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Resumo

Característica espaço-temporal local tem se demonstrado uma ferramenta poderosa

para representar padrões não evidentes de objetos em movimento em cenas de vídeo,

especialmente ações humanas. Reconhecimento de ações humanas é o foco principal

para diversas aplicações, tais como indexação de vídeos, recuperação de vídeo baseada

em conteúdo, resumo de vídeos, �ltragem de conteúdo indesejável, classi�cação de

�lmes, para citar alguns.

De uma forma geral, detectores de pontos de interesse espaço-temporais contam

somente com valores de luminância, ignorando cor. Além disto, a descrição de regiões

de suporte são em sua maioria baseadas em histogramas de orientação por gradiente

(para inferir descrição de forma) e �uxo óptico (para estimar movimentação aparente).

Informação de cor tem sido em sua maioria ignorada durante os últimos anos de apri-

moramento de técnicas para detecção e descrição de características locais no domínio

espaço-tempo, apesar de ser comumente considerada um elemento importante para o

entendimento de eventos.

Para reconhecimento de objetos e cenas em images estáticas, robustez a variações

fotométricas foi alcançado através da descrição de regiões locais de pontos de interesse

espaciais em termos das propriedades de invariância de cor. Em tal abordagem, ro-

bustez à geometria de iluminação, intensidade de iluminação e re�exão specular partiu

do modelo de re�exão dicromática.

Neste contexto, o presente trabalho possue três contribuições principais.

Primeiro, estendemos o detetor de esquinas espaço-temporais para incorporar infor-

mação de cor (utilizando o sistema de cor RGB-normalizado) na fase de deteção, o

qual foi nomeado ColorSTIP. Segundo, consideramos o uso de histogramas de cor

(baseado no canal hue ponderado pela saturação) para descrever regiões de suporte de

pontos de interesse espaço-temporais, nomeando-o HueSTIP. Por �m, foi conduzida

uma análise de desempenho criteriosa das extensões propostas para o reconhecimento

de ações humanas em vídeos de cenários não controlados.
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Abstract

Local spatiotemporal feature has been proved a powerful tool to represent latent pat-

terns of moving objects in video scenes, especially human actions. Recognition of

human actions is the principal focus for various applications, including video index-

ing, content-based video retrieval, video summarization, �ltering of unwanted content,

rating of movies, to name a few.

In general, spatiotemporal interest point detectors rely solely on luminance values,

ignoring color. In addition to this, descriptions of the support regions are mostly based

on histograms of gradient orientation (to infer shape description) and optical �ow (to

estimate motion appearance). Color information has been mostly overlooked during the

last years of amelioration of techniques for detection and description of local features

in the space-time domain, despite being usually considered an important element for

the understanding of events.

For object and scene recognition in static images, robustness to photometric

variations has been achieved by describing local regions of spatial interest points in

terms of color invariance properties. In such approach, robustness to lighting geometry,

illumination intensity and highlight was built on the dichromatic re�ection model.

In this context, the present work holds three main contributions. First, we have

extended the space-time corner detector (STIP) to incorporate color information (us-

ing the normalized -RGB color system) at the detection phase, which we have called

the ColorSTIP. Secondly, we have considered the use of color histograms (based on

the saturation-weighed hue channel) to describe support regions of spatiotemporal in-

terest points, labeling it as HueSTIP. Finally, it was conducted a thorough analysis of

performance of the proposed extensions for the human action recognition in videos on

unconstrained (non controlled) scenarios.

Palavras-chave: Local Spatiotemporal Features, Color Invariants, Space-Time Inter-

est Points, Recognition of Human Actions.
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Chapter 1

Introduction

The creation of online social networks has greatly impacted the way people create, con-

sume and share information, both in textual and visual media. Their use has fostered

the creation of repositories where users work in cooperation to produce amounts of

data that defy the imagination. For example, the number of video uploads to YouTube

has recently reached about 35 hours per minute, the equivalent to 50,400 hours of video

a day [YouTube, 2010].

The growth of multimedia data also stems from many other application domains,

including surveillance systems, cultural heritage, geographic information systems, to

name a few. Together with the increase in quantity, issues related to the complexity,

quality, reliability and organization of multimedia data have also emerged. Information

retrieval techniques have mostly addressed issues related to textual information (e.g.,

on the design of search engines for fast retrieval of relevant and reliable information,

given very large corpora), whereas Computer Vision and Image Processing techniques

have been employed to process visual data (e.g., for automating content-based video

annotation and retrieval, video summarization, �ltering of unwanted content).

Multimedia processing has now evolved enough to allow high-level semantic �lters

being used in practical applications. Demands of this nature come from many social

contexts, including security, health, and quality of life. In the scope of security, much

research has focused on i) automating the analysis of surveillance videos to help human

operators detect suspicious and abnormal behaviors where safety and quietness must

prevail [Siebel & Maybank, 2004], and ii) developing biometric systems for automated

authentication of authorized persons. Examples regarding the quality of life include

works for i) automated interpretation of sign language sentences to facilitate communi-

cation with deaf or mute people [Sarkar et al. , 2005], and ii) �ltering of inappropriate

content (e.g., pornography and violence scenes) for a speci�c audience [de Souza et al.
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2 Chapter 1. Introduction

, 2010; Valle et al. , 2011].

Automated recognition of human actions and activities can favorably impact all

such application contexts. Behavioral biometric system (i.e., based on human gait)

were proved useful to uniquely identify people in [Sarkar et al. , 2005], and more con-

venient as it does not require the collaboration from users in order to collect biometric

information. Interactive environments that react to human gestures are suggested to

improve the user's experience in particular activities or places [Bobick et al. , 1999].

Being able to either predict or detect distinct anomalous behaviors from surveillance

cameras could minimize the mistakes of human operators and thus enhance the security

of public places, mainly in di�cult conditions such as crowded environments. Correct

categorization of human activities is a required feature for content-based video anno-

tation and retrieval systems, as the recognition of speci�c actions can serve to imply

the occurrence of certain events, thus providing some semantic power to such systems.

Motion events (or motion patterns) are advocated as the main source of informa-

tion in order for human beings to interpret events and detect moving objects from the

real-world [Wallach & O'Connell, 1953; Cutting et al. , 1978; Cedras & Shah, 1995].

Motivated by this fact, several works dedicated to put forward di�erent ideas on how

to detect and represent such motion patterns. Of the proposed concepts, motion pat-

terns were modeled as trajectories of moving points, motion energy templates, global

descriptors by optical �ow, local spatiotemporal features, among many others.

Previously, the task of action recognition had been commonly addressed by the

use of appearance-based methods with global description of motion. However, they

can require costly preprocessing steps (e.g., segmentation and centering of the target

object) before applying the method [Bobick & Davis, 2001] and, in addition, they

can be more easily a�ected by undesirable episodes such as occlusions, viewpoint and

lighting variations, and cluttered backgrounds typical of realistic scenes (for approaches

not requiring a preprocessing step).

Methods based on local spatiotemporal features have gradually become the most

popular for tackling the problem of action recognition, and almost completely sup-

planting their counterpart global methods. The main reasons for that lie in the fact

that they are non-parametric approaches (meaning that they do not require the es-

timation of object model parameters) and are invariant to considerable changes of

illumination and viewpoints, rotation, translation and occlusion (common problems on

appearance-based global methods).

Local spatiotemporal features (or space-time interest points) are believed to pro-

vide important cues of motion patterns to represent the dynamic of moving image

structures in scenes of videos. Several related techniques were proposed, evaluated
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and successfully applied to the automated recognition of human actions [Laptev, 2005;

Dollár et al. , 2005; Willems et al. , 2008; Rapantzikos et al. , 2009]. Although there

exists quite a few distinct local spatiotemporal feature detectors in the literature, they

generally simply di�er in terms of the design of the saliency measurement function. The

saliency function holds proprieties that are inherited by the detected interest points

and are responsible for making them discriminative (meaning that the elements have a

unique representation) and robust to several variations (which can cause di�erences on

the representation of the same element). Such points are expected to refer to patterns

of motion by means of the description of their local regions (or support regions). The

description of support regions in terms of histograms of oriented-gradients (to infer

shape) and optic �ow (to estimate apparent motion) is what de�ne motion patterns in

terms of local spatiotemporal features.

Motion events of real-world structures are intrinsic information for us to discern

di�erent dynamic episodes from real scenes, and therefore motion patterns are consid-

ered important cues for automated recognition of actions. Similarly, color information

has a fundamental role in helping human beings to identify objects and interpret events

from their surroundings. However, not much attention was drawn to either the design

of space-time interest operators with color information or the use of color to describe

those local points.

For static images, some works have proposed the use of color invariant properties

to enrich the representation of image structures on automated object recognition and

scene categorization [Gevers & Stokman, 2004; van de Weijer & Schmid, 2006; van

de Sande et al. , 2010]. The authors in [van de Weijer & Schmid, 2006] extensively

studied invariance properties of di�erent color models based on the dichromatic re�ec-

tion model. To improve the discriminative power and illumination invariance of local

features to object recognition and image categorization, a set of color descriptors for

spatial local features built on the work of [van de Weijer & Schmid, 2006] was proposed

in [van de Sande et al. , 2010] for recognition of objects and scenes in static images.

The distinctiveness of their color descriptors was evaluated experimentally and their

invariant properties under illuminations changes were analyzed. They derived di�er-

ent color descriptors, including combinations with the intensity-based shape descriptor

SIFT [Lowe, 2004].

This dissertation aims at merging the works in [van de Weijer & Schmid, 2006]

and [Laptev, 2005], doing something similar to the work in [van de Sande et al. , 2010],

but in the context of spatiotemporal features for action recognition.
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1.1 Motivation

Most recently, there has been a great deal of interest in the development of new tech-

niques for the extraction of local spatiotemporal patches for low-level representation

of videos. Their main applications lie in automated interpretation of events such as

recognition of human actions and categorization of events. Advances on techniques for

representation of spatiotemporal patterns can possibly mean improvements on applica-

tions depending on automatic classi�cation systems. Despite the e�orts, for multiclass

problems involving overlapping characteristics (that is, di�erent classes containing sim-

ilar visual patterns), classi�cation rates are still low.

On the other hand, color information is commonly considered an important at-

tribute to describe objects in the real world and an indispensable element to help us

understand many complex situations. To the best of our knowledge, little attention

was given to the use of color information to extract local spatiotemporal features from

videos. This way, we found ourselves motivated to study and to contribute to the

literature with this particular case.

1.2 Objectives

Based on the arguments given above, this work aimed to enrich local spatiotemporal

features with photometric color invariants in both feature extraction phases, namely

detection of local features in videos and their description. Our goal was to analyze the

in�uence of color-based spatiotemporal features on specialized and generalized appli-

cation contexts.

For the specialized case, we worked on two keenly-debated topics: pornography

and violence. The exact meaning of "pornography" is a subject of controversy, but the

concept has an important correlation with the one of nudity. As nudity tends to be

typical of pornographic contents, skin color can be viewed as a key element to aggregate

to the representation. On the violence context, the usefulness of color information is

less obvious. In of spite of that, a few cases that may bene�t from color information

can be readily seen. For example, in professional �ghts the wrestlers are partially

undressed (showing skin color) and bleeding of the participants is a not unusual event.

Explosions as indicative of violence also have speci�c color patterns.

For the generalized case, we wanted to investigate if color information is a strong

element to characterize more general types of events, where the importance of color is

not so obvious a priori as in the pornographic scenario. In this regard, we found that

this could only be fairly evaluated if tested in realistic scenes, where the settings are
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diverse in terms of color variations and happenings. To this end, we chose a dataset of

Hollywood movies which ful�lls this requirement and comprises a wide range of events.

As events we refer to the di�erent types of human actions in which the dataset is

organized. This dataset is employed by many state-of-the-art evaluations.

In this context, our �rst hypothesis is that, for the events detected on the fore-

ground (incited by motion of object parts), color may be a pivotal element in �nely

de�ning the parts actually playing a role to characterize the action. Following this

reasoning, color will have the function of providing a more meaningful representation

for the actions performed by the objects of interest. The second hypothesis stems from

the idea that information about events in the background can contextualize, or restrict,

what is happening on the foreground. Color information could then be added to the

representation of the detected events in order to enhance their descriptions. Those

premises were investigated in this dissertation.

It is known however that only the space-time interest points to represent motion

patterns seem to be su�cient to improve the performance of classi�cation problems

depending on the motion pattern representation, as we have demonstrated in [de Souza

et al. , 2010; Valle et al. , 2011]. For others, the key for success appears to be on how

to fuse the elements of representation (color, optic �ow, gradient orientations), as it

was investigated in [Gevers et al. , 2006; Laptev et al. , 2008a].

There can be many ways of incorporating color information in the representation

by local features, such as early and late fusion [Snoek et al. , 2005]. In early fusion,

the low-level features are combined at the feature space level and the resultant artifact

is used to infer the �nal concept. In late fusion, di�erent feature-based views of the

same data are individually learned and later combined to infer the �nal concept.

One �rst way attempted by us was to use the late fusion approach [Valle et al. ,

2011], which we have found not to be an e�ective way. Others claim that color must

be included through a more elaborate mechanism [Gevers et al. , 2006], so that its

contribution is guaranteed. In this work, we incorporate color by two ways conforming

the early fusion approach. One was to directly use the color channels of the normalized

RBG system for the procedure of detecting space-time interest points. The other

way was carried out by histogramming the color data (of the hue channel) from the

surroundings of the spaiotemporal interest points, concatenating the color histogram

to the other features.

Extending spatiotemporal features to include color data in their detection and

description is an interesting and intuitive idea. But does color information provide a

more meaningful representation to motion patterns? If so, how much is performance

dependent on the task at hand, and even on each speci�c concept being detected? If
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yet true, are the improvements signi�cant? Is it really worth the computational e�ort?

Answering those questions is the main objective of this work.

More concretely, this dissertation investigates the attempt of incorporating photo-

metric robustness to spatiotemporal features in terms of the zero-order color invariants'

models proposed in [van de Weijer et al. , 2005; van de Weijer & Schmid, 2006], which

were grounded by the dichromatic re�ection model [Shafer, 1985].

