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Abstract

This thesis is a contribution to the research field of three distinct subjects:
quantum correlations in systems of indistinguishable particles, topological
states of matter, and non-Markovian dynamics. The first two subjects are the
main subjects of the thesis, in which was kept an exclusive dedication, while
the last one fits as a satellite part in the thesis.

The first part of this thesis concerns to a proper understanding of quantum
correlations in systems of indistinguishable particles. In this case, the space
of quantum states is restricted to symmetric or antisymmetric subspaces,
depending on the bosonic or fermionic nature of the system, and the particles
are no longer accessible individually, thus eliminating the usual notions of
separability and local measurements, and making the analysis of correlations
much subtler. We completely review the distinct approaches for the entan-
glement in these systems, and based on its definitions we elaborate distinct
methods in order to quantify the entanglement between the indistinguishable
particles. Such methods have proven to be very useful and easy to handle,
since they adapt common tools in the usual entanglement theory of distin-
guishable systems for the present indistinguishable case. We further propose
a general notion of quantum correlation beyond entanglement (the quantum-
ness of correlations) in these systems, by means of an “activation protocol”.
Such general notion is very helpful at the ongoing debate in the literature
regarding the correct definition of particle entanglement, since it allows us
to analyze the correlations between indistinguishable particles in a different,
and more general, framework, settling some of its controversies. We then use
our quantifiers to study the entanglement of indistinguishable particles on its
particle partition in a specific model, namely extended Hubbard model, with
focus on its behavior when crossing its quantum phase transitions.

The second part of this thesis concerns to the study of topological states of
matter. Our analysis and results have as a basis the paradigmatic (non-number
conserving) Kitaev model, which provides a minimal setting showcasing all
the key aspects of topological states of matter in fermionic systems. Our
analysis focus, however, in a number conserving setting. In such setting, we
present two distinct ways to generate topological states completely similar
to the Kitaev model: (i) in a Hamiltonian setting, we present an exactly
solvable two-wire fermionic model which conserves the number of particles
and features Majorana-like exotic quasiparticles at the edges; (ii) by means of
a suitably engineered dissipative dynamics, we present how to generate such
topological states as the dark states (steady-states) of the evolution.
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Abstract

In the third part of this thesis we analyze non-Markovian dynamics with
the divisibility criterion, i.e., the non-positivity of the dynamical matrix for
some intermediate time. Particularly, we study a qubit interacting with an
Ising model environment.
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Resumo

Esta tese é uma contribuição para o campo de pesquisa de três assuntos
distintos: correlações quânticas em sistemas de partículas indistinguíveis,
estados topológicos da matéria, e dinâmica nao-Markoviana. Os primeiros
dois assuntos são os temas pricipais desta tese, nos quais foi mantida uma
dedicação exclusiva, enquanto o último assunto se encaixa mais como uma
parte satélite na tese.

A primeira parte desta tese diz respeito a uma compreensão adequada das
correlações quânticas em sistemas de partículas indistinguíveis. Neste caso, o
espaço de estados quântico é restrito ao subspaço simétrico ou antisimétrico,
dependendo da natureza bosônica ou fermiônica do sistema, e as partículas
não são mais acessíveis individualmente, eliminando desta forma as noções
habituais de separabilidade e medições locais, tornando a análise de suas
correlações muito mais sutil. Nós revisamos as distintas abordagens para o
emaranhamento nestes sistemas, e com base em tais definições elaboramos
diferentes métodos a fim de quantificar o emaranhamento entre as partículas
indistinguíveis. Tais métodos mostram-se muito úteis e fáceis de se manusear,
uma vez que adaptam ferramentas comuns da teoria usual do emaranhamento
em sistemas distinguíveis para o presente caso indistinguível. Propomos tam-
bém uma noção geral de correlação quântica além do emaranhamento (o
quantumness of correlations) nestes sistemas, por meio de um “protocolo de
ativação". Tal noção é muito útil no debate em curso da literatura a respeito
da definição correta para o emaranhamento entre as partículas indistinguíveis,
uma vez que nos permite analisar suas correlações de uma ótica distinta, e
mais geral, resolvendo algumas de suas constrovérsias. Em seguida, usamos
nossos quantificadores para estudar o emaranhamento de partículas indistin-
guíveis em um modelo específico, o modelo Hubbard estendido, com foco em
seu comportamento ao atravessar suas respectivas transições de fase quânticas.

A segunda parte desta tese diz respeito ao estudo de estados topológicas
da matéria. Nossa análise e resultados têm como base o paradigmático modelo
de Kitaev (não conserva o número de partículas), o qual fornece um ambiente
mínimo apresentando todos os aspectos chave de estados topológicos em
sistemas fermiônicos. Nossa análise foca-se, no entanto, em um cenário
que conserve o número de partículas. Em tal cenário, apresentamos duas
maneiras distintas para gerar estados topológicos completamente similares ao
modelo de Kitaev: (i) em um cenário tipo Hamiltoniano, apresentamos um
modelo fermiônico de dois fios, com solução exata, que conserva o número
de partículas e apresenta quasipartículas exóticas tipo Majorana nas bordas;
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Resumo

(ii) por meio de uma dinâmica de dissipação adequadamente projetada, tais
estados topológicos se apresentam como dark states (estados estacionários) da
evolução.

Na terceira parte desta tese analisamos dinâmicas não-Markovianas com o
critério de divisibilidade, ou seja, a não-positividade da matriz dinâmica em al-
gum tempo intermediário. Particularmente, estudamos um qubit interagindo
com um ambiente tipo Ising.
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Introduction

This thesis is a contribution to the research field of three distinct subjects: (I)
quantum correlations in systems of indistinguishable particles, (I I) topological
states of matter, and (I I I) non-Markovian dynamics. The first two topics are
the main subjects of the thesis, in which it was kept an exclusive dedication,
while the last one fits more like a satellite part in the thesis.

Part I.
The notion of entanglement is considered one of the main features of

quantum mechanics, and became a subject of great interest in the last years,
due to its primordial role in several distinct areas of physics, as Quantum
Computation, Quantum Information [1, 2, 3, 4], Condensed Matter Physics
[5], just to cite some. The subject was first addressed in the 1935’s seminal
paper by Einstein, Podolsky and Rosen [6], which originated the famous “EPR
paradox”, putting in evidence several basic concepts of nature, such as the
notion of locality and physical reality. In the EPR paradox the quantum theory
is confronted to the idea of a local realistic nature. Soon after the EPR publica-
tion, the subject has also attracted interest to another great name of science;
Schrödinger [7, 8] discuss in his works the peculiarity of the phenomenon,
historically being the author who introduced the term entanglement. While
considering uncomfortable that the quantum theory would allow so unusual
phenomena, as the idea of a non-local, non-realistic nature, he has considered
them as the main feature of quantum mechanics: “I would not call that one but
the characteristic trait of quantum mechanics; the one that enforces its entire
departure from classical lines of thought” [7]. The subject has gained a major
boost after John Bell, in the 1960’s, proposed a test, called Bell inequalities [9],
shifting EPR arguments to the domain of experimental physics. Experimental
tests were then conducted some years later corroborating the quantum theory
[10].

Despite widely studied in systems of distinguishable particles, less atten-
tion has been given to the study of entanglement, or even a more general
notion of quantum correlations, in the case of indistinguishable particles.
In this case, the space of quantum states is restricted to symmetric S or
antisymmetric A subspaces, depending on the bosonic or fermionic nature
of the system, and the particles are no longer accessible individually, thus
eliminating the usual notions of separability and local measurements, and
making the analysis of correlations much subtler. In fact, there are a multi-
tude of distinct approaches and an ongoing debate around the entanglement
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in these systems [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26].
Nevertheless, despite the variety, the approaches consist essentially in the
analysis of correlations under two different aspects: the correlations genu-
inely arising from the entanglement between the particles (“entanglement of
particles”) [11, 12, 13, 14, 15, 16, 17, 18], and the correlations arising from the
entanglement between the modes of the system (“entanglement of modes”)
[19, 20, 21, 22]. These two notions of entanglement are complementary, and
the use of one or the other depends on the particular situation under scrutiny.
For example, the correlations in eigenstates of a many-body Hamiltonian
could be more naturally described by particle entanglement, whereas certain
quantum information protocols could prompt a description in terms of entan-
glement of modes. Once one has opted for a certain notion of entanglement
there are interesting methods in order to quantify it [14, 27, 28, 29, 30, 31, 32].

Entanglement is not, however, the only kind of correlation presenting
non classical features, and a great effort has recently been directed towards
characterizing a more general notion of quantum correlations, the quantumness
of correlations. The quantumness of correlations is revealed in different
ways, and there are a wide variety of approaches, sometimes equivalent, in
order to characterize and quantify it, e.g., through the “activation protocol”,
where the non classical character of correlations in the system is revealed by
a unavoidable creation of entanglement between system and measurement
apparatus in a local measurement [34, 47]; or by the analysis of the minimum
disturbance caused in the system by local measurements [48, 49, 52], which led
to the seminal definition of quantum discord [48]; or even through geometrical
approaches [53].

The first part of this thesis concerns in this way to a proper understanding
of quantum correlations in systems of indistinguishable particles. We first
review, in Chapter 1, the distinct approaches for the entanglement in these sys-
tems. In Chapter 2 and show how to quantify such entanglement by adapting
the common tools used in the usual entanglement theory of distinguishable
systems [27, 28]. In Chapter 3 we propose a general notion of quantum correl-
ation beyond such entanglement (the quantumness of correlations) in these
systems, by means of an “activation protocol” [14]. In Chapter 4 we then use
our quantifiers to study the entanglement of indistinguishable particles on its
particle partition in the extended Hubbard model, with focus on its behavior
when crossing its quantum phase transitions [67].

Part I I.
In a general perspective, matter has many distinct phases, such as ordinary

gas, liquid and solid phases, as well as more interesting conductors, insulat-
ors, superfluids, and others phases. Despite formed by the same elementary
particle constituents, each phase has striking different properties. The proper-
ties of a phase emerge from the pattern in which the particles are organized
and correlated in the material. These different patterns are usually called the
order of the phase.

In this thesis we study states which present a “topological order”. The
defining features of topological order, namely the existence of degenerate

xvi



ground states which (i) share the same thermodynamic properties and (ii) can
only be distinguished by a global measurement, portend for a true many-body
protection of quantum information. Thus, topological quantum computation
has recently emerged as one of the most intriguing paradigms for the storage
and manipulation of quantum information [85, 86].

Large part of the enormous attention devoted in the last years to topo-
logical superconductors owes to the exotic quasiparticles such as Majorana
modes, which localize at their boundaries (edges, vortices, . . . ) [91, 92] and
play a key role in several robust quantum information protocols [93]. Kitaev’s
p-wave superconducting quantum wire [89] provides a minimal setting show-
casing all the key aspects of topological states of matter in fermionic systems.
Various implementations in solid state [94, 95] and ultracold atoms [96] via
proximity to superconducting or superfluid reservoirs have been proposed,
and experimental signatures of edge modes were reported [97].

