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Abstract 
 

 

Bismuth Selenide (Bi2Se3) is a topological insulator compound with a lamellar 
structure formed by the repetition of stacks of five atomic monolayers, each of them 
consisting of layers with either Se or Bi atoms. Each ensemble of five covalently bonded 
planes is connected to other quintuple-layers by van der Waals interactions, making this 
material potentially interesting for building novel devices. Its electronics properties are 
intimately related to other two-dimensional systems, presenting surface states with an 
electronic linear dispersion on selected points of the Brillouin zone. 

The goal of this work was to observe and interpret the transformations that occur 
upon heating Bi2Se3 at temperatures up to 350oC. X-ray diffraction and Scanning Tunneling 
Microscopy (STM) techniques were used to observe these transformations. X-ray diffraction 
was measured following the 00L and 01L truncation rods. These measurements revealed 
that upon heating there is a coexistence of a major Bi2Se3 phase (a three-dimensional 
topological insulator) and a conducting phase with a structure composed of five Bi2Se3 
quintuple-layers followed by a bilayer of Bismuth, leading to an overall Bi4Se5 stoichiometry. 

Density Functional Theory calculations showed that whereas Bi2Se3 is a topological 
insulator, Bi4Se5 is a conventional conductor with several van Hove singularities near the 
Fermi level. STM measurements of the surface of this material showed the presence of 
hexagonal Bi4Se5 domains (approximately 200nm) terminated in Bismuth bilayers embedded 
in a Bi2Se3 matrix. Low temperature scanning tunneling spectroscopy revealed that the 
bilayer termination exhibits a conducting behavior, with a corresponding conductor-like 
density of states, presenting no band gap. STS also showed that the bilayer and Bi2Se3 are in 
electrical contact, with the possibility of the presence of a topological state at the edge of 
the bilayer, since Bismuth islands are two-dimensional topological insulators. 

Keywords: Topological Insulators, Scanning Tunneling Microscopy, X-Ray Scattering
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1 - Introduction 

 

One of the most important fields of Physics is related to materials. It is an area of 
physics that studies in particular the condensed phase, i.e. when the number of constituents 
of a system becomes very large and the interactions between them are strong [1]. The most 
known examples are solids and liquids. 

The most important fields in Materials Physics are related to their mechanical and 
electromagnetic properties, i.e., their atomic and electronic structure. This field has become 
very important since the beginning of the twentieth century due to the discovery of X-rays 
[2]. They were discovered by the German physicist Wilhelm Conrad Röntgen (1845-1923) on 
1895. A few decades later W. Henry Bragg (1862-1942) and his son W. Lawrence Bragg 
(1890-1971) used this radiation to determine the atomic structure of crystals. 

Over the last century until today, several techniques were developed to determine 
and characterize all kind of materials. In our case, we have used X-Ray Diffraction, Scanning 
Tunneling Microscopy and Spectroscopy to understand the atomic and electronic properties 
of our sample: a polyphase crystal formed by two major compounds: Bi2Se3 and Bi4Se5. 

Bismuth Selenide (Bi2Se3) belongs to a class of materials called topological insulators. 
There are many different phases of matter related to their electrical properties: conductors, 
insulators and semiconductors. Topological insulators are, in a simple explanation, materials 
which behave like insulators in their interior and conductors at the surface (with very 
particular features). 

Due to phenomena such as the Quantum Hall Effect, surface states appear on bulk 
insulators, i.e., localized protected metallic states of electrons [3]. An interesting feature of 
the topological insulators is the topologically protected state, which gives electrons the 
possibility to pass by non-magnetic barriers without any scattering. This is due to the spin 
dependence on their conduction, which I similar to massless Dirac particles [4]. 

This dissertation is divided into 6 chapters. This introduction (Chapter 1) is an 
attempt to briefly contextualize the importance of Topological Insulators. Chapter 2 involves 
a discussion about the material we have studied (Bi2Se3), first presenting a qualitative 
introduction to topological insulators in general. A brief and simple explanation using 
concepts of Quantum Mechanics and the Quantum Spin Hall Effect is given. A comparison 
between this effect and topological insulators themselves is shown, covering their most 
important features. At the end of this chapter a short discussion about the structural and 
electronic properties of Bi2Se3 and Bi4Se5, the materials we have worked with, is presented. 

The next two chapters cover the theory of the experimental techniques we have 
used. Chapter 3 is about X-Ray Diffraction, focusing on the mathematics behind it and 
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presenting the technique of Crystal Truncation Rod Scattering (CTRS). Chapter 4 presents the 
main features of Scanning Tunneling Microscopy (STM) and Spectroscopy (STS), what they 
can measure and the theory behind them. The main goal of this chapter is to show the 
relationship between Scanning Tunneling Spectroscopy and the Local Density of states 
(LDOS) of samples measured using this technique. 

Chapters 5 focus on the results of our experiments. X-ray Crystal Truncation Rods 
were measured at Beamline XRD2 of the Brazilian Synchrotron Light Laboratory (LNLS), 
located in Campinas/SP. STM and STS experiments were performed at the UHV Nanoscopy 
Laboratory at UFMG. A discussion about the results and the relationship to Density 
Functional Theory (DFT) calculations, connecting all previous results, is finally presented. 
Chapter 6 presents some final considerations and the conclusions of this work. 
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2 - Topological Insulators 
 

Topological Insulators (TIs) are a new state of matter concerning their topology. They 
are promising materials for the development of new electronic devices [5] due their 
distinguished surfaces states [6]. The dispersion relations of the bulk and the surface differ 
considerably in these materials. They behave as insulators in the bulk and conductors 
(actually semi-metals) at the surface, presenting a Dirac cone band shape in their energy-
momentum diagram [7]. Such behavior is caused by spin-polarized surface states with a 
linear dispersion relation near the Fermi Level, with topologically protected states for the 
electrons [8]. 

The first section of this chapter introduces the theory of surface states in crystalline 
solids. Sections 2 and 3 cover a simple, qualitatively explanation about the Quantum Hall 
Effect (QHE), the Quantum Spin Hall Effect (QSHE) and how they are related to two-
dimensional topological insulators. Section 4 covers three-dimensional topological 
insulators, particularly the Bismuth Chalcogenide family. Finally, Section 5 presents the 
compounds Bi2Se3 and Bi4Se5 with their predicted electronic and structure properties. 

 

2.1 Surface States 

 

Using Schrödinger´s equation the energies of electrons in a physical system can be 
calculated [9]. This equation can provide the relationship between energy and position or 
momentum of these electrons. An atom, for example, has discrete electronic energies given 
by their quantum numbers 𝑛, 𝑙 and 𝑚 [9]. For a crystalline solid composed of an array of 
many atoms, the energy states have a continuous energy-momentum distribution resulting 
in a band structure [10]. Figure 2.1 is a representation of the band structure of an insulator. 
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Figure 2.1: Energy-momentum representation of an insulator. The empty space between valence and 

conduction bands is called band gap. 

 

The energy eigenvalues of an electron in a solid can be calculated using the Kronig-
Penney model using Bloch functions [11]. This theory uses a simple model of a periodic 
potential with the Schrödinger equation and it considers a crystal as infinite in all directions. 
A continuum band structure in the energy (E) - momentum (k) diagram is obtained. The 
spatial Bloch functions 𝜓௞(𝑥) have the form: 

𝜓௞(𝑥) = e௜௞௫𝑢௞(𝑥)   .                                                     (2.1) 

Where 𝑢௞(𝑥) is a function with the same periodicity of the crystal. A more realistic model for 
a crystal takes into account the finite shape of the solid. Considering the solid cleaved in one 
direction, the consequence is the appearance of surface states. This is due to boundary 
conditions that need to be satisfied in the Kronig-Penney model for a finite crystal. The 
concept of surface states was first proposed by Igor Y. Tamm using a one dimensional 
analytical model [12]. 

As can be seen in Eq. 2.1, Bloch functions have a unitary complex phase. For a finite 
case, this restriction is removed. The result is a function which decays when approaching the 
surface. The Bloch function has to decay to zero into the vacuum. The Bloch functions at the 
interface solid-vacuum are the same in both two sides. They are represented in Figure 2.2. 
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Figure 2.2: Representation of surface states. The surface states decay exponentially into the vacuum 

and into the solid. Its wave is out of scale for clarity. 

 

The calculations made by Tamm resulted in a simple equation for the energies of the 
surface states, 

𝑞ᇱ𝑎 cot 𝐾𝑎 =
𝑞ଶ𝑎ଶ

2𝑃
− ට𝑞ଶ − 𝑞ᇱଶ𝑎   ,                                     (2.2) 

where 𝑞 = √2𝑚𝑈/ħ is a constant determined by the periodic potential, 𝑞′ = √2𝑚𝐸/ħ is 
related to the energy of the electron, 𝑃 is a normalization parameter and 𝑎 is the period of 
the crystalline structure. 

With this simple model, one can infer some features of these surface states, i.e., their 
strength depends on the periodic potential. If P << 1, there will be no surface states. For 
large values of P, the energy gaps are wide, and the amplitudes of the surface states at the 
solid surface are large. For transition metals and semiconductors surface states are usually 
strong. For alkali metals they are weak of even do not exist. 

This simple one-dimensional model also predicts the existence of discrete energy 
levels for surface states. In real solids (three-dimensional case), the lateral Bloch vector 
always results in dispersion, where the added energy depends on the surface wavevector 
𝒌 = (𝑘௫, 𝑘௬): 

𝐸(𝑘) = 𝐸ி − 𝐸଴ +
ħଶ𝑘ଶ

2𝑚∗
  ,                                              (2.3) 

where 𝐸଴ is the electron binding energy, 𝐸ி is the Fermi level energy and 𝑚∗ is the effective 
mass of the electron in the surface state. Experimentally, surface states have been 
extensively observed on noble-metal surfaces. Figure 2.3 shows the experimental 
observation of the 𝛤ത surface state of Au(111). 
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Figure 2.3: Surface state observed for Au(111). The dots represent angle-resolved photoemission 

data. The solid curve represents the fit to the data using equation 2.3, yielding the binding energy 𝐸଴  
and the effective mass 𝑚∗. From [13]. 

 

2.2 Quantum Hall Effect 

 

The concept and the mathematics involved in topological insulators are very complex 
and difficult to understand. In this dissertation, a simple explanation will be presented. The 
concepts of Quantum Hall Effect and Surface Sates can be used to give a qualitative idea 
about the properties of a topological insulator. 

 First, one can discuss the Quantum Hall Effect (QHE). It was observed for the first 
time by Klaus von Klitzing in the 1980 decade. Electrons were confined in a two-dimensional 
interface of two semiconductors and were then submitted to a strong magnetic field at low 
temperature [14]. The Lorentz force created by the magnetic field leads the electron to 
move in a well-determined orbit [15]. The movement of electrons is governed by Quantum 
Mechanics, so the orbits have quantized energies, given by a typical harmonic oscillator 

relationship 𝐸 = (𝑛 +
ଵ

ଶ
)ħ𝜔௖ . 𝜔௖ = 𝑒𝐵/𝑚  is known as the cyclotron frequency. These 

discrete states are called Landau Levels. 

 The orbits of the Landau levels are shown in Figure 2.4c. At the borders of the 
system, the electrons cannot follow their natural trajectory because they are blocked by the 
vacuum barrier. They move by bouncing back at the border as shown in Figure 2.4c. As a 
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result, new channels of conduction arrive only at the border. This is an example of a surface 
state in a two-dimensional system. 

 

 
Figure 2.4: The Quantum Hall Insulator. a) Representation of an ordinary insulator. The conducting 

electrons move freely into the crystal. b) Energy-momentum relation of an ordinary insulator 
characterized by an energy band gap. c) Representation of a Quantum Hall insulator (QHI) with 

conducting edge states. In presence of magnetic fields the electrons move on some given orbits, 
called Landau Levels. The border states occur at the edges of the crystal, where they cannot 

complete their orbit. d) Energy-momentum relation of a QHI showing the conducting QHE states 
appearing in the energy band gap. 

 

 The conducting surface state at the border has an interesting feature: as the electron 
cannot change its movement in the direction parallel to the surface, when it encounters a 
defect or a barrier, its lateral movement is not affected. So the electrons have strong 
protected states at the border, which makes electron back-scattering forbidden [16]. When 
in a surface state, electrons contour the defect and continue to propagate. 

 The von Klitzing experiment also showed that the Hall Conductance exhibits well-
defined steps as a function of magnetic field, as shown in Figure 2.5. The Hall Conductance 
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always presents itself by multiples of e2/h. This was measured by von Klitzing with a very 
high precision [14]. 

 

 
Figure 2.5: Hall resistance as a function of Magnetic field in a 2D electron gas. From [17]. 

 

This robust transport mechanism of the surface states with no dissipation can be 
extremely useful in semiconductor devices. However, strong magnetic fields and low 
temperatures are necessary and represent a limitation. 

