
SOBRE O COMPORTAMENTO DE AGENTES

RACIONAIS

EM REDES COMPLEXAS





PEDRO OLMO STANCIOLI VAZ DE MELO

SOBRE O COMPORTAMENTO DE AGENTES

RACIONAIS

EM REDES COMPLEXAS

Tese apresentada ao Programa de Pós-

-Graduação em Ciência da Computaćão do

Instituto de Ciências Exatas da Universidade

Federal de Minas Gerais como requisito par-

cial para a obtenção do grau de Doutor em

Ciência da Computaćão.
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“Why is it that when one man builds a wall, the next man immediately needs to know what’s

on the other side?”

(George R.R. Martin)
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Resumo

O avanço constante dos sistemas de informação permite, a uma taxa de crescente, que mais

dados sejam gerados e armazenados. A partir das mais rotineiras situações, tais como con-

versas telefônicas, a atuação de sistemas tecnológicos de alta complexidade, tais como redes

de sensores sem fio (RSSF) para detectar eventos climáticos, dados são gerados e armazena-

dos registrando cada ação e decisão tomada pelos agentes desses sistemas. É fascinante que,

por trás desses registros, vemos o reflexo do ambiente em si, já que por trás de cada registro,

há uma decisão tomada por alguma entidade. Portanto, o conhecimento de como processar

esse valioso banco de dados em evolução pode levar, conseqüentemente, para uma melhor

compreensão dos interesses e da dinâmica de cada entidade em um determinado ambiente

ou na sociedade.

Nesta tese, nos concentramos em sistemas que são compostos de entidades (indiví-

duos, organizações e sistemas computacionais), capazes de interagir entre si de uma maneira

racional, refletindo seus interesses e dinâmica de atividade. Nós chamamos esses sistemas

de Redes Complexas Baseadas em Decisão (RCBD), estes indivíduos e/ou organizações, nós

ou agentes, e as interações entre nós, arestas. A principal característica de uma RCBD é que

ela evolui de acordo com as motivações pessoais dos seus nós. Portanto, o objetivo principal

desta tese é analisar o comportamento dos agentes de uma RCBD. Pretendemos observar

cenários reais e hipotéticos, onde as decisões têm um papel importante na evolução da rede.

Quando compreendemos plenamente as motivações por trás das ações dos agentes, podere-

mos modelar, prever e controlar o seu comportamento. Dividimos o objetivos principal desta

tese em três objetivos específicos: (i) Modelagem, em que o nosso objetivo é representar

fielmente o comportamento dos agentes em uma RCBD; (ii) Predição, em que o nosso ob-

jetivo é prever como evoluirá o sistema, e (iii) Controle, em que o nosso objetivo é criar

mecanismos para fazer os agentes agirem de acordo com um objetivo determinado.

Em primeiro lugar, analisamos as redes de comunicação formada a partir de registros

telefonicos de um operadora móvel privada de uma grande cidade. Propomos modelos para

o comportamento individual dos usuários dessa rede e, a partir disso, propomos aplicações

para redução de dados, detecção de anomalias e monitoramento de rede. Então, analisamos
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redes competitivas formadas a partir de ligas esportivas, como a liga profissional de basquete

americana (NBA) e a liga profissional de baseball (MLB). Propomos modelos de previsão

que podem ser usados para identificar as equipes mais prováveis para ganhar a temporada

seguinte. Finalmente, investigamos a tomada de decisões em redes de computadores, em um

cenário onde um grupo de RSSFs são implantados na mesma região e elas podem interagir

entre elas para solicitar ou compartilhar recursos computacionais. Nós modelamos o prob-

lema da cooperação entre duas ou mais RSSFs diferentes pelos conceitos da teoria dos jogos

e com isso nós apresentamos, como uma aplicação de controle, um protocolo para permitir

a cooperação entre eles.

Palavras-chave: Redes Sociais, Redes Complexas, Tomada de Decisão.
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Abstract

The constant advancement of information systems allows, at a growing rate, more data to

be generated and stored. From routine situations, such as phone conversations, to the actu-

ation of highly complex technological systems, such as Wireless Sensor Networks (WSNs)

to detect weather events, data are generated and stored registering every action and decision

made by the agents of these systems. It is fascinating that, behind these records, we see the

reflection of the environment itself, since behind every record, there is a decision made by

some entity. Therefore, the knowledge of how to process this valuable and very large evolv-

ing database can lead, consequently, to a better understanding of the interests and dynamics

of each entity in a determined environment or in the society.

In this thesis, we focus on systems that are made up of entities (individuals, organi-

zations and computational systems) capable of interacting among themselves in a rational

way, reflecting their interests and activity dynamics. We call these systems Decision-based

Complex Networks (DBCN), these individuals and/or organizations, nodes or agents, and the

interactions between nodes, edges. The main characteristic of a DBCN is that it evolves

according to the personal motivations of its nodes. Therefore, the main objective of this the-

sis is to analyze the behavior of agents of DBCN. We plan to observe real and hypothetical

scenarios where decisions play an important role in the evolution of the network. When we

fully understand the motivations behind the actions of the agents, we may be able to model,

predict and control their behavior. We divide the main objetive of this thesis in three spe-

cific goals: (i) Modeling, where we aim to accurately represent the behavior of the agents

in a DBCN; (ii) Predicting, where we aim to predict how the system will evolve, and (iii)

Controlling, where we aim to be able to make the agents to act according to a determined

goal.

First, we show a compact analysis of the three aspects of DBCNs we tackle in this

thesis, i.e., modeling, predicting and controlling, in three real-world datasets describing user

mobility activity. Then, we focus solely on modeling communication networks. We pro-

posed models for the individual behavior of the users of this network and, from this, we

proposed applications for data summarization, anomaly detection and network monitoring.
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Then, we focus on predicting in competitive networks formed from sports leagues such as

the North American National Basketball Association (NBA) and the Major League Baseball

(MLB). We proposed a prediction model that can be used to identify likely teams to win and

to fail in a following season. Finally, we focus on controlling, investigating decision making

in computer networks, in a scenario where a group of WSNs are deployed in the same re-

gion and they may interact with themselves to request or share computational resources. We

modeled the problem of cooperation among two or more different WSNs by the concepts of

game theory and from it we present, as a control application, a protocol to allow cooperation

among them.

Palavras-chave: Social Networks, Complex Networks, Decision Making.
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Resumo Estendido

Motivação

O avanço constante dos sistemas de informação permite, a uma taxa de crescente, que mais

dados sejam gerados e armazenados. A Internet, por exemplo, consiste em milhões de dis-

positivos computacionais sendo que cada um deles gera, armazena e transmite uma quan-

tidade incontável de dados. Claramente, a Internet está indo na direção do paradigma de

computação ubíqua, que, tal como previsto no artigo clássico de Mark Weiser, permite que

qualquer pessoa, em qualquer lugar, a qualquer momento, interaja com o ambiente. Assim,

a partir das mais rotineiras situações, tais como conversas telefônicas, a atuação de sistemas

tecnológicos de alta complexidade, tais como as redes de sensores sem fio (RSSF) para de-

tectar eventos climáticos, dados são gerados e armazenados registrando cada ação e decisão

tomada pelos agentes desses sistemas.

Atualmente, existem estudos sobre os dados de chamadas telefônicas, redes sociais on-

line, ferrovias, sites de Internet, redes de citação, filmes e atores, ligas desportivas e muitos

outros. A partir desses estudos agora sabemos como as pessoas vinculam sites em suas pági-

nas e como comunidades de pessoas em uma rede social online evoluem ao longo do tempo.

É fascinante que, por trás desses registros, vemos o reflexo do ambiente em si, já que por

trás de cada registro, há uma decisão tomada por alguma entidade. Portanto, o conhecimento

de como processar esse valioso banco de dados em evolução pode levar, consequentemente,

para uma melhor compreensão dos interesses e da dinâmica de cada entidade em um deter-

minado ambiente ou na sociedade.

Nesta tese, nos concentramos em sistemas que são compostos de entidades capazes

de interagir entre si de uma forma autônoma, refletindo os seus interesses e dinâmicas de

atividade. Nós chamamos esses sistemas Redes Complexas Baseadas em Decisão (RCBD)

ou Decision-based Complex Networks (DBCN) e suas entidades de nós ou agentes. Uma

RCBD é um tipo especial de rede complexa que contém nós capazes de tomar decisões

autônomas, que são guiados principalmente por suas motivações pessoais. Por exemplo, as

redes sociais formadas a partir de laços de amizade ou colaborações de trabalho são RCBDs,
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uma vez que os nós dessas redes têm poder de decisão para criar arestas. No entanto, redes

semânticas formado a partir de textos e redes de terremotos não são RCBDs, uma vez que a

criação de arestas é guiada, nestes casos, por um processo central.

Assim como as redes complexas, RCBDs têm um grande número de vértices e arestas

que seguem um ou vários padrões, tais como comunidades de nós ou vértices altamente

conectados, chamados de hubs. Enquanto em uma rede simples com, no máximo, centenas

de nós o olho humano é um instrumento de poder considerável, em uma complexa rede, esta

abordagem é inútil. Assim, para estudar, analisar e caracterizar redes complexas, métodos

estatísticos e algoritmos eficientes são necessários.

Objetivos

Esta tese tem como objetivo analisar o comportamento dos agentes de RCBDs. Observamos

cenários reais e hipotéticos em que as decisões ambientais e sociais desempenham um papel

importante na evolução da rede e sobre a forma como os agentes interagem. Quando somos

capazes de entender completamente as motivações por trás das ações dos agentes, é possível

desenvolver técnicas para modelar, prever e controlar o comportamento de diversas e grandes

RCBDs e das suas entidades. Mas especificamente, os principais objetivos desta tese são:

1. Modelagem. Nosso objetivo é criar modelos que podem representar com precisão o

comportamento dos agentes de uma RCBD, levando a um melhor entendimento do

sistema;

2. Predição. A partir da compreensão das razões por trás das decisões dos agentes de

uma RCBD, queremos entender como o sistema irá evoluir;

3. Controle. Uma vez que sabemos como o sistema se comportará, proporemos mecanis-

mos de controle para fazer os agentes agirem de acordo com um objetivo determinado.

A partir das decisões locais feitas por agentes de RCBDs, investigamos a evolução

global do sistema a fim de propor uma grande variedade de aplicações. Nesta tese, estudamos

tipos muito diferentes de RCBDs e propomos diferentes aplicações para todas elas a partir

do conhecimento que adquirimos do comportamento dos agentes. Todas as redes analisadas

têm em comum o fato de que os agentes são capazes de: (i) tomar decisões autônomas, e

(ii) interagir com outros agentes. Além disso, é importante ressaltar que a evolução da rede

depende exclusivamente de como estas decisões são tomadas.
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Contribuições

Primeiro, apresentamos uma análise compacta dos três aspectos de RCBDs que abordamos

nesta tese (modelagem, predição e controle) usando três conjuntos de dados de mobilidade

do mundo real (Capítulo 3). Em seguida, nos concentramos na modelagem de redes de comu-

nicação (Capítulo 4). Propomos modelos para o comportamento individual dos usuários e, a

partir disso, propomos aplicações de redução de dados, detecção de anomalias e monitora-

mento de rede. Em seguida, nos concentramos no problema de predição em redes competi-

tivas, como a liga profissional de basquete (NBA) e de baseball (MLB) dos Estados Unidos

da América (Capítulo 5). Propomos um modelo de predição para identificar o desempenho

anual de equipes em ligas esportivas. Finalmente, nos concentramos no aspecto de controle

em RCBDs, investigando a tomada de decisão em um cenário onde redes de sensores sem

fio são depositadas na mesma região e interagem entre si para solicitar ou compartilhar re-

cursos computacionais (capítulo 6). Modelamos este problema a partir da teoria dos jogos

e apresentamos uma aplicação de controle que é um protocolo para permitir a cooperação

entre essas redes.

Capítudo 3 – Redes de Mobilidade

A principal característica de RCBDs é que as interações entre as suas entidades são, geral-

mente, consequência de decisões semi-racionais. Escreve-se “normalmente” e decisões

“semi-racionais” porque qualquer sistema está sujeito a eventos aleatórios e escolhas irra-

cionais. No entanto, uma vez que a maioria das interações ainda decorrem de decisões

conscientes feitas por suas entidades, a evolução de RCBDs é significativamente diferente

da evolução de redes aleatórias como, por exemplo, redes de Erdös and Rényi. Assim, en-

quanto em uma RCBD as arestas são geradas a partir de decisões semi-racionais, que tendem

a ser regulares e a se repetir, em uma rede aleatória as arestas são geradas independentemente

dos atributos dos nós, ou seja, a probabilidade de dois nós se conectarem é constante.

Considere, por exemplo, uma RCBD constituída por pessoas e suas rotinas de mobi-

lidade. Uma interação entre duas pessoas ocorre se elas se encontram. Se Silva e Moreira

trabalham no mesmo escritório e suas horas de trabalho são de 8:00 às 18:00, pode-se prever

facilmente que uma interação entre Silva e Moreira irá ocorrer em torno de 8:00 durante os

dias da semana. Isso é baseado no fato de que acreditamos fortemente que tanto Silva quanto

Moreira decidirão ir ao trabalho todos os dias pontualmente, já que este é, provavelmente,

a decisão racional para se tomar. Entretanto, a maioria dos cenários está sujeita a eventos

aleatórios que podem desviar o comportamento esperado dos agentes. Silva pode, por exem-

plo, viajar à negócios por alguns dias e encontrar pessoas totalmente diferentes. Ou então,
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Moreira poderia ficar preso no trânsito e se atrasar, se encontrando com Silva somente às

10:00. O fato é que, apesar de decisões racionais serem regulares, as decisões aleatórias

podem muitas vezes ocorrer também e se misturar em grande quantidade com as demais.

Assim, propomos o Random rElationship ClASsifier sTrategy (RECAST), um algo-

ritmo classificador de relações sociais, capaz de detectar, entre outros, eventos aleatórios

em RCBDs. Eventos aleatórios mascaram os padrões de comportamento comuns por intro-

duzirem uma quantidade significativa de ruído, tornando assim o processo de descoberta de

conhecimento em RCBDs uma tarefa ainda mais complexa. A capacidade de identificar com

precisão os eventos aleatórios em grandes conjuntos de dados é essencial para a análise do

comportamento social, bem como para aplicações que dependem de uma descrição precisa

de rotinas humanas, tais como sistemas de recomendação, estratégias de roteamento ad-hoc

e esquemas de divulgação de mensagens focalizando eficiência de cobertura com um número

limitado de mensagens redundantes.

O RECAST nos permite observar muitas diferenças na evolução de RCBDs quando

aplicada a três conjuntos de dados do mundo real descrevendo atividades de mobilidade. Foi

verificado que essas diferenças são devido às características intrínsecas de cada cenário. Por

exemplo, mostramos que o conjunto de dados que descreve o movimento de motoristas de

táxi em San Francisco (EUA) tem, na sua maioria, propriedades não-sociais, o que torna a

sua representação gráfica semelhante a uma rede aleatória. O mesmo não é verdade para

pessoas se movendo em um campus, pois elas se encontram regularmente com um mesmo

conjunto de pessoas, tais como seus colegas, professores etc. No entanto, verificamos que

diferentes campi possuem dinâmicas de interação e de mobilidade diferentes.

Em resumo, neste capítulo modelamos conjuntos de dados de mobilidade em RCBDs

de encontros e, a partir disso, propomos o RECAST. A clara classificação das relações dos

usuários fornecida pelo RECAST alavanca imediatamente análises subsequentes. Por exem-

plo, mostramos que encontros entre duas pessoas que compartilham de um relacionamento

social são mais fáceis de prever. Além disso, mostramos como é possível projetar uma apli-

cação de controle para disseminar dados na rede de forma eficiente usando apenas duas das

quatro classes que o RECAST identifica.

Capítulo 4 – Redes de Comunicação

Neste capítulo mostramos que o problema da modelagem de agentes em redes de comuni-

cação é extremamente desafiador. Padrões de comunicação humanos são propensos a mudar

à medida que os aspectos tecnológicos e culturais da sociedade mudam. Por exemplo, a

duração típica de uma chamada telefônica envolvendo dois telefones fixos é provavelmente

diferente daquela que envolve dois telefones móveis. Por isso, usamos este cenário desafi-
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ador no estudo da modelagem em RCBDs.

Analisamos a taxa na qual dois agentes sociais comunicam e a duração da sua co-

municação. Primeiramente, analisamos o tamanho dos fluxos de comunicação (duração de

chamadas de telefone), e mostramos como um bom esforço de modelagem pode conduzir a

uma ampla variedade de aplicações. Em resumo, nós abordamos o seguinte problema: dada

uma grande quantidade de registros telefônicos, qual é a melhor maneira de representar o

comportamento da duração das chamadas de um usuário? Analisamos a duração de cente-

nas de milhões de chamadas e propomos o modelo Truncated Lazy Contractor (TLAC) para

descrever o tempo das durações telefônicas de um único usuário. Assim, o TLAC modela a

distribuição da duração de chamadas (DDC) de um usuário e é parcimonioso, tendo apenas

dois parâmetros, o coeficiente de eficiência ρ e o coeficiente de fraqueza β. Nós mostramos

que o modelo TLAC foi a melhor alternativa para modelar a DDC de usuários de nosso con-

junto de dados, principalmente porque produz uma distribuição que tem cauda e cabeça mais

pesadas que as da distribuição log-normal, que é a distribuição mais comumente usada para

modelar DDC.

Sugerimos também a utilização dos parâmetros do TLAC como a melhor e mais com-

pacta forma de representar o comportamento da duração de chamadas de um usuário. Dessa

maneira, propomos a MetaDist para modelar a população de usuários com um determinado

comportamento de duração de chamadas. A MetaDist é a meta-distribuição dos parâmetros

ρi e βi da DCC de cada usuário i e, quando seus contornos são visualizados, a sua forma é

surpreendentemente similar a uma distribuição gaussiana bivariada. Essa regularidade fasci-

nante, observada em uma base de dados significativamente ruidosa, faz da MetaDista dis-

tribuição potencial a ser explorada no sentido de compreender melhor o comportamento da

chamada de usuários móveis.

Na análise dos intervalos de tempo entre comunicações, foram considerados vários

cenários. A literatura atual tem resultados aparentemente contraditórios para a distribuição

marginal dos intervalos de tempo entre eventos. Alguns estudos afirmam bons ajustes com

as leis de potência, outros com “processos de Poisson não homogêneos”. Fizemos uma

modelagem elaborada que utiliza o conhecimento destes modelos, juntamente com novas

observações em dados reais, para propor o Self-feeding Process (SFP), que representa muito

bem as propriedades das marginais de vários conjuntos de dados de comunicação de grande

porte, diversificados e do mundo real, tais como chamadas telefônicas, SMS, e-mails, e

fóruns online. Mais importante, ele unifica as teorias existentes sobre a dinâmica da comuni-

cação humana, gerando distribuições marginais com cauda pesada, caracterizada por rajadas

de eventos e longos períodos de inatividade, além de possuir comportamento Poissoniano

local. Além disso, o SFP é baseado em uma nova descoberta relatada nesta tese, de que há

uma correlação positiva significativa entre intervalos de tempos consecutivos. Finalmente,
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é importante ressaltar que o SFP é extremamente parcimonioso, usando no máximo dois

parâmetros.

Capítulo 5 – Redes Competitivas

Em redes competitivas, os agentes do sistema competem entre si por uma recompensa ou

recursos limitados. Como possíveis exemplos desse tipo de rede podemos citar redes de tra-

balhadores à procura de postos de trabalho, como visto no LinkedIn, e em ligas profissionais

de esportes. Nesses casos, as organizações, empresas ou equipes querem contratar os mel-

hores jogadores e técnicos, ao menor custo possível. Por sua vez, os jogadores e técnicos

querem receber o maior salário possível e ainda trabalhar em uma boa equipe. Além disso,

tanto as organizações quanto os jogadores e técnicos querem que as organizações cresçam,

ou seja, querem expandir no mercado e conquistar títulos em suas ligas. Este cenário ap-

resenta vários conflitos de interesses que podem revelar observações interessantes sobre os

agentes sociais deste tipo de rede.

Nesta tese, analisamos a rede formada a partir dos times e jogadores de ligas esportivas.

Começamos com a NBA em seus 63 primeiros anos de existência. Na etapa de modelagem,

vemos a NBA como uma rede complexa em evolução. Em seguida, na fase de predição,

propomos métricas que estão correlacionados com o comportamento dos times da NBA,

levando em conta apenas a relação social e de trabalho entre os jogadores, treinadores e

equipes. Então, com base nessas métricas, propomos modelos para prever o quão bem uma

equipe irá jogar na temporada seguinte. Avaliamos também os modelos de predição sobre

o conjunto de dados da Major League Baseball. Tanto o NetForY quanto o NetFor , que

são os modelos propostos nesta tese, tem resultados surpreendentemente bem em ambos os

conjuntos de dados.

Capítulo 6 – Redes de Sensores Sem Fio

Finalmente, analisamos RCBDs formada apenas por dispositivos computacionais. Neste tipo

de rede, os agentes podem ser modelados como agentes sociais capazes de tomar decisões. O

aspecto principal deste tipo de RCBD é que em redes de computadores agentes não tomam

decisões irracionais, pois só podem agir de acordo com a forma que foram programados

para agir. Isto significa que as decisões realizadas pelos agentes visam sempre maximizar a

sua utilidade e nada mais, agindo de uma maneira puramente egoísta, e decisões irracionais

causadas por instabilidades emocionais ou causas semelhantes não existem.

Nós consideramos um cenário em que diferentes redes de sensores sem fio (RSSF)

com diferentes proprietários são depositadas no mesmo lugar. Neste cenário, existe a pos-
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sibilidade de que um sensor de uma rede coopere com um sensor de outra rede. Quando

duas RSSFs compartilham os seus nós sensores na execução de alguma atividade de forma

inteligente, as duas redes podem melhorar as suas operabilidades, executando as suas ativi-

dades de forma mais eficiente. Apesar de ser óbvia e simples, esta idéia traz consigo muitas

implicações que dificultam a cooperação entre as redes. Considerando que uma RSSF tem

um caráter racional e egoísta, ela só irá cooperar com outra RSSF se esta oferecer serviços

que justificam a cooperação.

Neste capítulo específico, mais uma vez abordamos os três aspectos de RCBDs que

analisamos nesta tese: predição, modelagem e controle. Primeiro, temos o problema de

modelagem da cooperação entre os diferentes RSSFs usando a teoria dos jogos, que é uma

técnica interessante para modelar situações de conflito entre dois ou mais agentes racionais e

egoístas. Em redes de computadores, decisões e métricas de utilidade (por exemplo, taxa de

transferência e latência) são computacionalmente bem definidas, fazendo com que a teoria

dos jogos seja uma ferramenta poderosa para modelar e principalmente prever o comporta-

mento dos agentes. A partir deste conhecimento, pode-se projetar mecanismos de incentivo

para controlar os seus comportamentos.

No problema da cooperação entre diferentes RSSFs depositadas no mesmo local, ini-

cialmente nenhum nó sensor está cooperando com nós sensores de outras redes, só encamin-

hando mensagens pertencentes à sua própria rede. Uma rede Ni, que é um jogador racional

e egoísta, deve, então, alterar a sua estratégia e fazer com que um ou mais dos seus nós sen-

sores encaminhem pacotes de outras redes se, e somente se, isso for aumentar o seu payoff

Πi, que é um valor que representa o ganho que Ni terá com ou sem a cooperação. No en-

tanto, se todas as redes mantiverem as suas estratégias e Ni alterar a sua estratégia inicial

e fazer algum dos seus nós sensores cooperar e encaminhar mensagens de outra redes, o

gasto de energia de Ni aumentará, fazendo que o payoff Πi diminua. Assim, inicialmente,

o jogo está em Equilíbrio de Nash, pois não é possível que uma rede aumente o seu payoff

alterando a sua estratégia se todas as outras redes mantiverem as suas. Esse comportamento

previsto para as redes só pode ser alterado caso haja intervenção externa como, por exemplo,

a injeção de um protocolo distribuído de cooperação nos nós sensores.

Assim, como contribuição final deste capítulo, propomos protocolo Virtual Cooper-

ation Bond (VCB), que permite a cooperação entre diferentes RSSFs depositadas em um

mesmo local. O protocolo proposto é totalmente distribuído, ou seja, não depende de nen-

hum controle central, estabelecendo a cooperação a partir de informações locais dos nós sen-

sores. Além disso, o VCB garante que a cooperação só seja estabelecida quando for trazer

benefícios para ambas as redes. Resultados de simulação mostram que o VCB economiza a

energia das redes e prolonga o seus tempos de vida.
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Chapter 1

Introduction

1.1 Motivation

The constant advancement of information systems allows, at a growing rate, more data to be

generated and stored. The Internet, for example, consists of millions of computing devices in

which each one of them is responsible for generating, storing and transmitting countless data.

Clearly, the Internet is going in the direction of the Ubiquitous Computing paradigm, which,

as envisioned in Mark Weiser’s classic paper The computer for the 21st century [Weiser,

1999], predicts the access to computing environments by any person, anywhere, at any time,

so that computing devices are coupled to the most trivial objects, such as clothing labels,

cups of coffee, pens or any personal object [de Araujo, 2003]. Moreover, there are Wireless

Sensor Networks (WSNs) [Akyildiz et al., 2002], which are a special type of ad hoc net-

work, designed to collect data from the environment they are inserted and providing such

information to the final user.

Thus, we can expect an increasing amount of data to be generated from the most

diverse situations. Currently, for instance, there are research studies on data from phone

call records [Du et al., 2009; Seshadri et al., 2008; Hidalgo and Rodriguez-Sickert, 2008],

online social networks [Leskovec et al., 2007; Hill and Nagle, 2009; Kumar et al., 2006],

railroads [Faloutsos et al., 1999], Internet websites [Faloutsos et al., 1999; Albert et al.,

1999], citation networks [Guo et al., 2009], movies and actors [Jensen et al., 2008], sports

leagues [Vaz de Melo et al., 2008a] and many others. From these studies we now know,

for instance, how people link websites in their homepages and how communities of people

evolve over time. It is fascinating that, behind the names and the numbers registered in all

these data, we see the reflection of the environment itself, i.e, behind every record, there is

a decision made by some entity. Therefore, the knowledge of how to process this invalu-

able evolving database can lead, consequently, to a better understanding of the interests and

1
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dynamics of each entity in a determined system, community or in the society.

Crandall et al. [2008], for instance, analyzed a large dataset from Wikipedia and they

verified that the communications between editors is related to the similarities they have,

namely the probability of occurring a communication between two individuals increases as

there are similarities between them. As another example, Backstrom et al. [2006a] analyzed

a LiveJournal [LiveJournal, 2010] dataset, which is an online social network with more

than 10 million users, and the DBLP [DBLP, 2010], which is a database of publications on

some areas of computer science with over 400000 articles, in order to understand how user

communities are formed and evolve over time. They concluded, among other things, that

the tendency of an individual entering a community is influenced not only by the number

of friends he/she has within the community, but mainly by how those friends are connected

among them. The fact is that the data generated from social interactions has a tremendous

potential for uncovering and modeling the human behavior.

In this thesis, we focus on systems that are made up of entities capable of inter-

acting among themselves in a autonomous way, reflecting their interests and activity dy-

namics. We call these systems Decision-based Complex Networks (DBCNs), these en-

tities, nodes or agents, and the interactions between nodes, edges. A DBCN is a spe-

cial type of complex network Newman [2003] that contains nodes capable of making

autonomous decisions, which are guided mainly by their personal motivations. For in-

stance, social networks [Backstrom et al., 2006b; Kumar et al., 2006; Leskovec et al., 2008;

Mislove et al., 2007] formed from friendship ties or work collaborations are DBCNs, since

the nodes of these networks have decision power to create edges. On the other hand, se-

mantic networks formed from texts [Steyvers and Tenenbaum, 2005] and earthquake net-

works [Abe and Suzuki, 2004] are not DBCNs, since the edges creation is guided, in these

cases, by a central process.

As general complex networks, DBCNs are characterized by having a large number of

vertices and edges that exhibit a pattern, such as communities or highly connected vertices,

called hubs [Albert et al., 1999]. While in a simple network with at most hundreds of nodes

the human eye is a tool of considerable power, in a complex network, this approach is use-

less. Thus, to study, analyze and characterize complex networks, fast statistical methods and

algorithms are necessary.

1.2 Objective

The main objective of this thesis is to analyze the behavior of agents of DBCNs. We observe

real and hypothetic scenarios where environmental and social decisions play an important
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role on the evolution of the network. When we fully understand the motivations behind

the actions of the agents, we are able to devise techniques to model, predict and control

the behavior of diverse and large DBCNs. As we show in Figure 1.1, we divide the main

objective of this thesis in:

1. Modeling. Our goal is to design models that can accurately represent the behavior

of the agents in a DBCN, significantly contributing to a better understanding of the

system;

2. Predicting. From the understanding of the reasons behind the decisions of the agents,

we aim to predict how the system will evolve;

3. Controlling. Once we know how the system will behave, we design control mecha-

nisms to make the agents to act according to a determined goal.