Kitaev’s model is an effective mean-field model and its Hamiltonian
does not commute with the particle number operator. Considerable activity
has been devoted to understanding how this scenario evolves in a number-
conserving setting [98, 99, 100, 101, 102]. This effort is motivated both by the
fundamental interest in observing a topological parity-symmetry breaking
while a U(1) symmetry is intact, and by an experimental perspective, as in
several setups (e.g. ultracold atoms) number conservation is naturally present.
It was realised that a simple way to promote particle number conservation to
a symmetry of the model, while keeping the edge state physics intact, was
to consider at least two coupled wires rather than a single one [98, 99, 100].
However, since attractive interactions are pivotal to generate superconducting
order in the canonical ensemble, one usually faces a complex interacting many-
body problem. Therefore, approximations such as bosonization [98, 99, 100],
or numerical approaches [101] were invoked. An exactly solvable model of
a topological superconductor in a number conserving setting, which would
directly complement Kitaev’s scenario, is missing.

The second part of this thesis concerns, in this way, to the study of topolo-
gical states of matter in a number conserving setting. Our analysis and results
have as a basis the paradigmatic (non-number conserving) Kitaev model. In
Chapter 5 we briefly review the main characteristics of the Kitaev model and
its topological phase. Later, in the next chapters, we present, in a number
conserving setting, two distinct ways to generate topological states completely
similar to the Kitaev model. In Chapter 6 we work in a Hamiltonian setting,
presenting an exactly solvable two-wire fermionic model which conserves
the number of particles and features Majorana-like exotic quasiparticles at
the edges [115]. In Chapter 7, by means of a suitably engineered dissipative
dynamics, we present how to generate such topological states as the dark
states (steady-states) of the evolution [122].

Part I I I.
The need to fight decoherence, to guarantee the proper working of the

quantum enhanced technologies of information and computation [1], has
renovated the motivation for the in-depth study of system-environment inter-
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action dynamics. In particular, the Markovian or non-Markovian nature of the
dynamics is of great interest [161]. Several witnesses and measures have been
proposed in order to characterize the non-Markovianity of quantum processes
[162]. For instance, the information flow between system and environment,
quantified by the distinguishability of any two quantum states [163, 164], or
by the Fisher information [165], or mutual information [166]; the Loschmidt
echo [167, 168]; the entanglement between system and environment [169].

In Chapter 8 of this thesis we study, by means of the divisibility criterion,
i.e., the non-positivity of the dynamical matrix for some intermediate time,
characterizing the dynamics of a qubit interacting with an arbitrary quadratic
fermionic environment. We obtain an analytical expression for the Kraus
decomposition of the quantum map, and check its non-positivity with a simple
function. With an efficient sufficient criterion to map the non-Markovian
regions of the dynamics, we analyze the particular case of an environment
described by the Ising Hamiltonian with a transverse field [160].

xviii
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Quantum correlations in systems of
indistinguishable particles

1





CHAPTER 1
Entanglement in system of
indistinguishable particles

In this chapter we review some selected topics in entanglement theory, chosen
because of their relevance in this thesis. In Sec.1.1 we review concepts of
entanglement theory in systems of distinguishable particles, which will make
the subsequent discussions for the indistinguishable case clearer. In Sec.1.2
we discuss in detail the main approaches of entanglement in systems of
indistinguishable particles.

1.1 Distinguishable subsystems - general view

Let us see a simple scenario which can highlight some of the peculiar features
of quantum entanglement. Consider the case of two distinguishable particles,
which primarily can interact, and after some time, are spatially separated.
Let us first suppose that its quantum state is given by the product form
|ψ〉 = |φA〉 ⊗ |φB〉 ∈ Hda

A ⊗ H
db
B , where |φA〉 ∈ Hda

A and |φB〉 ∈ Hdb
B . In

such a state, local operations in one of the particles, {I ⊗ Φ̂ , Φ̂⊗ I}, do not
change the state of the other particle. States described in such a product form
are called separable states, and can be generated by only performing local
operations on its parts, and classical communication between them (LOCC
operations). We could consider, however, a different state which cannot be
described in a product form, such as the singlet state,

|ψ〉 = |↑↓〉 − |↓↑〉√
2

(1.1)

where {|↑〉, |↓〉} are the eigenstates of the σz operator. Such a state is an
entangled state, commonly called as EPR state, and it can not be generated
from a separable state by any LOCC operations. Moreover, if we have access
only to one of its particles, the state is described by the partial trace over the
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1. Entanglement in system of indistinguishable particles

other particle,

ρA = TrB(|ψ〉〈ψ|) =
I
2

, (1.2)

it corresponds to a maximally mixed state (similarly for ρB = I
2 ). This means

that if we measure spin A along any axis, the result is completely random
— we find spin up with probability 1/2 and spin down with probability 1/2.
Therefore, if we perform any local measurement of A or B, we acquire no
information about the preparation of the state. Quoting Schrödinger: “the best
possible knowledge of a whole does not necessarily include the best possible
knowledge of all its parts"[7].

Entangled states are interesting because they exhibit correlations that have
no classical analog. The definition of an entangled state is related to the
impossibility to describe it in the usual product form (as a separable state).
Formally, separable states, are defined as,

Definition 1.1. Given a partition of the Hilbert space in N distinguishable parts,
H = H1 ⊗H2 ⊗ ...⊗HN , the separable states in this partition are the quantum
states {σsep} which can be described as a convex decomposition of pure states in the
product form, i.e.,

σsep = ∑
i

pi σi
1 ⊗ σi

2 ⊗ ...⊗ σi
N ; ∑

i
pi = 1 (1.3)

where σk ∈ Hk. A quantum state is entangled in such a partition if it cannot be
described as a separable state.

The determination of separability in a arbitrary quantum state is not a
trivial task. Several criteria were formulated, as the famous Peres-Horodecki
[33] criteria, which relates the set of separable states with its invariance
to partial transpositions in one of its parts. In this work we will not only
investigate the separability problem in general systems, but also study the
quantification of its entanglement. This is a very important concept due
to the several applications of entanglement as a resource, e.g., in Quantum
Information and Computation [1, 2, 3, 4].

1.2 Indistinguishable particles

As aforementioned, in systems of indistinguishable particles the analysis
of entanglement and quantum correlations between the particles becomes
much subtler. The quantum states are now restricted to the symmetric (S)
or antisymmetric (A) subspaces, depending on the bosonic or fermionic
nature of the system, and the particles are no longer accessible individually,
thus eliminating the usual notions of separability and local measurements.
Notice first that one cannot analyze the system under the usual paradigm of
separability and locality, where the reduced states obtained by partial trace are
mixed (ρr = Tr2...N(|ψ〉〈ψ|)), whenever the global state is pure and entangled.
Therefore, in the case of indistinguishable particles, the use of partial trace
over the particles to characterize entanglement should be carefully reviewed,
since it would suggest that all pure fermionic states are entangled, given that
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1.2. Indistinguishable particles

their reduced states are always mixed. In order to generalize the notion of
entanglement for systems of indistinguishable particles, the approach based
on the algebra of observables sheds light on the problem and allows us to go
beyond the paradigm of separability and locality.

In Sec.1.2.1 we present the concept of entanglement of modes. The dis-
cussion for the particles entanglement is given in Sec.1.2.2, where we show a
detailed presentation of the main approaches based on algebra of observables
and their restrictions; we also discuss about exchange-correlations in these
systems, an intrinsic quantum correlation due to particle statistics.

1.2.1 Modes entanglement

Usually, the analysis of entanglement in indistinguishable particles is real-
ized under two distinct aspects: the correlation between the modes of the
system (“entanglement of modes”) [19, 20, 21, 22], and the correlations arising
genuinely from the entanglement between the particles (“entanglement of
particles”) [11, 12, 13, 14, 15, 16, 17, 18]. We will analyse in this section the
former one.

The notion of entanglement of modes is a relatively simple concept. It
constitutes the entanglement between the occupation number of the possible
“degrees of freedom” (modes) of the system. The notion reconnects us to the
usual entanglement theory, where the subsystems (modes) are distinguishable,
and in this way one can employ all the tools commonly used in distinguishable
quantum systems in order to analyse their correlations.

In the fermionic case, for example, the modes notion can be realized by
mapping the quantum state in its number representation as follows,

f †
j1 ... f †

jN |vac〉 −→
∣∣0...1j1 ...1jN ...0

〉
Â(HM

1 ⊗ ...⊗HM
N ) −→ (H2

1 ⊗ ...⊗H2
M) (1.4)

where { f †
j }M

j=1 is an arbitrary set of M fermionic operators for the system. We
will denote hereafter as “configuration representation” (“number representa-
tion”) the left (right) side of the above equations. Such equation corresponds
to a mapping to distinguishable qubits, represented by the occupied (|1〉j )
or unoccupied (|0〉j) modes, which then allows one to employ all the tools
commonly used in distinguishable quantum systems in order to analyse their
correlations. One could, for example, use the von Neumann entropy of the
reduced state representing a block with ` modes, in order to quantify the en-
tanglement between the block with the rest of the system. The reduced state is
obtained by the partial trace in the number representation, ρ` = Trj/∈`(|ψ〉〈ψ|).
Notice that, in the modes notion, local observables in the modes may involve
correlations between the particles, e.g., “ f †

j f †
j+1 f j+1 f j” despite acting locally in

the (j, j + 1) block, describes pairing correlations between the particles. The al-
gebra of local observables in the modes, defined in the number representation
space, is generated by,

Ωloc =
{

Ô1 ⊗ I2,M ; I ⊗ Ô2 ⊗ I3,M ; · · ·
· · · ; I1,(M−1) ⊗ ÔM || Ô†

j = Ôj

}
(1.5)
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1. Entanglement in system of indistinguishable particles

where Ii,j = Ii ⊗ Ii+1 ⊗ · · · ⊗ Ij, and I is the identity operator. The un-
entangled states are those which can be completely described by such local
observables. It is known that such states are simply the separable states in the
usual tensor product form, i.e., |ψ〉un = |φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φM〉.

The above analysis extends in a similar way to the bosonic case, just
noticing that the maximal occupation number of bosons in a mode is not
restricted to a single boson, but all of the bosons could occupy the same
mode. An interesting feature that should be recalled, concerns the fact that the
number representation mapping, as presented in Eq.(1.4), is not bijective, i.e.,
there are states in the number representation space which have no counterpart
in the configuration representation space. Such a problem is simply due the
particle number conservation, and can thus be solved by mapping the entire
Fock space with its number representation space. More precisely, given a
system with M modes, and its respective fermionic Fock space,

F (M) f = |vac〉〈vac| ⊕HM
1 ⊕A(HM

1 ⊗HM
2 )⊕ · · · ⊕A(HM

1 ⊗ · · · HM
M), (1.6)

or bosonic one,

F (M)b = |vac〉〈vac| ⊕HM
1 ⊕S(HM

1 ⊗HM
2 )⊕ · · ·⊕S(HM

1 ⊗ · · · HM
MM ), (1.7)

where ⊕ is the matrix direct sum, defined as,

⊕k
i=1 Xi =


X1

X2
. . .

