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Abstract

Bismuth Selenide (Bi,Ses) is a topological insulator compound with a lamellar
structure formed by the repetition of stacks of five atomic monolayers, each of them
consisting of layers with either Se or Bi atoms. Each ensemble of five covalently bonded
planes is connected to other quintuple-layers by van der Waals interactions, making this
material potentially interesting for building novel devices. Its electronics properties are
intimately related to other two-dimensional systems, presenting surface states with an
electronic linear dispersion on selected points of the Brillouin zone.

The goal of this work was to observe and interpret the transformations that occur
upon heating Bi,Ses at temperatures up to 350°C. X-ray diffraction and Scanning Tunneling
Microscopy (STM) techniques were used to observe these transformations. X-ray diffraction
was measured following the 00L and O1L truncation rods. These measurements revealed
that upon heating there is a coexistence of a major Bi,Ses phase (a three-dimensional
topological insulator) and a conducting phase with a structure composed of five Bi,Ses
quintuple-layers followed by a bilayer of Bismuth, leading to an overall BisSes stoichiometry.

Density Functional Theory calculations showed that whereas Bi,Ses is a topological
insulator, BisSes is a conventional conductor with several van Hove singularities near the
Fermi level. STM measurements of the surface of this material showed the presence of
hexagonal Bi;Ses domains (approximately 200nm) terminated in Bismuth bilayers embedded
in a BiSe; matrix. Low temperature scanning tunneling spectroscopy revealed that the
bilayer termination exhibits a conducting behavior, with a corresponding conductor-like
density of states, presenting no band gap. STS also showed that the bilayer and Bi,Ses are in
electrical contact, with the possibility of the presence of a topological state at the edge of
the bilayer, since Bismuth islands are two-dimensional topological insulators.
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1 - Introduction

One of the most important fields of Physics is related to materials. It is an area of
physics that studies in particular the condensed phase, i.e. when the number of constituents
of a system becomes very large and the interactions between them are strong [1]. The most
known examples are solids and liquids.

The most important fields in Materials Physics are related to their mechanical and
electromagnetic properties, i.e., their atomic and electronic structure. This field has become
very important since the beginning of the twentieth century due to the discovery of X-rays
[2]. They were discovered by the German physicist Wilhelm Conrad Rontgen (1845-1923) on
1895. A few decades later W. Henry Bragg (1862-1942) and his son W. Lawrence Bragg
(1890-1971) used this radiation to determine the atomic structure of crystals.

Over the last century until today, several techniques were developed to determine
and characterize all kind of materials. In our case, we have used X-Ray Diffraction, Scanning
Tunneling Microscopy and Spectroscopy to understand the atomic and electronic properties
of our sample: a polyphase crystal formed by two major compounds: Bi,Se; and Bi;Ses.

Bismuth Selenide (Bi,Ses) belongs to a class of materials called topological insulators.
There are many different phases of matter related to their electrical properties: conductors,
insulators and semiconductors. Topological insulators are, in a simple explanation, materials
which behave like insulators in their interior and conductors at the surface (with very
particular features).

Due to phenomena such as the Quantum Hall Effect, surface states appear on bulk
insulators, i.e., localized protected metallic states of electrons [3]. An interesting feature of
the topological insulators is the topologically protected state, which gives electrons the
possibility to pass by non-magnetic barriers without any scattering. This is due to the spin
dependence on their conduction, which | similar to massless Dirac particles [4].

This dissertation is divided into 6 chapters. This introduction (Chapter 1) is an
attempt to briefly contextualize the importance of Topological Insulators. Chapter 2 involves
a discussion about the material we have studied (Bi,Ses), first presenting a qualitative
introduction to topological insulators in general. A brief and simple explanation using
concepts of Quantum Mechanics and the Quantum Spin Hall Effect is given. A comparison
between this effect and topological insulators themselves is shown, covering their most
important features. At the end of this chapter a short discussion about the structural and
electronic properties of Bi,Ses and BisSes, the materials we have worked with, is presented.

The next two chapters cover the theory of the experimental techniques we have
used. Chapter 3 is about X-Ray Diffraction, focusing on the mathematics behind it and
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presenting the technique of Crystal Truncation Rod Scattering (CTRS). Chapter 4 presents the
main features of Scanning Tunneling Microscopy (STM) and Spectroscopy (STS), what they
can measure and the theory behind them. The main goal of this chapter is to show the
relationship between Scanning Tunneling Spectroscopy and the Local Density of states
(LDOS) of samples measured using this technique.

Chapters 5 focus on the results of our experiments. X-ray Crystal Truncation Rods
were measured at Beamline XRD2 of the Brazilian Synchrotron Light Laboratory (LNLS),
located in Campinas/SP. STM and STS experiments were performed at the UHV Nanoscopy
Laboratory at UFMG. A discussion about the results and the relationship to Density
Functional Theory (DFT) calculations, connecting all previous results, is finally presented.
Chapter 6 presents some final considerations and the conclusions of this work.
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2 - Topological Insulators

Topological Insulators (Tls) are a new state of matter concerning their topology. They
are promising materials for the development of new electronic devices [5] due their
distinguished surfaces states [6]. The dispersion relations of the bulk and the surface differ
considerably in these materials. They behave as insulators in the bulk and conductors
(actually semi-metals) at the surface, presenting a Dirac cone band shape in their energy-
momentum diagram [7]. Such behavior is caused by spin-polarized surface states with a
linear dispersion relation near the Fermi Level, with topologically protected states for the
electrons [8].

The first section of this chapter introduces the theory of surface states in crystalline
solids. Sections 2 and 3 cover a simple, qualitatively explanation about the Quantum Hall
Effect (QHE), the Quantum Spin Hall Effect (QSHE) and how they are related to two-
dimensional topological insulators. Section 4 covers three-dimensional topological
insulators, particularly the Bismuth Chalcogenide family. Finally, Section 5 presents the
compounds Bi,Ses and BisSes with their predicted electronic and structure properties.

2.1 Surface States

Using Schrédinger’s equation the energies of electrons in a physical system can be
calculated [9]. This equation can provide the relationship between energy and position or
momentum of these electrons. An atom, for example, has discrete electronic energies given
by their quantum numbers n, [ and m [9]. For a crystalline solid composed of an array of
many atoms, the energy states have a continuous energy-momentum distribution resulting
in a band structure [10]. Figure 2.1 is a representation of the band structure of an insulator.
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Figure 2.1: Energy-momentum representation of an insulator. The empty space between valence and

conduction bands is called band gap.

The energy eigenvalues of an electron in a solid can be calculated using the Kronig-
Penney model using Bloch functions [11]. This theory uses a simple model of a periodic
potential with the Schrodinger equation and it considers a crystal as infinite in all directions.
A continuum band structure in the energy (E) - momentum (k) diagram is obtained. The
spatial Bloch functions 1, (x) have the form:

Pr(x) = ey (x) . (2.1)

Where u; (x) is a function with the same periodicity of the crystal. A more realistic model for
a crystal takes into account the finite shape of the solid. Considering the solid cleaved in one
direction, the consequence is the appearance of surface states. This is due to boundary
conditions that need to be satisfied in the Kronig-Penney model for a finite crystal. The
concept of surface states was first proposed by Igor Y. Tamm using a one dimensional
analytical model [12].

As can be seen in Eq. 2.1, Bloch functions have a unitary complex phase. For a finite
case, this restriction is removed. The result is a function which decays when approaching the
surface. The Bloch function has to decay to zero into the vacuum. The Bloch functions at the
interface solid-vacuum are the same in both two sides. They are represented in Figure 2.2.
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Figure 2.2: Representation of surface states. The surface states decay exponentially into the vacuum
and into the solid. Its wave is out of scale for clarity.

The calculations made by Tamm resulted in a simple equation for the energies of the
surface states,

- |¢?—q%a, (2.2)

'acotKa =
a 2P
where ¢ = v2mU /his a constant determined by the periodic potential, ¢' = V2mE /his
related to the energy of the electron, P is a normalization parameter and a is the period of
the crystalline structure.

With this simple model, one can infer some features of these surface states, i.e., their
strength depends on the periodic potential. If P << 1, there will be no surface states. For
large values of P, the energy gaps are wide, and the amplitudes of the surface states at the
solid surface are large. For transition metals and semiconductors surface states are usually
strong. For alkali metals they are weak of even do not exist.

This simple one-dimensional model also predicts the existence of discrete energy
levels for surface states. In real solids (three-dimensional case), the lateral Bloch vector
always results in dispersion, where the added energy depends on the surface wavevector
k = (ky ky):

h2k?

E(k) =Ep —Ey+
(k) = Er = Eo + o—

, (2.3)

where E; is the electron binding energy, E is the Fermi level energy and m* is the effective
mass of the electron in the surface state. Experimentally, surface states have been
extensively observed on noble-metal surfaces. Figure 2.3 shows the experimental
observation of the I surface state of Au(111).
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Figure 2.3: Surface state observed for Au(111). The dots represent angle-resolved photoemission
data. The solid curve represents the fit to the data using equation 2.3, yielding the binding energy E,
and the effective mass m*. From [13].

2.2 Quantum Hall Effect

The concept and the mathematics involved in topological insulators are very complex
and difficult to understand. In this dissertation, a simple explanation will be presented. The
concepts of Quantum Hall Effect and Surface Sates can be used to give a qualitative idea
about the properties of a topological insulator.

First, one can discuss the Quantum Hall Effect (QHE). It was observed for the first
time by Klaus von Klitzing in the 1980 decade. Electrons were confined in a two-dimensional
interface of two semiconductors and were then submitted to a strong magnetic field at low
temperature [14]. The Lorentz force created by the magnetic field leads the electron to
move in a well-determined orbit [15]. The movement of electrons is governed by Quantum
Mechanics, so the orbits have quantized energies, given by a typical harmonic oscillator

relationship E = (n + %)hwc. w. = eB/mis known as the cyclotron frequency. These

discrete states are called Landau Levels.

The orbits of the Landau levels are shown in Figure 2.4c. At the borders of the
system, the electrons cannot follow their natural trajectory because they are blocked by the
vacuum barrier. They move by bouncing back at the border as shown in Figure 2.4c. As a
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result, new channels of conduction arrive only at the border. This is an example of a surface

state in a two-dimensional system.
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Figure 2.4: The Quantum Hall Insulator. a) Representation of an ordinary insulator. The conducting
electrons move freely into the crystal. b) Energy-momentum relation of an ordinary insulator
characterized by an energy band gap. c) Representation of a Quantum Hall insulator (QHI) with
conducting edge states. In presence of magnetic fields the electrons move on some given orbits,
called Landau Levels. The border states occur at the edges of the crystal, where they cannot
complete their orbit. d) Energy-momentum relation of a QHI showing the conducting QHE states
appearing in the energy band gap.

The conducting surface state at the border has an interesting feature: as the electron
cannot change its movement in the direction parallel to the surface, when it encounters a
defect or a barrier, its lateral movement is not affected. So the electrons have strong
protected states at the border, which makes electron back-scattering forbidden [16]. When
in a surface state, electrons contour the defect and continue to propagate.

The von Klitzing experiment also showed that the Hall Conductance exhibits well-
defined steps as a function of magnetic field, as shown in Figure 2.5. The Hall Conductance
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always presents itself by multiples of e*/h. This was measured by von Klitzing with a very
high precision [14].
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Figure 2.5: Hall resistance as a function of Magnetic field in a 2D electron gas. From [17].

This robust transport mechanism of the surface states with no dissipation can be
extremely useful in semiconductor devices. However, strong magnetic fields and low
temperatures are necessary and represent a limitation.

Recently, a new class of materials was theoretically predicted [18] and
experimentally confirmed [19], presenting states similar to a Quantum Hall solid without the
presence of a strong magnetic field. This is possible due to the Quantum Spin Hall Effect,
which exists even in the absence of an external magnetic field. This effect and these new
materials will be discussed in the next section.

2.3 Quantum Spin Hall Effect: 2D Topological Insulators

The Quantum Spin Hall Effect (QSHE) was theoretically predicted in 2005 in two-
dimensional insulators with a strong spin-orbit coupling (SOC) [18]. The spin-orbit coupling
of these materials plays the role of the external magnetic field. These materials are called
Quantum Spin Hall solids, where topological insulators are a specific group.

The surface states in these materials have an additional property: they are protected
by spin polarization. As the role of the magnetic field is played by the electron spin, it has
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two orientations, giving two different orbits for the Landau Levels. As a result, surface states
have two orientations, each one related to the respective electron spin, as shown in Figure
2.6. The protection feature is given the properties of non-backscattering discussed in the
previous section. A structural non-magnetic defect cannot break the robustness of these
spin-polarized edge states, but a magnetic one can. This apparent disadvantage can be used
to elaborate high-sensitivity magnetic field devices [20].

Figure 2.6: Spin-protected states. Due to spin polarization, the electrons on a QSH insulator have two
different ways to propagating as surface states.

The two-dimensional topological insulator was originally predicted for graphene [21],
albeit not observed. The spin-orbit coupling in a topological insulator has to be strong
enough to modify the electronic structure of the material. The spin-orbit coupling is more
evident in heavy elements. If the spin-orbit coupling energy is comparable to the bulk gap; it
is sufficient to modify the electronic structure of the surface of the material.

In 2006, theoretical studies by B. A. Bernevig e collaborators concluded that quantum
wells of CdTe-HgTe-CdTe, above a certain thickness, would present QSH states [18]. The
mechanism responsible for the appearance of these states is the spin-obit coupling, which
leads to an inversion of the conduction and valence bands.

In most semiconductors, the conduction band is formed by s-type electrons and the
valence band by p-type electrons. In heavy elements, the spin-orbit coupling is so strong that
it splits the p; = 1/2 and p; = 3/2 levels and leads to a band inversion [22]. By increasing the
thickness of the HgTe film, the spin-orbit coupling also increases, leading to this band
inversion.

Less than a year after this theoretical prediction, the Quantum Spin Hall Effect was
experimentally observed in CdTe-HgTe-CdTe systems by L. Molenkamp and his collaborators
[19]. These studies motivated the investigations on topological insulators and three
difference theoretical groups generalized the theory for the three-dimensional topological
case [23]. 3D topological insulators will be discussed in the next section.
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2.4 Three-dimensional Topological Insulators and the Bi-
Chalcogenide-Based Class

The theory of 3D topological insulators involves notions of topology and a very
complex mathematical treatment. What one needs to know is that using the concept of
surface states described in Section 2.1 and the 2D topological insulator from Section 2.3, the
3D topological insulator can be understood as a3D extension of the 2D topological insulator
case. The spin-protected conducting border state is now a surface 2D state.

As the quantum wells on CdTe-HgTe-CdTe system, the three-dimensional topological
insulator presents a band inversion at the l-point of the Brillouin zone due to spin-orbit
coupling [23]. The surface states cross the gap at k = 0 and near this point the dispersion is
linear, which is a characteristic of massless Dirac fermions in one dimension. For 3D
topological insulators, this crossing of the surface states arises in what is called a Dirac-Cone,
due to its cone shape, as shown in Figure 2.7.

Figure 2.7: The Dirac-cone of a 3D topological insulator. From [24].

As in the 2D case, the direction of the electrons at the surface is determined by their
spins, which now varies continually as function of the propagation. There are well-defined
energy-momentum paths which electrons with a given spin can have and the opposite
cannot. The first candidate for a 3D topological insulator was a Bismuth Antimonide alloy Bi;-
Sby. It was predicted that for the range of concentration x=0.09 to x=0.18, Bii,Shy is a



19

topological insulator [25], and this was proven by Angular Resolved Photo-emission
Spectroscopy (ARPES) measurements by Hsieh et al. [26].

The electronic structure of Biy,Sbhy is very complicated because it presents normal
surface states besides the topological insulators states [27]. So, it can be really difficult to
measure the topological state alone. The weak gap (100 meV) is also a limiting factor,
reducing the visualization of this effect to very low temperatures.

Latter studies predicted the existence of a second generation of topological
insulators, the chalcogenide-based Tls: Bi,Tes, Bi,Ses, Sb,Tes, etc. As in the previous cases
the experimental proof was obtained using ARPES for Bi,Tesz [28], Bi,Se3 [29] and others [30],
evidencing the signature of a 3D topological insulator.

These materials present all the features of a 3D topological insulator discussed
before: 2D protected metallic states localized at the surface, a Dirac-cone, conduction
without dissipation, defect robustness, spin-polarization, etc. The mainly advantage of the
second generation to the first one are the band structure near to the ideal case. They
present only one Dirac-cone and a sufficiently large band gap, 300 meV for Bi,Ses, to make
them usable at room-temperature. Its atomic structure is shown in Figure 2.8.

ool
Quintuple-layer (QL)

e
van der Waals gap

Figure 2.8: Basic atomic structure of Bi-Chalcogenide class of Tls. Letter M represents a metal that
can be Se, Te, etc. Cis the chalcogenide atom: Bi, Sb, etc. These stacks bonded by van der Waals
forces form compounds like Bi,Se; and Bi,Tes.
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This second generation of Tls also has the advantage that they are stoichiometric, making
them easy to produce with high purity. They present the same basic atomic structure:
rhombohedral lattice with fifteen atoms in the unit cell. The structure presents a stacking of
quintuple-layers (QLs) with M-C-M-C-M atoms, where M is a metallic atom (Se or Te) and Ciis
the chalcogenide (Bi, Sb, etc.). The most common compounds are Bi,Te; and Bi,Ses. The
stacking is of ABC type, so three QLs are needed to make a unit cell. Inside the quintuple-
layer the atoms are bonded by covalent forces, but the force which binds the QLs together is
of van der Waals nature. As the van der Waals force is weaker than covalent ones, the
material can be easily exfoliated at the QLs interface.

