solution of each subproblem;

• the relative MIP gap γ allowed for the solution of each subproblem;

• the total time T allowed for computation.

All those parameters — and the possible combinations between them — have a strong
influence of the results. We have performed a number of preliminary experiments
which indicated that the binary subset B = {ani : i ∈ (F ∪ S) , n ∈ T } (please refer to
the mathematical notation in Section 2.3.1) provides better results than larger subsets
or even than the entire set B. Also, we limit the number of consecutive neighborhood
expansions E = 5.
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Tables 2.12 and 2.13 show the behavior of the soft-fixing local search compared
to CPLEX in the early stages of the computation. Note that only the three largest
problem instances were considered since, for the smaller ones, CPLEX consistently
yields much better results. Though we have tested many different configurations of k0

and γ, we show only the best results found from a limited number of experiments. The
soft-fixing local search algorithm does provide better results than CPLEX in the very
early stages of the computation, at least for the 6-period instances of both scenario
trees and the 7-period instances for ϕ = 0.25. The result is attributed to the cutting
effect that the soft-fixing constraints produce on the solution space of each subproblem.
Even with a limited number of changes in the binary variables, improved solutions
can be determined in a shorter amount of CPU time than the corresponding results
obtained by CPLEX. Also, the ϕ = 0.50 instances do pose more significant challenges
to all three solution procedures. However, the soft-fixing local search results could not
produce better results than the ones obtained by the Lagrangian Heuristic.

Table 2.12. Results obtained with the soft-fixing local search approach on the
scenario tree with ϕ = 0.25.

T S k0 γ Iter. x∗ z∗LH CPLEXUB Time (s)

5 81 30 0.1 10 16,759,747 13,582,784 16,252,452 1,257
6 243 20 0.2 4 31,248,990 16,730,562 62,208,500 3,668
7 749 30 0.2 2 50,662,591 19,348,580 62,531,602 10,800

Table 2.13. Results obtained with the soft-fixing local search approach on the
scenario tree with ϕ = 0.50.

T S k0 γ Iter. x∗ z∗LH CPLEXUB Time (s)

5 81 30 0.1 4 22,212,475 14,407,994 17,182,532 1,200
6 243 20 0.2 4 39,514,669 17,784,559 54,486,925 3,887
7 749 30 0.2 2 59,897,077 20,779,377 48,507,800 10,800

A more profound analysis must be performed in this procedure in order to deter-
mine if it is possible to achieve even more improved solutions. Another indication, and
perhaps a more relevant one, is that the soft-fixing local search algorithm is actually
able to improve a given feasible solution, what suggests its application as a refining pro-
cedure for the solutions obtained by Lagrangian Relaxation. Both initiatives, however,
are left to future work.
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2.7 Discussion and future work

In this Chapter, we have proposed and evaluated the Stochastic Capacity Planning
Problem applied to a Global Mining Supply Chain. The model integrates capacity
expansion, capacitated facility location and network design decisions within a supply
chain planning framework. The size and complexity of the model poses significant
challenges to powerful general-purpose optimization solvers and hence demands the
development of specific solution procedures.

We have performed a number of analyses on the application of different CPLEX
12.2 settings to the optimization problem; a specific combination of parameters yielded
good results for one-hour limited runs and was applied on all subsequent experiments.
Those results, however, were still associated to a network and a scenario tree of re-
stricted size. Larger networks, longer planning horizons and additional random param-
eters — iron ore long-term contract prices, for instance — are bound to be addressed
in realistic instances and will certainly require more efficient solution procedures. The
insights presented here may drive further developments on those procedures.

The main result presented in this Chapter is the Lagrangian Heuristic designed to
derive good dual bounds and feasible solutions to the capacity planning problem. The
Lagrangian relaxation considered a dualization of a subset of constraints which yielded
a good tradeoff between the quality of the Lagrangian duals and the computation time
required to determine them. Though not stronger than CPLEX for smaller problems,
the Lagrangian Heuristic takes comparatively less time to run and may provide good
approximate solutions when a larger number of scenarios is considered. That is spe-
cially interesting as a method to determine good feasible solutions early in the solution
process.

Many improvements can be made in the Lagrangian approach. Firstly, one should
notice that reducing the initial erratic behavior of the subgradient algorithm may result
in faster convergence, even if there is no significant improvement in the Lagrangian dual.
An approach based on the use surrogate constraint relaxations within the Lagrangian
framework could be exploited to achieve that [Lorena and Senne, 1999]. Secondly,
the greedy feasibility heuristic could be enhanced with local search methods in order
to explore different capacity decisions or even to anticipate the establishment of new
facilities and channels for a given feasible solution. That could avoid unnecessary de-
mand shortage penalties and improve the primal bounds. Also, the initial capacity
directives of Algorithm 2 (steps 23-27) establish that initial capacity must approxi-
mate the highest activity level among all scenarios derived from the subtree rooted in
the node where a facility or channel is opened. However, other different criteria for
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deciding the initial capacity could be evaluated as, for instance, the scenario with the
highest probability, or the scenario with maximum expected activity level. That might
yield less conservative capacity configurations and provide interesting results for dif-
ferent demand behaviors. Assessing the dual information provided by the Lagrangian
multipliers could provide us with some indication so as to decide initial capacities, as
discussed above, or even other supply chain structure decisions.

In this Chapter, we have also proposed a soft-fixing local search procedure moti-
vated by the need to derive good feasible solutions in the early stages of the computa-
tion. Though it has outperformed CPLEX in large problem instances, the procedure
did not produce better results than the Lagrangian Heuristic. Hence, as indicated by
the results, one interesting research direction would be the use of the soft-fixing local
search as a refining procedure for the solutions obtained by the Lagrangian Heuristic.

Future work must also scope the development of strong valid inequations to be
added to the proposed capacity planning problem. For that matter, specific formu-
lations should be analyzed, as well as the relation of that problem to other similar
subproblems [Balakrishnan, 1984]. Additionally, one must consider the development
of specific cutting-plane algorithms which take into account the multi-stage, stochas-
tic nature of the problem and might yield better results when compared to standard
cutting-plane approaches [Guan et al., 2009].

Decomposition methods could also be used to explore the dynamically capacitated
network problem structure as well as the discretized stochastic structure [Ruszczynski,
1997]. Dantzig-Wolfe decomposition, for instance, has been successfully applied on
multistage stochastic capacity planning problems [Singh et al., 2009] and could be
considered as an approach to the problem presented in this Chapter.

Although not addressed in this Thesis, the development of mathematical ap-
proaches to build coherent scenario trees and, more importantly, to reduce it to a
minimum yet valuable size could also be studied. That, however, is a different problem
altogether, involving the application of specific statistical modeling tools within the
mathematical programming framework. Interesting results, however, may be achieved
with Scenario Optimal Reduction techniques [de Oliveira et al., 2010].

It is also important to notice that explicit measures of risk could be used as
an alternative to the traditional minimum cost, maximum value objective functions.
Value-at-Risk measures, for instance, have been employed in facility location prob-
lems where the objective is to maximize the lower limit of future earnings based on a
given confidence level [Wagner et al., 2009]. Those measures have also been receiving
increasingly attention in infrastructure planning problems [Marzano, 2004].

Also, a more realistic, business oriented approach would require including valu-
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ation features in the objective function of the stochastic capacity planning problem.
Since its main decisions involve investments in production and transportation capac-
ity, and having in mind that it is the ultimate goal of an organization to add value to
stockholders’ capital expenses, the net present value would be a nature choice for the
problem’s objective function [Bagajewicz, 2008].

Finally, we point out that several additional analyses could also be made as to
the characteristics of the stochastic capacity planning problem under different network
structures, as well as different demand behaviors. Those might provide interesting
insights to the establishment of conceptual managerial policies regarding investments
on supply chain capacity. Also, as the planned decisions are confronted with the actual
outcomes of the scenarios, methods to efficiently restart the solution process from a
known state of the world may be of great interest.



Chapter 3

Integrated Sales and Operations
Tactical Planning in a Global
Mining Supply Chain

“However thirsty he was for knowledge, he hated
to display ignorance.”

When Nietzsche Wept, Irvin D. Yalom

In the context of this Thesis, tactical decisions focus on medium-term planning
horizons and involve the effective allocation of production, storage and distribution
resources in order to meet iron ore market demand. Large mining operations are of-
ten composed of several mines and processing plants, as well as stockyards, railroads,
ports and supply stations, each with different capacities and characteristics. According
to the demand imposed by domestic and international customers, and depending on
the specifications of the ore products supplied by each mine, decisions such as min-
ing, processing, handling, procurement, blending and shipping may involve different
facilities at different stages of the supply chain. This Chapter presents a mixed-integer
programming model to deal with the tactical sales and operations planning problem in
the Global Mining Supply Chain. The model has characteristics of a lot sizing problem
in a network environment, but with challenging aspects related to integer flows, dis-
crete production levels and mass losses in concentration and transportation processes.
We develop a series of Relax&Fix strategies in order to address realistic sized problem
instances. Those strategies are able to outperform CPLEX for most of the several
problem instances considered, and with greater success in longer planning horizons.
The soft-fixing local search is also evaluated for its ability of determining good feasible

55
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solutions in the early stages of the computation. The results given in this Chapter are
also presented in the following publications:

Pimentel, B. S., Almeida, F. A., and Mateus, G. R. (2010). Integrated Sales
and Operations Planning in a Global Mining Supply Chain. Submitted to
the European Journal of Operational Research.

Almeida, F. A., Pimentel, B. S., and Mateus, G. R. (2009). Algoritmos
para planejamento integrado de produção e transporte de minérios. In
Anais do XLI Simpósio Brasileiro de Pesquisa Operacional, Porto Seguro,
Brazil. Sociedade Brasileira de Pesquisa Operacional.

3.1 Introduction

In the present Chapter, we develop a mathematical model applied to the integrated
sales and operations tactical planning in the Global Mining Supply Chain. Again,
tactical planning involves multistage decisions such as which ore and where to mine,
process and store ore products, as well as which handling equipment to use and which
logistic channels to employ in delivering those products to the end customers. As
different mines operate at different grades and under different cost and capacity char-
acteristics, the larger the system, the more flexible it may be in dealing with varying
operational conditions - nevertheless, the more complex it becomes to determine opti-
mal or even feasible solutions for practical-sized problem instances. Today’s large scale
mining operations may involve several of those elements organized in a rather intricate
network, and decisions may span long planning horizons. Mathematical programming
approaches to deal with such a scenario are thus challenged by high computational
complexities, preventing the use of conventional, packaged optimization software.

We propose a set of Relax&Fix strategies to deal with such challenges, in an
attempt to solve smaller sub-problems by relaxing only a part of the integer variable
set and fixing the remaining integer variables to the values given by each sub-problem
solution. The heuristic does not guarantee optimality, nor does it ensure that feasible
solutions are found for any given partition strategy. However, good approximate solu-
tions may be achieved with a clever selection of the partition criteria. We propose a
set of strategies that consider partitioning the integer variable set according to reduced
costs, geographic relations, time periods and even randomly. Each strategy is evaluated
according to its ability to find feasible solutions.
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We consider a problem scenario inspired in large-scale mining operations existing
in Brazil, which is composed of three mining systems, three railroads and four ports,
all of which operating with some degree of interoperability. Where exact solution
procedures fail to achieve feasible solutions for realistic scenarios, we were able to
develop specific Relax&Fix strategies which perform rather efficiently, achieving good
approximate solutions.

3.2 Tactical Sales and Operations Planning

Sales & Operations Planning (S&OP) is a methodology for coordinating supply chain
and demand management decisions [Shapiro, 2010]. Given accurate data inputs, a
properly implemented optimization model can unravel the complex interactions and
ripple effects across sourcing, production, distribution, inventory and demand manage-
ment decisions that make S&OP difficult and important.

In the context of the Global Mining Supply Chain, tactical S&OP generally in-
volve determining product portfolio for each mine, production amounts, utilization
levels and material flows according to production, storage and distribution capacity
constraints. Ore product portfolio for mines and processing plants is somewhat limited
in scope, but may show some variation in the medium-term, since the characteristics
of the ROM feed may change according to the mine development plan. Ideally, how-
ever, that plan should consider the integrated mining supply chain plan, including the
overall demand, stock levels, and blending opportunities, as well as individual costs
and capacities. Different ROM characteristics may drive different production cam-
paigns and yield different costs and productivity, thus impacting on the ore product
mix. It is important to notice that ore processing commonly involves the generation
of coproducts, thus imposing a production split constraint on the processing plants.
At the design phase, the processing plant features are defined according to the charac-
teristics of the expected ROM. This fact limits the production split and makes setup
and changeover times and costs relatively irrelevant on the short-term plan. When
more than one production circuit is available — such as the sinter-feed and pellet-feed
circuits in some iron ore processing plants — there may be some split flexibility. For
instance, if the mine supplies a coarser ROM, the processing plant can still employ
additional grinding to generate finer ore products. However, if the mine supplies a
finer ROM, the processing plant will certainly yield a higher proportion of fine prod-
ucts, since there is no way of compensating for that input. This asymmetry between
supply and demand can lead to difficulties in satisfying quality range specifications.
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In such cases, the only way to satisfy demand in both quality and quantity is to ex-
plore the flexibility of the supply chain by blending ore products at mines and ports.
Also, although production facilities may be relatively multi-purpose, it can be bene-
ficial for the whole supply chain to operate specific plants in a dedicated mode, one
that matches a typical ROM supply. Regarding utilization levels, processing plants
usually operate at a specific nominal capacity level, where productivity is the highest.
Hence, accommodating production to demand level is often achieved by determining
discrete idle time, when production stops and management seizes the opportunity to
perform maintenance and refurbishment activities. Discrete production levels, which
provide an acceptable relation between cost and productivity, can also be considered.
Additionally, material flows can be viewed as discrete quantities when transportation
is made by trains, cars or trucks. Fixed and variable costs and expected revenues are
the main drivers to those tactical decisions.

In general terms, the mathematical model aims at minimizing production,
transportation, procurement and storage variable costs, as well as opera-
tional and idle fixed costs throughout the planning horizon, while observing
the following restrictions:

• ROM supply limits at mine pits, as well as procurement limits at third-party
supplies;

• Mass losses due to bulk handling processes and mass efficiency at the processing
plants, which render unbalanced the flows at the respective nodes;

• Finite, discrete integer production levels at mines and processing plants, which
impose minimum lot restrictions on production planning;

• Discrete, integer transportation levels for trains and ships, which impose mini-
mum lot restrictions on transportation planning;

• Capacity limits for production, storage and transportation systems;

• Material balances at the stockyards and the corresponding blending restrictions
when composing specific product qualities, and;

• The overall demand for iron ore by different customers throughout the Global
Mining Supply Chain.