1.2.1 Speci�c Objectives

1. Study the design of space-time interest point detectors and descriptors;

2. Investigate the state-of-the-art color invariant models in the literature;

3. Design and implement the alterations for the space-time interest point detector

to incorporate color;

4. Design and implement the spatiotemporal color descriptor for the space-time

interest points;

5. Test color-based local space-time interest points on generalized and specialized

video datasets of human actions;

6. Analyze the experimental results under the assumption of di�erent speci�c ap-

plication contexts of current interest.

1.3 Contributions

The most important contribution of this work is the combination of the works van de

Weijer & Schmid [2006] and Laptev [2005]. Color information is embedded into space-

time interest point detector and, for the support regions, color is also considered for

construction of the feature descriptors. Another contribution is a careful evaluation of

this proposed extensions in comparison with the original STIP, on challenging datasets

of real-world and complex scenes, investigating the cases of success and failure stemmed

from the incorporation of color information.

1.4 Text Organization

In Chapter 2, a review on works on the main subjects of the present work is given,

namely estimation of motion patterns and local spatiotemporal features. Details on
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how the local spatiotemporal features are found and how they gain meaning in terms

of motion estimation and appearance description is also presented in Chapter 2. Chap-

ter 3 expounds the fundamentals the target color invariants and describes the proposed

extensions based on the invariants of the normalized -RGB color system and hue chan-

nel. Chapter 4 reports and analyzes the experimental results of the proposals of this

work, on di�erent datasets of videos involving scenes of human actions in realistic

settings. At last, Chapter 5 concludes this dissertation.





Chapter 2

Related Work on Spatiotemporal

Features

In this chapter, the concept of local feature is brie�y introduced in Section 2.1 to give

a general context of the main object of study in this dissertation. As motion events are

one of the primary subjects in this work, an overall revision of the existing methods

for motion estimation and interpretation will be outlined in Section 2.2. This section

was almost completely based on the review given by [Laptev, 2004] and the survey

in [Lopes et al. , 2010]. In addition, in our work motion patterns are represented as

local spatiotemporal features, therefore the various methods proposed in the literature

to localize features in space-time will be presented in Section 2.3 to give a �rst contex-

tualization on the topic. Lastly, we present a few works related to the description of

support regions for local spatiotemporal features, including methods closely related to

the ones used in this dissertation.

2.1 A Brief Discussion on Local Features

There are numerous concepts associated to the term local features in image processing,

but all of them can be summarized to the idea of locally gathered, invariant image

patterns. (see Figure 2.1). Those patterns are associated with some image property,

such as intensity, color or texture. Feature localization is essentially based on high

intensity variations on local neighborhoods of those properties, and local features can

be understood as primitive structures such as corners, edges, or blobs. Di�erent types

of features may have particular meanings depending on the application. For instance, in

aerial images, detected edges often coincide with roads; while in automatic industrial

product inspections blobs are compared with impurities [Tuytelaars & Mikolajczyk,

9
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2008]. Furthermore, the name local feature can refer to local interest points or their

descriptions. The description of the interest point serve as a compact and abstract

representation of image patterns, which may take the form of histograms of gradient

orientation [Kläser et al. , 2008; Lowe, 2004], optic �ow [Lucas & Kanade, 1981] or

color histograms [van de Weijer & Schmid, 2006; van de Sande et al. , 2010].

Database of building photos

Photo 01 Photo 02 Photo 03

Query Image 01 Query Image 02

Image Patterns

Figure 2.1. In this picture, the small squares represent image patterns. They are
parts of image structures that compose speci�c objects, in this example, buildings.
We expect that the same patterns are identi�ed in images of similar content, i.e.
which also display buildings.

Most successful methods proposed to localize local features in static images are

based on intensity variations in local neighborhoods given by �rst- and second-order

derivatives. They also employ smoothing with Gaussian windows of varying sizes to

either reduce undesirable noises or to reproduce the same image content at di�erent de-

grees of detail. However, many other strategies have been proposed di�erent strategies

to perform that same task. According to those strategies, local feature detectors can be

organized into di�erent categories, e.g., measurement of high-curvature points [Wang

& Brady, 1995; Mokhtarian & Suomela, 1998], intensity based (e.g., measurements of
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intensity changes, and saliencies for locating interest points) [Beaudet, 1978; Moravec,

1981; Kitchen & Rosenfeld, 1982; Ullman & Sha'ashua, 1988; Forstner & Gulch, 1987;

Harris & Stephens, 1988; Förstner, 1994], model-based [Guiducci, 1988; Giraudon &

Deriche, 1991], color based [Würtz & Lourens, 1997; Montesinos et al. , 1998; van de

Weijer et al. , 2005, 2006] to name a few. Owing to the scope of this work, we limit

our discussion on techniques of interest points �nding basis on corners.

According to Tuytelaars & Mikolajczyk [2008], local features own many prop-

erties that must be evaluated in order to verify the e�ectiveness and suitability of a

single type. Assessing those properties quali�es feature types to distinct purposes. Re-

peatability and distinctiveness are conceivably the most important characteristics of

a local feature type (especially in [Schmid et al. , 2000], these two characteristics are

considered decisive to evaluate the power of an interest point detector). Regarding the

former, from the several detected features of a group of images, the majority should be

repeated in other sets of contextually related images, that is the chances of matching

must be high. On what concerns the latter, the features are expected to have be dis-

tinctive but at the same time representative: this means that the same element (e.g.,

a corner of a particular object) should be given very similar values even if the object

appears in di�erent situations (illuminants, points of view, etc.), but di�erent elements

(e.g. corners of unrelated objects) should given very di�erent values.

The use of local features to describe parts of image structures has not only been

supported for its success in experimental research [Weber et al. , 2000; Agarwal &

Roth, 2002; Fergus et al. , 2003; Lazebnik et al. , 2004], but has also been founded in

the �eld of Cognitive Science [Biederman, 1987]. Biederman demonstrated that, on the

human visual perception, objects are easily identi�ed if information on their corners are

retained, but not if corners are removed and only lines (edges) are kept (see Figure 2.2

for an illustrative example), stressing the importance of corners and junctions to visual

recognition. Indeed, experimental results have proved the e�ectiveness of corner-based

local features to applications of object recognition on several works(e.g., [Lowe, 1999;

van de Weijer et al. , 2005; Laptev, 2006; van de Sande et al. , 2010]), including space-

time corners for representation of video data [Laptev et al. , 2008b; Marszaªek et al. ,

2009].

2.2 Motion Interpretation of Moving Objects

In the context of video mining, a great deal of attention was drawn to the representation

and estimation of motion patterns, as moving objects and image sequences are the
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Figure 2.2. This picture outlines the idea that corners are important than lines
to represent and easily identify objects. This picture is c© American Psychological
Association from [Biederman, 1987] (reproduced with permission).

main target and source of information, respectively, in order to understand events in

videos. Accordingly, various methods were developed to satisfy such demand, which

in [Laptev, 2004] were grouped into four types: structural methods, the use of motion

templates for appearance-based methods, statistical appearance-based methods and

motion interpretation based on events.

Structural methods Parameterized models de�ning the geometry of object parts

and estimation of their mobility form the foundations of structural meth-

ods [Gavrila & Davis, 1995; Sidenbladh & Black, 2001; Sminchisescu & Triggs,

2003]. Such methods are directly related to motion capture techniques and ob-

jects in the scene are supposed to behave in accordance with speci�cally parame-

terized models. In such cases, di�erent sets of parameters match distinct events,

and parameters are associated with the location of object parts.

Because of the high number of parameters to be estimated, constraints can be
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introduced in order to attenuate the burden of parameter search (structural

methods are typically constrained to a number of assumptions, such as static

background and de�nite scale). Even though commonly approached with three-

dimensional reconstruction of the image structures of interest, structural methods

have alternatively used image features for tracking and analyzing motion trajec-

tories, for example in [Bregler, 1997; Isard & Blake, 1998; Song et al. , 2003].

In Lopes et al. [2010], related structural methods are categorized as paramet-

ric object methods. Parametric object model methods can comprise two more

subgroups, namely internal models, and trajectory models. Works based on the

former's direction de�ne the structural internal models of the objects of inter-

est and then adapt the computed parameters to the visual information of the

scene [Gavrila & Davis, 1995; Sidenbladh & Black, 2001; Sminchisescu & Triggs,

2003; Yilmaz & Shah, 2005; Gaitanis et al. , 2006; Filipovych & Ribeiro, 2008],

whereas on the latter information of the object internal states is ignored and it

counts solely on tracking of the object location over the frame sequence [Bobick

& Davis, 2001; Abdelkader et al. , 2008; Hu et al. , 2008].

For relying on explicit locations of parts, structural methods have a favourable

position for applications of human-computer interfaces and object animation,

whereas unreliable to interpretation of events in realistic scenes [Laptev, 2004].

Motion templates for appearance-based method In this method, motion is in-

ferred by analyzing appearance changes of objects over the sequence of frames.

Bobick & Davis [2001] presented a seminal work in this branch. They proposed

the construction of 2D temporal motion templates to build action recognition

systems. Those templates were known as Motion Energy Image (MEI) and Mo-

tion History Image (MHI). In the MEI model, a motion template of one speci�c

action was represented by a binary image, where the region �lled with high val-

ues (white pixels) accounted for the motion area. For the MHI model, a motion

template of an action was a gray-scale image, in which the brighter a speci�c

range of pixels, the more recent was motion at that area.

This formed the ground to more other related work, such as in [Efros et al. ,

2003; Hu et al. , 2009]. The works in [Black et al. , 1998; Hoey & Little, 2003;

Efros et al. , 2003] focused on describing and recognizing motion events in terms

of optic �ow in attempt of preventing precise spatial segmentation. In addition,

3D templates in terms of 3D volumes served in [Gorelick et al. , 2007] as a

more attractive solution for representing actions in image sequences, yet based
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on silhouettes, since they were expected to carry static and dynamic information

at the same time. Several other works followed this idea, namely [Mokhber et al.

, 2008; Cuntoor, 2006; Fathi & Mori, 2008].

The main advantage of using motion template based approaches rather than

structural methods comes from the fact that a less quantity of parameters is

required, which possibly helps to diminish equivocal matchings. Following the

organization proposed in Lopes et al. [2010], motion templates �t in the class of

implicit object models.

Statistical appearance-based methods To elude the problem of �nding explicit

correspondence between points of object templates and object structures in un-

known data, statistical (or non-parametric) methods combined with position-

independent image measurements were regarded as a tangible alternative to sim-

plify the problem to only object motion pattern classi�cation. This way, the

problem is reduced to only discover which types of motion patterns exist in the

scene, instead of also having to �nd their location. To deal with this, various

works have proposed di�erent non-parametric methods in the literature.

To start with, motion patterns from �owing water, waving cloth and �uttering

paper were classi�ed by using �rst- and second-order statistics of normalized spa-

tiotemporal gradients in [Polana & Nelson, 1997]. An extension of this work was

introduced by Chomat & Crowley [1999], in which recognition of human ges-

tures and activities was tackled by means of histograms of spatiotemporal �lter

responses. Clustering of events having repetitive activities and human action

recognition were performed by employing marginalized histograms of multiscale

spatiotemporal gradients by Zelnik-Manor & Irani [2001]. Other works on statis-

tical methods can be found in [Fablet et al. , 2002; Doretto et al. , 2003]. Despite

the promising results presented by those statistical methods, spatial segmentation

remains a drawback, since implicit correspondence is still required. This means

that such methods are sensitive, for instance, to occlusions, motions of cameras,

and motion in the setting (background).

On what concerns statistical appearance-based methods, the experimentally eval-

uated motion descriptors that demonstrated the highest performance in [Laptev,

2004] (on a controlled-scenario dataset of human actions) were used in this disser-

tation to characterize the detected local space-time features. The descriptors were

de�ned in terms of spatiotemporal gradient and optic �ow position-dependent his-

tograms, which were computed separately and joint afterwards. Those methods
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will be utterly described in Section 2.6.

Motion interpretation based on event patterns The explicit correspondence of

points required by some of the methods mentioned above is resolved by only

considering spatial variations. Temporal variations, however, can be helpful to

improve matching and localization of representative motion patterns (regarded as

motion events). Early works on this, namely in [Rubin & Richards, 1985; Engel

& Rubin, 1986], quali�ed motion events as motion boundaries, being interpreted

as smooth starts, smooth stops, pauses, impulse starts and impulse stops. This

idea stuck to considerations on kinematics, comparing motion boundaries with

force discontinuities of real situations.

The related work in [Gould & Shah, 1989] created a scheme of trajectory-based

motion representation referred to as TPS (Trajectory Primal Sketch). The TPS

representation encodes a set of trajectory primitives de�ning motion events that

should coincide with discontinuities in speed, direction and acceleration. That

proposal aimed to make feasible the identi�cation of object structures by only

using their supposedly unique trajectory signatures.

Brand [1997] stressed the mechanism of retrieving primitive events from image

sequences, claiming the importance of visual events characterized by splits and

uni�cations. However, to detect events, his method requires a previous step

of spatial segmentation which isolates the image structures in movement. This

clearly happens to be a drawback when dealing with videos displaying too het-

erogeneous settings.

In another approach closely following the principles defended in [Rubin &

Richards, 1985; Engel & Rubin, 1986], global descriptors of optic �ow were used

to describe videos [Rui & Anandan, 2000]; analyzing the �ow over the sequence

of frames and determining that substantial changes in �ow indicated motion

boundaries.

To alleviate the drawbacks inherent to the early methods of event-based motion

interpretation, such as the computation of trajectories, spatial segmentation, and global

image measurements, Laptev [2005] proposed a scheme to represent object dynamics

in terms of local information. By using local information, the undesirable e�ects from

complex scenes caused by occlusions and image clutter can be avoided, or minimized,

yet escaping the necessity of solving the correspondence problem over the sequence of

frames required by methods depending upon trajectory analysis.
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For extracting local motion patterns from image sequences, his method was built

on the combined edge-corner detector proposed by Harris & Stephens [1988] (well-

known as Harris corner detector), extending it to the temporal dimension. This is a

3D version of the Harris corner detector that counts on localizing signi�cant intensity

changes not only spatially, but also over time. In fact, this method, the Spatiotemporal

Interest Point (STIP) detector, is more exactly an extension of the scale-invariant

Harris corner detector proposed by Mikolajczyk & Schmid [2002] (referred to as Harris-

Laplace corner detector). This multiscale version became invariant to scale by applying

the Laplacian of Gaussian (LoG) operator on the automatic selection of the di�erent

scales [Mikolajczyk & Schmid, 2002]. This local space-time interest point detector is

the basis for the present dissertation and will be further detailed in Section 2.5.