2.5 Crystalline and electronic structure of Bi,Ses and BisSes

The crystalline structure of Bismuth Selenide (Bi,Ses) is the same as shown in Figure
2.8 at the previous section, with stacks of quintuple-layers of Se-Bi-Se-Bi-Se. The atoms are
hexagonally-packed as can be seen in the atomically-resolved STM image of Figure 2.9. The
unit cell has atomic distances of 0.41 nm for the x-y plane lattice parameters and 2.84 nm in
the z direction.

b) os 1d) oaf”

__ oo} 0.42} 0.41nm
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Figure 2.9: Scanning Tunneling Microscopy (STM) images of Bi,Ses. a) 1.2um?* STM image of Bi,Ses. b)
A line profile of (a) showing the 1 nm space between QLs. c) 16nm? high-resolution image of Bi,Ses.
d) A line profile of (c) showing the x-y atomic distance between atoms of 0.44 nm.
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The electronic structure of Bi,Se; can be determined by Angle-Resolved Photo-
emission Spectroscopy (ARPES). It presents a Dirac-cone lying in between the conduction
and valence bands centered at the l-point. The ARPES measurements revealed a non-
expected behavior for this material. The Dirac-point is not exactly at the Fermi-level, as
predicted by theoretical calculations. This difference between theory and experiment is due
to defects at the Bi,Ses crystalline surface. Holes of Se at the surface can induce a natural
doping of the material which changes the position of the Fermi-level [31]. One way to bring
the Fermi-level to the Dirac-point by is by doping the material with, for example, Calcium
[32]. Figure 2.10 shows an ARPES measurement of pure-Bi,Se; and DFT calculations of its
electronic band structure.
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Figure 2.10: The electronic band structure of Bi,Ses. a) ARPES measurements showing the Fermi-level
at the conduction band, away from the Dirac-point. From [33]. b) Density Functional Theory (DFT)
calculations of the electronic band structure of Bi,Ses, showing the Dirac-point at the Fermi-level.

Image made with the software Virtual NanoLab by QuantumWise A/S.
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One of the best properties of Bi,Ses is its stoichiometry condition. With three atomic
parts of selenium and two of bismuth, it is possible to synthesize high-quality Bi,Se;s crystals.
Studies of Bi,Se; growth have shown that in excess of selenium, Bi,Ses is always synthesized
and the excess of selenium is phase-separated. With a lack of selenium other phases of
Bismuth Selenide can be formed. In Figure 2.11 the Bi-Se phase diagram is shown with all
possible phases.
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Figure 2.11: Phase diagram of the BiSe system. The graph shows the phases of Bismuth Selenide that
can be formed by a given temperature, percentage of bismuth and selenium. From [34].

X-ray measurements, which will be discussed in Chapter 3, showed that our sample
contains the main Bi,Se; phase and other minor phases. Among these minor phases the
more evident is BisSes. The unit cell of Bi,Ses is formed by five Bi,Ses quintuple-layers and a
Bismuth bilayer on top of it. The unit cell can be understood as two unit cells of Bi,Ses with
one quintuple layer replaced by a Bismuth bilayer. An illustration of these stacks is shown in
Figure 2.12.
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Bi,Se.

1nm

Figure 2.12: Unit cell of Bi,Ses and Bi,Ses. Bi;,Ses phase is formed by 5 QLs of Bi,Se; and a Bi, bilayer.

As can be seen in the literature, the main phases of Bismuth Selenide are formed by
the intercalation of Bi,Sez quintuple-layers and Bi,bilayers [35]. For example: two QLs with a
bilayer form BiSe, three QLs with a bilayer form BisSe,4, etc. A comparative table is shown in
Table I.

% Number | Number .Number of Number of Phase
. Bismuth atoms | Selenium atoms
Selenium | of QLs of BLs . ) formed
per unit cell per unit cell
43,0 1 1 4 3 BisSes
50,0 2 1 6 6 BiSe
53,0 3 1 8 9 BigSeq
55,5 4 1 10 12 BisSeg
56,5 5 1 12 15 BisSes
57 8 1 18 24 BisSe4
60 3 0 6 9 Bi,Ses

Table I: Comparative table of the atomic composition in the unit cell of the (Bi,Ses)«(Bi,), compounds.
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The electronic band structure of BisSes differs considerably from Bi,Ses;. Density
Functional Theory (DFT) can be used to predict its band structure. Scanning tunneling
spectroscopy can locally differentiate the electronic density of states of both phases. The
Bi;Ses phase is not expected to be a topological insulator and our measurements confirm
this prediction. This will be shown in Chapter 5 of this dissertation.
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3 - X-Ray Scattering

X-Rays were discovered by Wilhelm Conrad Rontgen (1845-1923) in 1895 when
investigating cathodic rays. He observed that when electrons decelerate they produce this
penetrating kind of radiation. The first Nobel Prize was awarded to him in 1901 "in
recognition of the extraordinary services that rendered the discovery of the remarkable rays
subsequently named after him".

Further works of William Henry Bragg (1862-1942) and his son William Lawrence
Bragg (1890-1971) showed that one can study the crystalline structure of solids using X-ray
radiation, due to their wavelength between 0.01 and 10 nanometers, which is comparable to
the inter-atomic distance in solids. They both won the Nobel Prize in 1915 "for their services
in the analysis of crystal structures by means of X-rays".

One method to produce X-rays in an intense and effective way is to use Synchrotron
X-ray sources (Figure3.1). In the early 70's, scientists observed that electrons accelerating in
storage rings, which were initially built to performed high energy nuclear physics
experiments, produce X-rays when they pass along a curve of the storage ring [36]. After this
discovery, scientists around the world started to build accelerators only to produce X-rays.

insertion AN
. *
device

Storage ring

Figure 3.1: A simple schematic of a typical X-ray Beamline at a third generation X-ray source. When
electrons pass into a curve along a storage ring, they produce rays that are monochomatized and
focused to be used into an experimental hatch called Beamline.
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Since the major experiments in this area use monochromatic radiation, an X-ray
beam may be represented by a monochromatic plane wave (Figure 3.2), where its electric
field is given by

E(r,t) = Eygelkr—ot) (3.1)

Eyis the amplitude of the electric field, € is the unitary polarization vector, K is the electron
wavevector and w the angular frequency of the wave.

M

Figure 3.2: A monochromatic plane electromagnetic wave.

When X-rays interact with an atom, they can be absorbed or scattered [36]. The
absorption process will not be discussed in this work, which focuses in the scattering
process. The X-ray Diffraction experiment consists on shining X-ray radiation onto a crystal
sample and measure the intensity of the diffracted beam. To measure this intensity a photon
counter detector is used at a fixed distance to the sample, equipped with a diffractometer.
The diffractometer is the equipment used to move the detector and the sample to angles
where we want to measure the scattered intensity.

In the next sections, we present the mathematics of the scattering process of X-rays
by an electron, an atom and a crystal; finalizing with the crystal truncation rod diffraction,
which was performed in our experiment.

3.1 Scattering by an electron

For the understanding of the scattering phenomena in crystals, we first need to study
the scattering of a single electron by the electromagnetic wave, the X-ray. Classical
electromagnetic theory tells us that when an X-ray wave interacts with an electron, its
electric field forces it to vibrate and generating a radiated wave [37]. The vibrating electron
can be understood as a radiation source, producing a spherical wave.
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The goal of this section is to calculate the intensity of the scattered wave at a given

distance from the source, which will be sum of the incident and radiated waves. Considering
the vector potential of the source charges:

L[S (3.2)

A(r,t) = ,
4dmegc? Jy Ir — 1|

where J(r',t") is the current density of the source. |r —r’|is the distance between the
source r and the observation pointr’; and €, is the vacuum permittivity. The factor
t' =t —|r—r'|/crefers to the fact that the field propagates with a finite velocity c. This
retarded vector potential gives us the electric field E and the magnetic field B by the
following equations:

E=-VD - T and (3.32)

B=VXA. (3.3b)

As the electron is considered free, the electric potential ® = Oand E and B depend only on
the vector potential A. Using the dipole approximation [37],r > r’, and evaluating the
integral in Eq. 3.2, the retarded vector potential becomes proportional to the derivative of
the electric dipole moment, and equation 3.2 becomes

1
A(r,t) ~ ——p(t) . 3.4
(r.6) 41Teoc2rp( ) (3-4)
Where p(t') is the derivative of the dipole moment at the retarded time t’. Using Eq. 3.3b
and considering that we are only interested in the case of larger distances r (the 1/r* term
can be neglected), B will be expressed by

1 1. ..
B ~ (4n6062)ap(t )X E (3.5)

Where p(t') is the second derivative of the dipole moment at the retarded time t’. The
numerical value of the vector product in Eq. 3.5 is pcosy, with yshown in Figure 3.3a. The
modulus of the amplitude of electromagnetic waves is given by the relation |E| = ¢|B]|. The
electric field is then

E(D) = ( )%ﬁ(t’)cosw (3.6)

4T€yC2

and evaluating p:

2
qun — q_EOe—im(t—r/c) )
m m

pt) =qi=q
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Where Z is the acceleration of the wave, E;, is the incident electric field, m the mass of the

electron and q its charge. Finally, the electric field of the radiated wave can be written as

e1kr

r

E(t) = —ro( >(E0ei°°t)cos¢ , (3.7)
where, 1y, = e?/4meymc? is called Thomson scattering length and cosp = |€ - €| is related
to the different polarization of the incident and scattering waves (see Figure 3.3b). The
eikr/r factor represents the spherical radiated wave and the Eoei‘Dt factor represents the
incident plane wave. The scattering amplitude depends on the position of the detector. As
can be seen in Figure 3.3b, if the detector is positioned along the y-axis, the cosy = 0 and
there is no signal at the detector. For the case of a synchrotron source, where a diffraction
experiment is performed along the vertical scattering plane, cosy = 1.

Figure 3.3: a) An electromagnetic plane wave polarized with its electric field along the z axis forces a
dipole at the origin to oscillate and generates a radiated wave. b) The scalar product between
incident and radiated waves is alsocosi.

The intensity of the scattered wave is proportional to |E|?. Looking at Equation 3.7,
one obtains the amplitude of the radiated wave is a constant in a given distance and does
not depend on the energy. This result is relevant to X-rays, where the photons are energetic
enough that even atomic electrons can be approximated as free. This breaks down entirely
at low energies in the optical part of the electromagnetic spectrum [36].
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3.2 Scattering by an atom

As discussed before, the scattering of an atom can be understood as the sum of the
scattering of all electrons in the atom. The interactions of the nucleus and the X-rays can be
neglected due to their higher mass. Instead of considering the electrons in the atom as
punctual charges, one can introduce a charge density distribution.

Looking at Eq. 3.7 for the amplitude of the radiated wave, the difference is that,
instead of one electron, we have now the sum of the scattering of all electrons. This sum can
be written as an integral over the charge density. One obtains a similar equation, except that
the Thomson scattering length 1y is replaced by the atomic form factor:

rof2(Q) = o f p(D)e®rdr . (38)

Where p(r) is the charge density of the atom and Qwill be discussed below. Eqg. 3.8 has a
e!QT term which differs from the integral of the total charge of the atom. This is because
different volume elements dr of the charge density interact with the X-rays with different
phases, as shown in Figure3.4. The same phenomenon occurs with the scattered waves.

Figure 3.4: Scattering from an atom. An X-ray with a wavevector k scatters from an atom in the
direction specified by k'.

The phase difference between a volume element at the origin and one at a distance r

Ap(r) =(k—K)'r=Q-r, (3.9)
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where Q = k — K’ is known as the scattering vector. The scattering length of an atom is the
sum of the scattering lengths of all volume elements of the charge density, p(r)dr, each one
with a phase factor e!2T as shown in Eq. 3.8. £°(Q), the atomic form factor (AFF) represents
the contribution of all electrons in the atom. In the limit case where all volume elements
scatter in phase, f°(Q - 0) = Z, and the total scattering amplitude is the sum of the
amplitudes of all electrons.

3.3 Scattering by crystals

The scattering of a crystal by X-rays is the sum of the scattering amplitudes of all
atoms in it. The calculation is simple if one treats the atoms in the crystal in a coordinate
representation, the crystal lattice. First, we start choosing a unit cell, the cell which is
repeated over the entire crystal. A given atom can be represented by the coordinates of two
vectors:

Rn = nlal + nzaz + Tl333 (3.10)
and
r; = xja; +y;a, +zja; . (3.11)

The first vector, R,,, gives the position of the unit cell, related to all cells of the crystal, with
the integer numbers ny, n,, n3 labeling the cell. The second one, 1;, gives the position of the
j-atom inside the chosen cell. Figure 3.5 shows an example of the crystal lattice coordinate
system in a two-dimensional crystal.

Figure 3.5: Example of a crystal lattice. The highlighted atom has the lattice coordinates R,, = 2a; +
2a; andr; = 0.5a, + 0.5a,.
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The scattering amplitude of the crystal, as said before, is the sum over all atoms.
Using the lattice coordinate system, this sum can be expressed by

Unit cell
structurefactor Form Factor

Fesl(Q) = ) f(Qeim ) el@Rn (3.12)
J

n

The sum can be factorized in two terms. The first one, related to the unit cell, is called the
structure factor. The second one, related to the crystal itself and being the sum of all cells of
the crystal, is called lattice sum or form factor.

The form factor is a sum composed by phase factors, in a unitary circle of the complex plane.
The entire sum is finite only if the scattering vector follows

Q- R,, = 2m X integer . (3.13)

In this case, the sum is of order N, the number of cells in the crystal. The solution to Eq.3.13
in a general three-dimensional crystal is found using the reciprocal lattice [11]. The
representation of a lattice site in reciprocal space is given by

G = hby + kb, + lbs , (3.14)
where h, k, [ are all integers. The inner product of vector G and the real lattice vector R,, is
G- R, = 2n(hn; + kn, + In3) = 27 X integer . (3.15)
So, analyzing Eq. 3.13 and Eq. 3.15, we have:
Q=G. (3.16)

Equation 3.16 is known as the Laue condition and is equivalent to Bragg’s Law nA = 2dsen#.
The lattice sum is non-vanishing if and only if Q coincides with a reciprocal lattice vector. In
other terms, the scattering intensity will be finite in integer reciprocal lattice points of the
crystal, called diffraction points.

In this section it was assumed that the interaction between X-rays and the crystal is
weak, not allowing the X-ray beam to be scattered for a second or third time before it leaves
the crystal. This assumption leads to considerable simplicity and it is known as the
kinematical approximation [36].

The next two sections of this chapter we present discuss the Form Factor and the
unit cell Structure Factor.
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3.4 Form Factor in three dimensions

In this section we will perform the calculation of the Form Factor for a three
dimensional finite crystal. Separating the sum in Eq. 3.12, we have the lattice sum:

N—1 N;—1N,—1N3—1 Ni—1Np—1N3—1
FN(Q) — eiQ-Rn — Z Z Z eiQ-Rn — Z Z Z eiQ-(n1a1+n2a2+n3a3)
n=0 n1=0 n,=0 n3=0 ny=0n,=0n3=0
Ni—1 Np—1 N3—1
Fy(Q) = Z einiQa; Z einzQa; Z einzQa;
n.:=0 Nn,=0 nz=0

Then, evaluating the sums:

eiNlQ-al — 1 eiNzQ'az — 1 eiN3Q-a3 — 1

FN(Q) = eiQa; _ 1 eiQaz _ 1 eiQaz _1

) eiNlQ-al _ eiNlQ-al ) eiNzQ'az _ eiNzQ'aZ ) eiN3Q-a3 _ eiN3Q'33
= eiN1Qay/2 —__ i eiN1Qay/2 —__ i eiN1Qay/2 —__ i
eiQa; — @iN1Qay elQaz _ aiN2Qa; elQaz _ aiN3Qa3

iQ:(N1a;+Nya,+N3agz)/2 Sin(NlQ ' al) Sin(NZQ ' aZ) Sin(N3Q ' a3)
sin(Q-a;) sin(Q-a;) sin(Q-a3)

Fy(Q) =e

The intensity of the scattered beam is related to the square of the electric field. The first
term is just a phase and the modulus of the Lattice sum is

sin(N1Q - a;) sin(N,Q - a;) sin(N;Q - a3)
sin(Q-a;) sin(Q-a;) sin(Q-az) |

IFy(Q) = (3.17)

As can be seen in Figure3.6, the value of |Fy(Q)|? has a maximum at multiples of i and it is
almost zero otherwise. So, for large values of N, Eq. 3.17 becomes a Dirac delta function:

P (@F = Y 5@~ 6) . (3.18)
G
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Figure 3.6: Graphic representation of the function ~SinQa) for a given Q and lattice parameter a.

When N becomes very large; the function becomes a Dirac delta function.
3.5 Unit cell Structure Factor

An example of calculation of the structure factor can be given for a face-centered
cubic (FCC) crystal, with one of the simplest unit cells. Four vectors define all atoms on the
unit cell of an FCC crystal. They are:

1 1 1
rp=0, 1'225(31‘*‘32); r3=§(a2+a3), 1“4:5(31‘*‘33)-

Our example of unit cell has atoms of the same type. Evaluating the first term of Eq. 3.12 in
the Laue condition:

4
SCQ=6) = ) (@ = £(Qe'SM + £(G)eCT + £, (el + f(Qele™
j=1

]
SfCC(G) — fl(G) + fz(G)ein(h+k) + f3(G)ein(h+l) + ﬁ(G)ei”(k+l)
SfCC(G) — fl(G)(l + eiTL’(h+k) + eiTL’(h+l) + ei7r(k+l))

4 ifh,k,1are all even or all odd
SfCC(G) = £1(6) x {O otherv‘\;ise.