The following sections detail the mathematical formulation for the proposed Sales and
Operation Planning problem.
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3.2.1 Mathematical notation

The proposed mathematical model uses the following notation:

Sets :

B : Blending nodes (B ⊂ X);

D : Demand centers;

Ex : Links for (continuous) product flow;

Ey : Links for processing flows;

Ew : Links for third-party product procurement flows;

Ek
z : Links for discrete product flow using mode k ∈ Q,Ez =

⋃
k∈QE

k
z ;

O : Supply centers (mine pits);

P : Ore products, where P = (PF ∪ PO ∪ PI) includes end, original and intermediate
products, respectively;

Q : Discrete transportation modes used in distribution channels (trains, ships, etc.);

R : Third-party procurement supply centers;

S : Ore stockyards;

T : Time periods in the planning horizon;

V : All facilities, where V = {B ∪O ∪R ∪ S ∪X ∪ Y } ;

X : Transshipment nodes (simple transfer or loading);

Y : Processing plants;

Parameters :

βbp : Fraction of product p ∈ PF in the blending of product b ∈ PF , such that βbp ∈
(0, 1),

∑
p∈PF βbp = 1, ∀b ∈ PF ;

cpt∗ : Unit transportation, storage, production and procurement costs for product p ∈
P at t ∈ T ;

f̂ ti : Fixed operational cost of facility i ∈ V at t ∈ T ;
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f̌ ti : Fixed idle cost of facility i ∈ V at t ∈ T ;

dpti : Demand for product p ∈ PF at center i ∈ D at t ∈ T , with dpti ∈ R+;

δpti : Penalty applied over backlog of product p ∈ PF for customer i ∈ D at t ∈ T ;

εpti : Mass loss ratio due to handling, storage and transfer of product p ∈ P at facility
i ∈ (S ∪X) at t ∈ T , where εpti ∈ (0, 1];

ηptij : Mass efficiency of process (i, j) ∈ Ey for p ∈ P at t ∈ T , where ηptij ∈ (0, 1];

l∗∗ : Lower bound on transportation and procurement flows and stock levels;

u∗∗ : Upper bound on transportation and procurement flows and stock levels;

λptij : Lower bound on process (i, j) ∈ Ey for generating product p ∈ P at t ∈ T ;

υptij : Upper bound on process (i, j) ∈ Ey for generating product p ∈ P at t ∈ T ;

opti : Upper bound on the supply of p ∈ PO at pit i ∈ O at t ∈ T ;

rpti : Upper bound on the supply of p ∈ (PI ∪ PF ) by the supplier i ∈ R at t ∈ T ;

Cpij : Production capacity step of process (i, j) ∈ Ey, such that Cpij = υptij /CLij;

CLij : Number of feasible discrete production levels (including null) for process (i, j) ∈
Ey, where CLij ∈ N∗;

CqQ : Average capacity of a product lot transferred by mode q ∈ Q;

CipR : Basic lot of purchasing product p ∈ (PI ∪ PF ) from supplier i ∈ R;

Γ : Demand/capacity ratio, representing how much of the overall system capacity is
compromised to the demand imposed by customers;

Decision variables :

bpti : Backlog of product p ∈ (PI ∪ PF ) for demand center i ∈ D at t ∈ T ;

spti : Stock level of product p ∈ (PI ∪ PF ) in stockyard i ∈ S at t ∈ T ;

xptij : Flow of product p ∈ P through channel (i, j) ∈ Ex at t ∈ T ;

yptij : Production level of process (i, j) ∈ Ey in generating product p ∈ P at t ∈ T ,
such that yptij ∈ Z+;
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wptij : Number of lots of product p ∈ (PI ∪ PF ) purchased from supplier i ∈ R, through
channel (i, j) ∈ Ew at t ∈ T , such that wptij ∈ Z+;

zptijq : Number of transportation units employed on the flow of product p ∈ P through
channel (i, j) ∈ Ez, using mode q ∈ Q at t ∈ T , such that zptijq ∈ Z+;

ati : Allocation decision for facility i ∈ V , such that ati ∈ {0, 1}; if ati = 1, the facility
is operational, and if ati = 0, the facility is inactive at t ∈ T .

We assume all capacity parameters to be averaged. It is important to notice that,
although integer in the problem instances, those parameters need not be integer them-
selves — in fact, they define uniform capacity levels that can be accessed by the range
of values of the integer devision variables. In order to simplify the model description,
we define the following auxiliary terms:

Eχ : Eχ = {Ex ∪ Ez}, which represents the set of all transportation channels, both
continuous and discrete in nature;

γptij : γptij = Cpijy
pt
ij ≥ 0, a decision variable that represents the number of units of p ∈ P

produced by process (i, j) ∈ Ey;

ζptijq : ζ
pt
ijq = CqQz

pt
ijq ≥ 0, a decision variable that represents the number of units of

p ∈ P transported by a discrete modal through channel (i, j) ∈ Ez;

χptij : χptij = xptij +
∑

q∈Q ζ
pt
ijq ≥ 0, a decision variable that represents the number of units

of p ∈ P transported by both discrete and continuous modals through channel
(i, j) ∈ Eχ;

ωptij : ωptij = CipRw
pt
ij ≥ 0, a decision variable that represents the number of units of

p ∈ (PI ∪ PF ) acquired from supplier i ∈ R.

3.2.2 Mathematical formulation

The objective function seeks minimizing production, transportation, procurement and
storage variable costs, as well as operational and idle fixed costs throughout the plan-
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ning horizon:

Minimize

∑
t∈T

∑
p∈P

 ∑
(i,j)∈Eχ

cptijqχ
pt
ij +

∑
(i,j)∈Ey

cptijγ
pt
ij+

∑
(i,j)∈Ew

cptijω
pt
ij +

∑
i∈S

cpti s
pt
i +

∑
i∈D

δpti b
pt
i

+

+
∑
t∈T

[∑
i∈V

f̂ ti a
t
i + f̌ ti

(
1− ati

)]
, (3.1)

where several constraints apply. Firstly, ROM supply limits at mine pits, as well as
procurement supply limits must be observed:∑

j

χptij ≤ opti ∀i ∈ O, p ∈ PO, q ∈ Q, t ∈ T, (3.2)∑
j

ωptij ≤ rpti ∀i ∈ R, p ∈ (PI ∪ PF ) , t ∈ T. (3.3)

Also, in all transshipment nodes, mass losses due to bulk handling processes must be
taken into account:∑

j

χptij − ε
pt
i

∑
k

χptki = 0 ∀i ∈ X, p ∈ P, t ∈ T. (3.4)

And at all input and output processing plant nodes, mass efficiency must be observed:

γptij − η
pt
ij

∑
k

χp
′t
ki = 0 ∀(i, j) ∈ Ey, p′ ∈ P, p ∈ (PI ∪ PF ) , t ∈ T, (3.5)∑

j

χptij − γ
pt
ki = 0 ∀(k, i) ∈ Ey,∀p ∈ (PI ∪ PF ) ,∀t ∈ T. (3.6)

At the stockyards, the difference between incoming and outgoing material flows de-
termines the difference in the stock levels for each product at the end of each time
period:∑

j

χptij − ε
pt
i

∑
k

χptki − ε
pt
i

∑
k

ωptki = spt−1
i − spti ∀i ∈ S, p ∈ P, t ∈ T. (3.7)
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Blending is achieved by adding together input products at specific proportions:∑
b

βbp
∑
j

χbtij −
∑
k

χptki = 0 ∀i ∈ B, p ∈ PF , t ∈ T. (3.8)

Also, only active facilities can have positive production or transportation flows:

∑
p∈P

(∑
j

χptij +
∑
k

χptki

)
≤Mati ∀(i, j) ∈ Eχ, i ∈ V, t ∈ T, (3.9)∑

p∈P

γptij ≤Mati ∀(i, j) ∈ Ey, i ∈ Y, p ∈ P, t ∈ T, (3.10)∑
p∈P

ωptij ≤Mati ∀(i, j) ∈ Ew, i ∈ R, p ∈ (PI ∪ PF ) , (3.11)

whereM should be at least greater than the sum of the total capacity of the incoming
and outgoing links.

Customer demand must be completely served at every time period; penalties will
apply to any unmet demand. This is a fair assumption, given the overall system’s
capability and the constraints imposed by market and logistics dynamics:∑

k

χptki + bpti = dpti ∀i ∈ D, p ∈ P, t ∈ T. (3.12)

Alternatively, one can consider customer demand as being stated in terms of the amount
of each shipment capacity required at every time interval. In such case, the demand
parameter should be restated as dptiq ∈ Z+, q ∈ Q, and the previous equation should be
replaced by the following:∑

k

χptki + bpti =
∑
q∈Q

CqQd
pt
iq ∀i ∈ D, p ∈ P, t ∈ T,∑

k

∑
i

ζptkiq =
∑
i

dptiq ∀i ∈ D, q ∈ Q, p ∈ P, t ∈ T.

Finally, upper and lower bounds on flow and storage capacity must be enforced:

lptij ≤ xptij ≤ uptij ∀(i, j) ∈ Ex, p ∈ P, t ∈ T, (3.13)

ltij ≤
∑
p∈P

xptij ≤ utij ∀(i, j) ∈ Ex, t ∈ T, (3.14)

lptijq ≤ ζptijq ≤ uptijq ∀(i, j) ∈ Eq
z , q ∈ Q, p ∈ P, t ∈ T, (3.15)

lptij ≤ ωptij ≤ uptij ∀(i, j) ∈ Ew,∀i ∈ R, ∀p ∈ (PI ∪ PF ) , t ∈ T, (3.16)
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ltijq ≤
∑
p∈P

ζptijq ≤ utijq ∀(i, j) ∈ Eq
z , q ∈ Q, p ∈ P, t ∈ T, (3.17)

ltij ≤
∑
p∈P

∑
q∈Q

ζptijq ≤ utij ∀(i, j) ∈ Ez, t ∈ T, (3.18)

lpti ≤ spti ≤ upti ∀i ∈ S, p ∈ P, t ∈ T, (3.19)

lti ≤
∑
p∈P

spti ≤ uti ∀i ∈ S, t ∈ T, (3.20)

λptij ≤ γptij ≤ υptij ∀(i, j) ∈ Ey, p ∈ P, t ∈ T, (3.21)

as well as integrality and nonnegativity constraints over the decision variables:

xptij , s
pt
k , b

pt
l ≥ 0 ∀(i, j) ∈ Ex, k ∈ S, l ∈ D, p ∈ P, t ∈ T, (3.22)

χptij ≥ 0 ∀(i, j) ∈ Eχ, p ∈ P, t ∈ T, (3.23)

zptijk, y
pt
lm, w

pt
oq ∈ Z+ ∀(i, j) ∈ Ez, k ∈ Q, (l,m) ∈ Ey, (o, q) ∈ Ew,

p ∈ P, t ∈ T, (3.24)

ati ∈ {0, 1} ∀i ∈ V, t ∈ T, (3.25)

γptij ≥ 0 ∀(i, j) ∈ Ey, p ∈ P, t ∈ T, (3.26)

ζptijk ≥ 0 ∀(i, j) ∈ Ez, p ∈ P, t ∈ T. (3.27)

3.3 A simple example

In order to evaluate the main features of the proposed model, we present the simplified
mining supply chain presented below. Each facility has known production, storage and

P1

P3

H C

M1

M3

M2 PH

S
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Processing plant

Port

Conveyor

belt / road

Train

Ship

Third-party
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Figure 3.1. A simple example for the S&OP problem.
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transfer capacities, as well as predefined product portfolio and operational costs. The
supply chain has three mines M1, M2 and M3, one port H and three processing plants
— P1 and P3 associated to mines M1 and M3, respectively, and PH , a pelletizing plant,
associated to the port. Since mine M2 does not have a processing plant, all its ROM
must be processed at P3. Production and storage capacities and costs are shown in
Table 3.1. In this example, we assume that the facilities are not constrained on the
shipping capacity; however, standard capacity of trains and ocean carriers shipments
is 50 and 100 units, respectively, while trucks may carry any amount of material in
each shipment. A single customer C demands products s and p, where product s is
formed at the port from a blend of 80% of s1 and 20% of s3, and pellets p are formed
by agglomerating pellet feed pf at the port’s pelletizing plant PH. If demand for
s3 is higher than available capacity, third-party procurement may be employed from
supplier S, although at a much higher cost (and again, in this example, with unlimited
capacity). For the sake of simplicity, all operational fixed costs are set to $100, except
for the procurement node, which has a fixed cost of $1000; idle costs are all set to $10.
Also, we assume no losses in any processes

(
εpti = ηptij = 1

)
, so that flow balances are

always maintained. All facilities have only three production levels: 0%, 50% and 100%
of the respective nominal capacities.

Table 3.1. A simple example for the S&OP problem.

Facility Production Storage Unit Cost

Mine M1 rom : 2000 2000 1.0
Processing plant P1 s1 : 1000, pf : 1000 2000 1.0
Mine M2 rom : 500 1000 5.0
Mine M3 rom : 1500 2000 5.0
Processing plant P3 s3 : 1000, pf : 1000 2000 5.0
Supplier S s3 : 500 — 50.0
Railway — — 1.0
Processing plant PH p : 1000 1000 2.0
Harbor H s : 4000, p : 1000 7000 2.0

In this example, we assume a scenario of increasing demand, which drives the
supply chain to employ different resources at each of the three time periods considered
in the planning horizon. At t = 1, demand levels are low, so the system directs
production towards the lower cost facilities at mines M1 and M3 and processing plants
P1 and P3 until all demand is met. Note that exactly 0.8 parts of s1 and 0.2 parts
of s3 are needed to deliver each unit of s. At t = 2, demand doubles and all mines,
including M2, must be employed to ensure proper delivery. At t = 3, demand doubles
again and some third-party procurement must be employed at the expense of higher
operational costs. At t = 1, as seen on Table 3.2, 100 units of s1 and 400 units of s3
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Table 3.2. Results for the S&OP example at t = 1.

t = 1; Demand of s : 500, p : 500

Facility Production Shipping Storage Procurement
Mine M1 rom : 1500 — — —
Processing plant P1 s1 : 500, pf : 1000 s1 : 100, pf : 1000 s1 : 400 —
Mine M2 — — — —
Mine M3 rom : 500 — — —
Processing plant P3 s3 : 500 s3 : 500 — —
Harbor H and PH s : 500, p : 1000 s : 500, p : 500 s3 : 100, p : 500 —

are required to meet the demand of product s. Processing plant P1 uses 50% of s1

and 100% of the pf production circuits’ capacities, generating 500 units of s1 and 1000
units of pf , respectively. Of this production, only 100 units of s1 and all 1000 units of
pf are shipped to the harbor, leaving 400 units of s1 at the stockyard of P1. Also, since
those facilities have the lowest cost, all pf demanded is provided by them. Processing
plant P3’s capacity is constrained by Mine M3 production, thus only employing 50%
of its nominal capacity to produce 500 units of s3 and shipping all of them to the
harbor. There, two process take place: the production of 1000 units of p from all the
pf received from P1; and the blending of 500 units s from 100 units of s1 and 400 units
of s3. Although only half the p produced is needed to meet the demand, the extra
production will be needed at the following time periods — also, the lower storage costs
of P1 and PH compensate the anticipated production. Hence the harbor ships 500 units
of s and p and stores the 100 leftover units of s3 and the 500 units of p.