Recently, a new class of materials was theoretically predicted [18] and 
experimentally confirmed [19], presenting states similar to a Quantum Hall solid without the 
presence of a strong magnetic field. This is possible due to the Quantum Spin Hall Effect, 
which exists even in the absence of an external magnetic field. This effect and these new 
materials will be discussed in the next section. 

 

2.3 Quantum Spin Hall Effect: 2D Topological Insulators 

 

 The Quantum Spin Hall Effect (QSHE) was theoretically predicted in 2005 in two-
dimensional insulators with a strong spin-orbit coupling (SOC) [18]. The spin-orbit coupling 
of these materials plays the role of the external magnetic field. These materials are called 
Quantum Spin Hall solids, where topological insulators are a specific group. 

 The surface states in these materials have an additional property: they are protected 
by spin polarization. As the role of the magnetic field is played by the electron spin, it has 
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two orientations, giving two different orbits for the Landau Levels. As a result, surface states 
have two orientations, each one related to the respective electron spin, as shown in Figure 
2.6. The protection feature is given the properties of non-backscattering discussed in the 
previous section. A structural non-magnetic defect cannot break the robustness of these 
spin-polarized edge states, but a magnetic one can. This apparent disadvantage can be used 
to elaborate high-sensitivity magnetic field devices [20]. 

 

 
Figure 2.6: Spin-protected states. Due to spin polarization, the electrons on a QSH insulator have two 

different ways to propagating as surface states. 

 

 The two-dimensional topological insulator was originally predicted for graphene [21], 
albeit not observed. The spin-orbit coupling in a topological insulator has to be strong 
enough to modify the electronic structure of the material. The spin-orbit coupling is more 
evident in heavy elements. If the spin-orbit coupling energy is comparable to the bulk gap; it 
is sufficient to modify the electronic structure of the surface of the material. 

 In 2006, theoretical studies by B. A. Bernevig e collaborators concluded that quantum 
wells of CdTe-HgTe-CdTe, above a certain thickness, would present QSH states [18]. The 
mechanism responsible for the appearance of these states is the spin-obit coupling, which 
leads to an inversion of the conduction and valence bands. 

 In most semiconductors, the conduction band is formed by s-type electrons and the 
valence band by p-type electrons. In heavy elements, the spin-orbit coupling is so strong that 
it splits the pj = 1/2 and pj = 3/2 levels and leads to a band inversion [22]. By increasing the 
thickness of the HgTe film, the spin-orbit coupling also increases, leading to this band 
inversion. 

 Less than a year after this theoretical prediction, the Quantum Spin Hall Effect was 
experimentally observed in CdTe-HgTe-CdTe systems by L. Molenkamp and his collaborators 
[19]. These studies motivated the investigations on topological insulators and three 
difference theoretical groups generalized the theory for the three-dimensional topological 
case [23]. 3D topological insulators will be discussed in the next section. 
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2.4 Three-dimensional Topological Insulators and the Bi-
Chalcogenide-Based Class 

 

 The theory of 3D topological insulators involves notions of topology and a very 
complex mathematical treatment. What one needs to know is that using the concept of 
surface states described in Section 2.1 and the 2D topological insulator from Section 2.3, the 
3D topological insulator can be understood as a3D extension of the 2D topological insulator 
case. The spin-protected conducting border state is now a surface 2D state. 

 As the quantum wells on CdTe-HgTe-CdTe system, the three-dimensional topological 
insulator presents a band inversion at the Γ-point of the Brillouin zone due to spin-orbit 
coupling [23]. The surface states cross the gap at 𝑘 = 0 and near this point the dispersion is 
linear, which is a characteristic of massless Dirac fermions in one dimension. For 3D 
topological insulators, this crossing of the surface states arises in what is called a Dirac-Cone, 
due to its cone shape, as shown in Figure 2.7. 

 

 
Figure 2.7: The Dirac-cone of a 3D topological insulator. From [24]. 

 

 As in the 2D case, the direction of the electrons at the surface is determined by their 
spins, which now varies continually as function of the propagation. There are well-defined 
energy-momentum paths which electrons with a given spin can have and the opposite 
cannot. The first candidate for a 3D topological insulator was a Bismuth Antimonide alloy Bi1-

xSbx. It was predicted that for the range of concentration x=0.09 to x=0.18, Bi1-xSbx is a 



19 

 
 

topological insulator [25], and this was proven by Angular Resolved Photo-emission 
Spectroscopy (ARPES) measurements by Hsieh et al. [26]. 

 The electronic structure of Bi1-xSbx is very complicated because it presents normal 
surface states besides the topological insulators states [27]. So, it can be really difficult to 
measure the topological state alone. The weak gap (100 meV) is also a limiting factor, 
reducing the visualization of this effect to very low temperatures. 

 Latter studies predicted the existence of a second generation of topological 
insulators, the chalcogenide-based TIs: Bi2Te3, Bi2Se3, Sb2Te3, etc. As in the previous cases 
the experimental proof was obtained using ARPES for Bi2Te3 [28], Bi2Se3 [29] and others [30], 
evidencing the signature of a 3D topological insulator. 

 These materials present all the features of a 3D topological insulator discussed 
before: 2D protected metallic states localized at the surface, a Dirac-cone, conduction 
without dissipation, defect robustness, spin-polarization, etc. The mainly advantage of the 
second generation to the first one are the band structure near to the ideal case. They 
present only one Dirac-cone and a sufficiently large band gap, 300 meV for Bi2Se3, to make 
them usable at room-temperature. Its atomic structure is shown in Figure 2.8. 

 

 
Figure 2.8: Basic atomic structure of Bi-Chalcogenide class of TIs. Letter M represents a metal that 
can be Se, Te, etc. C is the chalcogenide atom: Bi, Sb, etc. These stacks bonded by van der Waals 

forces form compounds like Bi2Se3 and Bi2Te3. 
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This second generation of TIs also has the advantage that they are stoichiometric, making 
them easy to produce with high purity. They present the same basic atomic structure: 
rhombohedral lattice with fifteen atoms in the unit cell. The structure presents a stacking of 
quintuple-layers (QLs) with M-C-M-C-M atoms, where M is a metallic atom (Se or Te) and C is 
the chalcogenide (Bi, Sb, etc.). The most common compounds are Bi2Te3 and Bi2Se3. The 
stacking is of ABC type, so three QLs are needed to make a unit cell. Inside the quintuple-
layer the atoms are bonded by covalent forces, but the force which binds the QLs together is 
of van der Waals nature. As the van der Waals force is weaker than covalent ones, the 
material can be easily exfoliated at the QLs interface. 

 

2.5 Crystalline and electronic structure of Bi2Se3 and Bi4Se5 

 

 The crystalline structure of Bismuth Selenide (Bi2Se3) is the same as shown in Figure 
2.8 at the previous section, with stacks of quintuple-layers of Se-Bi-Se-Bi-Se. The atoms are 
hexagonally-packed as can be seen in the atomically-resolved STM image of Figure 2.9. The 
unit cell has atomic distances of 0.41 nm for the x-y plane lattice parameters and 2.84 nm in 
the z direction. 

 
Figure 2.9: Scanning Tunneling Microscopy (STM) images of Bi2Se3. a) 1.2µm2 STM image of Bi2Se3. b) 
A line profile of (a) showing the 1 nm space between QLs. c) 16nm2 high-resolution image of Bi2Se3. 

d) A line profile of (c) showing the x-y atomic distance between atoms of 0.44 nm. 
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 The electronic structure of Bi2Se3 can be determined by Angle-Resolved Photo-
emission Spectroscopy (ARPES). It presents a Dirac-cone lying in between the conduction 
and valence bands centered at the Γ-point. The ARPES measurements revealed a non-
expected behavior for this material. The Dirac-point is not exactly at the Fermi-level, as 
predicted by theoretical calculations. This difference between theory and experiment is due 
to defects at the Bi2Se3 crystalline surface. Holes of Se at the surface can induce a natural 
doping of the material which changes the position of the Fermi-level [31]. One way to bring 
the Fermi-level to the Dirac-point by is by doping the material with, for example, Calcium 
[32]. Figure 2.10 shows an ARPES measurement of pure-Bi2Se3 and DFT calculations of its 
electronic band structure. 

 
Figure 2.10: The electronic band structure of Bi2Se3. a) ARPES measurements showing the Fermi-level 

at the conduction band, away from the Dirac-point. From [33]. b) Density Functional Theory (DFT) 
calculations of the electronic band structure of Bi2Se3, showing the Dirac-point at the Fermi-level. 

Image made with the software Virtual NanoLab by QuantumWise A/S. 
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One of the best properties of Bi2Se3 is its stoichiometry condition. With three atomic 
parts of selenium and two of bismuth, it is possible to synthesize high-quality Bi2Se3 crystals. 
Studies of Bi2Se3 growth have shown that in excess of selenium, Bi2Se3 is always synthesized 
and the excess of selenium is phase-separated. With a lack of selenium other phases of 
Bismuth Selenide can be formed. In Figure 2.11 the Bi-Se phase diagram is shown with all 
possible phases. 

 

 
Figure 2.11: Phase diagram of the BiSe system. The graph shows the phases of Bismuth Selenide that 

can be formed by a given temperature, percentage of bismuth and selenium. From [34]. 

 

 X-ray measurements, which will be discussed in Chapter 3, showed that our sample 
contains the main Bi2Se3 phase and other minor phases. Among these minor phases the 
more evident is Bi4Se5. The unit cell of Bi4Se5 is formed by five Bi2Se3 quintuple-layers and a 
Bismuth bilayer on top of it. The unit cell can be understood as two unit cells of Bi2Se3 with 
one quintuple layer replaced by a Bismuth bilayer. An illustration of these stacks is shown in 
Figure 2.12. 
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Figure 2.12: Unit cell of Bi4Se5 and Bi2Se3. Bi4Se5 phase is formed by 5 QLs of Bi2Se3 and a Bi2 bilayer. 

 

 As can be seen in the literature, the main phases of Bismuth Selenide are formed by 
the intercalation of Bi2Se3 quintuple-layers and Bi2bilayers [35]. For example: two QLs with a 
bilayer form BiSe, three QLs with a bilayer form Bi3Se4, etc. A comparative table is shown in 
Table I. 

 

% 
Selenium 

Number 
of QLs 

Number 
of BLs 

Number of 
Bismuth atoms 

per unit cell 

Number of 
Selenium atoms 

per unit cell 

Phase 
formed 

43,0 1 1 4 3 Bi4Se3 

50,0 2 1 6 6 BiSe 
53,0 3 1 8 9 Bi8Se9 

55,5 4 1 10 12 Bi5Se6 

56,5 5 1 12 15 Bi4Se5 

57 8 1 18 24 Bi3Se4 

60 3 0 6 9 Bi2Se3 

Table I: Comparative table of the atomic composition in the unit cell of the (Bi2Se3)x(Bi2)y compounds. 
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 The electronic band structure of Bi4Se5 differs considerably from Bi2Se3. Density 
Functional Theory (DFT) can be used to predict its band structure. Scanning tunneling 
spectroscopy can locally differentiate the electronic density of states of both phases. The 
Bi4Se5 phase is not expected to be a topological insulator and our measurements confirm 
this prediction. This will be shown in Chapter 5 of this dissertation. 
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3 - X-Ray Scattering 
 

X-Rays were discovered by Wilhelm Conrad Röntgen (1845-1923) in 1895 when 
investigating cathodic rays. He observed that when electrons decelerate they produce this 
penetrating kind of radiation. The first Nobel Prize was awarded to him in 1901 "in 
recognition of the extraordinary services that rendered the discovery of the remarkable rays 
subsequently named after him". 

Further works of William Henry Bragg (1862-1942) and his son William Lawrence 
Bragg (1890-1971) showed that one can study the crystalline structure of solids using X-ray 
radiation, due to their wavelength between 0.01 and 10 nanometers, which is comparable to 
the inter-atomic distance in solids. They both won the Nobel Prize in 1915 "for their services 
in the analysis of crystal structures by means of X-rays". 

One method to produce X-rays in an intense and effective way is to use Synchrotron 
X-ray sources (Figure3.1). In the early 70's, scientists observed that electrons accelerating in 
storage rings, which were initially built to performed high energy nuclear physics 
experiments, produce X-rays when they pass along a curve of the storage ring [36]. After this 
discovery, scientists around the world started to build accelerators only to produce X-rays. 

 
Figure 3.1: A simple schematic of a typical X-ray Beamline at a third generation X-ray source. When 
electrons pass into a curve along a storage ring, they produce rays that are monochomatized and 

focused to be used into an experimental hatch called Beamline. 
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Since the major experiments in this area use monochromatic radiation, an X-ray 
beam may be represented by a monochromatic plane wave (Figure 3.2), where its electric 
field is given by 

𝐄(𝐫, 𝑡) = E଴𝛆ොe୧(𝐤∙𝐫ିఠ௧)  .                                               (3.1) 

E଴is the amplitude of the electric field, 𝛆ො is the unitary polarization vector, 𝐤 is the electron 
wavevector and 𝜔 the angular frequency of the wave. 