Xk

; (1.8)

the complete mapping to the number representation space is given, in the
fermionic case, as

F (M) f ←→ (H2
1 ⊗ ...⊗H2

M) (1.9)

and in the bosonic case as,

F (M)b ←→ (HM
1 ⊗ ...⊗HM

M) (1.10)

Example: An example makes the previous discussions clearer. Consider a
fermionic (bosonic) state described by a single Slater determinant (permanent),
within a four dimensional single particle space dimension {a†

j }4
j=1. Given the

state |ψ〉 = (
a†

1+a†
2√

2
)(

a†
3+a†

4√
2
)|vac〉, the mapping onto its number representation

leads to,

|ψ〉 7→ (
|10〉+ |01〉√

2
)⊗ (

|10〉+ |01〉√
2

)

=
1
2
(|1010〉+ |1001〉+ |0110〉+ |0101〉). (1.11)

Such a state is entangled or not depending on its modes partition. For example,
if we analyse the correlations between the first mode with the rest, taking its
reduced state,

ρ1 = Tr2,3,4(ρ) =
1
2
(|1〉〈1|+ |0〉〈0|), (1.12)
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1.2. Indistinguishable particles

it corresponds to a maximally mixed state, and consequently this mode is
maximally entangled with the rest. If, however, we analyse the correlations of
pairs of modes, and take the reduced state of the first two modes,

ρ1,2 = Tr3,4(ρ) = (|10〉+ |01〉)(〈10|+ 〈01|), (1.13)

we see that there is no entanglement between them.

1.2.2 Particle entanglement

In this section, we will work with the correlations genuinely arising from
the entanglement between the particles. An interesting approach follows
considering the proper algebra of “local observables”, i.e., the one composed by
observables which do not involve correlations between the indistinguishable
particles. In this way, analogous to the distinguishable case, the unentangled
states can be defined as those states which can be completely described by
such algebra. It is not hard to conclude that such algebra, defined in the
configuration representation space, is generated simply by the single-particle
observables,

Ωloc =
{

Ô⊗ I2,N + I ⊗ Ô⊗ I3,N + · · ·
· · · + I1,(N−1) ⊗ Ô || Ô† = Ô

}
, (1.14)

where N is the number of particles. Equivalently, using the second quant-
ization formalism, the above set is given by number conserving quadratic
operators Ωloc = {(a†

i aj + H.c.) | i, j = 1, ..., L}. The states that can be com-
pletely described by such algebra compose the set of unentangled states, where
every particle is not entangled with any other. Intuitively, we would expect
that this set corresponds to the set of single-Slater determinant/permanent
states, with a fixed number of particles; more precisely, for a system with N
fermions (bosons), it is given by,

|ψ〉un = a†
j1 a†

j2 ...a†
jN |vac〉, (1.15)

where {a†
j } is an arbitrary set of fermionic (bosonic) operators, recalling that

these operators are not “quasiparticles” with particle-hole superpositions,
as usual in a Bogoliubov transformation, and the above states have a fixed
number of fermions (bosons). In fact, distinct approaches confirmed such
intuitive set of unentangled states [11, 12, 13, 14, 15, 16, 17, 18, 25, 26, 32]
(the only correlations in such states are the exchange correlations, due to the
antissimetrization, which does not constitute in entanglement). For example,
in [11] the authors analysis follows by using a very elegant mathematical
formalism, called GNS (Gelfand–Naimark–Segal) construction, for the case
of two fermions, each one with dimension d = 3 or 4, and two bosons with
dimension d = 3; in [18, 25, 26], the authors propose a “Generalized Entangle-
ment (GE)” measure, obtaining a simple formula for the “partial trace” in such
algebra restriction, and the set o fermionic unentangled states for an arbitrary
number of particles; or also in [14], not restricted only to the entanglement
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1. Entanglement in system of indistinguishable particles

notion, but to a general idea of quantum correlations (the quantumness of
correlations), we generalize the idea of “activation protocol” [34] (as used for
distinguishable particles in order to characterize their correlations) for indis-
tinguishable particles, obtaining the same set of states with no quantumness as
the above unentangled one.

We extend now the above discussions in order to make the notion of
particle entanglement clearer. Firstly we will discuss the role of the exchange
correlations in a system of indistinguishable particles, providing the idea of
why, intuitively, it should not be considered as entanglement. We also show
some cases where would be possible to treat the particles as effectively distin-
guishable, recovering the usual entanglement theory. We also present, in more
detail, the previous mentioned approaches for the particle entanglement based
on algebra of observables; more precisely, we present the GE measure and the
GNS construction. We leave the discussion of quantumness of correlations to
another chapter (see Chapter 3).

Exchange-correlations

Consider a general system, with N indistinguishable fermionic/bosonic
particles, characterized by the single particle wave functions {

∣∣φj
〉M

j=1}, which
have a non negligible overlap between the moduli of their spatial wave func-
tion φj(x) =

〈
x
∣∣φj
〉
, i.e., |φj(x)|2|φ`(x)|2 6= 0, where {|x〉} is the spatial

position wave function basis. A general state for this system can be given by,

|ψ〉 =
M

∑
i1,...,iN=1

ci1,...,iN A/S
∣∣φi1 ...φiN

〉
, (1.16)

or in second quantization formalism, as

|ψ〉 =
M

∑
i1,...,iN=1

ci1,...,iN a†
φi1

...a†
φiN
|vac〉. (1.17)

where {a†
φj
} are fermionic/bosonic creation operators. Generally, such Slater

determinants/permanents contain correlations due to the exchange statistics
of the indistinguishable particles, called exchange correlations in the language
of Hartree-Fock theory. However, if the moduli of the spatial wave functions
φj(x) have only a vanishing overlap, these exchange correlations will also
tend to zero for any physically meaningful operator. For example, given a
system with two fermions described by a single Slater-determinant, |ψ〉 =

1√
2
(|φ χ〉 − |χ φ〉), and an arbitrary physical operator Ô, its expectation value

is given by, 〈
Ô
〉
=
∫

O(x1, x2)ψ
∗(x1, x2)ψ(x1, x2)dx1dx2, (1.18)

where O(x1, x2) = 〈x1, x2|Ô|x1, x2〉, and

ψ(x1, x2) = 〈x1, x2|ψ〉 =
1√
2
[φ(x1)χ(x2)− χ(x1)φ(x2)] (1.19)
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1.2. Indistinguishable particles

We also have that,

ψ(x1, x2)
∗ψ(x1, x2) =

1
2

{
|φ(x1)|2|χ(x2)|2 + |χ(x1)|2|φ(x2)|2+
−(φ(x1)

∗χ(x1)φ(x2)χ(x2)
∗ + H.c.)} (1.20)

where the last term is the commonly called exchange term in Hartree-Fock
theory. Noticing that O(x1, x2) = O(x2, x1) must be symmetric under particle
exchange, we can expand the expectation value in two parts,〈

Ô
〉
=
∫

O(x1, x2)
(
|φ(x1)|2|χ(x2)|2 − Re[φ(x1)χ(x1)

∗φ(x2)χ(x2)
∗]
)

dx1dx2.

(1.21)
We see in this way that, if the moduli of the spatial wave functions have a
vanishing overlap, |φ(xi)|2|χ(xi)|2 ∼ 0, the second term in the above equation,
related to the exchange terms in the wave function, will also vanish, and the
expectation value of the operator is reduced to〈

Ô
〉
∼
∫

O(x1, x2)|φ(x1)|2|χ(x2)|2dx1dx2, (1.22)

which is equivalent to two uncorrelated and distinguishable particles in a
state |ψ〉 ∼ |φ χ〉. This situation is generically realized when the supports of
the single particle wave functions are essentially centered around locations
being sufficiently apart from each other. In this case, the (anti)symmetrization
has no physical effects, and we would be able to “distinguish” the particles;
see Fig.1.1 for a schematic representation. Thus, we easily conclude that such
exchange correlations should not constitute as entanglement, since it vanishes
with the particles spatial separation, and it is not a non-local correlation as in
the usual entanglement theory.

CHSH inequality: Bell test experiments, or Bell inequalities [9], are formu-
lated to test some theoretical consequences of entanglement, as the notion
of locality and realism. A local theory is based on the assumption that spa-
tially distant events are independent, having no instantaneous (“faster than
light”) interactions between each other. Under realism it is assumed that all
objects must objectively have a pre-determined value for any measurement
before the measurement is made. Thus, the Bell inequality consists of a
though-experimental test which sets limits on the expectation values for its
observables, based on the assumption of a local hidden variable (LHV) theory, i.e.,
a theory with underlying inaccessible variables (hidden variables) consistent
with the principle of locality and realism.

Let us focus now on a specific generalization of Bell’s original inequality,
the CHSH inequality, introduced by John Clauser, Michael Horne, Abner
Shimony and R. A. Holt [35]. Such inequality involves the correlation of two
space-like separated spin measurements, σ̂L(~a) and σ̂R(~b), along the~a and~b
directions, respectively. The CHSH inequality is given by,

CHSH : |E(~a,~b) + E(~a,~b′)− E(~a′,~b) + E(~a′,~b′)| ≤ 2, (1.23)

where E(~a,~b) is the expectation value for the pair of spin measurements
(σ̂L(~a), σ̂R(~b)). For simplicity we normalized E(~a,~b), such that |E(~a,~b)| ≤ 1.
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1. Entanglement in system of indistinguishable particles

Figure 1.1: Spatial probability distribution P(~r) = |φ(x)|2, or |χ(x)|2, for two
single particle modes, |φ〉 and |χ〉, with gaussian spatial probability distri-

butions, f (~r) ≈ e
− |~r−~ro |2

2σ2
o , ~r = (y, x), centered around (0,+xo) and (0,−xo),

respectively. Consider a state composed of indistinguishable particles, with
support in these modes, as |ψ〉 = a†

φa†
χ|vac〉 (Eq.(1.19)). In Fig-left, the spatial

distributions are centered around xo ∼ 3, and have a non-negligible overlap;
in this case, exchange-correlations have physical effects and must be taken
into account. In Fig-right, the single particle modes are: (upper) spatially
separated from each other, with supports centered around x ≈ 2xo, describing
for example the indistinguishable particles being spatially separated from each
other; or (bottom) have a smaller gaussian variance, σ ≈ σo/2, as for example,
if we consider the modes as representing the particles probability distribution
at two separated potential wells, then raising the potential barrier would
decrease the tunneling of the particles between the wells, and in this way the
gaussian distributions would be more localized. In these cases the modes
spatial distributions have a negligible overlap, and exchange-correlations have
no physical effects anymore. We could associate local Hilbert spaces (HA,
HB) centered at the modes distributions, and the quantum state would be
effectively represented by ψ ∼ |φ〉A|ψ〉B, with distinguishable particles A and
B.
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1.2. Indistinguishable particles