Figure 1.1. The summary of this thesis. From DBCNs scenarios, first we model the
behavior of the agents and, from this, we are able to predict their behavior. Once we
know how the agents will behave, we are able to design control mechanisms to make
the agents to act according to a determined goal and, therefore, change the system. New
modeling and predicting efforts should be made in the new system to better control its
behavior.

In summary, from the local decisions made by the agents, we plan to understand the

global evolution of the system. This immediately opens space for a vast and diverse number

of applications that we also tackle in this work. In this thesis, we study three significantly

different types of network systems and propose different applications for all of them, based

on the knowledge of the behavior of their agents. Thus, all the analyzed networks have in

common the fact that agents are capable of: (i) making autonomous decisions, and (ii) inter-

acting with other agents, together with the fact that their evolution significantly depends on
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how these decisions are made. The analyzed systems and the respective proposed applica-

tions for them are described below.

Communication Networks. First, we analyze communication networks, in which every

agent is an individual capable of communicating freely to any other agent in the network.

More specifically, we investigate more than 1 billion mobile phone records from a private

mobile phone company of a large city, spanning≈ 0.1 TB. We study and propose models for

the individual behavior of the users of this network and, from this, we propose applications

for data summarization, anomaly detection, user classification and network monitoring.

Competitive Networks. Second, we tackle competitive networks, in which the social

agents of the system compete among themselves for a reward or limited resources. In this

case, we analyze two sports leagues: the North American National Basketball Association

(NBA) and the Major League Baseball (MLB). In these networks, the social agents are both

the teams and the players, and they compete for titles and money, i.e., while the players want

to have high salaries, the teams want to pay less for their players, at the same time that both

types of agents want to win games and titles. For these networks, we propose a prediction

model that can be used to identify likely teams to win and to fail in the following season.

Computer Networks. Finally, we consider a scenario in which the agents are computing

devices with a limited set of decisions that aim to improve the operability of the system

they are inserted in. More specifically, we investigate a scenario where a group of WSNs

is deployed in the same region and they may interact among themselves to request or share

computational resources. We model the problem of cooperation among two or more different

WSNs by the concepts of game theory and, from it, we present, as a control application, a

protocol to allow cooperation.

1.3 Contributions

In this thesis, we propose that the understanding of the motivations for the local decisions

made by the agents of DBCNs lead to the understanding of how the network globally evolves.

We analyzed three different types of networks from the perspective of agents and, in the

following, we enumerate the contributions we propose from this analysis:

1. The proposal of the Truncated Lazy Contractor (TLAC) distribution to model the size

of the communication flow between two autonomous agents. From the TLAC distribu-

tion, we introduce theMetaDist, which shows that the collection of TLAC parameters
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follow a striking bivariate Gaussian; Finally, we show several applications that can be

drawn from the TLAC and the MetaDist, such as anomaly detection and data summa-

rization;

2. Proposal of the Self Feeding Process (SFP) model for the inter-event time between hu-

man activities, that matches real data well, and has a very simple, intuitive explanation:

the time for the next communication event depends on the time it took for the previous

event to occur. The SFP model generates a particular case of the TLAC distribution

and unifies earlier communication traffic models;

3. We propose the use of network features to analyze the decisions made by the agents of

competitive networks, more specifically teams, players and coaches in sports leagues.

From this analysis, we construct parameter-free models to predict a team success in

sports leagues. We show that complex network metrics provide good prediction infor-

mation without using box score statistics;

4. Finally, we analyze the behavior of agents of computer networks when they are al-

lowed to make local decisions. More specifically, we consider a scenario where dif-

ferent WSNs are deployed in the same region and we propose a protocol to allow

cooperation among the networks.

The following publications are the current results for this thesis:

• In [Vaz de Melo et al., 2010], we analyze phone call durations of millions of users of

a large mobile phone operator;

• In [Vaz de Melo et al., 2011a], we analyze the inter-event times of millions of users of

a large mobile phone operator.

• In [Vaz de Melo et al., 2008a], we show that complex network metrics can be used to

predict the behavior of basketball teams;

• In [Vaz de Melo et al., 2012], we propose a model to predict the behavior of sports

teams;

• In [Vaz de Melo et al., 2008b] and [Vaz de Melo et al., 2008c], we analyze the problem

of cooperation when different Wireless Sensor Networks are deployed in the same

location;

• In [Vaz de Melo et al., 2009], we propose a distributed protocol for establishing the

cooperation when different Wireless Sensor Networks are deployed in the same loca-

tion;
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• In [Vaz de Melo et al., 2011b], we show how game theory is being used in Wireless

Sensor Networks;

1.4 Work Organization

This thesis is organized as follows.

First, in Chapter 2, we present the general related work according to three aspects

we tackle in this thesis. A more specific related work for each aspect is presented in the

corresponding chapter. Moreover, in Chapter 3, we introduce the Decision-based Complex

Networks and show how simple efforts in modeling, predicting and controlling can lead to

interesting results. Then, In Chapter 4, we analyze a large communication network and pro-

pose the TLAC distribution and the SFP generative model. In Chapter 5, we propose the use

of network metrics to analyze the decisions made by agents of competitive networks. From

this analysis, we construct a model to predict the behavior of the teams in sports leagues. In

Chapter 6, we consider computer networks in which agents are allowed to make decisions.

We propose a cooperation protocol for the scenario where different WSNs are deployed in

the same location. Finally, in Chapter 7, we present the conclusion and future work.



Chapter 2

Related Work

In this thesis, our goal is to study the decisions made by the agents of DBCNs. We divide

this study by analyzing separately three important aspects of these networks: modeling,

predicting and controlling. Thus, in this chapter, we show how these three aspects are being

tackled in the literature when focusing DBCNs. In Section 2.1, we show relevant models

of real and modern DBCNs. In Section 2.2, we show the challenges and opportunities for

predicting and controlling in DBCNs. Finally, in Section 2.3, we show the basics concepts of

game theory, since it is a fundamental mathematical technique to study decisions of rational

agents.

2.1 DBCN Modeling

In the literature, there are several generative models that construct networks from

local decisions of the nodes [Mitzenmacher, 2004; Chakrabarti and Faloutsos, 2006;

Zhou and Lipowsky, 2005]. These models were designed to reproduce real world net-

works that can not be generated by the traditional Erdös and Rényi [1960] random

model. In nature, there are examples of complex networks that were modeled from

the most diverse databases, such as phone call records [Du et al., 2009; Seshadri et al.,

2008; Hidalgo and Rodriguez-Sickert, 2008], online social networks [Leskovec et al.,

2007; Hill and Nagle, 2009; Kumar et al., 2006], railroads [Faloutsos et al., 1999], In-

ternet websites [Faloutsos et al., 1999; Albert et al., 1999], citation networks [Guo et al.,

2009], movies and actors [Jensen et al., 2008], sports leagues [Vaz de Melo et al., 2008b;

Onody and de Castro, 2004] and many others.

Formally, each network G(V,E) has a set of nodes (agents) V , a set of edges (connec-

tions) E, and a set of N observable characteristics c1, c2, ...cN , that may or may not change

over time. The goal of the generative models is, from a initial and simple networkG0(V0, E0)

7



8 CHAPTER 2. RELATED WORK

and from a node local function f , to construct a network that has all the N observable char-

acteristics c1, c2, ...cN of the network. This local function f is designed to dictate which

decisions each node should make in order to construct the network with the desired charac-

teristics.

In random networks, such as the Erdős and Rényi networks, this f function is the most

simple as possible: the probability of node i to connect to node j is p∀j ∈ V . However,

in real complex networks, this probability changes according to the local characteristics of

the nodes i and j. For instance, it was verified that in online social networks, two nodes

are more likely to connect as the number of friends they share increase [Kumar et al., 2006].

Moreover, it was also verified that as a website is more popular, i.e., it has many other

websites pointing to it, it is also more likely to receive new links [Faloutsos et al., 1999].

Thus, in complex networks, the function f that governs the nodes’ decisions is constructed

by modeling their preferences, which can be the desire to connect to friends of their friends,

or just to connect to the most popular nodes in the network.

One of the main observed characteristics of several complex networks that exist in

nature is that they are scale-free networks (SFNs). SFNs [Newman, 2003; Li et al., 2005;

Keller, 2005] were introduced by Barabasi and Albert [1999] to model network topologies

such that the degree distribution follows a power law [Clauset et al., 2009]. The distribution

of the random variable X defines that the degree distribution follows a power law if, given

its cumulative distribution function F (x) = P (X ≤ x) and its complementary cumulative

distribution function F (x) = P [X > x], F (x) = 1 − F (x) ≈ cx−α for some constant

0 < c <∞ and tail index α > 0 [Li et al., 2005]. For 1 < α < 2, F has infinite variance and

finite mean but, for 0 < α ≤ 1, both the variance and the mean are infinite. Besides this, one

interesting property of this distribution is that log(P [X > x]) ≈ log(c) − α log(x), making

the plot of F in logarithmic scales to be a line with slope −α for high values of x. For more

examples and details on how to identify power laws, please refer to [Clauset et al., 2009].

To the best of our knowledge, the first model that aimed to reproduce the scale-

free characteristic of complex networks from the local decisions of the agents was the BA

model [Barabasi and Albert, 1999]. This model, inspired in the cumulative advantagemodel

proposed by Price [1976], incorporates two characteristics to explain the network formation:

growth and preferential attachment. The first one stipulates that the number of nodes of the

network grows with time, while the second one stipulates that the more connections a node

has, the higher the chances for it to receive more edges. This phenomenon, also known as

“the rich gets richer”, will result in a network with a few nodes with many connections,

called hubs, and many nodes with a few.

The BA model considers that when an agent joins the network, it decides to connect

to the nodes with more connections. In summary, the formation of the network according to
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the BA model is given from a connected network with n0 > 2 initial nodes v1, ..., vn0 . Then,

a new node vn0+1 joins the network and connects to a node vj, 0 < j ≤ n0 according to a

probability that is proportional to the degree dj of vj . Formally, the probability pi,j of a node

vi to connect to an existing node vj is:

pi,j =
dj∑n
u=1 du

.

Leskovec et al. [2008] extensively validated the BA model for four collections of real

data: FLICKR, DELICIOUS, LinkedIn and YAHOO! ANSWERS. It was found that, even

compared with more sophisticated variations, the BA model is the one that best explains the

degree distribution of the databases analyzed. However, the BA model considers that the

nodes have the global knowledge of the network, which is not realistic for most networks.

To overcome this drawback, Leskovec et al. [2008] and Vázquez [2003] propose a local

version of the BA model, where the process of creating the edges does not depend on the

global knowledge of the network. These models stipulate that the nodes decide to connect to

a node if the edge will close a triangle, considering, then, solely the local information of the

node: its neighborhood.

While the scale-free characteristic could be successfully reproduced by the local func-

tion of generative models, there were still other relevant network characteristics that re-

mained without any explanation. Therefore, other generative models were proposed in order

to develop a unified theory on the local behavior of the nodes of the most popular complex

networks.

Chen and Shi [2004] proposed two variations of the BA model considering relocation

and deletion of edges of the network. Holme and Kim [2002] defined an additional step to the

BAmodel, where each edge created by the BAmodel generates a second additional edge that

closes a triangle. This model is interesting because it creates a network with characteristics

of an SFN and a “small-world” network [Milgram, 1967; Albert et al., 1999; Amaral et al.,

2000].

Moreover, Leskovec et al. [2007] proposed the forest fire model, which in addition to

the characteristics previously described, is also capable of reproducing two new observations

made from the temporal analysis of real networks: the densification law and the shrinking

diameter. The first stipulates that the number of edges grows super-linearly with the number

of nodes while the second one stipulates that the network diameter decreases with time.

To generate these characteristics, the local node function states that, after connecting to a

close node j in the network, the new node i should also connect to a set N1 of neighbors

j1, j2, ..., jn of j and recursively do this step connecting to a set Nk of neighbors of jk.
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Considering weighted networks, McGlohon et al. [2008] modified the forest fire

model, proposing the butterfly model, that states that the nodes should also connect to nodes

that are distant from its vicinity. This model is able to capture discovered characteristics of

weighted graphs, such as the fortification effect, which states that the relationship between

the number of edges of a graph and their total weight is superlinear, following a power law.

Still in weighted graphs, Du et al. [2009] proposed the Pay and Call game to model the

behavior of users in a network formed from mobile users of a telecom operator. It was con-

sidered that each user is a rational agent that will make calls if the benefit from a call is higher

than its cost. With this model, the authors could reproduce some of the characteristics we

described so far, such as scale-free property and also new characteristics, such as the “clique

participation law” that states that the number of maximal cliques in the network follows a

power law.

2.2 Predicting and Controlling

The theoretical models that were proposed for characterizing the evolution of social networks

improved significantly our knowledge on these systems. Therefore, as our knowledge on the

behavior of social networks grows, the problem of predicting which links will appear in

the future becomes easier or, at least, less complicated. The fact is that the methods for

forecasting the occurrence of future edges are based on the knowledge embedded in these

models, as we see in this section.

Liben-Nowell and Kleinberg [2007] defined the link prediction problem as a basic

computational problem underlying social network evolution as: Given a snapshot of a social

network at time t, how can we accurately predict the edges that will be added to the network

during the interval from time t to a given future time t′. Basically the link prediction problem

asks to what extent can the evolution of a social network be modeled using features intrin-

sic to the network itself. As we see in this definition given by Liben-Nowell and Kleinberg

[2007], the link prediction problem is directly related to problem of modeling in DBCNs.

Moreover, the problem of link prediction play an important role in understanding the

evolution of DBCNs and is relevant to a large number of applications. For instance, a

company can analyze the interactions within the informal social network among its mem-

bers and then suggest promising interactions or collaborations that have not yet been uti-

lized within the organization [Kautz et al., 1997; Raghavan, 2002]. Moreover, a social net-

work analysis could be made monitoring terrorist networks in order to spot individuals who

are working together even though their interaction has not been directly observed [Krebs,

2002]. Finally, the link prediction problem is also related to the problem of inferring miss-
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ing links from an observed network, i.e., links that, while not directly visible, are likely to

exist [Goldberg and Roth, 2003; Taskar et al., 2003].

There are several simple methods that are used in the literature to do link prediction.

The methods assign a score s(i, j) to pairs of nodes (i, j) and then produce a ranked list with

the edges which are more likely to appear in the future. Perhaps the most basic approach

to rank the probable future edges is by using the distance between the pairs of nodes (i,

j), following the notion that social networks are “small worlds” [Watts and Strogatz, 1998].

Another simple method consists in ranking the pairs of nodes according to the number of

neighbors they have in common, i.e., the probability of an edge to appear between nodes (i,j)

increases with the number of neighbors they share [Newman, 2001]. This method uses the

concept that similar nodes are more likely to connect in the future. Thus, instead of using the

number of common neighbors, one can use other similarity metrics to do link prediction. For

instance, Crandall et al. [2008] showed that Wikipedia users who share common interests are

more likely to connect in the future. Finally, non-similar nodes can also have a high prob-

ability of connecting, as stated by the preferential attachment method [Barabasi and Albert,

1999], in a way that highly connected nodes tend to attract links from new low connected

nodes. For more methods please see [Liben-Nowell and Kleinberg, 2007].

We saw that the problem of link prediction aims to predict which connections will

occur in the future based on the attributes of the nodes. Instead of waiting for the links to

appear, a system administrator could, for instance, use this knowledge to directly suggest to

the nodes that they could connect. This simple idea is essentially the basis for the design of

all recommendation systems [Adomavicius and Tuzhilin, 2005; Burke, 2002], that is one of

the main control mechanisms of social networks.

In 2006 and in the following years, a lot of attention was given to the design of efficient

recommendation systems. This happened because Netflix, an online DVD-rental service,

announced a 1 million dollar prize for those who achieve a 10% or more improvement on the

performance of their own recommendation system [Bennett et al., 2007]. After 3 years, the

prize was given to to the BellKor’s Pragmatic Chaos team, solving the problem by merging

several algorithms [Toscher et al., 2009].

Recommendation systems are usually classified into three categories, based on how

recommendations are made [Balabanovic and Shoham, 1997]. In the Content-based recom-

mendations (i), the user is recommended items similar to the ones the user preferred in the

past. In the Collaborative recommendations (ii), the user is recommended items that similar

users to him/her liked in the past. Finally, Hybrid approaches (iii) combine collaborative and

content-based methods. Again, all these methods use the attributes of the network’s nodes

and edges in order to offer a future connection to the nodes and, therefore, partially con-

trolling the network’s evolution. For more details on recommendation systems the surveys
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of Adomavicius and Tuzhilin [2005] and Burke [2002].

2.3 Fundamentals of Game Theory

One of the most used techniques to analyze the decisions of rational agents is game the-

ory [Fudenberg and Tirole, 1991; Nisan et al., 2007; Luce and Raiffa, 1957]. Game theory

is the formal study of conflict and cooperation among agents when their action is indepen-

dent [Turocy and von Stengel, 2001]. The major advantage of using game theory is that it

provides the methodology for analyzing and structuring strategic decision problems. The

concepts of game theory are widely used in the decision analysis of agents such as compa-

nies vying for market share or nations in the war. In the last decades, game theory came to

be used also to study the behavior of computational agents, or entities which cannot act dif-

ferently than the way they were programmed to act. In this case, game theory deals mainly

with the optimization of a global result from local decisions in distributed systems. This

problem is the generalization of diverse problems found in computer networks and, amongst

them, congestion control [Alpcan and Basar, 2002], load balancing [Suri et al., 2007], rout-

ing [Roughgarden and Tardos, 2002], peering [Corbo and Petermann, 2004] and P2P system

design [Buragohain et al., 2003] have solutions in the literature modeled from the game the-

oretic concepts.

Modeling a problem from the game theory is done by defining a game, the players

of this game and their allowed actions, reactions and preferences. One of the most classic

games of game theory is “The Battle of the Sexes” [Fudenberg and Tirole, 1991]. This game

has two players, one man and one woman. The man and woman want to go out together but

each one wants to go to a different place. The man prefers to go to a football match, while the

women prefers to go to the movies. If they are together in the football match, the man will

have a greater satisfaction than women. On the other hand, if they go to the movies together,

she will have a greater satisfaction. If each one goes alone to his favorite program, both will

be dissatisfied. The action of each player is to select the place he/she will go. However, their

satisfaction will depend on the action chosen by both.

Measuring the satisfaction of a player is done numerically by a real number that is gen-

erated from a function that takes into account the action of every other player participating

in the game. This numerical value that each player gets to determine his/her satisfaction is

called the payoff and the function that generates this number is called the utility function.

Formally, a game has a finite set of players G = g1, g2, ..., gn and each player gi ∈ G has a

finite set of strategies Si = si1, si2, ..., simi
called the pure strategies of player gi(mi ≥ 2).

The notation s−i is used to represent all the pure strategy set of the players, except player gi.
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A vector s = (s1j1 , s2j2 , ..., snjn), where siji is a pure strategy of player gi ∈ G is called a

pure strategy profile. The set of all pure strategy profiles generates the Cartesian product

n∏

i=1

Si = S1 × S2 × ...× Sn,

called the pure strategy space of the game. For each player gi ∈ G, there is an utility function

ui : S → ℜ, s → ui(s), which associates the payoff ui(s) of player gi to each pure strategy

profile s ∈ S.

From these definitions, it is possible to model the “The Battle of the Sexes” game in

the following way:

G = {man,woman},

Sman = {football,movies},

Swoman = {football,movies},

S = {(football, football), (football,movies),

(movies, football), (movies,movies)}.

The two utility functions uman : S → ℜ e uwoman : S → ℜ should return real numbers for

each player and, in this case, we can define arbitrary values such as

uwoman(football, football) = 5;

uwoman(football,movies) = 0;

uwoman(movies, football) = 0;

uwoman(movies,movies) = 10;

uman(football, football) = 10;

uman(football,movies) = 0;

uman(movies, football) = 0;

uman(movies,movies) = 5.

The results described above can be represented by a matrix named payoff matrix, which

can be seen in Figure 2.1. Each quadrant of the matrix contains a pair of values that represents

a possible outcome of the game. The first value is the payoff given to the “row player”, the
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man. The second value is the payoff given to “column player”, the woman. The rows and

columns of the table contains labels that represent the possible strategies of the players. The

woman chooses the strategies defined by the columns of the table and the man chooses the

strategies defined by the rows of the table.

Football Movies

Football 10, 5 0, 0

Movies 0, 0 5, 10

Figure 2.1. Payoff matrix of “The Battle of the Sexes” game.

The solution of a game is a prediction about its outcome [Brigida Sartini, 2004]. The

most common way to find the solution of a game is to find its Nash equilibrium, if this exists.

A Nash equilibrium is characterized when no player is able to increase its payoff changing its

strategy when all your opponents keep theirs [Fudenberg and Tirole, 1991]. Thus, a strategy

profile

s∗ = (s∗1, ..., s
∗
i−1, s

∗
i , s

∗
i+1, ..., s

∗
n) ∈ S

is a Nash equilibrium if

ui(s
∗
i , s

∗
−i) ≥ ui(siji , s

∗
−i)

for all i = 1, ..., n and all ji = 1, ...,mi, wheremi ≥ 2.

When players of a game reaches a Nash equilibrium, the game to which they belong has

reached a completely stable state, i.e., no player will change their strategies. It is important

to note that the steady state is ensured taking into account the selfish and rational character of

the players. There are several ways to calculate strategies of players that will lead to a Nash

equilibrium and they vary according to the characteristics of the game [Fudenberg and Tirole,

1991]. It is also important to note that there are games which have no Nash equilibrium for

pure strategies as the game of “even or odd”, and others that have multiple Nash equilibria, as

the “The Battle of the Sexes” game, with profiles (football, soccer) and (movies,movies)

being solutions that are in Nash equilibrium.

An alternative to games that do not have Nash equilibrium strategies is to consider

a probabilistic point of view. In the “even or odd”, for example, we can consider that the

players have 50% chance of choosing even and 50% chance of choosing odd. A probability

distribution on the set Si of pure strategies of the player is called mixed strategy profile pi

for the player gi ∈ G. Non-cooperative games always have a Nash equilibrium for mixed

strategies [Nash, 1950, 1951]. For details and descriptions of algorithms to find a Nash



2.3. FUNDAMENTALS OF GAME THEORY 15

equilibrium, see the work of Porter et al. [2004].





Chapter 3

Decision-Based Complex Networks

3.1 Motivation

The main characteristic of DBCNs is that the interactions between their entities are, usually,

a consequence of semi-rational decisions. We say “usually” and “semi-rational” decisions

because any system is subject to random events and irrational choices due to, for instance,

the “trembling hand” effect [Fudenberg and Tirole, 1991]. In summary, DBCNs can be char-

acterized according to two main factors: (i) the interactions among their entities are based

on semi-rational decision that tend to be regular and to repeat themselves; (ii) communities

are naturally formed in the network reflecting the social decisions of its entities. Because of

that, DBCNs pose as a very interesting and promising scenario for the three well connected

aspects we approach in this thesis: (i) modeling, (ii) predicting and (iii) controlling.

Social vs. random interactions: Because most of the interactions in DBCNs still arise from

conscious decisions made by their entities, the evolution of DBCNs is significantly different

from the evolution of random networks, e.g., Erdős and Rényi networks Erdös and Rényi

[1960]. Thus, while in DBCNs the edges are created from semi-rational decisions, which

tend to be regular and to repeat themselves, in a random network the edges are created

independently of the attributes of the nodes, i.e., the probability of connecting two nodes is

constant.

For instance, considering a network composed of people, their routine in everyday life

correlates to their interactions: if Smith and Johnson work at the same office, they are likely

to meet at 9am during weekdays. This is because we strongly believe Smith and Johnson

decide to go to work every day on time, since this is, probably, the rational decision to

perform. However, their decision can be affected by random events, such as being stuck in

traffic on a turnpike. Although rational decisions are regular, random decisions may often

occur as well.

17
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Formally, an agent may execute a social decision, or a random decision. Intuitively,

if its probability of performing a social decision is greater than its probability of a random

one, the network evolves to a well-structured social network On the opposite, the network

evolves as a random network, such as the Erdös and Rényi networks.

Differentiating social from random network: Among the main features observed in

DBCNs, there is the presence of communities, which are groups of individuals who are

strongly connected to each other because they share the same interests or activity dynam-

ics Backstrom et al. [2006b]; Kumar et al. [2006]. On the other hand, in a random network,

edges are created independently of the attributes of each node, i.e., a node i has the same

probability p to connect to any other node j of the network. This fact is fundamental to

differentiate a social network from a random network.

The network clustering coefficient Newman [2003] efficiently discriminates random

from social networks. Given an undirected graph G(V,E), the clustering coefficient cci

measures the probability of two given neighbors of a node i to be directly connected, being

calculated as cci =
2|(j,k)|
di(di−1) : j, k ∈ Ni, (j, k) ∈ E, where Ni is the set of neighbors and di is

the degree of node i. The clustering coefficient cc of the network is the average cci, ∀i ∈ V .

By introducing the equivalent random network GR as the random network constructed

with the same number of nodes, edges and empirical degree distribution of its real world

counterpart G, Watts and Strogatz Watts and Strogatz [1998] show that the clustering coef-

ficient of a social network G is one order of magnitude higher than the clustering coefficient

of GR. Thus, when a given network G exhibits a clustering coefficient that is significantly

higher (i.e., orders of magnitude higher) than that of its random equivalent GR, then we can

state that (part of) the decisions made by the agent of G are non-random.

Real-world DBCN datasets: In this chapter we look at three real-world datasets (or

traces) that describe movements of entities in campus and city scenarios of DBCNs.

The Dartmouth College dataset Henderson et al. [2004] is a mobility trace of more than

1, 000 individuals in the university campus, recorded over eight weeks. The USC cam-

pus dataset jen Hsu and Helmy [2005] is also a mobility trace in a campus scenario, with

more than 4, 000 individuals over eight weeks. Finally, the San Francisco dataset Rojas et al.

[2005] contains records of the mobility of 551 taxis in San Francisco, over one month. In all

cases, the contact events between two individuals are traced using start date of contact and

its duration. For both Dartmouth and USC traces, two individuals are in contact if they are

using the same access point to connect to the wireless network on campus. In the San Fran-

cisco trace, two individuals are in contact if their distance is lower than 250 meters, which is

the maximum range of the IEEE 802.11 network Piorkowski et al. [2009]. More details of

the datasets we use in this chapter and in the rest of this thesis are described in Table 3.6.

In the rest of this chapter we show how a simple effort on modeling, predicting and
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controlling DBCNs can already generate very interesting and promising results. First, from

the modelling effort we are able to better understand the behavior of the agents. Then, from

the knowledge obtained in this stage, we predict their behavior. Finally, since we know how

the agents will behave, we show how a control application can benefit from this knowledge.

3.2 Modeling

The previously introduced datasets list encounter events given by the time and duration of

any two nodes meeting. We divide the whole duration of the dataset into discrete time steps

of duration δ. In our study, we considered a duration of δ = 1 day, since the data sets

originate from human activities who mostly have a common routine repeated day by day

(e.g., go to work/school or have lunch in the same place). All encounter events occurring

between time steps k − 1 and k are represented in an event graph Gk(Vk, Ek). The set of

vertices Vk is composed of all nodes enlisted in the encounter events between time steps

k − 1 and k. An edge between vertex i and j exists in Ek if nodes i and j have met between

time steps k − 1 and k.

From that, we can define a time varying representation of the DBCNusing a temporal

accumulative graph Gt = (Vt, Et). Formally, Gt = {G1 ∪ G2 ∪ ... ∪ Gt}. As such, Vt (resp.

Et) is the set of all vertices (respectively edges) that appeared in the dataset between time

0 and time step t. Gt evolves over time and considers both the routine encounters and the

random encounters between two individuals.

In Figure 3.1, we show the accumulation graph Gt calculated for t =2 weeks of data,

drawn using a force-direct layout algorithm (FDLA) Fruchterman and Reingold [1991]. Al-

though the FDLA draws the graph so there are as few crossing edges as possible, notice how

difficult it is to compare or extract any knowledge from the networks using only the preview.

(a) Dartmouth (b) USC (c) San Francisco

Figure 3.1. Snapshots of the networks Gt after two weeks.
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In Figure 3.2, we show the densification of Gt. First, in Figure 3.2-a, we show the

number of new edges added by Gk to G1 ∪ G2 ∪ . . . ∪ Gk−1 per each day k. Observe the ups

and downs in the curves, which are clearly a consequence of the seasonality, i.e., weekdays

have more activity than weekends. Also, observe that the number of new edges added to the

USC network is, in general, orders of magnitude higher than the other networks. However,

when we normalize this number of new edges by the number of possible edges
|Vt|×|Vt−1|

2
, we

see that the San Francisco dataset is the one with the higher densification, completing almost

80% of the graph in the first day of the analysis, see Figure 3.2-b. Note that the USC and the

Dartmouth networks densify similarly.
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Figure 3.2. The densification of the temporal graph Gt(Vt, Et) per each day t. (a) The

number of new edges added to Gt(Vt, Et) per each day t. (b) The percentage of the

graph that is covered by the new edges.