 

 
Figure 3.2: A monochromatic plane electromagnetic wave. 

 

When X-rays interact with an atom, they can be absorbed or scattered [36]. The 
absorption process will not be discussed in this work, which focuses in the scattering 
process. The X-ray Diffraction experiment consists on shining X-ray radiation onto a crystal 
sample and measure the intensity of the diffracted beam. To measure this intensity a photon 
counter detector is used at a fixed distance to the sample, equipped with a diffractometer. 
The diffractometer is the equipment used to move the detector and the sample to angles 
where we want to measure the scattered intensity. 

 In the next sections, we present the mathematics of the scattering process of X-rays 
by an electron, an atom and a crystal; finalizing with the crystal truncation rod diffraction, 
which was performed in our experiment. 

 

3.1 Scattering by an electron 

 

 For the understanding of the scattering phenomena in crystals, we first need to study 
the scattering of a single electron by the electromagnetic wave, the X-ray. Classical 
electromagnetic theory tells us that when an X-ray wave interacts with an electron, its 
electric field forces it to vibrate and generating a radiated wave [37]. The vibrating electron 
can be understood as a radiation source, producing a spherical wave. 
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 The goal of this section is to calculate the intensity of the scattered wave at a given 
distance from the source, which will be sum of the incident and radiated waves. Considering 
the vector potential of the source charges: 

𝐀(𝐫, 𝑡′) =
1

4πϵ଴𝑐ଶ
න

𝐉(𝐫ᇱ, tᇱ)

|𝐫 − 𝐫ᇱ|
𝑑𝐫′

.

୚

  ,                                    (3.2) 

where 𝐉(𝐫ᇱ, 𝑡′) is the current density of the source. |𝐫 − 𝐫ᇱ| is the distance between the 
source 𝐫  and the observation point 𝐫ᇱ ; and ϵ଴  is the vacuum permittivity. The factor 
𝑡ᇱ = 𝑡 − |𝐫 − 𝐫ᇱ|/𝑐 refers to the fact that the field propagates with a finite velocity c. This 
retarded vector potential gives us the electric field 𝐄 and the magnetic field 𝐁 by the 
following equations: 

𝐄 = −∇−
∂𝐀

∂t
       and                                                 (3.3a) 

𝐁 = ∇ × 𝐀  .                                                                  (3.3b) 

As the electron is considered free, the electric potential  = 0and 𝐄 and 𝐁 depend only on 
the vector potential 𝐀. Using the dipole approximation [37], 𝐫 ≫ 𝐫ᇱ, and evaluating the 
integral in  Eq. 3.2, the retarded vector potential becomes proportional to the derivative of 
the electric dipole moment, and equation 3.2 becomes 

𝐀(𝐫, 𝑡) ≈
1

4πϵ଴𝑐ଶr
𝐩̇(𝑡ᇱ)  .                                                 (3.4) 

Where 𝐩̇(𝑡ᇱ) is the derivative of the dipole moment at the retarded time 𝑡ᇱ. Using Eq. 3.3b 
and considering that we are only interested in the case of larger distances r (the 1/r2 term 
can be neglected), 𝐁 will be expressed by 

𝐁 ≈ ൬
1

4πϵ଴𝑐ଶ
൰

1

𝑐r
𝐩̈(𝑡ᇱ) × 𝐫ො  .                                             (3.5) 

Where 𝐩̈(𝑡ᇱ) is the second derivative of the dipole moment at the retarded time 𝑡ᇱ. The 
numerical value of the vector product in Eq. 3.5 is p̈cos, with  shown in Figure 3.3a. The 
modulus of the amplitude of electromagnetic waves is given by the relation |𝐄| = 𝑐|𝐁|. The 
electric field is then 

E(t) = ൬
1

4πϵ଴𝑐ଶ
൰

1

r
p̈(𝑡ᇱ)cos𝜓                                           (3.6) 

and evaluating p̈: 

p̈(𝑡ᇱ) = 𝑞z̈ = 𝑞
𝑞E୧୬

𝑚
=

𝑞ଶ

𝑚
E଴eି୧(୲ି୰/ୡ)  . 
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Where z̈ is the acceleration of the wave, E୧୬ is the incident electric field, 𝑚 the mass of the 
electron and 𝑞 its charge. Finally, the electric field of the radiated wave can be written as 

E(𝑡) = −𝑟଴ ቆ
e୧୩୰

r
ቇ ൫E଴e୧୲൯cos𝜓  ,                                      (3.7) 

where, 𝑟଴ = 𝑒ଶ/4πϵ଴𝑚𝑐ଶ is called Thomson scattering length and cos 𝜓 = |𝛆ො ∙ 𝛆ොᇱ| is related 
to the different polarization of the incident and scattering waves (see Figure 3.3b). The 
e୧୩୰/r factor represents the spherical radiated wave and the E଴e୧୲ factor represents the 
incident plane wave. The scattering amplitude depends on the position of the detector. As 
can be seen in Figure 3.3b, if the detector is positioned along the y-axis, the cos 𝜓 = 0 and 
there is no signal at the detector. For the case of a synchrotron source, where a diffraction 
experiment is performed along the vertical scattering plane, cos 𝜓 = 1. 

 

Figure 3.3: a) An electromagnetic plane wave polarized with its electric field along the z axis forces a 
dipole at the origin to oscillate and generates a radiated wave. b) The scalar product between 

incident and radiated waves is alsocos𝜓. 

 

The intensity of the scattered wave is proportional to |𝐄|ଶ. Looking at Equation 3.7, 
one obtains the amplitude of the radiated wave is a constant in a given distance and does 
not depend on the energy. This result is relevant to X-rays, where the photons are energetic 
enough that even atomic electrons can be approximated as free. This breaks down entirely 
at low energies in the optical part of the electromagnetic spectrum [36]. 
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3.2 Scattering by an atom 

 

 As discussed before, the scattering of an atom can be understood as the sum of the 
scattering of all electrons in the atom. The interactions of the nucleus and the X-rays can be 
neglected due to their higher mass. Instead of considering the electrons in the atom as 
punctual charges, one can introduce a charge density distribution. 

 Looking at Eq. 3.7 for the amplitude of the radiated wave, the difference is that, 
instead of one electron, we have now the sum of the scattering of all electrons. This sum can 
be written as an integral over the charge density. One obtains a similar equation, except that 
the Thomson scattering length 𝑟଴ is replaced by the atomic form factor: 

r଴𝑓଴(𝐐) = r଴ න 𝜌(𝐫)e୧𝐐∙𝐫d𝐫  .                                          (3.8) 

Where 𝜌(𝐫) is the charge density of the atom and 𝐐will be discussed below. Eq. 3.8 has a 
e୧𝐐∙𝐫 term which differs from the integral of the total charge of the atom. This is because 
different volume elements d𝐫 of the charge density interact with the X-rays with different 
phases, as shown in Figure3.4. The same phenomenon occurs with the scattered waves. 

 

 
Figure 3.4: Scattering from an atom. An X-ray with a wavevector k scatters from an atom in the 

direction specified by k'. 

 

 The phase difference between a volume element at the origin and one at a distance 𝐫 
is 

οφ(𝐫) = (𝐤 − 𝐤ᇱ) ∙ 𝐫 = 𝐐 ∙ 𝐫  ,                                           (3.9) 
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where 𝐐 = 𝐤 − 𝐤ᇱ is known as the scattering vector. The scattering length of an atom is the 
sum of the scattering lengths of all volume elements of the charge density, 𝜌(𝐫)d𝐫, each one 
with a phase factor e୧𝐐∙𝐫 as shown in Eq. 3.8. 𝑓଴(𝐐), the atomic form factor (AFF) represents 
the contribution of all electrons in the atom. In the limit case where all volume elements 
scatter in phase, 𝑓଴(𝐐 → 0) = 𝑍, and the total scattering amplitude is the sum of the 
amplitudes of all electrons. 

 

3.3 Scattering by crystals 

 

 The scattering of a crystal by X-rays is the sum of the scattering amplitudes of all 
atoms in it. The calculation is simple if one treats the atoms in the crystal in a coordinate 
representation, the crystal lattice. First, we start choosing a unit cell, the cell which is 
repeated over the entire crystal. A given atom can be represented by the coordinates of two 
vectors: 

𝐑௡ = 𝑛ଵ𝐚ଵ + 𝑛ଶ𝐚ଶ + 𝑛ଷ𝐚ଷ                                     (3.10) 

and 

𝐫௝ = 𝑥௝𝐚ଵ + 𝑦௝𝐚ଶ + 𝑧௝𝐚ଷ   .                                            (3.11) 

The first vector, 𝐑௡, gives the position of the unit cell, related to all cells of the crystal, with 
the integer numbers 𝑛ଵ, 𝑛ଶ, 𝑛ଷ labeling the cell. The second one, 𝐫௝, gives the position of the 
j-atom inside the chosen cell. Figure 3.5 shows an example of the crystal lattice coordinate 
system in a two-dimensional crystal. 

 
Figure 3.5: Example of a crystal lattice. The highlighted atom has the lattice coordinates 𝐑௡ = 2𝐚ଵ +

2𝐚ଶ and 𝐫௝ = 0.5𝐚ଵ + 0.5𝐚ଶ. 
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The scattering amplitude of the crystal, as said before, is the sum over all atoms. 
Using the lattice coordinate system, this sum can be expressed by  

𝐹ୡ୰୷ୱ୲ୟ୪(𝐐) = ෍ 𝑓௝(𝐐)e௜𝐐∙𝐫ೕ

௝

ᇩᇭᇭᇭᇪᇭᇭᇭᇫ

୙୬୧୲ ୡୣ୪୪
ୱ୲୰୳ୡ୲୳୰ୣ୤ୟୡ୲୭୰

෍ e௜𝐐∙𝐑೙

௡

ᇩᇭᇭᇪᇭᇭᇫ
୊୭୰୫ ୊ୟୡ୲୭୰

  .                                 (3.12) 

The sum can be factorized in two terms. The first one, related to the unit cell, is called the 
structure factor. The second one, related to the crystal itself and being the sum of all cells of 
the crystal, is called lattice sum or form factor.  

The form factor is a sum composed by phase factors, in a unitary circle of the complex plane. 
The entire sum is finite only if the scattering vector follows  

𝐐 ∙ 𝐑௡ = 2𝜋 × integer  .                                            (3.13) 

In this case, the sum is of order 𝑁, the number of cells in the crystal. The solution to Eq.3.13 
in a general three-dimensional crystal is found using the reciprocal lattice [11]. The 
representation of a lattice site in reciprocal space is given by 

𝐆 = ℎ𝐛ଵ + 𝑘𝐛ଶ + 𝑙𝐛ଷ  ,                                             (3.14) 

where ℎ, 𝑘, 𝑙 are all integers. The inner product of vector 𝐆 and the real lattice vector 𝐑௡ is 

𝐆 ∙ 𝐑௡ = 2𝜋(ℎ𝑛ଵ + knଶ + lnଷ) = 2𝜋 × integer  .                   (3.15) 

So, analyzing Eq. 3.13 and Eq. 3.15, we have: 

𝐐 = 𝐆  .                                                                  (3.16) 

Equation 3.16 is known as the Laue condition and is equivalent to Bragg’s Law 𝑛𝜆 = 2𝑑sen𝜃. 
The lattice sum is non-vanishing if and only if 𝐐 coincides with a reciprocal lattice vector. In 
other terms, the scattering intensity will be finite in integer reciprocal lattice points of the 
crystal, called diffraction points. 

In this section it was assumed that the interaction between X-rays and the crystal is 
weak, not allowing the X-ray beam to be scattered for a second or third time before it leaves 
the crystal. This assumption leads to considerable simplicity and it is known as the 
kinematical approximation [36]. 