Any LHV theory must satisfies the above bound for all pairs of measurements.
It is, however, not hard to show that violation of the CHSH inequality is
predicted by quantum theory, i.e., using the EPR state (Eq.1.1) it is possible
to obtain, for certain spin measurements directions, the value of 2

√
2 in the

inequality.
Following the previous discussions on exchange correlations, the space-

like separated spin measurements can here be represented by operators
centered on the spatially separated wave functions |φ〉 and |χ〉 (considering
|φ(xi)|2|χ(xi)|2 ∼ 0). Taking into account also the spin degrees of freedom for
the indistinguishable particles, these operators have their support as follows:
σ̂L(~a) ⊂ {|φ ↑〉, |φ ↓〉}, and σ̂R(~b) ⊂ {|χ ↑〉, |χ ↓〉}. Thus, the expectation
value for an arbitrary spin measurement correlation is given by,

E(~a,~b) = 〈ψ|
(

σ̂L(~a)⊗ σ̂R(~b) + σ̂R(~b)⊗ σ̂L(~a)
)
|ψ〉, (1.24)

which is symmetric under particle exchange. If the quantum state is a simple
single Slater determinant, e.g., |ψ〉 = (|φ↑,χ↑〉−|χ↑,φ↑〉)√

2
, its expectation value is

reduced to,
E(~a,~b) = 〈φ ↑|σ̂L(~a)|φ ↑〉 〈χ ↑|σ̂R(~b)|χ ↑〉, (1.25)

since σ̂L(~a)⊗ σ̂R(~b)|χ ↑, φ ↑〉 = σ̂R(~b)⊗ σ̂L(~a)|φ ↑, χ ↑〉 = 0. The expectation
value is equivalent to a spin measurement σ̂L(~a)⊗ σ̂R(~b) on distinguishable
particles A and B, described by the separable state |ψ〉 ∼ |φ ↑〉A ⊗ |χ ↑〉B.
Thus, such a single Slater determinant state cannot violate the CHSH inequal-
ity for any~a and~b direction. On the other hand, if the state is not just a single
Slater determinant, e.g.,

|ψ〉 = 1√
2

(
f †
φ↑ f †

χ↑ + f †
φ↓ f †

χ↓
)
|vac〉, (1.26)

the expectation value is reduced to,

E(~a,~b) =
〈
ψ−dist

∣∣σ̂L(~a)⊗ σ̂R(~b)
∣∣ψ−dist

〉
, (1.27)

where
∣∣ψ−dist

〉
= 1√

2
(|φ ↑〉A|χ ↑〉B + |φ ↓〉A|χ ↓〉B) represents an entangled

state with distinguishable particles A and B, which violates the CHSH in-
equality for specific measurement directions~a and~b.

Generalized entanglement (GE)

In [18, 25, 26] the authors generalize the notion of partial trace when we
restrict the total algebra of observables to a subset Ω, obtaining the reduced
state corresponding to such restriction. As in the standard entanglement
theory, if the quantum state is a pure state, a sufficient condition for it to be
an unentangled state relates to the fact that its reduced state is pure (or an
extremal state, as we will discuss later). Thus, a candidate of quantifier for the
entanglement of a pure quantum state can be given by a function sensitive to
the mixedeness (loss of purity) of the reduced state. In their work it is used
the purity function, i.e., Purity(ρ) = Tr(ρ2). In the case of a mixed quantum
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1. Entanglement in system of indistinguishable particles

state we can define an unentangled state as usual, i.e., the states which can be
described as a convex decomposition of pure unentangled states.

In the context of indistinguishable particles, the subset Ω of observables
relative to “local observables” are simply the single particles observables
(Eq.(1.14)), as discussed previously . Let {Xα} be an orthonormal basis of Ω,
Tr(XαXβ) = δαβ. Thus, for every density operator ρ ∈ F (M) f or F (M)b, the
reduced state P̂Ω[ρ] corresponding to the Ω restriction of the total algebra of
observables, is defined by,

ρ −→ P̂Ω[ρ] = ∑
α

Tr(ρXα)Xα (1.28)

The partial trace mapping P̂Ω[ρ] can be roughly seen as a projection over the
subspace spanned by the algebra of observables Ω. A pure state |ψ〉 is defined
as generalized entangled (generalized unentangled) relative to the restricted Ω
algebra of observables, if it induces a reduced mixed (pure) state by the
mapping |ψ〉 7→ P̂Ω[|ψ〉]. Notice that a reduced state is pure, in a general
sense, if it cannot be described as a convex decomposition of any other
states, being also called an extremal state. We could have for example that
P̂Ω[|ψ〉] = K|ψ〉, where K is a constant, but notice that P̂Ω[|ψ〉] is as extremal
as |ψ〉.

A possible measure for the entanglement of a pure quantum state can
be given by the purity of its reduced state. Assuming Xα to be Hermitian,
Xα = X†

α, it can be easily computed as,

Purity
(
P̂Ω[|ψ〉]

)
= Tr

[
∑
α,β

Tr(ρXα)Tr(ρXβ)XαXβ

]
= ∑

α

〈Xα〉2 (1.29)

where 〈Xα〉 = Tr(ρXα) denotes the expectation value of the observable Xα in
the pure state |ψ〉. An import property to be noticed in the above defined
purity, is its invariance under group transformations; if a new basis X̃α is

chosen, the purity remains unchanged, ∑α

〈
X̃α

〉2
= ∑α〈Xα〉2. It is common

to proper renormalize the purity measure for an Ω algebra by setting K such
that Purity

(
P̂Ω[|ψ〉]

)
= 1 f or the generalized unentangled states.

As shown in [26], for the cases where Ω is a Lie algebra, the generalized
unentangled states relative to Ω satisfy the following equivalent statements:
(i) |ψ〉 is generalized unentangled relative to Ω;
(ii) P̂Ω[|ψ〉] has maximum purity;
(iii) P̂Ω[|ψ〉] is an extremal state;
(iv) |ψ〉 is the unique ground state of some Hamiltonian H in Ω;

In the case of fermions, a basis for the Ω algebra can be given by { f †
j f`; 1 ≤

j, ` ≤ M}, where M is the number of modes of the system. The interesting
feature of this basis is that it satisfies the following commutation relation,[

f †
i f j, f †

k f`
]
= δkj f †

i f` − δi` f †
k f j, (1.30)
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1.2. Indistinguishable particles

providing a realization of the unitary Lie algebra u(M) in the Fock space
F (M) f . Thus, the fermionic unentangled states relative to Ω are single-Slater
determinant states with fixed particle number, since they constitute the ground
states of number conserving quadratic Hamiltonians. As shown in [18], their
purity can be analytically computed and is given by Purity

(
P̂Ω[|ψ〉]

)
= M/2.

Any state which cannot be described by a single Slater determinant with
a fixed particle number has a lower purity, e.g., any state with coherence
superposition between different particle number sectors.

GNS construction

In [11], the authors deal with the partial trace mapping, or subsystems repres-
entation, for general systems (e.g., systems of indistinguishable particles), by a
different approach, more precisely, using the GNS construction, which allows
us to obtain the reduced states respective to a restricted algebra of observ-
ables. The GNS construction, formulated in 1940s by Gel’fand, Naimark and
Segal, allows one to reconstruct the Hilbert space from an “abstract algebra
of observables” A, and a linear functional w representing the quantum state.
More precisely, a linear functional w acting on abstract observables α ∈ A can
be generically represented, by the GNS construction, in terms of a density
matrix ρw and operators π̂w(α) in a induced Hilbert space Hw:{

α ∈ A
w

abstract algebra
of observables

and states

GNS
←−−−−−−−−→

{
π̂w(α)
ρw

∈ Hw

Hermitian observables
and density matrix in

a Hilbert space

(1.31)

This formulation is very useful when dealing with subsystems representation
and entanglement. In this approach all that is needed in order to describe
a subsystem is the specification of its subalgebra of observables Ao ⊂ A.
Given such a specification one readily obtain the reduced functional wo for
such a subalgebra, and then performing the GNS construction, (wo,Ao)←→
(ρwo , π̂wo ) ∈ Hwo , one gets the reduced state ρwo describing the subsystem.
In this way, the restriction of the original state to the subalgebra provides
a physically motivated generalization for the concept of partial trace. The
characterization of entanglement follows analogously as in the GE approach
where, e.g., given an initially pure quantum state, its entanglement can be
computed by analysing the mixedeness (loss of purity) of its reduced state.

In [11] the authors show how to use such approach for several distinct
systems, as for example, in systems of indistinguishable particles. In the case of
two fermions, each one with dimension d = 3, 4, it is obtained that single Slater
determinant states, with a fixed particle number, have no entanglement when
the restricted subalgebra corresponf to single-particle observables (Eq.(1.14)).
The same is obtained for two bosons, with dimension d = 3. The results thus
agree with our intuitive expectation, as discussed previously.
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CHAPTER 2
Computable measures for the

entanglement of
indistinguishable particles

In this chapter we discuss particle entanglement in systems of indistinguish-
able bosons and fermions, in finite Hilbert spaces, with focus on operational
measures for its quantification. We essentially show how to adapt the common
tools used in the usual entanglement theory of distinguishable systems. It is
very interesting to use such adapted measures, since we recover all of its well
known properties. For example, by using an adapted entropy of entanglement,
we know it is not increasing under single-particle operations. More precisely,
we show how to use Negativity, entanglement witnesses, and any measure
sensitive to mixedeness (loss of purity) of the single-particle reduced state, in
order to quantify the entanglement of particles in system of indistinguishable
particles. We prove interesting relations between all the presented measures.
We also obtain analytic expressions to quantify the entanglement of particles
for the eigenstates of homogeneous D-dimensional Hamiltonians with certain
symmetries.

This chapter is organized as follows. In Sec.2.1 we show how the purity
of the single-particle reduced state can be used as a measure for pure states,
analysisng the fermionic and bosonic case separately, seem they have non
trivial differences. In Sec.2.2 we analyse the Negativity as a measure. In Sec.2.4
we discuss entanglement witnesses measures, and its duality with Robustness
of entanglement measures; we show how to compute such measures based on
semi-definite programs (SDPs), which can be solved efficiently with arbitrary
accuracy. In Sec.2.5 we make some remarks about the different measures for
the entanglement of particles, and discuss how they compare for pure states
with single-particle Hilbert space with the smallest non trivial dimension,
proving some interesting relations. In Sec.2.6 we show how to use the tools
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presented in the previous sections in the context of entanglement in many-
body systems, computing analytically the entanglement for the eigenstates of
certain symmetric Hamiltonians. We conclude in Sec.2.7.