The fact that FI°(G) is zero for some h, k,  leads to forbidden reflections for the crystal. As
an example, the (1,0,0) reflection, which is the shortest reciprocal lattice vector, has a
vanishing structure factor, since h is odd, but k and [ are even. For different types of lattices,
we will have different selection rules. For a trigonal lattice, which is the case of our sample;
the permitted reflections are the ones whose 2h + k + 1 = 3n, where n is an integer.
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So, the X-ray scattering intensity for a real crystal is composed of these two sums, the

form factor reflects the size and shape of the crystal yielding the width and shape the

diffraction peaks and their measured intensity. The structure factor reflects the type of

crystal, its symmetries, determining which peaks will appear in a diffractogram with a given
intensity.

3.6 Crystal Truncation Rod Scattering

In section 3.4 it was shown that for an infinite three-dimensional crystal, the Laue
condition Q = G leads the Form factor into a Dirac delta function. The case of a finite crystal
is a little different. When one cleaves the crystal a surface is formed. The Laue condition
does not need to be fully satisfied anymore; there can be intensity even out of the Bragg
peaks. The cleavage of a crystal allows the appearance of Crystal Truncation Rods Scattering
(CTRS) in reciprocal space. These Crystal Truncation Rods (CTRs) can be understood as paths
along reciprocal space where the X-ray intensity is present due to the existence of a
truncated semi-infinite crystal (see Figure 3.7).

a) b)
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Figure 3.7: Maps in reciprocal space of an infinite (a) and a cleaved (b) crystal. The cleavage in (b)

—

produces a surface, leading to streaks of scattering, the crystal truncation rods.
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When the X-ray beam strikes a sample, it crosses a specific surface. In the two

orthogonal directions parallel to the surface the crystal can be considered infinite for

intensity calculation purposes. In these two directions, the Form factor is still a Dirac Delta
function. Along the direction normal to the surface one obtains

< A(Q)
FCTR — 4(Q) z 0iQzagn — T (3.19)
n=0

where A(Q) is the scattering amplitude for a layer of atoms. The intensity distribution along
the crystal truncation rod is

JCTR = |FCTR|? = A(Q] |A(Q)?

(1 — iQas)(1 — e-1Qs)  4sin?(Q,a3/2) (3.20)

An even more realistic calculation considers the absorption of X-rays. This absorption can be
modeled using a factor 8, where e™ represents the decease of the X-ray beam intensity by
one atomic layer. The Form factor with the absorption factor is given by

O oaen AQ)
FCTR — 4(Q) z iQazng—pn _ R (3.21)
n=0
and the intensity is
A 2
JCTR = |FCTR|® = Q) (3.22)

(1 — eiQZa3 e_B)(l — e_ina3e_ﬁ) !

In Figure 3.8, we show the effect of absorption in CTR. Analyzing Equations 3.20 and 3.22,
the first equation (with no absorption) is valid away from the Bragg peaks. The second
equation is more appropriate for Bragg peaks, where the calculated intensity no longer
diverges.

1.5

0 0.5

(3]

1
[ [r.].u.]

Figure 3.8: Graphic representation of the intensity of a crystal truncation rod. The straight blue line
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represents the case of no absorption, diverging at the Bragg peak. The red dotted line represents the
case of strong absorption. Normally, 8 is of the order of 10”. From [36].

With this mathematical treatment for the diffraction phenomena resulting in
truncation rods, we have the tools to calculate the theoretical expected intensity for our
sample and compare with our measurements. The experimental setup used in our

experiment is shown in the next section.

3.7 Experimental Setup

In Figure3.9 we show a picture of the diffractometer located at Beamline XRD2 of the
Brazilian Synchrotron Light Laboratory (Laboratério Nacional de Luz Sincroton - LNLS) in
Campinas/SP, which was used for our experiment.

Figure 3.9: A picture of the diffractometer in the XRD2 Beamline at LNLS.

The X-ray beam, with energy of 10 keV shines a crystal sample at position A, and the
detector at position B can move along the vertical direction to collect the scattered beam.
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There are three more degrees of freedom of the sample holder to move and align the

sample. An example of measured intensity is shown in Figure 3.10.
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Figure 3.10: Example of a Crystal Truncation Rod measured by the diffractometer at Beamline XRD2

of LNLS. The graph shows the 00L CTR for two samples: A pure Bi,Se; crystal and a Bi,Se; crystal

doped with 10% of aluminum.
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4 - Scanning Tunneling Microscopy and
Spectroscopy

The Scanning Tunneling Microscope was invented by Gerd Binnig and Heinrich Rohrer
in 1981. They won the Nobel Prize in 1986 "for their design of the scanning tunneling
microscope". Scanning Tunneling Microscopy (STM) is based on the quantum phenomenon
of tunneling. A conducting tip is positioned closed to a conducting sample. If the tip
approaches the surface, we are able to establish a tunneling current that is controlled by a
feedback system attached to a computer.

This invention has become a unique technique to study the surface of materials at
the atomic level. Today, atomic resolution is usually achieved with this equipment in
university laboratories. Another important role of this kind of microscopy is that it can
measure the local density of states of a material, as we will be shown later.

This chapter is divided in 7 sections: the first one shows the simple model for
tunneling through a one dimensional square potential; section 2 shows the operation of the
STM; sections 3 to 5 cover a more precise quantum approach to tunneling phenomena of
the STM; section 6 covers Scanning Tunneling Spectroscopy (STS) and section 7 shows the
experimental setup of our experiment.

4.1 Tunneling through a one-dimensional square potential

One of the most surprising differences between quantum and classical mechanics is
related to the phenomenon of quantum tunneling. One imagines a particle, an electron for
example, free in space when it faces a potential barrier. If the electron has less energy than
the barrier, classically, it cannot pass to the other side. But in quantum mechanics this can
happen [38]. First, one takes a look at the one-dimensional time-independent Schrédinger
equation of an electron in a potential U(x):

h? d?
—— Y x)+ U(x)¥Y(x) = E¥Y(x) . 4.1
W) + U@Y() = FY() (41)
Where ¥ (x) is the wave function of the electron, h is the Planck constant and E its energy.
The potential barrier, represented in Figure 4.1, can be written as
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0 x<0
Ux)=4{V, 0<x<a. (4.2)
0 x>a

Where V, is the constant value of the potential and a is the width of the barrier. The solution
of Eq. 4.1 outside the barrier, in the classically allowed region, is

P(x) = P(0)etis* (4.3)

where s = vV2mE /his the wavevector of the electron. The solution inside the barrier is
given by

Y(x) = Y(0)e ** (4.4)

with k = m/h. Looking at the Eq. 4.4 we note that the wavefunction is non-zero
inside the potential barrier. The density of probability of finding the electron at some
position is given by the square modulus of the wavefunction at this position. It is obvious
that if the electron can be found inside the barrier, it can cross it and can be found on the
other side.

Vo

Classically forbidden
E Particle energy region

Incoming particle wavefunction

Exponential Decay
inside the barrier

Outgoing particle wavefunction

\VAVAVAVAVAV

Figure 4.1: Representation of the wavefunction in the three regions. An electron with energy E < 1/,
placed in the potential U(x) (black).

The tunneling phenomenon consists in electrons crossing potential barriers with very
small thicknesses. One can establish a tunneling current across the barrier by applying a
voltage between the two sides. An important definition in the tunneling phenomena is the
relationship between the incident and the transmitted wavefunctions. The transmission
coefficient is given by

7 (4.5)
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The tunneling current is related to the transmission coefficient. So it deeply depends on
thickness of the barrier. That dependence is used by the Scanning Tunneling Microscope to
measure the distance between a conducting tip and the sample separated by a vacuum
barrier.

4.2  The Scanning Tunneling Microscope

The Scanning Tunneling Microscope was invented using the concept of tunneling
described above. It can measure the tunneling current between a tip and a sample
separated by a vacuum barrier.

The basic array of an STM microscope (figure 4.2) is composed by an assembly of an
electronic feedback system which controls the distance between a tip (normally made of
Tungsten or a Platinum-Iridium alloy) and the surface of the sample. If one applies a bias
voltage on the tip, when it reaches a very small distance to the sample, a tunneling current
appears. This tunneling current exhibits a very strong dependence on the tip-sample
distance as was shown in equation 4.5.

Vibration isolation

Feedback Display
amplifier z-value

Tunneling
current

—E-,-:- Current Computer
amplifier
: Preset value S
Coarse Bias can
- +0) O o of current outout YY
positioner +0.01~x2V 0.1~+30 nA tp

Figure 4.2: The scanning tunneling microscope. From [39].
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A piezoelectric device attached to the tip enables it to move vertically to control the

distance to the sample and, of course, the tunneling current (z-direction of figure 4.2). This

piezoelectric device is connected to the feedback system which is used to maintain the

current constant. Depending on the current wanted, the piezo-feedback system can keep
that current by changing the distance between tip and sample.

The STM also has two more piezoelectric moving devices (x and vy), both
perpendiculars to the z-direction, which are used to scan the sample. By moving the tip in
the x and y directions and maintaining the tip-sample distance constant, one can produce a
two-dimensional map of the topography of sample. In the following sections we will present
more precise calculations to describe this process. It is also important to say that we need a
vibration-free environment to use the equipment with success. Sometimes we also want
ultra-high vacuum (~10'° mBar) and low temperature (5 K) ambient. These values are easily
obtained in our laboratory at UFMG. An STM atomic-resolution image done in our laboratory
is shown in Figure 4.3.

—

Figure 4.3: STM images of highly-oriented pyrolytic graphite obtained at the Nanoscopy Laboratory

(UFMG). The images were obtained with a current of 900pA and bias voltage of 200mV.

4.3 Landauer Theory of tunneling

In section 4.1 we presented the tunneling phenomenon in its simplest
approximation. To explain in more detail the dependence of the tunneling current (or more
specifically, the tunneling conductance) on the tip-sample distance one needs to recur to the
Landauer theory [40]. In 1957, Landauer developed a theory about the absolute value of the
tunneling conductance based on a one-dimensional semi-classical model, and predicted the
existence of a conductance quantum.
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b Z

Electrode A EP) —E® —ev Electrode B

Figure 4.4: The two electrodes of Landauer Theory. Sample and tip are described as a perfect one-
dimensional potential well, separately by a potential barrier. The bias voltage between the two
electrodes is equal to the difference of the Femi levels of them. The tunneling can take place for

electrons with energy levels between them.

The two electrodes represent sample and tip, as shown in Figure 4.4. The first
assumption of Landauer is that the electrodes can be described by a one-dimensional free
electron gas in an ideal square potential well. If the width of electrode A is b, then the
wavefunction and the its energy eigenvalue are respectively given by

2  nnz
¥Y,(z) = |-sin— and (4.6a)
b b
h? nm\2

where n is an integer. From equation 4.6b one can obtain the density of electrons per unit of
energy per unit of length p(E), which is

20n 2

p(E) =13F " 7ty (4.7)

’ZE. . . - .
where v = —is the classical velocity of the electron. The current arriving at the barrier

junction can be expressed by

1
lin = Fevp(ER) (B~ E) (48)

where e is the electron charge, E,SA) the Fermi level energy on the electrode A and E;B) the

Fermi level energy on the electrode B. Since EIEA) - E;B) = eVl/, and using the value of p(Er)
from Eq. 4.7, the dependence of I;,,on the bias voltage V is given by

2

e
Iy, =—V . 49
n T[h ( )
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The tunneling current is given by I, = T1;,,. The tunneling current is directly proportional to
the bias voltage, leading to the conductance of the quantum tunneling:

G—It— e’ T 4.10
v \rh ' (4.10)

Where e? /rth is called the conductance quantum.

Landauer theory provides us the direct dependence between the conductance G and
the barrier distance a, provided by T. The theory also shows the existence of conductance

guantum. Both exponential dependence and the conductance quantum are shown in Figure
4.5,

Z
~
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Figure 4.5: a) A historical experiment to establish the relationship between tunneling conductance
and tip-sample distance. The exponential dependence I(V) was observed over 4 orders of magnitude.
From [41]. b) Statistical results of experimental observation of conductance quantum. From [42].

4.4 Barden Theory

The theory of Landauer by itself gives us the tip-sample dependence of the tunneling
current. This theory does not explain entirely the effect of scanning tunneling microscopy,
which depends on the relationship between the tunneling conductance and the density of
states of both sample and tip. The theory developed by Bardeen [43] can provide
spectroscopic information about the density of states, deriving a more detailed equation for
the tunneling current.
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Imagine two electrodes far away from each other as shown in Figure 4.6a. Bardeen

solved the Schrodinger equation for the two regions separately. When the electrodes

approach each other, tunneling takes place. He used perturbation theory to determine the
tunneling by the two electrodes wavefunctions.

/
7V

Figure 4.6: The Bardeen tunneling theory in 1D. a) Considering the two electrodes far from each
other, wavefunctions decay into the vacuum. b) Bringing them together, the tunneling takes place.

If the two electrodes are far away from each other, the wavefunction on electrode A
is described by the Schrodinger equation:
'haq} h” o + Uy |¥P (4.11)
ih—=|—-——— , .
dat m A
where Uy is the potential in electrode A and W depends on both spatial and time
coordinates. Considering the potential independent of time, equation 4.11 becomes the
time-independent Schrodinger equation

h? 02
Eﬂlpﬂ = [—ﬁﬁ + UA] l/)ﬂ (412)

with ¥ = wﬂe"iE#t/h, where 1, only depend on the spatial coordinate and E, is this wave
function energy. For the electrode B, similar equations like in 4.11 and 4.12 can be derived
with potential Ug:

0w [hZaZ

l E_ —%ﬁ UBllp (413)

and

h? 92

Evlpu = l—%ﬁ + UB] Xv . (414)
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with ¥ = y, e /" where y, only depends on the spatial coordinate and E,, is this wave
function energy. When the two electrodes approach each other, the Schrodinger equation of
the new system will be

'halp— L az+U + Uz |P 4.15
l = moz A B . (4.15)

The first assumption made by Bardeen was that for the new system, the states on the
electrode A will evolve differently from equation 4.11. Bardeen assumed that the
wavefunctions calculated by Eq. 4.11 have a probability of transferring to the electrode B as
given by

W =1, eEut/h 4 Z c, (t)y,e Bt/ (4.16)

v=1

where ¢, (t) are the coefficients to be determined by equation 4.15 and c¢,(0) = 0. The
basic assumption in Bardeen theory is that these two states are approximately orthogonal,

flp;; x,d3r=0 . (4.17)

Equation 4.16 is still normalized since ¢, (t) is infinitesimal for any v. Combining equation
4.15 and 4.16 one obtains

- dc,(t . ) - )
;E ))(ve_‘Evt/h = Ugp, e Ent/h 4 UAZ c,(Ox,e BtM | (4.18)

v=1 v=1

ih

The second term in the right-hand side of equation 4.18 is a second order perturbation, so
we can approximate equation 4.18 to

dey,(t)

ih T

f W, Upxyd3r e Eu=Bu)t/h (4.19)

Z>Z

This integral can be evaluated only in the region z > z, because Uy is zero otherwise. This
defines the tunneling matrix element as

My, = fz/)MUB)(;d3r . (4.20)

Z>Z0
Integrating equation 4.19 one obtains

e~ i(Ex—Ev)t/h _ q

¢y (t) = M, EE . (4.21)
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Starting from the u-state on the electrode A, the probability of having the v-state of the
electrode B at time t is given by

2 4sin®[(E, — E, )t/2h]
(Eu - Ev)z

puv(t) = |Cv(t)|2 = |Muv| (4.22)

One can define function f(t) as

4sin?[(E, — E,)t/2h]
(Eu - Ev)z

f@®) = (4.23)
This function has a maximum for E, = E,, and becomes zero rapidly for E,, # E,,. This leads
to the condition of elastic tunneling. The tunneling current depends on how many states in
electrode A can tunnel into the electrode B. The total probability is calculated integrating
equation 4.22 over all energies and using the concept of density of states, p(E), i.e. the
density of states that exist in the electrode with energy E, resulting in

2T
P () = ?|Muv|2pB(EM)t . (4.24)

The tunneling current is related to the number of available states given by the
density of states on A and the interval of energies between the two electrodes. If the density
of states of both electrodes does not vary appreciably near the Fermi level:

4me?
- T|Mw|2pA(EM)pB(EM)V . (4.25)

This is the Bardeen formula for the tunneling current which also leads to the tunneling
conductance. M, can be evaluated using equations 4.12 and 4.14, and it only depends on

the wavefunctions i, and y,:

h? oxy v oY,
zm [wﬂ 92 - VE dxdy (426)

Z=2Zy

M,, =

If we are more interested in a spectroscopy study, i.e., the dependence of the tunneling
current I on the bias voltage V, it is necessary to modify equation 4.25. The more general
case gives

4me?
I =

J- [f(Er — eV +¢€) — f(Ep + €)]pa(Er — eV + €)pp(Er + €)|M|*de , (4.27)

where f(E) is the Fermi distribution function. If kzT is smaller than the energy resolution
required for the experiment, equation 4.27 becomes

ev

4me?
pa(Ep — eV + €)pg(Er + €)|M|?de . (4.28)

I=ho
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That is the general formula for the tunneling current by the Bardeen theory. In next section
we have a model to calculate the density of states of the tip and the sample, relating them
to the Spectroscopy experiment, called the Tersoff-Hamann model.