The first step to analyze the mobility patterns of graphGt is to build its random version

GR
t . This version should contain similar topological characteristics of the real graph, i.e., the

same number of nodes, edges, and empirical degree distribution. Thus, the only difference

between Gt and GR
t is in the connections among nodes. While in Gt the nodes connect in a

“semi-rational” way, in GR
t the connections happen in a purely random fashion. This allows

to accurately determine the extent of randomness in the mobility of individuals in temporal

social networks.

In this thesis, we use two algorithms to compare real data with random graphs. The first

algorithm, which we will call RND, is well known in the scientific community Chung and Lu

[2002]. The algorithm GR=RND (G) receives a graph G(V,E) as a parameter and returns a

random graph GR(V,ER) with the same topological characteristics of G. Given the degree

distributionD = (d1, d2, . . . , dn) of G with n nodes, this algorithm assigns an edge between

nodes i and j with probability pi,j = (di × dj)/
∑|V |

k=1 dk.

The second random generator algorithm used in this chapter, which we call T-RND, is

an extension of RND and is able to generate random graphs from a temporal networkGt. The
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temporal graphGt = {G1∪G2∪ . . .∪Gt} is the union of event graphs Gt. Thus, the algorithm

GR
t =T-RND (G1,G2, . . . ,Gt) receives as parameters a set of consecutive event graphs Gt and

returns a random temporal graphGR
t . It constructsG

R
t by executing RND in each event graph

Gt and then aggregating it in a way that G
R
t = {RND(G1) ∪ RND(G2) ∪ . . . ∪ RND(Gt)}.

We first demonstrate the analytical power of random comparison in Figure 3.3, where

we show the behavior of the clustering coefficient for graphs Gt and GR
t over time for the

three analyzed networks. As we have previously mentioned, the clustering coefficient is

a good metric to differentiate social networks from random networks. As we observe in

Figure 3.3-a, for the Dartmouth dataset, in the first days, the clustering coefficient of Gt and

GR
t are different in orders of magnitude. However, as time goes by, their values get closer,

as more random encounters are occurring. On the other hand, as we see in Figure 3.3-b,

the clustering coefficients of Gt and GR
t for the USC dataset are almost constant over time.

However, the difference between them is not significantly high, since they have the same

order of magnitude. We discuss these differences in detail later on.
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(c) San Francisco

Figure 3.3. Evolution of the clustering coefficient of the three analyzed networks Gt

and their random correspondents GR
t .

Finally, as we observe in Figure 3.3-c, the clustering coefficients of the San Francisco

networks are practically the same, being close to 1. In fact, after a few hours, the network

becomes similar to a clique, indicating a global high mobility, allowing each individual taxi

to encounter most of the other taxis at some point of the day. Formally, this indicates that

Gt and GR
t are very similar for the San Francisco dataset, i.e., the probability or random

decisions is much more higher than the probability of social decisions, what makes the San

Francisco network similar to a random mobile network. This makes sense since taxis’ de-

cisions depend on the decisions of their passengers they are collecting at random on the

streets.
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3.3 Classification

From the modeling, we propose the Random rElationship ClASsifier sTrategy (RECAST) to

differentiate relationships among individuals in a social network. More precisely, the pur-

pose of RECAST is to tell apart, in a DBCN, random interactions, which are hard to predict,

from social-driven ones, which are easier. To that end, Section 3.3.1 presents the DBC-

Nfeatures used by RECAST. Then, Section 3.3.2 introduces the RECAST algorithm and,

finally, Section 3.3.3 discusses the results obtained by applying RECAST to the previously

introduced datasets.

3.3.1 DBCNs features

In order to identify social relationships, we must point out which features distinguish a social

relationship from a random one. Indeed, two characteristics are always present in social

relationships:

1. Regularity. It is well known that social relationships are regular, in that they repeat

over time Eagle et al. [2009]. If two individuals are friends, e.g., co-workers or daily

commuters, they see each other regularly.

2. Similarity. It is expected that two individuals who share a social relationship have

common acquaintances between them Onnela et al. [2007]. As an example, two indi-

viduals who share a large number of friends will most probably know each other as

well.

Regularity and Similarity can be mapped into DBCNfeatures that, in turn, can be

computed from a contact dataset so as to identify what kind of relationship two individuals

share. In the following, we discuss such features.

3.3.1.1 Edge Persistence

A complex network metric mapping of the Regularity of a relationship is the edge per-

sistence Hidalgo and Rodriguez-Sickert [2008]. Basically, considering the set of event

graphs {G1, . . . ,Gt}, the edge persistence pert(i, j) measures the percentage of times the

edge (i, j) occurred over the past discrete time steps 1, 2, . . . , t. Formally, it is defined as

pert(i, j) = 1
t

∑t
k=1 [(i,j)∈Ek], where [(i,j)∈Ek] is an indicator function that assumes value

1 if the edge (i, j) exists in Ek at time k, and 0 otherwise. Note that here the persistence

computation is performed over the set of event graphs Gt and not over the aggregated tem-

poral graphs Gt. For instance, assuming that each day of the week is a time step, if Smith
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and Johnson met each other two times in a given week, their edge persistence is the num-

ber of times they encountered, i.e., 2, divided by the total number of time steps, i.e., 7,

pert=7(Smith, Johnson) = 2/7. Edge persistence allows thus to spot regular and routine re-

lationships between two individuals. We again emphasize that in the aggregated graph Gt,

only one edge exists between Smith and Johnson after this week.

We show in Figure 3.4 (first row) the edge persistence as measured in the three datasets.

Considering the set of event graphs {G1, ...,Gt} of all three real network and their T-RND-

generated random counterparts {RND(G1), ...,RND(Gt)}, we portray the complementary cu-

mulative distribution function (CCDF) F per(i,j)(x) = P [pert(i, j) > x] (second row). There,

the time step is one day and each curve is obtained by analyzing four weeks of contacts, or,

in other words, t = 28 corresponds to the length of the shorter considered dataset, i.e., the

San Francisco dataset. From Figures 3.4-a and 3.4-b, both the Dartmouth and USC networks

have edge persistence distributions that significantly differ from their random equivalent.

More precisely, while the CCDFs of random networks show an exponential decay, in the real

networks, individuals tend to see each other regularly, i.e., for reasons beyond pure random-

ness. On the other hand, as we observe in Figure 3.4-c, the encounters in the San Francisco

dataset occur almost in a random fashion.
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Figure 3.4. The complementary cumulative distribution function of the edge persis-

tence (a,b,c) and topological overlap (d,e,f) for the three analyzed networksGt and their

random correspondents GR
t after four weeks, t = 28 days.
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3.3.1.2 Topological Overlap

The Similarity of contacts can be mapped to the topological overlap feature of a complex

network Onnela et al. [2007]. This metric is extracted from the aggregated temporal graph

Gt. The topological overlap tot(i, j) of a pair of nodes i and j is defined as the ratio of

neighbors shared by two nodes, or, formally

tot(i, j) =
|{k | (i, k), (j, k) ∈ Et)}|

|{k | (i, k) ∈ Et} ∪ {k | (j, k) ∈ Et} \ {k | (i, k), (j, k) ∈ Et)}|
.

In Figure 3.4 (second row), we show the CCDF F to(i,j)(x) = P [tot(i, j) > x] of the

topological overlap of the edges of the real networks Gt and their respective random net-

works GR
t , generated by the T-RND mechanism. Again, we pick one day as the time step

and consider four weeks of contacts (i.e., t = 28 days). Similar to what occurred to the

edge persistence, we note that for the Dartmouth and USC networks CCDFs significantly

differ from their random counterparts, in Figures 3.4-d and 3.4-e. Indeed, pairs of individ-

uals in these datasets share common neighbors in a way that could not happen randomly.

Conversely, in Figure 3.4-f, the San Francisco network again behaves like a random contact

network. Since all results indicate that the San Francisco network is random by nature, in

the remainder of this chapter we will focus on the Dartmouth and the USC datasets.

3.3.2 The RECAST algorithm

We have seen that both the edge persistence and the topological overlap behave significantly

differently in social networks and in plain random networks. Therefore, given a contact

dataset, it is possible to exploit such a diversity to identify which edges are consequences

of random or social events. In particular, we propose four classes of relationships or edges,

which depend on the possibility that a determined edge feature (i.e. persistence or topo-

logical overlap) is generated randomly. The four classes of relationships are described in

Table 3.1. A feature value is called “social” if there is an almost zero probability of this

value be generated randomly. On the other hand, a feature value is called “random” if there

is a significant probability of this value be generated randomly.
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Table 3.1. Classes of relationship.

Class Edge persistence Topological overlap

Friendship social social

Acquaintanceship random social

Bridges social random

Random random random

Relationships classified as Friendship characterize pairs of individuals who meet each

other regularly and also tend to know the same people. The Acquaintanceship class includes

relationships among individuals sharing a lot of acquaintances, but not meeting often. Con-

sidering a friendship network, friends of friends who see each other once in a while, in

occasions such as birthday parties, graduation ceremonies or weddings, would be classified

as Acquaintanceship. The last social class is that of Bridges that characterizes pairs of indi-

viduals who see each other regularly, but do not share a large number of common friends.

E.g., the so-called familiar strangers, people who meet every day but do not really know

each other (i.e., because they just commute between common home and work areas) are very

likely to be classified as Bridges. Finally, when an edge is neither persistent nor character-

ized by topological overlap, it is considered the result of a random contact, and we classify

it as Random.

In order to distinguish “social” from “random” values of the DBCN’s features, we

resort to the distributions we previously discussed. More precisely, we define a value prnd,

the only parameter in RECAST, and we identify the feature value x̄ for which F (x) = prnd

for the random networkGR
t . The value x̄ represents then a threshold, such that feature values

higher than x̄ occur with a probability lower than prnd in a random network. If we set prnd

to some small value, we can finally state that feature values higher than x̄ are very unlikely

to occur in a random network, i.e., they are most probably due to actual social relationships.

The parameter prnd can also be seen as the expected classification error percentage. For

instance, in Figure 3.4-a consider prnd = 10−3. This gives a threshold x̄ = 0.17, then all

values higher than x̄ = 0.17 will be classified as social. However, there is a prnd = 10−3

probability of randomly generating values that the RECAST classified as social edges (i.e.,

false positives). In other words, we expect that 10−3 = 0.01% of the edges classified as social

to be, in fact, random. The full RECAST mechanism is described in Algorithm 1, where the

criteria used in each classification are detailed. In this algorithm, index t is omitted for per

and to metrics for clarity purposes.

The complexity of RECAST is upper bounded by the construction ofGR
t using T-RND,

which is O(t × (|Vt| + |E
R
t |)), i.e., the minimum complexity for the generation of a degree
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Algorithm 1: RECAST: classify edges of Gt

Require: prnd ≥ 0
return class(i, j) ∀(i, j) ∈ ∪tEt

Construct GR
t and set {RND(G1), ...,RND(Gt)} using T-RND

Get F to(x) from GR
t and F per(x) from {RND(G1), ...,RND(Gt)}

Get x̄to | F to(x̄to) = prnd and x̄per | F per(x̄per) = prnd
for all edges (i, j) ∈ Et do

if per(i, j) > x̄per and to(i, j) > x̄to then

class(i, j)← Friendship

else if per(i, j) > x̄per and to(i, j) ≤ x̄to then

class(i, j)← Bridges

else if per(i, j) ≤ x̄per and to(i, j) > x̄to then

class(i, j)← Acquaintanceship

else

class(i, j)← Random

end if

end for

sequence-based random graph available to date Chung and Lu [2002]. After the construction

of GR
t , the complexity of the classification mechanism is O(|ER

t | × |Vt|), where O(|Vt|) is

the cost of computing the topological overlap of an edge.

3.3.3 Classification results

We apply RECAST to the Dartmouth and the USC networks. We are omitting the results for

the San Francisco dataset, since, as previously stated, the random-like nature of taxi routes

makes the analysis uninteresting, with all edges classified as Random. In Figure 3.5, we

show the number of edges per class as a function of the prnd value. An initial and quite

surprising observation is that, by varying prnd through four orders of magnitude, the number

of edges per class stays in the same magnitude. This shows that RECAST is robust with

respect to prnd, i.e., it does not need a fine calibration of the parameter to return a consistent

edge classification.
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Figure 3.5. The number of edges ((a) and (b)) and percentage of encounters ((c) and

(d)) of a given class that appears in the first four weeks of data for a given value of prnd.
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Secondly, in both datasets, the number of Bridges is orders of magnitude lower than

the other classes, a clear indication that in the analyzed social networks regular connections

among different communities are rare. Also the number of Friendship edges is similar in

the two networks, implying similar dynamics in tight relationships among individuals in the

two campuses. This also agrees with the biological constraint on a social interaction that

limits humans’ social network size, i.e., the number of Friendship Dunbar [1998]. However,

the two datasets differ when looking at the number of edges classified as Acquaintanceship

and Random, which is one order of magnitude larger in USC than in Dartmouth. This is the

result of the actual size of the two campuses, USC accounting for a population around ten

times larger than that of Dartmouth. This aspect is also reflected by the size of the traces in

Table 3.6 that clearly leads, in the USC network, to (i) many more Random contacts among

individuals who do not actually know each other, but just happen to cross while strolling on

campus, and (ii) an increased presence of strangers who happen to know the same people,

leading to more Acquaintanceship edges.

As mentioned, the proportion of Random edges is similar but the number of individual

encounters is significantly different between the Dartmouth and USC networks. In Fig-

ure 3.5, we show the percentage of encounters of a given class that appear in the first four

weeks of data for a given value of prnd. Observe that the percentage of Random encounters

in the Dartmouth network is close to zero, varying from 1.7% to 3.6% as prnd decreases. On

the other hand, in the USC network, this percentage varies from 16% to 29%. In fact, the

proportion of Random encounters provides a good estimate of the probability of random de-

cisions in the analyzed networks. Thus, the USC network has a significantly higher tendency

to evolve to a random topology than the Dartmouth network.

The analysis is confirmed by Figure 3.61, portraying the snapshots of the Dartmouth

and USC networks after two weeks of interactions, when considering only social edges (i.e.,

Friendship, Acquaintanceship and Bridges) or Random edges. Edges of the former net-

works in Figures 3.6-a and 3.6-c are distinguished by colors, according to the same code

used in Figure 3.5 (Friendship edges are painted in blue, Bridges in red, Acquaintanceship

in gray, and Random in orange). The difference between these social-only networks and

their complete counterpart (in Figure 3.1) or their random-only equivalents (in Figures 3.6-b

and 3.6-d) is striking. Social networks are characterized by a complex structure of Friendship

communities, linked to each other by Bridges and Acquaintanceship. More precisely, when

comparing the Dartmouth and USC social networks, the former appears to be dominated by

Friendship interactions, while the sheer number of Acquaintanceship in the latter drives its

graph structure.

1Please view Figure 3.6 in color.
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(a) Dartmouth, only social edges (b) Dartmouth, only random edges

(c) USC, only social edges (d) USC, only random edges

Figure 3.6. [Best viewed in color] Snapshots of the Dartmouth and USC networks
after two weeks of interactions, considering only the social edges and only the random
edges. Friendship edges are painted in blue, Bridges in red, Acquaintanceship in gray
and Random in orange.

Conversely, networks containing only Random edges do not show any structure and

look like random graphs. A rigorous way to verify the randomness of such networks, and thus

validate the efficiency of the RECAST classification, is to perform a clustering coefficient

analysis. Figure 3.7 compares the clustering coefficients of the Dartmouth and USC networks

when only Random edges are present, i.e., comparison of graph Gt against the same metric

computed in their random counterparts GR
t . The clustering coefficient, commonly employed

to determine the actual randomness of a network, has very similar evolutions in Gt and GR
t ,

thus proving how RECAST is able to extract from a real-world contact dataset edges that

correspond to purely random encounters.



3.4. PREDICTION 29

0 7 14 21 28
0

0.2

0.4

0.6

0.8

1

time t (days)
c
lu
s
te
ri
n
g
 c
o
e
ff
ic
ie
n
t

real G
t

random G
t

R

(a) Dartmouth

0 7 14 21 28
0

0.2

0.4

0.6

0.8

1

time t (days)

c
lu
s
te
ri
n
g
 c
o
e
ff
ic
ie
n
t

real G
t

random G
t

R

(b) USC

Figure 3.7. Evolution of the clustering coefficient of the Dartmouth and USC networks
Gt when only Random edges are present compared to their random correspondents GR

t .

3.4 Prediction

In this section, we show a simple prediction effort using the proposed RECAST. We classify

the edges of Gt after four weeks of encounters (refereed as training set, where encounters

happened during 28 days are considered) and test the classification in the 5th week (refereed

as test set, where encounters happened during the 7 days of the 5th week are considered).

Analysis of both sets is presented in Figure 3.8, as a function of prnd value.
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Figure 3.8. The distribution of encounters ((a) and (b)) and appearance ((c) and (d)) of
each class in the one week test set as a function of prnd.

First, in Figure 3.8-(a) and -(b), we show the proportion of encounters of a determined

class that appear in the 5th-week test set of each dataset. We also show the number of

encounters involving edges that were not classified (refereed as new), i.e., edges which ap-

peared for the first time in the network in the test set. First, observe that the Dartmouth and

USC networks behave differently. In the Dartmouth network, the almost-zero proportion of

new encounters, allied to the fact that the proportion of encounters in the test set is similar

to the proportions in the training set (see Figure 3.5-c), suggests that this network is stable.

On the other hand, only the proportion of Random and Bridges encounters stays the same for

the USC network compared with the training set (see Figure 3.5-d). The Friendship encoun-

ters slightly decrease, the Acquaintanceship encounters decrease ≈ 30% and ≈ 25% of the
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encounters are new, suggesting that the USC network is not stable. These facts are, again,

a consequence of the significant difference between the probabilities of random decisions of

this network.

Second, in Figure 3.8-(c) and -(d), we show the percentage of edges of a given class

that appeared in the test set. For instance, for prnd = 10−6 in the Dartmouth network in

Figure 3.8-(c), almost 100% of the edges classified in the Friendship class in training set

are still friends in test set. Observe that edges which are put in a high persistence class

(i.e., Friendship and Bridges) have more chance to appear than low persistence class (i.e.,

Acquaintanceship and Random), considering both networks. Moreover, considering the low

persistence classes (i.e., Acquaintanceship and Random), an edge is more likely to appear if it

has a high topological overlap (i.e., Acquaintanceship), being curious the fact that this is not

the case for high persistence classes. The Dartmouth and USC networks present significantly

different percentages because of the differences we explained in the last paragraph, i.e., while

the Dartmouth network is stable (low probability of random encounters), the USC is not (high

probability of random encounters).

3.5 Controlling

Given the knowledge obtained from the RECAST, we are able to analyze the impact of each

class of relationship on data dissemination application using trace driven simulations. Ac-

cording to each dataset, we classify the edges after a training set of days using the RECAST

with prnd = 10−4 and verify the performance of the dissemination in a test set of days2. For

the Dartmouth network, we classify the edges after a training set of four weeks of encoun-

ters and verify the performance of the dissemination in a test set corresponding to the fifth

subsequent week. For the USC network, since the number of encounters is lower than in the

Dartmouth network, we extend the test set to three weeks. Moreover, since the number of

new encounters is proportionally high, we extend the training set to six weeks.

The methodology we use in this chapter is the same as described in Zyba et al. [2011].

Messages are disseminated using flooding and, since the outcome depends on the start time

of the simulation, we repeat the simulation by uniformly sampling many start times t0 be-

tween the beginning of the selected week and the middle of that week. At the start of each

simulation, only one individual src carries the message, which is the first node that appears

in the trace after t0. Simulations last three and half days to ensure they all complete within

the week-long trace.

2Other prnd values give similar results.
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The message is transmitted via broadcast in a wireless fashion, i.e., everyone in contact

with the sender receives the message. However, only available edges trigger transmissions.

We consider this rule because we replay each trace multiple times making available different

combinations of edge classes. For instance, if only Friendship edges are available, then only

encounters of this class trigger transmissions, although everyone in the transmission range

will receive the message, no matter which relationship they share with the sender. First,

we analyze the impact on dissemination when all edges are available except the ones of a

determined class. Then, we observe the behavior when only edges of a specific class are

available. Finally, we show mixes of combining pairs of classes that give almost identical

results as the scenario when all edges are available.

Moreover, as considered in Zyba et al. [2011], we also assume that message transfers

are instantaneous. We also use contamination as the metric characterizing message dissem-

ination. Contamination is the number of individuals who received a given message as a

function of time. It reflects how effective a given population is at disseminating information

in a given area. During the simulations, we consider that the population of individuals is

solely the ones who appear in the trace within the simulation time. We also consider only

encounters between pairs of individuals who have a class, i.e., those appearing in the training

set. Thus, when all edges are considered and all individuals are reachable from src after t0,

the contamination is 100%.

Figure 3.9 shows the contamination behavior when we remove from the traces all edges

of a given class. For comparison, we also show the behavior of the contamination when all

edges (except new encounters) are available. First, observe that for the USC network, only

the removal of Random edges impacts significantly the performance of the contamination.

On the other hand, for the Dartmouth network, the Friendship edge class is the one that im-

pacts more significantly the contamination performance, but the removal of Random edges

also has a significant impact. For instance, after five hours, the contamination is at ap-

proximately 58% when all edges are available. When we remove the Random edges, the

contaminations drops to approximately 46%. However, the largest impact is caused by the

removal of Friendship edges, dropping the contamination to approximately 36%.

Figures 3.10-a and 3.10-b show the contamination in the Dartmouth and the USC net-

works when only edges of a selected class are available. Observe that the individual role of

each class is significantly different in the analyzed networks. The difference in the behavior

of the contamination in the networks is mainly due to the proportion of random encounters

in these networks. For instance, in the fifth week of encounters, the proportion of random en-

counters in the Dartmouth network is close to 0, while in the USC represents approximately
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Figure 3.9. The contamination of the network when edges of a selected class are re-
moved. The vertical lines represent a 95% confidence interval.
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Figure 3.10. The contamination of the networks using only edges of a selected class.
The vertical lines represent a 95% confidence interval.

20% of the total number of encounters (see Figure 3.8).

While in the Dartmouth network the Friendship edges are the ones that achieve the

highest contamination, in the USC network the Random edges are the ones that perform

better. In the Dartmouth network, the Friendship edges achieve a high contamination in the

first hours, not spreading much more after that. This happens because Friendship charac-

terize strong relationships inside communities, so the contamination spreads fast inside the

community, but cannot find an easy way out of it to other groups of individuals. Since in the

USC network the number of Friendship edges is significantly lower, the propagation does not

spread at all through the community borders. Also note how the contamination using Bridges

spreads slowly but always increasing in the Dartmouth network. This happens because the

number of encounters involving Bridge edges is high, although the number of Bridge edges

is low. Finally, it is interesting to observe that the contamination involving only Random has

similar performance and the propagation curve in both networks is also similar for the given

time windows, considering the fact that the total number of encounters.

It is also interesting the fact that for the Dartmouth network the shape of the curve

when all edges are available is more similar to the shape of the curve when only Friendship
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edges are available. On the other hand, for the USC network, the shape of the curve when

all edges are available is more similar to the shape of the curve when only Random edges are

available. This is an expected result since, as we have seen, in the Dartmouth network the

individuals have a more social mobility behavior (low probability of random encounters),

while in the USC network the individuals have a more random behavior (high probability

of random encounters). Finally, it is worth noting that 100% of contamination is never

reached in the USC network even when all edges are available. This is due to (i) the fact

that we consider in the simulation time only encounters that appeared in the training set,

(ii) the higher percentage of new edges present in the USC network (as seen in Figure 3.8,

approximately 25% of the encounters in the fifth week of the test set are new) and (iii) 98%

of the nodes present in the test set have new encounters.

In summary, after observing the contamination performance according to the

use/removal of edges of a specific class, we can identify the most important classes of rela-

tionships in a given network. For instance, the Acquaintanceship class accounts for a large

number of edges in both networks, but edges of this class seem to produce a low impact in

data dissemination. On the other hand, we can use the edges classified as Friendship to dis-

seminate information very fast inside a community and edges classified as Random to spread

the information through different communities. This knowledge is fundamental in classes of

applications that use, for instance, DTN routing schemes.

In Figure 3.10-c, we show how combinations of edge classes can give almost identical

performance as if all edges were available for transmission. For the Dartmouth network, we

observe the contamination when only Friendship and Random (Dart:F+R) are available and

only Friendship and Bridges (Dart:F+B) are available. For the USC network, we observe

the contamination when only Acquaintanceship and Random (Dart:A+R) are available. The

main idea behind these combinations is that an efficient contamination through contact net-

works needs (i) edges that provide a high number of encounters inside communities, i.e.

Friendship edges for Dartmouth and Acquaintanceship for USC, and (ii) edges that provide

a high number of connections among individuals in different communities, i.e., Random and

Bridges for Dartmouth and Random for USC. It also important to point out that the contami-

nation when Bridge edges are added to Friendship edges in the Dartmouth network is similar

to the case where Random edges are added to Friendship. However, the number of Bridge

edges is only ≈ 12% the number of Random edges. This shows the importance of detecting

Bridge edges in the process of saving computational resources.
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3.6 DBCNs Analyzed

In this chapter we showed a simple analysis on three mobility networks, contemplating the

three main aspects we propose in this thesis, i.e., modeling, predicting and controlling, which

are discussed separately. In Chapter 4, we focus on modeling large communication networks.

In Chapter 5, we tackle the prediction task over competitive networks. Finally, in Chapter 6,

we propose a protocol to control computer networks. Table 3.6 lists the real datasets we use

to construct the DBCNs we analyze in this thesis.
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Chapter 4

Modeling in Communication

Networks

4.1 Introduction

In this chapter, we show elaborate models for communication networks. In this network, ev-

ery agent is an individual capable of communicating freely to any other agent in the network.

Such networks can be used to model online social network records, e.g. as Orkut [Orkut,

2010], e-mail server data, phone calls, and Short Message Service (SMS) messages. In these

networks, if a single agent i wants to communicate with another agent j, then a communica-

tion event is likely to happen between i and j, i.e., i calls or sends a message to j. Moreover,

once a communication event occurs between i and j, a communication flow is established.

The size di,j of the communication flow grows while both of the agents still want to commu-

nicate. If one agent decides to stop the communication, the flow ends.

As we show in the extent of this chapter, modeling the agents of this type of network is

extremely challenging. Human communication patterns are likely to change as the techno-

logical and cultural aspects of society change. For instance, the typical duration of a phone

call involving two fixed phones is probably different from the one involving two mobile

phones. Therefore, we use this challenging scenario in the study of modeling in DBCNs.

More specifically, in this chapter we analyze the rate in which two social agents com-

municate and also the duration of their communication flow. First, in Section 4.2, we analyze

the size of the communication flows, i.e., the duration of phone calls, and we show how a

good modeling effort can lead a wide variety of applications. Then, in Section 4.3, we ana-

lyze the inter-event time between communications in several communication scenarios. As

we show in Section 4.3, there is an apparent contradiction in the existing literature about

37
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which model should be used to represent inter-event times. Thus, in this part of this chapter

we focus on proposing a intuitive and parsimonious model that unifies the previous theo-

ries. With the knowledge present in Section 4.2 and 4.3, we are able to describe the intrinsic

motivations behind the social relationships among humans, which can be used for several

applications. In Section 4.4, we present the conclusions and future directions from the work

described in this chapter.

The main contributions of this chapter are:

• We propose the TLACmodel for individual phone call durations and inter-event times;

• We describe applications based on TLAC model, such as the introduction ofMetaDist,

for monitoring the collective behavior of individuals;

• We propose the SFP model to generate TLAC distributions;

• We show that the communication events generated by the SFP model unifies existing

theories on communication traffic.

Table 4.1 presents the symbols used in this chapter.

4.2 Communication Flow Size

To the best of our knowledge, this is the first work that analyzes the size of communica-

tion flows of individuals in such a large scale. The accurate knowledge on the size of the

communication flow of individuals leads to several applications, such as user classification,

network monitoring, infrastructure design and many others. We discuss this in details in

Section 4.2.4.

4.2.1 Preliminaries

In the literature, Seshadri et al. [2008] proposed the Double Pareto Log-normal (DPLN) dis-

tribution to model the total time of talk minutes per customer, aggregating the phone calls

of all users in the database. The DPLN distribution is a four parameter distribution that has

two straight lines in log-log scales. Moreover, Guo et al. [2007] analyzed mobile phone calls

that arrived in a mobile switch center in a GSM system of Qingdao, China, and they found

that the duration of the phone calls is best modeled by a log-normal distribution. In these

two studies, the call durations of different users are aggregated, what may generate noisy

distributions with an undetermined observable pattern.
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Symbol Description

CDD calls duration distribution

IED inter-event distribution

ni number of phone calls made by user i

TLAC Truncated Lazy Contractor model

OR Odds Ratio

PDF Probability Density Function

∆t inter-event time between times t and t− 1

ρ the OR slope

β the OR intercept

µ the median of the IED, OR(µ) = 1

P,B,Σ MetaDist parameters

C location parameter of the SFP0 and SFP models

a SFP parameter that defines the value of ρ

ρ the average ρ of the users of a dataset

PP Poisson Process

SFP0 Simplified Self-Feeding Process

SFP Self-Feeding Process

SFP-N Aggregated Self-Feeding Process

LRD long range dependence

PL-P Power Law – Poisson conundrum

LRD-P Long Range Dependency – Poisson conundrum

Table 4.1. Table of symbols.