At t = 2, demand doubles and the bottleneck production capacity of M3 requires
Mine M2 to be employed in producing 500 units of ROM to complement processing
plant P3 supply. In order to meet s demand, 200 units of s1 and 800 units of s3 are
needed, which are consumed from both received cargo and the port’s stockyard. Since
500 units of p were left in the stockyard, only 500 new units from the 1000 units
produced are required, thus leaving again a stock of 500 units of p.

Table 3.3. Results for the S&OP example at t = 2.

t = 2; Demand of s : 1000, p : 1000

Facility Production Shipping Storage Procurement
Mine M1 rom : 1000 — — —
Processing plant P1 pf : 1000 s1 : 200, pf : 1000 s1 : 200 —
Mine M2 rom : 500 — — —
Mine M3 rom : 500 — — —
Processing plant P3 s3 : 1000 s3 : 1000 — —
Harbor H and PH s : 1000, p : 1000 s : 1000, p : 1000 s3 : 300, p : 500 —

At t = 3, demand increases again and all production and distribution capacity
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available is not able to meet the delivery goals. Therefore, 500 units of s3 are procured
from the third-party supplier S. Since 400 units of s1 and 1600 units of s3 are now
required to meet s demand, 1300 units of s3 are shipped from Processing plant P3,
which are composed of 1000 units of production and 300 units of procurement. Those
1300 units are combined with other 300 units of s3 left in the harbor stockyard from
the previous time period. It is important to point out that, since each processing plant
can only operate in discrete production levels, it may not be possible to use up all
surplus production, and some stored material may have to be left.

Table 3.4. Results for the S&OP example at t = 3.

t = 3; Demand of s : 2000, p : 1500

Facility Production Shipping Storage Procurement
Mine M1 rom : 1500 — — —
Processing plant P1 s1 : 500, pf : 1000 s1 : 400, pf : 1000 s1 : 300 —
Mine M2 rom : 500 — — —
Mine M3 rom : 500 — — —
Processing plant P3 s3 : 1000 s3 : 1300 — s3 : 300
Harbor H and PH s : 1000, p : 1000 s : 2000, p : 1500 — —

Although this is a simple example, some important analyses can be made. For
instance, depending on production plans, maintenance schedules may be adjusted to
meet a compromise between overall capacity and demand. For that matter, any known
variations in nominal capacities may be taken into account when planning production,
storage and transfer throughout the supply chain. That scopes both product vol-
umes and quality, since different products may be blended to meet the desired delivery
specifications. Also, since production levels are usually set to maximum capacities,
production and transfer decisions may have important impacts on stock levels. Bot-
tlenecks within the supply chain could be identified and compensated by the overall
capacity. Such analysis could suggest, for example, investment allocation to capacity
expansion.

3.4 The Relax&Fix approach

In this Chapter, we are interested in solving S&OP problem instances of practical
sizes. However, previous work [Almeida et al., 2009] has shown that the characteristics
of the proposed model may pose significant challenges for modern commercial solvers,
such as CPLEX. Also, depending on the problem structure, it may be difficult even
to find feasible solutions in order to explore the neighborhood solution space. The
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alternative is thus to develop special-purpose solution algorithms to determine good
enough feasible solutions in a reasonable amount of time.

A solution technique that has been successfully applied in large, complex mixed-
integer problems is the Relax&Fix strategy [Dillenberger et al., 1994]. Relax&Fix is
a general-purpose methodology that solves the original problem in a number of steps,
each involving a subproblem of smaller complexity than the original one. That is
accomplished first by partitioning the integer variable set into a number of disjunctive
subsets. The procedure then tries to solve a sequence of mixed integer subproblems in
which the variables of only a single subset remain integer and all others are linearly
relaxed. Since the number of integer variables is reduced at each stage, the subproblems
can be solved with relative efficiency. As the series advances, each integer variable
subset is permanently fixed to the optimal values obtained at the previous stage and
the integrality constraint is forced upon the integer variables of the current stage.
Solution quality is measured by a gap calculated as:

gap(%) = 1− ι

ν
(3.28)

where ι represents the lower bound obtained with the relaxation of the first stage (or
with the linear relaxation of the original problem), and ν represents the upper bound
obtained with the solution of the last stage. The value ι is clearly a dual bound, since it
is obtained by a partial linear relaxation of the original problem. Similarly, ν is clearly
a primal bound, since it is a feasible solution obtained by the Relax&Fix solution.

Here we adapt the enhanced Relax&Fix algorithm due to Escudero and Salmeron
[2005]. It is important to notice that, since only a portion of the solution space is
explored, the algorithm cannot guarantee optimality, nor can it ensure that feasibility
is maintained throughout the computations. A backtracking grouping step is usually
proposed to deal with such drawbacks, at the cost of increasing the complexity of the
infeasible subproblem. In the worst case, however, the algorithm may end up solving
the original problem and hence may fail to determine an efficient solution.

The Relax&Fix heuristic has been largely used as a method to obtain good primal
bounds (feasible solutions) for hard mixed integer programs either on its own or as
part of hybrid algorithms. However, it is clear that the variable set partitioning and
the variable fixing criteria have a strong connection with the complexity and with
the feasibility of each subproblem. In multi-period or multistage problems, it is a
natural choice to partition the variable set according to each period or stage. Escudero
and Salmeron [2005] propose a series of partition strategies for a project scheduling
problem according to promptness, value, cost, cost-benefit ratio, or even randomly
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Algorithm 4: Relax&Fix
Input: Problem P : min {c(x, y) : x ∈ X ⊆ Zn, y ∈ Y ⊆ Rn}
1: Let V1, . . . , Vk be a set of disjoint partitions of the integer variable set V .
2: Let Pr be a subproblem where only variables Vr are kept integer and all others are relaxed.
3: r ← 1
4: Solve P1

5: if P1 is infeasible then
6: Stop, since P would also be infeasible.
7: else
8: ι(P)← ι(P1)
9: end if
10: while r 6= k do
11: r ← r + 1
12: Solve Pr

13: if Pr is infeasible then
14: Vr−1 ← Vr−1 ∪ Vr
15: for all i = r, . . . , k − 1 do
16: Vi ← Vi+1

17: end for
18: k ← k − 1
19: r ← r − 1
20: if r = 1 then
21: Go back to step 4.
22: end if
23: end if
24: end while
25: ι(P)← ι(Pk)
26: Stop, since P is feasible.
Output: Solution to P.

selecting the variables of each stage. Beraldi et al. [2006] address a stochastic lot-
sizing and scheduling problem and develop a Relax&Fix strategy that considers a time
partitioning scheme embedded in each node of the problem’s scenario tree. Ferreira
et al. [2009] evaluate partition strategies based on time, assignment, function, and
combinations of those in a soft drink plant integrated lot-sizing and scheduling problem.

3.4.1 Partition strategies

The combined lot-sizing and network flow model we propose in this paper aims at
minimizing all operational costs throughout the global mining supply chain. It is im-
portant to notice that this model has specific characteristics which impose significant
challenges to obtaining feasible solutions — our preliminary experiments have shown
that feasibility, and not optimality, is the main issue. This suggests that, when de-
signing Relax&Fix strategies, the partition schemes must be careful not to violate any
balance, nor to create any conditions that might violate balances within the network.
Also, the assignment restrictions imposed over production facilities must ensure that
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the system capacity meets the overall demand, especially considering that discrete
production levels may generate flows that are significantly below or above the exact
demanded quantities or even the transfer and storage capacities.

Table 3.5 lists the Relax&Fix strategies proposed in this work. The PT and

Table 3.5. Relax&Fix strategies.

Strategy Partition Stages

PT Functional Production, transportation
TP Functional Transportation, production
R Random Predefined number of stages
RC Reduced costs Predefined number of stages
GF Geographic From mine to port
GB Geographic From port to mine
TF Time periods t = 1, 2, . . . , T
TB Time periods t = T, T − 1, . . . , 1
TFP Time periods/products t = 1, 2, . . . , T ; P
TBP Time periods/products t = T, T − 1, . . . , 1; P
TFPT Time periods/functional t = 1, 2, . . . , T ; production, transportation
TFTP Time periods/functional t = 1, 2, . . . , T ; transportation, production
TBPT Time periods/functional t = T, T − 1, . . . , 1; production, transportation
TBTP Time periods/functional t = T, T − 1, . . . , 1; transportation, production
ATF Assignment/time periods a; t = 1, 2, . . . , T
ATB Assignment/time periods a; t = T, T − 1, . . . , 1

TP strategies partition the integer variable set according to functional characteristics
in two stages: production variables and transportation variables. Depending on the
problem size, however, PT and TP may still have to deal with difficult subproblems.
Strategy R randomly groups the integer variables into a predefined number of stages,
thus making it possible to control the actual number of variables per stage, regardless
of time or function. Strategy RC also uses a predefined number of stages but groups the
integer variables according to the highest reduced costs given by the linear relaxation
of each subproblem. Strategies GF and GB divide the integer variable space according
to the main supply chain structures: mines, railway, supply stations and port, solving
them in the forward and backward directions, respectively. Such partition, although
intuitive, does not always ensure that a reasonable number of variables is present
in each stage, especially for longer planning horizons, nor does it ensure that flow
conservation is met for any solving sequence. Strategies TF and TB both partition
the integer variable space according to the number of time periods in the planning
horizon and then traverse it to the forward or backward direction, respectively. The
following six strategies all partition the variable set according to time periods, varying
direction (forward of backward in time) and further partitioning the subsets according
to production/transportation or geographic criteria. Strategies ATF and ATB, on the
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other hand, try to establish all facilities that should be operational before applying the
TF and TB strategies. Combinations of the above strategies in stages and sub-stages
are also possible, given that the appropriate consistency conditions are met.

It is important to mention that the set of strategies proposed here is clearly non-
exhaustive; although several others can be imagined, we have focused on the ones that
seemed to produce the most significant results in both feasibility and efficiency. The
following section further evaluates the behavior of the proposed strategies.

3.4.2 Numerical evaluation

In this section we analyze the computational results of the solution strategies proposed
before. The CPLEX 12.2 solver was applied both individually and as part of the
Relax&Fix framework. In all runs we have limited the solution time to reasonable
values in order to allow comparing the different solution strategies against the exact
methods employed by the solver. All runs were executed in an Intel Xeon E5520
workstation with four cores (up to eight threads), 2.27GHz and 16GB RAM.

We consider a setting inspired in large-scale mining operations existing in Brazil.
Three mining systems A, B and C produce iron ore at different rates, grades and costs,
using three different railroads with some level of interoperability. Four ports are used
for ore export and seven supply stations — three domestic and four international —
are used as advanced commercial stockyards. Some international customers are served
by ocean shipments directly from the ports, while others can only be served by ship-
ments from the international supply stations. System A has seven mines and reaches
four domestic customers, while System B has nine mines and reaches six domestic cus-
tomers, and System C has only one mine and reaches three domestic customers from
three supply stations. Although each system may operate with relative independence,
interoperability may be considered when determining which system will be responsible
for satisfying a given international demand. Note that, for clarity reasons, specific
elements within each subsystem are not represented in the network — instead, we as-
sume that they are contained within each mine, port or supply station node. Some
mines may have one or more processing plants and stockyards, while others may have
to transfer their ROM to plants or stockyards in other mines, and some may depend
entirely on ROM provided by other mines. Accordingly, each port may have a differ-
ent number of pelletizing plants, stockyards and piers. The demand centers represent
customers, both domestic and international.

Table B.1 in Appendix B describes the characteristics of the main supply chain
facilities of each mining system, as considered in the tests. Besides the cost and capac-
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Figure 3.2. Settings for the S&OP problem.

ity parameters, one should pay special attention to the flow loss factors associated to
transportation and storage losses, to the efficiency of the processing plants. When those
parameters are different than 1, the efficiency of the solution algorithms is severely af-
fected, since a significant part of the flow integrality is lost. Although those parameters
may vary for each facility, in average they have the magnitudes presented in Table 3.6.

Table 3.6. Mass and process efficiency parameters.

Parameter Averaged Value

Mass loss due to transportation 0.98
Mass loss due to storage and handling 0.99
Beneficiation process efficiency 0.71
Pelletizing process efficiency (ore) 0.97

The size of the product portfolio is strongly related to market conditions. As it
has been stated, when ore product demand and prices are high, the customers tend to
prioritize quantity over quality, which drive the mining companies to limit the commer-
cial product portfolio to a more manageable size. This means that the quality ranges
that define the ore products tend to be wider, thus leading to a less diversified port-
folio. On the other hand, when demand is lower, customers tend to prioritize quality
over quantity and hence, the commercial efforts consider a more diversified product
portfolio in order to meet specific shipping demands. In such conditions, selecting the
appropriate facilities to mine, process and blend the end ore products is of utmost
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importance. Nevertheless, despite that behavior, in our tests we consider a fixed size
portfolio with only five end products. This is done in order to facilitate the comparison
between the efficiency of each solution strategy. We provide computational results for
several different system conditions, defined by the magnitude of the demand/capacity
ratio Γ and the size of the planning horizon T .

We propose a series of problem instances specifically designed to explore the prob-
lem structure, the CPLEX solver’s performance and the behavior of the Relax&Fix
heuristic. The instances are mainly characterized by the behavior of the demand im-
posed on the supply chain and can be categorized as follows:

• Increasing demand, from 25% to 100% of the system’s overall capacity;

• Decreasing demand, from 100% to 25% of the system’s overall capacity;

• Seasonally increasing demand, from 25% to 100% of the system’s overall capacity,
in one or more cycles depending on the planning horizon;

• Seasonally increasing demand, from 100% to 25% of the system’s overall capacity,
in one or more cycles depending on the planning horizon;

• Uniformly varying demand, increasing variance from 0% up to 125% of the sys-
tem’s overall capacity (with the exceeding demand possibly being met by third-
party suppliers) in cycles of two consecutive periods.

Moreover, for each group of problem instances we evaluate different configurations for
the fixed operational costs: the standard one shown in B.1 and another one with a
general 10-time increase on that parameter. Also, regarding the planning horizon, all
tests are executed with T = {3, 6, 12, 24, 48} time periods. One should, however, notice
that the behavior of demand in real-world scenarios may be rather simpler and may
show much smaller variances than the synthetic instances proposed here.

3.4.2.1 General results

As discussed in the previous Chapter, the CPLEX package allows setting up several
parameters that control the behavior of its solution algorithms as well as embedded
heuristics and pre- and post processors. Here, we have also run trials with different con-
figurations of many combinations of parameters. However, we have observed that, for
the model at hand, the emphasis of the mixed-integer Branch&Cut solution procedure,
which is controlled by the MIP emphasis parameter, is dominant. The default behavior
tries to achieve a balance between optimality and feasibility, and may sometimes fail to



74
Chapter 3. Integrated Sales and Operations Tactical Planning in a

Global Mining Supply Chain

achieve a feasible solution within a reasonable amount of time. Having observed that,
we have configured all our experiments with a higher emphasis on feasibility than on
optimality (MIP emphasis set to 1). All runs of CPLEX were limited to one hour.