4.5 Tersoff-Hamann Model

Using Bardeen Theory, Tersoff and Hamann formulated a model to calculate the
wavefunctions of the tip and sample in an STM [44]. The tip can be represented by a
spherically symmetric object and the sample by a plane, as shown in Figure 4.7. The sample
is at z = 0, and the tip has a center of curvature in ry = (0,0, zy). The Schrodinger equation
in the region between the tip and the sample is valid for the two wavefunctions and it is

hZ
—— V2 = , 4.29
V(D) = gY(r) (429)
where ¢ is the work function of the sample. Using K = ,/2mg/h, it becomes

V2Y(r) = K2y(r) . (4.30)

For the sample wavefunction, it can be resolved by a two-dimensional Fourier expansion,
Y() = | d*qf(q)e VaHistiax (4.31)

where x = (x,y) and f(q) are the coefficients of the Fourier components of the sample
surface at z = 0.

i e

Figure 4.7: The Tersoff-Hamann model of the STM. The tip is modeled as a locally spherical object

with a radius of curvature R centered at rp.
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For the tip wavefunction, the assumption is that it is spherically symmetric, so
equation 4.30 becomes

1 a2 ;
;F[TX(T)] =kx(r) . (4.32)

Up to a constant, in the region of z < z;, the Fourier transform of the solution will be

e~ VP?+k?(z—20)+ipx

Using equations 4.31 and 4.33 in equation Eq. 4.26 to calculate the value of M one obtains

1
x(r) = %f d’p (4.33)

hZ

M =
2mm

j 2qf (q) e VT = y(r,) . (434)

The integral valuesy(ry), so in the Tersoff-Hamann model, M is directly proportional to the
value of the sample wavefunction in the center of curvature r, of the tip.

Now one can calculate the tunneling current. To do this, one considers four

conditions:
1. The tip state is spherically symmetric;
2. The tunneling matrix element does not depend on any energy level;
3. The tip density of states is a constant over the energy interval of interest; and
4. The sample density of states does not vary appreciably in the interval of energy of

ksT.
So, starting from equation 4.28 which already considers (4):

4Ame? (¢
I= n pr(Ep — eV + €)ps(Er + €)|M|*de
0

and using (2) and (3), we have:

ev

4mre? 5
I = " pTIle ps(Ep + €)de . (4.35)
0
Using (1), M = ¥(rp), so
Ame? ev
1= o)l [ ps(Ee + e (436)
0

Now we can define [1(ry)|?ps(E) as the local electronic density of states of the sample at
the energy level E at the center of curvature of the tip:
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ps(E, o) = [ (xe)|?ps(E) - (4.37)
So equation4.36 becomes
47'[62 ev
I = 5 pr ps(Ep + €,1)de . (4.38)
0

Differentiating eq. 4.38 one obtains the tunneling conductance, which is directly
proportional to the local electronic density of states:

G = ﬂ x ps(Ep +eV,ry) . (4.39)
dv

This is the reason Scanning Tunneling Spectroscopy is such a powerful technique.
Maintaining a constant tip-sample distance and measuring the tunneling current for
different values of the tip voltage, one obtains information about the local electronic density
of states of the surface of the sample. It is necessary to observe the 4 assumptions made
above. (1) and (3) are obtained by a good preparation of the tip. (2) is an assumption about
the STM theory and is often valid for most case. But for have a reliable measurement, (4) is

obtained by working at low-temperatures to decrease kgT.

4.6 Scanning Tunneling Spectroscopy with a Lock-In Amplifier

By turning down the electronic feedback, the STM can keep the tip-sample distance
constant (if there is no vibration and thermal drift of the experimental setup). By varying the
bias voltage between tip and sample one is able to measure the variation of the tunneling
current. As seen in the previous section, the derivative dI/dV can gives us the Local Density
of States of the sample (Eq. 4.39).

One way to acquire this dI/dV curve is to simply differentiate the I(V) curve in a
numerical procedure. This kind of approach is not desirable because the produced I(V)
curve is not a continuous set of acquired values. The tip measures the current for a value of
voltage and then changes this voltage and measures the current again, resulting in a discrete
measurement. This gives us non-desirable variations in the dI/dV curve, due to possible
movements of the tip with respect to the surface. To suppress this difficulty one can use a
Lock-In Amplifier which gives us the continuum derivative of the curve with the bonus of
suppressed noise.

A Lock-In Amplifier is nothing more than an AC Voltmeter where one measures just
the AC component in a given frequency and a given phase, suppressing all other signals one
may have. A scheme of the Lock-In Amplifier is shown in Figure 4.8.
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out
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VR(t) > ¢ >

Figure 4.8: Block diagram of a phase sensitive Lock-In Amplifier. The input signal V (t) passes
through a capacitor, blocking any pre-existing DC offset, and is then amplified (A). The reference

signal V(t) passes through an adjustable phase-shifter (¢). These two results are then multiplied
(X), and any resulting DC component is extracted by the low-pass (L.P.) filter.

Consider a sinusoidal signal which will be the input of our amplifier
V(t) = Vysin(wt + @) . (4.40)
Suppose that we have available a reference signal
Ve (t) = sin(Qt) . (4.41)

What a Lock-In Amplifier does is to multiply these two signals resulting in

V() Vg(t) = %{cos[(w —Q)t + @] —cos[(w + Q)t + @]} . (4.42)

When w # Q this product oscillates in time with an average value of zero (zero DC
component), but if w = €, it has a DC component

V()VR(t) = %{cos[go] — cos[2Qt + ¢]} . (4.43)

If we are able to extract just the DC component of the output signal and adjusting
cosg to reach its maximum value one can have a direct measurement of V. The Lock-In
amplifier technique is good because the output signal rejects the noises in a frequency
different from that of the reference. A schematic of the STS experiment is shown in Figure
4.9.
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Figure 4.9: Schematic of the STS experiment with Lock-In Amplifier. A sinusoidal signal is added to the

bias voltage V of the STM, the measured current I (V) enters the Lock-In Amplifier and the output
signal from the Lock-In represents the di/dV value.

Looking at the Scanning Tunneling Spectroscopy problem, let us add a sinusoidal
signal to the tip voltage, so I(V) becomes

[(V) = IV + Asin(Qt + ¢)] . (4.44)

The tip voltage is now composed of a DC component (the bias voltage given by the STM) and
an AC component we have added. The tunneling current will also have a DC and an AC
component. If the amplitude of the signal added is too small when compared to the bias
voltage, we can expand I (V) into a Taylor series

ol
V) = 1(7) + <W)v Asin(Qt + @) + 0(4?) . (4.45)

Running this through the lock-in amplifier gives an output of
Vo~ (dl) (4.46)
~ —|==] cosp . .
In other words, the output signal given by the Lock-in Amplifier is the derivative of the (V)
curve, proportional to the local density of states itself. In Figure 4.10, we show the difference
between the dI/dV curves acquire within and without the Lock-in method.
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Figure 4.10: (a) d1/dV curve of the topological insulator Bi,Se; acquired with a Lock-in Amplifier. (b)
dI/dV acquired by differentiating the I (V) curve with a numerical process. The lock-in process does
not directly provide the tunneling conductance, but it suppresses most of the noise in it.

One final issue that we need to consider is due to the fact that the current varies
dramatically with the tip-sample distance

I = Ije k=

This gives us different spectra for different distances when we measure the STS spectra. To
circumvent this problem, we introduce a normalization to the tunneling conductance, as
proposed by Feenstra et al [45], the normalized dynamic conductance

dl/dv

gn(V) = i (4.47)

When necessary the normalized conductance may be shown instead of dI/dV.

4.7 Experimental Setup

The Scanning Tunneling Microscope used in our experiment is a Variable
Temperature VT-STM manufactured by Omicron GmbH and located at the UHV Nanoscopy
Laboratory at UFMG (Figure 4.11). The system has a vibration-isolation system (A) to
suppress the mechanical vibrations on the building. The STM images were obtained in a
vacuum chamber (B) pressure better than 1 x 10mBar. The STS measurements were
performed at 25K using a liquid helium transfer system (C) as shown in the figure below.
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Figure 4.11: STM microscope at the UHV Nanoscopy Laboratory (UFMG). (A) The vibration-isolation
system; (B) The vacuum chamber; (C) The narrow indicates the liquid helium transfer input.






55

5 - Results and Discussions

The STM technique combined with X-Ray Diffraction experiments, provide a
complete set of information that covers the electronic and structural properties of
conducting samples. Crystal Truncation Rods (CTRs) can be used to identify the presence of
distinct phases in semi-infinite crystals with atomically flat surfaces, which are the suitable
specimen type for STM. As shown in Section 2.5, our sample is a polyphase crystal with
coexisting Bi,Ses-Bi;Ses phases. Since the growth was carried out with a small lack of
selenium, a non-stoichiometric Bi,Ses crystal was obtained. Such configuration allows the
formation of Bi-rich phases that must be formed from instability positions within the Bi,Ses
crystal.

In this chapter we show X-ray CTR measurements performed at the Brazilian
Synchrotron Laboratory (Campinas/SP). Different phases of Bismuth Selenide were detected
in our sample and compared to a real-time annealing CTR experiment, where the amount of
non-stoichiometric Bi,Se; phases was monitored along a temperature ramp. We also report
Density Functional Theory (DFT) calculations, performed by Dr. Mdrio Sérgio de Carvalho
Mazzoni (UFMG), to compare the band structure of these two phases, and to connect
structural results to the electronic properties retrieved by STM/STS.

Scanning Tunneling Microscopy images of the original sample heated at 350°C were
done, allowing the identification of the initial steps of formation of Bi;Ses domains, providing
their size and topography. Finally, Scanning Tunneling Spectroscopy (STS) measurements on
this sample were performed at the stoichiometric and non-stoichiometric regions.

As discussed previously, STS provides information concerning the density of states of
our sample. The correlation of structural and electronic properties is directly retrieved by
combining STM and STS, assigning to each of the distinct phase their electronic behavior.
Our STM measurements showed patterns of nanograins scattered along the sample surface.
Some of these nanograins have step heights of less than 1nm, indicating of the formation of
Bismuth bilayers, which were also studied by STS measurements.

5.1 X-Ray Scattering results

The X-ray experiments performed here were carried out at the XRD2 Beamline of the
Brazilian Synchrotron (LNLS). Line scans in reciprocal space were taken with an X-ray beam
of 10 keV with the sample positioned at a variable temperature furnace.



56

The van der Waals bonds that exist among the quintuple-layers (QLs) of Bi,Ses are
inherently weak, allowing the material to be easily exfoliated with the exposure of atomic
planes. Figure 5.1 shows a simple scheme of the X-ray experiment. The sample was aligned
in coplanar-specular condition, and scans performed with the detector moving along 26 in
real space with a coupled sample movement that fulfills Bragg’s condition. With this type of
alignment, one measures the 00L Crystal Truncation Rod (CTR) line in reciprocal space.

z
A

A

Detector -

5

2

S

Incident 0 diffracted .
nciaentrays Iffracted rays >
h\ q,0

(hk,1) = (0,0,L)

B 2mL

=7

y

Figure 5.1: Sketch of the experimental setup mounted at Beamline XRD2 for XRD measurements. The
X-ray beam impinges the sample with surface normal aligned in the z-direction. If the sample is
rotated by an angle 6, and the detector moves twice this angle (20) with respect to the horizontal
plane, measuring the diffracted intensity as function of the momentum transfer vector g = (%)sin@.

The scan direction for the Bi,Ses/Bi,Ses sample was chosen to lie along the 00L direction, where
q = 2nL/c (c is the out-of-plane lattice parameter and L the reciprocal space coordinate).

Several other CTR lines such as 01L, 10L, 20L, etc, can be measured following similar
procures and knowing the crystalline structure of Bi,Ses. In Figure 5.2 we present results for
the truncation rods 00L and 01L, both measured at room temperature. As one observes,
some reflections are forbidden for the Bi,Ses; unit cell symmetry. For the OOL direction we
only have the (0,0,3n) peaks, where n is an integer. This rule is also observed at the 01L
direction, where one observes only the (0,1,3n — 1) peaks.
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Figure 5.2: Crystal Truncation Rods of the Bi,Se;-Bi,Ses sample at room temperature. a) CTR 00L. b)
CTR O1L.

X-ray peaks additional to the stoichiometric Bi,Se; can be seen along the 00L
direction. As shown in Section 3.6, the quality of the Crystal Truncation Ro data is strongly
related to the smoothness of the sample surface. Since a sample morphology with large
atomically flat terraces is observed by STM the additional peaks (see Figure 5.3a) must
correspond to the formation of a new phase within the material. This phase must possess
periodicity in the z-direction, but different lattice parameter with respect to Bi,Ses (it was
later identified as BisSes). We have centered our analysis efforts at the 00L truncation rod.
Some of the data obtained on the in-situ annealing experiment at the O0L CTR line is shown
in Fig. 5.3b for different temperature values.
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Figure 5.3: Phase changes observed with the increase of temperature for Bi,Ses. a) The 00L crystal
truncation rod (room temperature). Red arrows indicate Bi,Se; peaks, while the blue arrows indicate
other periodicities (i.e., other phases), with the most preeminent being Bi,Ses. b) A closer look of the
0O0L crystal truncation rod data, for selected temperatures along the annealing ramp. One can see the

increasing of the Bi,Se; phase amplitude.

The volume of each phase observed in Figure 5.3 can be estimated by the evaluation
of the area below diffraction peaks. If one analyzes carefully the changes that take place
over the temperature ramp the disappearance of the main Bi,Ses; phase is promptly
observed. On the other hand, the volume of Bi;Ses phase increases. Since Selenium atoms
are lighter the formation of BisSes phase inside the crystal is a result of Se sublimation.
Figure 5.4 present the relative area below the Bragg’s peak of all observed phases as a
function of the temperature.
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One can introduce two equations for the X-ray scattering intensity used to the
experimental data:

2

15
. IAIZ .
IP2%¢s(L) = z o (L)e2mizjL £ 1
( ) 4Sln2(27flL/2) . 1fBl,Se( )e ( )
J:
and
27 N 2
IBi4Ses (L) = |A|2 ZfBi,Se(L:j)ezmsz Z eZm'kLe—kﬁ . (52)
j=1 =1

Equations 5.1 and 5.2 depend on the reciprocal space coordinate L; j labels a given atom at
the unit cell; z; represents the position of which atom; fp; se(L) the atomic form factor
varying with j for the atom scattering factor: Bi or Se; Ais an amplitude factor (order
parameter); and S represents the absorption factor of each layer. Equation 5.1 was obtained
from Eqg. 3.20 and the form factor from Eq. 3.12. Equation 5.2 was obtained from Eq. 3.12
only, with an addition of an absorption factor from each layer.
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A least-square fit of the X-ray data of Figure 5.5 was performed using these equations

with relative amplitude factors for each phase including a similar equation for the minor BiSe
phase.

BBi,Se; HMBi,Se; MIBiSe —Sum

Intensity (arb. units)

< 6 9 12 15 18 21 24 27

L (rec. lattice units)
Figure 5.5: Least-square fit of the X-ray data of the Bi,Se;-Bi,Ses sample at room temperature. The
contribution of each Bi-Se compound is represented by the colored curves.

Values obtained for the perpendicular lattice parameter of the phases were: 2.86 nm for
Bi,Ses, 5.18 nm for BisSes and 2.32 nm for BiSe. Specifics values of the fit parameters are
shown in Table Il

Parameter Bi,Se3 BisSes BiSe

Order Parameter — A 100% 5% 0.1%

Absorption factor — B - 0.1 0.1

Number of atoms 6 Bi+9Se=15 (10 Bi + 15 Se) | (4 Bi+6Se) + 2
+2Bi=27 Bi=12

Off-plane lattice parameter 2.86 nm 5.18 nm 2.32nm

Strain on the lattice parameter | +0.21% -0.55% +6.00%

Number of layers oo 25 25

Table IlI: Fit parameters of the curves in Figure 5.5.

Values of the off-plane lattice parameters of BisSes and BiSe were obtained
constructing a unit cell from the unit cell of the Bi,Ses. We added a suitable number of QLs
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with the bilayer, following the distance between them from the literature. The distance
between the QL and the bilayer was also obtained from the literature. We also added strain
to the lattice parameters to fit the experimental data.

Usually X-ray scattering techniques provide information about the bulk structure of
crystalline samples (penetration depth ranging from few to hundred micrometers). Although
the analysis of the CTR diffraction can directly reveal details of the surface structure the
information is averaged over the X-ray spot area and, near Bragg peaks, masked by bulk
information. To overcome such issue Scanning Tunneling Microscopy and Spectroscopy
techniques were used in selected regions of the sample, revealing morphological and
electronic aspects that cannot be captured by solving the CTR data. Before STM/STS results
are discussed it is mandatory to understand the band structure of the retrieved dominant
phases: Bi,Ses and Bi4Ses. Density Functional Theory calculations were performed by Prof.
Madrio Sérgio Carvalho Mazzoni (UFMG) and will be discussed in the following section.

5.2 Density Functional Theory calculations

Density Functional Theory (DFT) is a powerful tool to calculate the eigenvalues of a
physical system [46]. The details of the calculation itself are beyond the scope of this
dissertation and only the results will be discussed. DFT calculations of the electronic band
structure and density of states of both Bi,Se; and BisSes crystals are depicted in the following
paragraphs. These calculations were carried out using single-crystalline models of each
phase separately. In Figure 5.6, we show the possible terminations of the Bi,sSes crystal used
for the DFT. Considering that this phase is obtained with the addition of a Bi, layer to a
supercell of five quintuple layers (QL) separated by Van der Waals gaps there are three
distinct arrangements that were considered in DFT. From surface to bottom, these
combinations can be of the type Bi,/5QLs; or QL/Bi,/4Qls; or 2QLs/Bi,/3Qls. similar
terminations with the Bi, layer lying on the lower half of the stack were obtained mirroring
the three combinations explicitly listed above.
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Figure 5.6: Possible surfaces terminations of Bi,Ses. There are three different types of termination for
Bi,Sescrystals: Two of them terminate on quintuple-layers and one on a Bi bilayer. The other three
terminations are obtained mirroring the crystal.