The next two sections of this chapter we present discuss the Form Factor and the 
unit cell Structure Factor. 
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3.4 Form Factor in three dimensions 

 

 In this section we will perform the calculation of the Form Factor for a three 
dimensional finite crystal. Separating the sum in Eq. 3.12, we have the lattice sum: 

 

𝐹ே(𝐐) = ෍ e௜𝐐∙𝐑೙

ேିଵ

௡ୀ଴

= ෍ ෍ ෍ e௜𝐐∙𝐑೙

ேయିଵ

௡యୀ଴

ேమିଵ

௡మୀ଴

ேభିଵ

௡భୀ଴

= ෍ ෍ ෍ e௜𝐐∙(௡భ𝐚భା௡మ𝐚మା௡య𝐚య)

ேయିଵ

௡యୀ଴

ேమିଵ

௡మୀ଴

ேభିଵ

௡భୀ଴

 

𝐹ே(𝐐) = ෍ e௜௡భ𝐐∙𝐚భ

ேభିଵ

௡భୀ଴

෍ e௜௡మ𝐐∙𝐚భ

ேమିଵ

௡మୀ଴

෍ e௜௡య𝐐∙𝐚భ

ேయିଵ

௡యୀ଴

 

 

Then, evaluating the sums: 

𝐹ே(𝐐) =
e௜ேభ𝐐∙𝐚భ − 1

e௜𝐐∙𝐚భ − 1

e௜ேమ𝐐∙𝐚మ − 1

e௜𝐐∙𝐚మ − 1

e௜ேయ𝐐∙𝐚య − 1

e௜𝐐∙𝐚య − 1
 

= e௜ேభ𝐐∙𝐚భ/ଶ
e௜ேభ𝐐∙𝐚భ − e௜ேభ𝐐∙𝐚భ

e௜𝐐∙𝐚భ − e௜ேభ𝐐∙𝐚భ
e௜ேభ𝐐∙𝐚భ/ଶ

e௜ேమ𝐐∙𝐚మ − e௜ேమ𝐐∙𝐚మ

e௜𝐐∙𝐚మ − e௜ேమ𝐐∙𝐚మ
e௜ேభ𝐐∙𝐚భ/ଶ

e௜ேయ𝐐∙𝐚య − e௜ேయ𝐐∙𝐚య

e௜𝐐∙𝐚య − e௜ேయ𝐐∙𝐚య
 

𝐹ே(𝐐) = e௜𝐐∙(ேభ𝐚భାேమ𝐚మାேయ𝐚య)/ଶ
sin (𝑁ଵ𝐐 ∙ 𝐚ଵ)

sin (𝐐 ∙ 𝐚ଵ)

sin (𝑁ଶ𝐐 ∙ 𝐚ଶ)

sin (𝐐 ∙ 𝐚ଶ)

sin (𝑁ଷ𝐐 ∙ 𝐚ଷ)

sin (𝐐 ∙ 𝐚ଷ)
 

 

The intensity of the scattered beam is related to the square of the electric field. The first 
term is just a phase and the modulus of the Lattice sum is 

|𝐹ே(𝐐)| = ቤ
sin (𝑁ଵ𝐐 ∙ 𝐚ଵ)

sin (𝐐 ∙ 𝐚ଵ)

sin (𝑁ଶ𝐐 ∙ 𝐚ଶ)

sin (𝐐 ∙ 𝐚ଶ)

sin (𝑁ଷ𝐐 ∙ 𝐚ଷ)

sin (𝐐 ∙ 𝐚ଷ)
ቤ  .            (3.17) 

 

As can be seen in Figure3.6, the value of |𝐹ே(𝐐)|ଶ has a maximum at multiples of π and it is 
almost zero otherwise. So, for large values of N, Eq. 3.17 becomes a Dirac delta function: 

|𝐹ே(𝐐)|ଶ ≈ ෍ 𝛿(𝐐 − 𝑮)

𝐆

  .                                       (3.18) 
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Figure 3.6: Graphic representation of the function ቚୱ୧୬ (ேభ𝐐∙𝐚)

ୱ୧୬ (𝐐∙𝐚)
ቚ

ଶ
 for a given 𝐐 and lattice parameter 𝐚. 

When N becomes very large; the function becomes a Dirac delta function. 

 

3.5 Unit cell Structure Factor 

 

 An example of calculation of the structure factor can be given for a face-centered 
cubic (FCC) crystal, with one of the simplest unit cells. Four vectors define all atoms on the 
unit cell of an FCC crystal. They are: 

𝐫ଵ = 0 , 𝐫ଶ =
1

2
(𝐚ଵ + 𝐚ଶ) , 𝐫ଷ =  

1

2
(𝐚ଶ + 𝐚ଷ)  , 𝐫ସ =  

1

2
(𝐚ଵ + 𝐚ଷ)  . 

Our example of unit cell has atoms of the same type. Evaluating the first term of Eq. 3.12 in 
the Laue condition: 

𝑆୤ୡୡ(𝐐 = 𝐆) = ෍ 𝑓௝(𝐆)e௜𝐆∙𝐫ೕ

ସ

௝ୀଵ

= 𝑓ଵ(𝐆)e௜𝐆∙𝐫భ + 𝑓ଶ(𝐆)e௜𝐆∙𝐫మ + 𝑓ଷ(𝐐)e௜𝐆∙𝐫య + 𝑓ସ(𝐐)e௜𝐆∙𝐫ర  

𝑆୤ୡୡ(𝐆) = 𝑓ଵ(𝐆) + 𝑓ଶ(𝐆)e௜గ(௛ା௞) + 𝑓ଷ(𝐆)e௜గ(௛ା௟) + 𝑓ସ(𝐆)e௜గ(௞ା௟) 

𝑆୤ୡୡ(𝐆) = 𝑓ଵ(𝐆)(1 + e௜గ(௛ା௞) + e௜గ(௛ା௟) + e௜గ(௞ା௟)) 

𝑆୤ୡୡ(𝐆) = 𝑓ଵ(𝐆) × ቄ
4 if h, k, l are all even or all odd
0 otherwise.

 

The fact that 𝐹୤ୡୡ(𝐆) is zero for some ℎ, 𝑘, 𝑙 leads to forbidden reflections for the crystal. As 
an example, the (1,0,0) reflection, which is the shortest reciprocal lattice vector, has a 
vanishing structure factor, since ℎ is odd, but 𝑘 and 𝑙 are even. For different types of lattices, 
we will have different selection rules. For a trigonal lattice, which is the case of our sample; 
the permitted reflections are the ones whose 2h + k + l = 3n, where n is an integer.  
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 So, the X-ray scattering intensity for a real crystal is composed of these two sums, the 
form factor reflects the size and shape of the crystal yielding the width and shape the 
diffraction peaks and their measured intensity. The structure factor reflects the type of 
crystal, its symmetries, determining which peaks will appear in a diffractogram with a given 
intensity. 

 

3.6 Crystal Truncation Rod Scattering 

 

 In section 3.4 it was shown that for an infinite three-dimensional crystal, the Laue 
condition 𝐐 = 𝐆 leads the Form factor into a Dirac delta function. The case of a finite crystal 
is a little different. When one cleaves the crystal a surface is formed. The Laue condition 
does not need to be fully satisfied anymore; there can be intensity even out of the Bragg 
peaks. The cleavage of a crystal allows the appearance of Crystal Truncation Rods Scattering 
(CTRS) in reciprocal space. These Crystal Truncation Rods (CTRs) can be understood as paths 
along reciprocal space where the X-ray intensity is present due to the existence of a 
truncated semi-infinite crystal (see Figure 3.7). 

 
Figure 3.7: Maps in reciprocal space of an infinite (a) and a cleaved (b) crystal. The cleavage in (b) 

produces a surface, leading to streaks of scattering, the crystal truncation rods. 
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 When the X-ray beam strikes a sample, it crosses a specific surface. In the two 
orthogonal directions parallel to the surface the crystal can be considered infinite for 
intensity calculation purposes. In these two directions, the Form factor is still a Dirac Delta 
function. Along the direction normal to the surface one obtains 

𝐹େ୘ୖ = 𝐴(𝐐) ෍ e௜୕೥ୟయ௡

ஶ

௡ୀ଴

=
𝐴(𝐐)

1 − e௜୕೥ୟయ
  ,                                (3.19) 

where 𝐴(𝐐) is the scattering amplitude for a layer of atoms. The intensity distribution along 
the crystal truncation rod is 

𝐼େ୘ୖ = ห𝐹େ୘ୖห
ଶ

=
|𝐴(𝐐)|ଶ

(1 − e௜୕೥ୟయ)(1 − eି௜୕೥ୟయ)
=

|𝐴(𝐐)|ଶ

4sinଶ(Q௭aଷ/2)
  .         (3.20) 

An even more realistic calculation considers the absorption of X-rays. This absorption can be 
modeled using a factor 𝛽, where e- represents the decease of the X-ray beam intensity by 
one atomic layer. The Form factor with the absorption factor is given by 

𝐹େ୘ୖ = 𝐴(𝐐) ෍ e௜୕೥ୟయ௡eିఉ௡

ஶ

௡ୀ଴

=
𝐴(𝐐)

1 − e௜୕೥ୟయeିఉ
                        (3.21) 

and the intensity is 

𝐼େ୘ୖ = ห𝐹େ୘ୖห
ଶ

=
|𝐴(𝐐)|ଶ

(1 − e௜୕೥ୟయeିఉ)(1 − eି௜୕೥ୟయeିఉ)
  .              (3.22) 

In Figure 3.8, we show the effect of absorption in CTR. Analyzing Equations 3.20 and 3.22, 
the first equation (with no absorption) is valid away from the Bragg peaks. The second 
equation is more appropriate for Bragg peaks, where the calculated intensity no longer 
diverges. 

 
Figure 3.8: Graphic representation of the intensity of a crystal truncation rod. The straight blue line 
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represents the case of no absorption, diverging at the Bragg peak. The red dotted line represents the 
case of strong absorption. Normally, 𝛽 is of the order of 10-5. From [36]. 

 With this mathematical treatment for the diffraction phenomena resulting in 
truncation rods, we have the tools to calculate the theoretical expected intensity for our 
sample and compare with our measurements. The experimental setup used in our 
experiment is shown in the next section. 

 

3.7 Experimental Setup 

 

 In Figure3.9 we show a picture of the diffractometer located at Beamline XRD2 of the 
Brazilian Synchrotron Light Laboratory (Laboratório Nacional de Luz Síncroton - LNLS) in 
Campinas/SP, which was used for our experiment. 

  

 
Figure 3.9: A picture of the diffractometer in the XRD2 Beamline at LNLS. 

 

 The X-ray beam, with energy of 10 keV shines a crystal sample at position A, and the 
detector at position B can move along the vertical direction to collect the scattered beam. 
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There are three more degrees of freedom of the sample holder to move and align the 
sample. An example of measured intensity is shown in Figure 3.10. 

 
Figure 3.10: Example of a Crystal Truncation Rod measured by the diffractometer at Beamline XRD2 

of LNLS. The graph shows the 00L CTR for two samples: A pure Bi2Se3 crystal and a Bi2Se3 crystal 
doped with 10% of aluminum. 
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4 - Scanning Tunneling Microscopy and 
Spectroscopy 
 

The Scanning Tunneling Microscope was invented by Gerd Binnig and Heinrich Rohrer 
in 1981. They won the Nobel Prize in 1986 "for their design of the scanning tunneling 
microscope". Scanning Tunneling Microscopy (STM) is based on the quantum phenomenon 
of tunneling. A conducting tip is positioned closed to a conducting sample. If the tip 
approaches the surface, we are able to establish a tunneling current that is controlled by a 
feedback system attached to a computer. 

This invention has become a unique technique to study the surface of materials at 
the atomic level. Today, atomic resolution is usually achieved with this equipment in 
university laboratories. Another important role of this kind of microscopy is that it can 
measure the local density of states of a material, as we will be shown later. 

This chapter is divided in 7 sections: the first one shows the simple model for 
tunneling through a one dimensional square potential; section 2 shows the operation of the 
STM; sections 3 to 5 cover a more precise quantum approach to tunneling phenomena of 
the STM; section 6 covers Scanning Tunneling Spectroscopy (STS) and section 7 shows the 
experimental setup of our experiment. 

 

4.1 Tunneling through a one-dimensional square potential 

 

 One of the most surprising differences between quantum and classical mechanics is 
related to the phenomenon of quantum tunneling. One imagines a particle, an electron for 
example, free in space when it faces a potential barrier. If the electron has less energy than 
the barrier, classically, it cannot pass to the other side. But in quantum mechanics this can 
happen [38]. First, one takes a look at the one-dimensional time-independent Schrödinger 
equation of an electron in a potential 𝑈(𝑥): 

−
ħଶ

2𝑚

𝑑ଶ

𝑑𝑥ଶ
(𝑥) + 𝑈(𝑥)(𝑥) = 𝐸(𝑥)  .                               (4.1) 

Where (𝑥) is the wave function of the electron, ħ is the Planck constant and 𝐸 its energy. 
The potential barrier, represented in Figure 4.1, can be written as 
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𝑈(𝑥) = ൝
0 𝑥 < 0
𝑉଴ 0 < 𝑥 < 𝑎
0 𝑥 > 𝑎

  .                                                 (4.2) 

Where 𝑉଴ is the constant value of the potential and 𝑎 is the width of the barrier. The solution 
of Eq. 4.1 outside the barrier, in the classically allowed region, is 

(𝑥) = (0)e±௜௦௫  ,                                                       (4.3) 

where 𝑠 = √2𝑚𝐸/ħ is the wavevector of the electron. The solution inside the barrier is 
given by 

(𝑥) = (0)eି௞௫                                                        (4.4) 

with 𝑘 = ඥ2𝑚(𝑉଴ − 𝐸)/ħ. Looking at the Eq. 4.4 we note that the wavefunction is non-zero 
inside the potential barrier. The density of probability of finding the electron at some 
position is given by the square modulus of the wavefunction at this position. It is obvious 
that if the electron can be found inside the barrier, it can cross it and can be found on the 
other side. 