The behavior of each Relax&Fix strategy is evaluated using the same configura-
tions described above. The time limit for each run was also set to one hour, uniformly
divided among each iteration. It is important to notice, however, that the proposed
strategies display very distinct behaviors. For instance, the random (R) and reduced
cost (RC) strategies failed to produce any feasible solutions. This unfortunate, but not
unexpected result is most likely due to the infeasible flow balances generated by the
order in which the integer variables were solved and fixed. Despite that, the results
oriented us in further developing the other strategies.

The GF and GB strategies, on the other hand, organize the integer variables
according to their geographic relationships. It is clear that there is a trade-off between
the number of stages — and the corresponding amount of integer variables in each stage
— and the solution quality. Again, however, determining feasible solutions is the main
issue. The solution sequence, that is, the order in which each supply chain facility
has its integer variables solved and fixed, has a strong effect on ensuring adequate
flow balances on the network. We have tested a number of such configurations and
found that not every solution sequence produces feasible results. Nevertheless, we
have observed that sequences which start at the upstream facilities (from the ports
to the mines) tend to cause less feasibility problems while generating more reasonable
solution gaps. In any case, the development of a geographic strategy has proven to be
a challenging trial-and-error task.

With the exception of the TF and TB strategies, all other time-related partitions
failed to produce feasible results, including the ATF and ATB strategies. Although
small enough subproblems can be derived from those partitions, maintaining consis-
tency — especially satisfying the material balances when discrete production levels and
transportation capacities are considered — among the larger number of subproblems
can be quite challenging. The TF and TB strategies, on the other hand, organize the
integer variables according to the time periods in the planning horizon and traverse
the variable subsets in the forward and backward directions — from the first period
to the last and from the last period to the first —, respectively. Time strategies have
shown rather strong results for almost every configuration tested in this Thesis.
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3.4.2.2 Analysis

Considering the large number of problem instances — a total of 90 problem instances,
detailed in Appendix C — we present below only one of the several cases evaluated, as
a means to illustrate the general behavior of the solution approaches. Table 3.7 shows,
for each T , the number of variables — emphasizing the number of integer and binary
variables —, the number of constraints and the results obtained by using CPLEX and
the TF and TB Relax&Fix strategies to solve those five problem instances. From the

Table 3.7. Results of CPLEX and Relax&Fix for increasing planning horizons
in a scenario of uniformly decreasing demand.

T 3 6 12 24 48

Variables 4,635 9,270 18,540 37,080 74,160
Integer 1,503 3,006 6,012 12,024 24,048
Binary 804 1,608 3,216 6,432 12,864
Constraints 7,417 14,626 29,044 57,880 115,552
CPLEX LB 1,041,321 1,495,380 2,745,308 5,296,511 10,429,505
CPLEX UB 1,059,840 1,615,756 4,638,513 533,446,174 1,072,093,875
CPLEX gap 2% 7% 41% 99% 99%
CPLEX t(s) 3,600 3,600 3,600 3,600 3,600
TF LB 960,961 1,354,930 2,525,753 4,902,867 9,684,487
TF UB 1,065,732 1,612,831 3,021,139 5,919,244 11,888,284
TF gap 10% 16% 16% 17% 19%
TF t(s) 4 12 30 116 498
TB LB — — 2,483,394 — —
TB UB — — 16,362,457 — —
TB gap — — 85% — —
TB t(s) — — 8 — —

full listing of results some information may be derived and some important conclusions
may be drawn regarding feasibility, optimality and CPU time:

• CPLEX is able to determine feasible solutions in all problem instances, but good
results are restricted to shorter planning horizons (at most T = 12). Optimality
gaps thus range from 1.65% to 99.04%, with much poorer results associated to
T = 24 and T = 48 — in fact, all problem instaces with T = 48, show gaps higher
than 98%. Also, CPLEX tends to use all CPU time available, a total of 3,600s.
Although one could argue that longer solution time limits might allow CPLEX
to achieve better solutions, some runs with 28,800s (eight hours) yielded gaps
around 20%. On the other hand, it is noticeable that CPLEX’s lower bounds are
consistently higher than the ones obtained by the TF and TB strategies — what
could be expected, since our Relax&Fix algorithm uses the linear relaxation of
the oricinal problem as the lower bound.
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• The TF strategy is able to determine feasible solutions in all problem instances,
with gaps that range from 9.83% (in a T = 3 instance) to 35.57% (in a T = 48

instance), and demanding as low as 1s to 1,290s of CPU time. However, it is
important to notice that the TF strategy takes less than 180s in 76% of the
intances, and less than 60s in 62% of the instances. Also, in 92% of the instances
the TF strategy achieves optimality gaps below 25%, and in 24% of the instances
gaps are below 15%.

• The TB strategy’s behavior, on the other hand, is rather disappointing. Only
on 29 instances (32% of the total) does it determine feasible solutions — it is
true that feasibility is most easily achieved on the decreasing demand instances.
However, for those solutions, the gaps are consistently worse, ranging from 14.09%
to 89.57% (only 48% of the time achieving figures below 25%). Processing time is
otherwise improved, with more than 80% of the instances being executed in less
than 60s. That, however, does not compensate the poor upper bounds determined
by the strategy.

Regarding the upper bounds obtained by each approach, the data clearly indicates that
better results are obtained by the TF strategy when solution time is limited to 3,600s,
with special attention to the following:

• In 61 of the 90 problem instances (68% of the the total), TF provides better
upper bounds than CPLEX — in fact, that is true for all T = 24 and T = 48

instances and for 94% of the T = 12 instances.

• Strategy TF also beats strategy TB 98% of the time. Moreover, upper bounds
up to eight times smaller can be determined by TF.

• For the 29 instances in which strategy TB achieves feasible solutions, on only
24% of them do the upper bounds beat the ones determined by CPLEX.

• The effect of higher fixed costs (FC=10, that is, an increase of ten times on
the fixed costs) is clearly noticeable in the problem instances. Applying the TF
strategy, the optimality gaps of the FC=10 instances are always higher (1.5 times,
in average) than the corresponding ones of the FC=1 instances. The respective
CPU times are higher 67% of the time for the FC=10 problem instances.

The above observations may be further illustrated by Figures 3.3 and 3.4, which show
the suitability of the proposed solution approaches to the different behaviors of the
iron ore demand, as displayed in the problem instances. In those figures, we only
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Figure 3.3. Upper bounds obtained by CPLEX and Relax&Fix for the instances
with T = 48.
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Figure 3.4. Optimality gaps obtained by CPLEX and Relax&Fix for the in-
stances with T = 48.

show the results related to T = 48, since they are the ones which pose most significant
challenges to the solution approaches. There seems to be no particular correlation
between the demand magnitude and variation to the complexity of solving each prob-
lem instance. One important observation, however, is that the TF strategy seems to
organize the integer variables in a more coherent fashion which provides improved fea-
sibility characteristics for each subproblem. This can be explained by the fact that the
only connections between stages are established by continuous variables at the stock-
yard nodes (Equation 3.7), thus facilitating flow balance and hence, feasibility. This
condition is not sufficient, of course — as it has been stated before, the Relax&Fix
algorithm does not ensure feasibility.
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3.5 The soft-fixing local search approach

The obvious difficulties observed in solving larger S&OP problem instances suggest the
evaluation of the soft-fixing local search approach presented in Section 2.6. Despite
the large number of problem instances, we concentrate our analysis on the one which
showed the highest optimality gap for the TF strategy (and possibly the most difficult
to solve): uniformly varying demand with ±125%, T = 48 and FC=10. As shown
in Appendix C, CPLEX was not able to find good feasible solutions for none of the
T = 48 instances.

Here, we consider B = B, which means that the entire binary variable subset is
addressed in the soft-fixing local search algorithm. All runs are again limited to 3,600s.
In order to assess the behavior of the procedure, we have run tests with different values
of k0, the initial size of the search neighborhood, but with γ, the relative gap limit for
the search subproblems, always set to 0.01. Table 3.8 shows that the soft-fixing local

Table 3.8. Results obtained with the soft-fixing local search approach on the
Uniform ±125%, T = 48, FC=10, S&OP problem instance. All runs limited to
3,600s with γ = 0.01.

k0 Iter. x∗ CPLEXUB TFUB

25 156 1,396,740,893
50 56 1,266,848,097
100 21 1,245,339,105 1,516,160,195 26,620,013
200 7 1,267,382,904
300 3 1,320,805,664

search can improve the upper bound provided by CPLEX by a factor that ranges from
8% to 21%, depending on the value of k0. However, the high penalty values associated
to unmet demand make the upper bounds obtained by the procedure still quite high
and much worse than the ones yielded by Relax&Fix’s TF strategy. The evolution of
the solution procedure is detailed in Figure 3.5. It can be seen that best results are
achieved with k0 = 100, considering the same time limit of 3,600.

Apart from the results shown above, as discussed in the previous section, the soft-
fixing local search framework could also be used as a refining procedure to improve the
bounds obtained by Relax&Fix. That is, however, left to future work.

3.6 Discussion and future work

This Chapter addressed an integrated sales and operations planning problem at the
tactical level of a Global Mining Supply Chain. This is a different application for
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Figure 3.5. Evolution of the soft-fixing local search heuristic for different k0.

mathematical programming in mining problems, which are usually focused on mine
planning and scheduling. We have proposed a mixed-integer programming approach
captures relevant physical and logical characteristics observed in real-world, large scale
mining operations. In order to deal with the high computational demands, we have
developed and evaluated a series of Relax&Fix solution strategies which partition the
integer variable space according to reduced costs, geographic relations, time periods
and even randomly. Time strategies have shown the best results, especially the TF
strategy, in which the subsets are sorted from the first to the last time period. Given the
characteristics of the mining supply chain scenario and the behavior of the heuristics,
the TF strategy seems to be the fittest to the proposed problem.

We have evaluated the TF and TB strategies for 90 instances with different
demand behaviors and increasing planning horizons, always comparing their results
against the ones obtained by CPLEX. In general, it may be stated that TF consistently
outperforms CPLEX in the larger scenarios, although still not being able to solve the
problem to optimality.

Many different Relax&Fix strategies could be envisioned, and many different
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arrangements between iterations, variable partitioning and computational resources
could be developed. Theoretically, the computational resources need not be uniformly
divided among the Relax&Fix iterations. Preliminary tests have shown that the first
iterations are the ones that consume the most resources. Better gaps on the first
iterations should thus improve the overall results. We leave that analysis, as well as
the development and evaluation of different strategies, for future work.

It is also important to note that the Relax&Fix solutions, although feasible, can
still be far from optimum, as illustrated by the optimality gaps attained. However, the
Relax&Fix solutions could still be used as fair primal bounds for other approximation
algorithms, such as local search [Bai et al., 2010], or even for the soft-fixing local search
procedure depicted here.



Chapter 4

Conclusion

“All the collected data had come to a final end.
Nothing was left to be collected. But all collected
data had yet to be completely correlated and put
together in all possible relationships.
A timeless interval was spent in doing that.”

The Last Question, Isaac Asimov

This Thesis aimed at developing mathematical models and algorithms to address
integrated planning problems in a Global Mining Supply Chain. From the first chapter
to appendixes, the main contributions were presented and organized around that sole
objective. First, we performed a review of mining industry problems and opportunities
for the application of mathematical programming approaches. Those problems were
then put together under an integrated perspective on strategic, tactical and operational
decision levels within the Global Mining Supply Chain concept. Then, we proposed
a set of mathematical models and algorithms to address three nontrivial integrated
planning problems at each the decision level.

At the strategic level, we have developed a novel multistage stochastic integer
programming model to address the capacity planning problem in a Global Mining
Supply Chain. The model integrates capacitated facility location and network design
decisions with economies of scale on the capacity costs. The formulation is sensitive to
both positive and negative variations in demand and allows the establishment of new (or
capacity expansion of existing) production facilities and logistics channels, as well as the
deactivation of specific facilities and channels in a temporary or permanent basis. In a
first study, we have analyzed the characteristics of the problem by means of an empirical
evaluation of different CPLEX’s settings. Such analysis not only yielded an improved
performance of the solver, but also provided pointers to the development of specific
algorithms and solution approaches. It is clear that such an approach could also be
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extended to the other problems discussed in this Thesis. In a second study, we develop
a Lagrangian Heuristic as an attempt to improve the dual bounds and derive quality
primal bounds for the problem. Results showed significantly better results attained by
the heuristic for larger problem instances. We have also proposed a soft-fixing local
search approach as an alternative approach to derive improved feasible solutions early
in the computation procedure, as demonstrated by numerical experiments. Results
also suggested the use of the soft-fixing local search as a refining procedure for the
solutions obtained by the Lagrangian Heuristic, which is left to future work.

At the tactical level, we have developed a mixed-integer programming approach
to the integrated sales and operations tactical planning problem in a Global Mining
Supply Chain. The sales and operations planning problem has been gaining increasing
attention in the mining industry, again especially among large-scale organizations.
The model has characteristics of a lot sizing problem in a network environment, but
presents challenging aspects related to integer flows, discrete production levels and flow
conservation violations due to mass losses in processing plants and bulk transportation.
A series of Relax&Fix strategies were developed to address realistic sized problem
instances and provide good primal bounds for the problem. Additional efforts must be
made to further improve those solutions while still maintaining computation time at
reasonable figures. The soft-fixing local search approach has also shown improvements
on the CPLEX solution, although not nearly as good as the Relax&Fix TF strategy.
Again, the use of the soft-fixing local search as a refining procedure for the TF upper
bounds is suggested as future work.

At the operational level, we have briefly discussed in the Introduction the idea
of a mixed-integer goal programming model to address the integrated short-term pro-
gramming of iron ore open pits, processing plants, stockyards and shipping operations,
which is detailed in Appendix A. The model is inspired in actual conflicts observed be-
tween mining, processing plant and stockyard decision makers in a large-scale mining
company in Brazil. It is important to emphasize that the actual development, imple-
mentation and testing of the model was performed by the graduate student Franklin
Assunção Almeida, who was co-advised by the author of this thesis. The main concepts
of that work are, nevertheless, an inherent part of the framework established by this
Thesis.

One should notice that, as the mathematical models move from operational to
strategic decision levels, the more general they become and the easier it gets to ex-
tend their application to different industries and scenarios. The integrated sales and
operations tactical planning could easily be applied in other process-based industries,
such as steel making and chemicals, as well as discrete manufacturing industries, pro-
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vided the appropriate adaptations were made on the processing restrictions and the
material flow characteristics. The stochastic capacity planning could also extend to
different industries and even in very different applications, such as telecommunications
infrastructure.

It is important to emphasize, however, that we have restricted the integration
scope to a single decision level, but spanning through different stages of the Global
Mining Supply Chain. Working on the integration of the proposed models among the
different decision levels would be a challenging enterprise and would require careful
examination of the relationships between decision variables that lie in the interface
between each level. Many different approaches could be evaluated, ranging from mere
hierarchical [Hax and Meal, 1975] to increasing levels of integration on decision variables
[Dauzère-Péres and Lasserre, 1994; Maravelias and Sung, 2009].