2.3 Local Spatiotemporal Feature Detectors

In this section, we review on the several existing spatiotemporal interest point detec-

tors. Algorithms of interest point detection have their core contribution on the design

of a saliency measurement function, such that the interestingness of local regions is

signalized by characteristic values produced by such function. The �rst extension of

a spatial interest point detector to simultaneously take into account the variations

over time was proposed by Laptev & Lindeberg [2003], which, as mentioned earlier,

was built on the multiscale Harris corner detector. The response function of Harris

is expressed by a simple operation involving the determinant det (Λ) and the trace

trace(Λ) of an auto-correlation matrix Λ (a second-moment matrix), such that when

H = det (Λ)− k.trace(Λ) is maximum a corner has been found.

Λ =

(
LxLx LxLy

LxLy LyLy

)
, (2.1)

where Li is the Gaussian derivative of the image at dimension i (where i ∈ {x, y}).

The local maxima triggering measure H is intimately related to the eigenvalues

(λ1 and λ2) of matrix Λ. In order to avoid their computation, the corner response is

given as function of the determinant and trace, which are in turn closely related to the

eigenvalues. Laptev & Lindeberg [2003] extends this matrix to the temporal domain

by adding the derivative of L in the time direction t, so Λ coarsely becomes
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Λ =

 LxLx LxLy LxLt

LxLy LyLy LyLt

LxLt LyLt LtLt

 . (2.2)

Followed by the promising achievements in human action recognition presented

in [Schuldt et al. , 2004] using the spatiotemporal extension of Harris detector, many

other related work in the literature arose. An investigation on the use of STIP to

other contexts, namely rodent behavior analysis and facial expressions, revealed its

weakness [Dollár et al. , 2005]. This contributed to the proposal of another detector of

spatiotemporal features by Dollár et al. based on Gabor �lters, called cuboid detector.

Cuboids are localized when the response function R = (I ∗g ∗hev)2 + (I ∗g ∗hod)2

produces high values in the neighborhood of a point (x, y). One-dimensional Gabor

�lters,

hev(t; τ, ω) = −cos(2πtω)e−t
2/τ2

(2.3)

and

hod(t; τ, ω) = −sin(2πtω)e−t
2/τ2

, (2.4)

are both temporally applied to a sequence of smoothed images, but this detector is

variant to scale. The Gabor �lter's Equations 2.3 and 2.4, ω = 4/τ and τ is the

temporal scale. In addition, the images are smoothed by two-dimensional Gaussian

kernels g(x, y;σ), where σ is the spatial smoothing scale.

Subsequently, built on the concept of salient points by Kadir & Brady [2001],

Oikonomopoulos et al. [2006] proposed an extension to consider activity variation in

a cylindrical spatiotemporal neighborhoods de�ned by distinct radii s and temporal

depths d (parameters which determine a speci�c scale). In addition, intensity informa-

tion is determined by convolution with a Gaussian window of �rst-order derivatives in

the temporal domain, such that, given an image sequence I0(x, y, t), the input signal

is I(x, y, t) = gt ∗ I0(x, y, t).

Given a cylindrical region Ncl(~s,~v) (that is a set of pixel values) centered at

~v = (x, y, t) in scale ~s = (s, d), the saliency metric yD(~s,~v) measures the alteration levels

of the information content encompassed by Ncl(~s,~v) (where D is the set of possible

signal values). Basically, it consists of the amount of entropy HD(~s,~v) measured in a

speci�c spatiotemporal region weighed by its degree of relevance WD(~s,~v) at a certain
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scale ~s (see Equations 2.5 2.6 2.7, where pD is the probability density of the signal

histogram, q is the signal value and D is the range values originated from I(x, y, t)).

yD(~s,~v) = HD(~s,~v)WD(~s,~v), (2.5)

HD(~s,~v) = −
∫
q∈D

pD(~s,~v) log2 pD(~s,~v)dq, (2.6)

and

WD(~s,~v) = s

∫
q∈D
| ∂
∂s
pD(~s,~v)|dq + d

∫
q∈D
| ∂
∂d
pD(~s,~v)|dq. (2.7)

Until that recent, only approaches involving �ltering and entropy computation of

local regions had been proposed. A very dissimilar scheme for detecting spatiotemporal

interest points was then presented by Wong & Cipolla [2007], arguing that global

information could be as e�ective as local regions to identify discriminative and compact

representations of object parts. In that work, the authors developed a novel algorithm

for detecting interest points over space and time motivated by the work on analysis of

dynamic textures.

In the sequel, Willems et al. [2008] generalized the Hessian matrix Hes to the

spatiotemporal domain (see Equation 2.8), where the matrix elements are second-

order partial derivatives (Lxx, Lxy, ..., Ltt). The authors also proved the feasibility of

localizing features simultaneously in both the spatiotemporal and multiscale domains.

Unlike the work in Laptev [2005] that requires an iterative procedure to automatically

select characteristic scales, their multiscale approach is a non-iterative scheme and

because of this helps to considerably reduce the computational burden required for

attaining scale-invariance.

3D convolutions approximated using box-�lters applied to integral videos (ex-

tension of the integral image concept to image sequences) justify the computational

e�ciency of the algorithm. Local extrema responds to high absolute value of the ma-

trix determinant S = | det (Hes)| (which can be seen as an extension from [Beaudet,

1978]). This criteria does not assure that all eigenvalues have the same sign. In such

case, the authors suggest that a post-processing procedure could be applied to discard

the saddle points by only checking the signs (claiming that this is not a serious problem

provided that points are reliably detected, that is, have high repeatability).
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Hes =

 Lxx Lxy Lxt

Lxy Lyy Lyt

Lxt Lyt Ltt

 . (2.8)

Rapantzikos et al. [2009] approach the problem of detecting spatiotemporal fea-

tures in a peculiar way yet following the same principal idea of saliency measure.

Intensity, motion and color information all contribute to exploit the latent patterns

in space and time by means of an energy minimization formula, which is essentially

composed by two primary terms, namely the data term and the smoothness term. The

incorporation of those three types of data source is given by the smoothness compo-

nent. Such component happens to be an interaction between the distinct types of

features incorporated, such that each type yields independent components referred as

intensity conspicuity, color conspicuity (which is based on the opponent color theory)

and orientation conspicuity (which involves the use of steerable �lter for determining

the orientations). A thorough description of this method can be found in [Rapantzikos

et al. , 2009].

2.4 Spatiotemporal Descriptors for Action

Recognition

In this section, we review on the several descriptors used in the literature to describe

event dynamics occurring in image sequences of human action datasets. Laptev & Lin-

deberg [2004] evaluated descriptions of local space-time regions by means of i) single and

multiscale N-jets (an N-jets descriptor is de�ned as a vector of spatiotemporal deriva-

tives up to N order), ii) histograms of spatiotemporal gradients and optic �ow with

dimensionality reduced by the Principal Component Analysis (PCA) technique, and iii)

position-dependent and position-independent histograms of spatiotemporal gradients

and optic �ow, such that the combination holding the best performance was given by

the position-dependent histograms of spatiotemporal gradients and optic �ow (which

are going to be later discussed in details).

In Dollár et al. [2005], cuboid descriptors were based on three types of transfor-

mations, namely i) normalized pixel values, ii) brightness gradients, and iii) windowed

optic �ow. All of those method had dimensionality reduced by the PCA technique,

but the best performance was achieved by the �attened gradient descriptor, which in
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turn was a generalization of the PCA-SIFT descriptor presented in Ke & Sukthankar

[2004].

Built on the success of the Lowe's 2D SIFT descriptor, Scovanner et al. [2007]

proposed the 3-dimensional SIFT descriptor, especially to tackle the problem on ac-

tion recognition. Similar to the 2D SIFT, the generalization to space-time computes

gradient magnitude and orientation at each pixel of the local region de�ned by the

spatiotemporal interest point. However, to better capture the spatiotemporal nature

of space-time patterns, the orientation is represented by a pair of angles computed as

θ(x, y, t) = tan−1(Ly/Lx) and φ(x, y, t) = tan−1(Lt/
√
L2
x + L2

y), in which L denotes the

LoG approximation. The descriptor is a histogram comprised of bins uniquely identi-

�ed by the pairs (θ, φ). Each pixel in local neighborhood will be assigned a pair (θ, φ),

and the histogram distribution of the support region is quantized by the magnitudes

at such pixels.

Another approach for building spatiotemporal gradient descriptors was intro-

duced in Kläser et al. [2008]. The histogram construction was based on regular poly-

hedrons in which the histogram bins are represented by their faces. Yet, it counted

on integral video concept (a generalization of the work in [Viola & Jones, 2001]) to

provide a more computationally e�cient description algorithm. Lopes et al. [2009]

proposed detecting and describing 2D features from which they called spatiotemporal

frames (given that a video is represented by 3 dimensions (x, y, and t), local features

were extracted from spatiotemporal frames xy, xt and yt). They demonstrated that

this plain 2D alternative of representing dynamic information could reach comparable

performance with more sophisticated 3D detectors of motion patterns on human action

dataset of controlled scenario.

To account for motion patterns, this dissertation found basis on the work

of Laptev [2005], which represents latent motion patterns in terms of local spatiotempo-

ral interest points. The proposed descriptors that demonstrated the best performance

in describing the points were also considered for use in our work. In the sequel, we

provide the reader with a formal discussion on the theoretical foundations of the spa-

tiotemporal interest point detector and their descriptors before we present the proposed

modi�cations in Chapter 3.

2.5 Detecting Spatiotemporal Corners

Now we broaden the discussion about the detection of space-time interest points

(STIP) that we have drafted in Section 2.3. First, we present the theory of interest



2.5. Detecting Spatiotemporal Corners 21

point detection in the spatial domain. Next, we extend of the method to the temporal

dimension.

The detection of interest points (as corners) in the spatial domain (e.g., static

images) can be described as follows. The linear scale-space representation of an image

can be mathematically de�ned as Lsp : R2 × R+ 7→ R, which is the convolution of f sp

with gsp, where f sp : R2 7→ R represents a simple model of an image and gsp is the

Gaussian kernel of variance σ2
l . Then,

Lsp(x, y;σ2
l ) = gsp(x, y;σ2

l ) ∗ f sp(x, y), (2.9)

and

gsp(x, y;σ2
l ) =

1

2πσ2
l

exp(−(x2 + y2)/2σ2
l ). (2.10)

Localizing interest points means to �nd strong variations of image intensities

along the two directions of the image. To determine those local regions, the second

moment matrix is integrated over a Gaussian window having variance σ2
i , for di�erent

scales of observation σ2
l , which is written as the equation:

µsp(.;σ2
l , σ

2
i ) = gsp(.;σ2

i ) ∗ ((∇L(.;σ2
l ))(∇L(.;σ2

l ))
T )

= gsp(.;σ2
i ) ∗

(
(Lspx )2 Lspx L

sp
y

Lspx L
sp
y (Lspy )2.

)
(2.11)

The descriptors of variations along the dimensions of f sp are the eigenvalues of

Equation 2.11: λ1 and λ2, with λ1 ≤ λ2. Higher values of those eigenvalues is a sign of

interest point and generally leads to positive local maxima of the Harris corner function,

provided that the ratio α = λ2/λ1 is high and satis�es the constraint k ≤ α/(1 + α)2:

Hsp = det(µsp)− k.trace2(µsp)

= λ1λ2 − k(λ1 + λ2)
2 (2.12)

.

Analogously, the procedure to detect interest points in the scape-time domain is

derived by rewriting the equations to consider the temporal dimension. Thus, having an

image sequence modeled as f : R2×R 7→ R, its linear representation becomes L : R2×
R×R2

+ 7→ R, but over two independent variances σ2
l (spatial) and τ

2
l (temporal) using
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an anisotropic Gaussian kernel g(.;σ2
l , τ

2
l ). Therefore, the complete set of equations for

detecting interest points described in [Laptev & Lindeberg, 2003] is the following.

L(.;σ2
l , τ

2
l ) = g(.;σ2

l , τ
2
l ) ∗ f(.), (2.13)

g(x, y, t;σ2
l , τ

2
l ) =

1√
(2π)3σ4

l τ
2
l

× exp(−(x2 + y2)/2σ2
l − t2/τ 2

l ), (2.14)

µ = g(.;σ2
i , τ

2
i ) ∗

 L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t

 , (2.15)

and

H = det(µ)− k.trace3(µ)

= λ1λ2λ3 − k(λ1 + λ2 + λ3)
3, (2.16)

restricted to H ≥ 0, with α = λ2/λ1 and β = λ3/λ1, and subject to k ≤ αβ/(1+α+β)3

2.6 The STIP Descriptors

Several kinds of descriptor methods were tested to extract descriptive information of

shape and motion from local neighborhoods of the space-time interest points detected

by STIP. Position-dependent histograms of gradient orientation (HoG) and histograms

of optic �ow (HoF) have shown appealing results in comparison to the others [Laptev &

Lindeberg, 2004]. The combination of those histograms, i.e. the concatenation of them

into one single descriptor vector, was proved the con�guration that best contributed

to increased rates of classi�cation performance for action recognition.

The construction of a descriptor may be accomplished by three distinct man-

ners [Dollár et al. , 2005]. The most simple way involves �attening the local region

of pixels into a vector, but sensitive to small disturbances. Histogramming the values

from the local patch is possibly a second alternative, which cannot preserve positional

information but claims robustness to disturbances. The third concerns with the seg-
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mentation of the local patch into smaller areas, and posterior computation of local

histograms in those places. The local histograms are concatenated to form a single

one. This last approach preserves location and robustness to perturbations, which is

the one used in Lowe [2004]; Dollár et al. [2005]; Laptev & Pérez [2007]. Furthermore,

the STIP's descriptors are computed at di�erent scales, where each scale highlights

a level of detail to which the same scene may be observed. The spatial scales σ can

assume the values 4 and 8, while the temporal scales used are 2 and 4.