 

 
Figure 4.1: Representation of the wavefunction in the three regions. An electron with energy 𝐸 < 𝑉଴ 

placed in the potential 𝑈(𝑥) (black). 

 

 The tunneling phenomenon consists in electrons crossing potential barriers with very 
small thicknesses. One can establish a tunneling current across the barrier by applying a 
voltage between the two sides. An important definition in the tunneling phenomena is the 
relationship between the incident and the transmitted wavefunctions. The transmission 
coefficient is given by 

T ≈
4𝐸(𝑉଴ − 𝐸)

𝑉଴
ଶ eିଶ௞௔  .                                               (4.5) 
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The tunneling current is related to the transmission coefficient. So it deeply depends on 
thickness of the barrier. That dependence is used by the Scanning Tunneling Microscope to 
measure the distance between a conducting tip and the sample separated by a vacuum 
barrier. 

 

4.2 The Scanning Tunneling Microscope 

 

 The Scanning Tunneling Microscope was invented using the concept of tunneling 
described above. It can measure the tunneling current between a tip and a sample 
separated by a vacuum barrier. 

 The basic array of an STM microscope (figure 4.2) is composed by an assembly of an 
electronic feedback system which controls the distance between a tip (normally made of 
Tungsten or a Platinum-Iridium alloy) and the surface of the sample. If one applies a bias 
voltage on the tip, when it reaches a very small distance to the sample, a tunneling current 
appears. This tunneling current exhibits a very strong dependence on the tip-sample 
distance as was shown in equation 4.5. 

 

Figure 4.2: The scanning tunneling microscope. From [39]. 
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 A piezoelectric device attached to the tip enables it to move vertically to control the 
distance to the sample and, of course, the tunneling current (z-direction of figure 4.2). This 
piezoelectric device is connected to the feedback system which is used to maintain the 
current constant. Depending on the current wanted, the piezo-feedback system can keep 
that current by changing the distance between tip and sample. 

 The STM also has two more piezoelectric moving devices (x and y), both 
perpendiculars to the z-direction, which are used to scan the sample. By moving the tip in 
the x and y directions and maintaining the tip-sample distance constant, one can produce a 
two-dimensional map of the topography of sample. In the following sections we will present 
more precise calculations to describe this process. It is also important to say that we need a 
vibration-free environment to use the equipment with success. Sometimes we also want 
ultra-high vacuum (~10-10 mBar) and low temperature (5 K) ambient. These values are easily 
obtained in our laboratory at UFMG. An STM atomic-resolution image done in our laboratory 
is shown in Figure 4.3. 

 

 
Figure 4.3: STM images of highly-oriented pyrolytic graphite obtained at the Nanoscopy Laboratory 

(UFMG). The images were obtained with a current of 900pA and bias voltage of 200mV. 

 

4.3 Landauer Theory of tunneling 

 

 In section 4.1 we presented the tunneling phenomenon in its simplest 
approximation. To explain in more detail the dependence of the tunneling current (or more 
specifically, the tunneling conductance) on the tip-sample distance one needs to recur to the 
Landauer theory [40]. In 1957, Landauer developed a theory about the absolute value of the 
tunneling conductance based on a one-dimensional semi-classical model, and predicted the 
existence of a conductance quantum. 
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Figure 4.4: The two electrodes of Landauer Theory. Sample and tip are described as a perfect one-

dimensional potential well, separately by a potential barrier. The bias voltage between the two 
electrodes is equal to the difference of the Femi levels of them. The tunneling can take place for 

electrons with energy levels between them. 

 

 The two electrodes represent sample and tip, as shown in Figure 4.4. The first 
assumption of Landauer is that the electrodes can be described by a one-dimensional free 
electron gas in an ideal square potential well. If the width of electrode A is 𝑏, then the 
wavefunction and the its energy eigenvalue are respectively given by 

௡(𝑧) = ඨ
2

𝑏
sin

𝑛𝜋𝑧

𝑏
     and                                          (4.6𝑎) 

E =
ħଶ

2𝑚
ቀ

𝑛𝜋

𝑏
ቁ

ଶ

    ,                                                    (4.6𝑏) 

where 𝑛 is an integer. From equation 4.6b one can obtain the density of electrons per unit of 
energy per unit of length 𝜌(𝐸), which is 

𝜌(𝐸) =
2

𝑏

𝜕𝑛

𝜕𝐸
=

2

𝜋ħ𝑣
  ,                                                   (4.7) 

where 𝑣 = ට
ଶா

௠
 is the classical velocity of the electron. The current arriving at the barrier 

junction can be expressed by 

𝐼௜௡ =
1

2
𝑒𝑣𝜌(𝐸ி)ቀ𝐸ி

(஺)
− 𝐸ி

(஻)
ቁ    ,                                   (4.8) 

where 𝑒 is the electron charge, 𝐸ி
(஺) the Fermi level energy on the electrode A and 𝐸ி

(஻) the 

Fermi level energy on the electrode B. Since 𝐸ி
(஺)

− 𝐸ி
(஻)

= 𝑒𝑉, and using the value of 𝜌(𝐸ி) 
from Eq. 4.7, the dependence of 𝐼௜௡on the bias voltage 𝑉 is given by 

𝐼௜௡ =
𝑒ଶ

𝜋ħ
𝑉  .                                                               (4.9) 



43 

 
 

The tunneling current is given by 𝐼௧ = 𝑇𝐼௜௡. The tunneling current is directly proportional to 
the bias voltage, leading to the conductance of the quantum tunneling: 

𝐺 =
𝐼௧

𝑉
= ቆ

𝑒ଶ

𝜋ħ
ቇ 𝑇  .                                                    (4.10) 

Where 𝑒ଶ/𝜋ħ is called the conductance quantum. 

 Landauer theory provides us the direct dependence between the conductance 𝐺 and 
the barrier distance 𝑎, provided by 𝑇. The theory also shows the existence of conductance 
quantum. Both exponential dependence and the conductance quantum are shown in Figure 
4.5. 

 

Figure 4.5: a) A historical experiment to establish the relationship between tunneling conductance 
and tip-sample distance. The exponential dependence I(V) was observed over 4 orders of magnitude. 

From [41]. b) Statistical results of experimental observation of conductance quantum. From [42]. 

 

4.4 Barden Theory 

 

 The theory of Landauer by itself gives us the tip-sample dependence of the tunneling 
current. This theory does not explain entirely the effect of scanning tunneling microscopy, 
which depends on the relationship between the tunneling conductance and the density of 
states of both sample and tip. The theory developed by Bardeen [43] can provide 
spectroscopic information about the density of states, deriving a more detailed equation for 
the tunneling current. 
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 Imagine two electrodes far away from each other as shown in Figure 4.6a. Bardeen 
solved the Schrodinger equation for the two regions separately. When the electrodes 
approach each other, tunneling takes place. He used perturbation theory to determine the 
tunneling by the two electrodes wavefunctions. 

 

Figure 4.6: The Bardeen tunneling theory in 1D. a) Considering the two electrodes far from each 
other, wavefunctions decay into the vacuum. b) Bringing them together, the tunneling takes place. 

 

If the two electrodes are far away from each other, the wavefunction on electrode A 
is described by the Schrodinger equation: 

𝑖ħ
𝜕𝚿

𝜕𝑡
= ቈ−

ħଶ

2𝑚

𝜕ଶ

𝜕𝑧ଶ
+ 𝑈஺቉ 𝚿  ,                                          (4.11) 

where 𝑈஺  is the potential in electrode A and 𝚿  depends on both spatial and time 
coordinates. Considering the potential independent of time, equation 4.11 becomes the 
time-independent Schrodinger equation 

𝐸ఓ𝜓ఓ = ቈ−
ħଶ

2𝑚

𝜕ଶ

𝜕𝑧ଶ
+ 𝑈஺቉ 𝜓ఓ                                           (4.12) 

with 𝚿 =  𝜓ఓeି௜ாഋ௧/ħ, where 𝜓ఓ only depend on the spatial coordinate and 𝐸ఓ is this wave 
function energy. For the electrode B, similar equations like in 4.11 and 4.12 can be derived 
with potential UB: 

𝑖ħ
𝜕𝚿

𝜕𝑡
= ቈ−

ħଶ

2𝑚

𝜕ଶ

𝜕𝑧ଶ
+ 𝑈஻቉ 𝚿                                            (4.13) 

and 

𝐸ఔ𝜓ఓ = ቈ−
ħଶ

2𝑚

𝜕ଶ

𝜕𝑧ଶ
+ 𝑈஻቉ 𝜒ఔ      .                                    (4.14) 
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with 𝚿 =  𝜒ఔeି௜ாഌ௧/ħ, where 𝜒ఔ only depends on the spatial coordinate and 𝐸ఔ is this wave 
function energy. When the two electrodes approach each other, the Schrodinger equation of 
the new system will be 

𝑖ħ
𝜕𝚿

𝜕𝑡
= ቈ−

ħଶ

2𝑚

𝜕ଶ

𝜕𝑧ଶ
+ 𝑈஺ + 𝑈஻቉ 𝚿   .                              (4.15) 

The first assumption made by Bardeen was that for the new system, the states on the 
electrode A will evolve differently from equation 4.11. Bardeen assumed that the 
wavefunctions calculated by Eq. 4.11 have a probability of transferring to the electrode B as 
given by 

𝚿 = 𝜓ఓeି௜ாഋ௧/ħ + ෍ 𝑐ఔ(𝑡)𝜒ఔeି௜ாഌ௧/ħ

ஶ

ఔୀଵ

  ,                              (4.16) 

where 𝑐ఔ(𝑡) are the coefficients to be determined by equation 4.15 and 𝑐ఔ(0) = 0. The 
basic assumption in Bardeen theory is that these two states are approximately orthogonal, 

න 𝜓ఓ
∗ 𝜒ఔ𝑑ଷ𝐫 ≅ 0  .                                                    (4.17) 

Equation 4.16 is still normalized since 𝑐ఔ(𝑡) is infinitesimal for any 𝜈. Combining equation 
4.15 and 4.16 one obtains 

𝑖ħ ෍
𝑑𝑐ఔ(𝑡)

𝑑𝑡
𝜒ఔeି௜ாഌ௧/ħ

ஶ

ఔୀଵ

= 𝑈஻𝜓ఓeି௜ாഋ௧/ħ + 𝑈஺ ෍ 𝑐ఔ(𝑡)𝜒ఔeି௜ாഌ௧/ħ

ஶ

ఔୀଵ

  .    (4.18) 

The second term in the right-hand side of equation 4.18 is a second order perturbation, so 
we can approximate equation 4.18 to 

𝑖ħ
𝑑𝑐ఔ(𝑡)

𝑑𝑡
= න 𝜓ఓ𝑈஻𝜒ఔ

∗𝑑ଷ𝐫 eି௜൫ாഋିாഌ൯௧/ħ

.

௭வ௭బ

  .                         (4.19) 

This integral can be evaluated only in the region 𝑧 > 𝑧଴ because 𝑈஻ is zero otherwise. This 
defines the tunneling matrix element as 

𝑀ఓఔ = න 𝜓ఓ𝑈஻𝜒ఔ
∗𝑑ଷ𝐫

.