One final thought regarding the main contribution of this Thesis. The proposed
mathematical models are considerably relevant, both in academic and industry scenar-
ios. They were partly based on a thorough review on the related literature, but mostly
inspired by the experience of the author and his advisor in dealing with engineering
and technology projects in iron ore mines, railways and ports. We hope the results
presented in this text provide a means to further extend the proposed models and
algorithms to several possible graduate level studies.





Someday the pain would be gone,
but never the memory.

(The Songs of Distant Earth, Arthur C. Clarke)
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Appendix A

Integrated short-term mining,
processing and shipping operations

“I am certain there is too much certainty in the
world.”

Michael Crichton

Operational decisions focus on short-term operations programming and sequenc-
ing of daily activities of a mining complex. In this Appendix, we propose a mixed-
integer goal programming model to address the short-term programming of iron ore
open pits, processing plants, stockyards and shipping operations. The model inte-
grates those decision making processes by establishing specific constraints to represent
the formal or informal contracts inherent to the interfaces between each department
or production unit. We estimate a Value of the Integrated Solution by comparing
programs generated by both shared and individualized decisions, thus emphasizing the
potential losses due to violations of the interface constraints. The model has specific
characteristics which demand specific solution approaches to deal with its inherent
complexity.

It is important to emphasize that the work described in this Appendix is the
result of the undergraduate monograph by student Franklin Assunção Almeida, who
was co-advised by the author of this Thesis. The concepts discussed here are also
presented in the following publications:

Almeida, F. A. and Pimentel, B. S. (2010). Um modelo matemático para o
problema de programação integrada de curto prazo em minas. In Anais do
XLII Simpósio Brasileiro de Pesquisa Operacional, Bento Golçalves, Brazil.
Sociedade Brasileira de Pesquisa Operacional.
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A.1 Introduction

Iron ore mining operations are known to be extremely cost intensive. Like any com-
modity, iron ore selling prices are usually constrained by market conditions and hence
the pressure over operational performance and productivity can be overwhelming. A
typical open pit mining enterprise is usually comprised of an iron ore deposit (the pit,
or mine proper), a processing plant, a product stockyard and a train loading system.
In large mining companies, the organizational structure often associates each of those
stages to specific departments or business units. However, since each department has
its own goals (and its own daily operational challenges), operational decisions are com-
monly made in an isolated, potentially suboptimal fashion [Almeida and Pimentel,
2010].

A.2 Short-Term Mining Operations Planning

At the operational level, the concept of mining supply chain planning and scheduling
can be overwhelmingly complex. Short-term planning and scheduling in mines, rail-
roads and ports are complex problems themselves, as it has been shown in previous
sections. Detailed plans must be accommodated to specific equipment capacities and
time constraints. For instance, the managing of the ship queue depends not only on
the availability of berths, but also on the availability of the required ore products,
which in turn depends on the delivery schedule of the railroad and, recursively, on the
train loading at each mine. Also, stockyard allocation and stockpile formation — the
equivalent of warehouse management in manufacturing supply chains — at mines and
ports must be performed at a detailed level. End products tonnages must be allocated
to specific stockyard areas in order to satisfy loading plans with optimal productivity.
Space restrictions and product compatibility must be observed to avoid contamination.
Setup costs and time would accrue when a given stockyard area receives a product that
is incompatible with the one previously stored. Minimum stock levels must also be de-
termined in order to accommodate uncertain events and, more importantly, to ensure
rational utilization of handling equipment. For instance, if many small stockpiles exist,
a greater number of different products could be stored, but the reclaimer would have to
be repositioned several times in order to fulfill the loading plan. However, the alterna-
tive of having large, single-product stockpiles could reduce stockyard flexibility when
different ore products are handled. At the ports, stockpiles may be formed according to
specific shipments, which may also drive stockpile formation at the mines. At the op-
erational level, blending can be used either to generate composite products or to make
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last-minute quality corrections, right before loading products into trains or ships. Also,
since quality specifications are defined within a certain tolerance range, different ore
products may be used to satisfy the same demand. Routing and scheduling decisions,
at the mine, at the railway and at the port handling system, must be coordinated
with stockyard management in order to satisfy the loading of trucks, trains and ships
accordingly. Setup, changeover and variable costs, as well as time and productivity
restrictions are the main drivers to operational decisions.

We approach the short-term mining operations planning according to the main
stages of the production chain and also according to the interface requirements between
those stages.

A.2.1 Self-centered planning

The pit. At the mine proper, a long-term development plan, which establishes the
most valuable production schedule over the life time of the iron ore deposit, is assumed
to be known. On the short term, however, the mine development plan details which
work benches are scheduled for exploitation and how much ore should be removed from
each active work bench. The challenge here is to effectively allocate haulage capacity
in order to attain maximum productivity while still meeting production requirements.
Mass and quality contracts must be then established between the Mine and Processing
Plant departments in order to ensure not only minimum quality levels, but also the
lowest quality variability possible. Those goals must be achieved both monthly and
for each ROM stockpile delivered to the processing plant through the homogenizing
stockyard.

The processing plant. On the long term, the processing plant production plan
establishes the amount of ore and waste to be generated according to ROM charac-
teristics and equipment availability. Also, the typical split between sinter-feed and
pellet-feed coproduction is determined for the planning horizon. On the short term,
processing plant operational decisions should aim at achieving the desired production
goals and optimizing productivity. However, daily decisions also include (i) performing
low-level parameter setups for each production campaign according to ROM character-
istics and (ii) scheduling coproduction of specific pellet-feed qualities according to the
shipping demand. It is important to notice that, as with any process based industry,
the effects of a change in setup at the processing plant may take some time to produce
the desired changes in the products delivered. Thus, the number of setups should be
kept to a minimum.

The product stockyard and the train loading system. The long-term
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shipment plan establishes the required products — in both mass and quality — to be
delivered by a mine enterprise at each period of the planning horizon. This long-term
plan usually considers all connected mine enterprises of a company and is based on
a known logistics capacity and availability. At the product stockyard, two important
decisions must then be taken in the short term: (i) the allocation of new products to
the appropriate stockpiles and (ii) the selection of the correct product qualities and
amounts to be reclaimed from the stockpiles and loaded to the trains according to the
shipment quality requirements. Alternatively, a train may be loaded with products
coming from the stockpiles and directly from the processing plant. The latter option,
however appealing to productivity-biased decision makers, must be employed with
care, since any quality issues would be left unresolved without the passage through the
product stockyard.

A.2.2 Interface contracts and decision integration

Of special interest to this work is the effect of integrating the individual short-term
planning decisions to the overall performance of mining enterprise. The following
paragraphs detail the main contracts considered in our mathematical model approach.

Mine and Processing Plant. On the short term, although the mine must
meet the overall ROM quality requirements, the daily quality variability should be
kept to a minimum. For instance, in a short-term planning horizon, a number of work
benches would have to be exploited. Since reallocating shovels and trucks to different
work benches may have a significant impact on productivity, the smaller the number
of reallocations, the better. However, depending on the coproduction scheduling re-
quirements at the processing plant, an analogous scheduling of the active work benches
may be performed according to their grade characteristics in order to obtain a tradeoff
between mining productivity and ROM specific quality at the homogenizing stockyard.

Processing plant and Product Stockyard. Observing its design restrictions,
the processing plant can theoretically generate any product specification given any
kind of ROM delivered by the mine. The tradeoff is, of course, the productivity,
which is penalized by the amount of waste produced when ROM quality is below
average. Thus, given a shipping demand at the product stockyard, the processing
plant parameters should be reset to generate products that, combined with the available
product stockpiles, would be sufficient to satisfy each train loading demand. However,
again, the larger the number of production setups, the worse the processing plant
productivity. On the other hand, if the production scheduling at the plant is solely
prioritized, the generated products may not exactly match the train loading product
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quality demand. Again, a tradeoff must be attained.
Train loading system and customer delivery. Since the logistics assets must

always be operated at their nominal capacities, a train offered to the loading system
must be completely loaded, even if there are no products to provide an exact match
of the required shipment qualities. The long-term shipment plan could be adjusted
to compensate some part of that quality deviation by reviewing the shipment demand
allocated to the company’s other mining enterprises. However, in the worst case, each
train shipped with an inadequate product quality would incur in contractual penalties
charged by the customers. That means that the only way the train loading system can
deliver quality products is by having those products available in the product stockyard.
A tradeoff between upstream operations’ settings and quality product delivery must
again be enforced.

A.2.3 A mathematical programming approach

We propose a mixed-integer programming model to address the integrated short-term
mining, processing and shipping programming problem [Almeida and Pimentel, 2010].
However, in order to capture the inherent characteristics of this problem, we provide
a Goal Programming approach [Ignizio, 1978] to balance the (conflicting) objectives of
each business unit within the mining complex. That means that each of the process
depicted above must be given a penalty parameter which accounts for the suboptimal
effects produced when the interface contracts are taken for granted.

In general terms, the model aims at minimizing all penalties related to
deviation from mass and quality goals in mining, processing and shipping
operations, as well as the scheduling cost at the processing plant, subject to:

• the constraints imposed by the long-term mine production plan, which determines
the workbenches to exploit at each time period and how much ROM to remove
from them, as well as the operational costs related to the workings of drilling,
loading and hauling equipment;

• the mass and quality goals for the homogenizing stockpiles, which also relate to
the mass productivity attained at the processing plant;

• the need to establish the best possible production schedule at the processing
plant, given that different products may be demanded at the product stockyard
and that there may already be quantities of those products previously stored and
readily available for shipping;
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• the mass and quality contracts with the iron ore customers, which drive the overall
balance of produced and shipped ore — with the required quality specifications
— available at the product stockyard.

We detail the proposed mathematical formulation for this problem as follows.
Sets

M : Mines within a mining complex;

Fm : Mining workbenches at Mine m ∈M ;

Hm : ROM stockpiles at homogenizing yard of Mine m ∈M ;

Pm
f : Fine ore products generated at Mine’s m ∈M processing plant;

Pf : Fine ore products generated at the mine complex’s processing plants;

Pm
s : Super fine ore products generated at Mine’s m ∈M processing plants;

Ps : Super fine ore products generated at the mine complex’s processing plants;

Pm : All products generated at Mine’s m ∈M processing plants, Pm = Pm
f ∪ Pm

s ;

P : All products generated at the mine complex’s processing plants, P = Pf ∪Ps;

K : Quality parameters evaluated in each ore product.

Parameters

T : Time periods in the programming horizon;

Oi : ROM available at workbench i ∈ Fm of Mine m ∈M ;

Lm : Number of workbenches of mine m ∈M that can be simultaneously exploited
in each time period;

α−i : Penalty for unexploited ROM mass from workbench i ∈ Fm at mine m ∈M ;

α+
i : Penalty for ROM mass exploited from workbench i ∈ Fm at mine m ∈ M

beyond the amount established by the long-term mining scheduler;

ωi : ROM mass planned for mining at workbench i ∈ Fm of mine m ∈ M , as
established by the long-term mining scheduler;

πi : Cost associated to moving drilling and loading equipment to a different work-
bench i ∈ Fm;
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ρik : Quality goal for (chemical or physical) parameter k ∈ K of ROM exploited
from workbench i ∈ Fm of mine m ∈M ;

Qm
j : Mass goal for each stockpile in homogenizing stockyard Hm of mine m ∈M ;

γm+ : Penalty for positive deviation from the mass goal Qm
j of stockpile j in the

homogenizing yard of m ∈M ;

γm− : Penalty for negative deviation from the mass goal Qm
j of stockpile j in the

homogenizing yard of m ∈M ;

δmpk : Penalty for positive deviation from the quality goal of parameter k ∈ K when
generating product p ∈ Pm from each stockpile in the homogenizing stockyard
Hm of mine m ∈M ;

ηmpk : Penalty for negative deviation from the quality goal of parameter k ∈ K when
generating product p ∈ Pm from each stockpile in the homogenizing stockyard
Hm of mine m ∈M ;

Cm : Maximum conveying capacity from the homogenizing stockyards and the pro-
cessing plants of mine m ∈M ;

βm : Typical mass efficiency of the processing plant of mine m ∈M ;

φmkp : Mass loss due to every unit of positive deviation from quality parameter k ∈ K
when processing product p ∈ Pm at the processing plant of mine m ∈M ;

ϕmkp : Mass loss due to every unit of negative deviation from quality parameter
k ∈ K when processing product p ∈ Pm at the processing plant of mine
m ∈M ;

Wm : Maximum production capacity of the processing plant of mine m ∈M ;

mpk : Quality goal for parameter k ∈ K in product p ∈ P ;

Dt
p : Shipping demand for product p ∈ P at period t;

hpb : Penalty associated to every mass unit of product b ∈ P used to alternatively
meet the demand for product p ∈ P ;

nmp : Cost associated to the setup of processing plant of mine m ∈ M when pro-
ducing p ∈ P ;

U1
p : Initial stock of product p ∈ P at the product stockyard;
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UT
p : Minimum final stock of product p ∈ P at the product stockyard;

Up : Capacity of product p ∈ P stockpiles at the product stockyard;

U : Capacity of the product stockyard;

Decision variables

lti : Whether workbench i ∈ Fm is being exploited at period t, mine m ∈M ;

rti : Whether workbench i ∈ Fm, which was inactive at period t− 1 is now being
exploited at period t, mine m ∈M ;

xtij : ROM mass exploited from workbench i ∈ Fm and used in stockpile j ∈ Hm

at mine m ∈M , period t;

pl−i : Unexploited ROM mass from workbench i ∈ Fm at mine m ∈M throughout
the programming horizon;

pl+i : ROM mass exploited beyond from workbench i ∈ Fm the amount established
by the long-term mining scheduler at mine m ∈ M throughout the program-
ming horizon;

f tj : Whether stockpile j ∈ Hm is formed in the homogenizing stockyard at period
t;

ctj : Whether stockpile j ∈ Hm is consumed from the homogenizing stockyard at
period t;

dhtj+ : Positive deviation from the mass goal Qm of stockpile j ∈ Hm at period t;

dhtj− : Negative deviation from the mass goal Qm of stockpile j ∈ Hm at period t;

dqjpk+ : Positive deviation from the quality goal of parameter k ∈ K for product p ∈ P
generated from stockpile j ∈ Hm, which was formed at period f and consumed
at period t;

dqjpk− : Negative deviation from the quality goal of parameter k ∈ K for product
p ∈ P generated from stockpile j ∈ Hm, which was formed at period f and
consumed at period t;

wfcjp : Whether stockpile j ∈ Hm, which was formed at period f in the homogenizing
stockyard of mineminM , was consumed at period c when generating product
p ∈ Pm;
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gmtp : Whether product p ∈ Pm was generated by the processing plant of mine
m ∈M at period t;

yfcjp : ROM mass taken from stockpile j ∈ Hm, which as formed at period f and
consumed at period c, when generating product p ∈ P ;

zmtp : Mass of product p ∈ P generated in the processing plant of mine m ∈ M at
period t;

vmtp : Whether product p ∈ P , which was not being produced in the processing
plant of mine m ∈M at period t− 1, is now being generated at period t;

stpb : Mass of product b ∈ P , stored in the product stockyard, which was alterna-
tively used to meet the demand of product p ∈ P at period t;

utp : Stock of product p ∈ P in the product stockyard at period t.