2.6.1 Oriented-Gradient Histogram

The use of gradient directions as local features has been motivated by its capability

of inferring shape information, which was attested by its success in object recogni-

tion [Dalal & Triggs, 2005; Laptev, 2006; Lowe, 1999]. In this approach, every pixel

of a selected local patch has its gradient orientation computed with respect to its

neighborhood. The local patch encompassing the detected interest point is divided

into smaller blocks corresponding to di�erent local positions in the local patch (which

makes it a position-dependent histogram). From each sub-block a histogram of gradi-

ent orientation will be originated through a quantization process of gradient orientation

bins weighed by the amounts of magnitude. The magnitude m and orientation θ can

be calculated as

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y − 1)− L(x, y − 1)) (2.17)

and

θ(x, y) = arctan
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)
. (2.18)

In this dissertation, a spatiotemporal patch was sliced into 3 x 3 x 2 blocks, such

that 4-bin gradient orientation histograms were computed to every block, resulting in

histograms of 72 bins (a 72-dimensional feature vector). To visualize an illustration of

this process, see Figure 2.3.

2.6.2 Descriptor of Optical-Flow

Optical �ow accounts for the estimation of apparent motion of objects, through a

�eld of velocity vectors, in one image sequence. It infers information about motion of

objects by computing the distribution of apparent velocity from changes in intensity
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Figure 2.3. This diagram depicts the mechanism for construction of oriented-
gradient histograms from spatiotemporal features.

patterns. Apparent motion can be understood as what results from what is perceived

by the observer when objects are moving in the scene, or the reverse. That means that

motion via optic �ow happens either by the movement of structures in the scene or by

motion of the observer (e.g., a camera).

Di�erent approaches have been proposed to compute optic �ow [Barron et al. ,

1994]. In [Barron et al. , 1994], they could be categorized into the region-based [Anan-

dan, 1989; Singh & Allen, 1992], di�erential-based [Lucas & Kanade, 1981] [Horn &

Schunck, 1980] [Nagel, 1982; Uras et al. , 1988], energy-based [Heeger, 1987; David J.,

1988], and phase-based [Waxmann et al. , 1998; Fleet & Jepson, 1990] methods, to name

a few. From the myriad of proposals, the Lucas-Kanade gradient-based technique was

used in this work, since it makes part of the original implementation of STIP's motion

descriptor. Supposing an intensity image I, one important premise stated by gradient-

based approaches is that each pixel brightness I(x, y, t) has a constant value after a

short period of time δt, thus only su�ering shift of spatial location (δx, δy). This way,

I(x, y, t) = I(x+ δx, y + δy, t+ δt), (2.19)
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where (δx, δy) denotes the displacement of the pixels in both spatial directions x and

y after the time interval δt. The displaced image can then be neatly approximated by

the �rst-order Taylor series as follows

I(x+ δx, y + δy, t+ δt) = I(x, y, t) +
∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt. (2.20)

Then, it follows that

∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt = 0 (2.21)

∂I

∂x

δx

δt
+
∂I

∂y

δy

δt
+
∂I

∂t

δt

δt
= 0, (2.22)

which could have also been reached by using the chain rule to derive I with relation to

t, where ∇I ≡ ( ∂I
∂x
, ∂I
∂y

) and ∂I
∂t

are the image sequence's spatial and temporal deriva-

tives, and the di�erentiations u = δx
δt

and v = δy
δt

denote the desirable velocity vectors

(comprising the 2D velocity vector ~u = (u, v)). The Equation 2.6.2 is known as the

constraint equation, and becomes

∇I.~u = −∂I
∂t
, (2.23)

which is one equation with two unknowns, and thus cannot be directly solved unless

an additional set of constraint equations is available (the aperture problem). In order

to solve this problem and to be able to calculate the components of the velocity �eld,

Lucas & Kanade use the local neighborhood of the pixel at a certain position, with a

de�nite size N ×N , generating one restriction equation to each pixel position of such

region. Thus, the computation of the velocity vectors at a certain position is supported

by N2 equations,

∂I

∂x1

u+
∂I

∂y1

v = − ∂I
∂t1

∂I

∂x2

u+
∂I

∂y2

v = − ∂I
∂t2

∂I

∂x3

u+
∂I

∂y3

v = − ∂I
∂t3

...
∂I

∂xN2

u+
∂I

∂yN2

v = − ∂I

∂tN2

(2.24)
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which turns out to be an overdetermined system,


∂I
∂x1

∂I
∂y1

∂I
∂x2

∂I
∂y2

...
...

∂I
∂xN2

∂I
∂yN2


[
u

v

]
=


− ∂I
∂t1

− ∂I
∂t2
...

− ∂I
∂tN2

 (2.25)

or

W~u = −b. (2.26)

To solve the overdetermined system, Lucas & Kanade apply the least squares

method, then

W TW~u = W T (−b)

~u = (W TW )−1W T (−b), (2.27)

which leads to

[
u

v

]
=

[ ∑N2

i
∂I
∂xi

2 ∑N2

i
∂I
∂xi

∂I
∂yi∑N2

i
∂I
∂xi

∂I
∂yi

∑N2

i
∂I
∂yi

2

][
−
∑N2

i
∂I
∂xi

∂I
∂ti

−
∑N2

i
∂I
∂yi

∂I
∂ti

]
(2.28)

.

To construct the histograms of optical �ow, the same mechanism used to build

histograms of gradient orientation was used, except for having the quantization process

based on 5 bins, with four bins making reference to motion in distinct directions, and

the last bin representing the absence of motion. As the spatiotemporal patch comprises

of 3× 3× 2 blocks, the �nal histogram of optical �ow contains 90 bins.

2.7 Summary

In this chapter, we have discussed the fundamental theory of the motion pattern de-

tector used in this work. The detector is the state-of-the-art space-time interest point

operator STIP, which is an adaptation of the Harris-Laplace corner detector to the

space-time domain. We also brie�y presented both feature types used to characterize

the neighborhood of the detected interest points: optical �ow and gradient orienta-
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tion. The �nal feature descriptor of one space-time interest point is resulted from the

concatenation of both histograms of features. This original version of STIP will have

its performance further compared on the problem of action recognition with di�erent

adaptations of it based on color information.





Chapter 3

The Proposed Color Invariant

Based Methods

As stated earlier, our proposal aims at investigating if color invariants incorporated to

the original STIP could boost performance rates on the problem of classi�cation of

human actions in realistic settings. The color models applied here are the models of

zero-order color invariants derived in [van de Weijer & Schmid, 2006], namely the nor-

malized -RGB system (hereinafter referred to as rgb, to follow the convention adopted

in [van de Weijer & Schmid, 2006]) and the hue channel from the HSI system. At

�rst glance, those choices may appear simplistic and even arbitrary � therefore this

chapter is concerned with a careful explanation of the basis of the used color mod-

els, comprising of a discussion on the dichromatic re�ection model [Shafer, 1985] and

how the color invariants are derived from it. At the end of this chapter, we show the

revisions that were made to the processes of detection and description of space-time

interest points, so that the family of color-based STIPs was generated.

3.1 Color Models

There exists a myriad of color models (or color systems) being used, and each originally

designed to ful�ll various purposes. Essentially, a color system is created to standardize

the de�nition of color in a particular application. The most common of them is the

RBG system (where RGB stands for Red, Green, Blue), which is a scheme of color

estimation emulating the functioning of human vision color perception in a �nite space.

Each dimension of this orthogonal 3D space accounts for a wavelength light to which

our visual photo-sensitivity molecules are most reactive. To form other colors using

those primaries, the beams of light in each wavelength must be superposed, meaning

29
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that the RGB system is additive. Color monitors and a wide range of cameras are

understructured by the RGB system to display and capture colorful visual information.

In an 8-bit representation, the axes values range from 0 to 255, where 0 indicates

the absence of the primary color, 255 corresponds to its full intensity, and the middle

interval samples its di�erent proportions. The cube diagonal having as extremes (0,0,0)

and (255,255,255) symbolizes the gray-scale axis (in which color is unde�ned), such that

points on that line have equal amounts of R, G and B; for instance, the mid-gray is at

position (128,128,128). Thus, to identify any color inside the cube, it is just needed to

project the three components' amounts in the space. A geometric illustration of this

discussion, as well as a colorful visualization of the RGB space is depicted in Figure 3.1.

Figure 3.1. 3D orthogonal coordinate system for the RGB color model.

Although suitable for composing digital images, capturing color information from

the outside, and displaying colorful images in monitors and television apparatus, the

RGB system is not well adequate for describing color in a practical interpretation

manner. For instance, humans do not describe object colors in terms of combinations

of red, green and blue, but as hues, having washed-out or high-intensity appearances.

For this reason, the RGB system was rearranged to create a more perceptually proper

color representation, through a cylindrical coordinate system (see Figure 3.2).
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Figure 3.2. Polar coordinate system for the HSI space.

This cylindrical cone-shaped system is known as HSI model (which stands for

Hue, Saturation, Intensity). We can readily notice from Figure 3.2 that the RGB gray-

intensity diagonal happens to be the middle line denoting the cone height. The red

color has the zero degree angle, whereas each other color axis constitutes an angle with

relation to the red axis, that is, a single hue is de�ned by its angle with respect to the

red axis. The closer is a point to the outer edge of the cone base (base circle), the purer

(more intense) is the color (or hue). Its purity is thus determined by its distance (the

radius length) to the gray-scale intensity axis, which is represented by the magnitude

of a vector perpendicular to this axis and called saturation. Still at the base circle of

the cone, we can see that the closer is the hue coordinate to the axis, the more is it

diluted to white, which give us the perception of a pastel like color. In this case, the

hue is unde�ned. On the other hand, if the intensity is closer to the origin (the black

point), then the saturation is uncertain.

Typically, the HSI values (hue, sat, int) in terms of the RGB system are calcu-

lated by the following equations:

hue = arctan

( √
3(G−B

2R−G−B

)
, (3.1)
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sat = 1− min (R,G,B)

R +G+B
, (3.2)

and

int =
R +G+B

3
. (3.3)

3.2 Color Fundamentals

Color is a important property in computer vision applications, for instance, image

segmentation [Klinker et al. , 1989; Geusebroek et al. , 2001], object recognition Gev-

ers & Stokman [2004]; van Gemert et al. [2006]; van de Sande et al. [2010], stereo

matching and motion analysis [Klinker et al. , 1991]. It is an essential element to

readily distinguish and extract objects from scenes by both humans and algorithms.

The full potential of color information has not been explored before the community

addressed the di�culties imposed by the complex re�ectance process underlying image

formation. This scenario started to change after the introduction of the dichromatic

re�ection model by Shafer [1985]. This model explains in simple terms how the physi-

cal phenomena caused by the interaction of light in the environment, such as shadows

and specularities, impact the formation of RGB-color images in the image sensors. On

the basis of such model, several algorithms were developed to construct robust color

histograms, holding invariance properties for the re�ectance physical e�ects, to be ap-

plied for automated recognition of scenes and objects [Gevers & Stokman, 2004; van

Gemert et al. , 2006; van de Sande et al. , 2010]. Built on the success of those works, we

attempt to boost the automatic identi�cation of video events through the use of local

spatiotemporal features based on the zero-order color invariants described in [van de

Weijer & Schmid, 2006].

This section is thus intended to describe the color theory underlying the design

of the photometric color invariants. An overview of the physics of re�ection and a

detailed description of the mathematical re�ectance model are �rst presented. In this

discussion, we also mention about some of the assumptions and limitations of the

model. In what follows, we present the two color systems used and their photometric

color invariants with basis on the dichromatic re�ection model.
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3.2.1 Re�ection and the Dichromatic Model

The dichromatic re�ection model gives a formal representation of the interaction of

light with surfaces. It considers inhomogeneous surfaces of dielectric materials such as

plastics, paints, ceramics (e.g., porcelain), and paper. Based on the physical re�ection

properties of these materials, the characteristics of the sensors and the shapes of the

objects, this model decouples the spectral radiance into two complementary compo-

nents, namely one accounting for color highlights (interface re�ection) and the other

describing color shadings (body re�ection).

3.2.1.1 The Physics of Re�ection

In real scenes, the color variations seen across object surfaces are to a large extent

caused by the e�ects from the optical re�ection process, like specular (or interface)

re�ection, di�use (or body) re�ection, shading and shadows. These re�ection phenom-

ena can be summarized by the occurrence of two concurrent processes: i) the interface

re�ection, and ii) the body re�ection. In the literature, the e�ects of interface re�ection

are also referred to as specular re�ection, while body re�ection as di�use. In Figure 3.3

illustrates those processes.

The re�ection originated from where the surface reaches the air (interface) is

termed interface re�ection, which is responsible for the white shiny points projected

on the surfaces. In contrast, the light re�ected o� the surface medium produces the

di�use shading re�ection, which comes from the colorants inside the materials. The

absorption of certain wavelengths from the incoming light by those small particles (the

colorants) is what determines the perception of coloration by the observer.

When the surface normal bisects the angle formed by the incident illumination

and the direction of light re�ected o� the interface, an event called the perfect specular

re�ection occurs (also known as highlight). In this case, the highlight, that is the

specular re�ection of the light source, appears in its most expressive form. The intensity

degree and locale of highlights vary according to the viewing geometry. Thus, not only

is specular re�ection dependent on lighting geometry but also viewpoints. Highlight

produces a confounding characteristic, since it retains nearly the same colour of the

illuminant and blends it to the real color of the material, therefore the e�ect introduced

is undesirable. Conversely, di�use (or body) re�ection is known to be generated from

the inner scattering of the incoming light by the colorants, which eventually re-emit it

to the outside at an arbitrary orientation. This way, the di�use re�ection conveys the

shading e�ects more related to the true coloration of the surface objects.
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Colorants

Observer
Illuminant

Incident
light

Reflected light 
(body reflection)

Interface 

Microscopic perfect
specular reflection

θθ

Surface medium

Absorption

A) Illumination on
the object
surface

B) The effect of specular
reflection

C) The effect of diffuse
illumination

D) The effect of inner scattering of the entering lights that
originate the diffuse lighting phenomenon

Interface reflection

Surface
normal

Figure 3.3. This illustration depicts the basic dynamics of the re�ectance pro-
cess. An incoming illumination hits the green surface, which originates the various
re�ectance phenomena, namely body re�ection, interface re�ection, specular re-
�ection.