This was also observed by Willkomm et al. [2008], who studied the duration of mo-

bile calls arriving at a base station during different periods and found that they are neither

exponentially nor log-normally distributed, possessing significant deviations that make them

hard to model. They verified that about 10% of calls have a duration of around 27 sec-

onds, which correspond to calls not answered by mobile users and the calls were redirected

to voicemail. This makes the call duration distribution to be significantly skewed towards

smaller durations due to nontechnical failures, e.g., failure to answer. The authors showed

that the distribution has a “semi-heavy” tail, with the variance being more than three times

the mean, which is significantly higher than that of exponential distributions. Comparing to

a log-normal distribution, though the tails agree better, but diverge at large values, what asks

for a more heavy-tailed distribution.
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4.2.2 Call Duration Distribution

4.2.2.1 Problem Definition

Given the preliminaries, we analyze mobile phone records of 3.1 million customers obtained

from the network of a large mobile operator of a large city during four months. In this

period, more than 1 billion phone calls were registered and, for each phone call, we have

information about the duration of the phone call, the date and time it occurred and encrypted

values that represent the source and the destination of the call, which may be mobile or not.

When not stated otherwise, the results shown in this thesis refer to phone call records of the

first month of our dataset. The results for the other three months are explicitly mentioned in

Section 4.2.3. We used this methodology because we want to analyze the evolution of the

user behavior over time, verifying how its behavior changes from month to month.

The Call Duration Distribution (CDD) is the distribution of the call duration per user

in a period of time, which in our case, is one month. In the literature, there is no consensus

about what well-known distribution should be used to model the CDD. There are researchers

who claim that the CDD should be modeled by a log-normal distribution [Guo et al., 2007]

and others that it should be modeled by the exponential distribution [Tejinder S. Randhawa,

2003]. Thus, in this section, we tackle the following problem:

Problem 1. CDD FITTING. Given d1, d2, ..., dni
durations of ni phone calls made by a user

i in a month, find the most suitable distribution for them and report its parameters.

As we mentioned before, there is no consensus about what well known distri-

bution should be used to model the CDD, i.e., for some cases the log-normal fits

well [Guo et al., 2007] and for others, the exponential is the most appropriate distribu-

tion [Tejinder S. Randhawa, 2003]. Thus, finding another specific random distributions that

could provide good fittings to a particular group of CDDs would just add another variable

to Problem 1, without solving it. Therefore, we propose that the distribution that solves

Problem 1 should necessarily obey the following requirements:

• R1: Intuitively explains the intrinsic reasons behind the call duration;

• R2: Provides good reliable fits for the great majority of the users.

In the following sections, we present a solution for Problem 1. In Section 4.2.2.2,

we tackle Requirement R1 by presenting the TLAC model, which is an intuitive model

to represent CDDs. Then, in Section 4.2.2.3, we tackle Requirement R2 by showing the

goodness TLAC model fit for our dataset.
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4.2.2.2 TLAC Model

Given these constraints, we start solving Problem 1 by explaining the evolution of the call

duration by a survival analysis perspective. We consider that all calls c1, c2, ..., cC made by

a user in a month are individuals who are alive while they are active. When a phone call cj

starts, its initial lifetime lj = 1 and, as time goes by, lj progressively increments until the

call is over. It is obvious that the final lifetime of every cj would be its duration dj .

In the survival analysis literature, an interesting survival model that can intuitively

explain the lifetime of entities such as human beings and companies in the market is the

log-logistic distribution [Fisk, 1961; Bennett, 1983; Mahmood, 2000; Lawless and Lawless,

1982]. The log-logistic distribution models a modified version of the well-known “rich gets

richer” phenomenon. First, for a variable to be “rich”, it has to face several risks of “dying”

but, if it survives, it is more likely to get “richer” at every time. We propose that the same

occurs for phone calls durations. After the initial risks of hanging up the call, e.g., wrong

number calls, voice mail calls and short message calls such as “I am busy, talk to you later”

or “I am here. Where are you?” type of calls, the call tends to get longer at every time. As

an example, the lung cancer survival analysis case [Bennett, 1983] parallels our environment

if we substitute endurance to disease with propensity to talk: a patient/customer who has

stayed alive/talking so far, will remain as such, for more time, i.e., the longer is the duration

of the call so far, the more the parties are enjoying the conversation and the more the call

will survive. It is important to point out that the use of the log-logistic distribution is not

limited to the survival analysis. There are also examples of its use in the distribution of

wealth [Fisk, 1961], flood frequency analysis [M.I. Ahmad and Werritty, 1988] and software

reliability [Gokhale and Trivedi, 1998].

Thus, to solve Problem 1, we propose the Truncated Lazy Contractor (TLAC)

model, that is a truncated version of the log-logistic distribution, since it does not con-

tain the interval [0; 1). Firstly we show, in Figure 4.1-a, the Probability Density Function

(PDF) of the TLAC, the log-normal and exponential distributions, in order to emphasize

the main differences between these models. The parameters were chosen accordingly to a

median call duration of two minutes for all distributions. The TLAC and log-normal distribu-

tions are very similar, but the TLAC is less concentrated in the median than the log-normal,

i.e., it has power law increase ratios in its head and in its tail. We believe that this is an-

other indication that the TLAC is suitable to model the users’ CDD, since as it was verified

by [Willkomm et al., 2008], CDDs have “semi-heavy” tails. The basic formulas for the log-

logistic distribution and, consequently, for the TLAC, are [Lawless and Lawless, 1982]:
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PDFTLAC(x) =
exp(z(1 + σ)− µ)

(σ(1 + ez))2
, (4.1)

CDFTLAC(x) =
1

1 + exp(− (ln(x)−µ)
σ

)
, (4.2)

z = (ln(x)− µ)/σ, (4.3)

where µ is the location parameter and σ the shape parameter.
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Figure 4.1. Comparison among the shapes of the log-normal, exponential and TLAC

distributions.

Moreover, in finite sparse data that spans for several orders of magnitude, which is

the case of CDDs when they are measured in seconds, it is very difficult to visualize the

PDFs, since the distribution is considerably noisy at its tail. A possible option is to smooth

the data by reducing its magnitude by aggregating data into buckets, with the cost of losing

information. Another option is to move away from the PDF and analyze the cumulative

distributions, i.e., cumulative density function (CDF) and complementary cumulative density

function (CCDF) [Clauset et al., 2009]. These distributions veil the sparsity of the data and

also the possible irregularities that may occur for any particular reason. However, by using

the CDF (CCDF) you end up losing the information in the tail (head) of the distribution. In

order to escape from these drawbacks, we propose the use of the Odds Ratio (OR) function,

that is a cumulative function where we can clearly see the distribution behavior either in the

head or in the tail. This OR(t) function is commonly used in the survival analysis and it

measures the ratio between the number of individuals that have not survived by time t and

the ones that survived. Its formula is given by:

OR(t) =
CDFTLAC(t)

1− CDFTLAC(t)
. (4.4)
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Thus, in Figure 4.2-b, we plot the OR function for the TLAC, the log-normal and

exponential distributions. The OR function of the exponential distribution is a power law

until t reaches the median, and then it grows exponentially. On the other hand, the OR

function of the log-normal grows slowly in the head and then rapidly in the tail. Finally, the

OR function for the TLAC is the most interesting one. When plotted in log-log scales, is a

straight line, i.e., it is a power law. Thus, as shown in [Bennett, 1983], the OR(t) function

can be summarized by the following linear regression model:

ln(OR(t)) = ρ ln(t) + β, (4.5)

OR(t) = eβtρ. (4.6)

In our context, Equation 4.5 means that the ratio between the number of calls that will die

by time t and the ones that will survive grows with a power of ρ. Moreover, given that the

median t̂ of the CDD is given whenOR(t) = 1 andOR(t) < 1when t < t̂, the probability of

a call to end grows with t when t < t̂ and then decreases forever. We call this phenomenon

the “lazy contractor” effect, which represents the time a lazy contractor takes to complete

a job. If the job is easier and does require less effort than the ordinary regular job, the

contractor finishes it rapidly. However, for jobs that are harder and demand more work than

the ordinary regular job, the contractor also gets lazier and takes even more time to complete

it, i.e., the longer a job is taking to be completed, the longer it will take. The parameter ρ

and β are the parameters of the TLAC model, with ρ = 1/σ.

We conclude this section and, therefore, the first part of the solution to Problem 1, by

explaining the intuition behind the parameters of the TLAC model. The parameter ρ is the

efficiency coefficient, which measures how efficient is the contractor. The higher the ρ, the

more efficient is the contractor and the faster the job is completed. On the other hand, the

location parameter β is the weakness coefficient, which gives the duration t̂ of the typical

regular job a contractor with a determined efficiency coefficient ρ can take without being

lazy, where t̂ = exp(−β/ρ). This means that the lower the β, the harder the jobs that the

contractor is used to handle.

4.2.2.3 Goodness of Fit

In this section, we tackle the second requirement of Problem 1 by showing the goodness

of fit of our TLAC model. First, we show in Figure 4.2-a, the PDF of the CDD for a high

talkative user, with 3091 calls, and with the values put in buckets of 5 seconds to ease the

visualization. We also show the best fittings using Maximum Likelihood Estimation (MLE)

for the exponential and the log-normal distributions and also for our proposed TLAC model.
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Visually, it is clear that the best fittings are the ones from the log-normal distribution and

the TLAC distribution, with the exponential distribution not being able to explain neither the

head and the tail of the CDD.

However, by examining the OR plot in Figure 4.2-b, we clearly see the TLAC model

provides the best fitting for the real data. As verified for the exponential distribution in the

PDF, in the OR case, the log-normal could also not explain either the head or the tail of the

CDD. We also point out that we can see relevant differences between the TLAC model and

the real data only for the first call durations, which happen because these regions represent

only a very small fraction of the data. The results showed in Figure 4.2 validate again our

proposal that the TLAC is a good model for CDDs.
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Figure 4.2. Comparison of models for the distribution of the phone calls duration of a

high talkative user, with 3091 calls. TLAC in red, log-normal in green and exponential

in black. Visually, for the PDF both the TLAC and the log-normal distribution provide

good fits to the CDD but, for the OR, the TLAC clearly provide the best fit.

Given our initial analysis, we may state that the TLAC seems to be a good fit for the

CDDs and also serve as an intuitively explanation for how the durations of the calls are

generated. However, in order to conclude our answer for Problem 1, we must verify its

generality power and also compare it to the log-normal and exponential generality power as

well. Thus, we verify which one of the distributions can better fit the CDD for all the users of

our dataset that have n > 30 phone calls. We calculated, for every user, the best fit according

to the MLE for the TLAC, the log-normal and exponential distributions and we performed

a Kolmogorov-Smirnov goodness of fit test [Massey, 1951], with 5% of significance level,

to verify if the user’s CDD is either one of these distributions. For now on, every time we

mention that a distribution was correctly fit, we are implying that we successfully performed

a Kolmogorov-Smirnov goodness of fit test.



4.2. COMMUNICATION FLOW SIZE 45

In Figure 4.3, we show the percentage of CDDs that could be fit by a log-normal, a

TLAC and an exponential distribution. As we can see, the TLAC distribution can explain the

highest fraction of CDDs and the exponential distribution, the lowest. We observe that the

TLAC distribution correctly fit almost 100% of the CDDs for users with n < 1000. From this

point on, the quality of the fittings starts to decay, but significantly later than the log-normal

distribution. We emphasize that the great majority of users have n < 1000, what indicates

that some of these talkative users’ CDD are probably driven by non natural activities, such

as spams, telemarketing or other strong comercial-driven intents. This result, allied to the

fact that the TLAC distribution could model more than 96% of the users, make it reasonable

to answer Problem 1 claiming that the TLAC distribution is the standard model for CDDs in

our dataset.
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Figure 4.3. Percentage of users’ CDDs who were correctly fit vs. the user’s number

of calls c. The TLAC distribution is the one that provided better fittings for the whole

population of customers with c > 30. It correctly fit more than 96% of the users, only

significantly failing to fit users with c > 103, probably spammers, telemarketers or other
non-normal behavior user.

Finally, we further explore Problem 1 by looking at the OR of the talkative users who

were not correctly fit by the TLAC model. These particular users have a significantly higher

number of phone call durations with particular values, such as 1 minute, 2 minutes, 10

minutes, among others. This is probably happening due to a digitalization error, or pol-

icy, while recording their data, making some of the durations from 30 seconds to 1 minute

being recorded as 1 minute durations, for instance. In Figure 4.4, we show the OR for three

of these users. These digitalized values can be spotted on the small waves which are seen

through the line. Despite of this, we observe that even these customers have a visually good

fitting to the TLAC model. These results corroborate even more with the generality power

of TLAC. Despite the fact that the irregularities of these customers’ CDDs unable them to

be correctly fit by the TLAC model, it is clear that the TLAC can represent their CDDs
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Figure 4.4. Odds ratio of three talkative customers who were not correctly fit by the

TLAC model.

significantly well.

4.2.3 TLAC Over Time

We know it is trivial to visualize the distribution of users with a determined summarized

attribute, such as number of phone calls per month or aggregate call duration. However, if

we want to visualize the distribution and evolution of a temporal feature of the user such

as his/her CDD, this starts to get more complicated. Thus, in this section, we tackle the

following problem:

Problem 2. EVOLUTION. Given the ρi and βi parameters of N customers (i = 1, 2..., N),

describe how they collectively evolve over time.

We propose two approaches to solve Problem 2. In Section 4.2.3.1 we describe the

MetaDist solution and, in Section 4.2.3.2, we describe the Focal Point approach.

4.2.3.1 Group Behavior and Meta-Fitting

Since we know that the great majority of users’ CDD can be modeled by the TLAC model,

in order to solve Problem 2, we need to figure out how each user i is distributed according

to their parameters ρi and βi of the TLAC model. If the meta-distribution of the parameters

ρi and βi is well defined, then we can model the collective call behavior of the users and see

its evolution over time. From now on, we will call the meta-distribution of the parameters ρi

and βi the MetaDist distribution.

In Figure 4.5-a, we show the scatter plot of the parameters ρi and βi of the CDD of

each user i for the first month of our dataset. We can not observe any latent pattern due

to the overplotting but, however, we can spot outliers. Moreover, by plotting the ρi and

βi parameters using isocontours, as shown in Figure 4.5-b, we automatically smooth the

visualization by disregarding lowly populated regions. While darker colors mean a higher
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concentration of pairs ρi and βi, white color mean that there are no users with CDDs with

these values of ρi and βi.
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(c) Bivariate Gaussian fitting.

Figure 4.5. Scatter plot of the parameters ρi and βi of the CDD of each user i for the

first month of our dataset. In (a) we can not see any particular pattern, but we can spot

outliers. By plotting the isocontours (b), we can observe how well a bivariate Gaussian

(c) fits the real distribution of the ρi and βi of the CDDs (’meta-fitting’)

Surprisingly, we observe that the isocontours of Figure 4.5-b are very similar to the

ones of a bivariate Gaussian. In order to verify this, we extracted from the MetaDist distri-

bution the means P and B of the parameters ρi and βi, respectively, and also the covariance

matrixΣ. We use these values to generate the isocontours of a bivariate Gaussian distribution

and we plotted it in Figure 4.5-c. We observe that the isocontours of the generated bivariate

Gaussian distribution are similar to the ones from theMetaDist distribution, which indicates

that both distributions are also similar. Thus, we conjecture that a bivariate Gaussian distri-

bution fits the real distribution of ρs and βs, making theMetaDist a good model to represent

the population of users with a determined calls duration behavior.

Given that the MetaDist is a good model for the group behavior of the customers in

our dataset, we can now visualize and measure how they evolve over time. In Figure 4.6 we

show the evolution of theMetaDist over the four months of our dataset. The first observation

we can make is that the bivariate Gaussian shape stands well during the whole analyzed

period, what validates the robustness of the MetaDist. Moreover, a primary view indicates

that the meta-parameters have also not changed significantly over the months. This can be

confirmed by the first five rows of Table 4.2, which describe the value of the meta-parameters

P , B and Σ(σ2
ρi
, σ2

βi
, cov(ρi, βi)) for the four analyzed months. This indicates that the phone

company already reached a stable state towards its customers concerns, such as prices, plans

and services. In fact, the only noticeable difference occurs between the first month and the

others. We observe that the meta-parameters of the first month have a slightly higher variance

than the others, what indicates that this is probably an atypical month for the residents of the

country in which our phone records were collected. But in spite of that, in general, the

meta-parameters do not change through time. Then, we can state the following observation:
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Observation 1. TYPICAL BEHAVIOR. The typical human behavior is to have an efficiency

coefficient ρ ≈ 1.59 and a weakness coefficient β ≈ −6.25. Thus, the median duration for a

typical mobile phone user is 51 seconds and the mode is 20 seconds.
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Figure 4.6. Evolution of theMetaDist over the four months of our dataset. Note that the

collective behavior of the customers is practically stable over time.

4.2.3.2 Focal Point

An interesting observation we can derive from the MetaDist showed in Figure 4.5 is that

there exists a significant negative correlation between the parameters ρi and βi. This nega-

tive correlation, more precisely of−0.86, lead us to the fact that the OR lines, i.e., the TLAC

odds ratio plots of the customers of our dataset, when plotted together, should cross over a

determined region. In order to verify this, we plotted in Figure 4.7-a the OR lines for some

customers of our dataset. As we can observe, it appears that these lines are all crossing in

the same region, when the call duration is approximately 20 seconds and the odds ratio is

approximately 0.1. Then, in Figure 4.7-b, we plotted together the OR lines of 20, 000 ran-

domly picked customers and derived from them the isocontours to show the most populated

areas. As we can observe, there is a highly populated point when the duration is 17 seconds

and the OR is 0.15. By analyzing the whole month dataset, we verified that more than 50%

of the users have OR lines that cross this point. From now on, we call this point the Focal

Point.

Formally, the Focal Point is a point on the OR plot with two coordinates: a coordinate

FPduration in the duration axis and a coordinate FPOR in the OR axis. When a set of cus-

tomers have their OR plots crossing at a Focal Point with coordinates (FPduration, FPOR),

it means that for all these customers the FPOR

1+FPOR
th percentile of their CDD is on FPduration

seconds. Thus, in the two bottom lines of Table 4.2, we describe the Focal Point coordinates

for the four months of our analysis and, surprisingly, the Focal Point is stationary. Thus, we

can make the following observation:
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Figure 4.7. The TLAC lines of several customers plotted together. (a) We can observe

that, given the negative correlation of the parameters ρi and βi, that the lines tend to cross

in one point. (b) We plot the isocontours of the lines together and approximately 50%
of the customers have TLAC lines that pass on the high density point (duration=17s,
OR=0.15).

Observation 2. UNIVERSAL PERCENTILE. The vast majority of mobile phone users has

the same 10th percentile, that is on 17 seconds.

Observation 2 suggests that one of the risks for a call to end acts in the same way for

everyone. We conjecture that, given the 17 s durations, this is the risk of a call to reach the

voice mail of the destination’s mobile phone, i.e., the callee could not answer the call. The

duration of this call involves listening to the voice mail record and leaving a message, what

is coherent with the 17 s mark. It would be interesting to empirically verify the percentage

of phone calls that reaches the voice mail and compare with the Focal Point result.

- 1st month 2nd month 3rd month 4th month

P 1.59 1.58 1.59 1.59

B -6.16 -6.28 -6.32 -6.30

σ2
ρi

0.095 0.086 0.084 0.083

σ2
βi

1.24 0.98 0.95 0.94

cov(ρi, βi) -0.30 -0.24 -0.24 -0.23

FPduration(s) 17 17 17 17

FPOR 0.15 0.12 0.11 0.11

Table 4.2. Evolution of the meta-parameters (rows 1-5) and the Focal Points(rows 6-7)

during the four months of our dataset.
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4.2.4 Applications

4.2.4.1 Practical Use

In the previous section, we showed the collective behavior of millions of mobile phone users

is stationary over time. We described two approaches to do that, one based on the MetaDist

and the other based on the Focal Point. The initial conclusions of both approaches are the

same. First, the collective behavior of our dataset is stable, i.e., it does not change signifi-

cantly over time. Second, we could see a slight difference between the first month and the

others, indicating that this month is an atypical month in the year. We believe that these two

approaches can succinctly and accurately aid the mobile phone companies to monitor the

collective behavior of their customers over time.

Moreover, since we could successfully model more than 96% of the CDDs as a TLAC,

a natural application of our models would be for anomaly detection and user classification. A

mobile phone user who does not have a CDD that can be explained by the TLAC distribution

is a potential user to be observed, since he has a distinct call behavior from the majority

of the other users. To illustrate this, we show in Figure 4.8 a talkative node with a CDD

that can not be modeled by a TLAC distribution. We observe that this node, indeed, has an

atypical behavior, with his/her CDD having a noisy behavior from 10 to 100 seconds and

also an impressive number of phone calls with duration around 1 hour (or 5× 700 seconds).

Moreover, another way to spot outliers is to check which users have a significant distance

from the main cluster of theMetaDist. As we showed in Figure 4.5-c, this can be easily done

even visually.
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Figure 4.8. Outlier whose CDD can not be modeled by the TLAC distribution.

Another application that emerges naturally for our models is the summarization of

data. By modeling the users’ CDD into TLAC distributions, we are able to summarize, for

each user i, hundreds or thousands of phone calls into just two values, the parameters ρi and

βi of the TLAC model. In our specific case, we could summarize over 0.1 TB of phone calls
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data into less than 80 MB of data. In this way, it is completely feasible to analyze several

months, or even years of temporal phone calls data and verify how the behavior of the users

is evolving over time. Also, all the models proposed in this thesis can be directly applied to

the design of generators that produce synthetic data, allowing researchers who do not have

access to real data to generate their own.

4.2.4.2 Generality of TLAC

As we mentioned earlier, one of the major strengths of the TLAC model is its generality

power. We showed that even for distributions that oscillate between log-normal and log-

logistic, or that have irregular spikes that unable them to be correctly fit by TLAC, TLAC

can represent them significantly well. Besides this, the simplicity of the TLAC model allows

us to directly understand its form when its parameters are changed and verify its boundaries.

For instance, in the case of the CDD, eβ gives the odds ratio when the duration is 1 s. Thus,

when eβ > 1, most of the calls have a lower duration than 1 s, which makes the CDD

to converge to a power law, i.e., the initial spike is truncated. Moreover, as ρ → 0, the

odds ratio tends to be the constant eβ , what causes the variance to be infinity. By observing

Figure 4.9 and concerning human calling behavior, we conjecture that β is upper bounded

by 1 and ρ is lower bounded by 0.5. These values are coherent with the global intuition on

human calling behavior.
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Figure 4.9. Cumulative distributions for ρ and β. We can observe that ρ is lower

bounded by 0.5 and β is lower bounded by 1. These values are coherent with the global
intuition on human calling behavior.

4.2.4.3 Additional Correlations

Given that the vast majority of users’ CDDs can be represented by the TLACmodel, it would

be interesting if we could predict their parameters ρi and βi based on one of their summarized
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attributes. One could imagine that a user that makes a large number of phone calls per month

might have a distinct CDD than a user that makes only a few. Moreover, we could also

think that a user that has many friends and talk to them by the phone regularly may also

have a distinct CDD from a user that only talks to his/her family on the phone. Thus, in this

section we analyze the attributes of users who were correctly fitted by the TLAC model, i.e.,

approximately 96% of the users.

In Figures 4.10 and 4.11, we show, respectively, the isocontours of the behavior of the

ρi and βi parameters for users with different values of number of phone calls ni, aggregate

duration wi and number of partners pi, i.e., the distinct number of people that the user called

in a month. With the exception made for the ρi against wi, we observe that the variance

decreases as the value of the summarized attribute increases. This suggests that the CDD

of high or long talkative users, as well as users with many partners, is easier to predict.

Moreover, as we can observe in the figures and also in Table 4.3, there is no significant

correlation between the TLAC parameters and the summarized attributes of the users. Thus,

we make the following observation:

Observation 3. INVARIANT BEHAVIOR. The ρi and βi parameters of user i are almost

invariant with respect to (a) number of phone calls ni, (b) aggregate duration wi and (c)

number of partners pi.
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Figure 4.10. Isocontours of the users’ CDD efficiency coefficient ρ and their summa-

rized attributes.

Attribute Correlation with ρ Correlation with β
number of phone calls 0.14 -0.18

aggregate duration -0.21 0.01

number of partners 0.18 -0.18

Table 4.3. Correlations between summarized attributes and ρ and β.
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Figure 4.11. Isocontours of the users’ CDD efficiency coefficient β and their summa-

rized attributes.

Finally, since there is no significant correlation between the users’ CDD parameters

ρi and βi with their summarized attributes, we emphasize that these parameters should be

considered when characterizing user behavior in phone call networks. Moreover, besides

characterizing individual customers, the TLAC model can also be directly applied to the

relationship between users, analyzing how two persons call each other. One could use, for

instance, the ρ parameter as the weight of the edges of the social network generated from

phone call records.

4.3 Communication Dynamics

How long will it take until your next phone call, given your past history of phone call times-

tamps? Does phone call behavior differ than the behavior for text messaging, e-mails or post-

ings on blogs? These communication activities are all “point processes”, and the simplest

way to model them is by the Poisson Process (PP) [Haight, 1967]. Unfortunately, this sim-

ple and elegant model has proved unsuitable [Oliveira and Barabasi, 2005; Eckmann et al.,

2004; Garriss et al., 2006; Vázquez et al., 2006], since analysis of real data have shown that

humans have very long periods of inactivity and bursts of intense activity [Barabási, 2005;

Jiang and Dovrolis, 2005], in contrast to the Poisson Process, where activities occur at a

fairly constant rate.

4.3.1 Contradicting Models

Although researches agree that the Poisson Process (PP) is not suitable, there is no consensus

about the right model between two major schools of thought. The main goal of this section

is to propose a model which reconcile these differences.

The first viewpoint tries to fit power-laws. Barabási [2005] reported that the time in-

tervals between human activities can be modeled by the so called Universality Class Model,
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which states that a power law is an appropriate fit for the Probability Density Function (PDF)

of the inter-event times distribution (IED). Barabási proposed that bursts and heavy-tails in

human activities are a consequence of a decision-based queuing process, when tasks are

executed according to some perceived priority. In this way, most of the tasks are rapidly

executed while some of then may take a very long time. The queuing models generate power

law Faloutsos et al. [1999] distributions p(X = x) ≈ x−α with slopes α ≈ 1 or α ≈ 1.5.

The second viewpoint is that the IED is well explained by variations of the Poisson

Process (PP), such as the Interrupted Poisson [Kuczura, 1973] (IPP), Non-Homogeneous

Poisson Process [Malmgren et al., 2008, 2009b], Kleinberg’s burst model [Kleinberg, 2002]

and others. What they all have in common is that they suggest a piece-wise Poisson process:

for the first interval, have rate λ; for the next, change the rate (say, to zero, for the IPP, or

to double-or-half for Kleinberg’s model), and continue. Malmgren et al. [2008] proposed a

non-homogeneous Poisson process, where the rate λ(t) varies with time, in a periodic fashion

(e.g. people answer emails in the morning; then go to lunch; then answer more e-mails, etc).

Although this model explains the data, it is not parsimonious, requiring several parameters

and careful data analysis, being impractical for synthetic data generators, for instance. Later,

the authors adapted this model to a more parsimonious version [Malmgren et al., 2009a], but

it still has 9 parameters.

Given this two approaches, we ask: which is the correct one? Can we reconcile them

all? A unifying model which reconcile these theories should, then: (a) generate a power-

law-tail distribution for the inter-event time marginal, like [Barabási, 2005]; (b) behave as

Poisson in the short term like [Malmgren et al., 2008] and (c) be also parsimonious, requiring

a few an intuitive parameters.

Moreover, unlike all the articles we mentioned, we also analyze the temporal correla-

tions, illustrating the “I.I.D. fallacy”, that has been routinely ignored. We show that, unlike

the PP, that generates independent and identically distributed inter-event times (I.I.D.), indi-

vidual sequences of communications tend to show a high dependence between consecutives

inter-arrival times.

4.3.2 Marginal Distributions

In order to model human communication dynamics, we analyze four datasets containing

social interactions and their timestamps. Each dataset presents a different type of interaction

that is common and routine in most human lives. From this, we expect to accurately capture a

large part of human dynamics behavior and expand our knowledge on it. We interchangeably

call time interval and inter-event time∆t the time between the occurrence of two consecutive

communication events. We call the inter-event distribution (IED) the distribution of the set of
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the time intervals∆1,∆2, ...,∆T that occurred between the communication events of a single

type, e.g., phone call, SMS etc, for a given user. In our four datasets, since the granularity of

t is in seconds, all values of ∆t extracted from them is also in seconds.