2.1 Single-particle reduced density matrix

In this section we show how the single-particle reduced state can provide
information about the entanglement of pure states. We show how any measure
based on the mixedeness of the reduced state, e.g. the von Neumann entropy,
can be used in order to quantify the entanglement.

2.1.1 Fermions

As previously discussed, fermionic pure states with no entanglement are
described by single Slater determinants with fixed particle number. The
single-particle reduced states (σr(Sl1)

) of a single Slater determinant have
a particularly interesting form, and stand for the pure states in the “N-
representable” reduced space (single-particle reduced space respective to the
antisymmetric space of N fermions) [36]. Recall that pure states are those
states which can not be described as a convex decomposition of any other
state; in this way they are the extremal states of such space.

Single-particle reduced fermionic state without particle entanglement: Given
a pure fermionic state with no particle entanglement, i.e., a single Slater
determinant with a fixed particle number, |ψ〉 = f †

φ1
f †
φ2

... f †
φN
|vac〉, where

{ f †
φi
}d

i=1 are orthonormal modes, we have the equivalence:

σr(Sl1)
≡ 1

N

N

∑
i=1

f †
φi
|0〉〈0| fφi ⇐⇒ |ψ〉 = f †

φ1
f †
φ2

... f †
φN
|vac〉, (2.1)

where σr(Sl1)
= Tr1...TrN−1(|ψ〉〈ψ|) is the single-particle reduced state (Tri

is the partial trace over particle i). The interesting feature that should be
noticed follows from the fact that σr(Sl1)

stands as a pure state (extremal state)

in the reduced space Hd, see Fig.2.1 for a schematic view. Aware of it, it is
straightforward to conclude that shifted positive semidefinite functions of
the purity for the single-particle reduced state can be used to measure the
entanglement of particles of a pure fermionic state; a result similar to that
obtained by Paskauskas and You [29] or Plastino et al. [30]. Using, for example,
the von Neumann entropy (S(ρ) = Tr(−ρ ln ρ)), we see that,

S[ρr = Tr1...TrN−1(|ψ〉〈ψ|)] ≥ S(σr(Sl1)
) = ln N, (2.2)

and thus a measure E for the entanglement of particles of a pure fermionic
state can be defined as a shifted von Neumann entropy of the single-particle
reduced state.

Shifted von Neumann entropy of entanglement for pure states:

E(|ψ〉〈ψ|) = S(ρr)− ln N. (2.3)
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Figure 2.1: Schematic view for the partial trace mapping of fermionic states.
The antisymmetric space of states, a convex set of states, is represented by the
left dashed and larger curve. Its convex subset of unentangled states “Sep” is
represented by its inner dashed curve. The pure (extremal) states are localized
at the border of the space. The partial trace over the pure unentangled states
leads to pure (extremal) states in the single particle reduced space, called N
representable space.

The case of pure states is easy due to the unique form of their respective
single-particle reduced states, which is no longer the case for mixed states.
If σ is a mixed unentangled state, i.e., can be described by a convex decom-
position of unentangled pure states, its single-particle reduced state in the
N-representable reduced space is:

σr ≡ Tr1...TrN−1(σ) = ∑
i

piσ
i
r(Sl1)

, (2.4)

which is not necessarily an extremal state anymore.
It is easy to check that, as expected, the particle entanglement measure

as here defined is non-increasing under single-particle symmetric operations
(“local symmetric operations”) [27], which follows from the entropy of entan-
glement properties.

2.1.2 Bosons

For systems of indistinguishable bosonic particles, despite the physically
motivated notion of entanglement, characterizing the set of unentangled
states, presented in the last chapter, there are in the literature some different
definitions and some debates about the proper definition and correponding
set of unentangled states for bosonic particles. For example, in [37] Eckert et al.
base their analysis in the characterization of what they call useful correlations
in systems of indistinguishable particles, defining a concurrence measure in
order to quantify the entanglement. It is obtained that the set of unentangled
bosonic states is actually smaller than the one we presented in this work; it is
generated by single Slater permanent states, but only those states where all of
their bosons occupy the same mode.

We will analyse in this section, for completeness, both cases, corresponding
specifically to the two distinct sets of unentangled states:
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Bosonic pure state with no particle entanglement: A bosonic pure state |ψ〉 ∈
S(Hd

1 ⊗ · · · ⊗Hd
N) without particle entanglement can be written as:

Definition 1. |ψ〉 =
No

∏
i=1

(b†
φi
)nφi |vac〉√
(nφi !)

, (2.5)

Definition 2. |ψ〉 = 1√
N!

(b†
φ)

N |vac〉, (2.6)

where b†
φi
= ∑d

k=1 uik b†
k ({b†

φi
} is a set of orthonormal operators in the index i,

U is a unitary matrix of dimension dNo, No is the number of distinct occupied
states, and nφi is the number of bosons in the state φi. Unentangled mixed
states are those that can be written as convex combinations of unentangled
pure states. We clearly see that the set of states without particle entanglement
according to Definition 1 includes the set derived from Definition 2, since the
later is a particular case of the former, with No = 1.

In one hand, definition 2 mirrors the case of distinguishable particles.
Therefore one can use the entropy of the one-particle reduced state S(ρr)
to quantify the entanglement. On the other hand, the problem is delicate
for definition 1, since the equivalence between pure states without particle
entanglement and the single-particle reduced states is no longer uniquely
defined by the analogous of Eq.(2.1). The entropy of the one-particle reduced
state gives information about the particle entanglement, but as a quantifier it
must be better understood. We know that a unentangled bosonic pure state,
according to Eq.(2.5), has the following one-particle reduced state:

σr(φi, φj) =
1
N

Tr(b†
φj

bφi |ψ〉〈ψ|) =
{ 1

N nφi , if φi = φj
0, otherwise,

σr =
1
N

No

∑
i=1

nφi b
†
φi
|vac〉〈vac|bφi . (2.7)

where σr(φi, φj) is a matrix element of σr. The entropy of the one-particle
reduced state assumes the special values (see Fig.2.2 for a schematic view ):

S(σr) = −
No

∑
i=1

(
nφi

N
) ln(

nφi

N
). (2.8)

Note that 0 ≤ S(σr) ≤ ln N, and therefore when S(ρr) > ln N, the pure state
ρ is entangled. The pure state is also entangled if S(ρr) is not one of the values
given by Eq.(2.8). Take for example the case of two bosons: we have either
No = 1, nφi = 2 and thus S(σr) = 0, or No = 2, nφi = 1 and S(σr) = ln 2.
Given an arbitrary pure state ρ of two bosons, if S(ρr) = 0 we can say with
certainty that the state has no particle entanglement, but if S(ρr) = ln 2 we
cannot conclude anything, for either a state with no particle entanglement,
e.g. |ψ〉 = b†

φi
b†

φj
|vac〉, or an entangled one, e.g. |ψ〉 = 1√

3
(cib†

φi
b†

φi
+ cjb†

φj
b†

φj
+

ckb†
φk

b†
φk
)|vac〉, with ci,j,k ∈ R, and S(ρr) ⊂ (0, ln 3], could have the same von

Neumann entropy for the one-particle reduced state.

18



2.2. Negativity

Figure 2.2: Schematic view for the partial trace mapping of bosonic states.
The bosonic space of states, a convex set of states, is represented by the
left dashed and larger curve. Its convex subset of unentangled states “Sep”,
as defined in Eq.(2.5), is represented by its inner dashed curve. The pure
(extremal) states are localized at the border of the space. The partial trace over
the pure unentangled states does not leads only to pure (extremal) states in
the single particle reduced space, but also to mixed states with specific von
Neumann entropies.

2.2 Negativity

In this section we show how the usual Negativity measure can be used also in
system of indistinguishable particles, in order to quantify its entanglement.

2.2.1 Fermions

As aforementioned in the previous section, the case of pure states is easy due to
the unique form of the unentangled single-particle reduced states, which is no
longer the case for mixed states. Though not obvious, but straightforward to
prove as we show at the end of this section, we can measure the entanglement
of particles of mixed fermionic states by the following shifted Negativity.

Shifted Negativity:

Neg(ρ) =
{ ∥∥ρTi

∥∥
1 − N if

∥∥ρTi
∥∥

1 > N,
0 otherwise,

(2.9)

where Ti is the partial transpose over the i-th particle, and ‖.‖1 is the trace-
norm. If ρ is a single Slater determinant, its trace-norm is N, and it is smaller
in the case of a unentangled mixed state. Note, however, that we do not know
if there are entangled fermionic states whose Negativity is null, similarly to
the case of distinguishable subsystems, where we may have the known PPT
entangled states.

2.2.2 Bosons

In one hand, definition 2 of unentangled bosonic states mirrors the case
of distinguishable particles. Therefore one can use the usual Negativity∥∥ρTi

∥∥
1 − 1 to quantify the entanglement. On the other hand, the problem is
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delicate for definition 1, since the equivalence between pure states without
particle entanglement and the single-particle reduced states is no longer
uniquely defined by the analogous of Eq.(2.1). The shifted Negativity given
by Eq.(2.9) is still valid, but now we do know that there are entangled states
with

∥∥ρTi
∥∥

1 < N.

2.2.3 Proof

In this section we calculate the trace-norm of the partial transpose of a un-
entangled fermionic/bosonic state, i.e.,

∥∥σTi
∥∥

1 = Tr[(σTi , σT†
i )

1
2 ], thus proving

the shifted negativity (Eq.(2.9)). We do so by the explicit diagonalization of the
operator (σTi σT†

i ). Consider first the case of a fermionic/bosonic pure state
σ = |ψ〉〈ψ|, as given by Eq.(1.15)/(2.5) which can be rewritten as:

σ = C ∑
ππ′

επεπ′Pπ |φ1φ2...φN〉〈φN ...φ2φ1|Pπ′ , (2.10)

with |ψ〉 =
√

C ∑π επ Pπ |φ1φ2...φN〉, where φi, φj are either equal or orthonor-
mal, Pπ are the permutation operators, επ is the permutation parity (ε = ±1
for fermions, ε = 1 for bosons), and C = (N!)−1 for fermions or C =
[N! ∏No

i=1(nφi !)]
−1 for bosons. From now on we omit the normalization C and

introduce the following notation:

Pπ |φ1...φN〉 = |π(φ1...φN)〉 = |π(φ1)π(φ2)...π(φN)〉. (2.11)

Now we perform the partial transpose on the first particle explicitly:

σT1 = ∑
ππ′

επεπ′
∣∣π′(φ1)π(φ2...φN)

〉〈
π′(φN ...φ2)π(φ1)

∣∣; (2.12)

(σT1)† = σT1 ; (2.13)

σT1 σT1 = ∑
π,π′ ,π̃,π̃′

επεπ′επ̃επ̃′
∣∣π′(φ1)π(φ2...φN)

〉
〈
π′(φN ...φ2)π(φ1)