Separating the e�ects of shading from highlight can be very useful. For example,

in image segmentation it is generally assumed smooth or uniform intensity variation

across the surface, therefore it would be interesting to avoid highlights and work only

on the shading image. Another example is depicted in stereo and motion analysis,

which count on matching of points from images of di�erent viewpoints, that would

bene�t from shading intrinsic images.

3.2.1.2 The Dichromatic Model

By considering the two previously examined re�ection phenomena, the dichromatic

re�ection model can be expressed by the linear combination of both events. Given

the re�ectance geometry depicted in Figure 3.4, in the dichromatic model the total
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radiance of the re�ected light is calculated as

L(λ, i, e, g) = Lb(λ, i, e, g) + Li(λ, i, e, g), (3.4)

where i is the angle of incidence, e is the angle of emittance, g is the angle formed by

the incidence illumination and the viewing direction, and λ is the wavelength of the

re�ected light. In this formulation, Lb accounts for the light emitted from the colorants

within the surface medium, while Li denotes the light re�ected o� the interface.

Observer
Illuminant

Incident
light

Surface normal

e
i Reflected light 

(body reflection)

Interface reflection
(perfect specular reflection)

g

Figure 3.4. This picture details the geometry of lighting in which the dichromatic
re�ection model �nd basis.

This model also establishes that each component can be separated in two parts:

a geometric scale factor (magnitude) and the relative spectral power distribution (com-

position); then the equation becomes

L(λ, i, e, g) = mb(i, e, g)cb(λ) +mi(i, e, g)ci(λ). (3.5)

Putting that into words, it says that the color of the re�ected light has a spectral

distribution (cb or ci) only depending on the wavelength λ scaled by a magnitude factor
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(mb or mi) that changes with variations in lighting and viewing directions.

Several assumptions are made regarding the dichromatic model. It limits its scope

to opaque, inhomogeneous surfaces, in which the colorants are regularly distributed.

Surface re�ection is independent of rotation changes about the axis of the surface

direction.

Those premises are typical when constructing re�ectance models and are said to

be plausible approximations to a realistic scenario. However, other two conditions to

which the model is constrained are the absence of inter-re�ection and the nonexistence

of di�use (ambient) illumination, which are actually very common events in real scenes,

having possibly a great portion of in�uence.

Nevertheless, the model also does not adopt a couple of preconditions, which

allows it to possess some �exibility: i) body re�ection is not considered isotropic, ii)

uniformly spread lighting is not taken into account, iii) the model can be applied to

rough, planar and curved surfaces, among others. Only some were mentioned, as our

intention is just to provide the reader with a cursory description of the model; we refer

the interested reader for more details in [Shafer, 1985; Klinker et al. , 1991].

By combining the dichromatic re�ectance model with the spectral projection,

the process by means of which pixel values are determined from the spectral power

distribution of light, a color space de�ning the pixel colors from the measured amount

of re�ected light is introduced. In this color space, the �nal color value results from

the summation of the interface re�ection vector and the body re�ection vector weighed

by their corresponding magnitudes (a scalar value).

When the observer is a monochrome camera, the pixel value p is speci�ed by

the addition of the amount of incoming light at every wavelength s(λ), pondered by

the camera's wavelength-based responsivity ρ(λ); so p =
∫
s(λ)ρ(λ)dλ. But if a color

camera is used, three �lters kC(λ) (C ∈ (R,G,B)) is in charge of reacting to three dis-

tinct wavelengths (standing for the red (R), green (G) and blue (B) lights), simulating

the process of color perception performed in human beings, to estimate their portions

of light transmitted. The responsivity function is then replaced by the product of

the transmittance function and itself (fC(λ) = kC(λ)ρ(λ), so p =
∫
s(λ)k(λ)ρ(λ)dλ).

To close the reasoning, each pixel p(x, y) forming an image I(x, y) turns out to be a

three-value vector Cx,y = [Rx,y, Gx,y, Bx,y], and the pixel function becomes

C =

 R

G

B

 =


∫
s(λ)kR(λ)ρ(λ)dλ∫
s(λ)kG(λ)ρ(λ)dλ∫
s(λ)kB(λ)ρ(λ)dλ

 . (3.6)
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By applying the spectral projection model, the re�ected light captured by the

sensor at a certain position will have the measured color given by

CL
x,y(λ, i, e, g) = mb(i, e, g)Cb

x,y(λ) +mi(i, e, g)Ci
x,y(λ). (3.7)

In order for the dichromatic re�ectance model to take into account di�use (or am-

bient) illumination, Shafer only added a di�use light term, rewriting the Equation 3.7

to

CL
x,y(λ, i, e, g) = mb(i, e, g)Cb

x,y(λ) +mi(i, e, g)Ci
x,y(λ) + Ca

x,y(λ). (3.8)

This extended model reveals that the di�use illumination is independent on ge-

ometry, and so it will only be represented by the color of the di�use light Ca
x,y(λ).

Yet, what this new term does is to shift the parallelogram formed by the two other

re�ectance terms from the origin of the RGB space.

3.2.2 Photometric Robustness: Color Invariance

This section is concerned with the derivation of the color invariants used in this work.

We have only considered zero-order invariants, naturally our discussion in bounded on

that, but we refer the reader to [van de Weijer & Schmid, 2006] for an explanation

on the �rst-order invariants. van de Weijer & Schmid have modeled the illuminant

as a single local source i(λ), and the case of multiple sources was assumed to be an

approximation of such as well. This way, the Shafer's equation becomes

C(θs, θi, θv) = mb(θs, θi)

∫
w

cCb (λ)e(λ)fC(λ)dλ+mi(θs, θi, θv)

∫
w

ci(λ)e(λ)fC(λ)dλ,

(3.9)

such that C ∈ (R,G,B), f(λ) is the sensor sensitivity as a function of the wavelengths

from the visible spectrum w, the illumination intensity is given by e(λ), mb is the

geometric scaling factor for the surface albedo (which is geometrically dependent of

the surface orientation θs and the illuminant direction θi), mi is the the geometric

scaling factor for the interface re�ection (which has the same geometry dependencies

of the body re�ection plus the viewing direction θv), cb and ci account for the colors

of body re�ection and interface re�ection, respectively, both depending only on the

wavelength λ.

By assuming a white illuminant, meaning that the energy distribution over the

visible spectrum is the same at every wavelength, i.e. eR = eG = eB = e, e(λ) = e is
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constant; and also f(λR) = f(λG) = f(λB) = f . Furthermore, by making two more

assumptions, namely i) the di�erences of refractive indices among all wavelengths are

negligible, so nearly constant, and ii) consequently the specular re�ection color can be

approximated to the illuminant color, that is, the neutral interface re�ection (NIR) is

considered, ci(λ) = ci also becomes constant. As a result, the Equation 3.9 above can

be written as

C(θs, θi, θv) = mb(θs, θi)e

∫
w

cCb (λ)fC(λ)dλ+mi(θs, θi, θv)cief. (3.10)

Supposing matte surfaces (that is, no interface re�ection occurs, somi(θs, θi, θv) =

0) in the scene, under the same conditions described, and that the sensors approximates

f(λC) by the delta function (i.e., fC(λ) = δ(λ − λC)), we have that the equation is

reduced to

C(θs, θi, θv) = mb(θs, θi)ec
C
b (λ). (3.11)

Note that the equation is independently applied to each channel, as C =

(R,G,B). Clearly, R = mb(θs, θi)ec
R
b (λ), G = mb(θs, θi)ec

G
b (λ) and B =

mb(θs, θi)ec
B
b (λ), and it is possible to compute RGB values invariant to the intensity

of the light source, the lighting geometry and viewpoints by normalizing each channel

by the summation of the three channel values. Then, the equations are

R =
mbec

R
b

mbe(cRb + cGb + cBb )
=

cRb
cRb + cGb + cBb

, (3.12)

G =
mbec

G
b

mbe(cRb + cGb + cBb )
=

cGb
cRb + cGb + cBb

, (3.13)

and

B =
mbec

B
b

mbe(cRb + cGb + cBb )
=

cBb
cRb + cGb + cBb

. (3.14)

Now, if we still limit the model to a white illuminant but under the occurrence

of specular re�ection (so mi 6= 0), the opponent colors [van de Weijer & Schmid, 2006]

can be demonstrated invariant with regard to specularities, even though variant to

geometry and the incident light intensity, once

O1 =
1√
2

(R−G) =
1√
2

(mbe(c
R
b − cGb ) +mie−mie), (3.15)
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O2 =
1√
6

(R +G− 2B) =
1√
6

(mbe(c
R
b + cGb − 2cBb ) + 2mie− 2mie). (3.16)

To simultaneously acquire invariance with respect to lighting geometry, view-

points and specularities, the hue formula is deduced from the color opponents equations

as follows,

hue = arctan

(
O1

O2

)
= arctan

( √
3(cRb − cGb )

cRb + cGb − 2cBb

)
. (3.17)

It is known from [Gevers & Stokman, 2004] that the color invariants own insta-

bilities inherited from their transformations. Since those instabilities are not wanted

to a�ect the discriminative power and robustness of color histograms, van de Weijer &

Schmid [2006] apply the error analysis studied in [Gevers & Stokman, 2004] as a weight

to the construction of the color descriptors. In particular, the hue values are unstable

at the gray axis. From the hue error analysis (see Equation 3.18), the certainty of

the hue is inversely proportional to the saturation, i.e. the lower the saturation, the

more uncertain is the hue value. Robustness to this can be accomplished by weighing

each hue sample by its respective saturation (given by the Equation 3.19), as proposed

in [van de Weijer & Schmid, 2006].

(∂hue)2 =

(
∂hue

∂O1

∂O1

)2

+

(
∂hue

∂O2

∂O2

)2

=
1

O2
1 +O2

2

=
1

sat2
(3.18)

sat =
√
O2

1 +O2
2 =

√
2((cRb )2 + (cGb )2 + (cBb )2 − cRb cGb − cRb cBb − cGb cBb )

3
(3.19)

In a nutshell, this section explained how the color descriptions can acquire in-

variance properties under assumptions by the dichromatic re�ection model. Table 3.2

summarizes this discussion.

3.3 The Proposed Methods

This work extends the Laptev's space-time interest point detector to incorporate color

information by the early fusion approach, in which two modi�cations were proposed.

First, instead of the intensity gray-scale channel, the three rgb color channels were

input to the interest point operator; this version was named the ColorSTIP. Second,
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Table 3.1. A summary of the invariant properties for the discussed color models.
rgb is the normalized -RGB color system, and hue is the H component of the HSI
system derived from the opponent color model. The symbol + means to hold
robustness to a speci�c event, whereas the symbol − means the lack of robustness.

color viewing surface specular illumination illumination

model direction orientation re�ection direction intensity

rgb + + − + +
hue + + + + +

the support local space-time regions were also described in terms of the hue values,

such that the color histograms were concatenated to the feature histograms; HueSTIP

was the name given to this version. An intuitive yet interest adaptation was to join

both versions in a single one, which we have called the Hue-ColorSTIP. As follows,

we give a discussion on the two schemes used to incorporate color information to STIP,

which originated the family of color-based STIPs.

3.3.1 ColorSTIP (Color-based Spatiotemporal Interest Points)

In this version, we try to detect space-time interest points also robust to photometric

variations. To this end, for each frame, we replace the gray-scale channel by the three

channels from the rgb system. So, the Gaussian derivatives are applied to each color

channel at all directions (the x, y, and t dimensions). After that, the �nal color-based

Gaussian derivative at each dimension is obtained by the summation of its Gaussian

derivatives from each color channel, which becomes

Lrgbx = Lrx + Lgx + Lbx, (3.20)

Lrgby = Lry + Lgy + Lby, (3.21)

Lrgbt = Lrt + Lgt + Lbt . (3.22)

The rbg-based second moment matrix µrgb from the space-time extension of the

Harris-Laplace corner detector will then be given by

µrgb = g(.;σ2
i , τ

2
i ) ∗

 (Lrgbx )2 Lrgbx Lrgby Lrgbx Lrgbt

Lrgbx Lrgby (Lrgby )2 Lrgby Lrgbt

Lrgbx Lrgbt Lrgby Lrgbt (Lrgbt )2

 , (3.23)
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while the rest of the method continues the same. By doing this, the original STIP

starts to hold properties that it lacked before. The properties to which we refer stem

from the photometric invariant properties held by the rbg system, namely lighting

geometry, viewpoints and illumination intensity. With those additional characteristics,

the ColorSTIP is expected to become an improved version of the STIP.

3.3.2 HueSTIP (Hue histograms added to STIP descriptors)

This version arose from the combination of histograms of hue describing the space-time

interest points with the other two feature descriptors accounting for motion (HoF) and

appearance (HoG). So, basically, each space-time interest point is also represented in

terms of the hue values quantized at the local spatiotemporal region of the point. The

range of values for the hue is usually measured as angles in radians (0 − 2π) and we

divide this range into 36 bins to follow something similar to [van de Weijer & Schmid,

2006]. This lets each bin accounts for one range of hue values.

To construct the hue histogram, we calculate the bin number to which the

hue value (of a pixel in the spatiotemporal volume) belongs with the formula bin =

hue ∗ 36/2π. Then, the saturation value at corresponding pixel is accumulated at the

position bin to which the hue value was assigned. Before accumulating the amount of

saturation in the histogram bin, the saturation is weighed by a corresponding value in

a weighing Gaussian mask. This means that depending on the position of the pixel, the

saturation will have a di�erent weight for participation. For the pixels centered at the

spatiotemporal volume, the saturation will have total participation when quantizing

the hue histogram. The size and values forming the spatiotemporal Gaussian mask will

vary according to the spatial and temporal scales of the interest point.