4.3.2.1 The Most Active User

In Figure 4.12, we show the distribution of the time intervals ∆t for the most active user in

our four datasets, with 44785 SMS messages sent or received. The histogram is showed in

Figure 4.12-a and, as we can observe, this user had a significantly high number of events

separated by small periods of time and also long periods of inactivity. Moreover, either the

power law fitting, which in the best fit has an exponent of −2, or the exponential fitting,

which is generated by a PP, deviates from the real data. The method we use to fit the power

law is based on the Maximum likelihood estimation (MLE) and is described by Clauset et al.

[2009].
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Figure 4.12. The inter-event time distribution of the most talkative user of our four

datasets, with 44785 SMS messages sent and received. We observe that both the power

law fitting (PL fitting) with exponent 2 and the exponential fitting, generated by a PP,
deviate from the real data. We also observe that the OR is very well fitted by a straight

line with slope ≈ 1.

As we did in Section 4.2, in Figure 4.12-b, we also plot the OR for the selected user.

From the OR plot, we can clearly see the cumulative behavior in the head and in the tail of the

distribution. Also, observe again that both the exponential and the power law significantly

deviate from the real data. Moreover, we can also observe that the OR of the inter-event

times seems to entirely follow a linear behavior in logarithmic scales exactly as in the TLAC

distribution, having, in this case, a power law behavior with OR slope ρ = 1. This is a

surprising and fascinating result that we explore in the following sections.
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4.3.2.2 Phone Data

In this section, we analyze the same dataset we analyzed in Section 4.2, which contains more

than 3.1 million customers obtained from the network of a large mobile operator of a large

city, with more than 263.6 million phone call records registered during one month. Again,

we define that a communication event occurred for a user when he/she made or received a

phone call. The IED of a user is computed by calculating the time intervals between two

consecutive communication events of this user.

In Figure 4.13, we show the Odds Ratio of the IEDs of three anonymous and typical

users of our phone dataset. We observe that the OR of all IEDs is well fitted by a power

law, as the user of Figure 4.12. The only small deviations occurred for the inter-event times

(i) below 10 seconds, and (ii) around 10 hours. The first deviation is probably due to errors

in registering a phone call, since the time between two consecutive calls is usually lower

bounded by a setup time ∆0
t that involves dialing the numbers, waiting for the signal, and

waiting for the other part to answer the call. The second deviation is explained by the regular

sleep intervals between two communication events. Since everyone has to go to sleep and

it is not usual to call during the sleeping hours, it is common to have a time interval of

approximately 10 hours at every 24 hours.
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(c) User “Johnson”, 3390 events

Figure 4.13. IEDs of anonymous users of the PHONE dataset. Observe that for these

three users, the Odds Ratio is well fitted by a power law. The MLE fitting gives the same

values for the slope ρ.

In order to verify the generality of this result, we check whether the OR of the IEDs

of all users of our phone dataset can be explained by a power law. We perform a linear

regression using least squares fitting on the OR of the IEDs of all users who have more than

30 communication events. Since the OR is a cumulative distribution, the linear regression

is accurate. We performed a Kolmogorov-Smirnov goodness of fit test, but because of the

setup time and the sleep intervals deviations, this test presented biased results. In the linear

regression, we do not consider inter-event times lower than 10 seconds and also theNdays−1

highest ones, where Ndays is the number of days the analyzed month has.
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In Figure 4.14, we show the Probability Density Function (PDF) of the coefficient of

determination R2 of the performed linear regressions1. We observe that for the vast majority

of the users of the phone dataset, the R2 is close to 1.0. More specifically, the R2 average is

0.99, which allows us to state that for the vast majority of the users, the OR of their IEDs is

well fitted by a power law.
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Figure 4.14. The goodness of fit of our proposed model. We show the Probability

Density Function (PDF) of theR2s measured for every user in the four datasets. Observe

that the R2 value for the great majority of the users is close to 1.

In Figure 4.15, we show the PDF of the slope ρ of the linear regression. We observe

that in the phone dataset, the vast majority of the users have a slope ρ ≈ 1, the same one

of the user in Figure 4.12-b. More specifically, the average slope ρ = 1.17. Also related

to the properties of the IEDs of the phone dataset, we show in Figure 4.16 the PDF of the

median µ measured in seconds. Observe that the typical µ for the users of the phone dataset

is approximately 1 hour.

4.3.2.3 SMS Data

From the same mobile operator of Section 4.3.2.2, we also have a SMS dataset of 300,000

users spanning 6 months of data, for a total of 8, 784, 101 records. For this dataset, we also

have the information about the date and time it occurred and encrypted values that represent

the source and the destination of the message, together with the time delay it took for a

message to leave the source’s mobile phone and arrive at its destination.

In Figure 4.17, we plot the OR of three IEDs of anonymous users of the SMS dataset.

We observe that the OR of these three users is also well explained by a power law. Moreover,

1The R2 coefficient of determination is a statistical measure of how well the regression line approximates

the real data points. An R2 of 1.0 indicates that the regression line perfectly fits the data.
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Figure 4.15. The PDF of the slopes ρi measured for every user ui of our four datasets.

Observe that the typical ρi for the users of the phone, Enron and Digg datasets is ap-

proximately 1, while for the users of the SMS dataset is approximately 2.

10
0

10
1

10
2

10
3

10
4

0.1

0.2

0.3

0.4

median µ
i
 (s)

P
D

F

phone

SMS

Enron

Digg

Figure 4.16. The PDF of the medians µi measured for every user of our four datasets.

Observe that the typical µi for the users of the phone, SMS and Enron datasets is ap-

proximately 1 hour, while for the users of the Digg dataset is approximately 2 minutes.

this time we see several inter-event times with values lower than 10 seconds. This can be

explained by the fact that when a user wants to communicate to multiple individuals simul-

taneously, he/she can do it by using a SMS message, while he/she can not do it by using a

phone call. However, we again observe small deviations at the end of the OR function as we

observed in the phone dataset, probably also due to the sleep intervals, which are around the

10-hour mark.

We also verify the generality of the fittings by performing a linear regression using

least squares fitting on the OR of the IEDs of all users who have more than 6 × 30 = 180

communication events. Again, we do not consider theNdays−1 highest ones, whereNdays−1

is the number of days the six months of our dataset have. Thus, in Figure 4.14, we also show

the histogram of the coefficient of determination R2 of the performed linear regressions in

the SMS dataset. We observe that for the vast majority of the users, the R2 is again close
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Figure 4.17. IEDs of anonymous users of the SMS dataset. Observe that for these three

users, the Odds Ratio is well fitted by a power law. The MLE fitting gives the same

values for the slope ρ.

to 1.0. More specifically, the R2 average is 0.96, which allows us to state that for the vast

majority of the users, the OR of their IEDs is well fitted by a power law. However, this result

is worse than the one we obtained in the phone dataset, mainly because it is jeopardized

by the existence of a significative transmission delay for a large fraction of the messages.

This transmission delay is the time between a message leaves a mobile phone and arrives at

the destination. It may happen, for instance, due to infrastructure or personal issues, e.g., a

customer left his/her mobile phone unattended or the battery died, delaying all the incoming

SMS messages for when the mobile phone is recharged again. These delays overestimate

the inter-event times between SMS messages, making some of the IEDs significantly noisy.

However, for highly talkative users, like the ones in Figure 4.17, the delays are less frequent

and, therefore, do not play a significative role, making their IEDs to be accurately represented

by the power law.

Observe again in Figure 4.15 the PDF of the slope ρ of the linear regressions. It is

interesting that in the case of the SMS dataset, we observe that the vast majority of the users

have a slope ρ ≈ 2, different from the typical behavior we observed in the phone dataset. The

average ρ is, in this case, 2.04. On the other had, the typical median µ is almost the same as

the one observed in the phone dataset, as shown in Figure 4.16, being approximately 1 hour.

However, observe that the variance is higher and also a second mode on 1 second, which

represents multicast SMS messages, i.e., messages that were sent to multiple recipients.

These properties make the SMS traffic harder to predict in comparison to phone traffic.

4.3.2.4 Enron Data

The third dataset we look at is the public Enron e-mail dataset, consisting of 200,399 mes-

sages belonging to 158 users with an average of 757 messages per user [Klimt and Yang,

2004]. We consider that a communication event occurred for a user when he/she received or
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sent an e-mail. We consider all the e-mails of the user, except the ones in the delete folder,

that might be SPAM or other undesired e-mails.

In Figure 4.18, we plot the OR of three IEDs of highly active users of the Enron dataset.

Again, we observe that the OR of these three users can be well explained by a power law. In

this case, the main deviation we observe occurs in the 60-second mark. This occurs because

some e-mails have their timestamps rounded up to the minute base when they are registered.

For example, an e-mail that was sent at 8:00:35 is registered as it was sent at 8:01:00, making

some inter-event times that were, in reality, lower than 60 seconds to be registered as if they

were of 60 seconds. We also see some irregularities after the 10-hour mark, some of then

due to the sleep intervals, others due to the weekend/Sunday interval.
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(c) User Symes, 3121 events

Figure 4.18. IEDs of three users of the Enron dataset. Observe that for these three users,

the Odds Ratio is well fitted by a power law. The MLE fitting gives the same values for

the slope ρ.

Figure 4.14 shows the PDF of the coefficient of determination R2 of the performed

linear regressions. Again, we observe that most of the R2 values are close to 1. The average

R2 is 0.97, which is significantly high, considering the irregularities in the points below 60

seconds. Considering the slope ρ of the linear regressions, observe again in Figure 4.15 that

the typical ρ is similar to the one verified in the phone dataset. This time, the average value

is approximately ρ = 1.25. The same happens for the typical median µ, that is close to the

ones verified so far, being approximately 1 hour, as we observe in Figure 4.16.

4.3.2.5 DIGG Data

Finally, we analyze a public online news dataset, containing a set of stories and comments

over each story. More specifically, the data is from the popular social media site Digg and has

1,485 stories and over 7 million comments [De Choudhury et al., 2009]. In this dataset, we

consider that each individual is a story and a communication event is a comment published

in a story.
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In Figure 4.19, we show the OR of the IEDs of three highly active stories. Again,

we observe that a power law is a good fit for the three stories. In these examples, we see

deviations only when the inter-event times are above 10 hours, probably due to the sleep

intervals. The PDF of the coefficient of determinationR2 of the performed linear regressions

are again close to 1, as shown in Figure 4.14, with an average R2 = 0.98. The average ρ

is again similar to the average value verified in the phone and in the Enron dataset, being

approximately ρ = 1.21. On the other hand, the typical µ value is significantly small, being

close to 2 minutes. This happens because the lifetime of a story published on Digg is also

small, usually not generating interest after the first few days it was published.
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(a) Story 9318744, 384 events
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(b) Story 9400100, 342 events
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(c) Story 944839, 394 events

Figure 4.19. IEDs of three stories of the DIGG dataset. Observe that for these three

stories, the Odds Ratio is well fitted by a power law. The MLE fitting gives the same

values for the slope ρ.

Conclusions In this section we analyzed four different real datasets. We found a pattern

for the IED of individuals: the Odds Ratio function of the inter-event times of individuals

follows a power law with slope ρ. Thus, a realistic model for the IED should be able to

generate this OR behavior.

4.3.3 Temporal Correlations

Most previous analysis focus on the marginal PDF. A subtle point is the correlation be-

tween successive inter-event times (∆t−1 and ∆t). Statistics textbooks routinely make the

I.I.D. assumption: Independent, Identically Distributed. What we illustrate here is that the

independence part is contradicted, by all our four real datasets.

In Figure 4.20-a, we plot, for one typical user of each dataset we are investigating, the

median of the ∆ts for their respective ∆t−1s, all in logarithmic scales. The same was done

for inter-event times generated from a Poisson process with β = 3000 seconds. Note that

the Poisson process generates a flat line with slope 0, as expected. On the other hand, for the
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four typical users of our dataset, the median of ∆t grows with ∆t−1: if I called you 5 years

ago, my next phone call will be in about 5 years later. In short, there is a strong, positive

dependency between the current inter-event time (∆t) and the previous one (∆t−1), clearly

contradicting the ’independent’ part of the I.I.D. assumption.
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Figure 4.20. I.I.D. fallacy: dependence between ∆t and ∆t−1. (a) The median of the
inter-event times ∆ts for their respective preceding ∆t−1s for one talkative user of each
of the four datasets and for a synthetic data generated by the SFP, all represented in log-
arithmic intervals. (b) The sample autocorrelation for the same individual of Figure 4.12
and for synthetic data generated by the SFP, PP and LLG-iid, with the same number of
phone calls and median. Observe that both the real data and the SFP indicates ∆t and
∆t−1 are positive correlated.

We investigate this by analyzing the autocorrelation Box et al. [1994] of all the time

series involving the inter-event times (∆t, t = 1, . . .) of the individuals of our datasets. The

autocorrelation ACk at lag k is defined as in the textbooks: it is the correlation of a time

series with itself, after we lag it by k. A positive autocorrelation, which is suggested by

Figure 4.20-a, indicates “persistence”, i.e., a tendency for a system to remain in the same

state from one observation to the next.

Thus, we test if all the ∆t time series of every individual of our datasets are ran-

dom or autocorrelated. For this, we define the “independence” hypothesis H0, that a series

S = {∆0,∆1, ...,∆n} of inter-event times has values that are independent of each other. In

that case, the autocorrelation coefficient ACk should be near-zero (ACk ≈ 0) for all lags

except zero (k 6= 0). More formally, if ACk is between the 95% confidence interval for

independence, then we accept the null hypothesis H0. As we show in Figure 4.20-b, we

reject the null hypothesis H0 that the inter-event times of the same individual of Figure 4.12

is independent, since all ACk, 1 < k ≤ 10 are outside the confidence interval.

Since we are interested only in the case where the lag k = 1, we propose an alter-

native hypothesis test H1 that the first-order autocorrelation coefficient AC1 is greater than

0. If AC1 is greater than the confidence interval for independence, then we accept H1, i.e.,
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that there is a dependence between ∆t and ∆t−1. As shown in Figure 4.21, the empirical

probability P (H1) of accepting H1 for a given user with a given number of events increases

rapidly as the number of communication events grows. This strongly suggests that the text-

book I.I.D. hypothesis is violated by real data, that is, there is a dependence between∆t and

∆t−1. Thus, we state that

∆t = f(∆t−1), (4.7)

where f is a function that describes the dependency between ∆t and ∆t−1. This is the

beginning of our proposed model.
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Figure 4.21. The empirical probability of an individual’s inter-event times to be auto-
correlated given his/her number of events. Note that as the number of events grows, the
probability of having an autocorrelated series also grows.

4.3.4 Proposed Model: “SFP”

Given all the above evidence (OR power law; I.I.D. fallacy) and all the previous evidence

(power-law tails by Barabási; short-term Poisson behavior), can we possibly design a gener-

ator which will match all these properties? Our requirements for the ideal generator are the

following:

R1: Realism – marginals The model should generate log-logistic marginal IED (thus obey-

ing both the top-concavity, as well as the power-law for the odds-ratio);

R2: Realism – locally-Poisson: The model should behave as a Poisson Process, within a

short window of time;

R3: Avoid the I.I.D. fallacy Two consecutive inter-event times should be correlated;

R4: Parsimony It should need only few parameters, and ideally, just one or two.
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4.3.4.1 Self-Feeding Process

The textbook Poisson Process (PP), violates two of our four requirements above (4.3.4,

4.3.4). The two prevailing (but conflicting) models, also fall short: The model by Barabási

[2005] does not show short-term Poisson behavior (requirement R2) nor addresses

the I.I.D. fallacy (requirement R3). The non-homogeneous Poisson model proposed

by Malmgren et al. [2008] violates the parsimony requirement (requirement R4), requiring

an unspecified number of parameters, which are not easy to estimate from the data; neither

it addresses the I.I.D. fallacy (requirement R3).

At the high level, our proposal is that the next inter-arrival time will be an exponential

random variable, with rate that depends on the previous inter-arrival time. It is subtle, but in

this way our generator behaves like Poisson in the short term, gives power-law tails in the

long term (actually, we conjecture it is log-logistic), and is extremely parsimonious: just one

parameter, the median µ of the IED. We call this model the Self-Feeding Process (SFP0).

We propose the generator as follows

Model 1. Self-Feeding Process SFP0(µ).

//µ is the desired median of the marginal PDF

∆1 ← µ

∆t ← Exponential (mean β = ∆t−1 + µ/e)

where µ > 0 is the only parameter of the model, being the median of the IED. This

location parameter has to be higher than 0 to avoid∆t to converge to 0 and has to be divided

by the Euler’s number e to guarantee that the median of the generated IED is, in fact, µ –

see more details in the Appendix. Although we selected µ to be the value of ∆1, we point

out that ∆1 may be an arbitrary value, since it does not affect the generated IED when the

number of events generated is large.

In Figures 4.22-a and 4.22-b we compare, respectively, the PDF and the OR of the

inter-event times generated by the SFP0model, all values rounded up, with the inter-event

times of the user of Figure 4.12. Notice that the distributions are very similar, with only

exception for the sleep intervals, which are not considered in the SFP0model (but could be

easily added - we omit the details for clarity of exposition). Moreover, we see that both

distributions are well fitted by a log-logistic distribution. As mentioned, the log-logistic

distribution looks like a hyperbola, thus addressing both the power-law tail, as well as the

top-concavity issue.
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Figure 4.22. Comparison of the inter-event times generated by the SFP0 model with the
inter-event times of the user of Figure 4.12. Observe that both the PDF (a) and the OR
(b) are almost identical.

4.3.4.2 General Model

The current SFP0model requires only one parameter, the median µ of the IED, giving power-

law tails of slope α = −2 and OR slope ρ = 1.

We show in Figure 4.15 the slopes ρ of the OR fitting for the IEDs of all users of

our datasets. It is fascinating that the typical ρi for the users of the Phone, Enron and Digg

datasets is approximately 1, the same slope generated by the SFP0 model. However, several

users, mainly from the SMS dataset, have a much higher value of ρ, close to ρ ≈ 2. To

accommodate for that, we introduce our Generalized SFP model, which needs just one more

parameter, ρ. Thus, we have

Model 2. Generalized Self-Feeding Process SFP (µ, ρ).

δ1 ← µ

δt ← Exponential (rate: β = δt−1 + µρ/e)

∆t ← δ
1/ρ
t .

Note the auxiliary variable δt, which stores the inter-event times without the influence

of ρ.

4.3.5 Discussion

Earlier, we listed four requirements for the ideal model. The last one, parsimony (require-

ment R4), is clear: SFP usually needs just one parameter (and at most two, in general). For

the remaining 3 requirements, we discuss next how SFP meets them all.
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4.3.5.1 R1: SFP matches the marginals

As we have shown, the SFP model mimics the behavior of the IED of the vast majority of

the users of our four datasets. To the best of our knowledge, this is the first paper that studies

the IED of human communications using such a varied, modern and large collection of data.

This collection of data represents four types of communication present in the routine of most

human lives. Despite the fact these means of communications are intrinsically different, hav-

ing their own idiosyncrasies, we have observed that the IED of individuals of these systems

have the same characteristics, i.e., they follow an odds ratio power law behavior. This power

law behavior is also generated by the SFP model, which naturally generates an odds ratio

power law with slope ρ = 1, which is, by its turn, the slope that characterizes the majority of

the users of our datasets, as we see in Figure 4.15.

Moreover, notice that when the OR slope ρ = 1, the power law exponent of the PDF is

α = −2. This is the same IED slope α reported by Hidalgo [2006] and Vázquez et al. [2006]

as a result of fluctuations in the execution rate and in particular periodic changes. It has been

argued that seasonality can only robustly give rise to heavy-tailed IEDs with exponent α = 2.

However, we again point out that the proposed (Generalized) SFP model can generate IEDs

with power-law slopes α varying from (−1,−∞), agreeing with all the empirical reports we

have knowledge.

4.3.5.2 R2 - Unifying power of the SFP

Requirement R4.3.4 states that, in the short term, real data behave as if Poisson. Our model

captures that, since successive inter-event times are exponentially distributed, with similar

(but not identical) rates. Thus, one of the major contributions of this work is the unification

of the two seemingly-conflicting viewpoints, that we mention in the introduction.

The first viewpoint, expressed in [Barabási, 2005], [Oliveira and Barabasi, 2005] and

later in [Barabasi et al., 2005], proposes a power-law model for the inter-event times distri-

bution. The second viewpoint, [Stouffer et al., 2005; Malmgren et al., 2008, 2009b] argues

that a power law is not suitable, and that, instead, a log-normal or a “non-homogeneous”

Poisson process is better.

The proposed SFP model unifies both theories: like the second view-

point [Malmgren et al., 2008, 2009b], it generates Poisson-like traffic in the short term, with

slowly varying rate; like the first viewpoint [Barabási, 2005], it generates a power-law tail

distribution (see the Appendix), even matching the top-concavity that power laws can not

match.

The SFP also generates burstiness and long periods of inactivity, which are also char-

acteristics of human generated communication traffic. Bursts are automatically triggered by
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Figure 4.23. Unification Power of SFP: non-Poisson/bursty in the long term (first two
columns), but Poisson in the short term (last two columns). First row: Traffic of the
user of Figure 4.12 - event-count per unit time ((a), (c)) and respective cumulative event-
count ( (b), (d)). Second row: synthetic traffic, by the SFP model (with matching µ,
ρ and event-count). Observe that (1) both time series are visually similar; (2) both are
bursty in the long run (spikes; inactivity) (3) both are Poisson-like in the short term (last
two columns)

the SFP when a small inter-event time ∆t is generated. When this occurs, the tendency is

that a random set of small inter-event times is subsequently generated, resulting in a burst of

activity. A long period of inactivity is generated analogously when a large inter-event time

∆t is generated.

In order to verify whether the SFP is able to mimic human communication behavior

over time, we generate synthetic data from the SFP model using the same odds ratio slope

ρ, median µ and number of events of the user of Figure 4.12. In Figure 4.23, we compare

this synthetic data with the real data from this user. Notice the bursts of activity and also

the long periods of inactivity, in the first two columns of Figure 4.23. Also notice that both

synthetic and real traffic significantly deviate from Poisson (sloping lines in (b) and (f)) but

are similar between themselves. However, in the short term (Figure 4.23(c-d), (g-h)), both

real and synthetic data behave like Poisson, being practically on top of the black dashed lines

of (d) and (h). This agrees with earlier reports of traffic characterization [Karagiannis et al.,

2004].

Finally, we would like to point out that a lot of past activity tried to modify the Poisson

process to match reality, such as the Interrupted Poisson [Kuczura, 1973] (IPP), Kleinberg’s
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burst model [Kleinberg, 2002], and Non-Homogeneous Poisson Process [Malmgren et al.,

2008, 2009b]. What they all have in common is that they suggest a piece-wise Poisson pro-

cess: for the first interval, have rate λ; for the next, change the rate (say, to zero, for the

IPP, or to double-or-half for Kleinberg’s), and continue. They typically have too many pa-

rameters, and/or they do not exhibit a power-law behavior. We reconcile all these ideas with

our SFP model: it behaves like a piece-wise Poisson process, with the subtle but important

difference that it is self-feeding: the next arrival rate depends on the immediate past.

4.3.5.3 R3: SFP avoids the I.I.D. fallacy

Although the marginal IED can also be accurately matched by a plain log-logistic distri-

bution, we point out that it cannot match the temporal dependence between consecutive

inter-event times as the SFP does. We have shown that, for an individual, the time ∆t it will

take for the next communication event to arrive depends on the time ∆t−1 the previous one

took to arrive, in a way that∆t = f(∆t−1), where f(x) is the function defined by the classic

PP. Consider, for instance, an event generator similar to a PP, that we call LLG-iid, which

instead of generating exponentially distributed inter-event times, it generates log-logistically

distributed inter-event times. Despite the fact LLG-iid provide good fits to the marginal IED,

we see in Figure 4.20 that it shows no correlation between ∆t and ∆t−1.

4.4 Final Remarks

In this chapter, we explored the behavior of social agents in a large communication network.

First, we analyzed the duration of the communication flow between two agents and then we

studied the inter-event time interval between communication events. From these analysis,

we could understand the motivations behind the communication activities between humans.

We verified that the TLAC model is an appropriate model for either the size of the commu-

nication flow and for the inter-event intervals. The main contributions of the work described

in this chapter are:

• Proposal of the SFP model, which matches real data well, and has a very simple,

intuitive explanation: the time for the next communication event depends on the time

it took for the previous event to occur;

• The SFP model unifies existing theories on human communication dynamics, i.e., it

exhibits power law tail behavior, burstiness, as well as locally-Poisson behavior;

• The proposal of the TLAC model, which fits very well the vast majority of individual

phone call durations, much better than log-normal and exponential;



4.4. FINAL REMARKS 69

• Proposal of applications based on the TLAC model, such as the introduction of

MetaDist, which shows that the collection of TLAC parameters, and specifically the

ρ and β ones, follow a striking bivariate Gaussian, with mean (P , B). We show it

can spot anomalies (see Figure 4.8) and it can succinctly describe spot correlations

(or lack thereof) between total phone call duration, number of calls, and number of

distinct patterns, for a given user.





Chapter 5

Predicting in Competitive Networks

5.1 Introduction

In competitive networks, the agents of the system compete among themselves for a reward

or limited resources, i.e., there is no reward to every agent and the resources are divided

unevenly. Examples of this kind of network can be found, for example, in networks of

workers looking for job positions, e.g. LinkedIn [LinkedIn, 2010], and in professional sports

leagues. In these cases, the organizations, companies or teams want to sign up the best

agents, workers or players, for the lowest possible cost and, by their turn, these agents want

to receive the maximum possible salary. Moreover, either the organizations and agents want

the organizations to grow, that is, expand in the market or win titles in their leagues. This

scenario presents several conflicts of interests that may unveil interesting observations over

the social agents of this type of network.

Thus, in this chapter, we tackle two aspects of DBCNs: modelling and predicting.

We analyze the network formed from the teams and players of sports leagues. We start our

analysis with the National Basketball Association (NBA) through the 63 first years of the

existence of the league. In the modeling stage, we view the NBA as a complex network

in evolution. Then, in the prediction stage, we develop metrics that are correlated with the

behavior of NBA teams, taking into account only the social and work relationship among

players, coaches and teams. Then, based on these metrics, we propose models to predict how

well a team will perform in the following season. We also evaluate the prediction models on

the Major League Baseball (MLB) dataset and, as we can observe in Figure 5.1, the NetForY

, one of our proposed models, performs surprisingly well on both datasets. In summary, the

main contributions of this chapter are:

• we show that in the NBA the regular box-score statistics distributions are highly

71
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skewed, with only a few players having high values. Moreover, acquiring players who

presented high values of box-score statistics in previous seasons does not guarantee a

team performance improvement;

• we propose general network features that are good indicators of the teams performance

in sports leagues. As an example, we show that a high team volatility is not good for

the team performance; and

• we propose network-based models to predict the behavior of teams in sports leagues,

which present surprisingly good results when compared to other approaches.

We emphasize that the proposed prediction models are generic and may be applied to

any team sports league, i.e., they do not rely on any particular box score statistics, relying

only on the feedbacks generated by the social motivations of the agents.
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Figure 5.1. Average accuracy of the network-based models and of the Yesterday model,
that is currently the state of the art. The accuracy is measured using the Spearman’s
rank correlation coefficient ρ. While the NetFor has similar performance, the NetForY
consistently beats the “Yesterday” , with up to 14% improvement.

This chapter is organized as follows. First, in Section 5.2, we present the related work.

In Section 5.3, we show our method for modeling a sports league into a network and, in

Section 5.4, we show the network implicit feedback features that give valuable information

on the teams performance. From these features we propose the network-based prediction

models in Section 5.5, which are evaluated in Section 5.6. In Section 5.7, we directly apply

the proposed models to predict the behavior of the teams in the MLB dataset, showing that

they are general models. Finally, in Section 5.8, we present some comments.
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5.2 Related Work

The use of networks to model collective sports is particularly interesting because of their

dynamics. Teams constantly change players, players may exchange techniques among them,

synergy among players may influence the performance of their teams, and so on. How-

ever, little attention has been given in the literature to such dynamical systems in terms of

networks.

Girvan and Newman [2002] modeled the United States college football league as

a network, where teams are the vertices and edges represent regular-season games be-

tween the two teams they connect. They use the college football league network to

check whether their algorithm detects the communities of teams, i.e., the league confer-

ences. Later, Park and Newman [2005] proposed a ranking system for the United States

college football league based on the network properties derived from this league. More-

over, Fast and Jensen [2006] modeled the National Football League (NFL) as a network

to analyze the influence that coaching mentors have on their protégés. They identified

notable coaches and characterized championship coaches, using this information and the

social relationships to predict which teams will make the playoffs in a given year. Fi-

nally, Onody and de Castro [2004] analyzed the statistics of the Brazilian National Soccer

Championship and they concluded that the players’ connectivity has increased over the years

while the clustering coefficient declined. They suggested that the possible semantic reasons

for this phenomenon are the exodus of players going abroad, the increasing number of play-

ers traded among national teams and, finally, the increase in the player’s career time.