∣∣π̃′(φ1)π̃(φ2...φN)
〉 〈

π̃′(φN ...φ2)π̃(φ1)
∣∣;(2.14)

σT1 σT1 = ∑
π′ ,π̃

επ′επ̃

〈
π′(φN ...φ2)

∣∣π̃(φ2...φN)
〉 ∣∣π′(φ1)

〉
〈π̃(φ1)| ⊗

∑
π,π̃′

επεπ̃′
〈
π(φ1)

∣∣π̃′(φ1)
〉
|π(φ2...φN)〉

〈
π̃′(φN ...φ2)

∣∣. (2.15)

We analyze only the bosonic case, and the fermions follow by setting No =
N and nφi = 1. Consider the first line of Eq.2.15. As states φi are not
necessarily orthogonal, and may be the same, we have contributions when the
permutations π′, π̃ are equal and in some cases even when they are different.
It can be seen that there are nk[(N − 1)!] permutations such that π′(φ1) =

φk, and for each of these there are ∏No
i=1(nφi !) permutations π̃ such that

π̃(φ1) = φk, resulting in non null contributions 〈π′(φN ...φ2)|π̃(φ2...φN)〉 6= 0.
If π̃(φ1) 6= φk then the contribution is null 〈π′(φN ...φ2)|π̃(φ2...φN)〉 = 0
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(simply note that the set {π̃(φ2...φN)} always has nk states “φk”, whereas
{π′(φN ...φ2)} has only nk − 1). The first line of Eq.2.15 thus reduces to:

No

∑
k=1

nk[(N − 1)!] [
No

∏
i=1

(nφi !)] |φk〉〈φk|. (2.16)

Now we analyze the second line of Eq.2.15. This term has non null contribu-
tions only if π(φ1) = π̃′(φ1). For permutations of the type π(φ1) = π̃′(φ1) =

φk, the matrix |π(φ2...φN)〉〈π̃′(φN ...φ2)| can assume (N−1)!

(nk−1)!
No
∏

i=1,(i 6=k)
(nφi !)

=
nφk (N−1)!

No
∏

i=1
(nφi !)

distinct combinations from the elements of the set {π(φ2...φN)}. Note that
there are ∏No

i=1(nφi !) permutations of type π(φ1) = φk generating the same
“ket” |π(φ2...φN)〉 (or “bra” 〈π̃′(φN ...φ2)|). Thus we have,

∑
π,π̃′

επεπ̃′
〈
π(φ1)

∣∣π̃′(φ1)
〉
|π(φ2...φN)〉

〈
π̃′(φN ...φ2)

∣∣ = [
No

∏
i=1

(nφi !)]
2 |ψk〉〈ψk|,

(2.17)
where |ψk〉 = ∑i

∣∣πi
k(φ2...φN)

〉
, being πi

k(φ2...φN) all the possible permutations

such that πi
k(φ1) = φk, and

〈
πi

k(φ2...φN)
∣∣∣π j

k(φ2...φN)
〉
= δij. We have then

〈ψk|ψk′〉 =
nφk (N−1)!

∏No
i=1(nφi !)

δkk′ , and finally the second line of Eq.2.15 is reduced to:

No

∑
k=1

[
No

∏
i=1

(nφi !)]
2 |ψk〉〈ψk| = [

No

∏
i=1

(nφi !)] (N − 1)!
No

∑
k=1

nφk

|ψk〉〈ψk|
〈ψk|ψk〉

. (2.18)

From Eq.(2.16) and Eq.(2.18 ) and remembering to reintroduce the normaliza-
tion constant C, we obtain:

∥∥∥|ψ〉〈ψ|TA
∥∥∥

1
=

(
No
∑

k=1

√nφk )
2

N
≤ N. (2.19)

The last step follows by noting that
No
∑

k=1
nk = N, and thus

No
∑

k=1

√
nk ≤ N. As the

trace-norm is a convex function, we can write for uncorrelated mixed states:∥∥∥∑j pjσ
Ti
j

∥∥∥
1
≤ ∑j pj

∥∥∥σ
Ti
j

∥∥∥
1
, and we are done.

2.3 Concurrence

A measure of fermionic and bosonic entanglement was proposed in [37] as
the analogous of Wootters concurrence [38]. Such measure, called Slater
concurrence (CS), is valid only for two-fermion states with a four-dimensional
single-particle Hilbert space A(H4 ⊗H4), or two-boson states with a two-
dimensional single-particle Hilbert space S(H2 ⊗H2), i.e. the antisymmetric
and symmetric spaces of lowest dimension which can have entangled states.

The Wooters concurrence for two distinguishable qubits (H2
1 ⊗H2

2), is
given as follows. First we define the temporal inversion operator D, also
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called spin flip transformation when we consider the qubits as spin degrees
of freedom,

D = (σy ⊗ σy)K, (2.20)

where σy is the Pauli matrix, and K is the anti-linear operator of complex
conjugation, which acts in an arbitrary state as K∑i,j ci,j|ij〉 = ∑i,j c∗i,j|ij〉. In

this way, given the dual state ρ̃ = DρD−1, the Wooters concurrence for states
ρ ∈ (H2 ⊗H2) is given by,

CW(ρ) = max(0, λ4 − λ3 − λ2 − λ1), (2.21)

where λ′is are, in descending order of magnitude, the square roots of the
singular values of the matrix R = ρρ̃.

The concurrence for fermions and bosons follows a similar reasoning. In
order to define the Slater concurrence for fermions, it is introduced some
operators. Let Uph be the operator of particle-hole transformation:

Uph f †
i U †

ph = fi, Uph|0〉 =
d

∏
i=1

f †
i |0〉, (2.22)

where d is the single-particle Hilbert space dimension. Similarly, define K
as the anti-linear operator of complex-conjugation, satisfying the following
relations:

K f †
i K = f †

i , K fiK = fi, K|0〉 = |0〉. (2.23)

Thus, given the operator D = KUph, and the dual states ρ̃ = DρD−1, we
have that the Slater concurrence for states ρ ∈ A(H4 ⊗H4) is given by

CS(ρ) = max(0, λ6 − λ5 − λ4 − λ3 − λ2 − λ1), (2.24)

where λ′is are, in descending order of magnitude, the square roots of the
singular values of the matrix R = ρρ̃.

Analogously, we can define the concurrence for the bosonic case, where
the dualization operator is now defined as D = RK, and the operator R acts
as

Rb†
iR† =

2

∑
j=1

σ
y
ji b†

j . (2.25)

Thus, given the dual state ρ̃ = DρD−1, the Slater concurrence for bosonic
states ρ ∈ S(H2 ⊗H2) is given by

CB(ρ) = max(0, λ4 − λ3 − λ2 − λ1), (2.26)

where λ′is are, in descending order of magnitude, the square roots of the
singular values of the matrix R = ρρ̃. It is important to recall that the bosonic
Slater concurrence follows Eq.(2.6) as the set of unentangled states.
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2.4 Entanglement witnesses and robustness

In this section we show how to use entanglement witnesses as a necessary
and sufficient criterion for the entanglement of a quantum state. We also
present the equivalence between the optimal entanglement witnesses with
physically motivated entanglement quantifiers, as the known Robustness of
entanglement. By duality Lagrangean from theory of convex optimization we
show their equivalence. We then show how to compute such measures with
good accuracy based on semi-definite programs (SDPs).

2.4.1 Entanglement witnesses

Entanglement witnesses are hermitian operators (observables) whose expecta-
tion values contain information about the entanglement of a quantum state,
being in this way a great tool for the study of entanglement in quantum
systems. Central to a formal definition of such operators is the important
Hahn-Banach theorem, or its simplified version also called as Hahn-Banach
theorem of separation:

Definição 2.1. Hahn-Banach theorem of separation. Let S be a compact and
convex set, in a Banach 1 space of finite dimension, and ρ a point which does not
belong to this set. Thus we can always find an hyperplane W which separates ρ from
S .

A schematic illustration of the theorem is given in Fig.2.3. If we identify
the set S as the set of unentangled (separable) states, we see that is always
possible to determine if a state is or not entangled by looking for such an
hyperplane of separation. That is why such hyperplanes are also called as
entanglement witnesses. We can also see the theorem by the perpective of
“distances”, or better, expectation values Tr(Wρ), leading to the following
definition of witnesses operators:

Definição 2.2. An operator W is a entanglement witness for a given state entangled
(separable) state ρ if Tr(Wσ) ≥ 0 for all separable states σ, and Tr(Wρ) < 0
(Tr(Wρ) > 0).

When we work with entanglement witnesses, several times we are more
interested in just a specific subset of such operators, the called optimal en-
tanglement witnesses, OEW. There are, however, two different definitions of
OEW. The first one, introduced by Lewenstein [39], is based on the quantity
of of states detected by the witness, i.e., the witness W is optimal if the set {ρ}
of entangled states detected is maximized. The second definition, which is
the one we will use in this work, refers to a particular quantum state: Wopt is
the optimal witness to the quantum state ρ if,

Tr(Woptρ) = min
W∈M

Tr(Wρ), (2.27)

whereM represents a compact subset of the entire set of entanglement witnessesW .

1Hilbert space of limited operators.
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Figure 2.3: Schematic illustration of the Hahn-Banach theorem of separation,
showing the convex set S, a point ρ outside of this set, and two possible
hyperplanes W and OEW which separates the set from the point. OEW is the
optimal entanglement witness, according to the definition in Eq.(2.27).

Actually, the choice of the set M can determine different measures of
entanglement [40], showing that the OEW can be used as a tool not only as a
sufficient criterion of separability, but also as a quantifier for the entanglement.
A proper definition for these quantifiers can be given as:

E(ρ) = max(0,− min
W∈M

Tr(Wρ)) (2.28)

We will analyse in this work some specific cases for such a OEW quantifier,
linking with the Robustness of entanglement measures.

2.4.2 Robustness of entanglement

The Robustness of entanglement measure is based on the idea of resistence of
the state entanglement against pre-determined, or arbitrary, mixtures. More
precisely, given an entangled state ρ, its robustness is the minimum necessary
of a mixture with another state, such that the entanglement is suppressed.
Formally, a definition may be given as follows:

Definition 2.3. Given a quantum state ρ ∈ HT , and φM ∈ X ⊂ HT , the ro-
bustness R(ρ) is defined as the minimum amount “s” necessary to the mixture
ρM = 1

1+s (ρ + sφM) be a separable state, i.e.,

R(ρ) = min
φM∈X

(
min

s≥0
s : ρM =

1
1 + s

(ρ + sφM) ∈ Sep
)

(2.29)
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Notice that the minimization must be realized over both variables ”s” and
φM, and it is computationally a quite hard task to be computed.

There were proposed different types of robustness in the litarature, each
one based on a different motivation and leading to different specific space
of mixtures X . We will present three main types: the random robustness,
generalized robustness, and the robustness of entanglement [41, 42].