By using the hue histograms to describe the spatiotemporal features, the color

information should aggregate robustness to the extracted patterns in terms of illumi-

nation intensity, lighting geometry, viewpoints and specular re�ection.

3.3.3 Hue-ColorSTIP

This last version is the joint of the two color-based STIPs �rst described. What moti-

vated us to proposed such combination was supported by the hypothesis that the color

description on intensity-based interest points may not be appropriate as the points

were not detected by using color information. We think that maybe it can be more

powerful to describe the interest points in terms of color if they are detected by using

the ColorSTIP.
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3.3.4 Summary

Table 3.2 summarizes the invariance properties acquired by each color-based STIP

extension. We show that HueSTIP has robustness to photometric variations to which

the hue channel is una�ected. However, the invariance properties of the HueSTIP only

apply to the representation of the interest points. On the contrary, the ColorSTIP

is invariant to all phenomena, but only at the level of the interest points. The Hue-

ColorSTIP is robust to all of the photometric variations in both concepts of local

features (interest points and descriptions), but specular re�ection at the level of interest

points.

Table 3.2. A summary of the invariant properties incorporated by the family
of extensions of STIP. The �rst column lists all STIP's versions. Each remaining
column accounts for one speci�c photometric e�ect. The symbol + means to hold
robustness to a speci�c event, whereas the symbol − means the lack of robustness.
The left side of / refers to the space-time interest points, while the right side of /
refers to the description of such points.

photometric phenomena

proposed viewing surface specular illumination illumination

extension direction orientation re�ection direction intensity

HueSTIP −/+ −/+ −/+ −/+ −/+
ColorSTIP +/− +/− −/− +/− +/−

Hue-ColorSTIP +/+ +/+ −/+ +/+ +/+



Chapter 4

Experiments and Evaluations

In previous chapters, we provided the theoretical basis for the proposed methods. We

�rst justi�ed our choice regarding the use of local space-time interest points to represent

motion events. Secondly, we gave details about how this method can localize space-time

features, and which techniques can be used to portray the detected features in terms

of shape and motion appearances. At last, the color theory dictating the invariance

properties underneath the target color systems was explained and the family of color-

based STIPs was brie�y presented.

In this chapter, we explain the experimental framework utilized to the qualitative

evaluation of the revised STIPs (HueSTIP, ColorSTIP, and Hue-ColorSTIP)

and discuss the results obtained from those experiments. As our objective is to process

image sequences showing realistic and complex scenarios, the dataset selection com-

prised a movie dataset from the literature (namely the Hollywood2 [Marszaªek et al. ,

2009] dataset) and two other specialized datasets constructed during the development

of this dissertation. All datasets will be detailed in Section 4.1.

The experimental framework is unfolded in Section 4.2, which was split into three

main subsections. The �rst subsection fully describes the bag-of-features approach that,

using the low-level features as the primitive data source, was applied to provide a more

meaningful representation to the videos. Action classi�cation, the target application

context of this work, is based on a supervised learning approach, which will be next set

out. To close the section, an outline of the experimental protocol is presented, listing

the steps taken to accomplish the battery of experiments.

Lastly, we show the experimental results and discuss them in separate views,

lined up in study cases. Each study case is in turn related to the methods' evaluation

on one of the target datasets.

43
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4.1 Datasets

Three datasets of realistic scene videos were used in this work (see Table 4.1). The

Hollywood dataset �rst appeared in [Laptev et al. , 2008a], where the concept of spatial

pyramids was generalized to the spatiotemporal domain. That work de�ned a multi-

channel classi�cation approach, where each combination of one feature type (HoG or

HoF) with a spatiotemporal grid was considered a channel. They tested a diverse set of

those combinations and were able to improve classi�cation rates for individual human

action classes. One year later, the Hollywood2 dataset was presented in [Marszaªek

et al. , 2009], positting a joint framework for action and scene recognition.

The Violence dataset was �rst introduced in [de Souza et al. , 2010], with a

violence detector based on the concept of spatiotemporal visual codebooks combined

with linear Support Vector Machines. In [Valle et al. , 2011], we proposed a simple

and robust automated �lter of unwanted content (such as violence and pornography),

also introducing the Pornography dataset.

It is important to note that for the specialized cases, to the best of our knowledge,

there is no shared dataset in the scienti�c community. A di�culty that obviously

arises is how to label the videos, a task which is not only laborious, but also extremely

subjective (what is pornography? what is violent content?). To handle this issue, we

have collected the positive examples in each dataset from online video-sharing networks

which specialize in the kind of content of interest (pornography or �ghts)

For the negative classes, we gathered videos from general-public social networks.

Each video was then inspected by a team of researchers to ensure that no pornographic

or violent content was indeed present: again, this introduces a degree of subjectivity

in the dataset, but this was unavoidable since even in general-purpose social networks

this kind of content sometimes creeps in.

4.1.1 The Datasets of Hollywood movies

We wanted to evaluate the performance of the descriptors for human action recognition

in natural scenarios. Therefore, the Hollywood2 dataset [Marszaªek et al. , 2009] was

a natural choice. It is composed by 12 actions: answering phone, driving car, eating,

�ghting, getting out of the car, hand shaking, hugging, kissing, running, sitting down,

sitting up, standing up (see Figure 4.1). Videos were collected from a set of 69 di�erent

Hollywood movies, where 33 were used to generate the training set and 36 the test

set. Action video clips were divided in three separate subsets, namely an automatic

(noisy) training set, a (clean) training set and the test set. The clean training dataset
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Table 4.1. Summarized description of the datasets.

Dataset Description

Hollywood2 This is an extension of the previously proposed Hollywood
dataset [Laptev et al. , 2008a], in which the number of clean
training videos increased from 231 to 823 and the test set
changed from 217 to 884 samples. This growth of the dataset
was due to the addition of four new action classes (summing
up to 12 classes), as well as to the increase in samples for
the existing classes.

Violence The video clips of violent scenes were all retrieved from
social networks specialized in �ghts. It features a diverse
set of situations as depicted in Figure 4.3. In total, there
are 200 videos of violence and 200 "negative" videos without
violence.

Pornography This dataset contains 400 pornographic videos collected from
specialized social network and 400 "negative" videos collected
from general public social networks. From the negative videos, 200
are especially challenging, for containing a lot of exposed skin.

was formed by clips manually cut o� of the videos, while for the noisy training set

an automatic procedure was used for selecting the action clips. We only used the

clean training set containing 823 samples and the test set containing 884 samples (see

Table 4.2 for more details on the number of videos each action class).

4.1.2 Pornography Database

The Pornography dataset attempts to portray the content diversity found on sharing

social networks. For the pornographic class, videos were retrieved from websites spe-

cialized on the genre. The content varies in terms of the ethnicities (asians, blacks,

whites, multi-ethnic) of the people appearing in the scenes, as well as with regard to

the sexual orientation and sexual practices. The authors sampled 400 videos of the

porn class, but for our experiments we have randomly selected 200 of them.

For the nonpornographic class, the video content comprised many di�erent sub-

jects: documentaries, educational videos, car races, TV programs, cartoons, music

concerts, sport matches, dancing, interviews, daily news, among many others. Of the

sampled 400 nonporn videos, 200 exhibit confounding characteristics related to the

pornographic content, for example, women wearing bikinis at the beach and undressed

babies being bathed. In those cases the exposure of skin imposes a challenge to the
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Figure 4.1. Illustration of scenes from the human action dataset.

system. On the other hand, the other half of the nonporn set (more 200 videos) display

contents totally visually unrelated to pornographic scenes. We also only selected 200

videos from the entire pornography dataset for our experiments. An illustration of the

dataset is depicted in Figure 4.2.

4.1.3 Violence Database

The Violence dataset was one of the contributions of this work. We collected video clips

from social networks specialized in �ghts (Figure 4.3). Both violence and nonviolence

samples try to be diverse and representative. A compilation of daily life situations

in schools, ghettos, entrance spaces of night clubs, matches from several sport varia-

tions (e.g., soccer, hockey), tra�c, involving both spontaneous �ghts and professional

wrestling sports build the violence dataset. Scenarios are depicted by aggressive be-

haviors involving any number of people, in indoor and outdoor environments, with or

without presence of moving objects in the background (e.g., cars). The nonviolence

dataset was created by copying from the negative class of the Pornography dataset

videos that do not exhibit violent content. In total, there are 400 videos, 200 from

each category.
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Table 4.2. This a description on the number of videos in each class of the
Hollywood datasets.

Dataset: HOHA Hollywood2

Action test train test train

AnswerPhone 23 22 64 66
DriveCar - - 102 85

Eat - - 33 40
FightPerson - - 70 54
GetOutCar 13 13 57 51
HandShake 19 20 45 32
HugPerson 22 22 66 64

Kiss 51 49 103 114
Run - - 141 135

SitDown 30 47 108 104
SitUp 10 11 37 24

StandUp 49 47 146 132

Average 217 231 884 823

4.2 Experimental Setup

In our experiments, we investigated the power of the spatiotemporal local features

containing color information for action recognition. This section describes the methods

and metrics used in the experimental setup to perform the whole set of experiments

and evaluations. In part, the experimental framework was inherited from the literature,

a recognition protocol that has been widely deemed as a powerful tool to tackle the

action classi�cation task. It complies the use of the standard bag-of-features paradigm

for a less primitive representation of videos and the Support Vector Machines (SVM)

for the classi�cation task. Regarding this latter, our protocol di�ers by the use of

the one-against-one approach and the linear kernel (to make the classi�er the simplest

possible and highlight only the power of the features). As follows, the approach for

the mid-level representation of videos is explained. Then, we present the approach

employed for classi�cation and some discussion about its basic concepts.

4.2.1 Bag-of-Features Video Representation

When spatiotemporal local features are extracted, they only provide a very local and

unstructured representation of the video clips. One way to give a more meaningful

representation is to use the bag-of-features (BoF) approach, which has been successfully
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Figure 4.2. Pornography dataset illustration. At the left, only videos of porno-
graphic content. At the center, samples of di�cult cases of nonpornographic
content. At the right, we show the easy cases of nonpornographic content.

applied to many applications of video analysis [van de Sande et al. , 2010; Laptev et al.

, 2008a]. Bag-of-Features is a method for representing images or videos by histograms

of the occurrence rates of patterns called visual words. This is an idea borrowed from

the concept of Bag-of-Words (BoW) from the �eld of textual information retrieval.

Using BoF requires the construction of a vocabulary of features (or visual voab-

ulary). Although this is commonly accomplished by using k-means, it is well known

that for very high-dimensional spaces, simple clustering algorithms perform badly, and

thus a reasonable and e�cient choice is just to select a random sample to form the

visual vocabulary: this saves computational time and achieves comparable results [Vi-

itaniemi & Laaksonen, 2008]. The selection or clustering of features to produce the

visual vocabulary is performed on the features of the set of training videos.

The vocabulary size K was set to 4000, since this number has empirically demon-

strated good results and is consistent with the literature [Laptev et al. , 2008a; Marsza-

ªek et al. , 2009]. This means that by using the k-means algorithm, 4000 will be the

number of cluster to be formed having the training features as input, while by the
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Fights taking place in outdoor environments Surveillance on traffic

Professional fights Fights in crowd

Fight between
members of gangs 

Fight in school Fights in sports 

Figure 4.3. Violence dataset depicted by several scenarios of �ghts.

randomly selection mode, 4000 arbitrarily collected from the training features will be

used as the visual words (analogous to the centroids of k-means clusters). Then, spa-

tiotemporal local features contained in a (training or test) video clip is assigned to

the closest visual word of the visual vocabulary (each assignment is a count in the kth

position of the video's visual histogram), using the Euclidean distance. Those counts

will form a histogram representation for the videos based on the occurrence rate of the

visual words.

4.2.2 Classi�cation

In the literature, the problem of human action recognition has been commonly ad-

dressed by machine learning techniques, which has involved the use of supervised learn-

ing methods such as Nearest Neighbor Classi�er (NNC) [Oikonomopoulos et al. , 2006;

Wong & Cipolla, 2007; Rapantzikos et al. , 2009; Dollár et al. , 2005], Support Vector

Machines (SVM) [Schuldt et al. , 2004; Ke et al. , 2007; Laptev et al. , 2008a; Willems

et al. , 2008], and Linear Programming Boosting (LPBoost) [Jiang et al. , 2006], as
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well as unsupervised learning with the Probabilistic Latent Semantic Analysis (pLSA)

method in [Niebles et al. , 2008]. Supervised learning has apparently provided the best

accuracies [Rapantzikos et al. , 2009] and therefore we will follow this direction. In

particular, to classify the videos, we have used SVM with the libSVM implementation

by Chang & Lin [2001].

The multi-classi�cation problem can be addressed by distinct ways yet based

on binary classi�ers, namely the one-vs-one, the one-vs-all and the Directed Acyclic

Graph multiclass approaches (we refer the interested reader to see more details on those

approaches in [Hsu & Lin, 2002]). After the work in [Hsu & Lin, 2002], the libSVM's

authors chose to implement the multi-classi�cation task with the one-to-one approach

for being less time-consuming. In such approach, n(n − 1)/2 binary classi�ers (or

binary prediction models) are created (where n is the number of classes) and, after a

new element receives labels from all binary models, a majority voting scheme is applied

in order to assign the �nal class label.

Since our aim was to highlight the performance power of the feature types gen-

erated by the di�erent extensions, we have decided to simplify the classi�er by using

the linear kernels for the �rst battery of experiments, with all class-speci�c and the

Hollywood2 datasets. On the class-speci�c problem we have performed experiments

with a 5-fold cross-validation approach, while for the multi-class problem we used a

test-train scheme.

SVM stands for Support Vector Machines and was developed to handle classi-

�cation and regression analysis problems. In this concept, C − 1 hyperplanes based

on labeled training point samples of di�erent C categories are created for the purpose

of separating the target classes the best way possible (the margins between the hy-

perplanes are maximized). Once the hyperplanes are found using a training set, the

prediction model is ready. The characteristics of the hyperplanes will be determined by

the SVM kernel, which is, in essence, the key for the e�ectiveness of the classi�cation

model, thus for the prediction stage success. Kernels can be linear or non-linear, and

while the linear kernel is the simplest, there are many non-linear kernels that can be

used, such as polynomial, sigmoid, RBF (Radial Basis Function), and χ2 kernels. For

action recognition using STIP, the most commonly used is the χ2 kernel [Laptev et al.