As a starting point for the electronic band discussion we show in Figure 5.7 the band
structure of Bi,Ses. Three distinct regions on the band structure related to its density of
states are highlighted in this figure, indicating the top of the valence band (blue), the low-
density of states portion of the conduction band, near the Dirac point (yellow) and the high
density of states portion of the conduction band (pink).
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5.7: DFT Calculations showing the electronic band structure of Bi,Ses. (a) Large view of the band
structure of Bi,Ses. (b) Local density of states of Bi,Ses. (c) A closer look to the LDOS of Bi,Se;
evidencing the Dirac point. The colors introduced in (a) represent the same regions highlighted in (b)

and (c). All Images were made using the software Virtual NanolLab 2016.1 by QuantumWise A/S.

The calculated electronic band structure of the three arrangements of Bi,:QLs
discussed in Figure 5.6 is shown in Figure 5.8. One observes that many new states appear
now around the Fermi-level of BisSes (more than in the Bi,Ses crystal). A quick glimpse at the
electronic band structure of the new crystals directly indicates that the Bi;Ses is a conductor
phase. It is also clear from these calculations that the Bismuth Selenide topological insulator
states are not preserved in the BisSes phase. We can also see the appearance of van Hove
singularities in these arrangements. The band structure of Bismuth Selenide changes
completely with the addition of bilayers, above or below the QLs.
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Figure 5.8: DFT Calculations of Bi,Ses. a) Electronic band structure of Bi,Ses; terminated by a Bismuth
bilayer (Bi,/5QLs), b) by the first QL above the Bi, bilayer (QL/Bi,/4QLs) and c) by the second QL

above the Bi, bilayer (2QLs/Bi,/3QLs).

The calculated electronic band structure gives us a direction to correctly interpret the
measured STS spectra. Some differences may arise between the two since DFT is calculated
for low temperatures (0 K) considering a single-crystalline sample (thus representing the
entire density of states) and STS information depends on the layer depth and surface step
boundary conditions (such as cleavage defects and/or grain edges).

As we will see in the STM section, the BisSes phase seems to appear at the form of
nanograins within the Bi,Se; matrix. The goal of DFT calculations was to provide a qualitative
scenario that can be compared to the electronic density of states information obtained by
STS at the surface of the Bi,Ses/BisSes system. The densities of states of the QLs terminated
system are shown in Figure 5.9. The calculations confirm the appearance of van Hove
singularities, with are more prominent in the Bi,/5QLs calculation. They became stronger
with the proximity of the bilayer.
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Figure 5.9: A closer look at the DFT Calculations of Bi,Ses. a) Electronic density of states of Bi,Ses
terminated by a) a quintuple layer (QL/Bi,/4QLs), b) one quintuple layer (1QLs/Bi,/4QLs) and c) two
quintuple layers (2QLs/Bi,/3QLs) .

The DFT results show that there is a stronger dependence of the topological state
related to the position of the bilayer. A bilayer on the top of the QLs changes completely the
electronic properties of the material. That effect decreases when the bilayer is inside the
bulk QLs.

5.3 Scanning Tunneling Microscopy results

STM measurements showed the existence of Bi,Ses and BisSes regions within the
sample, paving the way for a clear understanding of the Bi;Ses formation at the surface of
our sample. In Figure 5.10 we present STM images of Bismuth Selenide at room
temperature. These images were obtained on a cleaved surface of the sample (the cleaving
procedure was performed inside the vacuum chamber). Current/voltage conditions for all
measurements are declared in the figure captions, allowing the future replication of the
results, if necessary.
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Figure 5.10 (Copy of Figure 2.9): STM images of a Bi,Se; region at room temperature. a) STM image of
a Bi,Se; region, taken using |, = 100pA and V,;,s = 1.0V. b) A single profile along the image above,
showing a single surface step with 1 nm (height of a QL). c) High-resolution 16 nm? image of Bi,Ses,
taken using ly,, = 20nA and Vs = 500mV. b) A single profile along the image above.

In Figure 5.10a, a low-resolution STM topographic image is shown. A line profile,
displayed in Figure 5.10b, reveals typical Bi,Sez QL 1nm steps on the surface. The surface of
the sample seems to be very flat, always presenting steps of a few nanometers (related to a
few QLs). This flatness is due the cleavage process. The STM image of Figure 5.10c shows the
hexagonal lattice of the Bi,Ses surface. The height profile of Figure 5.10d directly evidences
the position of individual atoms. The measured value for the in-plane lattice parameter was
is 4.61 nm. For comparison, the value usually retrieved from the literature is 4.14 nm.

Our next step was to find regions where the onset of Bi;Ses formation is observed.
The sample was first heated to 350°C, in order to increase the formation of Bi;Ses domains.
The search for BisSes was performed by the looking at steps with less than 1 nm. These steps
represent Bismuth bilayers.

Figure 5.11 shows typical regions with these nanograins. They exhibit steps of either
1 nm or 0.4 nm, which leads us to conclude that other Bismuth Selenide phases such as
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Bi;Ses and BiSe are present. Some nanograins as the one shown in Figure 5.11a have bilayers
inside QLs (see Figure 5.11c).
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Figure 5.11: STM images of areas with Bi,Se;-Bi,Ses phase coexistence. a) 1 um2 STM image of a
region with few nanograins of Bi,Ses. b) 250 nm?” closer look at the same image. c) Height profile
along the nanograin zoomed in (a), showing a 0.4nm step. c) STM image of a region with many
intercalated steps. d) STM image of a region with big Bi,Ses nanoplates. All images were carried out
using lyn = 100pA and Vpas = 1.0V.

The whole sample exhibits two types of regions: one having a simple Bi,Ses structure
and another one with the appearance of minor Bi-Se phases nanograins. We found three
different regions with such features, depending on the level of phase formation: one with a
few nanograins steps (Figure 5.11a and 5.11b); one with many intercalated steps (Figure
5.11d); and the last one with big plates (Figure 5.11e). These regions represent the growth
process of the new phases in the crystal. Going from (a), where the nanograins starts their
formation, to (c) and (d), where the new phase covers large regions of the sample. The
presence of steps of 0.4nm and 1.4nm as shown in Figure 5.11c shows that nanograins are
part of the process of phase formation, in contrast with the results by Coelho et al. for Bi,Tes
case [47].

On may point that this is due to the formation of Bismuth bilayers on top of Bi,Ses, or
the formation of them among Bi,Ses quintuple-layers. We speculate that during sample
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annealing selenium atoms flow out of the system through grain boundaries and defects,
allowing the formation of stable Bismuth bilayers between stacks of five quintuple layers,
forming the BisSes phase. This phase was previously detected by X-ray measurements and
the main non-stoichiometric Bi,Ses phase.

To confirm such hypothesis we have performed Scanning Tunneling Spectroscopy
(STS) measurements, measuring the local electronic density of states of grains and plateaus.
These STS results were then compared to DFT models of BisSes.

5.4  Scanning Tunneling Spectroscopy results

In this final section of chapter 5 we provide a connection between STS measurements
and the local density of states (LDOS) of our sample. We have retrieved out STS data on top
of a large new-phase nanograin and over the plateau of Bi,Ses. The STS measurement of
Bi,Ses; was taken in a region far away from nanograins, to avoid any interference from them.
In Figure 5.12a we present a scanning tunneling spectrum of the Bi,Se; region, exhibiting the
Bi,Ses topological insulator behavior near the Dirac point. The LDOS of Bi,Se; obtained with
Density Functional Theory (DFT) is shown in Figure 5.12b for comparison.
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Figure 5.12: Scanning Tunneling Spectroscopy of Bi,Ses: a) STS on an isolated region of Bi,Ses. b) DFT
Calculation of the Density of States of Bi,Se; near the Dirac point. The measurement in (a) was
carried out at a temperature of 23K.

Selected spectroscopy measurements on different nanograins are shown in Figure
5.13. We perform STS on three different regions: one away from the grain (a Bi,Ses region);
one inside the grain in a bilayer termination (BL); and one inside the grain in a quintuple-
layer termination (QL). One observes that the nanograin has a conducting behavior since the
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dl/dV value for V = 0 is non-zero. These nanograin regions exhibit signatures of a topological
insulator with an added constant value in its conductance.

It seems that the addition of bilayers to form new phases of Bismuth Selenide, add
new states near the Fermi-level of the material. The dI/dV curve of STS measurements
moves away from zero mainly on the zero voltage point. The conducting behavior is
expected from the DFT calculations of BisSes, albeit with van hove singularities.
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Figure 5.13: Scanning Tunneling Spectroscopy of the nanograin: a) STM image of a nanograin (ly, =
100pA and Vs = 1.0V). b) Height profile showing the heights on the surface termination of a
nanograin. c) STS in the regions of the nanograin. The measurements were carried out at a
temperature of 23K.

Another way to analyze this behavior is to perform STS measurements in a line
crossing the nanograin. Figure 5.14 shows a collection of dlI/dV curves as the tip moved into
the nanograin, showing a tendency of conductance values to drift away from zero. In this
figure the local density of states changes from a topological insulator to a conducting
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behavior. In brief, Bismuth bilayers on top (black curve in Figure 5.13c), or even inside the
Bi,Ses matrix (red curve in Figure 5.13c) changes the electronic behavior of the material but
only introduce peaks for the LDOS on the bilayer termination (see around 0.2 eV and 0.4 eV
in Figure 5.13), as expected for BisSes.
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Figure 5.14: Scanning Tunneling Spectroscopy measurements performed over a line entering the

Bi,Ses nanograin: (a) STM image of Bi,Ses.presenting the line over with did the spectra. I, = 100pA
and Vs = 1.0V. (b) STS spectra of the line showed in (a) showing the shift of the LDOS. The lower
curve corresponds to the first STS measurement in the Bi,Se; plateau, while the upper curve is
measured at the grain center. The measurements were performed at 25K.

Recent STS studies by Drozdov et al [48] have shown that a bismuth bilayer behaves
as a 2D topological insulator (see section 2.3). In a two-dimensional topological insulator, a
conducting channel along the borders of the system is found. In their work, the
measurements were performed in Bismuth bilayers islands on a Bi(111) surface matrix. This
work speculated that Bi, islands on a Bi,Se; surface might retain the 2D topological insulator
behavior.
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6 - Conclusion and prospects

The main goal of this work was to understand the transformations that occur in the
topological insulator Bi,Se; upon heating, concerning its electronic and atomic properties.
Using the technique of Scanning Tunneling Microscopy and Spectroscopy combined with X-
Ray Diffraction experiments we could infer the electronic density of states combined and the
crystal structure of our sample.

Our sample, a polyphase Bi,Ses-BisSes crystal, was first characterized by X-Ray
scattering along the 0O0L and Q1L truncation rods. We observed the main Bi,Se; phase with a
secondary Bis;Ses one. Upon heating the material up to 325°C, the Bi,Se; phase starts to
disappear while the onset of BisSes formation is observed. As Crystal Truncation Rods are
surface-sensitive, this encouraged us to perform Scanning Tunneling Microscopy and
Spectroscopy.

In Scanning Tunneling Microscopy experiments after heating the sample, we
observed the formation of nanograins which may be Bi,Ses. They appeared at some regions
of the sample and were first identified by 0.4 nm steps. The surface of Bi,Ses is only
comprised of 1 nm steps due to quintuple-layers connected by weak van der Waals
interactions.

Scanning Tunneling Spectroscopy experiments were performed inside and outside
these nanograins. The spectra outside the nanograins, on the Bi,Ses;, showed the expected
topological insulator behavior. Inside these nanograins, the STS measurements indicated a
conducting behavior. Measurements made along a line entering the nanograin showed the
transition from the topological insulator to a conducting feature. Although the nanograins
present a conducting behavior, their spectra are similar to Bi,Ses.

We cannot conclude if that conductor state is caused by modifications of bulk or
surface states. This question is difficult to answer using STS and require separate surface and
bulk states information. A possible way to answer this question is to perform Angle-Resolved
Photoemission Spectroscopy (ARPES) at the nanograin. This requires a focused ultra-violet
nanobeam in a very specific area of an ordinary sample. A technique called nanoARPES, only
available at the ANTARES Beamline of the SOLEIL Synchrotron in France, would solve this
question.

Another prospect of this work is related to the fact that bismuth bilayers are two-
dimensional topological insulator. This means that a Bi,Ses-Bi;Ses sample upon heating could
be an interesting subject for future studies. This system combines two and three-dimensional
topological insulators in a balanced system.

71
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ABSTRACT: The goal of this work is to study transformations that occur upon heating
Bi,Se; to temperatures up to 623 K. X-ray diffraction (XRD) and scanning tunneling
microscopy (STM) and spectroscopy (STS) techniques were used in our investigation. XRD
was measured following the O0L and 01L truncation rods. These measurements revealed that
upon heating there is a coexistence of a major Bi,Se; phase and other ones that present
structures of quintuple-layers intercalated with Bismuth bilayers. STM measurements of the
surface of this material showed the presence of large hexagonal Bi,Se, domains embedded in a
Bi,Se; matrix. STS experiments were employed to map the local electronic density of states
and characterize the modifications imposed by the presence of the additional phases. Finally,
density functional theory (DFT) calculations were performed to support these findings.

he interplay between topological and electronic properties
of two-dimensional systems has been attracting consid-
erable scientific attention in the last years." These efforts led to
the characterization of the so-called topological insulators
(TIs).” In these materials, a band inversion mechanism® is
responsible for the existence of topologically protected spin
polarized surface states, which show up in the band structure as
linear dispersion bands.”~” The resulting Dirac cone is found
superimposed to semiconducting bulk states. That is the case,
for instance, of the chalcogenide-based TIs such as Bi,Te;,
Bi,Se;, and Sb,Te;, which present relatively large bulk
bandgaps® that make them promising candidates for
applications in nanoelectronic devices.”'® Bismuth bilayers
(Bi,) have also been important in this context since they were
predicted to feature quantum spin hall effect.'’ Several
strategies for Bi, synthesis and stabilization have been reported,
such as hydrogen etching treatment in Bi,Se;'” and thermal
annealing of Bi,Te;."> The question on the exact position of Bi,
within the 3D TI structure (either Bi,Se; or Bi,Te;), especially
whether it is always found on the surface, may be regarded as a
challenging problem. Incidentally, a theoretical work has shown
that energetic aspects are not able to distinguish a configuration
in which the Bi, is on the surface or inside a 3D TI slab.'*
In this work we address this question by investigating the
structural and compositional evolution of a sample containing a
minor amount of nonstoichiometric Bi,Se; phases. Once
subjected to a controlled annealing process (carried out in
air), the system evolves into a crystal with larger fractions of
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Bi,Se, compounds through the formation of local Bi bilayers
distributed within the bulk. The idea is based on the well-
known fact that high quality Bi,Se; crystals are formed in
stoichiometric conditions, but a lack of Selenium may cause
other phases to be formed; in this case, their stabilities vary
according to the Bi:Se ratio as well as to synthesis and
We carried out X-ray crystal
truncation rod measurements with in situ annealing by using
a variable temperature furnace. A coexistence of Bi,Se;, Bi,Ses,
and BiSe was shown to take place, and the relative volume
fraction of each compound was obtained from the (00L) and
(01L) crystal truncation rods (CTRs). Scanning tunneling
microscopy (STM) and spectroscopy (STS) measurements
were also carried out, and show electronic footprints of Bi,Se;

. 15
annealing temperatures. °

and Bi,Se; regions in the sample surface, allowing an
improvement of the understanding of Bi,Ses formation in our
sample. Density functional theory (DFT) calculations were
employed to understand the experimental models for Bi,
incorporation into the Bi,Se; structure. Our main result may
be summarized as the observation of the evolution of additional
phases leading to Bi, structures, which may be found either on
the surface or intercalated within Bi,Se; quintuple layers.
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The unit cell of Bi,Se; is represented in Figure la. In this
compound, the in-plane position of a Se atom at the bottom of

L (reciprocal lattice units)
5 10 15 20 25

(b)) ©10)
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2.86 nm
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L (reciprocal lattice units)
Figure 1. X-ray crystal truncation rod diffraction results. (a) Sketch of

the unit cell of Bi,Se;. (b) Measurement of the (0LL) crystal
truncation rod. (c) Measurement of the (00L) crystal truncation rod.

a quintuple layer is only recovered in the periodic registry after
three complete quintuple layers. Hence, an out-of-plane lattice
parameter of 2.864 nm is observed, while in-plane lattice
parameters are found to have the same value of 0.414 nm. The
(01L) CTR shown in Figure 1b exhibits strong and sharp peaks
compatible with this structure, which has nonzero structure
factor at L = (3n — 1) along this reciprocal space line (where n
is an integer). Although some minor peaks are observed besides
the bulk phases in the interval between L = 12 and L = 18, none
of them is strong enough to indicate the presence of other
phases. However, in a lamellar system, the in-plane registry may
be lost during the formation of distinct phases. A pure out-of-
plane scan such as the (00L) CTR provides more direct
evidence of phase coexistence. This measurement, shown in
Figure 1c, depicts a plethora of small peaks surrounding the
strong and sharp Bi,Se; peaks located at the condition L = 3n
(n integer). By performing a simple evaluation of the area
below peaks in this scan, one obtains that nonstoichiometric
Bi,Se, compounds represent less than 5% of the crystal volume
at room temperature.