௭வ௭బ

  .                                             (4.20) 

Integrating equation 4.19 one obtains  

𝑐ఔ(𝑡) = 𝑀ఓఔ

 eି௜൫ாഋିாഌ൯௧/ħ − 1

𝐸ఓ − 𝐸ఔ
  .                                      (4.21) 
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Starting from the 𝜇-state on the electrode A, the probability of having the 𝜈-state of the 
electrode B at time t is given by 

𝑝ఓఔ(𝑡) = |𝑐ఔ(𝑡)|ଶ = ห𝑀ఓఔห
ଶ 4sinଶ[൫𝐸ఓ − 𝐸ఔ൯𝑡/2ħ]

(𝐸ఓ − 𝐸ఔ)ଶ
  .                (4.22) 

One can define function 𝑓(𝑡) as  

𝑓(𝑡) =
4sinଶ[൫𝐸ఓ − 𝐸ఔ൯𝑡/2ħ]

(𝐸ఓ − 𝐸ఔ)ଶ
  .                                       (4.23) 

This function has a maximum for 𝐸ఓ = 𝐸ఔ and becomes zero rapidly for 𝐸ఓ ≠ 𝐸ఔ. This leads 
to the condition of elastic tunneling. The tunneling current depends on how many states in 
electrode A can tunnel into the electrode B. The total probability is calculated integrating 
equation 4.22 over all energies and using the concept of density of states, 𝜌(𝐸), i.e. the 
density of states that exist in the electrode with energy 𝐸, resulting in  

𝑃ఓఔ(𝑡) =
2𝜋

ħ
ห𝑀ఓఔห

ଶ
𝜌஻൫𝐸ఓ൯𝑡  .                                          (4.24) 

The tunneling current is related to the number of available states given by the 
density of states on A and the interval of energies between the two electrodes. If the density 
of states of both electrodes does not vary appreciably near the Fermi level:  

𝐼 =
4𝜋𝑒ଶ

ħ
ห𝑀ఓఔห

ଶ
𝜌஺൫𝐸ఓ൯𝜌஻൫𝐸ఓ൯𝑉  .                                  (4.25) 

This is the Bardeen formula for the tunneling current which also leads to the tunneling 
conductance. 𝑀ఓఔ can be evaluated using equations 4.12 and 4.14, and it only depends on 
the wavefunctions 𝜓ఓ and 𝜒ఔ: 

𝑀ఓఔ =
ħଶ

2𝑚
න ൤𝜓ఓ

𝜕𝜒ఔ
∗

𝜕𝑧
− 𝜒ఔ

∗
𝜕𝜓ఓ

𝜕𝑧
൨ 𝑑𝑥𝑑𝑦

.

௭ୀ௭బ

 .                           (4.26) 

If we are more interested in a spectroscopy study, i.e., the dependence of the tunneling 
current 𝐼 on the bias voltage 𝑉, it is necessary to modify equation 4.25. The more general 
case gives 

𝐼 =
4𝜋𝑒ଶ

ħ
න [𝑓(𝐸ி − 𝑒𝑉 + 𝜖) − 𝑓(𝐸ி + 𝜖)]𝜌஺(𝐸ி − 𝑒𝑉 + 𝜖)𝜌஻(𝐸ி + 𝜖)|𝑀|ଶ𝑑𝜖

ஶ

ିஶ

 , (4.27) 

where 𝑓(𝐸) is the Fermi distribution function. If 𝑘஻𝑇 is smaller than the energy resolution 
required for the experiment, equation 4.27 becomes 

𝐼 =
4𝜋𝑒ଶ

ħ
න 𝜌஺(𝐸ி − 𝑒𝑉 + 𝜖)𝜌஻(𝐸ி + 𝜖)|𝑀|ଶ𝑑𝜖

௘௏

଴

  .                   (4.28) 
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That is the general formula for the tunneling current by the Bardeen theory.  In next section 
we have a model to calculate the density of states of the tip and the sample, relating them 
to the Spectroscopy experiment, called the Tersoff-Hamann model. 

 

4.5 Tersoff-Hamann Model 

 

 Using Bardeen Theory, Tersoff and Hamann formulated a model to calculate the 
wavefunctions of the tip and sample in an STM [44]. The tip can be represented by a 
spherically symmetric object and the sample by a plane, as shown in Figure 4.7. The sample 
is at 𝑧 = 0, and the tip has a center of curvature in 𝐫଴ = (0,0, 𝑧଴). The Schrodinger equation 
in the region between the tip and the sample is valid for the two wavefunctions and it is 

−
ħଶ

2𝑚
∇ଶ𝜓(𝐫) = 𝜑𝜓(𝐫)  ,                                                (4.29) 

where 𝜑 is the work function of the sample. Using 𝐾 = ඥ2𝑚𝜑/ħ, it becomes 

∇ଶ𝜓(𝐫) = 𝐾ଶ𝜓(𝐫)  .                                                   (4.30) 

For the sample wavefunction, it can be resolved by a two-dimensional Fourier expansion,  

𝜓(𝐫) = න 𝑑ଶ𝐪𝑓(𝐪) eିඥ𝐪మା௞మ௭ା௜𝐪∙𝐱  ,                                    (4.31) 

where 𝒙 = (𝑥, 𝑦) and 𝑓(𝒒) are the coefficients of the Fourier components of the sample 
surface at 𝑧 = 0. 

 

 
Figure 4.7: The Tersoff-Hamann model of the STM. The tip is modeled as a locally spherical object 

with a radius of curvature 𝑅 centered at r0. 
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For the tip wavefunction, the assumption is that it is spherically symmetric, so 
equation 4.30 becomes 

1

𝑟

𝑑ଶ

𝑑𝑟ଶ
[𝑟𝜒(𝑟)] = 𝑘ଶ𝜒(𝑟)  .                                          (4.32) 

Up to a constant, in the region of z < z଴, the Fourier transform of the solution will be 

𝜒(𝑟) =
1

2𝜋
න 𝑑ଶ𝐩

eିඥ𝐩మା௞మ(௭ି௭బ)ା௜𝐩∙𝐱

ඥ𝐩ଶ + 𝑘ଶ
  .                             (4.33) 

Using equations 4.31 and 4.33 in equation Eq. 4.26 to calculate the value of M one obtains 

𝑀 =
ħଶ

2𝜋𝑚
න 𝑑ଶ𝐪𝑓(𝐪) eିඥ𝐪మା௞మ௭బ = 𝜓(𝐫଴)  .                               (4.34) 

The integral values𝜓(𝐫଴), so in the Tersoff-Hamann model, 𝑀 is directly proportional to the 
value of the sample wavefunction in the center of curvature 𝐫଴ of the tip. 

 Now one can calculate the tunneling current. To do this, one considers four 
conditions: 

1. The tip state is spherically symmetric; 
2. The tunneling matrix element does not depend on any energy level; 
3. The tip density of states is a constant over the energy interval of interest; and 
4. The sample density of states does not vary appreciably in the interval of energy of 

kBT. 

So, starting from equation 4.28 which already considers (4): 

𝐼 =
4𝜋𝑒ଶ

ħ
න 𝜌்(𝐸ி − 𝑒𝑉 + 𝜖)𝜌ௌ(𝐸ி + 𝜖)|𝑀|ଶ𝑑𝜖

௘௏

଴

 

and using (2) and (3), we have: 

𝐼 =
4𝜋𝑒ଶ

ħ
𝜌்|𝑀|ଶ න 𝜌ௌ(𝐸ி + 𝜖)𝑑𝜖

௘௏

଴

 .                                  (4.35) 

Using (1), 𝑀 = 𝜓(𝐫଴), so 

𝐼 =
4𝜋𝑒ଶ

ħ
𝜌்|𝜓(𝐫଴)|ଶ න 𝜌ௌ(𝐸ி + 𝜖)𝑑𝜖

௘௏

଴

  .                             (4.36) 

Now we can define |𝜓(𝐫଴)|ଶ𝜌ௌ(𝐸) as the local electronic density of states of the sample at 
the energy level 𝐸 at the center of curvature of the tip: 
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𝜌ௌ(𝐸, 𝐫଴) = |𝜓(𝐫଴)|ଶ𝜌ௌ(𝐸)  .                                          (4.37) 

So equation4.36 becomes 

𝐼 =
4𝜋𝑒ଶ

ħ
𝜌் න 𝜌ௌ(𝐸ி + 𝜖, 𝐫଴)𝑑𝜖

௘௏

଴

  .                                    (4.38) 

Differentiating eq. 4.38 one obtains the tunneling conductance, which is directly 
proportional to the local electronic density of states: 

𝐺 =
𝑑𝐼

𝑑𝑉
∝ 𝜌ௌ(𝐸ி + 𝑒𝑉, 𝐫଴)  .                                             (4.39) 

This is the reason Scanning Tunneling Spectroscopy is such a powerful technique. 
Maintaining a constant tip-sample distance and measuring the tunneling current for 
different values of the tip voltage, one obtains information about the local electronic density 
of states of the surface of the sample. It is necessary to observe the 4 assumptions made 
above. (1) and (3) are obtained by a good preparation of the tip. (2) is an assumption about 
the STM theory and is often valid for most case. But for have a reliable measurement, (4) is 
obtained by working at low-temperatures to decrease kBT. 

 

4.6 Scanning Tunneling Spectroscopy with a Lock-In Amplifier 

 

 By turning down the electronic feedback, the STM can keep the tip-sample distance 
constant (if there is no vibration and thermal drift of the experimental setup). By varying the 
bias voltage between tip and sample one is able to measure the variation of the tunneling 
current. As seen in the previous section, the derivative 𝑑𝐼/𝑑𝑉 can gives us the Local Density 
of States of the sample (Eq. 4.39). 

 One way to acquire this 𝑑𝐼/𝑑𝑉 curve is to simply differentiate the 𝐼(𝑉) curve in a 
numerical procedure. This kind of approach is not desirable because the produced 𝐼(𝑉) 
curve is not a continuous set of acquired values. The tip measures the current for a value of 
voltage and then changes this voltage and measures the current again, resulting in a discrete 
measurement. This gives us non-desirable variations in the 𝑑𝐼/𝑑𝑉 curve, due to possible 
movements of the tip with respect to the surface. To suppress this difficulty one can use a 
Lock-In Amplifier which gives us the continuum derivative of the curve with the bonus of 
suppressed noise. 

 A Lock-In Amplifier is nothing more than an AC Voltmeter where one measures just 
the AC component in a given frequency and a given phase, suppressing all other signals one 
may have. A scheme of the Lock-In Amplifier is shown in Figure 4.8. 
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Figure 4.8: Block diagram of a phase sensitive Lock-In Amplifier. The input signal 𝑉(𝑡)  passes 
through a capacitor, blocking any pre-existing DC offset, and is then amplified (A). The reference 

signal 𝑉ோ(𝑡) passes through an adjustable phase-shifter (φ). These two results are then multiplied 
(X), and any resulting DC component is extracted by the low-pass (L.P.) filter. 

 

Consider a sinusoidal signal which will be the input of our amplifier 

𝑉(𝑡) = 𝑉଴ sin(𝜔𝑡 + 𝜑) .                                                  (4.40) 

Suppose that we have available a reference signal 

𝑉ோ(𝑡) = sin(Ω𝑡) .                                                          (4.41) 

What a Lock-In Amplifier does is to multiply these two signals resulting in  

𝑉(𝑡)𝑉ோ(𝑡) =
𝑉଴

2
{cos[(𝜔 − Ω)𝑡 + 𝜑] − cos[(𝜔 + Ω)𝑡 + 𝜑]}  .             (4.42) 

When 𝜔 ≠ Ω this product oscillates in time with an average value of zero (zero DC 
component), but if 𝜔 = Ω, it has a DC component 

𝑉(𝑡)𝑉ோ(𝑡) =
𝑉଴

2
{cos[𝜑] − cos[2Ω𝑡 + 𝜑]}  .                              (4.43) 

 If we are able to extract just the DC component of the output signal and adjusting 
cos𝜑 to reach its maximum value one can have a direct measurement of 𝑉଴. The Lock-In 
amplifier technique is good because the output signal rejects the noises in a frequency 
different from that of the reference. A schematic of the STS experiment is shown in Figure 
4.9. 
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Figure 4.9: Schematic of the STS experiment with Lock-In Amplifier. A sinusoidal signal is added to the 

bias voltage V of the STM, the measured current 𝐼(𝑉) enters the Lock-In Amplifier and the output 
signal from the Lock-In represents the dI/dV value. 

 

 Looking at the Scanning Tunneling Spectroscopy problem, let us add a sinusoidal 
signal to the tip voltage, so 𝐼(𝑉) becomes 

𝐼(𝑉) =  𝐼[𝑉 + 𝐴sin(Ω𝑡 + 𝜑)]  .                                        (4.44) 

The tip voltage is now composed of a DC component (the bias voltage given by the STM) and 
an AC component we have added. The tunneling current will also have a DC and an AC 
component. If the amplitude of the signal added is too small when compared to the bias 
voltage, we can expand 𝐼(𝑉) into a Taylor series 

𝐼(𝑉) =  𝐼(𝑉ത) + ൬
𝑑𝐼

𝑑𝑉
൰

௏ഥ
𝐴sin(Ω𝑡 + 𝜑) + 𝑂(𝐴ଶ)  .                  (4.45) 

Running this through the lock-in amplifier gives an output of 

𝑉௢௨௧ ≈  
𝐴

√2
൬

𝑑𝐼

𝑑𝑉
൰

௏ഥ
cos𝜑  .                                               (4.46) 

In other words, the output signal given by the Lock-in Amplifier is the derivative of the 𝐼(𝑉) 
curve, proportional to the local density of states itself. In Figure 4.10, we show the difference 
between the 𝑑𝐼/𝑑𝑉 curves acquire within and without the Lock-in method. 
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Figure 4.10: (a) 𝑑𝐼/𝑑𝑉 curve of the topological insulator Bi2Se3 acquired with a Lock-in Amplifier. (b) 
𝑑𝐼/𝑑𝑉 acquired by differentiating the 𝐼(𝑉) curve with a numerical process. The lock-in process does 

not directly provide the tunneling conductance, but it suppresses most of the noise in it. 