·Robustness of entanglement: R(ρ) : X ∈ S .
In this definition the interference mixed state are arbitrary separable states,

which can in this way be prepared locally. Such a measure can be interpreted
as the quantification of a “smart” interference at the quantum state by the local
observers [41]. The term “smart” comes from the fact that, given that the local
parts know the quantum state, they can shape at their best an interference in
their local subsystems in order to suppress the entanglement of the state.

·Random robustness, Ra(ρ) : X ≡ I.
This definition follows as a particular case of the previous mentioned

Robustness of entanglement, where the interference now corresponds to the
white noise.

·Generalized robustness, Rg(ρ) : X ∈ HT .
In the previous definitions the mixture was restricted to separable states.

We could however consider the possibility of the quantum state interfering
with an entangled state, as usual in many body dynamics. It is known that
even mixtures of entangled states, can result in separable states. The Gen-
eralized robustness in this way encloses all the possible mixtures (interference).

There are some interesting properties between the robustness that might
be presented, such as:
· clearly, the there is the following hierarchy between the measures:

Rg(ρ) ≤ R(ρ) ≤ Ra(ρ) (2.30)

· as shown by Steiner [42], the Generalized robustness and the Robustness
of entanglement have the same value for pure states:

Rg(ρ) = R(ρ), if ρ = |ψ〉〈ψ|. (2.31)

This is a very surprising result, since the volume of the space of states for high
dimensions becomes dominated by entangled states, and the probability to
find a separable state decays exponentially with the Hilbert space dimension;
thus it would be expected that the Generalized robustness possessed smaller
values than the Robustness of entanglement.
· The optimal mixed state φM for the Generalized robustness of pure states

is not unique; in fact there are infinitely many possible optimal mixtures.

2.4.3 Duality: OEW ∼ Robustness

In this section we show how to relate OEW measures (Eq.(2.28)) with the
Robustness measures (Eq.(2.29)) previously presented, using concepts of
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Lagrangean duality from theory of convex optimization 2. We will present the
detailed calculations for the case of Generalized robustness, since the other
cases follow in a similar way.

The Generalized robustness can be computed by OEW if we restrict the
subset of witnesses to M = {W ∈ W |W ≤ I} in Eq.(2.28). Let us see how
it works. In Lagrangean duality a minimization task can be seen under two
distinct aspects, called primal and dual problem. In our case, we use as the
primal problem the approach under entanglement witnesses, given by the
following minimization task,

minimize Tr(Wρ)

under the constraints W ≤ I (2.32)

Tr(Wσ) ≥ 0 , ∀σ ∈ Sep

The Lagrangean of this problem is given by,

L(W, X, h(σ)) = Tr(Wρ) + Tr[X(W − I)]−
∫

σ∈Sep

h(σ)Tr(Wσ)dσ (2.33)

From the Lagrangean, we can obtain the dual function g(X, h(σ)), given
by infimum over the domain W ∈ M. We see that,

g(X, h(σ)) = inf
W∈M

L(W, X, h(σ))

=

 −Tr(X), if Tr W(ρ + X−
∫

σ∈Sep
h(σ)σdσ) = 0

−∞, otherwise

The dual function is finite if the trace condition given above is satisfied. Thus,
the dual problem, which consists of a maximization of the dual function under
its constraints, is given by,

minimize Tr(X)

under the constraints h(σ) ≥ 0

X ≥ 0 (2.34)

ρ + X =
∫

σ∈Sep
h(σ)σdσ

Denoting X = sφM, where φM is an arbitrary state and s > 0, we finally
have the equivalence between of the dual problem with the Generalized
robustness.

The same analysis can also be performed for the other robustness. We
obtain:

Rg(ρ) = max(0,−min
W≤I

Tr(Wρ)), (2.35)

R(ρ) = max(0,− min
Tr(Wσ)≤1,∀σ∈S

Tr(Wρ)), (2.36)

Ra(ρ) = max(0,− min
Tr(W)=1

Tr(Wρ)), (2.37)

2See Appendix 2.8 for the main ideas about Lagrangean duality and theory of convex
optimization used in this chapter. An interested reader is encouraged to consult [43].
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2.4.4 Semi-definite programs (SDPs)

Despite the entanglement witnesses constitute an excellent tool in the entan-
glement theory, there is nevertheless a large difficulty in computing them,
seem the hard minimization task related to its determination. We will show
in this section how to settle this problem, based on optimization methods for
semi-definite programs (SDPs).

An SDP is a class of problems which are characterized by the optimization
of a linear functional under convex constraints. Formally, given the complex
vectors c, x, Fi ∈ Cm, an SDP is given by the following minimization problem:

minimize c†x constrained to

F†
i x ≥ 0, i = 1, ..., k; (2.38)

where the vector c determines the function to be minimized, x is the vector of
the variables, and Fi’s represent the "k" convex constraints associated to the
variables. It is worth mentioning that in a SDP there are no local minimum
solutions, since it is a convex optimization problem. Once you map your
problem to an SDP format, as above, you are in very good hands since there
are several efficient methods for its optimization, and the problem can thus
be solved with arbitrary accuracy.

We can easily identify the determination of witnesses and optimal wit-
nesses with an SDP, where the linear functional to be minimized is simply the
trace function, Tr(Wρ), while the convex constraints are given by Eqs.(2.35),
(2.36) and (2.37). The main problem remains in the computational implement-
ation of the constraints over all infinitely many separable states, Tr(Wσ) ≥
0, ∀σ ∈ Sep. We will show in this way a method, proposed by Brandao and Vi-
anna [44, 45], on how to efficiently solve this implementation problem, where
by using just a finite set of constraints, it is possible to mimic the infinitely
many constraints over the separable states. The central idea follows from the
following SDP:

Theorem 2.1. A quantum state ρ ∈ (H1 ⊗ · · · ⊗ Hn) is entangled iff the optimal
value of the following SDP is negative:

minimize Tr(Wρ) constrained to

dn−1

∑
in−1=1

· · ·
d1

∑
i1=1

d1

∑
j1=1
· · ·

dn−1

∑
jn−1=1

(ci∗
jn−1
· · · ci∗

j1 ci
`1
· · · ci

`n−1
)Wi

jn−1···j1 `1···`n−1
≥ 0,

∀ci
jk , ci

`k
∈ C, 1 ≤ k ≤ (n− 1), (2.39)

where dk is the dimension ofHk, Wi
jn−1···j1 `1···`n−1

= 〈jn−1|n−1⊗· · ·⊗ 〈j1|1W|`1〉1⊗
· · · ⊗ |`n−1〉n−1 ∈ B(Hn) and |j〉k is an orthonormal basis on Hk. If ρ is entangled,
the matrix W which minimizes the problem corresponds to the OEW of ρ.
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Proof. We know that a quantum state is entangled iff there is a witness operator
W such that Tr(Wρ) < 0 and Tr(Wσ) > 0 for all separable states. Consider a
general separable state, σ1,··· ,n ∈ (H1 ⊗ · · · ⊗Hn) given by,

σ1,··· ,n = ∑
i

pi|φi〉1〈φi| ⊗ · · · ⊗ |χi〉n−1〈χi| ⊗ |τi〉n〈τi|; (2.40)

the positivity condition of the witness over all separable states can be written
as,

〈τi|n ⊗ 〈χi|n−1 ⊗ · · · ⊗ 〈φi|1W|φi〉1 ⊗ · · · ⊗ |χi〉n−1︸ ︷︷ ︸
Functional ∈ B(Hn)

⊗|τi〉n ≥ 0, ∀i. (2.41)

Notice, however, that the positivity of above functional is sufficient to satisfy
the inequality. Expanding the local states as |φi〉k = ∑j ci

j|j〉k, where |j〉k is an
orthonormal basis for the local space Hk, follows directly that the matrix W
solving the problem minimization problem corresponds to the OEW of ρ.

We see now that, even if we reduce the number of constraints in the
above theorem, i.e., if we set i = 1, ..., M, where M is a finite number, we are
still generating infinitely many constraints from the functional of Eq.(2.41):
each constraint given by a fixed i in the functional, satisfy the positivity over
infinitely many possible local states “|τ〉n”. Such a relaxation of an infinite
number of contraints to a finite number can be made in a probabilistic way,
where the constraints are chosen according to a probability distribution P . In
this way, the OEW obtained from the relaxation is the closest possible from the
exact solution (with no relaxation), less an ε probability of violation, i.e., that
Tr(Wσ) < 0. This probability is lowered as the number of constraints “i” is
increased. Numerical simulations with this method showed a great accuracy
even for very small values of i.

2.4.5 Indistinguishable particles

We will show in this section how to generalise all the previous concepts of
entanglement witnesses, Robustness, and the duality between them, for the
case where the system is composed of indistinguishable particles. When we
deal with systems of indistinguishable (fermionic) bosonic particles, we know
that the space of states is restricted to the (anti)symmetric subspaces. In our
analysis we will properly assimilate this restriction on the witnesses operators,
and in the robustness mixtures.

OEW ∼ Robustness

Let us first see the fermionic case, since the bosonic case follows similarly. In
the fermionic case, if we restrict the witness operators to the antisymmetric
space {W = AWA†}, with the the constraint {W ≤ A}, by duality theory
we define the Fermionic Generalized Robustness (RFg ); while the constraint
{Tr(W) = Da}, where Da is the antisymmetric N-particle Hilbert space
dimension, defines the Fermionic Random Robustness (RFr ); and the constraint
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{Tr(W) ≤ 1} defines the Fermionic Robustness of Entanglement (RF ). These
quantifiers correspond to the minimum value of s (s ≥ 0), such that

σ =
ρ + sϕ

1 + s
(2.42)

is a unentangled fermionic state, where ϕ is an arbitrary fermionic state
(entangled or not) in the case of RFg , an arbitrary unentangled fermionic state
in the case of RF , and the maximally mixed fermionic state (A/Da) in the
case of RFr . We see the completely similarity with the usual distinguishable
systems, where the only difference now is that all the states and operators are
restricted to the physical subspace, the antissymetric under particles exchange.
Analogous relations follows for the bosonic case, recallling now that the
restricitons are defined in the symmetric space.