The nonstoichiometric phases can be indexed and quantified
by fitting the room temperature (00L) CTR experimental data.
This procedure is employed in our case by simulating a bulk
Bi,Se; crystal with additional Bi,Ses and BiSe layers. Equations
1 and 2 describe the CTR model used.'®'” The diffracted
intensity as a function of the lamellar reciprocal space index L is
given by

(1-06) AP
1 4 6* — 20 cos(27L) 4 sin®(xL)

2

15
x ZfBi,Se (L, et

j=1

ICTR(L) —

ey
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n N
1 2 A\ 2miz,L 2mikL =k,
IayerS(L) = 1Al ngi,se (L, ])e miz; Z LKL p
j=1 k=1 2)

where A is a scaling factor (which accounts for the X-ray
incident intensity, illumination, footprint, etc.), L is the
reciprocal space coordinate, fy;g. is the atomic scattering factor
of Bi or Se atoms (depending on the site indexed by ), z; is the
coordinate position of the J atom inside the respective unit cell,
k is the index of the layer, N is the number of layers, o is the
roughness of the sample, and f is the absorption factor.
Figure 2a shows the (00L) CTR experimental data (upper
curve) and the result of our simulations (bottom curves). The

L (reciprocal lattice units)
6 9 12 15 18

@ | oD , 1
A

Intensity (arb. units)

Intensity (arbitrary units)

L L
22 16 17 18
L (reciprocal lattice units)

20 21
L (reciprocal lattice units)

Figure 2. (a) Fit on the measured (00L) CTR (data shown as gray
dots, connected by line). The contributions from distinct BiSe,
stoichiometries to the fit of the experimental results are shown:
Bi,Se; (red), Bi,Ses (blue), and BiSe (green). All contributions were
summed to produce the black curve (fitting). (b) Detail of the fit near
the (0 0 21) peak of the (00L) CTR. (c) Fit of the (0 1 17) peak of
the (01L) CTR. The parameters for all fits shown here are listed in
Table 1.

simulated curve accounts for three major BiSe, phases.
Namely, they are (i) the bulk Bi,Se;, which is the phase that
accounts for most of the CTR features, and is found to
correspond to 93% of the material volume; (ii) Bi,Ses, which
here is responsible for most of the correlation peaks and; and
(iii) BiSe, which is a minor phase in volume for all samples and
conditions studied. At 303 K, Bi,Se; and BiSe correspond to
6.5% and 0.5% of the sample volume, respectively. The
contribution to the overall diffraction profiles of each phase is
depicted on the lower, color-coded curves of Figure 2a. A
quantitative description of the fit parameters used in this
analysis is provided in Table 1.

The detail of the simulation near the (0 0 21) Bragg peak is
shown in Figure 2b. Here we observe satellite peaks, which
indicate a spatial correlation along the z-axis (out of plane,
lamellar direction) of 5.155 nm (Bi,Se;) and 2.257 nm (BiSe).
We found out that these lamellar distances correspond to 5 and
2 quintuple layers, respectively. Such periodicities do not match
the usual ensemble of three lamellae of quintuple layers, which
produces an in-plane registry of atoms that form the Bi,Se; unit
cell. In order to achieve such periodicities one must insert Bi,
layers along the crystal, separated one from another by the
correlation distances of 5 and 2 quintuple layers. In such case,
the Bi, layer has a structure in which its upper Bi atoms
produce a registry with the first Se atoms of the quintuple layer

DOI: 10.1021/acs jpclett.7b03172
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Table 1. Parameters Used for the Fitting of the (00L) and (01L) CTRs”

phase Bi,Se;
relative amplitude factor — A 1
number of atoms — N 6Bi+9Se=15
out of plane lattice parameter 2.864 nm
strain along out of plane direction +0.23%
number of layers o0
in-plane lattice parameter 0.414 nm
strain along in-plane direction 0
roughness factor — ¢ 0.22

absorption factor — R

Bi,Ses BiSe
0.0667 0.006
(10 Bi + 15 Se) + 2 Bi = 27 (4Bi+6Se)+2Bi=12
5.155 nm 2.257 nm
—0.55% —2.70%
12 16
0.423 nm 0.414 nm
+2.20% 0
0.1 0.1

“At the (01L) CTR, the five topmost parameters are the same for the simulation produced in the interval from L = 12 to L = 1.

above it, which keeps the registry of the usual Bi,Se; unit cell.
Hence, the periodicities observed (correlation peaks along the
CTR) correspond to the repetition of Bi, layers in the Bi,Se
and BiSe phases. The correlation periodicity observed in the
(00L) CTR is also retrieved at the (01L) data for the interval
between L = 12 to L = 18. In Figure 2¢ the same structural
parameters used in the (00L) were employed to produce the fit.
The simultaneous fit of the (00L) and (01L) data shows that
the structure used is correct.

In order to understand the composition evolution in this
system, we carried out a controlled in situ annealing procedure.
We used a furnace adapted to the diffractometer, and the
temperature was ramped from 303 to 573 K, in 15 K steps. For
each step, the temperature was achieved and the sample
thermalized in 10 min. Then, both CTRs were measured within
1 h. The process showed an increase in the relative volume of
Bi,Ses domains, which indicates Se sublimation.'® Figure 3a
shows the detail of the vicinity of the (0 0 21) Bi,Se; peak,
where the intensity contributions from Bi,Se; and BiSe were
retrieved from CTR fits. From these fits, the volume of each
phase can be quantified, producing the scenario shown in

L (reciprocal lattice units)
20 21 22

@
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1.00

Phase Volume Fraction

e

50 400 450 500 550
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Figure 3. (a) Detail of the vicinity of the (0 0 21) peak of the (00L)
CTR, showing the interplay of contributions of each Bi,Se, phase as
the temperature changes, and the fitted curve for 303 K (bottom
curves). (b) Order parameter (relative phase amplitudes) plotted with

respect to the temperature along the studied range.
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Figure 3b. Among the major changes that take place over the
temperature ramp, a reduction of intensity of the main Bi,Se;
phase is promptly observed. On the other hand, the volume of
Bi,Se; and BiSe phases increase. This indicates that the
sublimation of Selenium atoms results in the creation of Bi,
bilayers'® inside the crystal, which impacts the volume of the
phases observed at higher temperatures.

Our unit cell, used for CTR simulation of Bi,Ses, is formed
by five Bi,Se; quintuple-layers and a Bismuth bilayer on top of
it. This unit cell can be understood as two unit cells of Bi,Se;
with the topmost quintuple layer replaced by a pure Bismuth
bilayer. As already discussed in previous works, the main phases
of Bismuth Selenide are formed by the intercalation of Bi,Se;
quintuple-layers and Bi, bilayers'”. X-ray diffraction techniques
are known to provide information about the bulk structure of
crystalline samples (penetration depth ranging from few to ten
or more micrometers'’). Although the analysis of the CTR
diffraction can directly reveal details of the surface structure
(mainly between bulk Bragg peaks), such information is
averaged over the X-ray spot area.'” Near Bragg peaks, bulk
diffraction overcomes surface components.

To understand this issue, STM and STS techniques were
carried out in selected regions of the sample, revealing local
morphological and electronic aspects that cannot be captured
by solving the CTR data. These measurements were conducted
on an as-grown sample and one sample annealed at 573 K.
Since STS results require an interpretation of spectroscopic
data, it is mandatory to understand the band structure of the
retrieved dominant phases: Bi,Se; and Bi,Ses. Density func-
tional theory (DFT) calculations were performed to address
this issue.

The structural models employed in the DFT calculations
were built with the assumption that distinct phases are obtained
with the addition of a Bi, bilayer to a supercell of five quintuple
layers (QLs). All geometries were fully relaxed with a lattice
parameter fixed in the experimental value of 0.414 nm. The
band structures and the corresponding density of states (DOS)
for Bi,Se; (five QLs) are shown in Figure 4a for comparison
purposes. Three distinct arrangements for the Bi, bilayer were
then considered in the calculations, with respect to the surface
location. From surface to bottom, these combinations are of the
type Bi,/SQLs (Figure 4b), QL/Bi,/SQLs (Figure 4c) and
2QLs/Bi,/4QLs (Figure 4d). The distances between the
selenium plane and the neighbor(s) bismuth plane(s) of the
Bi, bilayer were found to be 0.256 nm for Bi, bilayer on the
surface, and between 0.248 and 0.249 nm, for the other cases.
These values are in excellent agreement (within 2%) with
similar calculations, which explicitly include van der Waals
contributions in the description of the exchange-correlation
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Figure 4. DFT calculations for Bi,Se; and Bi,Ses. Left, central, and
right panels correspond to band structure, density of states, and
schematic structural configurations, respectively. Four cases are shown:
(a) five QLs (Bi,Se,) with a inset of the interval marked by a blue line
showing the Dirac cone on the DOS; (b) five QLs with a Bi, bilayer
on the top surface; (c) six QLs, with a Bi, bilayer placed before the
topmost QL; (d) six QLs, with a Bi, bilayer placed after four QLs and
followed by the two topmost QLs. The M-shaped bands, signature of a
Bi, bilayer on top of Bi,Ses, are indicated by black arrows. Red arrows
in panel b indicate the Dirac cones.

functional.'* Using the Bi,Se; case as reference, the bands
originated from the additional Bi, may be easily identified. In
particular, the two shoulders forming an M-shaped band
(indicated by black arrows in Figure 4b—d), which appear close
to the Fermi level (set to zero), are signatures of the Bi, bilayer
on top of 3D TIs.”” For the Bi, bilayer on top of the slab, a
Dirac cone is found at the Fermi level (emphasized by red lines
directly depicted in the band structure of Figure 4b),
representing topological states predominantly localized at the
bilayer. Other Dirac cones can be seen in the band structure:
they are indicated by red arrows in Figure 4b and represent
topological states located in the QLs,'* which moved to lower
energies due to a charge transfer effect. In the topmost QL,
close to the Bi, bilayer, such states have been reported in the
literature as interface topological states.'*

The presence of helical states associated with these cones
could be analyzed by using a noncollinear spin scheme”" which
allows the determination of a charge contribution for each state
labeled by n and k. These quantities can be projected in a basis
formed by the unit matrix and Pauli matrices, from which the
angles that characterize the spin polarization vector may be
calculated. A similar procedure leads to a spin polarization
vector in real space (starting from the real space density
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matrix).”’ When more QLs are placed on top of the Bi,, the
charge transfer process is intensified, which contribute to the
shift of Bi, bands (indicated by arrows in Figures 4c,d) higher
in energy. Several sharp peaks appear in the DOS, most of them
originating from Rashba-split quantum-well states."* In general,
these band structures agree with the results reported by
Govaerts et al.'* An important feature that distinguishes the
cases in which the Bi, bilayers are present from the pure QLs is
the presence of conduction bands in the energy range 0.1-0.2
eV extending in the I'-M direction. When the Bi, bilayer is
found on top of the five QLs (Figure 4b), these bands, which
are predominantly localized in the topmost QL,"* contribute to
enlarge and broaden the DOS peak around 0.15 eV. As we shall
show, this feature is important in the interpretation of STS
measurements.

The search for Bi,Se; regions was carried out via STM
looking at localized (nonextended) steps with less than 1 nm
height on the sample surface. Our description focuses on the
sample heated up to 573 K. These steps can represent Bismuth
bilayers at the surface or configurations with buried Bi bilayers,
like described in Figure 4. We found that there is an existence
of Bi,Se; and Bi,Se; regions along the sample surface, which in
turn can be studied to provide a deeper understanding of the
Bi,Ses formation. We start our discussion with Figure S, where
we present STM images of bismuth selenide at room
temperature. These images were obtained on a cleaved surface
of the sample (the cleaving procedure was done inside the
vacuum chamber). Current/voltage conditions for all measure-
ments are declared in the figure captions. The topographic
image of Figure Sa, combined with the line profile displayed in
Figure Sb, reveals typical Bi,Se; QL 1 nm steps on the surface.
Figure Sc shows a typical region where Bi,Se; is formed, with a
line profile depicted in Figure Sd. In this case, one observes the
presence of nanograins with height steps of 0.4 nm (typical
from the Bismuth bilayers). A closer look to a Bi,Ses nanograin
is shown in Figure Se with an atomically resolved image
displayed in Figure 5f. A hexagonal lattice is found over the
Bismuth bilayer surface, with an in-plane lattice parameter of
0.461 nm.

Some nanograins as the one shown in Figure Sb have bilayers
inside QLs. In these grains, step heights that denote the inner
presence of Bi, bilayers are found, such as 1.4 and 0.6 nm. In
other cases, the grains have a step of 1 nm height difference
from the Bi,Se; surface, presenting an additional 0.4 nm steps
inside them. We speculate that during sample annealing
selenium atoms flow out of the region through grain boundaries
and defects, allowing the formation of stable Bismuth bilayers
between stacks of five quintuple layers, forming the Bi,Ses
phase.

In order to confirm and correlate the results from DFT and
STM, we have carried out STS measurements, which provide
the local electronic density of states of grains and plateaus, such
as the topographic configuration shown in Figure 6a. Grain
sizes and lateral widths were evaluated from height profiles, as
shown in Figure 6b. We have collected STS spectra on top of
40 nanograins and over several areas of flat surface,
corresponding to Bi,Se; plateaus. Local STS spectra (e.g,
Figure 6c) were extracted from the average response of 100 I—
V curves, while for STS line scans each spectrum is averaged
over 10 I-V curves. The STS measurement of Bi,Se; shown in
Figure 6¢ was measured in a region far away from nanograins,
to avoid possible interferences from these structures. In Figure
6¢, the black curve represents an STS spectrum of the Bi,Se;
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Figure 5. STM results on Bi,Se;—Bi,Se; for a sample heated up to 573
K. (a) Low-resolution image of the Bi,Se; surface (as-grown, unheated
sample). (b) Line-profile of the Bi,Se; surface (as-grown, unheated
sample). (c) Low-resolution image of a Bi,Ses-rich surface. (d) Line-
profile of a nanograin on the Bi,Ses-rich surface. (e) Closer look at a
Bi,Se; nanograin. (f) Atomic-resolution image of the Bi,Ses surface,
terminated in a Bi, bilayer.

region, exhibiting the expected Bi,Se; topological insulator
behavior near the Dirac point. Selected STS measurements on
different surface terminations for nanograins that contain Bi,
layers are plotted in blue (bilayer termination) and red (QL
termination). One observes that the nanograin has a
conducting behavior since the dI/dV values in both blue and
red curves are finite at V = 0. These nanograin regions exhibit
modified signatures of topological insulator, since a constant
conduction value is added. For the bilayer terminated region of
the nanograin (blue curve), one observed an inflection of the
curve around —0.3 eV. While the regions of the nanograins
which are terminated in QLs exhibit a response which is similar
to the bulk topological insulator spectrum, the addition of
Bismuth bilayers tend to modify the STS response due to the
formation of new conducting channels. Such behavior is also
found on the DFT calculations shown in Figure 4, where
additional bands with respect to Figure 4a are found closer to
the Fermi level.

To analyze the transition from the Bi,Se; QLs behavior to
the conducting Bi,Ses response, we performed STS line
profiles, crossing nanograins. Figure 6d shows a collection of
dI/dV curves as the tip moves from the Bi,Se; plateau into the
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Figure 6. STM results. (a) STM image of a region of Bi,Se; with a
Bi,Ses nanograin. (b) Line height profile of the nanograin, carried out
along the dashed black vertical line in panel a. (c) STS on the three
regions of the image: (1) Bi,Ses terminated into a QL (red); (2)
Bi,Ses terminated into a Bi, bilayer (blue); (3) Bi,Se; flat surface
(black). (d) STS profiles measured along the green horizontal line in
panel a. Blue curves represent the Bi, bilayer termination, while the
black curves represent Bi,Se;.

nanograin of Figure 6a, showing a tendency of conductance
values at V = 0 to drift away from zero. In brief, Bismuth
bilayers on top (blue curves in Figure 6d), or even inside the
Bi,Se; matrix (black curves in Figure 6d) change the local
electronic behavior of Bi)Se;. This is compatible with the
introduction of a STS peak around 0.2 €V as pointed out from
DFT calculations for Bi,Ses. We also observe an overall shape
change of the STS curves from flat areas to nanograins, where
the usual “V” shape from TIs is replaced by a curvature
inflection for applied bias values lower than —0.3 V.

Using a combination of STM/STS measurements and X-ray
diffraction experiments, we were able to infer the electronic
density of states and the crystal structure of Bi,Ses nanograins
that appear at the Bi,Se; surface upon annealing. The (00L)
and (01L) CTRs provide structural parameters and relative
volume of each phase on a polyphase Bi,Se;—Bi,Se; crystal.
Heating the material up to 573 K, one observed the reduction
of the Bi,Se; phase with the concomitant formation of Bi,Ses.
Bi,Ses nanograins were found by STM and first identified by
their typical 0.4 nm height steps.

STS experiments were carried inside and outside these
nanograins and compared with DFT calculations. While the
spectra outside the nanograins (flat regions with only Bi,Se;)
showed the expected topological insulator behavior, a
conducting behavior was retrieved inside these nanograins.
STS line-scan spectra, entering into a nanograin, showed the
transition from the topological insulator to a conducting phase.
Then spectral response of these grains shows an inflection for V/
< —0.3 V. It is not possible, however, to experimentally infer
whether such conductor state is caused by modifications of bulk
or surface states. A possible way to answer this question is to
carry out angle-resolved thotoemission spectroscopy (ARPES)
at a single nanograin.”” This requires a focused ultraviolet
nanobeam in a very specific area of an ordinary sample.
Another perspective revealed in the present work is related to
the fact that bismuth bilayers are two-dimensional topological
insulators.”” This means that a Bi,Se;—Bi,Ses sample obtained
upon heating could be of interest for further studies, since this
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system combines two- and three-dimensional topological
insulators.”