 

 One final issue that we need to consider is due to the fact that the current varies 
dramatically with the tip-sample distance 

𝐼 = 𝐼଴eିଶ௞௭ 

This gives us different spectra for different distances when we measure the STS spectra. To 
circumvent this problem, we introduce a normalization to the tunneling conductance, as 
proposed by Feenstra et al [45], the normalized dynamic conductance 

𝑔ே(𝑉) ≡
𝑑𝐼/𝑑𝑉

𝐼/𝑉തതതതത
  .                                                    (4.47) 

When necessary the normalized conductance may be shown instead of 𝑑𝐼/𝑑𝑉. 

 

4.7 Experimental Setup 

 

 The Scanning Tunneling Microscope used in our experiment is a Variable 
Temperature VT-STM manufactured by Omicron GmbH and located at the UHV Nanoscopy 
Laboratory at UFMG (Figure 4.11). The system has a vibration-isolation system (A) to 
suppress the mechanical vibrations on the building. The STM images were obtained in a 
vacuum chamber (B) pressure better than 1 x 10-10mBar. The STS measurements were 
performed at 25K using a liquid helium transfer system (C) as shown in the figure below. 
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Figure 4.11:  STM microscope at the UHV Nanoscopy Laboratory (UFMG). (A) The vibration-isolation 

system; (B) The vacuum chamber; (C) The narrow indicates the liquid helium transfer input. 
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5 - Results and Discussions 
 

 The STM technique combined with X-Ray Diffraction experiments, provide a 
complete set of information that covers the electronic and structural properties of 
conducting samples. Crystal Truncation Rods (CTRs) can be used to identify the presence of 
distinct phases in semi-infinite crystals with atomically flat surfaces, which are the suitable 
specimen type for STM. As shown in Section 2.5, our sample is a polyphase crystal with 
coexisting Bi2Se3-Bi4Se5 phases. Since the growth was carried out with a small lack of 
selenium, a non-stoichiometric Bi2Se3 crystal was obtained. Such configuration allows the 
formation of Bi-rich phases that must be formed from instability positions within the Bi2Se3 
crystal. 

 In this chapter we show X-ray CTR measurements performed at the Brazilian 
Synchrotron Laboratory (Campinas/SP). Different phases of Bismuth Selenide were detected 
in our sample and compared to a real-time annealing CTR experiment, where the amount of 
non-stoichiometric Bi2Se3 phases was monitored along a temperature ramp. We also report 
Density Functional Theory (DFT) calculations, performed by Dr. Mário Sérgio de Carvalho 
Mazzoni (UFMG), to compare the band structure of these two phases, and to connect 
structural results to the electronic properties retrieved by STM/STS. 

Scanning Tunneling Microscopy images of the original sample heated at 350oC were 
done, allowing the identification of the initial steps of formation of Bi4Se5 domains, providing 
their size and topography. Finally, Scanning Tunneling Spectroscopy (STS) measurements on 
this sample were performed at the stoichiometric and non-stoichiometric regions.  

As discussed previously, STS provides information concerning the density of states of 
our sample. The correlation of structural and electronic properties is directly retrieved by 
combining STM and STS, assigning to each of the distinct phase their electronic behavior. 
Our STM measurements showed patterns of nanograins scattered along the sample surface. 
Some of these nanograins have step heights of less than 1nm, indicating of the formation of 
Bismuth bilayers, which were also studied by STS measurements.  

 

5.1 X-Ray Scattering results 

 

The X-ray experiments performed here were carried out at the XRD2 Beamline of the 
Brazilian Synchrotron (LNLS). Line scans in reciprocal space were taken with an X-ray beam 
of 10 keV with the sample positioned at a variable temperature furnace.  
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 The van der Waals bonds that exist among the quintuple-layers (QLs) of Bi2Se3 are 
inherently weak, allowing the material to be easily exfoliated with the exposure of atomic 
planes. Figure 5.1 shows a simple scheme of the X-ray experiment. The sample was aligned 
in coplanar-specular condition, and scans performed with the detector moving along 2𝜃 in 
real space with a coupled sample movement that fulfills Bragg’s condition. With this type of 
alignment, one measures the 00L Crystal Truncation Rod (CTR) line in reciprocal space. 

 

 
Figure 5.1: Sketch of the experimental setup mounted at Beamline XRD2 for XRD measurements. The 

X-ray beam impinges the sample with surface normal aligned in the z-direction. If the sample is 
rotated by an angle 𝜃, and the detector moves twice this angle (2𝜃) with respect to the horizontal 

plane, measuring the diffracted intensity as function of the momentum transfer vector 𝑞 = (
ସగ


)sin𝜃. 

The scan direction for the Bi2Se3/Bi4Se5 sample was chosen to lie along the 00L direction, where 
𝑞 = 2𝜋𝐿/𝑐 (𝑐 is the out-of-plane lattice parameter and 𝐿 the reciprocal space coordinate). 

 

 Several other CTR lines such as 01L, 10L, 20L, etc, can be measured following similar 
procures and knowing the crystalline structure of Bi2Se3. In Figure 5.2 we present results for 
the truncation rods 00L and 01L, both measured at room temperature. As one observes, 
some reflections are forbidden for the Bi2Se3 unit cell symmetry. For the 00L direction we 
only have the (0,0,3𝑛) peaks, where 𝑛 is an integer. This rule is also observed at the 01L 
direction, where one observes only the (0,1,3𝑛 − 1) peaks. 
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Figure 5.2: Crystal Truncation Rods of the Bi2Se3-Bi4Se5 sample at room temperature. a) CTR 00L. b) 

CTR 01L. 

 

 X-ray peaks additional to the stoichiometric Bi2Se3 can be seen along the 00L 
direction. As shown in Section 3.6, the quality of the Crystal Truncation Ro data is strongly 
related to the smoothness of the sample surface. Since a sample morphology with large 
atomically flat terraces is observed by STM the additional peaks (see Figure 5.3a) must 
correspond to the formation of a new phase within the material. This phase must possess 
periodicity in the z-direction, but different lattice parameter with respect to Bi2Se3 (it was 
later identified as Bi4Se5). We have centered our analysis efforts at the 00L truncation rod. 
Some of the data obtained on the in-situ annealing experiment at the 00L CTR line is shown 
in Fig. 5.3b for different temperature values. 
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Figure 5.3: Phase changes observed with the increase of temperature for Bi2Se3. a) The 00L crystal 

truncation rod (room temperature). Red arrows indicate Bi2Se3 peaks, while the blue arrows indicate 
other periodicities (i.e., other phases), with the most preeminent being Bi4Se5. b) A closer look of the 
00L crystal truncation rod data, for selected temperatures along the annealing ramp. One can see the 

increasing of the Bi4Se5 phase amplitude. 

 

The volume of each phase observed in Figure 5.3 can be estimated by the evaluation 
of the area below diffraction peaks. If one analyzes carefully the changes that take place 
over the temperature ramp the disappearance of the main Bi2Se3 phase is promptly 
observed. On the other hand, the volume of Bi4Se5 phase increases. Since Selenium atoms 
are lighter the formation of Bi4Se5 phase inside the crystal is a result of Se sublimation. 
Figure 5.4 present the relative area below the Bragg’s peak of all observed phases as a 
function of the temperature. 
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Figure 5.4: Relative peak area of Bi2Se3, Bi4Se5 and BiSe evaluated from CTR peaks as a function of 
temperature. 

 

One can introduce two equations for the X-ray scattering intensity used to the 
experimental data: 

𝐼஻௜మௌ௘య(𝐿) =
|𝐴|ଶ

4sinଶ(2𝜋𝑖𝐿/2)
ቮ෍ 𝑓஻௜,ௌ௘(𝐿)eଶగ௜௭ೕ௅

ଵହ

௝ୀଵ

ቮ

ଶ

                       (5.1) 

and 

𝐼஻௜రௌ௘ఱ(𝐿) = |𝐴|ଶ ቮ෍ 𝑓஻௜,ௌ௘(𝐿, 𝑗)eଶగ௜௭ೕ௅

ଶ଻

௝ୀଵ

෍ eଶగ௜௞௅eି௞ఉ

ே

௞ୀଵ

ቮ

ଶ

  .              (5.2) 

Equations 5.1 and 5.2 depend on the reciprocal space coordinate 𝐿; 𝑗 labels a given atom at 
the unit cell; 𝑧௝ represents the position of which atom; 𝑓஻௜,ௌ௘(𝐿) the atomic form factor 
varying with j for the atom scattering factor: Bi or Se; 𝐴 is an amplitude factor (order 
parameter); and 𝛽 represents the absorption factor of each layer. Equation 5.1 was obtained 
from Eq. 3.20 and the form factor from Eq. 3.12. Equation 5.2 was obtained from Eq. 3.12 
only, with an addition of an absorption factor from each layer. 
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A least-square fit of the X-ray data of Figure 5.5 was performed using these equations 
with relative amplitude factors for each phase including a similar equation for the minor BiSe 
phase. 

 

Figure 5.5: Least-square fit of the X-ray data of the Bi2Se3-Bi4Se5 sample at room temperature. The 
contribution of each Bi-Se compound is represented by the colored curves. 

 

Values obtained for the perpendicular lattice parameter of the phases were: 2.86 nm for 
Bi2Se3, 5.18 nm for Bi4Se5 and 2.32 nm for BiSe. Specifics values of the fit parameters are 
shown in Table II. 

 

Parameter Bi2Se3 Bi4Se5 BiSe 
Order Parameter – A 100% 5% 0.1% 
Absorption factor – β - 0.1 0.1 
Number of atoms 6 Bi + 9 Se = 15 (10 Bi + 15 Se) 

+ 2 Bi = 27 
(4 Bi + 6 Se) + 2 
Bi = 12 

Off-plane lattice parameter 2.86 nm 5.18 nm 2.32 nm 
Strain on the lattice parameter + 0.21% - 0.55% + 6.00% 
Number of layers ∞ 25 25 

Table II: Fit parameters of the curves in Figure 5.5. 

 

Values of the off-plane lattice parameters of Bi4Se5 and BiSe were obtained 
constructing a unit cell from the unit cell of the Bi2Se3. We added a suitable number of QLs 
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with the bilayer, following the distance between them from the literature. The distance 
between the QL and the bilayer was also obtained from the literature. We also added strain 
to the lattice parameters to fit the experimental data. 

 Usually X-ray scattering techniques provide information about the bulk structure of 
crystalline samples (penetration depth ranging from few to hundred micrometers). Although 
the analysis of the CTR diffraction can directly reveal details of the surface structure the 
information is averaged over the X-ray spot area and, near Bragg peaks, masked by bulk 
information. To overcome such issue Scanning Tunneling Microscopy and Spectroscopy 
techniques were used in selected regions of the sample, revealing morphological and 
electronic aspects that cannot be captured by solving the CTR data. Before STM/STS results 
are discussed it is mandatory to understand the band structure of the retrieved dominant 
phases: Bi2Se3 and Bi4Se5. Density Functional Theory calculations were performed by Prof. 
Mário Sérgio Carvalho Mazzoni (UFMG) and will be discussed in the following section.  

 

5.2 Density Functional Theory calculations 

 

 Density Functional Theory (DFT) is a powerful tool to calculate the eigenvalues of a 
physical system [46]. The details of the calculation itself are beyond the scope of this 
dissertation and only the results will be discussed. DFT calculations of the electronic band 
structure and density of states of both Bi2Se3 and Bi4Se5 crystals are depicted in the following 
paragraphs. These calculations were carried out using single-crystalline models of each 
phase separately. In Figure 5.6, we show the possible terminations of the Bi4Se5 crystal used 
for the DFT. Considering that this phase is obtained with the addition of a Bi2 layer to a 
supercell of five quintuple layers (QL) separated by Van der Waals gaps there are three 
distinct arrangements that were considered in DFT. From surface to bottom, these 
combinations can be of the type Bi2/5QLs; or QL/Bi2/4QLs; or 2QLs/Bi2/3QLs. similar 
terminations with the Bi2 layer lying on the lower half of the stack were obtained mirroring 
the three combinations explicitly listed above. 
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Figure 5.6: Possible surfaces terminations of Bi4Se5. There are three different types of termination for 

Bi4Se5crystals: Two of them terminate on quintuple-layers and one on a Bi bilayer. The other three 
terminations are obtained mirroring the crystal. 