Another interesting study relevant to our proposal is the work of Ben-Naim et al.

[2007], which presents a statistical analysis to quantify the predictability of all sports com-

petitions in five major sports leagues in the United States and England. To characterize the

predictability of games, the authors measure the “upset frequency” (i.e., the fraction of times

the underdog wins). While basketball and American football leagues have the lowest upset

frequencies, soccer and baseball leagues have the highest ones, meaning that the former ones

are easier to predict than the later ones. Given that, we start our analysis based on a basket-

ball database and then we move to a baseball database, which is supposedly harder to predict

and, therefore, a better test for our proposed network-based models.

Finally, in terms of forecasting in sports leagues, many different types of models have

been constructed to predict the outcomes of sporting events, but unfortunately, many of these

models have never been used in forecasting beyond the period of fit [Stekler et al., 2010]. We

believe that the main reason for that is the difficulty of competing with one of the simplest

but most powerful models, the “Yesterday” model. In a 2006 article for the feature section

of ESPN.com Page 2, Easterbrook [2006], a NFL specialist, proposed a prediction for the
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upcoming season: “I predict that every NFL team will end the 2006 season with the same

record as it did in 2005”. What he proposed is the exact idea of the “Yesterday” model.

He commented that this “obviously won’t be right, but it will be closer than the countless

pseudo-scientific forecasts floating around”. In advance, we point out that he is partially

right. The “Yesterday” is, to the best of our knowledge, the current state of the art for

forecasting in generic team sports leagues and, as we will show in this chapter, present

consistently good results. If there is one model to be beaten, this is the “Yesterday” model.

5.3 The NBA Network

5.3.1 Problem Definition

The main goal of this chapter is to show the high potential of network effects on predicting

the behavior of complex social systems. Thus, we define the following general problem:

Problem 1. NETWORK-BASED FORECASTING. Given a network G of players, coaches

and teams with edges signifying how long they played together, how can we use G to predict

the future behavior of this system?

Despite the fact that in this chapter we are analyzing team sports leagues, we strongly

believe that the relevance of Problem 1 goes beyond these systems. While the main sports

leagues have uncountable explicit data available, real world systems frequently have missing

or erroneous data. For example, in online auctions websites, e.g., eBay, some users may pro-

vide erroneous information to improve their credibility. In this case, network effects can be

used to spot anomalies and fraudulent users [Pandit et al., 2007]. In the same direction, net-

work effects can be used to detect frauds and other violations among brokers [Neville et al.,

2005]. Moreover, as another example, the social connections a person has may tell more

about him/her than his/her personal attributes explicitly described in his/her curriculum vi-

tae [Shetty and Adibi, 2005]. These examples show the generality power of the network

effects of social systems, being completely independent of any kind of individual attribute

of their entities.

Thus, we begin our analysis by modeling the historical NBA database as a net-

work in evolution. The NBA data we used in this chapter are publicly available at the

site databaseSports.com [2007]. This site provides all the NBA statistical data in text files,

from the year of 1946 to the year of 2008 and, among these data, it provides information on

3863 players, 265 coaches and 71 teams, season by season or by career. Our main goal is to

move beyond the ordinary individual box-score statistics presented in that database and use

network theory to discover new knowledge in the simple recorded numbers.
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5.3.2 Motivation

The United States National Basketball Association (NBA) was founded in 1946 and since

then is well known for its efficient organization and for its high level athletes. After each

game played, a large amount of individual statistical data, such as Points Per Game (PPG),

Assists Per Game (APG) and Rebounds Per Game (RPG), are generated describing the per-

formance of each player in the match. These statistics, called box-score statistics, are used

to characterize the performance of each player over time, dictating their salaries and the

duration of their contracts. They are also used by many services to provide more reliable

predictions on the outcome of upcoming games. But one question that naturally arises is:

are the box-score statistics the only available information capable of aiding in the prediction

of a team behavior? Again, we point out that PPG, RPG and APG only measure the actions

of a player within a second or two when someone shoots the ball. The rest of the time, points,

rebounds and assists measure nothing [Abbot, 2007].

In Figure 5.2, we show, by plotting the complementary cumulative distribution (CCD),

the probability of a player to have points, assists and rebounds averages in a season greater

than a determined value. We also show the CDD for the general efficiency of the players for

every season analyzed, which is computed as

Efficiency =
points + rebounds + assists

games played
. (5.1)

We observe that the CCDs for these box-score statistics have almost the same shape,

characterized by a significant drop after the 90th percentile, i.e., Pr(X > x) = 10−1. We see

that for all seasons analyzed, 90% of the players have marginal box-score statistics averages,

lower than 11 PPG, 4 APG, 8 RPG and efficiency of 12. This means that the majority of the

players contribute to their teams in ordinary ways, if we look only at box-score statistics. As

an example, considering that an average team scores 90 points per game, the probability of

having a player in a season scoring more than one third of the team’s points per game is less

than 0.4%.

Moreover, we show in Figure 5.3 the probability density function (PDF) of the number

of points, rebounds and assists the players achieved in their careers in the NBA. We observe

that the distributions follow a power law with an exponential cutoff in the tail, which is ap-

proximately in the 90th percentile for the three distributions. This indicates that, in general,

90% of the players have not scored more points, rebounds or assists than the cutoff value

that, respectively, is 22%, 14% and 11% of the maximum value in points, rebounds and as-

sists. Once again, we conclude that the majority of players have ordinary careers in terms of
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Figure 5.2. The majority of players marginally contributes to their teams in terms of
box-score statistics in comparison with a few players who have significant contribu-
tions. Observe the complementary cumulative distribution of the players efficiencies
and averages in points, assists and rebounds per season.
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Figure 5.3. The majority of players have scored in their careers marginal values of box-
score statistics in comparison with a few players who have significant contributions.
Observe the probability density function (PDF) of the number of points, rebounds and
assists the players achieved in their careers. The distributions follow a power law with a
cutoff in the tail.

box-score statistics in comparison with a few players who have significant contributions.

Figures 5.2 and 5.3 lead us to conclude that only a few players significantly contribute

to a team in terms of box-score statistics. Thus, if we consider that the only way to predict

a team success is to analyze box-score statistics then we are restricted to the analysis of a

small fraction of players.

Now we analyze the impact of acquiring or losing players with a determined efficiency

value on the performance of the teams. But before that, we define the performance metric

f(t, y) of team t in year y as

f(t, y) = number of victories of team t in regular season y. (5.2)
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We chose this performance metric because it characterizes the teams performance with fair-

ness, since it judges the teams based on their performances over the entire season, with every

team playing the same number of games.

Thus, given the performance metric f(t, y), we define the performance rτ
y of team τ

in year y as

rτ
y = the percentage of teams t, such that f(t, y) < f(τ, y), (5.3)

or simply the percentage that indicates the amount of teams that had a lower number of

victories than team τ in regular season y. The best performance team has rty = 100% and

the worst performance team has rty = 0%.

In Figure 5.4 we show the average performance gain, with its standard deviation, a

player produces when he is transferred from a team tout to another team tin. The performance

gain gm indicates how much the team the player left tout lost and how much the team the

player joined tin won with the transaction1 m, being defined as:

gm = (rtin
y − rtin

y−1) + (rtout
y−1 − rtout

y), (5.4)

where the term (rtin
y − rtin

y−1) refers to how much tin won with the transaction and the

term (rtout
y−1 − rtout

y) refers to how much tout lost. High values of the performance gain

indicate that the team the player left decayed its performance with his departure and the team

he joined improved its performance. If the performance gain is zero, no significant change

occurred.

We observe in Figure 5.4-a that there is no rule for the performance gain based on the

player efficiency, that is, the average performance gain is zero for all efficiency values below

40. For the efficiency values greater than 40, we cannot state anything, since the number of

transactions involving players who have efficiency values higher than 40 is not significant,

only 20 in the history of the NBA. This also corrobates the fact that individual box-score

statistics of players are rarely relevant for predicting the performance of a team.

Finally, we also investigate whether a team will improve or decrease its performance

when it changes its roster. In order to do this, we look at the efficiency values of the players

this team had in the previous season and currently has. Thus, we define the ∆Eff y
t for a

team t in year y as

∆Eff y
t = avg(

∑

∀pyt

eff(py∗))− avg(
∑

∀py−1
t

eff(py−1∗ )), (5.5)

1In this chapter, the term transaction refers to a exchange of teams by a player.
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which is the difference between the averages of the efficiency values of the players this team

had in year y and in year y − 1. A high value of ∆Eff y
t means that team t had higher

efficiency valued players in year y compared to year y − 1. In Figure 5.4-b we show the

isocontours of the performance gain according to ∆Eff . Most of the transactions are

in the dark red region where ∆Eff is between −5 and 0 and the performance gain is

approximately 0. Moreover, it is clear that there is no correlation between ∆Eff and the

performance gain, since the performance gain values are almost symmetric to the∆Eff =

0 line. This also implies that simply acquiring players with high box-score statistics is not

a guarantee for a team success. Besides this, it is interesting to note that most of the times

the teams have negative ∆Eff values from year to year, what suggests that changing the

team roster is usually not a good strategy. This will become clearer when we describe the

network-based features in Section 5.4.
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Figure 5.4. The efficiency of players acquired by a team has, in general, little effect on
its future performance.

5.3.3 The Network Definition

In the previous section, we showed that the usual box-score statistics are not good predictors

of the future performance of NBA teams over the years. Moreover, we showed that box-score

statistics alone cannot predict if a transaction will be good or bad for a team. Thus, in order

to explain and better understand the consequences and causes instigating the transactions

dynamics, we propose modeling the NBA as a network (or graph) in evolution. We believe

that metrics that capture network changes over time may provide implicit feedback signals

that might characterize the temporal situation of the teams and players in the NBA. We
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emphasize that the following model can be extended to any team sports league that involves

teams and players and, in fact, it will be used in Section 5.7 for modeling the MLB database.

In the network we construct from the NBA, the set of vertices V contains three types

of vertices: the set of players vertices P , the set of coaches vertices C and the set of team

vertices T . Since in the NBA the players, coaches and teams change over time, we construct

one network Gy(V y, Ey) per year, each one containing a set of player vertices P y ⊂ V y,

a set of coach vertices Cy ⊂ V y and a set of team vertices T y ⊂ V y. But before this, we

initially construct the Yearly NBA Networks (YNN) G′y(V ′y, E ′y) for every year y, where

V ′y is the set of players P ′y, coaches C ′y and teams T ′y that are active in season y. The set of

edges Ey are defined according to the labor relationships that exist between players, coaches

and teams in V ′y. We link a player p or a coach c to a team t in E ′y if and only if p or c

played or coached for t in y. Moreover, we link a player p to other player q in G′y if and

only if p played together with q for a common team in y. Moreover, we link a player p to a

coach c in G′y if and only if p was coached by c in a common team in y. Clearly the data is

temporal and the characteristics of players and teams change each year and, thus, we use ty,

cy and py to denote, respectively, the nodes of team t, coach c and player p in year y.

After constructing all YNNs, we are now able to construct the NBA Networks that

contain the information about the historical relationships among players and teams. In this

way, we recursively define the NBA Network Gy(V y, Ey) as the graph that contains the in-

formation in G′y and also the information in Gy−1. The use of historical information enables

us, for instance, to search for players who have played for a high number of teams, or to

search for teams that are frequently changing their rosters significantly over the years. There

are several ways to propagate the information contained inGy toGy+1 and we describe some

possible propagation models below:

1. Historical: Gy+1 = G′y+1 ∪ Gy. This model propagates all the vertices and edges

through the years, never removing them from the network. We use this model in this

chapter.

2. Yearly: Gy+1 = G′y+1 ∪ Gy(V ′y+1, Ey). This model removes from Gy+1 all vertices

that left the NBA in y + 1, i.e., it considers only players and teams that are active in y.

3. Delayed: Gy+1 = G′y+1 ∪ (Gy(V y, E ′y+1 ∪ (Ey − Ey+1−∆y)). This model removes

from the Gy+1 the edges that are ∆y years old. When ∆y is equal or higher than the

total number of years in the dataset, the Delayed model propagates in the same way

as the Historical model. On the other hand, when ∆y = 1, it propagates as the Yearly

model does.
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Thus, our goal is to move beyond the usual box-score statistics and discover new

knowledge in the network properties of the NBA, which are defined by the labor and social

relationships among players, coaches and teams. We are interested in knowing, for instance,

if a team that had always in its roster players who have already played with each other in

previous seasons is good for the teams performance or, as another example, if a player who

has played already with a large amount of other players in previous seasons is a player who

will help his team to improve its performance.

The labor and social relationships among players, coaches and teams are defined by

network changes, which basically occur in two situations: (i) when a new player or team

joins the NBA or (ii) when a transaction occurs, that is, an exchange of teams by a player.

Semantically, Dilger [2002] showed that a player may leave a teamwhen he is not performing

well or when his salary is high enough to force his team to free some space in its payroll

budget due to the salary cap2. Besides these reasons, we point out that a player may also

leave a team when he becomes a free agent and wishes to join another team which, according

to his judgment, has more chances to win the championship [ESPN.com, 2009].

In this direction, we show in Figure 5.5 the evolution of the two situations that cause

network changes, i.e., the number of transactions (new edges) and new players, coaches

and teams (new nodes). First, we observe a high correlation between the number of new

nodes and new edges for the years before the late seventies. Then, the number of new nodes

stays practically the same while the number of new edges grows practically linearly. This

suggests that the semantic reasons and implicit feedbacks associated with network changes

for these two periods might be different due to, for instance, changes in regulations and

player demands. The results presented in Section 5.6 reflect this observation.

5.4 Proposed Network Features

5.4.1 Preliminaries

Once defined the NBA Network and how it evolves over time, we are able to define and

tackle the following problem:

Problem 2. FEATURE EXTRACTION. Given a system in which the only information avail-

able is its historical network Gy(V y, Ey) for year y, which features can we extract from Gy

that provide relevant information on its future behavior?

2The salary cap is the maximum dollar amount teams can spend on player contracts.
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Figure 5.5. NBA network changes: the number of new nodes and transactions (new
edges) over the years. Note that after 1976 there is much more mobility (transactions),
with the number of new nodes being around 70 while the number of transactions keep
on growing.

The features that can be extracted from Gy are exclusively network features that obvi-

ously do not contain any sort of explicit information about their nodes. Therefore, in order

to solve Problem 2 considering the NBA dataset, we must rely on the implicit feedbacks that

arise from network effects, which indicate if a team will have a good or bad performance

in a year. Formally, each implicit feedback is a function fi(G
y, ty) ⇒ ℜ that receives as

parameters the NBA network Gy for year y and the team node ty in which we want to know

its future performance in year y + 1. Moreover, each implicit feedback fi is associated with

a specific observable network effect that can be used as an implicit measure of interest, in

our case, verifying if a team is likely to have a good or bad performance in the following

season. As an example, a team that significantly increased its degree from Gy−1 to Gy is a

team that has significantly changed its roster and, as a consequence, might not have a good

performance in the season y. On the other hand, if the degree between seasons is similar, the

team is probably satisfied with its roster and might have a good performance.

In the following sections, we show our proposed network features. These features

are based on the degree dyv and on the clustering coefficient [Newman, 2003]3 ccyv of the

vertices v of the NBA Network Gy(V y, Ey), being the same metrics that were reported

by Vaz de Melo et al. [2008a] as metrics that correlate with the performance of NBA teams.

In Table 5.1, we show the summarization of these features and other relevant symbols.

3the clustering coefficient is the probability of two given neighbors of a certain node to be connected.
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Table 5.1. Table of symbols.

Description Symbol

node of team t in year y ty

node of player p in year y py

node of coach c in year y cy

performance of team t in year y ryt
first year of node v y0v

age of node v in year y ayv = y − y0v
roster of team t in year y Ry

t

degree of node v in year y dyv
clustering coefficient of node v in year y ccyv

Team Volatility ∆dyt = dyt − dy−ǫt

Roster Aggregate Volatility Σ∆dyt =
∑
∀v∈Ry

t

dyv
y−y0v

Team Inexperience ixpyt = ccyt
Roster Aggregate Coherence ccyt = avg(ccyv × (y − y0v)), ∀v ∈ Ry

t

Roster Size syt =
∑
∀p ∈ Ry

t

5.4.2 Team Volatility

Our first feature is based on the well known quote “never change a winning team” by Sir Alf

Ramsey, manager of the English national football team from 1963 to 1974. As we mentioned

in Section 5.3.3, a player may leave a team when (i) he is not performing well, (ii) his salary

is too high for the team or (iii) when he becomes a free agent and wishes to join another team

which, according to his judgment, has more chances to win the championship [ESPN.com,

2009]. Since the reasons (ii) and (iii) are more related to high performance players and,

as we showed in Section 5.3.2, we conjecture that most players have average box-score

performance due to reason (i).

Thus, when the degree dt of a team t is increasing constantly and at a high rate over

the years, it probably means that t has not found a good roster yet. Therefore, a high degree

increasing rate for a team node t before season y starts is an implicit feedback that this team

will not perform well in y. Then, we define the feature Team Volatility∆dt for team t in year

y as

∆dyt = dyt − dy−ǫt , (5.6)

where ǫ is a time window parameter that should be small, in order to capture the most recent

behavior.

In Figure 5.6, we show the Spearman’s rank correlation ρ [Kendall and Gibbons, 1990]
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between the Team Volatility ∆d and the performance of the teams, with ǫ = 2.4 The coef-

ficient ρ measures how well the relationship between two variables can be described using

a monotonic function, being appropriate to compare two ranks. The values of ρ vary from

−1, when the two ranks are completely opposite, to 1, when the two ranks are the same.

When ρ ≈ 0, there is no relationship between the ranks. As we expected, we can observe

that, exception made for the year of 1969, the correlation is always negative, with an aver-

age ρ = −0.52. This indicates that the Team Volatility hurts the performance of the teams,

i.e., the more a team hire and fire players and coaches, the worst for its future performance.

Thus, it is reasonable to state that the Team Volatility feature is a good indicator of the team

performance.
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Figure 5.6. The Team Volatility hurts the performance of the teams, i.e., the more
a team hires and fires players and coaches, the worst. Observe the regularly negative
Spearman’s rank correlation ρ between the Team Volatility ∆d and the performance of
the teams. Note that, differently than box-score statistics, our network-based features
can capture such correlation.

5.4.3 Roster Aggregate Volatility

At the same time a team that is increasingly changing its roster is probably a team that is

not achieving satisfactory results, a player who is constantly changing his team is probably

a player who is not adapting. Thus, this kind of player is probably a player who will not

provide any significant aid or performance improvement for his current and future teams.

In the same way, this is also valid for coaches. Therefore, a team with a large number of

members who have played for several teams is an implicit feedback that this team will not

perform well in the season. Thus, in order to spot such teams we define the Roster Aggregate

4Other small values of ǫ were tested and the results are similar.
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Volatility feature as

Σ∆dyt =
∑

∀v∈Ry
t

dyv
y − y0v

, (5.7)

where y0v is the year of the first season played by the team member v who can be a player

or a coach. In summary, Σ∆dyt is the sum of the degree increasing rates for all the team

members in the roster Ry
t of team t in year y, counting from the first season of each member.

Again, the use of the Historical propagation model is justified because we want to know the

history of players and coaches who played with every team member vy ∈ ty.

In Figure 5.7, we show the Spearman’s rank correlation ρ between the Roster Aggre-

gate Volatility Σ∆d and the performance of the teams. As we observe, the correlation is

negative for the vast majority of the years, with an average ρ = −0.52. Although this feature

is similar to the Team Volatility, it has subtle but significant differences. For instance, a team

that is changing its roster at a slow rate, according to the Team Volatility metric, is a likely

team to have a good performance. However, if this team is hiring players that are changing

their teams at a high rate, according to the Roster Aggregate Volatility metric, this team is

likely to have a bad performance.
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Figure 5.7. Again, note that the Roster Aggregate Volatility hurts the performance of
the teams, i.e., the more a team hires players and coaches that are constantly changing
their teams, the worst. The Spearman’s rank correlation ρ between the Roster Aggregate
VolatilityΣ∆d and the performance of the teams is consistently negative. This is another
observation that cannot be drawn from usual box-score statistics.

5.4.4 Team Inexperience

It is well known that when a new team arrives at a determined sport league, the general

expectation is that this team does not perform well [Reheuser, 2010]. One of the reasons for

that is that the team managers may not have the proper number of connections and notoriety
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to raise a significant number of funds from sponsors to hire well known good performance

players. Then, we expect that the experienced teams have better performance than the newly

arrived inexperienced teams.

The usual and most natural way to describe a team t experience in year y is by its

age ayt , i.e., the number of years a team has played in the NBA. However, the amount of

experience a team acquires during the years is not a linear function, i.e., the amount of

experience a team gets after playing its first season is probably significantly higher than the

amount it will get by playing its 20th season. Thus, as a measure of experience we propose

the clustering coefficient of a node that has a non-linear relationship with the age of the team

(for more details, see the Appendix). Moreover, the clustering coefficient also indicates

whether a team has not experimented a wide variety of players in its roster, which in most

cases may suggest that this team is not a good team. Thus, we define the Team Inexperience

feature as:

ixpyt = ccyt . (5.8)

Thus, when a team t joins the NBA in year y, ixpyt = ccyt = 1 and, as t makes transac-

tions and become more experienced, ccyt decreases. Despite being a natural intuitive network

feature, we can see in Figure 5.8 that the rank correlation ρ between the Team Inexperience

feature and the performance of the teams is not regular, averaging only −0.14. However, a

closer look indicates that the correlation fluctuates smoothly, what suggests that the temporal

scenario plays an important role in this feature, with some subsequent years the correlation

being significative negative, and some subsequent years being close to zero. Moreover, the

median performance of inexperienced teams, i.e., teams that have played a season with a

team experience ixpyt > 0.95, is 21%. This indicates that, in general, their performances

are significantly below average, that is 50%. However, as we have shown in Figure B.4 (see

the Appendix) and in [Vaz de Melo et al., 2008a], the clustering coefficient carries valuable

information about the teams and players who can be jointly used with other information to

predict the future behavior of teams and players. This is shown in the description of our next

feature, which uses the clustering coefficient and is the one that shows the highest correlation

with the performance of the teams.

5.4.5 Roster Aggregate Coherence

It is common sense among sports analysts that a good chemistry among players is essential

for the success of a team. The so called chemistry involves a good relationship among the

players and also a good knowledge on the future moves and plays of each teammate. More-

over, it is also important that the coach knows his players well, being able to request from
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Figure 5.8. There is no clear correlation between the Team Inexperience and the per-
formance of the teams. However, a closer look indicates that the correlation fluctuates
smoothly, what suggests that the temporal scenario plays an important role in this fea-
ture.

them what he knows to be their best techniques. Thus, since the best way to build chem-

istry among players and the coach is through time, we define the metric Roster Aggregate

Coherence ccyt for team t in year y as

ccyt = avg(ccyv × (y − y0v)), ∀v ∈ Ry
t , (5.9)

that is the average of the clustering coefficients ccyv for every team member vyt who is in team

t in year y multiplied by the current member’s age ayv = y − y0v. In summary, a high value

of ccyt means that the team roster is playing together for a substantial amount of time and few

changes occurred. On the other hand, a low value of ccyt means that the roster faced a high

number of changes in recent time.

In Figure 5.9, we show the Spearman’s rank correlation ρ between the Roster Aggre-

gate Coherence ccyt and the performance of the teams. As we expected, we observe that the

correlation is positive for every year, with an average ρ = 0.55, the highest among all the

proposed features. This indicates that a high coherence and rapport among the players and

the coach is a good indicator that a team will succeed. Again, this is a result that cannot be

extracted from the usual box-score statistics, showing the usefulness of network effects.

5.4.6 Roster Size

Finally, we present the last feature we extract from the NBA Network, that is the Roster

Size. The size of the roster of a team t in year y is the number of players playing (or have

contracts) for t in y. Given that the salary cap5 is present in the NBA regulation since the

5The salary cap is the total amount of money the teams can spend on players’ salaries.
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Figure 5.9. A high coherence and rapport among players and the coach is a good indi-
cator that a team will succeed. Note that the Spearman’s rank correlation ρ between the
Roster Aggregate Coherence cc

y
t and the performance of the teams is regularly positive.

first season [nba.com, 2008], teams with a high number of players in their rosters tend, on

average, to pay less to their players than teams with fewer players. Thus, it is expected that

teams with less players have more valuable players, i.e., stars, since these players usually

demand higher salaries. From this, we define the Roster Size feature syt for team t in year y

as

syt =
∑

∀py ∈ Ry
t . (5.10)

In Figure 5.10, we show the Spearman’s rank correlation ρ between the Roster Size syt
and the performance of the teams. We observe that the correlation is negative for every year

except the years of 1956 and 1958, with an average ρ = −0.41. Thus, the larger the roster

size, the worst for the team. This also enables us to consider the Roster Size feature as a good

indicator of the teams performance.
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Figure 5.10. The larger the roster size, the worst for the team. The Spearman’s rank
correlation ρ between the Roster Size syt and the performance of the teams is consistently
negative.



88 CHAPTER 5. PREDICTING IN COMPETITIVE NETWORKS

For an analysis on the independence of the features presented in this section, please

see the Appendix.

5.5 Network-based Prediction Models

5.5.1 Problem Definition

Once defined the features to be extracted from the NBA Network, we are able to tackle the

main problem of this chapter:

Problem 3. RANK PREDICTION. Given a NBA NetworkGy(V y, Ey) for year y, predict the

performance rt
y+1 of every team t in year y + 1?

In Section 5.5.2, we present the Network-based Forecaster (NetFor ), which is our so-

lution for Problem 3 and the main contribution of this chapter. The NetFor is a prediction

model that uses only network features to predict the behavior of the teams. Also, in Sec-

tion 5.5.3, we propose the Network-based Plus Yesterday Forecaster (NetForY ), which is

a prediction model that uses both the network features and the information on the previous

performances of the teams.

5.5.2 NetFor

We begin to solve Problem 3 by defining the basic operation of a prediction modelM . First,

we determine that a prediction model MA has a function FA(ty) to calculate a prediction

score Πy
t = FA(ty) for each team t in every year y, where Πy

t measures the likelihood of

team t to perform well in year y + 1. Thus, the descending order of the Πy
t values for every

team t in year y gives the predicted rank of the teams for year y + 1, where the team t∗

with the highest prediction score Πy
t∗ is the most likely team to win the championship in year

y + 1.

Thus, we propose as a solution to Problem 3 the Network-based Forecaster (NetFor )

MNetFor , which is based solely on network features. The function FNetFor that calculates

theΠy
t value for each team t in year y is given by the features showed in the previous section.

We showed that the Team Volatility ∆dyt , the Roster Aggregate Volatility Σ∆dyt , the Team

Inexperience ixpyt , the Roster Aggregate Coherence cc
y
t and the Team Volatility syt are good

indicators of how well a team t will perform in a season y. Thus, we simply gather these five

features in the function FNetFor to compute the prediction score Πy
t of each team t in year
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y, in a way that

Πy
t = FNetFor (t

y, S)

= ∆dyt
−w1 × Σ∆dyt

−w2 × ixpyt
w3 × ccyt

w4
× syt

−w5

= −w1× log(∆dyt )− w2× log(Σ∆dyt )− w3

× log(ixpyt ) + w4× log(ccyt )− w5× log(syt ),

(5.11)

where the set of parameters S = {w1, w2, w3, w4, w5} are real values that weigh the features

in which they are associated with. The sign of the parameter is negative if the correlation

is negative and positive if the correlation is positive. We are not using a plain linear model

because the scale of the feature values may differ in orders of magnitude, what may make

the size of the parameter space impractical. A plain multiplicative model removes from the

parameters any dependency with the scale of the features they represent. In this case, the

parameter values only measure, quantitatively, how relevant a feature is compared to another

one. A linear alternative to the multiplicative model is the liner model using the logarithm of

the feature values, which can be derived directly from the multiplicative model, as described

in Equation 5.11.

In order to assign values to the feature parameters w1, w2, w3, w4 and w5, we propose

a simple method. Since we want to predict the performance of the teams for year y, we

can use all the information from the previous years y − 1, y − 2, ..., y −WY as the training

set used to determine a good set of values Sy
i = {w1yi , w2

y
i , w3

y
i , w4

y
i , w5

y
i } for the feature

parameters. Thus, for a prediction for year y, our training set is a window of theWY previous

seasons y − 1, y − 2, ..., y −WY and we use it to find a set Sy
∗ that gives the best results for

theseWY years.

Before explaining what is a good result and how we find the best ones, we list two

classes of people that could directly benefit from a sports prediction model:

1. Sports Analyst: the whole rank is important. He/she wants to know how all teams will

perform, i.e., he/she wants to know all the future team performance s;

2. Gambler: only the top predicted team t∗ is important. He/she has only one bet for

which team will be the champion, i.e., he/she only wants that the top team predicted

by the model is also the champion.