B METHODS

Bi,Se;—Bi,Se crystals were prepared in a quartz tube furnace at
the Physics Department of UFMG (Belo Horizonte, Brazil).
Bulk (1 mm diameter 99.999%) Bi and Se spheres were
inserted in the furnace, encapsulated in an evacuated quartz
tube, at a 2:3 molar proportion. The furnace was ramped up to
1023 K from room temperature at a rate of 2 K/min and
remained in this temperature for 40 h. After temperature
quenching (the furnace was switched off), several S mm X §
mm X 2 mm pieces of Bi,Se;—Bi,Ses crystals were produced.
Quenching to room temperature was achieved after 4 h, due to
the total furnace mass. After extracting these crystals from the
resulting material, they were freshly cleaved by scotch tape
prior to the experimental measurements. X-ray diffraction
measurements were carried out in the six-circle diffractometer
of the XRD2 beamline of the Brazilian Synchrotron Light
Laboratory (LNLS - Campinas). The X-ray energy was fixed to
10 keV, and a Pilatus 100 K detector was used to map out the
reciprocal space along the Bi,Se; (00L) and (01L) truncation
rods. A variable temperature scanning tunneling microscope
(VT-STM; Omicron GmbH) was used in our experiment. The
equipment is located at the UHV Nanoscopy Laboratory at
UFMG. All STM images were obtained in a vacuum pressure
better than 1 X 107 mBar. STS measurements were
performed at 25 K using a liquid helium transfer system,
using a lock-in amplifier working at 3.03 kHz to filter the I-V
signal measurements obtained in spectroscopy mode. For
further details, see ref 25.

DFT calculations were performed within the QUANTUM-
ESPRESSO*® implementation. The cutoff energy in the plane
wave expansion of the Kohn—Sham eigenstates was set to 35
Ry, and the Perdew—Burke—Ernzerhof (PBE)>’ parametriza-
tion for the exchange-correlation functional was adopted. We
made use of the projector augmented wave (PAW) framework
(potentials Bi.rel-pbe-dn-kjpaw.UPF and Se.rel-pbe-n-kjpa-
w.UPF). The geometries were considered relaxed when the
remsanent force component in any atom was less than 1.0 X
107 v.a.
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ABSTRACT: In this work we present unique signatures manifested by the local electronic properties of the topological surface
state in Bi,Te; nanostructures as the spatial limit is approached. We concentrate on the pure nanoscale limit (nanoplatelets) with
spatial electronic resolution down to 1 nm. The highlights include strong dependencies on nanoplatelet size: (1) observation of a
phase separation of Dirac electrons whose length scale decreases as the spatial limit is approached, and (2) the evolution from
heavily n-type to lightly n-type surface doping as nanoplatelet thickness increases. Our results show a new approach to tune the
Dirac point together with reduction of electronic disorder in topological insulator (TI) nanostructured systems. We expect our
work will provide a new route for application of these nanostructured Dirac systems in electronic devices.

KEYWORDS: Topological insulator nanostructures, Bi,Tes, Dirac electrons, scanning tunneling spectroscopy, phase separation, doping

Recently both theoretical predictions and experimental The Fermi level in 3D TIs does not necessarily coincide with
measurements have demonstrated that Bi,Te;, a layered the Dirac point. In some of these materials, the Fermi level falls
binary compound, is a three-dimensional (3D) topological

insulator (TI), a new state of quantum matter with a bulk gap Received:  August 19, 2016

and massless Dirac surface states topologically protected with Revised:  December 27, 2016

helical spin texture.' Published: December 27, 2016

v ACS PUblicationS © 2016 American Chemical Society 97 DOI: 10.1021/acs.nanolett.6b03506
Nano Lett. 2017, 17, 97—-103



Nano Letters

(b)
35
8
>
2
5
8AL e - 30QL
_ 10QL 13qL Z-77aL
0 pA ) el 1 1 1 1 1
-300  -200 -100 0 100 200 300 400
Bias Voltage (meV)
toom (d) (e i
| TN
i Bi
g
2
a
=
2 8QL
£
(f, _1
BT '105 Eg saL| [ltoarff13aL [fj17aL 300L
= T = T O
S 5f 55 E 3 30QL
o @ oQ
T I 1 = 2 &
0 1 1 0 0 1 | 1 1 1
0 0.5 1.0 6 8 10 12 14 16 18 20 22 24 26 28 30 60 80 100 120 140

Distance (um)

Nanoplate thickness (nm)

Raman shift (cm™)

Figure 1. Structure and morphology of Bi,Te; nanoplatelets. (a) STM image of a group of Bi,Te; NPs grown on HOPG, Vs = 0.5V, I = 1.0 pA.
Nanoplatelets (in blue) with uniform thicknesses were aligned in the same orientation on the graphite layer (white arrows), an unequivocal sign of
epitaxial growth. (b) Representative specs for Bi,Te; NPs of five different thicknesses where a shift in Dirac energy was observed with respect to
Fermi level. (c) Constant-current STM image of a triangular Bi, Te; nanoplatelet grown on HOPG; Vg =1V, I = 1.0 pA, where Vg is the sample bias
voltage with respect to the sample and I is the tunneling current (lower panel). Line profile along the red linecut shows that NP is 10 QL (~10 nm)
in height and has a base length of 1.4 um. (d) Atomically resolved STM image of Bi,Te; nanoplatelet showing a lattice constant of 4.3 + 0.3 A. (e)
Diagram showing final configuration for van der Waals epitaxial growth mode of Bi,Te; on HOPG. Graphite exhibits a honeycomb lattice structure
with C—C bond length of ~1.42 A and Bi,Te; with rhombohedral structure and a lattice constant of 4.38 A. Lattice mismatch between substrate and
Bi,Te; is ~2.7%. (f) Height histogram for NPs used in the current study. (g) Raman spectra from as-grown 8 QL and 30 QL Bi,Te; nanoplatelets

with corresponding active Raman modes.

in either the conduction band or the valence band, and its
position can strongly vary because of naturally occurring
defects. In addition, a high density of charge carriers in their
bulk generally mixes together bulk and surface transport
characteristics. In order to separately access the remarkable
properties of the surface carriers in TIs, it is vital to controllably
suppress the bulk conductivity by constraining the Fermi level
to the bulk bandgap.”

This limitation has triggered an intense search for clean TIs
with the Fermi level occurring within the gap. One approach is
controlling bulk carrier concentration by using an effective
compensation dopant like Sn,>* Cd,*° Cao8 Pb,’ Na,'® or
Sb.'""> However, a high dopant concentration can also
introduce undesirable impurity scattering. The Fermi level in
TIs can also be manipulated via gating,'*”'® structural
deformation,">'® use of different substrates,'” and control of
thin film thickness.'®"’

Low-dimensional TI materials, such as nanoribbons and
nanoplatelets (NPs), have arisen as an excellent alternative in
order to overcome the impurity scattering effect, favoring the
manifestation and access to the surface states in transport
measurements due to their very large surface-to-bulk ratios,””*'
which reduce bulk carrier contribution in TI electron transport.
These unique nanostructures also stand out as excellent
candidates for making functional devices easy to manipulate
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and manufacture, creating an opportunity for versatile band
structure engineering of the surface states.

To date, angle-resolved photoemission spectroscopy
(ARPES) has been the predominantly used technique to
determine TI band structure, employed mainly on TI thin films
grown by MBE'®***® and single-crystal samples cleaved in
UHV conditions.*”” Some of these ARPES measurements,
together with theoretical calculations, have revealed unconven-
tional size effects like the evolution from 2D TI to 3D TI phase
depending on film thicknesses in Bi,Te;”” and Bi,Se;.'* In
contrast, STM and STS reports in TI crystals and MBE thin
films*>**** accessing local phenomena are less numerous than
its momentum-resolved counterpart. Additionally, these studies
have mainly focused on demonstrating the suppression of
surface backscattering and the robust nature of MBE-grown TI
systems.

Given the lack of STS measurements on TI nanostructures,
we present in this work the first combined scanning tunneling
microscopy (STM) and spectroscopy (STS) studies on high-
quality epitaxial Bi,Te; nanoplatelets grown by vapor—solid
process. Here we concentrate uniquely on the nanoscale spatial
limit of topological insulators (nanoplatelets), where all
dimensions are well below 1 ym, in contrast to existing work
in TT nanoplates.””*' We show that it is possible to tune the
electronic properties of such high-quality TI nanomaterials

DOI: 10.1021/acs.nanolett.6b03506
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through its thickness, decreasing n-type charge carriers and
local spatial electronic disorder as a function of thickness.

Bi,Te; NPs were fabricated by a catalyst-free vapor transport
and deposition process in a 12 in. horizontal tube furnace
(Lindberg/Blue M) on HOPG substrate. The growth method
is discussed in a previous work™’ (see Supporting Information,
Figure S1 for details).

Although surface states of TIs are inherently robust against
almost any surface modifications, these materials are prone to
various surface chemical reactions, which are taken into account
when preparing samples for devices and STM study.
Particularly, continuous surface oxide growth has been
observed in Bi,Te;”* and Bi,Se;”” after long exposure to
oxygen-containing atmosphere, which causes a surface state
degradation process after TI material interaction with the
ambient environment. In our experiments the samples were
transferred from the furnace to our STM chamber after
exposure to air for just a few minutes. In order to remove the
oxygen-containing layer adsorbed during transportation process
(but do not change NP morphology), a few cycles of short
sputtering at 200 eV were used followed by annealing at 130 C.

The final product is characterized by low temperature
scanning tunneling microscopy and spectroscopy (Omicron
LT-STM/STS). All topography scans were acquired in
constant-current mode at 78 K in an ultrahigh vacuum chamber
(pressure <107'° Torr) with a sample bias between 0.3 and 1 V
and tunneling currents between 1 and 20 pA.

STM topography images show NPs that usually exhibit
triangular and hexagonal morphologies with lateral dimensions
extending up to several micrometers. A group of triangular
nanoplatelets is shown in Figure la with color-scale
representing the topographic height. Blue regions highlight
NPs, whereas earth tones correspond to HOPG. In general,
NPs have different thicknesses, which enable us to investigate
the thickness-dependent band structure of Bi,Te; NPs. Figure
1b shows a group of representative dI/dV spectra taken at the
surface of NPs with different thicknesses.

We resolve the atomic lattice of a Bi,Te; NP surface (Figure
Lc) with a lattice constant of 4.3 + 0.3 A (Figure 1d). A linecut
taken across these NPs shows uniform thickness and flat surface
in the majority of the platelet. NP height is 10 quintuple layers
(QL) as determined by the height histogram. Determined NP
height is always consistent with the Bi,Te; quintuple layer
thickness. This correspondence suggests a quintuple layer-by-
layer growth process for Bi,Te; nanoplatelets.

Additionally, evidence of van der Waals epitaxial growth was
found (Figure 1a) in areas where terrace edges in the substrate
aligned with NP edges (NP aligned in the same orientation on
the substrate). Even though, for this highly lattice-mismatched
system (2.7% compressive strain, Figure le) the present van
der Waals interface drastically relaxes the lattice matching
condition encountered in heteroepitaxial growth.”® Growth
conditions for this system are far from those used in MBE
(delicate control of temperature and deposition rate), which
make the observed van der Waals epitaxial growth in this
system remarkable. This growth mode would indicate a high
crystalline quality of as-grown NPs.

Figure 1f shows the NP thickness used for the present study.
Raman spectra for the thinnest (8 QL) and the thickest (30
QL) NP are shown in Figure 1g. A,,' mode (out-of-plane mode
at ~60 cm™!) and Eg2 mode (in-plane mode at ~102 cm™") are
broader in the thinnest NP, which could be attributed to a
previously reported disorder-induced inhomogeneous broad-
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ening and a stronger electron—phonon interaction with a
concomitant reduction of phonon lifetime in TI nanostructures,
which increases for thinner nanostructures.””™" Position of Egz
vibrational mode does not show a significant change, which
suggests that the frequency of in-plane vibrations is not very
sensitive to changes in thickness, in contrast to Algl and Algz
(~132 cm™) out-of-plane vibrational modes, which shift when
reducing NP thickness.

The spatial dependence of dI/dV spectra through a 50 nm
linecut taken at 13 QL Bi,Te; NP surface is shown in Figure 2a,

(a)
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Figure 2. Spatial variation snapshots of the local density of states of
Bi,Te; nanoplatelets. (a) Measurements of dI/dV along a line of
length S0 nm for a 13 QL. The zero-conductance point (intersection
of black dashed line with 0 DOS) corresponds to the Dirac point (Ep)
of the wrapped topological surface state. (b) Schematic of surface band
structure and dI/dV spectrum of Bi,Te; showing Ej, and Eg positions.
The position of the Dirac point for each spectrum is displayed in (c),
where the dashed line corresponds to the mean Ej value for this
nanoplatelet thickness.

providing the first glimpse of the spatial inhomogeneities and
behavior analyzed in the rest of the letter. The Dirac energy
(Ep) of the TI surface state (SS) for each spectrum can be
obtained at the intersection of the black dashed line (extension
of linearly dispersing TT surface state wrapped in bulk valence
band) with zero conductance line (Figure 2b). The variations
of Ep along the linecut are shown in Figure 2c with values
fluctuating below (in blue) and above (in red) the mean Ej
value (178 mV for this NP thickness). These local spatial
fluctuations have been explored before in STS studies of doped
Bi,Te, crystals’*® and MBE thin films’* but thus far never
reported in a TI nanostructured system. Here we extend these
measurements to the spatial limit.

The Ej, variations for different NP thickness are quantified by
the histograms seen in Figure 3a. A Gaussian has been fitted to
each histogram to quantify the mean Ej, value. The measured
mean Ep, values for different NP thickness are —301 mV for 8
QL, —260 mV for 10 QL, —178 mV for 13 QL, —127 mV for
17 QL, and —101 mV for 30 QL, indicating that Ep, shifts to
less negative energies when nanoplatelet thickness increases
(Figure 3b). Variations of the Ep, value reach a minimum for
the thickest NPs, where there is a 1.5% variation around the
mean Ep, value (see Figure S2 for details). This variation
increases for thinner nanoplatelets reaching a 14% for 10 QL
and 7.3% for 8 QL.

DOI: 10.1021/acs.nanolett.6b03506
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Figure 3. Bi,Te; nanoplatelet thickness dependence of Ej, position.
(a) Histogram of Ej, obtained from STS results on 8, 10, 13, 17, and
30 QL Bi,Te; NPs at 78 K. A Gaussian has been fitted to each
histogram to quantify fluctuations around the mean Ep, value coming
from STS spectra shifting. Slope variations of STS spectra are included
as error bars in histograms. (b) Ej, as a function of Bi,Te; nanoplatelet
thickness obtained from histogram in (a) with corresponding error
bar. As nanoplatelet thickness increases Ep shifts to less negative
energies.

As revealed by these STS measurements there is a clear
thickness dependence of Ep position, showing an evolution
from a heavily doped n-type to lightly doped n-type behavior.
The as-grown Bi,Te; compound has been reported to be either
n- or p-type, depending on whether Te—Bi antisites or Te
vacancies take the main role.”*>>*° Both antisite defects (Te on
Bi lattice and Bi on Te lattice) are energetically more favorable
than possible vacancies in this material. However, only Bi-poor
conditions (Tey;) lead to n-type transport properties.”” The
observed evolution of charge carrier doping in this nano-

structured system might be a consequence of the reduction of
Tep; antisite defects with Bi,Te; NP thickness increase.

To visualize spatial variations we map the Ep, values as a
function of sample thickness with spatial resolution down to 1
nm (Figure 4). The color scale represents variation
(inhomogeneity) in Dirac point with respect to Fermi level,
ranging from —322 to —100 mV in real space (as seen in the
color scale bar below each map). Percentage variation maps
with respect to the mean Ej, value are shown in Figure S2.
From our local spectroscopic measurements no insulating
signatures (coming from the insulating bulk state) for any NP
thickness were observed.

To quantify the characteristic length scales of the Ej, spatial
inhomogeneity for each NP thickness, the average spatial
correlation function (G(7)), and the angle-dependent spatial
correlation function (Gy(7)) were computed for each E;, map
(see Figures S3 and S4, respectively). The spatial autocorre-
lation function G(7) of an image (STM image or STS map in
our case) is defined as the statistical correlation of any two
points separated by a vector 7 = 7, — 7, where 7, and 7, are the
positions of those two points in the image.***’

(Ii - <I>1)(I; - <I>2)
2

~- 0,0
ij 12

Gr) = NE?)

where

N(7) = Z 07 (R -R)
ij
indicates the number of points at distance 7 = R, — I_ij
The average intensities (height value in an STM image or
Dirac point value in an STS map) are calculated according to
the expressions:
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Figure 4. Spatial dependence of Ey, as a function of Bi,Te; nanoplatelet thickness. Map of spatial variations of the Dirac point, deduced from STS
experiments for different Bi,Te; NP thicknesses. Maps for 8 QL, 13 QL, 17 QL, and 30 QL are 30 X 30 nm?, whereas for 10 QL is 20 X 20 nm®. Ej,
variations range from —322 to —100 mV, with Ej, overall values approaching Er. as NP thickness increases. Corresponding Ey, values are represented
by the color scale bar below each map. The right color scale bar shows the entire Ej, range.
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Figure S. Thickness dependence of Ej, inhomogeneity characteristic length. (a) Real space 8 QL Ep, map with guidelines (in blue) to highlight the
observed repeating structure. (b) Angle-dependent correlation (Gy(7)) analysis for 8 QL Ej, map clearly shows an arc pattern, which is consistent
with the real space phase separation in Ep map (See Figure S4 for other thicknesses). (c) Characteristic length scale of observed Ej, spatial
inhomogeneity was obtained from angular correlation analysis of STS Ep, maps. Ep, maps for each thickness are included as 3D images. Bulk valence
(gray squares) and conduction band (gray circles) mean free path versus thickness for fully diffuse surface scattering from ref 40 are also shown for

comparison purposes.
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The average spatial autocorrelation function (G(7)) is the result
of averaging the correlation function of all vectors with the
same magnitude [fl. The angle-dependent autocorrelation
function {Gy()) is the result of averaging the correlation
function of all vectors with orientation € with respect to the
horizontal axis and magnitude [7l.