 

 As a starting point for the electronic band discussion we show in Figure 5.7 the band 
structure of Bi2Se3. Three distinct regions on the band structure related to its density of 
states are highlighted in this figure, indicating the top of the valence band (blue), the low-
density of states portion of the conduction band, near the Dirac point (yellow) and the high 
density of states portion of the conduction band (pink). 
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Figure 
5.7: DFT Calculations showing the electronic band structure of Bi2Se3. (a) Large view of the band 

structure of Bi2Se3. (b) Local density of states of Bi2Se3. (c) A closer look to the LDOS of Bi2Se3 
evidencing the Dirac point. The colors introduced in (a) represent the same regions highlighted in (b) 

and (c). All Images were made using the software Virtual NanoLab 2016.1 by QuantumWise A/S. 

 

 The calculated electronic band structure of the three arrangements of Bi2:QLs 
discussed in Figure 5.6 is shown in Figure 5.8. One observes that many new states appear 
now around the Fermi-level of Bi4Se5 (more than in the Bi2Se3 crystal). A quick glimpse at the 
electronic band structure of the new crystals directly indicates that the Bi4Se5 is a conductor 
phase. It is also clear from these calculations that the Bismuth Selenide topological insulator 
states are not preserved in the Bi4Se5 phase. We can also see the appearance of van Hove 
singularities in these arrangements. The band structure of Bismuth Selenide changes 
completely with the addition of bilayers, above or below the QLs. 
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Figure 5.8: DFT Calculations of Bi4Se5. a) Electronic band structure of Bi4Se5 terminated by a Bismuth 
bilayer (Bi2/5QLs), b) by the first QL above the Bi2 bilayer (QL/Bi2/4QLs) and c) by the second QL 

above the Bi2 bilayer (2QLs/Bi2/3QLs). 

 

The calculated electronic band structure gives us a direction to correctly interpret the 
measured STS spectra. Some differences may arise between the two since DFT is calculated 
for low temperatures (0 K) considering a single-crystalline sample (thus representing the 
entire density of states) and STS information depends on the layer depth and surface step 
boundary conditions (such as cleavage defects and/or grain edges). 

 As we will see in the STM section, the Bi4Se5 phase seems to appear at the form of 
nanograins within the Bi2Se3 matrix. The goal of DFT calculations was to provide a qualitative 
scenario that can be compared to the electronic density of states information obtained by 
STS at the surface of the Bi2Se3/Bi4Se5 system. The densities of states of the QLs terminated 
system are shown in Figure 5.9. The calculations confirm the appearance of van Hove 
singularities, with are more prominent in the Bi2/5QLs calculation. They became stronger 
with the proximity of the bilayer.  
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Figure 5.9: A closer look at the DFT Calculations of Bi4Se5. a) Electronic density of states of Bi4Se5 
terminated by a) a quintuple layer (QL/Bi2/4QLs), b) one quintuple layer (1QLs/Bi2/4QLs) and c) two 

quintuple layers (2QLs/Bi2/3QLs) . 

 

 The DFT results show that there is a stronger dependence of the topological state 
related to the position of the bilayer. A bilayer on the top of the QLs changes completely the 
electronic properties of the material. That effect decreases when the bilayer is inside the 
bulk QLs.  
 

5.3 Scanning Tunneling Microscopy results 

 

 STM measurements showed the existence of Bi2Se3 and Bi4Se5 regions within the 
sample, paving the way for a clear understanding of the Bi4Se5 formation at the surface of 
our sample. In Figure 5.10 we present STM images of Bismuth Selenide at room 
temperature. These images were obtained on a cleaved surface of the sample (the cleaving 
procedure was performed inside the vacuum chamber). Current/voltage conditions for all 
measurements are declared in the figure captions, allowing the future replication of the 
results, if necessary. 
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Figure 5.10 (Copy of Figure 2.9): STM images of a Bi2Se3 region at room temperature. a) STM image of 

a Bi2Se3 region, taken using Itun = 100pA and Vbias = 1.0V. b) A single profile along the image above, 
showing a single surface step with 1 nm (height of a QL). c) High-resolution 16 nm2 image of Bi2Se3, 

taken using Itun = 20nA and Vbias = 500mV. b) A single profile along the image above. 

 

 In Figure 5.10a, a low-resolution STM topographic image is shown. A line profile, 
displayed in Figure 5.10b, reveals typical Bi2Se3 QL 1nm steps on the surface. The surface of 
the sample seems to be very flat, always presenting steps of a few nanometers (related to a 
few QLs). This flatness is due the cleavage process. The STM image of Figure 5.10c shows the 
hexagonal lattice of the Bi2Se3 surface. The height profile of Figure 5.10d directly evidences 
the position of individual atoms. The measured value for the in-plane lattice parameter was 
is 4.61 nm. For comparison, the value usually retrieved from the literature is 4.14 nm. 

 Our next step was to find regions where the onset of Bi4Se5 formation is observed. 
The sample was first heated to 350oC, in order to increase the formation of Bi4Se5 domains. 
The search for Bi3Se5 was performed by the looking at steps with less than 1 nm. These steps 
represent Bismuth bilayers.  

Figure 5.11 shows typical regions with these nanograins. They exhibit steps of either 
1 nm or 0.4 nm, which leads us to conclude that other Bismuth Selenide phases such as 
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Bi4Se5 and BiSe are present. Some nanograins as the one shown in Figure 5.11a have bilayers 
inside QLs (see Figure 5.11c). 

 

Figure 5.11: STM images of areas with Bi2Se3-Bi4Se5 phase coexistence. a) 1 μm2 STM image of a 
region with few nanograins of Bi4Se5. b) 250 nm2 closer look at the same image. c) Height profile 
along the nanograin zoomed in (a), showing a 0.4nm step. c) STM image of a region with many 

intercalated steps. d) STM image of a region with big Bi4Se5 nanoplates. All images were carried out 
using Itun = 100pA and Vbias = 1.0V. 

 

The whole sample exhibits two types of regions: one having a simple Bi2Se3 structure 
and another one with the appearance of minor Bi-Se phases nanograins. We found three 
different regions with such features, depending on the level of phase formation: one with a 
few nanograins steps (Figure 5.11a and 5.11b); one with many intercalated steps (Figure 
5.11d); and the last one with big plates (Figure 5.11e). These regions represent the growth 
process of the new phases in the crystal. Going from (a), where the nanograins starts their 
formation, to (c) and (d), where the new phase covers large regions of the sample. The 
presence of steps of 0.4nm and 1.4nm as shown in Figure 5.11c shows that nanograins are 
part of the process of phase formation, in contrast with the results by Coelho et al. for Bi2Te3 
case [47]. 

On may point that this is due to the formation of Bismuth bilayers on top of Bi2Se3, or 
the formation of them among Bi2Se3 quintuple-layers. We speculate that during sample 
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annealing selenium atoms flow out of the system through grain boundaries and defects, 
allowing the formation of stable Bismuth bilayers between stacks of five quintuple layers, 
forming the Bi4Se5 phase. This phase was previously detected by X-ray measurements and 
the main non-stoichiometric Bi2Se3 phase.  

To confirm such hypothesis we have performed Scanning Tunneling Spectroscopy 
(STS) measurements, measuring the local electronic density of states of grains and plateaus. 
These STS results were then compared to DFT models of Bi4Se5. 

 

5.4 Scanning Tunneling Spectroscopy results 

 

 In this final section of chapter 5 we provide a connection between STS measurements 
and the local density of states (LDOS) of our sample. We have retrieved out STS data on top 
of a large new-phase nanograin and over the plateau of Bi2Se3. The STS measurement of 
Bi2Se3 was taken in a region far away from nanograins, to avoid any interference from them. 
In Figure 5.12a we present a scanning tunneling spectrum of the Bi2Se3 region, exhibiting the 
Bi2Se3 topological insulator behavior near the Dirac point. The LDOS of Bi2Se3 obtained with 
Density Functional Theory (DFT) is shown in Figure 5.12b for comparison. 

 

Figure 5.12: Scanning Tunneling Spectroscopy of Bi2Se3: a) STS on an isolated region of Bi2Se3. b) DFT 
Calculation of the Density of States of Bi2Se3 near the Dirac point. The measurement in (a) was 

carried out at a temperature of 23K. 

 

 Selected spectroscopy measurements on different nanograins are shown in Figure 
5.13. We perform STS on three different regions: one away from the grain (a Bi2Se3 region); 
one inside the grain in a bilayer termination (BL); and one inside the grain in a quintuple-
layer termination (QL). One observes that the nanograin has a conducting behavior since the 
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dI/dV value for V = 0 is non-zero. These nanograin regions exhibit signatures of a topological 
insulator with an added constant value in its conductance. 

 It seems that the addition of bilayers to form new phases of Bismuth Selenide, add 
new states near the Fermi-level of the material. The dI/dV curve of STS measurements 
moves away from zero mainly on the zero voltage point. The conducting behavior is 
expected from the DFT calculations of Bi4Se5, albeit with van hove singularities. 

 

  
Figure 5.13: Scanning Tunneling Spectroscopy of the nanograin: a) STM image of a nanograin (Itun = 

100pA and Vbias = 1.0V). b) Height profile showing the heights on the surface termination of a 
nanograin. c) STS in the regions of the nanograin. The measurements were carried out at a 

temperature of 23K. 

 

Another way to analyze this behavior is to perform STS measurements in a line 
crossing the nanograin. Figure 5.14 shows a collection of dI/dV curves as the tip moved into 
the nanograin, showing a tendency of conductance values to drift away from zero. In this 
figure the local density of states changes from a topological insulator to a conducting 
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behavior. In brief, Bismuth bilayers on top (black curve in Figure 5.13c), or even inside the 
Bi2Se3 matrix (red curve in Figure 5.13c) changes the electronic behavior of the material but 
only introduce peaks for the LDOS on the bilayer termination (see around 0.2 eV and 0.4 eV 
in Figure 5.13), as expected for Bi4Se5. 

 

Figure 5.14: Scanning Tunneling Spectroscopy measurements performed over a line entering the 
Bi4Se5 nanograin: (a) STM image of Bi4Se5.presenting the line over with did the spectra. Itun = 100pA 
and Vbias = 1.0V. (b) STS spectra of the line showed in (a) showing the shift of the LDOS. The lower 

curve corresponds to the first STS measurement in the Bi2Se3 plateau, while the upper curve is 
measured at the grain center. The measurements were performed at 25K. 

 

 Recent STS studies by Drozdov et al [48] have shown that a bismuth bilayer behaves 
as a 2D topological insulator (see section 2.3). In a two-dimensional topological insulator, a 
conducting channel along the borders of the system is found. In their work, the 
measurements were performed in Bismuth bilayers islands on a Bi(111) surface matrix. This 
work speculated that Bi2 islands on a Bi2Se3 surface might retain the 2D topological insulator 
behavior. 
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6 - Conclusion and prospects 

 

 The main goal of this work was to understand the transformations that occur in the 
topological insulator Bi2Se3 upon heating, concerning its electronic and atomic properties. 
Using the technique of Scanning Tunneling Microscopy and Spectroscopy combined with X-
Ray Diffraction experiments we could infer the electronic density of states combined and the 
crystal structure of our sample. 

 Our sample, a polyphase Bi2Se3-Bi4Se5 crystal, was first characterized by X-Ray 
scattering along the 00L and 01L truncation rods. We observed the main Bi2Se3 phase with a 
secondary Bi4Se5 one. Upon heating the material up to 325°C, the Bi2Se3 phase starts to 
disappear while the onset of Bi4Se5 formation is observed. As Crystal Truncation Rods are 
surface-sensitive, this encouraged us to perform Scanning Tunneling Microscopy and 
Spectroscopy. 

 In Scanning Tunneling Microscopy experiments after heating the sample, we 
observed the formation of nanograins which may be Bi4Se5. They appeared at some regions 
of the sample and were first identified by 0.4 nm steps. The surface of Bi2Se3 is only 
comprised of 1 nm steps due to quintuple-layers connected by weak van der Waals 
interactions. 

 Scanning Tunneling Spectroscopy experiments were performed inside and outside 
these nanograins. The spectra outside the nanograins, on the Bi2Se3, showed the expected 
topological insulator behavior. Inside these nanograins, the STS measurements indicated a 
conducting behavior. Measurements made along a line entering the nanograin showed the 
transition from the topological insulator to a conducting feature. Although the nanograins 
present a conducting behavior, their spectra are similar to Bi2Se3. 

 We cannot conclude if that conductor state is caused by modifications of bulk or 
surface states. This question is difficult to answer using STS and require separate surface and 
bulk states information. A possible way to answer this question is to perform Angle-Resolved 
Photoemission Spectroscopy (ARPES) at the nanograin. This requires a focused ultra-violet 
nanobeam in a very specific area of an ordinary sample. A technique called nanoARPES, only 
available at the ANTARES Beamline of the SOLEIL Synchrotron in France, would solve this 
question. 

 Another prospect of this work is related to the fact that bismuth bilayers are two-
dimensional topological insulator. This means that a Bi2Se3-Bi4Se5 sample upon heating could 
be an interesting subject for future studies. This system combines two and three-dimensional 
topological insulators in a balanced system.  
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