The objective function seeks minimizing all penalties related to deviation from
mass and quality goals in mining, processing and shipping operations, as well as the
scheduling cost at the processing plant:

Minimize∑
m∈M

∑
i∈Fm

(
α+
i pl

+
i + α−i pl

−
i

)
+
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where several constraints apply, as described in the following paragraphs.
According to a long-term mine production plan, which is assumed to be an input

to this model, all ROM available in each workbench should be completely exploited
within a given time period:

T−1∑
t=1

∑
j∈Hm

xtij + pl−i − pl+i = Oi ∀i ∈ Fm,m ∈M. (A.1)
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However, depending on the short-term decisions, exploitation efforts may be required
to switch to a different workbench:

rti − lti + lt−1
i ≥ 0 ∀i ∈ Fm,m ∈M, t ∈ 1, 2...T − 1. (A.2)

Also, the workbenches may not all be simultaneously exploited:∑
i∈Fm

lti ≤ Lm ∀m ∈M, t ∈ 1, 2...T − 1, (A.3)

but exploitation must be restricted to active workbenches, that is, workbenches in
which there were allocated capacitated drilling and loading equipment:∑

j∈Hm

xtij ≤ Oil
t
i ∀i ∈ Fm,m ∈M, t ∈ 1, 2...T − 1, (A.4)

0 ≤ xtij ≤ ωi, ∀i ∈ Fm, j ∈ Hm,m ∈M, t ∈ T, (A.5)

assuming that at least one workbench should be used to form a ROM stockpile at the
homogenizing stockyard:∑

j∈Hm

xtij > lti − 1 ∀i ∈ Fm,m ∈M, t ∈ 1, 2...T − 1. (A.6)

We then assume that a ROM stockpile cannot be formed and consumed at the same
time period:

ctj + f tj ≤ 1, ∀j ∈ Hm,m ∈M, t = 2, 3...T − 1, (A.7)

and establish a mass goal for each stockpile to be formed:∑
i∈Fm

xtij − dhtj+ + dhtj− = Qmf
t
j , ∀j ∈ Hm,m ∈M, t ∈ 1, 2...T − 1, (A.8)

according to the capacity of the stockyard and the productivity of the available stock-
piling equipment. However, a given stockpile can only be reclaimed after it has been
formed:

t∑
d=2

cdj ≤
t−1∑
d=1

fdj , ∀j ∈ Hm,∀m ∈M, ∀t ∈ 2, 3, ...T (A.9)

and it can only be formed after the previous stockpile, which occupied the same position
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in the stockyard, has been reclaimed:

t∑
d=1

fdj ≤
t∑

d=2

cdj + 1, ∀j ∈ Hm,m ∈M, t ∈ 2, ...T − 1, (A.10)

The processing plant yields higher productivity if it is fed with ROM which possesses
chemical and physical characteristics that are similar to those of the final ore products.
Hence, we must establish goals for each quality parameter considered:

∑
i∈Fm

ρikx
t
ij −

T∑
c=t+1

∑
p∈Pm

dqtcjpk+ +
T∑

c=t+1

∑
p∈Pm

dqtcjpk− =
T∑

c=t+1

∑
p∈Pm

mpky
tc
jp

∀k ∈ K, j ∈ Hm,m ∈M, t ∈ 1, 2...T − 1, (A.11)

assuming that the deviation variables can only be positive if the corresponding stock-
piles have been fed (and previously formed) into the processing plant:

dqtcjpk+ ≤ Cmwtcjp, ∀k ∈ K, p ∈ Pm, j ∈ Hm, t ∈ 1, 2...T − 1,∀c = t+ 1, ...T, (A.12)

dqtcjpk− ≤ Cmwtcjp, ∀k ∈ K, p ∈ Pm, j ∈ Hm, t ∈ 1, 2...T − 1.∀c = t+ 1, ...T. (A.13)

The destination of the ROM stockpiles must be set according to reclamation, formation
and to the product generated at the processing plant. This provides the traceability
required when assessing the performance of the integrated production plans:

T∑
c=t+1

wtcjp ≤ f tj , ∀p ∈ Pm, j ∈ Hm,m ∈M, t ∈ 1, 2...T − 1, (A.14)

t−1∑
f=1

wftjp ≤ ctj, ∀p ∈ Pm, j ∈ Hm,m ∈M, t ∈ 2, 3...T, (A.15)

t−1∑
f=1

wftjp ≤ gtp, ∀p ∈ Pm, j ∈ Hm,m ∈M, t ∈ 2, 3...T. (A.16)

Also, there can only be an output of ROM from a stockpile if it has been formed and
is to be reclaimed at a given time period:

yfcjp ≤ Cmwfcjp , ∀j ∈ Hm,m ∈M, f ∈ 1, 2...T − 1, c = f + 1, ...T, (A.17)
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according to the balance of mass of ROM stockpiles:

∑
i∈F

xtij −
T∑

c=t+1

∑
p∈Pmf

ytcjp = 0 ∀j ∈ Hm,m ∈M, t ∈ 1, 2...T − 1, (A.18)

∑
i∈F

xtij −
T∑

c=t+1

∑
p∈Pms

ytcjp = 0 ∀j ∈ Hm,m ∈M, t ∈ 1, 2...T − 1. (A.19)

and the balance of mass which occurs in the processing plant:

βm
t−1∑
f=1

∑
j∈Hm

yftjp − ztp −
t−1∑
f=1

∑
j∈Hm

∑
k∈K

φmpkdq
ft
jpk+ −

t−1∑
f=1

∑
j∈Hm

∑
k∈K

ϕmpkdq
ft
jpk− = 0,

∀p ∈ Pm
f ,m ∈M, t ∈ 1, 2...T − 1,

(A.20)

(1− βm)
t−1∑
f=1

∑
j∈Hm

yftjp − zmtp −
t−1∑
f=1

∑
j∈Hm

∑
k∈K

φmpkdq
ft
jpk+ −

t−1∑
f=1

∑
j∈Hm

∑
k∈K

ϕmpkdq
ft
jpk− = 0,

∀p ∈ Pm
f ,m ∈M, t ∈ 1, 2...T − 1.

(A.21)

which accounts for the inherent process mass efficiency. It is important to notice that
only one product for each family (fines and superfines) may be generated at each time
period: ∑

p∈Pmf

gmtp = 1, ∀m ∈M, t ∈ 2, 3...T, (A.22)

∑
p∈Pms

gmtp = 1, ∀m ∈M, t ∈ 2, 3...T, (A.23)

and that all production must be limited by the overall capacity of the processing plant:∑
p∈Pm

zmtp ≤ Wm ∀m ∈M, t ∈ 1, 2...T − 1. (A.24)

Regarding production scheduling, one must account for every processing plant setup
required:

vmtp − gmtp + gmt−1
p ≥ 0, ∀p ∈ P, t ∈ 3, 4...T − 1 (A.25)

And at the product stockyard, one must observe the overall balance of produced and
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shipped ore: ∑
m∈M

zmtp −
∑
b∈P

stbp = utp − ut−1
p ∀p ∈ Pm

f , t ∈ T, (A.26)

as well as the storage capacity for each product:

0 ≤ utp ≤ Up, ∀p ∈ P, t ∈ T, (A.27)

0 ≤
∑
p∈P

utp ≤ U, ∀p ∈ P, t ∈ Tutp ≥ UT
p ∀p ∈ P, t = T, (A.28)

and the shipping demand, which must always be met in terms of mass. That means
that every train must leave the mine complex completely loaded, even if the exact
required products are not available:∑

b∈P

stpb = Dt
p, ∀p ∈ P, t ∈ T. (A.29)

Finally, integrality and nonnegativity constraints apply as follows:

pli ≥ 0, ∀i ∈ Fm,m ∈M, (A.30)

ctj, f
t
j ∈ {0, 1}, ∀j ∈ Hm,m ∈M, t ∈ T, (A.31)

dhtj+, dh
t
j− ≥ 0, ∀j ∈ Hm,m ∈M, t ∈ T, (A.32)

yfcjp ≥ 0, ∀j ∈ H, f ∈ 0, 1, ..., T , c ∈ f + 1, ..., T , (A.33)

gmtp , vmtp ∈ {0, 1}, ∀p ∈ P, t ∈ T, (A.34)

wfcpj ∈ {0, 1}, ∀p ∈ P, f ∈ 0, 1, ..., T , c ∈ f + 1, ..., T , j ∈ H, (A.35)

dqf tcjpk+, dqf
tc
jpk− ≥ 0, ∀k ∈ K, t, c ∈ T, (A.36)

stpb ≥ 0, ∀p ∈ P, b ∈ P, t ∈ T. (A.37)

This is a non preemptive goal programming model, since all goals are assumed to be of
roughly comparable importance and, being as such, must be addressed simultaneously.
It is important to notice that the behavior of such a model can be rather sensitive to
the weights and penalties associated to the objectives. In order to coherently prioritize
each goal, both weights and penalties should reflect the same species (e.g. cost, profit,
or productivity). That may not be a trivial task since, in practice, not all information
needed may be available, nor may it be easily converted to different bases. We assume,
however, that this is the case for the model developed here. Assessing and managing
individual operational costs has been a major concern in modern management and
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several tools, both conceptual and information technology based, have been proposed
to address this issue [Hubbard, 2010]. The Analytic Hierarchy Process (AHP) [Saaty,
2005] could also be used as an alternative approach to determine a coherent prioriti-
zation of multiple decision criteria. AHP allows the construction of a robust structure
of tangible and intangible criteria and, moreover, makes it possible to convert those
criteria to numerical values that can be processed and compared over the entire range
of the problem.

The remainder of this Appendix is dedicated to discussing the value of the inte-
grated solution delivered by the model.

A.3 The Value of the Integrated Solution

Large mining operations usually present a rather partitioned organizational structure.
In addition, modern management philosophies are based on the establishment of high
level goals for the whole company which are broken down into several detailed goals
for each business unit, department and, ultimately, employee. That means that all
individual goals must be carefully designed and integrated in such a way that some
(simple) aggregation function would converge them towards the company’s main objec-
tive. Although simple in principle, such philosophy can be overwhelmingly complex to
implement and manage in practice, especially at the lower decision levels where profes-
sional relationships are constantly challenged by daily problems, difficult negotiations
and compromises.

In an attempt to provide a quantitative analysis to the integration philosophy,
we propose the concept of Value of the Integrated Solution (VIS), which can be de-
fined as the potential benefit from solving the integrated program over solving a set
of independent, smaller programs which are probably suboptimal when decisions are
actually executed. The approach can be generally described as follows:

1. Solve each subprogram individually, disregarding the terms corresponding to the
interface contracts, but still considering all physical constraints;

2. Determine the objective function of the original problem — the integrated ap-
proach — using the variables computed for each subproblem with all interface
contracts;

3. Solve the integrated problem and determine its objective function

4. The Value of the Integrated Solution is computed from the difference between
items (2) and (3) above.
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In order to illustrate the VIS concept, we present a simple discussion. Suppose
a mining complex composed of one open pit, three workbenches, one homogenizing
stockyard that can accommodate four ROM stockpiles, one processing plant and one
product stockyard. The processing plant produces four different products (two of type
fine and two of type superfine). We assume that only one quality parameter (%Fe)
is controlled during a five-period programming horizon. Figure A.1 illustrates the
scenario. A detailed specification of the parameters is given in Table A.1. We then

Pit

W1

W2

W3

Homogen. 

Stockyard

H1

H2

H2

H2

Processing

Plant

Product 

Stockyard

Figure A.1. A simple example for the integrated short-term programming prob-
lem.

analyze three different programming situations:

• Integrated: All operations work in an integrated fashion, as established by the
proposed model.

• Shipping priority: Shipping operations will get, whenever possible, the ex-
act product they need, at the cost of increased cost in mining and processing
operations.

• Mining and processing priority: Mine, homogenizing yard and processing
plant operate at optimum levels — some better than the those of the integrated
solution —, while shipping quality violations increase.

CPLEX takes only a few seconds to solve this example model (for an analysis of com-
putational results of larger problem instances, please refer to [Almeida and Pimentel,
2010]). Results of executing the integrated short-term programming model on the
above scenario derive the VIS results shown in Figure A.2 below. Each of the columns
refer to the respective planning situation depicted above. The height of each column
represents the objective function as a summation of specific terms: costs associated to
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Figure A.2. The Value of the Integrated Solution.

changing the operational workbench — that is, moving the drilling and loading equip-
ment elsewhere in the mine —, penalties associated to violating the long-term mining
plan — that is, exploiting more or less than the planned amount at each workbench —,
penalties associated to violating the ROM quality and mass contracts between mine
and processing plant —, costs associated to setting up the processing plant for every
change of product, and penalties associated to violating product quality contracts when
shipping it to customers, as illustrated by the chart legend.

When priority is given to shipping operations, mining and processing must op-
erate in a way as to minimize shipping quality deviations, which means that mining
equipment should be positioned at the workbenches which would yield ROM quality
that approximates the closest the specification of processed products, even if that means
violating the long-term mining plan. On the other hand, when priority is given to min-
ing, homogenizing and processing operations, there would be minimum violations on
the long-term mining plan, as well as the smallest number possible of plant setups, so
that the product stockyard could receive different products than those demanded for
shipping.
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One can see that all self-centered approaches provide worse results than the in-
tegrated solution. All self-centered programs objective functions are calculated using
step 2 above and, for each, it is possible to calculate the VIS as the difference regarding
the integrated solution objective function. Furthermore, we show for each self-centered
program, as a dotted line cutting each column, the value of the objective function as
perceived by the decision makers when working individually at each situation consid-
ered — calculated using step 1 above.

Table A.1: Dataset for the Integrated Short-Term Mining, Process-
ing and Shipping Programming Problem.

Parameter Value
M {1}
F 1 {l1, l2, l3}
H1 {h1, h2, h3, h4}
P 1
f {SF1, SF2}
P 1
s {PF1, PF2}
K {%Fe}
T 5
O1; O2; O3 1,150
L1 2
α−l1; α

−
l2; α

−
l3 1.0

α+
l1; α

+
l2; α

+
l3 1.0

ωl1; ωl2; ωl3 700
πl1; πl2; πl3 100
ρl1,Fe; ρl2,Fe; ρl3,Fe 0.50; 0.40; 0.45
Q1

h1; Q
1
h2; Q

1
h3; Q

1
h4 600

γ1+ 1.0
γ1− 1.0
δ1SF1,Fe; δ

1
SF2,Fe; δ

1
PF1,Fe; δ

1
PF2,Fe 10

η1SF1,Fe; δ
1
SF2,Fe; δ

1
PF1,Fe; δ

1
PF2,Fe 10

C1 700
β1 0.8
φ1Fe,SF1; φ

1
Fe,SF2; φ

1
Fe,PF1; φ

1
Fe,PF2 0.001

ϕ1
Fe,SF1; ϕ

1
Fe,SF2; ϕ

1
Fe,PF1; ϕ

1
Fe,PF2 0.001

W 1 1000
mSF1,Fe; mSF2,Fe; mPF1,Fe; mPF2,Fe 65,0%; 70,0%; 62,5%; 60.0%
D2

SF1; D
3
SF1; D

4
SF1; D

5
SF1; D

5
SF1; D

6
SF1; D

7
SF1 0; 0; 640; 0; 0; 640

D2
SF2; D

3
SF2; D

4
SF2; D

5
SF2; D

5
SF2; D

6
SF2; D

7
SF2 160; 160; 160; 160; 160; 0

D2
PF1; D

3
PF1; D

4
PF1; D

5
PF1; D

5
PF1; D

6
PF1; D

7
PF1 640; 0; 0; 640; 0; 0

D2
PF2; D

3
PF2; D

4
PF2; D

5
PF2; D

5
PF2; D

6
PF2; D

7
PF2 0; 640; 0; 0; 640; 0

hSF1,PF1; hSF1,PF2; hSF1,SF2 1.0
hSF2,PF1; hSF2,PF2; hSF2,SF1 1.0
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Table A.1: Dataset for the Integrated Short-Term Mining, Process-
ing and Shipping Programming Problem.