Given these classes, one could use as the evaluation metric to find Sy
∗ , for instance, the

Spearman’s rank correlation coefficient to satisfy the Sports Analyst class or the number of

times the prediction model selects the best performance team to satisfy the Gambler class.

However, for simplicity, from now on we will use the Weighted Spearman’s rank correlation

ρW [da Costa and Soares, 2004] as our main evaluation metric for determining how good a
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parameter set S is for a training set. The ρW weighs the distance between two ranks using a

linear function of those ranks, giving more importance to higher ranks than lower ones, satis-

fying the two classes of people described above. Moreover, according to da Costa and Soares

[2004], the main application for the proposed rank correlation coefficient is in the evaluation

of rank prediction methods, which are mostly applied to recommendation systems, informa-

tion retrieval, stock trading support and, in our case, sports outcome prediction.

Thus, we use the Weighted Spearman’s rank correlation ρW to determine how good

is a set of feature parameter values S. In order to find the quasi-optimal set of val-

ues Sy
∗ for the parameters, we search the parameter space for a set of values Sy

∗ =

{w1y∗, w2
y
∗, w3

y
∗, w4

y
∗, w5

y
∗} that maximizes the value of ρW for the years y−1, y−2, ..., y−

WY when we want to predict the teams’ performance in year y, in a way that

Sy
∗ = argmax

Sy
(

WY∑

i=1

ρW (ry−it , fNetFor (t
y−i, Sy))). (5.12)

In our case, since the parameter values only measure the relative temporal importance

from one feature to another, we can search for parameter values in a reduced parameter space.

Thus, we execute a linear local maxima search in the parameter space using the coordinate

ascent optimization algorithm [Fessler and Hero, 1994] to find the quasi-optimal set Sy
∗ for

every year y−1, y−2, ..., y−WY of our dataset. Each parameter wi starts with the value 0.1

and linearly grows by 0.1 until the local maxima point is found. We emphasize that we tried

different parameter spaces and different optimization algorithms and the results are similar.

5.5.3 NetForY

One advantage of the NetFor is that it is entirely based on implicit measures, which are

generally thought to be less accurate than explicit measures [Nichols, 1998], but as large

quantities of implicit data can be gathered at no extra cost to the user, they are attractive

alternatives. Moreover, implicit measures can be combined with explicit data to obtain a

more accurate representation of the analyzed system [Kelly and Teevan, 2003]. Thus, in this

direction, we propose the Network-based Plus Yesterday Forecaster (NetForY ).

The NetForY is a simple extension of the NetFor , which together with the network

features described in Section 5.4, also uses the information on the previous performance

of the teams. Considering that the network features inform the amount of changes a team

made in its roster in a non-trivial way, they can also indicate, using the previous performance

information, whether a teamwill maintain its performance. For instance, if a team had a good

performance in year y and the network features indicate that the network changes made in

its roster are not significant, then it is very likely that this team will continue to have a good
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performance in year y + 1. Thus, we simply gather the five network features used in the

NetFor together with the previous performance of the teams ry−1t in the function FNetForY

to compute the prediction score Πy
t of each team t in year y, in a way that

Πy
t = FNetForY (ty)

= −w1× log(∆dyt )−w2× log(Σ∆dyt )

+w3× log(ixpyt ) + w4× log(ccyt )

−w5× log(syt ) + w6× log(1 + ry−1t ),

(5.13)

where FNetForY (ty) is identical to FNetFor (t
y) with the addition of the extra term

w6 × log(1 + ry−1t ). Moreover, the method for assigning values to the parameters

w1, w2, w3, w4, w5 and now w6 is the same as the one described in the previous section.

To see the parameter values and how they change over time for both network-based predic-

tion models, see the Appendix.

5.6 Results and Validation

In this section, we describe the results of our proposed network-based models. In Sec-

tion 5.6.1, we show the individual results of our models for metrics that are based on the

two classes of people who were described in Section 5.5.2. Moreover, in Section 5.6.2, we

compare the models with other models based on explicit descriptive statistics. For the WY

parameter, we used a fixed sliding window of 10 years, i.e.,WY = 10. We tried other values

forWY and also the exponential weighted window, which gives more weight for more recent

years, and the results are similar. For aWY sensitivity analysis, see the Appendix.

5.6.1 Results

As we mentioned earlier in this section, the basic evaluation metrics are targeted to the two

classes of people described in Section 5.5.2 that can directly benefit from a NBA prediction

model. First, we address the Sports Analyst class by showing, in Figure 5.11, the Spearman’s

rank correlation ρy between the performance ryt and the prediction score Π
y
t of every team

t in year y. We observe a significative positive rank correlation for either the NetFor and

the NetForY , with the NetForY performing better, on average. The average correlation ρ

for the NetForY is 0.68 and for the NetFor is 0.59. We also performed, for both models,

a linear regression for every pair (y, ρy) and we verified that the slope for both regressions

is 0. This indicates that there is no particular trend for the performance of the models over

time.
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Figure 5.11. The proposed network-based models had good performances in predicting

the whole rank of the teams. Observe the Spearman’s rank correlation coefficient ρ

between Πy
t and r

y
t . The average correlation ρ for the NetForY is 0.68 and for the

NetFor is 0.59, significative high values.

Second, we analyze how the network-based models perform according to the interests

of the Gambler class. For this, we verify the performance ryt1 of the team ty1 that got the

highest prediction score Πy
t1 in year y. A perfect prediction model gives, for every year y,

the highest prediction score to the team ty∗ that was the team with the best performance in

year y, i.e., Πy
t1 = Πy

t∗ . Thus, we verify the percentage hit% of times ty1 was the actual best

performance team ty∗ and also the average performance r of the teams ty1 selected by the

model.

In Figure 5.12, we show the histogram of the performance of the teams ty1 selected

by the model over the 62 years of our dataset 1947 ≤ y ≤ 2008. As an example, in the

histogram, the number of teams with performance 80% that were selected by the NetFor

is 7, meaning that in 7 years the model selected as a ty1 a team with performance greater

or equal to 80% and lower than 90%. Thus, we observe that the vast majority of the teams

selected by the models are concentrated in the right side of the graph, indicating that the

models generally select good performance teams as the most likely team to perform well in

the following season. Moreover, for the NetFor , hit% = 35% of the teams selected by the

NetFor model are the actual best performance teams and≈ 68% had, at least, a performance

higher than 80%. On the other hand, the NetForY also selected hit% = 35% of the times

the actual best performance team but, however, the model is more stable, selecting only

once a team with a performance lower than 50% and with 90% of the teams ty1 having a

performance higher than 80%. The average performance r of the teams selected by the

NetFor is r ≈ 83% and by the NetForY is r ≈ 89%.
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Figure 5.12. The network-based models consistently indicate a high performance team

as their top team. They correctly predicted the top performance team ≈ 35% of the

times. Note that the higher the count values at the right at the distribution, the better.

5.6.2 Comparison

In this section we compare our network-based models with other prediction models, using

the two metrics described in the previous section, the average Spearman’s rank correlation

coefficient ρ and the average performance r. Before presenting the results, we describe the

models we use in the comparison.

“Yesterday” . This is currently the state of the art for forecasting team sports leagues in

general, as we mentioned in Section 5.2. The “Yesterday” states that a teams performance

in year y will be the same as its performance in year y − 1. Thus, the prediction score Πy
t of

team t in year y is simply the performance ry−1t of team t in year y − 1.

Aggregated Box-Score (ABS) Model. This model uses the aggregated value of the

three main box-score statistics of team t in year y−1: points, rebounds and assists. Therefore,

the prediction score Πy
t of team t in year y is points(ty−1) + rebounds(ty−1) + assists(ty−1).

It is important to point out that when we use more sophisticated formulas, such as the AP-

BRmetrics team efficiency difference rating [APBRmetrics, 2011], the prediction factor be-

comes significantly correlated to the prediction factor of the “Yesterday” model, giving

similar results to it.

Efficiency-based models. We introduce two efficiency-based models, the Eff-1 and

Eff-5 model. These models use solely the box-score efficiency of the players in the year y−1

to calculate the prediction score of the teams in the year y. The only difference between these

models is related to the number of players each one uses to compute the prediction score Πy
t
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of team t in year y. In the Eff-1 model, the prediction score Πy
t of team t in year y is the

highest efficiency of a player p ∈ ty, and in the Eff-5 model is the average of the five highest

efficiencies of players pj ∈ ty. Moreover, when y < 1973, we compute the efficiency of a

player as the sum of his points, assists and rebounds achieved in a period divided by the total

number of games he played in this period. When y ≥ 1973, we compute the efficiency by

using the NBA Efficiency Per Minute (EPM) formula [Paulsen, 2006], which can only be

computed using more detailed box-score statistics, which were not recorded before 1973.

Adapted Page’s model. Page et al. [2007] used the 1996-1997 NBA season data to

propose the use of Bayesian hierarchical modeling and box-score statistics to determine how

each player position needs to perform in order to his team to be successful. He showed the

most important box-score statistics for each player position in order to improve the team

performance. Thus, we adapt his model, which predicts the winner game by game, to a

season prediction model. We use the player’s data from year y − 1 in the equation of the

model described in [Page et al., 2007], using the same parameters, to compute the prediction

score Πy
t of team t in year y. In this way, we expect that a team in year y that has more

players that had high values of a box-score statistics in year y − 1 that is favorable to their

respective positions, according to Page’s model, will be more likely to be successful in year

y.

As shown in Figure 5.5, the network evolutionary behavior differs before and after the

year of 1976. Thus, we divided the results into three blocks: (i) before the year of 1976,

(ii) after the year of 1976 and (iii) the overall results, between 1947 and 2008. This di-

vision is also useful for other two reasons. First, after the year of 1973, more box-score

statistics were recorded after each game, such as blocks, steals and offensive and defen-

sive rebounds, which may collaborate to measure the efficiency of a player more accurately,

by using the NBA EPM metric, for instance. Thus, this probably helps the efficiency-based

models. More importantly, the Page’s model uses these box-score statistics to evaluate which

team has the highest probability to win a match, and because of this, we can only evaluate

the Page’s model after the year of 1973. Second, the labor relationships between players and

teams – this is exactly what the edges of our networks measure – were significantly differ-

ent [Bradley, 2009] before the year of 1976 from nowadays. For example, before the year

1976, players contracts had in it the option clause [Looney, 1976] that practically bounded

a player to his team eternally, with the player being released to play for another team only

when his team let him do so. This means that the implicit feedbacks of a network change

before and after 1976 may be significantly different.

In Table 5.2 we compare the models described in this section with our proposed

network-based models. We observe that the network-based models are the ones with the

best results. The NetForY has the best results for all metrics in all periods, sometimes tying
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with the NetFor . In comparison with our the best competitor, the “Yesterday” , the NetFor

performs better in the first period and worse in the second. This could be explained because,

as we saw in this chapter, the implicit feedbacks behind network changes before the year of

1976 were much more clear and simple. In this period, a player would move from a team to

another only if he was not being efficient to the team.

In general, the NetForY is always the best model and both the NetFor and the “Yes-

terday” perform similarly, what is a fascinating result, since the NetFor considers only

network features. More specifically, the network-based models are the ones that can achieve

the best results, 35% of the times, being the best choices for the Gambler class. Considering

the Sports Analyst class, while the NetFor has a similar performance to the “Yesterday” ,

the NetForY achieved ≈ 14% improvement, what is an impressive result in terms of pre-

diction power. This shows the potential of combining implicit network features with explicit

features.

Concerning the models that behold to box-score statistics to calculate their prediction

scores, they all presented worse results than the network-based models. The adapted Page’s

model, as expected, presented better results than the efficiency models and the ABS model,

since it is significantly more sophisticated. However, the fact that the efficiency models

improved their results after the year of 1973 is quite interesting. There are two possible

reasons for that. First, more high box-score statistics players are arising in the NBA along

the years and they are being more determinant to their team success. Second, the new box-

score statistics that are being recorded through the years are improving the characterization

of the performance of the players in a game and, consequently, their importance to their team

success.

Model year ≤ 1976 year > 1976 Overall

ρ r ρ r ρ r hit%

NetForY 0.66 88 0.69 90 0.68 89 35%

NetFor 0.62 88 0.57 79 0.59 83 35%

“Yesterday” 0.57 85 62 88 0.59 87 26%
ABS 0.44 78 0.43 74 0.43 76 18%
Page’s - - 0.52 80 0.52 80 21%
Eff-1 0.37 74 0.41 79 0.39 77 24%
Eff-5 0.40 71 0.42 74 0.41 72 18%

Table 5.2. Comparison among the Network Model and other prediction models. In

bold the best result and in italic the runner up. Note that our proposed NetForY al-

ways achieved the best result. Moreover, the NetFor had a better performance than the

“Yesterday” in the early years and in selecting the best performance team.
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5.7 Generality

In the previous section, we showed that the proposed network-based prediction models have

significant good results when compared to other approaches. Moreover, since the models are

parsimonious, i.e., they require a single parameter6, and do not rely on any particular box-

score statistics, they are ready to be used in any system that share similar characteristics with

the NBA. Thus, in this section, we verify the performance of the network-based models in

the network formed from the North American Major League Baseball (MLB) dataset using

the same value for theWY parameter, i.e.,WY = 10.

We use the MLB dataset that is publicly available in Sean Lahman’s Baseball Archive

site [Lahman, 2008]. It contains a huge amount of information about all the teams and

players from 1871 to 2009, a total of 139 years of data! In our case, the only information we

need is the roster and the ranking of each team per year. With this, we are able to construct the

MLB networks and also verify the performance of our proposed network-based prediction

models, as we did for the NBA dataset.

In Figure 5.13, we show the average ρ between Πy
t and r

y
t for three consecutive years

7

for the NetForY , the NetFor and the “Yesterday” models (the latter was our best competitor

in the NBA dataset). In a first look, we observe that the behavior of the three models is very

similar, with constant positive correlation values for the 138 years of the analysis. However,

a closer look reveals that the NetForY model is robust to the oscillations of both the NetFor

and the “Yesterday” models, having a more regular behavior. This can be verified by com-

puting the global average correlation ρ that is ≈ 0.59 for the NetForY whereas is 0.52 for

the NetFor and for the “Yesterday” models.

6the wi parameters are calculated deterministically using this single parameterWY
7This was done to ease visualization.
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Figure 5.13. The average ρ between Πy
t and r

y
t for three consecutive years. The global

average correlation ρ for the NetForY is 0.59 and for the NetFor and “Yesterday”

model is 0.52

The better performance of the NetForY can also be verified from Figure 5.14 that

shows the difference ∆ρ = ρM1 − ρM2 between the ρ coefficients achieved by two models

M1 and M2. We can observe that, while the NetFor and the “Yesterday” had similar

performances, the NetForY had almost three times higher rank correlation coefficients ρ

than the “Yesterday” . Finally, as verified when analyzing the NBA dataset, in the MLB

dataset, while the “Yesterday” model presented an irregular behavior, the NetFor is the best

model for the first years of the league, having constant high correlation values. This may

indicate that for leagues where the rules and dynamics are not yet established, the NetFor

may be the preferred choice for predicting the behavior of the teams.
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(a) NetFor vs. “Yesterday” .
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(b) NetForY vs. “Yesterday” .

Figure 5.14. The difference ∆ρ = ρM1 − ρM2 between the ρ coefficients achieved by

the two modelsM1 andM2.

Moreover, in Figure 5.15, we show the behavior of the network-based models and of

the “Yesterday” model in identifying the best performance team. In Figure 5.15, we show
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the histogram of the performance of the teams ty1 selected by the model over the 138 years

of our dataset 1872 ≤ y ≤ 2009. Again, we observe that the NetForY is the one that

presents the best results, with an average performance r = 0.81, while the NetFor and

the “Yesterday” had again a similar performance, with r = 0.79. Moreover, the NetForY

could identify the best performance team, on average, once at every three years, with hit% =

33.3%, while the NetFor identified 26% of the times and the “Yesterday” , 29% of the times.
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Figure 5.15. Performance of the network-based models and of the “Yesterday” model

in identifying the best performance team.

In summary, we could observe that the network-based models presented good results

even when applied to the MLB dataset that comprises 139 years of data and is related to

a sport that was proved to be one of the most difficult to predict [Ben-Naim et al., 2007].

We believe that this test validates our proposed models and put the NetForY model as the

state of the art for automated predictive models for general team sports leagues, since it

consistently showed better results when compared to the “Yesterday” model that was to the

best of our knowledge the best so far. More important is the finding that network effects have

an enormous potential to describe the evolution of complex and dynamic social systems.

5.8 Final Remarks

In this chapter, we proposed the use of network implicit feedbacks to aid in the prediction

of teams behavior in sports leagues. We proposed five temporal network features and, from

them, we described two network-based models: the NetFor , which is entirely based on these
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features, and the NetForY , which also considers the information on the previous perfor-

mance of the teams. We analyzed the proposed models in two of the most popular profes-

sional sports leagues in North America, the National Basketball Association (NBA) and the

Major League Baseball (MLB). In both leagues, the network-based models presented con-

sistently good results, with the NetForY being the best model in all the considered metrics

for both of the datasets when compared to other models in the literature.

In summary, the main contributions of this chapter are:

• We show that only a small fraction of players have significantly high box-score statis-

tics values and, moreover, that acquiring these players does not guarantee a team per-

formance improvement;

• We propose five general network features that are good indicators of the teams perfor-

mance in sports leagues. For instance, we show that a high team volatility and roster

size are not good for the team performance;

• We propose the NetFor and the NetForY network-based models to predict the be-

havior of teams in sports leagues. The models present surprisingly good results when

compared to other approaches. The NetForY model presented better results than the

current best model, with a ≈ 14% accuracy improvement in predicting the next year

rank;

• The network-based models are generic and may be applied to any team sports league,

i.e., they do not rely on any particular box score statistics.





Chapter 6

Controlling Computer Networks

6.1 Introduction

Finally, we analyze DBCNs formed exclusively by computer devices. As we showed

in [Vaz de Melo et al., 2011b], even in this type of network, agents can be modeled as social

nodes with decision capabilities. The main difference between this type of networks and the

previously analyzed ones is that in computer networks the agents do not make irrational de-

cisions due to the “trembling hand” effect [Fudenberg and Tirole, 1991]. This means that all

decisions performed by the agents have the goal to maximize their utility and nothing else,

acting in a pure selfish way, and irrational decisions made by jitter or similar causes do not

exist.

We consider a scenario where distinct Wireless Sensor Networks

(WSNs) [Akyildiz et al., 2002] with different owners are deployed at the same place.

In this scenario, there is the possibility that a sensor node of a network cooperates with a

sensor network of another network. When twoWSNs, installed at the same place, share their

sensor nodes in the execution of one or more activities in a intelligent way, both networks

may improve their operabilities and perform their activities in a more efficient way. Despite

being obvious and simple, this idea brings with it many implications that hinder cooperation

between the networks. Whereas a WSN has a rational and selfish character, it will only

cooperate with another WSN if it provides services that justify the cooperation.

In this chapter, we tackle the three aspects of DBCNs we analyze in this thesis: mod-

elling, predicting and controlling. First, we model the problem of cooperation among dif-

ferent WSNs using game theory. Game theory is an interesting technique to model con-

flict situations among two or more rational and selfish agents [Fudenberg and Tirole, 1991;

Nisan et al., 2007; Luce and Raiffa, 1957]. In computer networks, since the decisions and the

metrics of utility, e.g., throughput and latency, are computationally well defined, game theory

101



102 CHAPTER 6. CONTROLLING COMPUTER NETWORKS

Symbol Description

WSN Wireless Sensor Network

VCB Our proposed Virtual Cooperation Bond

GTC Our proposed Give to Conquer strategy

Ni Network i

n
j
i sensor node j of network i

G = (N,E) graph representing the sensor nodes of the set of networks N and their links E

ei(n
j , nk) an edge between nodes nj and nk carrying data of network Ni

w(ei(n
j , nk)) energy cost of the edge between nodes nj and nk

frx energy cost for receiving a message

ftx energy cost for transmitting a message at 1 unit of distance

d(nj , nk) distance between nodes nj and nk

α path loss exponent

c
j
i cost that each node n

j
i incurs for its network Ni

Πi payoff of network Ni

φ abstract value of the data that is transmitted

Table 6.1. Table of symbols.

can be a powerful tool to model the behavior of the social agents. After the game-theoretic

model is well defined, the behavior of the agents is well predicted. From this knowledge, we

can design incentive mechanisms to control their behaviors.

The main contributions of this chapter are:

• We present a game-theoretic formulation for the problem of cooperation among differ-

ent WSNs deployed in the same location;

• We show that the only solution for the cooperation is a protocol that enables a joint

strategy change by the nodes;

• We propose the Virtual Cooperation Bond (VCB) protocol, that is able to make the

networks cooperate if and only if the cooperation is beneficial to them;

The rest of this chapter is organized as follows. In Section 6.2, we explain our moti-

vations by solving the problem of cooperation among different networks and, later, in Sec-

tion 6.3, we describe the previous approaches to solve this problem. In Section 6.4, we show

our game theoretic formulation of this problem and, in Section 6.5, we show the solution

of this game by proposing the Virtual Cooperation Bond (VCB). In Section 6.6, we show

the protocol to establish the VCB and in Section 6.7 are described the simulation results.

Finally, in Section 6.8, we present some comments. Table 6.1 presents the symbols used in

this chapter.
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6.2 Cooperation Among Different Networks

AWireless Sensor Network (WSN) consists of spatially distributed autonomous devices that

cooperatively monitor physical or environmental conditions, such as temperature, sound,

luminosity, vibration, pressure, motion, and pollutants. The potential for observation and

control of the real world allows WSNs to present themselves as a solution to a variety of

monitoring and control applications, such as environment monitoring, biotechnology, indus-

trial monitoring and control, public safety, transportation, and medical control. A WSN is

comprised of compact and autonomous devices called sensor nodes, composed of proces-

sor, memory, battery, sensor devices and transceiver. A sensor network is the result of the

fast convergence of three key technologies: microelectronics, wireless communication, and

MEMS (Micro Electro-Mechanical Systems).

In a near future, we can expect to haveWSNs deployed on the most different and varied

places, like forests, volcanoes, seas, cities and deserts. Furthermore, a possibly forthcoming

scenario will be distinct WSNs owned by different authorities working at the same place,

serving as a supporting tool for a wide variety of applications. In the Amazon forest, for

instance, we could have a WSN, owned by the government, deployed for detecting fires

and another WSN, owned by a non-governmental organization, deployed for detecting the

movement of specific species of animals.

Because of the environment in which a WSN is inserted, both size and production

cost of a sensor node should be as small as possible and its battery replacement will

be rarely possible. As a consequence, a sensor node has severe hardware constraints in

terms of processing, memory, communication and energy capacity. In particular, depending

on the sensing application, data communication can consume a significant amount of en-

ergy Pottie and Kaiser [2000]. Thus, in order to assure an efficient operability of the WSN,

sensor nodes should cooperate with each other to improve the quality of the data and to

reduce the energy consumption in the data communication process.

In this direction, when two WSNs, installed at the same place, share their sensor nodes

in the execution of one or more activities in a profitable way, both networks may improve

their capabilities and perform their activities in a more efficient way. Despite being obvious

and simple, this idea brings several implications that hinder cooperation among the networks.

A WSN has a rational and selfish character and will only cooperate with another sensor

network if this association provides services that justify the cooperation. In Figure 6.1, we

illustrate this scenario.

An interesting technique to model conflict situations among two or more rational

and selfish agents is through the concepts of game theory Fudenberg and Tirole [1991];
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Nisan et al. [2007]. Generally speaking, game theory is based on models that express the

interaction among players by modeling them as rational and selfish agents in such a way that

they act to maximize their own utility. This allows the analysis of existing algorithms and

protocols for WSNs, as well as the design of equilibrium-inducing mechanisms that provide

incentives for individual nodes to behave in socially-constructive ways. Game theory defines

mechanisms for players to choose the best available action, but at the same time it provides

a scenario where other players’ utilities can also be maximized. By modeling the problem

of cooperation among different WSNs as games, the networks’ behaviors and actions can

be analyzed in a formalized game structure, by which the theoretical achievements in game

theory can be fully utilized. Each authority that governs its network wishes to both maximize

its lifetime and its quality of service, and will only cooperate with another network if this

cooperation brings benefits.

6.3 Related Work

In the literature, there are a few but significant proposals that studied this problem, and all

of them present significant results that serve as base for our work. They usually use coop-

eration between different networks to reduce the distance that sensor nodes communicate,

since the energy consumption varies exponentially with the distance at which the data is

transmitted [Wieselthier et al., 2001], depending on the path loss exponent of the environ-

ment. Nevertheless, cooperation may be also used to improve other network functions, such

as quality of the data by data aggregation.

The work of Felegyhazi et al. [2005] is, to our knowledge, the first one that addressed

the problem of cooperation among different WSNs. In that work, the strategies of the owners

of the networks are set if their sensor nodes forward messages coming from other networks

and if they ask other networks to forward their messages. It is assumed that sensor nodes send

messages periodically and synchronously to their respective sink nodes and these, in turn,

send to their sensor nodes a bit telling if data collection was satisfactory. From this, sensor

nodes control their strategies in order to minimize their energy consumption and maximize

the data collection rate. In this model, the networks converge essentially to two equilibria,

a non-cooperative in that no node provides and asks for services to another network, and a

cooperative, which all nodes provide and ask for services of another network.

We showed in [Vaz de Melo et al., 2008c] that the problem of cooperation among dif-

ferent WSNs involves several parameters that can significantly influence the establishment

of cooperation and its benefits. A solution that enables cooperation only when all of the

sensor nodes cooperate is not practical, since it is very unlikely that two different WSNs
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have the same configuration homogeneously through out the area they are deployed. Thus,

an efficient practical solution should allow parts of the networks to cooperate where others

do not. Then, in order to accomplish that, it is very important to have a distributed solution.

Moreover, in order to establish cooperation among sensor nodes of different WSNs, it

is important that they know the costs and the benefits that will incur to them by cooperating.

Min-You Wu [2005] showed that if the sensor nodes declare their cost to route messages, the

networks are naturally encouraged to cooperate and to share their sensor nodes. Moreover,

the authors showed that if the agent reveals its real cost for routing a packet, its benefits will

be maximized.

Besides routing, Miller et al. [2005] consider the possibility of different WSNs to ex-

change different favors, such as routing, sensing, processing and data storage. Because of

this, a stable solution and beneficial to both systems is only feasible if the owners of the net-

works sign a financial contract before the network deployment, which may be unpractical,

since networks are deployed regularly and a control over it may not be possible.

Finally, Crosby and Pissinou [2007] demonstrate that cooperation is not evolutionary

stable when the networks have mobile sensor nodes and are playing the iterated N-player

prisoner’s dilemma. However, they showed that in the case of stationary sensor nodes, there

is some possibility for cooperation to emerge without any incentive when the same game

is played. Our work goes in this direction, and in the next section, we model the problem

of cooperation among different WSNs as the iterated N-player prisoner’s dilemma and we

propose a strategy to establish cooperation among the networks.

6.4 WSN Cooperation Game

In this section, we propose a new formulation for the problem of cooperation among different

WSNs deployed at the same location. It is similar to the ones discussed earlier, but with this

formulation we aim to guarantee cooperation in a distributed and ad-hoc fashion, for more

realistic and dynamic scenarios. Let N be a set of m networks, N1, ..., Nm, and let n0 be

the sink node, which is shared by all networks. Each Ni network, 1 ≤ i ≤ m, has a set of

unique sensor nodes Ni = {n
1
i , n

2
i , ..., n

|Ni|
i } and the sink node n0 is shared by all networks.

We model the cooperation among the networks as a multigraph G = (N,E), where N is

the set of all networks and E is the set of edges between an arbitrary pair of sensor nodes.

For the sake of simplicity, we model the traffic originating at each network in a unique

way. Therefore, there will be a distinct edge for the collected data packets coming from

each network and sent towards the sink. All edges that carry traffic from network Ni are

represented by ei(nj, nk), where j and k are not necessarily different and 1 ≤ j, k ≤ m. The
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set of edges ei represents the routing infrastructure responsible for carrying the traffic from

network Ni. From a practical point of view, a communication link between a pair of nodes

may represent a set of distinct edges.

For simplicity, we consider that the initial data collecting routing structure of each

network is a routing spanning tree [Tanenbaum, 2002], but this is not a necessary condition,

i.e., any routing structure can be used by the networks. We consider that the routing spanning

tree generated is, for each network, the best tree that the network is able to generate following

a defined QoS parameter, being optimal or not. Thus, each node nu
i has at most a single

outgoing edge ei(nu
i , n

v
j ) leaving n

u
i for each networkNj , i.e., nu

i can forward messages from

networkNj to at most one node. The set of edges that leaves nu
i is denoted by E

u
i , |E

u
i | ≤ m

and the weight w(ei(nu
i , n

v
j )) > 0 of edge ei(nu

i , n
v
j ) is independent of the networkNi, being

given by the energy consumption model w(ei(nu
i , n

v
j )) = frx + ftx × d(nu

i , n
v
j )

α, where frx
is the cost to receive a message, ftx is the cost to send a message to a unit of distance d,

d(nu
i , n

v
j ) is the distance between nu

i and nv
j and α is the path loss exponent. We emphasize

that the energy model w may be changed without invalidating this formulation.