, 2008a; Marszaªek et al. , 2009].

4.2.3 Evaluation Criteria

According to Schmid et al. [1998], the assessment of interest point detectors requires

the analysis of two basic properties: repeatability (the fact that the same points are
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found in a object or scene, even when strong transformations are applied) and dis-

tinctiveness (points referring to di�erent parts of an object or scene are given easily

distinguishable descriptors), which are measured quantitatively. Local descriptors per-

formance has also been assessed through the analysis of Receiver Operating Charac-

teristic (ROC) curves and Precision-Recall (PR) graphs in [Mikolajczyk & Schmid,

2005]. Other means of evaluation consist in reporting either the Accuracy or Average

Precision (AP) measurements, such as in [Laptev et al. , 2008a; Marszaªek et al. , 2009;

Rapantzikos et al. , 2009].

In [Wang et al. , 2009], accuracies and average precisions were presented in order

to assess the performance for di�erent combinations of state-of-the-art detectors and

descriptors evaluated on several datasets (including arti�cial and realistic scenarios).

Many works in video classi�cation have followed the evaluation framework by Laptev

et al. [2008a], such as [Marszaªek et al. , 2009; Rapantzikos et al. , 2009; Wang et al. ,

2009]. We follow their example in the general experimental setup, though we prefer to

employ a straightforward linear kernel SVM, that emphasize the di�erence between the

quality of the feature spaces (a sophisticated nonlinear kernel is able to extract more

information from an "unruly" feature space). It is also noteworthy that currently,

linear machines are also more scalable to very large instances than those which employ

nonlinear kernels, and this is important in the social network context.

Another very common tool used to evaluate classi�cation performance is the

confusion matrix. Given a binary classi�cation problem, the matrix confusion is de�ned

as in Table

Table 4.3. Template of a confusion matrix.

Prediction (how it was classi�ed)

Class Label1 Label2

Label1 True Positive False Negative
Label2 False Positive True Negative

Accuracy indicates how close the system can score the expected values.

Acc =
True Positive + True Negative

True Positive + False Negative + True Negative + False Positive
(4.1)

Recall represents the amount that has been successfully classi�ed, that is, how many
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items where correctly classi�ed as the positive class.

R =
True Positive

True Positive + False Negative
(4.2)

Precision represents the fraction of real positive items that were correctly classi�ed

among all items classi�ed as positive.

P =
True Positive

True Positive + False Positive
(4.3)

False Positive Rate is the portion of items that were incorrectly classi�ed as the

positive class given all items of the negative class.

FPR =
False Positive

False Positive + True Negative
(4.4)

4.2.4 The Experimental Protocols

The experiments of this work were performed by means of two protocols. One is

closely related to the standard experimental framework of the literature for the multi-

class problem of human action recognition, and was employed so the results obtained

could be � in theory � compared to those of the literature. The other is a more sta-

tistically sound 5-fold cross-validation protocol, which we tried to make as compatible

as possible with the �rst. In this section, we give all steps needed to reproduce those

experiment protocols.

4.2.4.1 Experimental Protocol for the Multiclass Problem

This �rst protocol was used to evaluate the feature algorithm on the multiclass problem

of human action recognition (with the Hollywood2 dataset) and its detailed steps are

described as follows:

1. Extract the low-level features of all videos in the dataset (e.g., STIP, HueSTIP).

Keep in mind that the variation in the low-level feature is the main factor being

evaluated in this protocol.

2. For each low-level feature being evaluated:

a) Construct a visual codebook by using its corresponding training feature set

(see Section 4.2.1 to know how to perform this step);
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b) Compute the histograms (bags) of visual words for each video clip. This

means that every video will have a histogram representation by visual word

occurrences;

c) Organize the histograms by class (in the test and the training sets). Keep

in mind that, at this point, each histogram represents a video in terms of

visual words;

d) Learn a binary classi�er class for each pair of classes (this is the one-against-

one approach) by using the training set of histograms of visual words. The

linear kernel is used to learn the SVM-based classi�cation model;

e) Classify each sample of the test set of visual histograms by each one of the

binary classi�ers. Apply the majority vote scheme to determine the �nal

class label of the test sample;

f) Check the label of test set against the ground truth and build the test metric

(Precision-Recall, confusion matrix, etc.).

While we have tried to be as close as possible to the experimental protocol pre-

sented in [Laptev et al. , 2008b], which is also based on BoF, ours di�ers in some

implementation details: the kernel employed in [Laptev et al. , 2008b] is the χ2 kernel

and multiclassi�cation approach is the one-against-all.

4.2.4.2 Experimental Protocol for the Specialized Cases

For the binary classi�cation problems, Violence and Pornography, we used a 5-fold

classi�cation scheme having the �rst protocol as basis for evaluating each fold. It is

described as follows.

1. Take one dataset, then

2. Separate the dataset (approximatelly) equally into 5 subsets, such that the num-

ber of videos in each subset is balanced by the two class labels (for example, in

the Pornography case, there will be nearly the same quantity of pornographic

videos and nonpornographic videos);

3. For each subset,

a) Consider the current subset as a test set and the other subsets together as

a training set;

b) Apply the �rst protocol described (see Section 4.2.4.1).
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4.3 Results and Discussions

In this section, we present the experimental results on the evaluation of the color-based

STIPs against the original, intensity-based version. We also emphasize the experimen-

tal procedures and present the parameter values used for the classi�cation framework.

The analysis of results is contextualized under di�erent application contexts where

one metric can be more important than others. By considering this, we state which

algorithm can be more appropriate depending on the scenario's requirements.

4.3.1 Human Action Classi�cation for Video Annotation and

Retrieval

The �rst objective was to verify if the proposed extensions of the STIP could achieve

any gain in performance. In this experiment (see Section 4.2.4 for details on the setup),

the multiclassi�cation problem is considered mutually exclusive, but keep in ming that

in the Hollywood2 dataset a video can contain more than one action (for example, it

is natural to �nd scenes in which kissing also involves hugging, see Figure 4.4). We

considered the C-SVC version of the SVM, with the C values chosen by cross-validation

on the average accuracy per class from 0.001 to 1000. For those preliminary results,

we used only the accuracy and confusion matrices as metrics.

  

Figure 4.4. Two samples of scenes where people are kissing and hugging at the
same time.

The experimental results shows that indeed there is gain in performance when

using the color-based feature algorithms, such that ColorSTIP held the best overall

performance (see Table 4.4). Looking individually at each class, it is possible to note

that for a subset of the classes, all color-based algorithms were superior to the luminace-
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only based one (STIP), namely DriveCar, HandShake, Kiss, SitDown and StandUp.

For the HandShake and Kiss classes, the bene�t in the use of color information is

explained by the scenes of close-up of hands and faces that in most of the related videos

(see Figures 4.5 for an illustration of this fact). In those cases, skin color corresponds

to the same signi�cant area of the scenario, which probably helps to better de�ne the

two human actions. However, it is important to keep in mind that motion features and

shape information remain important to de�ne the human parts performing the actions.

Therefore, color information is expected to enhance, not to replace any of the other

features.

  

Figure 4.5. Scenes of the Kiss and HandShake actions in which the objects of
interest are focused by the camera.

It is interesting to observe that half of the mistakes made by the ColorSTIP of

videos correctly hit by STIP were grayscale clips, as can be seen in Figure 4.6), and in

one speci�c video the skin color is not shown at all (see its illustration in Figure 4.6(G)).

As expected the skin color information taken from face close-ups in Kiss scenes were

very helpful to increase the number of hits by the ColorSTIP (see Figure 4.7).

In the HandShake class, we noted that the actions generally happen with people

standing, and also can usually involve more than two people. In this sense, color infor-
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(A) (B) (C)

(D) (E) (F)

(G) (H)

Figure 4.6. Illustration of the set of Kiss action videos that were correctly
classi�ed by STIP, but not by ColorSTIP. Figures (B), (C), (D) and (G) are in
gray scale, while the others are colorful. Figure (G) only depicts the sillhuoettes
of the actors, so no skin color is shown.

mation can be viewed as an important element to describe the objects that generally

appear in a HandShake scene. In addition, the backgrounds from HandShake scenes

vary a lot, especially in what concerns the color information describing the action

context. As a result, the color information embedded in the motion pattern detec-

tor impacted by a performance increase of 6.66% (by contrasting ColorSTIP with

STIP), while the color description gave only a slight improvement.

Among other characteristics, DriveCar scenes also involve the close-up of faces

from the people inside the car (see Figure 4.8). Naturally, color can be useful to

improve the rates of performance, as the appearance of skin color is a frequent event.

The GetOutCar class involves a very assorted scenario in terms of color, among other

aspects, which makes it more confusing than helpful for the feature representation.

However, color information was apparently a decisive factor to improve performance

by using the HueSTIP and the Hue-ColorSTIP.

Indoor environments (like o�ces, bedrooms, living rooms, dining rooms, kitchen)

are what prevail in scenes of the AnswerPhone, SitDown and Eat classes, while outdoor
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(A)

(B)

(C)

(D)

Figure 4.7. Illustration of the set of Kiss action videos that were correctly
classi�ed by ColorSTIP, but not by STIP

scenes are typical of the Run class video clips. Characteristic colors of such scenarios

can be helpful to contextualize the detected features de�ning the actions, which indeed

happens to the AnswerPhone and SitDown classes, but not to the Eat and Run classes

(see Table 4.4). We believe that it was not advantageous to use color-based feature

algorithms for recognizing the Run class, when grayscale videos are present in the

training and test sets. For the Eat class, we understood by looking at the confusion

matrices (see Tables 4.6 4.7 4.8 4.9) that with the addition of color information at

the detection phase the deviations tended to the Kiss and HugPerson, which can be

explained by the similarity in terms of skin color present in the scene.

For the improvements in the StandUp class by the color-based versions, we did

not identify any evidence supporting the e�ectiveness of color information. This action

and its background context vary a lot, generating noisy features. The same seems to

happen for the SitUp class, where no improvement was found.

In the results above, it is important to keep in mind the presence of many grayscale

video clips, both in the training and the test set, for which color information is simply

not available. To evaluate the impact of that missing information on the results, we
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Figure 4.8. Scenes of the DriveCar class in which the the camera focuses on the
faces of the actors.

repeated the experiment, by removing those videos (Table 4.5).

After we used the color-only dataset to evaluate the family of STIPs, we were

able to verify how much consistent the improvements were by comparing with results

from the complete dataset. We con�rmed that for the classes where color is visually

a distinguishable element to de�ne the action (AnswerPhone, DriveCar, HandShake,

HugPerson, SitDown), be in terms of scenario context or of describing the main object

parts in performing the action, there were real ameliorations of performance. How-

ever, this was not true for the Kiss class. We also veri�ed that for the cases where

improvement by color information is not intuitive (the SitUp and StandUp classes),

the color-based feature algorithms were worst in performance in comparison with the

original STIP. We observed that the color-based algorithms do not worth the com-

putational e�ort for the Eat and Run classes, and that for some cases in which the

usefulness of color is not obvious the improvements were mantained (the FightPerson

and GetOutCar classes). In this analysis, when color was referred as a useful element

for de�ning the class, many times it was implicit that color would only be useful if

accompanied with another type of feature, such as orientation gradients or optic �ow.



4.3. Results and Discussions 59

Table 4.4. This table reports the accuracy rates achieved by each version of
the STIP on the Hollywood2 dataset (a multi-class dataset). The best overall
performance for each version was chosen to show the results discriminated by
classes.

Action STIP HueSTIP ColorSTIP Hue-ColorSTIP

AnswerPhone 9.4% 7.8% 12.5% 10.9%
DriveCar 71.6% 74.5% 75.5% 72.6%

Eat 57.6% 48.5% 33.3% 39.4%
FightPerson 64.3% 67.1% 67.1% 62.9%
GetOutCar 15.8% 21.1% 15.8% 19.3%
HandShake 6.7% 8.9% 13.3% 15.6%
HugPerson 33.3% 21.2% 21.2% 19.7%

Kiss 28.2% 37.9% 50.5% 45.6%
Run 58.9% 56.0% 56.0% 56.7%

SitDown 43.5% 45.4% 50.9% 48.2%
SitUp 2.7% 0.0% 2.7% 0.0%

StandUp 51.4% 61.0% 63.0% 58.2%

Average 36.9% 37.4% 38.5% 37.4%

4.3.2 Filtering of Unwanted Content: Pornography and

Violence

In [Valle et al. , 2011], we tested the late fusion combination of features to tackle

the problem of recognizing pornographic content in multimedia data. Our proposals

were towards application contexts requiring the �ltering of unwanted content. We

demonstrated that the use of space-time local features (with STIP) are critical to

obtain optimal results on this task, both with respect to high true positive rates and

lower false positive rates. However, its combination with others (via late fusion) did

not signi�cantly improve the number of true positives and slightly increased the false

positive rate. We emphasized that STIP was superior for making less mistakes in terms

of false negatives. This way, STIP was arguably deemed as the best for the purpose

(for more details comparing STIP with other detectors and descriptors in this context,

we refer the reader to [Valle et al. , 2011]).

In this dissertation, we address the same problem, but by early fusion of fea-

tures. We embed color information into STIP for detecting and describing color-based

space-time interest points, thus creating three extensions of it. We run the experi-

mental protocol described in Section 4.2.4.2 for evaluating and comparing the feature

algorithms. In Table 4.13, the results of recall, precision and false positive rate are



60 Chapter 4. Experiments and Evaluations

Table 4.5. Accuracy rates of the di�erent feature algorithms on the Hollywood2
dataset containing only colorful videos.