Parameter Value
hPF1,SF1; hPF1,SF2; hPF1,PF2 1.0
hPF2,PF1; hPF2,SF1; hPF2,SF2 1.0
n1SF1; n

1
SF2; n

1
PF1; n

1
PF2 100

U1
SF1; U

1
SF2; U

1
PF1; U

1
PF2 0.0

U5
SF1; U

5
SF2; U

5
PF1; U

5
PF2 0.0

USF1; USF2; UPF1; UPF2 1,500
U 1,500

A.4 Discussion and future work

Short-term mining operations are rather complex and an integrated decision framework
can provide significant gains, as shown by the Value of the Integrated Solution. It is
clear that the goal programming approach is rather sensitive to the magnitudes of
the penalty parameters. Hence, providing a sensitivity analysis should be a primary
concern. One important discussion, however, is whenever the VIS is always positive
for any given positive set of penalty parameters. A formal mathematical verification
should be performed and a set of properties of the VIS could be derived for different
problem characteristics, as in [Birge, 1982].

The VIS should also be weighed against the computational effort required to de-
termine the integrated solution. Preliminary results have indicated that the integrated
problem may be significantly more difficult to solve than the individual subproblems.
Also, the solution performance should be evaluated for longer programming horizons
(up to 21, for instance, so as to represent a full week of work with three shifts per
day). The limit of multipurpose solvers as CPLEX could then be determined and a
thorough analysis of the problem characteristics and the solution logs could point out
opportunities for developing specific heuristics and decomposition approaches.

The problem could also be addressed as if only one of the objects listed in Section
A.2.3 were considered in the objective function, leaving all others to be modeled as
constraints. That would require specific lower and upper bounds to be defined for
each new constraint. An analysis of the advantages of such an approach to the goal-
programming one proposed here are yet to be studied.

Another interesting approach would be to reformulate the model as a multi-
objective problem. Pareto-optimal analyses could be performed and different solution
frameworks could be developed.
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Dataset for the Integrated Sales
and Operations Tactical Planning
Problem

“It was idle to speculate, to build pyramids of
surmise on a foundation of ignorance.”

The City and the Stars, Arthur C. Clarke

The data presented below is synthesized from the general characteristics of an
actual, massive Brazilian mining company. Since not all elements are described for
each facility, the figures represent the most restrictive capacities of each element type1.
Although system costs and capacities are somewhat equivalent, there is clearly a trend
of lower operational unit costs in system C. Fixed costs are relatively higher for offshore
operations. Note that only the fixed costs for active nodes are shown; the corresponding
fixed costs for idle nodes are, in average, a 10 percent fraction of the active ones. The
penalty on unmet demand is set to relatively high values (b = 2, 000) in order to
ensure that only solutions which which fully meet the overall customers’ demand are
attained (of course, assuming production and distribution capacities are high enough).
In practice, however, b values are around the same order of magnitude of ore prices, so
that failing to meet all demand may be, at times, a better solution.

1Input files and source codes are available from the authors.
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Tactical Planning Problem

Table B.1: Dataset for the integrated S&OP tactical planning prob-
lem scenario.

System Facility Processing Storage Transfer Unit Cost Fixed Cost

A

Mine 1 2100 2500 2200 1.17 71.13
Mine 2 1800 300 1800 1.57 59.98
Mine 3 400 500 600 1.21 19.66
Mine 4 2800 1500 2700 1.39 87.87
Mine 5 1400 200 1300 1.91 42.19
Mine 6 600 300 700 1.37 22.99
Mine 7 1200 2000 1400 1.54 45,47
Rail A - - 12000 3.00 393.87
Port A 2500 7000 10000 1.12 326.01

B

Mine 1 1300 700 1000 1.68 34.96
Mine 2 100 200 100 1.27 3.50
Mine 3 - 1500 800 1.85 27.86
Mine 4 1500 2500 1900 1.25 66.54
Mine 5 400 1000 400 2.14 14.06
Mine 6 1200 4000 1300 1.43 44.87
Mine 7 300 1500 300 1.89 10.40
Mine 8 700 1200 900 2.07 31.65
Mine 9 1200 5000 1000 1.99 34.66
Station 1 - 500 500 0.81 7.12
Station 2 - 200 1300 1.02 46.13
Station 3 - 250 3000 1.13 105.23
Station 4 - 300 1000 0.94 35.43
Station 5 - 400 1200 2.01 42.59
Rail B - - 7000 2.70 244.32
Port B1 - 3500 3500 1.21 158.43
Port B2 - 2000 1500 1.31 88.87

C

Mine 1 9000 8500 8000 0.88 216.34
Station 1 1000 1000 1000 0.91 11.96
Station 2 500 500 500 0.94 9.98
Station 3 250 250 250 1.01 7.39
Rail C - - 8000 2.60 381.22
Port C 400 4000 7500 1.03 373.82

Offshore

Station 1 - 1500 1500 2.02 115.67
Station 2 - 1200 1200 2.29 149.21
Station 3 - 1000 1000 2.25 98.71
Station 4 - 2000 2000 2.93 198.74
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Complete listings of numerical
results for the Integrated Tactical
Sales and Operations Problem

“Against stupidity the gods themselves contend in
vain.”

Friedrich von Schiller

Here we present the complete listings of the results obtained with the execution
of CPLEX and the TF and TB Relax&Fix strategies over the 90 problem instances
covered in Chapter 3. Different behaviors of the iron ore demand are employed to
evaluate the response of the heuristic. For each category of demand, we present a
graph illustrating the corresponding behavior, followed by a set of tables, one for each
value of T = {3, 6, 12, 24, 48}.
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Integrated Tactical Sales and Operations Problem

C.1 Tests with increasing demand
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Figure C.1. Increasing demand behavior considered in the tests.

Table C.1. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is increased from 25% to 100% of the system’s overall capacity.
Planning horizon: 3 time periods.

T=3; Increasing demand LB UB Gap t(s)

TF 681,453 806,197 15.47% 4
FC=1 TB 682,460 794,402 14.09% 2

CPLEX 755,172 770,275 1.96% 3,600
TF 815,404 1,009,245 19.21% 3

FC=10 TB 820,175 1,042,508 21.33% 2
CPLEX 939,750 969,707 3.09% 3,600
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Table C.2. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is increased from 25% to 100% of the system’s overall capacity.
Planning horizon: 6 time periods.

T=6; Increasing demand LB UB Gap t(s)

TF 1,301,536 1,526,310 14.73% 5
FC=1 TB 1,305,236 1,551,747 15.89% 2

CPLEX 1,421,767 1,506,649 5.63% 3,600
TF 1,550,789 1,903,421 18.53% 4

FC=10 TB — — — —
CPLEX 1,764,967 1,842,925 4.23% 3,600

Table C.3. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is increased from 25% to 100% of the system’s overall capacity.
Planning horizon: 12 time periods.

T=12; Increasing demand LB UB Gap t(s)

TF 2,481,508 2,831,818 12.37% 14
FC=1 TB — — — —

CPLEX 2,666,549 3,046,498 12.47% 3,600
TF 2,955,628 3,643,351 18.88% 21

FC=10 TB — — — —
CPLEX 3,315,800 3,594,487 7.75% 3,600

Table C.4. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is increased from 25% to 100% of the system’s overall capacity.
Planning horizon: 24 time periods.

T=24; Increasing demand LB UB Gap t(s)

TF 4,857,210 5,651,259 14.05% 72
FC=1 TB — — — —

CPLEX 5,224,749 8,323,775 37.23% 3,600
TF 5,779,754 7,150,758 19.17% 84

FC=10 TB — — — —
CPLEX 6,495,617 528,869,188 98.77% 3,600

Table C.5. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is increased from 25% to 100% of the system’s overall capacity.
Planning horizon: 48 time periods.

T=48; Increasing demand LB UB Gap t(s)

TF 9,621,579 11,564,394 16.80% 341
FC=1 TB — — — —

CPLEX 10,345,086 1,059,954,339 99.02% 3,600
TF 11,441,503 14,799,148 22.69% 402

FC=10 TB — — — —
CPLEX 12,852,218 1,062,247,945 98.79% 3,600
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C.2 Tests with decreasing demand
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Figure C.2. Decreasing demand behavior considered in the tests.

Table C.6. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is decreased from 100% to 25% of the system’s overall capacity.
Planning horizon: 3 time periods.

T=3; Decreasing demand LB UB Gap t(s)

TF 960,961 1,065,732 9.83% 4
FC=1 TB — — — —

CPLEX 1,041,321 1,059,840 1.75% 3,600
TF 1,109,573 1,276,930 13.11% 9

FC=10 TB 835,591 8,011,742 89.57% 1,200
CPLEX 1,228,166 1,253,528 2.02% 3,600
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Table C.7. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is decreased from 100% to 25% of the system’s overall capacity.
Planning horizon: 6 time periods.

T=6; Decreasing demand LB UB Gap t(s)

TF 1,354,930 1,612,831 15.99% 12
FC=1 TB — — — —

CPLEX 1,495,380 1,615,756 7.45% 3,600
TF 1,617,667 2,016,902 19.79% 10

FC=10 TB 1,554,001 10,345,623 84.98% 603
CPLEX 1,836,565 2,004,646 8.38% 3,600

Table C.8. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is decreased from 100% to 25% of the system’s overall capacity.
Planning horizon: 12 time periods.

T=12; Decreasing demand LB UB Gap t(s)

TF 2,525,753 3,021,139 16.40% 30
FC=1 TB 2,483,394 16,362,457 84.82% 8

CPLEX 2,745,308 4,638,513 40.81% 3,600
TF 3,014,061 3,782,070 20.31% 39

FC=10 TB 2,948,905 17,122,756 82.78% 307
CPLEX 3,393,866 4,369,306 22.32% 3,600

Table C.9. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is decreased from 100% to 25% of the system’s overall capacity.
Planning horizon: 24 time periods.

T=24; Decreasing demand LB UB Gap t(s)

TF 4,902,867 5,919,244 17.17% 116
FC=1 TB — — — —

CPLEX 5,296,511 533,446,174 99.01% 3,600
TF 5,839,586 7,545,787 22.61% 169

FC=10 TB 5,772,941 22,429,044 74.26% 40
CPLEX 6,560,513 520,219,840 98.74% 3,600

Table C.10. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is decreased from 100% to 25% of the system’s overall capacity.
Planning horizon: 48 time periods.

T=48; Decreasing demand LB UB Gap t(s)

TF 9,684,487 11,888,284 18.54% 498
FC=1 TB — — — —

CPLEX 10,429,505 1,072,093,875 99.03% 3,600
TF 11,517,279 15,269,757 24.57% 628

FC=10 TB — — — —
CPLEX 12,923,296 1,067,989,301 98.79% 3,600
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C.3 Tests with seasonally increasing demand
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Figure C.3. Seasonally increasing demand behavior considered in the tests.

Table C.11. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is seasonally increased from 25% to 100% of the system’s overall
capacity. Planning horizon: 3 time periods.

T=3; Seasonally increasing demand LB UB Gap t(s)

TF 588,871 695,720 15.36% 8
FC=1 TB 584,105 754,264 22.56% 4

CPLEX 662,447 715,560 7.42% 3,600
TF 713,685 879,480 18.85% 3

FC=10 TB 700,199 922,383 24.09% 4
CPLEX 826,741 849,774 2.71% 3,600
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Table C.12. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is seasonally increased from 25% to 100% of the system’s overall
capacity. Planning horizon: 6 time periods.

T=6; Seasonally increasing demand LB UB Gap t(s)

TF 1,416,377 1,650,811 14.20% 3
FC=1 TB — — — —

CPLEX 1,555,714 1,696,397 8.29% 3,600
TF 1,677,708 2,097,453 20.01% 11

FC=10 TB — — — —
CPLEX 1,919,986 2,044,108 6.07% 3,600

Table C.13. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is seasonally increased from 25% to 100% of the system’s overall
capacity. Planning horizon: 12 time periods.

T=12; Seasonally increasing demand LB UB Gap t(s)

TF 2,595,421 3,027,976 14.29% 13
FC=1 TB 2,589,338 3,062,313 15.45% 10

CPLEX 2,787,014 3,185,969 12.52% 3,600
TF 3,079,842 3,774,151 18.40% 14

FC=10 TB — — — —
CPLEX 3,444,954 3,876,076 11.12% 3,600

Table C.14. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is seasonally increased from 25% to 100% of the system’s overall
capacity. Planning horizon: 24 time periods.

T=24; Seasonally increasing demand LB UB Gap t(s)

TF 4,958,385 5,919,356 16.23% 93
FC=1 TB — — — —

CPLEX 5,327,805 525,942,747 98.99% 3,600
TF 5,891,783 7,488,953 21.33% 106

FC=10 TB — — — —
CPLEX 6,600,344 8,393,980 21.37% 3,600

Table C.15. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is seasonally increased from 25% to 100% of the system’s overall
capacity. Planning horizon: 48 time periods.

T=48; Seasonally increasing demand LB UB Gap t(s)

TF 9,732,512 11,730,992 17.04% 357
FC=1 TB — — — —

CPLEX 10,459,175 1,005,076,572 98.96% 3,600
TF 11,561,540 14,971,922 22.78% 507

FC=10 TB — — — —
CPLEX 12,963,100 1,070,461,766 98.79% 3,600
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C.4 Tests with seasonally decreasing demand
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Figure C.4. Seasonally decreasing demand behavior considered in the tests.

Table C.16. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is seasonally decreased from 100% to 25% of the system’s overall
capacity. Planning horizon: 3 time periods.

T=3; Seasonally decreasing demand LB UB Gap t(s)

TF 1,143,461 1,293,832 11.62% 5
FC=1 TB 906,867 3,519,862 74.24% 1

CPLEX 1,239,664 1,260,402 1.65% 3,600
TF 1,315,207 1,537,001 14.43% 4

FC=10 TB 1,071,747 9,115,771 88.24% 2
CPLEX 1,442,393 1,484,169 2.81% 3,600
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Table C.17. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is seasonally decreased from 100% to 25% of the system’s overall
capacity. Planning horizon: 6 time periods.