The players in our game-theoretic formulation are the m networks and the strategy of

network Ni is to set Si = {E
u
i ∀ n

u
i ∈ Ni}, i.e., each network defines to which sensor nodes

its own sensor nodes will relay the networks’ data collection messages. The cost in energy

cui that each node n
u
i incurs for its network is given by c

u
i =

∑m
i=1w(E

u
i ), that is the sum of

the weights of the edges that leaves node nu
i . The utility function that maps the payoff Πi of

each network Ni, given its topology, is Πi =
∑
∀nu

i ∈Ni
(φ− cui ), where φ is an abstract value

of the data that is transmitted, where φ ≫ cui ∀ nu
i ∈ Ni. As we mentioned earlier, it is

natural that the value φ of the data be significantly higher than the cost to transmit it, since

a WSN only exists to collect data, thus, without the data there is no network. The payoff Πi

captures, then, the data collection rate and the energy consumption in routing of networkNi,

being determinant to define if the network cooperates or not with another network.

Initially, no sensor node nu
i is cooperating with other networks besides its own network

Ni. A network Ni, which is a rational and selfish player, should, then, change its strategy

and make one or more of its sensor nodes to forward messages coming from other networks

if and only if, it increases its payoff Πi. However, if all the networks maintain their strategies

and a network Ni changes its original strategy and make a sensor node nu
i to cooperate and

to forward messages from other networks, its cost cui will increase, making the payoff Πi

to decrease. Thus, initially, the game is in Nash equilibrium because it is not possible for

a network to increase its payoff changing its strategy if all other networks maintain theirs.

This makes a network Ni to only be able to increase its payoff if it coordinates with another

network Nj a joint change of strategies, Si → S ′i, Sj → S ′j , so that S
′
i benefits the network

Nj and S ′j benefits the network Ni. In game theory, a game that allows two or more players
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to coordinate their actions is called a cooperative game Fudenberg and Tirole [1991].

Thus, we can model this scenario as a cooperative, non-zero sum, two players game,

where the game is played repeatedly during the networks Ni and Nj lifetimes. If both net-

works cooperate, their payoffs will be a “reward” Ri for network Ni and Rj for network

Rj , that are greater than their non cooperative payoffs. Then, this game, that we call WSN-

Cooperation game, is similar to the Iterated Prisoner’s Dilemma showed in Figure 6.2, hav-

ing, as we mentioned, the “reward” payoff R, the “punishment” payoff P , the “temptation”

payoff T and the “sucker’s payoff” S Helbing and Yu [2009]. In the ordered pairs we see

the outcomes of the game given the strategies of each player, the networks Ni and Nj , with

the first payoff given to the row player, Ni, and the second given to the column player, Nj .

Given the inequality T > R > P > S, not to cooperate is always the best strategy, resulting

in the worst outcome when both networks play it. However, as it happens in the Iterated

Prisoner’s Dilemma game, if we manage to achieve the inequalities Ri + Rj > Ti + Sj

and Ri + Rj > Tj + Si, then mutual cooperation returns the highest collective payoff and

we can coordinate the networks to jointly cooperate and get better payoffs. Moreover, if

we guarantee that if one defects, it will be punished by the other by breaking the cooper-

ation agreement, the WSN-Cooperation game has a cooperation stable solution by Folk’s

Theorem Fudenberg and Tirole [1991].

6.5 A Solution to the Game

A possible joint strategy change by two networks Ni and Nj is each one to create a coopera-

tion edge that harms itself but that also benefits the other network, in a way that the benefits

are greater than the losses. Formally, a sensor node nu
i from Ni creates an outgoing edge

ej(n
u
i , n

v
j ) to a sensor node nv

j from the other network Nj , implying that now it can relay

messages from network Nj destined to sensor node nq
j using edge ej(n

u
i , n

v
j ). Simultane-

ously, the same process occurs in network Nj with a sensor node np
j creating an outgoing

edge ei(n
p
j , n

q
i ) to node nq

i . If we guarantee that both networks Ni and Nj will use these

cooperation edges ej(nu
i , n

v
j ) and ei(n

p
j , n

q
i ) fairly, in a way that the benefits of using the ex-

ternal cooperation edge is greater, for both networks, than the costs of providing the internal

cooperation edge, then cooperation may be established and be stable.

The cooperation strategy that the two edges ej(nu
i , n

v
j ) and ei(n

p
j , n

q
i ) are created sat-

isfying these restrictions will be called, from now on, the Give to Conquer (GTC) strategy.

As the GTC strategy is repeated, creating different pairs of edges, the payoff of the networks

involved in the process increases, since the process GTC guarantees that the benefits with the

creation of the edges are greater than the losses. So, after all pairs of edges are created, the
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payoff of the networks is the maximum possible that can be achieved with the cooperation

using the GTC strategy, being, then, a Pareto Optimal solution Fudenberg and Tirole [1991],

because no network is capable to increase its payoff without reducing the payoff of another.

The best way, according to the criteria of robustness and scalability, to make different

WSNs to cooperate is making them interact with each other in a completely autonomous

way. One must consider that they may change their topologies constantly and even that new

networks may be deployed around them and also be part of the cooperation. Therefore, one

should delegate the responsibility of executing the GTC strategy to the sensor nodes of the

networks, which may locally control which sensors nodes are asking them for favors and

to which ones they are asking favors. If a sensor node that is cooperating observes in its

local environment that its network is losing more than it is benefiting with the cooperation,

via a watch dog or other control policy, it can act immediately to stop cooperation in its

neighborhood.

Figure 6.3 illustrates the scenario in which the GTC strategy may be executed in this

way. Figure 6.3-a depicts two sensor nodes of a network N1, n1
1 and n2

1, and two sensor

nodes of another network N2, n1
2 and n

2
2, as well as the distances among them. Figure 6.3-b

depicts the situation where there is no cooperation, with node n1
1 sending a message to n2

1

and node n1
2 sending a message to n2

2. There are also illustrated the transmission costs Ctx,

whereas Ctx = dα and α = 2. The total transmission cost of network N1 is 81, and the

total transmission cost of network N2 is 64. In this scenario, E1
1 = {e1n

1
1, n

2
1}, E

2
1 = ∅,

E1
2 = {e2n

1
2, n

2
2} and E2

2 = ∅. The networks payoffs are Π1 = φ − (81ftx + frx) and

Π2 = φ− (64ftx + frx).

In Figure 6.3-c, a GTC strategy is executed and networks N1 and N2 start to coop-

erate. Initially, the GTC strategy creates two edges, the edge e1n
1
2, n

2
1 ∈ E1

2 and edge

e2n
2
1, n

2
2 ∈ E2

1 , indicating that the node n1
2 ∈ N2 cooperates with network N1 and node

n2
1 ∈ N1 cooperates with network N2. Then, the node n1

1, aware of the cooperation, removes

the edge e1n1
1, n

2
1 and adds e1n

1
1, n

1
2 to E1

1 , because node n
1
2 is cooperating and will forward

its messages. The same happens with node n1
2, that removes edge e2n

1
2, n

2
2 and creates edge

e2n
1
2, n

2
1. Established the cooperation, the payoffs of the networks areΠ1 = φ−(61ftx+2frx)

andΠ2 = φ−(32ftx+2frx), which are greater than when they were not cooperating, whereas

in this work ftx ≫ frx.

The cooperation scenario shown in Figure 6.3-c is called Virtual Cooperation Bond

(VCB). In a VCB, sensor nodes of a network act as team players and work jointly to reduce

the energy consumption of their networks. One can see that the nodes n2
1 increased its cost

to help its network. In the VCB strategy, nodes involved are neighbors and can observe

their respective actions. They can observe the amount of favors their network requests and
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Figure 6.1. A scenario where different WSNs are deployed in the same location. We see
three networks, N1, N2 and N3, and a possible cooperation edge e3(j, f), where node f
accepts data of network N3 coming from sensor node j.

Cooperate Not Cooperate

Cooperate Pi, Pj Si, Tj

Not Cooperate Ti, Sj Ri, Rj

Figure 6.2. Payoff matrix of the “WSN-Cooperation” game.

(a) Distance among the
sensor nodes.

(b) Transmissions costs
without cooperation.

(c) Transmissions costs
with cooperation.

Figure 6.3. The Virtual Cooperation Bond: a feasible model to execute the GTC strategy
(w(e) = d2).
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supplies, and that number is known by each node in the bond. Thus, the involved nodes

control only the credit or debit that they have. This ensures the fairness in cooperation, i.e.,

no network provides favors at a higher rates that it receives, and vice versa, using only a upper

limit ∆ for the highest difference between favors provided and received that is allowed.

6.6 Establishing the VCB

Before explaining the method that describes how the cooperation is set, we make some con-

siderations. First of all, we consider that every single node has a unique identifier and knows

its coordinates. Second, we consider that there is a pre-established routing structure over

the networks, in which every node has a target node that it sends or forwards its messages.

Third, we consider that a sensor node is able to calculate the cost of a transmission, given

the transmission distance.

Explained these considerations, we define roles to the nodes in the VCB, that are de-

scribed in the topology of Figure 6.3-c. The role initial is played by the relaying node n1
1

of Figure 6.3-c, which is the node in the VCB that provides no favors, but benefits from the

cooperation by relaying its messages to a node from another network to forward. The node

that receives the message from the node initial is the one that has the role of provider1, which

is the node n1
2 in Figure 6.3-c, that besides providing favors to the node initial, also benefits

from the cooperation by relaying its messages to the node that has the role of provider2,

which is from the other network and is represented by node n2
1 in Figure 6.3-c. Node

provider2 only provides favors, and forwards the messages from node provider1 to node

of role final that, in the VCB, is only responsible for receiving these messages, and in Fig-

ure 6.3-c, it is represented by node n2
2.

In Figure 6.4, we describe the process for obtaining a VCB. The first step is to

broadcast through the networks that wish to cooperate. Each node that wants to coop-

erate sends a broadcast message of type WantToCooperate to all its neighbors, i.e.,

nodes at its surroundings, informing its wish to cooperate and the value of its current trans-

mission cost. Thus, each node that wants to cooperate receives, in each message of type

WantToCooperate, the information about the costs of the routing edges of foreign net-

works, and can calculate locally if a VCB can be formed with its neighbors, guaranteeing

that both networks will benefit with the cooperation. If so, it sends a AskCooperation

message to the nodes in the VCB, informing what roles they should play in the VCB that

could be formed. If all nodes agree with the assigned roles and they do not belong to other

VCB, they send a AcceptCooperation message and cooperation between them is es-

tablished. The node that sends the AskCooperation message is the node with the role
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provider1, since its location in the VCB is the only one that have direct access to all the other

nodes in the VCB.

6.7 Numerical Results

In this section, we present the simulation results of the proposed VCB protocol. We consider

a scenario where all sensors are deployed in an area of 100 × 100 d2 with a flat topology.

The communication range of each sensor starts with 30 d and may be reduced depending on

the routing structure. During the 1000 seconds of simulation, events arrive in the network

according to a Poisson Process with λPoisson events per second. The default value of the path

loss exponent is 4, and the number of nodes of each network is 50. All simulation results

correspond to the arithmetic mean of r simulations, in which r provides a good confidence

to the results. We use the Network Simulator 3.21 to make these simulations.

The first result shows the behavior of VCB protocol when two networks cooperate and

the network density varies from 50 to 200 nodes. In these results, the configuration of both

networks is the same. Figure 6.5 shows the result comparing the energy spent on transmis-

sions and receptions, as well as the percentage of cooperating nodes. We observe that the

energy savings in transmissions, which is, as we mentioned, the highest energy consumer, is

always between 20% and 30%. Moreover, as the networks’ densities increase, the amount

of cooperating nodes slightly reduces, together with the energy saving achieved in trans-

missions and receptions. This suggests that the VCB protocol is even more appropriate for

scenarios which involve sparse networks.

Other factor that can influence the cooperation is the path loss exponent. Thus, the

greater this exponent, the higher the costs for transmissions. Figure 6.6 shows the behavior

of the VCB protocol when the path loss exponent varies. As expected, as the exponent grows,

the higher is the energy economy provided by the VCB protocol, reaching 30% when α = 5.

This result suggests that the VCB protocol is highly recommended for noisy scenarios.

The VCB protocol is also able to establish cooperation when more than two networks

are deployed in the same location, since its control is done locally. In Figure 6.7, we show the

behavior of the VCB protocol when we increase the number of distinct networks deployed,

all of them having the same configuration. We observe that the increase in the number of

networks do not influence in the three analyzed metrics. The network has approximately

30% of nodes cooperating, and with this cooperation is possible to save more than 20% of

energy in transmission, with approximately 35% increase in receptions. These results show
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Figure 6.4. The algorithm describing the establishment of the VCB.
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Figure 6.5. Cooperation results when the number of nodes is varied.

Figure 6.6. Cooperation results when path loss exponent is varied.
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the proposed VCB protocol is scalable with the number of networks deployed.

The next scenario considers the case where the configurations of both networks are

different. Thus, in the next results, the configuration of one network, N1, is kept constant

whereas the configuration of the other network, N2, is varied. We analyze the performance

of the VCB protocol in the network N1, which the configuration is kept constant. We com-

pare the VCB protocol with a naive solution, which lets all the sensor nodes to cooperate

indiscriminately.

First, we vary the density of N2 from 10% to 50% of nodes of N1. We call the rate

between the networks’ densities δd. In Figure 6.8-a, we verify that the VCB protocol is able

to save energy of N1 even when δd = 10%. On the other hand, the naive solution harms N1,

making it consumes up to 40% more energy when cooperating. Second, we vary the number

of events ofN2 according the parameter λPoisson, from 1 to 7. The δλ is the difference among

the number of events that are detected by theN1 andN2. Thus, when the δλ is 3, the network

N1 detected three times more events that the network N2. We see in the Figure 6.8-b that the

VCB protocol keeps a constant behavior, saving the energy of N1 even when the event rate

of the network N2 increased. In contrast, when the all the nodes cooperate and the δλ is 7,

the energy consumption of N1 is 60% higher.

6.8 Final Remarks

In this chapter, we used game theory to model the behavior of the agents in the network

formed when different WSNs are deployed in the same region. The viability of cooper-

ation is not trivial and should be achieved and maintained in an autonomous way by the

networks, given the scalability problem of WSNs. Thus, we proposed the Virtual Coopera-

tion Bond (VCB) protocol as a distributed protocol that autonomously enables cooperation

among different WSNs. First, we propose the Give to Conquer (GTC) strategy as a strategy

of cooperation between two WSNs in a way that cooperation always brings benefits to both

of the networks. Then, we propose the VCB as a model that implements the GTC strategy

locally, in a way that cooperation may be autonomously achieved and maintained. To the

best of our knowledge, our solution is the first one that is completely distributed and that ad-

dresses several practical issues of the problem of cooperation among different WSNs, such

as cheating and networks with different configurations.
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Figure 6.7. Cooperation results when the number of networks is varied.
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(a) Networks have different densities.
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(b) Networks have different data collection rates.

Figure 6.8. Cooperation results when the networks have different configurations.



Chapter 7

Conclusions and Future Work

In this thesis, we analyzed the behavior of rational agents in different Decision-based Com-

plex Networks (DBCNs), which are described in Table 3.6. We showed that the decisions

made by the agents of DBCNshave a crucial role in the evolution of the network. We also

presented techniques to model, predict and control the evolution of the networks. First,

we modeled the human behavior in communication networks formed from mobile phone

records, e-mails and forum comments. Then, we analyzed how organizations and individ-

uals interact with themselves in competitive networks, modeled from the North American

National Basketball Association (NBA) and the Major League Baseball (MLB) data. We

proposed a model to predict the behavior of the teams. Finally, we studied the scenario in

which authorities of Wireless Sensor Networks have to decide if their networks should coop-

erate or not with others that are located in the same region. For this scenario, we proposed a

cooperation control protocol. The contributions that were accomplished from these analysis

are:

1. The TLAC distribution to explain the size of communication flows [Vaz de Melo et al.,

2010];

2. The MetaDist as a summarization scheme for the collective behavior of users in com-

munication networks [Vaz de Melo et al., 2010];

3. The discovery that the MetaDist remains the same over time, with very small fluctua-

tions [Vaz de Melo et al., 2010];

4. Proposal of SFP model for the inter-event time between human activi-

ties [Vaz de Melo et al., 2011a];

5. Applications based on the TLAC and SFP models [Vaz de Melo et al., 2011a];
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6. The network-approach for modeling competitive networks [Vaz de Melo et al., 2008a,

2012];

7. Network-based models for predicting the behavior of NBA teams [Vaz de Melo et al.,

2008a, 2012];

8. A survey on the use of game theoretic solutions in WSNs [Vaz de Melo et al., 2011b];

9. Experimental projects that evaluate the impact of different parameters on the

establishment of cooperation among different WSNs deployed in the same re-

gion [Vaz de Melo et al., 2008c];

10. The VCB protocol, that allows cooperation when different WSNs are deployed in the

same region. [Vaz de Melo et al., 2009].

As future work for the modeling part (Chapter 4), we plan to mathematically prove that

the SFP model generates a TLAC distribution. Moreover, we could focus on network effects

for the TLACmodel, that is, if two people talk to each other, what is the relationship between

their TLAC parameters? A second promising direction is to check whether TLAC also fits

well other modes of human (or computer) communications, like length of SMS messages

and length of postings on FaceBook “walls”.

As future work for the predicting part (Chapter 5), we plan to apply network implicit

feedback features to analyze other systems besides sports leagues, such as recommendation

systems or business-oriented social networks, such as the LinkedIn network. We believe that

the concepts presented in that chapter may be directly applied to other competitive systems

and may lead to expressive results in different kinds of applications.

As future work for the network studied in the controlling part (Chapter 6), we intend

to develop a detailed analytical model for the proposed protocol which predicts the impli-

cations of cooperation given the characteristics of the involved networks. Furthermore, we

plan to analyze the performance of the proposed protocol for other metrics besides energy

consumption. The proposed protocol naturally can save energy in transmissions, but it may

serve as well in noisy scenarios, i.e., where the percentage of packet loss in the medium is

high and a reliable data delivery has the highest priority. Finally, we aim to develop new

strategies that can be aggregated toward the proposed protocol to facilitate the cooperation

among different wireless sensor networks.

An immediate future direction is to interchange the aspects we studied in this thesis,

i.e., modeling, predicting and controlling, among the networks we analyzed. For instance, it

would be interesting to design a model for the evolution of competitive networks. Moreover,

we proposed link prediction techniques for the communication networks. The point is that all
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the aspects we studied in this thesis are not restricted to the type of networks we applied them.

In fact, another future direction is to evaluate other types of DBCNs, such as collaboration

networks or citation networks.





Appendix A

Modeling in Communication

Networks

A.1 The Log-logistic Distribution

The log-logistic distribution was first proposed by Fisk [Fisk, 1961] to model income

distribution, after observing that the OR plot of real data in log-log scales follows a

power law OR(x) = cxρ. In summary, a random variable is log-logistically distributed

if the logarithm of the random variable is logistically distributed. The logistic distri-

bution is very similar to the normal distribution, but it has heavier tails. In the lit-

erature, there are examples of the use of the log-logistic distribution in survival anal-

ysis [Bennett, 1983; Mahmood, 2000], distribution of wealth [Fisk, 1961], flood fre-

quency analysis [M.I. Ahmad and Werritty, 1988], software reliability [Gokhale and Trivedi,

1998] and phone calls duration [Vaz de Melo et al., 2010]. A commonly used log-logistic

parametrization is [Lawless and Lawless, 1982]:

PDFTLAC(x) = exp(z(1+σ)−ln(µ))
(σ(1+ez))2

,

CDFTLAC(x) = 1

1+exp(− (ln(x)−ln(µ))
σ

)
,

z = (ln(x)− ln(µ))/σ,

(A.1)

where σ = 1/ρ, the slope of our SFP model, and µ is the same. Moreover, when σ = 1,

it is the same distribution as the Generalized Pareto distribution [Lorenz, 1905] with shape

parameter κ = 1, scale parameter µ and threshold parameter θ = 0.

Lemma 1. The log-logistic distribution has a power law tail, i.e., it converges to a power

law when x→∞.
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Proof. Considering the Probability Density Function of the log-logistic distribution, if

we set the location parameter µ = 1 for simplicity, ez = x1/σ. Moreover, solving

limx→∞ PDFTLAC(x) when µ = 1, we find that limx→∞ PDFTLAC(x) = x−(1+1/σ). Thus,

when x→∞, the IED generated by the SFP model is a power law with slope

α = −(1 + 1/σ) = −(1 + ρ). (A.2)

A.2 The need for C in SFP

Lemma 2. The constant C = µ/e > 0 of Model 2 is needed to assure that the inter-event

times generated by the SFP model will not converge to zero.

Proof. If we remove the constant C from Model 2, ∆t = (∆t−1) × (− ln(U(0, 1))), or ∆t

will be equal to ∆t−1 multiplied by a random number X extracted from the exponential

distribution with parameter β = λ = 1. If (X = 1
k
| k > 1), then ∆t will be equal to

∆t−1 divided by k. The probability of X to be 1
k
is P (X = 1

k
) = e−

1
k = 1

k
√
e
. On the other

hand, the probability of multiplying ∆t by k and, therefore, return ∆t+1 to ∆t−1 value is

P (X = k) = e−k = 1
ek
. Given these probabilities, observe that P (X = 1

k
) = 1

k
√
e
> P (X =

k) = 1
ek
, ∀k > 1. From this, we conclude that the expected value of ∆t when t → ∞ is

0. With C in the equation, even when ∆t−1 = 0, ∆t = −C × ln(U(0, 1), that is a classic

Poisson process with β = C, and, obviously, does not converge to 0.

A.3 The Two Parameters of SFP

An easy and direct way to define the relationships between the model parameters and the

distribution properties is through simulations. Thus, the first point we consider is the median

µ of the inter-event times generated by the SFP0model. As wementioned, whenOR(x) = 1,

x is the median µ of the distribution. We see in Figure 4.22-b that µ is close but different

than the value of C = 1. Thus, in Figure A.1-a, we plot the OR for different values of C. As

we can observe, changing the value of C changes µ and, consequently, the location of the

distribution, but maintains its slope.

In order to investigate the relationship between C and µ, we run simulations of the

model for all integer values of C between [1,10000]. As we observe in Figure A.1-b, the

median of the distribution µ varies linearly with C according to a slope of 2.72, that can be

approximated by Euler’s number e, in a way that µ ∝ e × C. This allows us to generate
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inter-event times with a determined µ when the slope ρ = 1. We ignore the constant factor

3.8 because its 95% confidence interval is (−8.596, 16.3), which contains zero.
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Figure A.1. Changing the value of C changes the location of the distribution. The

median of the distribution µ varies linearly with C, µ = a × C + b, with a = 2.6 and
b = 3.8. The 95% confidence interval for a is (2.715, 2.723) and for b is (−8.60, 16.3).
Since the confidence interval for b contains 0, b is not significant.

Now we know how to generate inter-event times with different medians µ using the

parameter C of SFP0 model. The next step is to analyze the parameter a of the SFP model

to make it able to generate IEDs with a desired slope ρ 6= 1. Considering that up to this

point the SFP model generates a set of inter-event times I1 with a slope 1, the idea is to use

a to transform I1 into Iρ, which is an IED with a different slope ρ. When we elevate each

∆t ∈ I1 to the power of a 6= 1, the resulting slope ρ becomes different from 1. However, as

we observe in Figure A.2-a, there is an inverse relationship between a and ρ, i.e., ρ = a−1.

Moreover, since the median of the distribution is also elevated to the power of a, we have to

elevate the constant C to the power of a−1 = ρ to preserve the median. Examples of IEDs

with different slopes are shown in Figure A.2-b.
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Figure A.2. Changing the value of a changes the slope ρ of the distribution in a way

that ρ = a−1.



Appendix B

Predicting in Competitive Networks

B.1 Metrics Weights

In Figure B.1 we show the model weight parameters wi for the NetFor and NetForY models.

First, we observe how they change over time, reflecting the temporal trends. Moreover, it is

interesting to see how the weight parameters reflect the importance of each metric over time.

For instance, looking at the NetForY weight parameters, excluding the year of 1949, there is

always a network metric weight (w1 to w5) that has a high value than the yesterday metric

weight (w6). Again, this show how significant the network effects are in determining the

performance of sports teams.
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Figure B.1. The weights wi of the network-based prediction models over time.
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B.2 Random Model Comparison

Here we validate the network-based models by comparing them with a null model. The

objective of this is to verify whether it is possible that the results of our models came from

randomness, i.e., overfitting. We define the null model M0 as a model that sets a uniformly

random distributed number to the prediction score Πy
t of team t in year y, in a way that:

Πy
t = f0(ty) = U(0, 1)

For this model, we ran 100,000 simulations in a way that one simulation is the predic-

tion of every season between 1947 and 2008 using the null model. In order to analyze the

behavior of the null model, we define two random variables, Xρ and Xr, in a way that:

[Xρ =] the average Spearman rank correlation coefficient ρ of a simulation;

[Xr =] the average selected performance r of a simulation;

In Figure B.2, we show the distribution of the results of the null model for 100000

simulations. In Figure B.2-a we show the density function of the random variable Xρ and in

Figure B.2-b we show the density function of the random variableXr. In red lines, we show

the maximum-likelihood fitting of these density functions, where the random variables Xρ

and Xr were fitted, respectively, to the normal distributions Nρ(0, 0.03) and Nr(50, 4).

−0.1 −0.05 0 0.05 0.1
0

2

4

6

8

10

12

ρ

D
e
n
s
it
y

random data

N(0,0.03)

(a) Spearman ρ distribution. The distribution
was fitted to a normal distributionNρ(0, 0.03).

40 50 60
0

0.02

0.04

0.06

0.08

0.1

Average Rank

D
e

n
s
it
y

random data

N(50, 4)

(b) Average performance r distribution. The
distribution was fitted to a normal distribution
Nr(50, 4).

Figure B.2. Distributions of the null model results over 100000 simulations.

Now we validate the network model by verifying if the results of the network-based

models could be generated from the null model. Since the average results of the NetForY

are always better than the results of the NetFor , we will only compare the null model with
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the NetFor . Thus, we define the null hypothesis H0 that states that the NetFor is an instance

of the null model, in a way that:

H0 : MNetFor ⊂M0.

In order to reject H0, we verify the probability of making a simulation with the null

model that results in an average Spearman rank correlation coefficient ρ > 0.59 and an

average selected performance r > 0.83, that were the results obtained by the NetFor . Thus,

based on the fitted distributions Nρ and Nγ we calculate the following probabilities:

P (Xρ > 0.59) = 0

P (Xr > 0.83) = 0

By these probabilities we can conclude that the network model results can not be a

result that came from randomness, or from the null model, and, therefore, we reject the null

hypothesis H0. We did this same test for the MLB dataset and the results are the same.

B.3 Parameter Sensitivity Analysis

We also investigate the sensitivity of the models with their only parameter WY , since there

is the possibility that the results shown so far had came from a luckyWY . In Figure B.3, we

plot the ρ of the NetForY and NetFor when the parameter WY is varied. We observe that

these models are not significantly sensitive to WY . Observe that we could even had used

values of WY that would give slightly higher results than the ones we used in the previous

sections. This shows that the task of selecting a good value for WY is quite simple. One

should only avoid significantly small values, that could give high importance to anomalous

years, or significantly high values, that may fail to capture the temporal effects. However, as

we show in Figure B.3, even extreme values of WY give results that are, in general, better

than the results achieved from our competitors. We emphasize that we did this same analysis

for the MLB dataset and the results are similar.

B.4 Network Features to Node Attributes

Another interesting application for the network features is to do a reverse engineering from

network effects to node individual attributes. This reverse engineering can aid in the analysis

of systems that has missing or erroneous explicit data, such as online social networks or
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Figure B.3. The proposed network-based models are not significantly sensitive to WY .
Observe that we could even had used values ofWY that would give slightly higher results
than the ones we used in the previous sections.

auction networks. In our case, we found out a significant correlation between the age of a

node and its clustering coefficient when using the Historicalpropagation model, as we can

observe in Figure B.4. In fact, this non-linear correlation is one of the main reasons for the

Team Inexperiencefeature to aid in the prediction of teams behavior.

Although the usual and most natural way to describe a team t experience in year y is by

its age ayt , i.e., the number of years a team have played in the NBA, the amount of experience

a team acquire during the years is not a linear function, that is, the amount of experience a

team get after playing its first season is probably significantly higher than the amount it will

get by playing its 20th season. When we consider the clustering coefficient as a measure of

experience, the experience difference between team t1 that has ayt1 = 0 and another team t2

that has ayt2 = 2 is higher than the experience difference between a team t3 that has ayt3 = 20

and another team t4 that has ayt4 = 22.
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Figure B.4. Relationship between the clustering coefficient and the age of teams and
players. In this case, the age is the number of years a team or player have being active
in the league. Note that there is a clear non-linear correlation between the clustering
coefficient and the age of the nodes.
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