Action STIP HueSTIP ColorSTIP Hue-ColorSTIP

AnswerPhone 6.4% 6.4% 8.5% 10.9%
DriveCar 71.1% 74.4% 75.6% 77.8%

Eat 53.9% 53.9% 50.0% 50.0%
FightPerson 63.1% 64.6% 75.4% 70.1%
GetOutCar 10.0% 14.0% 20.0% 14.0%
HandShake 3.1% 3.1% 9.4% 9.4%
HugPerson 15.2% 23.9% 21.7% 23.9%

Kiss 54.9% 47.9% 40.9% 39.4%
Run 60.2% 61.2% 62.2% 59.2%

SitDown 28.0% 42.7% 49.3% 46.7%
SitUp 0.0% 3.7% 0.0% 0.0%

StandUp 65.3% 52.6% 59.0% 59.0%

Average 35.9% 37.4% 39.3% 38.4%

reported, and in Tables 4.11 and 4.12 the confusion matrices are presented. We apply

the pairwise t-test to estimate which algorithm is better regarding the true positive

rate, false positive rate (FPR) and precision (the results are shown in Table 4.10).

By observing the confusion matrices in Table 4.11, we note that among the color-

based algorithms ColorSTIP was the only one to ful�ll the requirement of improving

the true positive rates, accordingly reducing the rate of false negatives. For applica-

tions requiring the removal of abusive content, low rates of false negatives are more

valuable. This is either because the interested audience does have strong moral reasons

or because the target people are more sensitive. In other contexts, such as the case

of forensics systems, false negatives are even more critical. It is desirable to extract

the maximum number of suspect data (meaning the necessity of a higher recall), even

if false positives are retrieved, provided that the average precision is high. False pos-

itives can be tolerated for applications of this nature.In this context, ColorSTIP is

de�nitely the best option.

Note that in Case 1 of ColorSTIP mistakes (see Figure i of the supplemental

material 1), the actors are dressed during the whole �lm and in Case 2 only the woman's

head is displayed in great part of the video. Other common error of ColorSTIP involved

back story scenes in a big fraction of the videos. Most of those scenes do not exhibit

sexual acts and nudity of the actors (see Figures iv and v). Regarding STIP, a great

1As the content of the images may shock some sensibilities, we have made them available as a
separate supplement. Available at http://www.npdi.dcc.ufmg.br/colorbasedstips/supplement.pdf
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Table 4.6. Matrix confusion evaluating STIP on the Hollywood2 dataset.
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AnswerPhone .09 .00 .08 .02 .00 .00 .06 .16 .05 .27 .00 .28
DriveCar .00 .72 .04 .09 .02 .00 .04 .02 .05 .00 .00 .03

Eat .03 .00 .58 .00 .03 .00 .03 .12 .00 .12 .00 .09
FightPerson .01 .03 .00 .64 .01 .00 .03 .03 .20 .01 .00 .03
GetOutCar .07 .11 .02 .02 .16 .00 .02 .11 .21 .09 .02 .19
HandShake .11 .00 .02 .00 .02 .07 .13 .18 .02 .24 .00 .20
HugPerson .03 .00 .03 .12 .02 .06 .33 .17 .05 .09 .02 .09

Kiss .09 .02 .06 .05 .04 .02 .20 .28 .03 .11 .01 .10
Run .03 .04 .02 .06 .03 .01 .01 .01 .59 .08 .00 .13

SitDown .02 .01 .04 .01 .00 .02 .03 .13 .08 .44 .00 .23
SitUp .08 .00 .00 .00 .03 .00 .05 .30 .03 .16 .03 .32

StandUp .09 .01 .01 .00 .03 .00 .01 .09 .09 .14 .01 .51

Average .37

portion of its errors that di�ered from ColorSTIP's consisted of videos displaying clear

scenes of explicit sex. Illustrations from Figures ii and iii of the supplemental material

show visible examples of such mistakes. Another interesting case that we observed

by analyzing all folds was that, unlike STIP, ColorSTIP hit all cases of pornographic

content from cartoons.

We believe that the use of color for describing the motion patterns (HueSTIP)

has slightly ameriolated the results for the di�cult nonpornographic cases, but the

same way color fostered the representation for the challenging cases (see Section 4.1.2

to review about those situations), it weakened (or turned ambiguous) real pornographic

videos with similar content to the nonporn hard cases. However, interest points by

color-dependent variations in space and time (ColorSTIP) gave a more powerful

representation for the pornographic content. This was so expressive that it failed to

one case of di�culty (Figure 4.9).

In the context of detecting violent scenes (see Table 4.12), however, STIP excels

before its counterpart HueSTIP. Its recall average was superior to HueSTIP's, while

the mean value of false positive rates was inferior. This is not so surprising considering

that we had already proven in previous work [Valle et al. , 2011] that STIP was self-

su�cient for distinguishing regular from aggressive events.

To sum up, STIP provided the best characterisitcs for our test on violence de-



62 Chapter 4. Experiments and Evaluations

Table 4.7. Matrix confusion evaluating HueSTIP on the Hollywood2 dataset.
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AnswerPhone .08 .00 .08 .00 .02 .03 .03 .09 .05 .30 .00 .33
DriveCar .02 .75 .03 .04 .01 .00 .03 .01 .06 .03 .00 .03

Eat .00 .00 .48 .00 .00 .00 .09 .09 .03 .18 .00 .12
FightPerson .00 .01 .00 .67 .01 .00 .01 .04 .20 .01 .00 .03
GetOutCar .05 .05 .04 .02 .21 .00 .02 .07 .12 .09 .02 .32
HandShake .11 .00 .04 .02 .02 .09 .07 .22 .02 .18 .00 .22
HugPerson .03 .00 .03 .12 .02 .06 .21 .23 .03 .09 .02 .17

Kiss .09 .01 .06 .05 .02 .02 .11 .38 .02 .12 .01 .13
Run .02 .03 .01 .06 .02 .01 .00 .03 .56 .07 .00 .19

SitDown .02 .00 .00 .01 .00 .01 .03 .11 .05 .45 .00 .32
SitUp .14 .00 .00 .00 .03 .00 .03 .24 .05 .11 .00 .41

StandUp .05 .00 .01 .00 .03 .01 .01 .11 .07 .10 .00 .61

Average .37

Figure 4.9. Illustrative cases of ColorSTIP false positives, in a round where
STIP made no mistakes with respect to the false positive cases.

tection, but it is still disappointing that the early fusion provides no improvements.

We believe that in case of violence events, the additional information provided by color

is not as clearly associated to speci�c actions as it seems to happen to pornography.

Indeed, color information from videos depicting aggressive acts does not give any dif-

ferential feature for the action type. The people involved in the scenes are generally

dressed, so that not much exposure of skin color is available. Furthermore, the back-

ground scenarios vary a lot in terms of color, which visually gives more muddling than

deciding clues about the content (see Figure 4.3 for an illustration of those facts).

This means that it is possible to save computational time in terms of image

processing, while keeping good rates of hits. Color information was useful, however, in
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Table 4.8. Matrix confusion evaluating ColorSTIP on the Hollywood2 dataset.
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AnswerPhone .13 .00 .00 .00 .02 .02 .00 .11 .03 .30 .00 .41
DriveCar .01 .75 .02 .06 .03 .00 .00 .02 .04 .00 .00 .07

Eat .09 .00 .33 .00 .00 .00 .06 .24 .00 .09 .00 .18
FightPerson .00 .03 .00 .67 .00 .00 .03 .01 .19 .03 .00 .04
GetOutCar .04 .04 .02 .02 .16 .00 .04 .00 .33 .04 .02 .32
HandShake .20 .00 .00 .00 .02 .13 .04 .24 .00 .18 .00 .18
HugPerson .02 .00 .00 .09 .05 .05 .21 .35 .05 .05 .00 .15

Kiss .07 .06 .03 .04 .03 .04 .05 .50 .00 .07 .00 .12
Run .03 .03 .02 .09 .05 .01 .01 .01 .56 .05 .00 .14

SitDown .07 .02 .00 .02 .01 .04 .01 .07 .06 .51 .00 .19
SitUp .16 .00 .00 .00 .03 .03 .05 .11 .05 .11 .03 .43

StandUp .07 .01 .00 .01 .02 .01 .01 .07 .06 .10 .01 .63

Average .38

our tests to detect pornographic content. Due to the limitations of our scope, we have

explored only the contributions of visual information. We understand, however, that

systems for those applications might enormously bene�t by multimodal schemes, in

which visual, auditory, textual and even social information (extracted from the social

network data) are synergistically exploited.
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Table 4.9. Matrix confusion evaluating Hue-ColorSTIP on the Hollywood2
dataset.
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AnswerPhone .11 .00 .00 .00 .02 .02 .03 .17 .03 .28 .00 .34
DriveCar .03 .73 .01 .04 .05 .01 .01 .02 .06 .00 .00 .05

Eat .09 .00 .39 .00 .00 .00 .15 .12 .00 .09 .00 .15
FightPerson .03 .06 .01 .63 .01 .01 .03 .03 .16 .00 .00 .03
GetOutCar .04 .05 .04 .00 .19 .00 .05 .00 .32 .05 .00 .26
HandShake .24 .00 .00 .00 .00 .16 .00 .20 .00 .18 .00 .22
HugPerson .00 .00 .02 .12 .06 .05 .20 .32 .05 .06 .00 .14

Kiss .05 .05 .04 .06 .02 .05 .08 .46 .00 .10 .00 .11
Run .01 .04 .02 .09 .06 .01 .02 .01 .57 .05 .00 .13

SitDown .08 .02 .01 .01 .03 .05 .03 .04 .06 .48 .00 .20
SitUp .11 .11 .00 .00 .05 .03 .03 .14 .03 .03 .00 .49

StandUp .08 .00 .00 .02 .02 .02 .03 .06 .06 .12 .01 .58

Average .37

Table 4.10. Con�dence intervals from the pairwise t-test on the pornography
and violence datasets, comparing STIP with its color-based extensions.

Intervals of the Paired Test

Problem Feature Recall Precision FPR

Porn STIP X HueSTIP (-0.005;0.025) (-0.049;0.023) (-0.022;0.052)
STIP X ColorSTIP (-0.053;-0.007) (-0.042;0.049) (-0.051;0.041)

Violence STIP X HueSTIP (-0.032;0.052) (-0.001;0.013) (-0.017;0.007)

Table 4.11. Confusion matrices for the pornography case.

STIP

Class Porn NonPorn

Porn .87 .13

NonPorn .075 .925

HueSTIP

Class Porn NonPorn

Porn .86 .14
NonPorn .06 .94

ColorSTIP

Class Porn NonPorn

Porn .90 .10
NonPorn .08 .92
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Table 4.12. Confusion matrices for the violence case

STIP

Class Violence NonViolence

Violence .91 .09
NonViolence .15 .85

HueSTIP

Class Violence NonViolence

Violence .90 .10
NonViolence .155 .845

Table 4.13. Results of the 5-fold cross-validation rounds on the Pornography
and Violence dataset.

Porn - Recall Violence - Recall

Round STIP HueSTIP ColorSTIP STIP HueSTIP

0 .875 .850 .900 .900 .900
1 .900 .900 .925 .975 .950
2 .850 .850 .850 .850 .900
3 .900 .900 .950 .925 .875
4 .825 .800 .875 .900 .875

Average .870 .860 0.900 .910 .900

Porn - Precision Violence - Precision

Round STIP HueSTIP ColorSTIP STIP HueSTIP

0 .875 .919 .900 .837 .837
1 .947 .947 .949 .830 .826
2 .895 .895 .895 .895 .878
3 1. .973 .927 .861 .854
4 .892 .942 .921 .878 .875

Average .922 .935 .918 .860 .854

Porn - FPR Violence - FPR

Round STIP HueSTIP ColorSTIP STIP HueSTIP

0 .125 .075 .100 .175 .175
1 .050 .050 .050 .200 .200
2 .100 .100 .100 .100 .125
3 .000 .025 .075 .150 .150
4 .100 .050 .075 .125 .125

Average .075 .060 0.080 .150 .155





Chapter 5

Conclusion

In this dissertation, we have studied the impact of color-based motion patterns on the

classi�cation of actions. Color information was embedded in the STIP algorithm for de-

tection and description of motion patterns. On this basis, we derived three color-based

algorithms for extraction of spatiotemporal features (HueSTIP, ColorSTIP and

Hue-ColorSTIP). The key idea was to enrich the spatiotemporal detector/descriptor

with color information without losing important photometric invariance properties. For

this purpose we have employed a well established color invariance model [Gevers et al.

, 2006]. Two di�erent models of color invariants were used in attempt of enhancing

the power of spatiotemporal features, such that they were less a�ected by the com-

plexity imposed by realistic scenarios and better classi�cation rates could be reached.

Color invariants aimed at making our color spatiotemporal features robust to various

illumination e�ects, such as highlights.

All algorithms, including the original STIP, had their performance evaluated

under di�erent application contexts, namely content-based video annotation and re-

trieval, as well as �ltering and detection of inappropriate content (pornography and

violence). In addition, all experiments were carried out on datasets containing videos

downloaded from real sharing social networks, like YouTube, and cut o� of Hollywood

movies.

Experimental results have demonstrated that a color-based STIP can be a better

alternative to a few situations, mainly on those cases where color is notably an impor-

tant aspect to describe the content. As an example, we experienced one important case

in which color information did help as much as we expected, the pornography case. At

last, after the di�erent experiments on datasets of realistic videos and evaluation on

a few in-vogue application contexts, we understand that STIP is still a self-contained

tool for solving many real problems at di�erent levels of di�culties.
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Future directions of this work lie in

1. Exploring or develop other means of incorporating color information into

STIP [Laptev, 2005], or other spatiotemporal feature extractors (e.g., Dollár

et al. [2005]; Willems et al. [2008]);

2. Trying out other color invariant models (which can found in [Gevers et al. , 2006]),

including the quasi-invariants [van de Weijer et al. , 2005];

3. Evaluating the in�uence of color when using the space-time multichannel ap-

proach described in [Laptev et al. , 2008b].

As Social Networks evolve, the need to provide tools for semantic classi�cation

and retrieval (including to control the proliferation of abusive content) becomes a crit-

ical issue. In addition, Digital Forensics has recently arisen as an exciting �eld of

research, which can bene�t from our tools to gather evidence from con�scated com-

puters and hard disks, in cases of suspected child pornography, for example. In the

latter case experts' time can be dramatically saved by preselecting among hundreds of

thousands of documents those which should receive attention. Those and many other

applications could take advantage of the proposed contributions.
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