Both (G(¥)) and (Gy(7)) of all the Ej, maps reveal that there
is a particular spatial pattern (with local minima and maxima),
implying the presence of characteristic length scales for the
observed spatial Ep, inhomogeneity. The arcs in such pattern
are imperfect, but repeat with a fixed periodicity, as clearly seen
for the 8 QL map (Figure Sab), implying a pattern of phase
separation of low and high carrier density domains over large
length scales. The functional form of those arcs, for a system
with partially disordered regions separated by a distance d and
running along an angle a with respect to the horizontal,
measured at an angle 6, is given by Nd/cos((a — 90°) —0)*'
(see Figure S4 for details). For real space 8 QL Ep, map (Figure
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Sa), guidelines (in blue) highlight the observed repeating
structure, which is consistent with results from angle-dependent
correlation (Gy(7)) analysis.

In addition, close to zero cross-correlation values between Ep
maps and topographies for all NP thicknesses suggest that
electronic order is disconnected from local structural disorder
(Figure S3). These results provide evidence that the observed
phase separation of the Dirac electrons in Bi,Te; NPs, which
occurs in the form of stripe-like structures at repeat length d,
may be self-organized. In contrast to electron—hole puddles in
graphene® the Ej, inhomogeneities observed here are actually
spatially correlated with each other and to the nanoscale
dimensions of the host material.

To further illustrate this point, the characteristic length scale
d of such Ej, spatial inhomogeneities obtained from (Gy(7))
analysis as a function of NP thickness is shown in Figure Sc. d
values (red circles) increase with thickness, ranging from 8.2 to
13.5 nm. Electronic mean free path for bulk Bi,Te; are included
for reference purposes. The observed length scale increase can
be interpreted as a reduction of spatial electronic disorder for
thicker nanoplatelets (probably connected to the decrease of
Tey; antisite defects), which is in agreement with the observed
broadening of Raman spectra for thinner nanostructures. Such
decreases in spatial electronic disorder with thickness suggests
that electron-disorder scattering gets stronger for thinner
nanoplatelets. This is in agreement with the observed evolution
of the system toward lightly n-type doping, which has been
reported to be related to reduction in the electron—phonon
interaction and electron-disorder scattering.’’
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In the same way, mobility has been reported to be increased
linearly with TI thin film thickness and to be saturated as the
samples got thicker,” following the same trend as the observed
spatial electronic disorder behavior. In general, an increase in
mobility is due to weak strain from the substrate and reduced
defect density,” like the one displayed in this nanostructured
system.

In conclusion we found in Bi,Te; nanoplatelets a clear
thickness dependence of their topological surface state
electronic properties. This leads to (1) the evolution from
heavily n-type to lightly n-type surface doping as NP thickness
increases, probably connected to a decrease in Tey; antisite
defects, which leads to higher quality thicker samples and (2)
increase of length scale of phase separation of Dirac electrons
with NP thickness, suggesting (together with Raman results) a
reduction of electron-disorder scattering and electron—phonon
interaction. Under these conditions an increase in mobility is
expected.

Our results show a new approach for controlling the surface
doping in TI nanostructured systems, which varies in thickness
together with nanoscale phase separation of the surface state
electronic structure. Recently, TT nanostructures have become a
promising platform to explore both fundamental questions and
applications related to low dimensionality of electronic systems.
According to our results, the increase of n-type charge carrier
density and electronic disorder as nanostructures get thinner
(and approach the spatial limit) suggests that a good approach
to tune Fermi level in these TI system is the use of moderate
thickness samples. We expect our work will provide a new route
for application of these nanostructured Dirac systems in
electronic devices.

B ASSOCIATED CONTENT

© Supporting Information

The Supporting Information is available free of charge on the

ACS Publications website at DOI: 10.1021/acs.nano-

lett.6b03506.
(i) Detailed description of Bi,Te; nanoplatelets growth
method and resulting samples. (i) Ep maps showing
percentage variations with respect to mean Ey, value. (iii)
Autocorrelation and cross-correlation of topographies
and Ep, maps for all NP thickness. (iv) Angular
correlation of Ej, maps for all NP thickness (PDF)

B AUTHOR INFORMATION

Corresponding Author

*E-mail: carolina.parra@usm.cl.

ORCID

Carolina Parra: 0000-0003-3819-7614

Rodrigo Segura: 0000-0003-0928-0021

Author Contributions

The manuscript was written through contributions of all
authors. All authors have given approval to the final version of
the manuscript.

Notes

The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

We acknowledge financial support from CONICYT insercion a
la academia 791220009, Becas Santander para Jovenes
Investigadores, INCT Nanocarbono, which funded sample

102

growth, STM/STS studies and analysis at Laboratorio Nano-
scopia UFMG (to C.P,, THR.C, FEMS, PHR.G, DDDR,
and RM.P.), and from the US Department of Energy, Office of
Basic Energy Sciences, Division of Materials Sciences and
Engineering, under contract DE-AC02-76SF00515 and Becas
Chile/Programa Bicentenario de Ciencia y Tecnologia, which
funded project inception and sample growth, STM/STS
studies, and analysis at Stanford University/SIMES laboratories
(to C.P, AW.C, DK, FN, Y.C, and HCM.). DK
acknowledges support from the Fundamental Research Funds
for the Central Universities.

B REFERENCES

(1) Luo, C. W.; Wang, H. J; Ku, S. A.; Chen, H.-J.; Yeh, T. T.; Lin, J.-
Y,; Wu, K. H;; Juang, J. Y,; Young, B. L.; Kobayashi, T.; Cheng, C.-M,;
Chen, C.-H.; Tsuei, K.-D.; Sankar, R;; Chou, F. C,; Kokh, K. A;
Tereshchenko, O. E.; Chulkov, E. V.; Andreev, Yu. M.; Gu, G. D. Nano
Lett. 2013, 13 (12), 5797—5802.

(2) Kong, D.; Cui, Y. Nat. Chem. 2011, 3 (11), 845—849.

(3) Chen, Y. L; Analytis, J. G.; Chy, J.-H.; Liu, Z. K;; Mo, S-K; Qj,
X.-L,; Zhang, H. J.; Lu, D. H,; Dai, X; Fang, Z.; et al. Science 2009, 325
(5937), 178—181.

(4) Alpichshev, Z.; Analytis, J. G.; Chy, J. H.; Fisher, 1. R; Chen, Y.
L.; Shen, Z. X.; Fang, A.; Kapitulnik, A. Phys. Rev. Lett. 2010, 104 (1),
016401.

(5) Alpichshev, Z.; Analytis, J. G.; Chu, J. H.; Fisher, 1. R.; Kapitulnik,
A. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 84 (4), 041104.

(6) Hsieh, D; Xia, Y,; Qian, D.; Wray, L,; Dil, J. H; Meier, F,;
Osterwalder, J.; Patthey, L.; Checkelsky, J. G.; Ong, N. P.; Fedorov, A.
V.; Lin, H,; Bansil, A.; Grauer, D.; Hor, Y. S,; Cava, R. J.; Hasan, M. Z.
Nature 2009, 460 (7259), 1101-1108.

(7) Hor, Y. S.; Richardella, A.; Roushan, P.; Xia, Y.; Checkelsky, J. G.;
Yazdani, A,; Hasan, M. Z; Ong, N. P; Cava, R. J. Phys. Rev. B:
Condens. Matter Mater. Phys. 2009, 79 (19), 195208.

(8) Wang, Z.; Wei, P.; Shi, J. Front. Phys. 2012, 7 (2), 160—164.

(9) Aitani, M.; Sakamoto, Y.; Hirahara, T.; Yamada, M.; Miyazaki, H.;
Matsunami, M.; Kimura, S. I; Hasegawa, S. Jpn. J. Appl. Phys. 2013, 52,
110112.

(10) Wang, Y.; Xiu, F.; Cheng, L.; He, L.; Lang, M.; Tang, J.; Kou, X;
Yu, X; Jiang, X,; Chen, Z.; Zou, J.; Wang, K. L. Nano Lett. 2012, 12
(3), 1170—1175.

(11) Kong, D.; Chen, Y.; Cha, J. J.; Zhang, Q.; Analytis, J. G.; Lai, K;
Liu, Z.; Hong, S. S.; Koski, K. J.; Mo, S.-K,; Hussain, Z.; Fisher, L. R;
Shen, Z.-X.; Cui, Y. Nat. Nanotechnol. 2011, 6 (11), 705—709.

(12) Arakane, T.; Sato, T.; Souma, S.; Kosaka, K,; Nakayama, K;
Komatsu, M.; Takahashi, T.; Ren, Z.; Segawa, K; Ando, Y. Nat.
Commun. 2012, 3, 636.

(13) Xiu, F.; He, L; Wang, Y.; Cheng, L,; Chang, L.-T; Lang, M,;
Huang, G.; Kou, X,; Zhou, Y,; Jiang, X.; Chen, Z.; Zou, J.; Shailos, A.;
Wang, K. L. Nat. Nanotechnol. 2011, 6 (4), 216—221.

(14) Jauregui, L. A.; Pettes, M. T.; Rokhinson, L. P.; Shi, L.; Chen, Y.
P. Sci. Rep. 2018, S, 8452.

(15) Park, S. H.; Chae, J.; Jeong, K. S.; Kim, T. H.; Choi, H.; Cho, M.
H.; Hwang, I; Bae, M. H,; Kang, C. Nano Lett. 2015, 15 (6), 3820—
3826.

(16) Liu, Y; Li, Y. Y.; Rajput, S.; Gilks, D.; Lari, L.; Galindo, P. L.;
Weinert, M.; Lazarov, V. K; Li, L. Nat. Phys. 2014, 10 (March), 1-6.

(17) Liu, W.; Peng, X.; Wei, X.; Yang, H.; Stocks, G. M.; Zhong, J.
Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87 (20), 205315.

(18) He, K; Zhang, Y.; Chang, C.-Z.; Song, C.-L.; Wang, L.-L.; Chen,
X.; Jia, J.-F,; Fang, Z.; Dai, X.; Shan, W.-Y,; Shen, S.-Q,; Niu, Q; Qj,
X.-L,; Zhang, S.-C.; Ma, X.-C.; Xue, Q.-K. Nat. Phys. 2010, 6, 584.

(19) Song, C. L,; Wang, Y. L; Jiang, Y. P.; Zhang, Y.; Chang, C. Z;
Wang, L.; He, K; Chen, X,; Jia, J. F.; Wang, Y,; Fang, Z.; Dai, X,; Xie,
X. C; Qi, X. L; Zhang, S. C.; Xue, Q. K; Ma, X. Appl. Phys. Lett. 2010,
97 (14), 143118.

(20) Kong, D.; Dang, W.; Cha, J. J.; Li, H.; Meister, S.; Peng, H.; Liu,
Z.; Cui, Y. Nano Lett. 2010, 10 (6), 2245—2250.

DOI: 10.1021/acs.nanolett.6b03506
Nano Lett. 2017, 17, 97—-103



Nano Letters

(21) Kong, D.; Randel, J. C.; Peng, H.; Cha, J. J.; Meister, S.; Lai, K;
Chen, Y.; Shen, Z. X;; Manoharan, H. C.; Cui, Y. Nano Lett. 2010, 10
(1), 329-333.

(22) Wang, G; Zhy, X. G;; Sun, Y. Y;; Li, Y. Y,; Zhang, T.; Wen, J;
Chen, X; He, K;; Wang, L. L; Ma, X. C; Jia, J. F.; Zhang, S. B.; Xue,
Q. K. Adv. Mater. 2011, 23 (26), 2929—2932.

(23) Li, Y.-Y,; Wang, G.; Zhy, X.-G;; Liu, M.-H,; Ye, C,; Chen, X;
Wang, Y.-Y,; He, K; Wang, L.-L; Ma, X.-C,; Zhang, H.-J,; Dai, X;
Fang, Z.; Xie, X.-C,; Liu, Y.; Qi, X.-L,; Jia, J.-F.; Zhang, S.-C.; Xue, Q.-
K. Adv. Mater. 2010, 22 (36), 4002—4007.

(24) Roushan, P.; Seo, J.; Parker, C. V.; Hor, Y. S.; Hsieh, D.; Qian,
D.; Richardella, A.; Hasan, M. Z.; Cava, R. J.; Yazdani, A. Nature 2009,
460 (7259), 1106—1109.

(25) Zhang, T.; Cheng, P.; Chen, X;; Jia, J. F.; Ma, X,; He, K;; Wang,
L.; Zhang, H.; Dai, X,; Fang, Z.; Xie, X,; Xue, Q. K. Phys. Rev. Lett.
2009, 103 (26), 266803.

(26) Bando, H.; Koizumi, K.; Oikawa, Y.; Daikohara, K;
Kulbachinskii, V. A;; Ozaki, H. J. Phys.: Condens. Matter 2000, 12
(26), 5607.

(27) Kong, D; Cha, J. J.; Lai, K; Peng, H.; Analytis, J. G.; Meister, S.;
Chen, Y,; Zhang, H. J; Fisher, I. R;; Shen, Z. X.; Cui, Y. ACS Nano
2011, $ (6), 4698—4703.

(28) Koma, A. J. Cryst. Growth 1999, 201, 236—241.

(29) Song, F.; Han, M,; Liu, M; Chen, B.; Wan, J.; Wang, G. Phys.
Rev. Lett. 2005, 94 (9), 093401.

(30) Spirkoska, D.; Abstreiter, G.; Fontcuberta I Morral, A.
Nanotechnology 2008, 19 (43), 435704.

(31) He, R;; Wang, Z,; Qiy, R. L. J; Delaney, C.; Beck, B.; Kidd, T.
E; Chancey, C. C; Gao, X. P. A. Nanotechnology 2012, 23 (4S),
455703.

(32) Sessi, P.; Otrokov, M. M.; Bathon, T.; Vergniory, M. G.; Tsirkin,
S. S.; Kokh, K. A,; Tereshchenko, O. E.; Chulkov, E. V.; Bode, M. Phys.
Rev. B: Condens. Matter Mater. Phys. 2013, 88 (16), 161407.

(33) Beidenkopf, H.; Roushan, P.; Seo, J.; Gorman, L.; Drozdov, L;
Hor, Y. S; Cava, R. J,; Yazdani, A. Nat. Phys. 2011, 7 (12), 939—943.

(34) Sessi, P.; Reis, F.; Bathon, T.; Kokh, K. A.; Tereshchenko, O. E.;
Bode, M. Nat. Commun. 2014, 5, 5349.

(35) Hashibon, A.; Elsdsser, C. Phys. Rev. B: Condens. Matter Mater.
Phys. 2011, 84 (14), 144117.

(36) Carva, K;; Kudrnovsky, J.; Maca, F.; Drchal, V.; Turek, L; Balaz,
P.; Tkac, V.; Holy, V.; Sechovsky, V.; Honolka, J. Phys. Rev. B: Condens.
Matter Mater. Phys. 2016, 93 (21), 214409.

(37) Chen, C.; Xie, Z.; Feng, Y; Yi, H; Liang, A.; He, S; Mou, D.;
He, J.; Peng, Y.; Liu, X;; Liu, Y.; Zhao, L,; Liu, G.; Dong, X;; Zhang, J.;
Yu, L; Wang, X,; Peng, Q; Wang, Z,; Zhang, S.; Yang, F.; Chen, C,;
Xu, Z; Zhou, X. J. Sci. Rep. 2013, 3, 2411.

(38) Fratini, M.; Poccia, N.; Ricci, A.; Campi, G.; Burghammer, M.;
Aeppli, G.; Bianconi, A. Nature 2010, 466, 841.

(39) Giraldo-Gallo, P.; Zhang, Y.; Parra, C; Manoharan, H. C;
Beasley, M. R.; Geballe, T. H,; Kramer, M. J.; Fisher, I. R. Nat.
Commun. 2018, 6, 8231.

(40) Pettes, M. T.; Maassen, J.; Jo, L; Lundstrom, M. S.; Shi, L. Nano
Lett. 2013, 13 (11), 5316—5322.

(41) Giraldo-Gallo, P.; Zhang, Y.; Parra, C,; Manoharan, H. C,;
Beasley, M. R.; Geballe, T. H,; Kramer, M. J.; Fisher, I. R. Nat.
Commun. 2015, 6, 8231.

(42) Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H;
Von Klitzing, K; Yacoby, A. Nat. Phys. 2008, 4, 144.

(43) Kim, Y. S.; Brahlek, M.; Bansal, N.; Edrey, E.; Kapilevich, G. A;
lida, K.; Tanimura, M.; Horibe, Y.; Cheong, S. W.; Oh, S. Phys. Rev. B:
Condens. Matter Mater. Phys. 2011, 84 (7), 073109.

103

DOI: 10.1021/acs.nanolett.6b03506
Nano Lett. 2017, 17, 97—-103