T=6; Seasonally decreasing demand LB UB Gap t(s)

TF 1,917,780 2,215,698 13.45% 11
FC=1 TB 1,882,483 16,186,266 88.37% 3

CPLEX 2,090,185 2,309,060 9.48% 3,600
TF 2,240,547 2,691,897 16.77% 10

FC=10 TB 2,205,358 17,256,897 87.22% 5
CPLEX 2,530,558 2,888,830 12.40% 3,600

Table C.18. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is seasonally decreased from 100% to 25% of the system’s overall
capacity. Planning horizon: 12 time periods.

T=12; Seasonally decreasing demand LB UB Gap t(s)

TF 3,514,118 4,058,417 13.41% 44
FC=1 TB 3,485,842 17,812,758 80.43% 8

CPLEX 3,763,228 4,855,850 22.50% 3,600
TF 4,108,078 5,002,573 17.88% 69

FC=10 TB 4,075,332 19,392,657 78.99% 100
CPLEX 4,577,866 243,553,122 98.12% 3,600

Table C.19. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is seasonally decreased from 100% to 25% of the system’s overall
capacity. Planning horizon: 24 time periods.

T=24; Seasonally decreasing demand LB UB Gap t(s)

TF 4,996,797 5,948,737 16.00% 134
FC=1 TB 4,965,913 19,060,250 73.95% 33

CPLEX 5,399,442 517,424,422 98.96% 3,600
TF 5,942,881 7,529,078 21.07% 141

FC=10 TB — — — —
CPLEX 6,692,269 487,037,414 98.63% 3,600

Table C.20. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is seasonally decreased from 100% to 25% of the system’s overall
capacity. Planning horizon: 48 time periods.

T=48; Seasonally decreasing demand LB UB Gap t(s)

TF 9,767,736 12,198,223 19.92% 603
FC=1 TB — — — —

CPLEX 10,516,221 1,090,508,353 99.04% 3,600
TF 11,613,040 15,097,979 23.08% 627

FC=10 TB — — — —
CPLEX 13,038,040 1,076,261,087 98.79% 3,600
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C.5 Tests with uniformly varying demand

C.5.1 Uniform demand, at 25% of the system’s capacity.
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Figure C.5. Uniform demand behavior considered in the tests.

Table C.21. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly set to 25% of the system’s overall capacity. Planning
horizon: 3 time periods.

T=3; Uniform demand LB UB Gap t(s)

TF 289,535 381,429 24.09% 7
FC=1 TB — — — —

CPLEX 345,062 357,300 3.43% 3,600
TF 380,832 511,795 25.59% 55

FC=10 TB — — — —
CPLEX 457,410 476,158 3.94% 3,600
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Table C.22. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly set to 25% of the system’s overall capacity. Planning
horizon: 6 time periods.

T=6; Uniform demand LB UB Gap t(s)

TF 558,704 703,010 20.53% 7
FC=1 TB 282,294 367,341 23.15% 1

CPLEX 634,630 689,510 7.96% 3,600
TF 722,617 960,251 24.75% 7

FC=10 TB — — — —
CPLEX 833,456 945,988 11.90% 3,600

Table C.23. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly set to 25% of the system’s overall capacity. Planning
horizon: 12 time periods.

T=12; Uniform demand LB UB Gap t(s)

TF 1,097,090 1,377,072 20.33% 14
FC=1 TB — — — —

CPLEX 1,233,975 1,395,287 11.56% 3,600
TF 1,410,983 1,917,663 26.42% 13

FC=10 TB — — — —
CPLEX 1,637,669 35,209,226 95.35% 3,600

Table C.24. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly set to 25% of the system’s overall capacity. Planning
horizon: 24 time periods.

T=24; Uniform demand LB UB Gap t(s)

TF 2,177,839 2,840,227 23.32% 43
FC=1 TB 2,170,224 2,988,802 27.39% 30

CPLEX 2,448,631 3,076,616 20.41% 3,600
TF 2,788,673 3,822,438 27.04% 44

FC=10 TB — — — —
CPLEX 3,255,023 4,105,483 20.72% 3,600

Table C.25. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly set to 25% of the system’s overall capacity. Planning
horizon: 48 time periods.

T=48; Uniform demand LB UB Gap t(s)

TF 4,340,425 5,703,510 23.90% 207
FC=1 TB — — — —

CPLEX 4,884,085 488,716,918 99.00% 3,600
TF 5,547,226 7,957,822 30.29% 232

FC=10 TB — — — —
CPLEX 6,475,950 507,794,415 98.72% 3,600
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C.5.2 Uniform variance, up to 50% of the system’s capacity.
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Figure C.6. Uniformly varying (±50%) demand behavior considered in the tests.

Table C.26. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly varied around ±25% of the system’s overall capacity.
Planning horizon: 3 time periods.

T=3; Uniformly varying demand (±25%) LB UB Gap t(s)

TF 381,412 446,784 14.63% 1
FC=1 TB — — — —

CPLEX 425,456 440,358 3.38% 3,600
TF 485,556 593,678 18.21% 1,255

FC=10 TB 475,531 602,651 21.09% 35
CPLEX 557,564 574,699 2.98% 3,600
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Table C.27. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly varied around ±25% of the system’s overall capacity.
Planning horizon: 6 time periods.

T=6; Uniformly varying demand (±25%) LB UB Gap t(s)

TF 838,413 1,011,167 17.08% 5
FC=1 TB 836,551 1,037,017 19.33% 2

CPLEX 931,147 1,008,477 7.67% 3,600
TF 1,038,485 1,312,744 20.89% 4

FC=10 TB — — — —
CPLEX 1,200,756 1,296,617 7.39% 3,600

Table C.28. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly varied around ±25% of the system’s overall capacity.
Planning horizon: 12 time periods.

T=12; Uniformly varying demand (±25%) LB UB Gap t(s)

TF 1,658,991 1,997,316 16.94% 14
FC=1 TB — — — —

CPLEX 1,817,034 2,017,170 9.92% 3,600
TF 2,044,582 2,595,591 21.23% 15

FC=10 TB — — — —
CPLEX 2,325,858 2,635,224 11.74% 3,600

Table C.29. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly varied around ±25% of the system’s overall capacity.
Planning horizon: 24 time periods.

T=24; Uniformly varying demand (±25%) LB UB Gap t(s)

TF 3,304,138 4,087,119 19.16% 56
FC=1 TB — — — —

CPLEX 3,619,253 4,793,566 24.50% 3,600
TF 4,060,315 5,355,543 24.18% 56

FC=10 TB — — — —
CPLEX 4,628,055 336,465,372 98.62% 3,600

Table C.30. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly varied around ±25% of the system’s overall capacity.
Planning horizon: 48 time periods.

T=48; Uniformly varying demand (±25%) LB UB Gap t(s)

TF 6,601,484 8,220,554 19.70% 279
FC=1 TB — — — —

CPLEX 7,213,714 754,541,150 99.04% 3,600
TF 8,098,901 10,989,820 26.31% 316

FC=10 TB — — — —
CPLEX 9,218,604 806,929,370 98.86% 3,600
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C.5.3 Uniform variance, up to 75% of the system’s capacity.
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Figure C.7. Uniformly varying (±75%) demand behavior considered in the tests.

Table C.31. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly varied around ±50% of the system’s overall capacity.
Planning horizon: 3 time periods.

T=3; Uniformly varying demand (±50%) LB UB Gap t(s)

TF 487,806 582,245 16.22% 15
FC=1 TB 487,512 611,769 20.31% 2

CPLEX 549,320 568,277 3.34% 3,600
TF 600,748 751,091 20.02% 10

FC=10 TB — — — —
CPLEX 700,363 720,501 2.79% 3,600



C.5. Tests with uniformly varying demand 127

Table C.32. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly varied around ±50% of the system’s overall capacity.
Planning horizon: 6 time periods.

T=6; Uniformly varying demand (±50%) LB UB Gap t(s)

TF 1,157,478 1,337,662 13.47% 4
FC=1 TB 1,157,010 1,442,183 19.77% 2

CPLEX 1,274,124 1,345,059 5.27% 3,600
TF 1,391,404 1,721,964 19.20% 7

FC=10 TB 1,389,724 2,634,475 47.25% 557
CPLEX 1,587,827 1,685,880 5.82% 3,600

Table C.33. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly varied around ±50% of the system’s overall capacity.
Planning horizon: 12 time periods.

T=12; Uniformly varying demand (±50%) LB UB Gap t(s)

TF 2,297,916 2,677,371 14.17% 11
FC=1 TB 2,296,462 2,827,066 18.77% 7

CPLEX 2,476,447 2,753,297 10.06% 3,600
TF 2,748,830 3,396,535 19.07% 13

FC=10 TB — — — —
CPLEX 3,083,993 3,478,467 11.34% 3,600

Table C.34. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly varied around ±50% of the system’s overall capacity.
Planning horizon: 24 time periods.

T=24; Uniformly varying demand (±50%) LB UB Gap t(s)

TF 4,583,327 5,388,986 14.95% 55
FC=1 TB 4,583,563 5,614,154 18.36% 28

CPLEX 4,931,861 499,064,302 99.01% 3,600
TF 5,470,270 6,992,113 21.77% 71

FC=10 TB — — — —
CPLEX 6,130,936 7,612,979 19.47% 3,600
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Table C.35. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly varied around ±50% of the system’s overall capacity.
Planning horizon: 48 time periods.

T=48; Uniformly varying demand (±50%) LB UB Gap t(s)

TF 9,163,902 11,196,372 18.15% 334
FC=1 TB — — — —

CPLEX 9,843,832 1,011,340,445 99.03% 2,996
TF 10,921,390 13,865,352 21.23% 384

FC=10 TB — — — —
CPLEX 12,220,176 1,014,839,192 98.80% 1,794



C.5. Tests with uniformly varying demand 129

C.5.4 Uniform variance, up to 100% of the system’s capacity.
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Figure C.8. Uniformly varying (±100%) demand behavior considered in the
tests.

Table C.36. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly varied around ±75% of the system’s overall capacity.
Planning horizon: 3 time periods.

T=3; Uniformly varying demand (±75%) LB UB Gap t(s)

TF 606,262 710,290 14.65% 5
FC=1 TB 601,633 774,790 22.35% 1

CPLEX 682,351 696,573 2.04% 3,050
TF 732,288 897,349 18.39% 18

FC=10 TB — — — —
CPLEX 846,320 870,316 2.76% 3,122
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Table C.37. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly varied around ±75% of the system’s overall capacity.
Planning horizon: 6 time periods.

T=6; Uniformly varying demand (±75%) LB UB Gap t(s)

TF 1,502,300 1,727,912 13.06% 4
FC=1 TB — — — —

CPLEX 1,648,036 1,743,331 5.47% 3,063
TF 1,770,530 2,147,961 17.57% 3

FC=10 TB — — — —
CPLEX 2,004,740 2,130,123 5.89% 3,029

Table C.38. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly varied around ±75% of the system’s overall capacity.
Planning horizon: 12 time periods.

T=12; Uniformly varying demand (±75%) LB UB Gap t(s)

TF 2,982,966 3,438,821 13.26% 11
FC=1 TB — — — —

CPLEX 3,195,750 3,492,561 8.50% 3,019
TF 3,500,998 4,275,036 18.11% 15

FC=10 TB — — — —
CPLEX 3,904,802 4,502,406 13.27% 2,154

Table C.39. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly varied around ±75% of the system’s overall capacity.
Planning horizon: 24 time periods.

T=24; Uniformly varying demand (±75%) LB UB Gap t(s)

TF 5,948,687 6,923,416 14.08% 65
FC=1 TB — — — —

CPLEX 6,361,095 496,731,218 98.72% 2,774
TF 6,967,883 8,580,955 18.80% 90

FC=10 TB — — — —
CPLEX 7,763,934 601,762,416 98.71% 2,595

Table C.40. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly varied around ±75% of the system’s overall capacity.
Planning horizon: 48 time periods.

T=48; Uniformly varying demand (±75%) LB UB Gap t(s)

TF 11,891,343 14,461,121 17.77% 375
FC=1 TB — — — —

CPLEX 12,701,260 1,263,650,655 98.99% 2,865
TF 13,910,218 18,111,215 23.20% 473

FC=10 TB — — — —
CPLEX 15,469,805 1,264,506,937 98.78% 3,008
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C.5.5 Uniform variance, up to 125% of the system’s capacity.
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Figure C.9. Uniformly varying (±125%) demand behavior considered in the
tests.

Table C.41. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly varied around ±125% of the system’s overall capacity.
Planning horizon: 3 time periods.

T=3; Uniformly varying demand (±125%) LB UB Gap t(s)

TF 733,272 861,842 14.92% 8
FC=1 TB — — — —

CPLEX 827,557 843,754 1.92% 3,096
TF 873,650 1,063,588 17.86% 6

FC=10 TB — — — —
CPLEX 1,015,472 1,038,867 2.25% 3,000
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Table C.42. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly varied around ±125% of the system’s overall capacity.
Planning horizon: 6 time periods.

T=6; Uniformly varying demand (±125%) LB UB Gap t(s)

TF 1,873,825 2,159,250 13.22% 8
FC=1 TB 1,868,875 6,539,925 71.42% 12

CPLEX 2,055,671 2,118,011 2.94% 3,088
TF 2,179,870 2,613,154 16.58% 6

FC=10 TB — — — —
CPLEX 2,469,435 2,621,922 5.82% 2,087

Table C.43. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly varied around ±125% of the system’s overall capacity.
Planning horizon: 12 time periods.

T=12; Uniformly varying demand (±125%) LB UB Gap t(s)

TF 3,722,147 4,270,270 12.84% 22
FC=1 TB — — — —

CPLEX 3,971,827 268,887,475 98.52% 3,034
TF 4,314,623 5,700,046 24.31% 640

FC=10 TB — — — —
CPLEX 4,796,851 6,163,499 22.17% 2,804

Table C.44. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly varied around ±125% of the system’s overall capacity.
Planning horizon: 24 time periods.

T=24; Uniformly varying demand (±125%) LB UB Gap t(s)

TF 7,424,814 8,783,520 15.47% 1,290
FC=1 TB — — — —

CPLEX 7,903,988 749,032,766 98.94% 2,870
TF 8,588,988 11,655,988 26.31% 292

FC=10 TB — — — —
CPLEX 9,528,358 743,436,906 98.72% 2,509

Table C.45. Results comparing CPLEX and Relax&Fix strategies TF and TB
when demand is uniformly varied around ±125% of the system’s overall capacity.
Planning horizon: 48 time periods.

T=48; Uniformly varying demand (±125%) LB UB Gap t(s)

TF 14,843,064 18,536,984 19.93% 551
FC=1 TB — — — —

CPLEX 15,769,441 1,520,416,607 98.96% 3,081
TF 17,150,450 26,620,013 35.57% 752

FC=10 TB — — — —
CPLEX 18,987,621 1,516,160,195 98.75% 3,054
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