Example: In order to exemplify the above assertions, let us see the case
of the Fermionic Generalized Robustness. In an analogous way as in Sec.
2.4.3, we will apply the concepts of Lagrange duality from theory of convex
optimization in order to analyse the OEW problem and its dual Robustness.
The primal problem (OEW) is given by,

minimize Tr(Wρ)

under the constraints W ≤ A (2.43)

W = AWA†

Tr(Wσ) ≥ 0 , ∀σ ∈ Sep

where the set Sep corresponds here to the set of unentangled fermionic states.
The Lagrangean of the problem is given by,

L(W, X, h(σ)) = Tr(Wρ) + Tr[X(W −A)]−
∫

σ∈Sep

h(σ)Tr(Wσ)dσ (2.44)

From the Lagrangean we obtain the dual function g(X, h(σ)), given by the
infimum over the domain W ∈ M, such that W = AWA†. We have that,

g(X, h(σ)) = inf
W∈M

L(W, X, h(σ))

=

 −Tr(X), if Tr W(ρ + X−
∫

σ∈Sep
h(σ)σdσ) = 0

−∞, otherwise

Thus the dual function is finite iff the above trace condition is satisfied. In this
way, the dual problem is given by,

minimize Tr(X)

under the constraints h(σ) ≥ 0 (2.45)

X ≥ 0

ρ + X =
∫

σ∈Sep
h(σ)σAdσ

which is simply the Generalized Robustness of Entanglement.
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SDPs

We now adapt Brandão and Vianna’s [44] technique in order to obtain a new
algorithm to determine OEWs for indistinguishable fermions or bosons. The
method for obtaining the OEW is based on semidefinite programs (SDPs),
which can be solved efficiently with arbitrary accuracy.

The method has the same formulation for both fermionic and bosonic
particles. We will present the SDP formulation specifically for the OEW and
its Generalized Robustness of Entanglement measure, but any other case
follows trivially from this one by just exchanging the witnesses subspace, as
discussed previously. Recall that the central obstacle in order to obtain the
OEW is the generation of the positivity constraint over all unentangled states,
in our case, over all single-Slater determinant/permanent states.

Theorem 2.2. A quantum state ρ with N indistinguishable fermionic/bosonic
particles is entangled if and only if the optimal value of the following SDP is negative:

minimize Tr(Wρ) subject to

d
∑

iN−1=1
· · ·

d
∑

i1=1

d
∑

j1=1
· · ·

d
∑

jN−1=1
(cN−1∗

iN−1
· · · c1∗

i1
c1

j1
· · · cN−1

jN−1
×

WiN−1···i1 j1···jN−1) ≥ 0,
∀ck

i ∈ C, 1 ≤ k ≤ (N − 1), 1 ≤ i ≤ d,
ΓWΓ† = W,

W ≤ Γ,

(2.46)

where d is the dimension of the single particle Hilbert space, {a†
`} is an orthonormal

basis of fermionic/bosonic creation operators, Γ is the antisymmetrization/symmetrization
operator, and WiN−1···i1 j1···jN−1 = aiN−1 · · · ai1 W a†

j1
· · · a†

jN−1
∈ B(Hd

1) is an oper-
ator acting on the space of one fermion/boson. If ρ is a fermionic entangled state, the
operator W that minimizes the problem corresponds to the OEW of ρ; othewise, if ρ is
a bosonic state, the operator is a “quasi-optimal” entanglement witness.

Proof. It is known that a state is entangled if and only if there exists a witness
operator W such that Tr(Wρ) < 0 and Tr(Wσ) ≥ 0 for every unentangled
state σ. Consider a general unentangled state as given by,

σ = ∑
j1,...,jN

pj1,...,jN ã†
j1 · · · ã

†
jN |vac〉〈vac|ãjN · · · ãj1 , (2.47)

where ∑ pj1,...,jN = 1, and ã†
jk

= ∑i ck
i a†

i . The semi-positivity condition
Tr(Wσ) ≥ 0 is equivalent to:

〈0|ãjN ãjN−1 · · · ãj1 W ã†
j1 · · · ã

†
jN−1

ã†
jN |0〉 ≥ 0, (2.48)

Note however that, in order to satisfy such a condition, it is sufficient that the
operator ãjN−1 · · · ãj1 W ã†

j1
· · · ã†

jN−1
be positive semidefinite. Expanding such

a term in the canonical basis {a†
j } we obtain exactly the first constraint in

Eq.2.46. The others contraints follow from the definition of Fermionic/Bosonic
Generalized Robustness of Entanglement.
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In one hand such a witness operator is the OEW in the case of fermionic
particles, but on the other hand it is not optimal in the case of bosonic particles,
due to its complicated structure of unentangled states. The entanglement wit-
ness W does not detect bosonic entangled states of the form a†

1 · · · a†
N−1 ã†

N |0〉,
where ã†

N is not orthogonal to a†
i |N−1

i=1 , a problem which does not arise in the
fermionic case due to the Pauli exclusion principle. In numerical tests, we no-
ticed that the quality of W improves with the increasing of the single-particle
Hilbert space dimension.

The minimization problem given above is again solved by means of prob-
abilistic relaxations, as done in [44], where the set of infinite constraints is
exchanged by a finite sample. Thus the witness operator obtained is such
that satisfies most of the constraints in Eq.2.46. The small probability (ε) for
a constraint to be violated (i.e. Tr(Wσ) < 0) diminishes as the size of the
sample of constraints increases.

2.5 Measures interrelations

In this section we highlight the relationships among the measures of particle
entanglement for fermionic and bosonic pure states in the smallest dimen-
sion, A(H4 ⊗H4) and S(H2 ⊗H2), respectively. While the fermionic case
resembles that of distinguishable qubits, the bosonic case is more intricate,
due to the structure of the unentangled states.

For pure states of distinguishable qubits, ρ = |ψ〉〈ψ| ∈ B(H2 ⊗H2), it
is well known the following equivalence for Generalized Robustness Rg(ρ),
Robustness of Entanglement Re(ρ), Random Robustness Rr(ρ), Wooters
Concurrence CW(ρ), Negativity Neg(ρ), and Entropy of Entanglement E(ρ)
[38, 41, 42, 46]:

Rg(ρ) = Re(ρ) =
1
2
Rr(ρ) = CW(ρ) = Neg(ρ) ∝ E(ρ). (2.49)

Recall that E(ρ) is the Shannon entropy of the eigenvalues (λ, 1− λ) of the
reduced one-qubit state, and CW = 2

√
λ(1− λ).

For pure two-fermion states, ρ = |ψ〉〈ψ| ∈ B(A(H4⊗H4)), we have found
similar relations:

RFg (ρ) = RFe (ρ) =
2
3
RFr (ρ) = CFS (ρ) =

1
2

Neg(ρ) ∝ E(ρ). (2.50)

Note that Neg(ρ), and E(ρ) are the shifted measures. The relations between
Robustness and Slater concurrence were observed numerically by means of
optimal entanglement witnesses [27], and now we prove them. Based on
the Slater decomposition |ψ〉 = ∑i zia†

2i−1a†
2i|0〉, where a†

i = ∑k Uik f †
k , we can

write the following optimal decomposition ( viz Eq.(2.42)):

σopt =
1

1 + t
(ρ + tφopt), (2.51)

φopt =
1
2
(a†

1a†
3|0〉〈0|a3a1 + a†

2a†
4|0〉〈0|a4a2). (2.52)
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Now we show that when t = CFS (ρ), σopt is unentangled and in the border
of the uncorrelated states. We know that the Slater concurrence of the state
is invariant under unitary local symmetric maps Φ. We can always choose
Φ such that the single particle modes {a†

i } are mapped into the canonical
modes { f †

i } 3. Therefore Φσopt → σ′opt =
1

1+t (|ψ′〉〈ψ′|+ tφ′opt), where |ψ′〉 =
∑i zi f †

2i−1 f †
2i, and φ′opt =

1
2 ( f †

1 f †
3 |0〉〈0| f3 f1 + f †

2 f †
4 |0〉〈0| f4 f2).

The Slater concurrence of σ′opt is given by CFS (σ′opt) = max(0, λ4 − λ3 −
λ2 − λ1), where {λi}4

i=1 are the eigenvalues, in non-decreasing order, of

the matrix
√

σ′optσ̃
′
opt, with σ̃′opt = (KUph)σ

′
opt(KUph)

†, being K the complex

conjugation operator, and Uph the particle-hole transformation. Consider the
following matrix:

√
σ′optσ̃

′
opt =

√
1

(1 + t)2 (ρ
′ρ̃′ + t(ρ′φ̃′opt + φ′optρ̃

′) + t2φ′optφ̃
′
opt). (2.53)

Note that “σ′opt, ρ′, φ′opt” and their dual are all real matrices. With the aid of

Eqs.(2.51) and (2.52), it is easy to see that ρ′φ̃′opt = φ′optρ̃
′ = 0, φ′optφ̃

′
opt =

1
2 φ′opt,

and that ρ′ρ̃′ is orthogonal to φ′optφ̃
′
opt. Thus Eq.(2.53) reduces to:

√
σ′optσ̃

′
opt =

1
(1 + t)

(
√

ρ′ρ̃′ +
t√
2

√
φ′opt). (2.54)

The eigenvalues of
√

ρ′ρ̃′ are easily obtained by means of its Slater decompos-

ition, and the only non null eigenvalue is given by CFS (ρ′).
√

φ′opt has just two

non null eigenvalues, which are equal, given by 1√
2

(viz. Eq.(2.52)). Therefore

the eigenvalues of the Eq.2.53 are “ 1
(1+t) (C

F
S (ρ′), t

2 , t
2 , 0)”, and according to

the definition of the Slater concurrence follows directly that CFS (σ′opt) = 0 if
and only if t ≥ CFS (ρ′).

We end this section by considering pure two-boson states, ρ = |ψ〉〈ψ| ∈
B(S(H2⊗H2)). We have the following relations, which can be easily verified:

CBS (ρ) = Neg(ρ)de f .2 ∝ E(ρ)de f .2 (2.55)

In considering the measures corresponding to definition 1 of unentangled
states (Eq.2.5), we see that they are related differently, since the Negativity will
always be zero for such states (

∥∥ρTi
∥∥

1 ≤ 2). This is due to the use of the upper
limit in Eq.(2.19). We could however, instead of using this upper limit, obtain
analytically the values of

∥∥ρTi
∥∥

1 corresponding to the unentangled pure states,
which would be equal to

∥∥ρTi
∥∥

1 = 1 or 2, and perform a similar analysis to
that made for the S(ρr)de f .1 in Eq.2.8. Thus it would be possible to relate the

3 Given the canonical single particle basis { f †
i }, and any other orthonormal single particle

basis {a†
i }, where a†

k = ∑j ukj f †
j , a unitary local symmetric map Φ transforms the canonical basis

as follows: f †
k 7→ ∑j vkj f †

j , where vkj is a unitary matrix. The basis {a†
i } is given, after such

transformation, by a†
k 7→ ∑j,l ukj(vjl f †

l ). We can always choose Φ such that v = u†, and thereby
we have {a†

i } 7→ { f †
i }.
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Negativity and the Entropy of Entanglement according to definition 1. We
see therefore that the relations between the distinct measures are similar to
the distinguishable case when we consider the definition 2 (Eq.2.6) of particle
entanglement, possessing some discrepancies when we consider the definition
1.

2.6 Homogeneous D-Dimensional Hamiltonians

Given the easy computability of the entanglement measures presented above,
in particular the Negativity and functions of the purity of the single-particle
reduced state, in this section we employ them to quantify entanglement of
particles in many-body systems, described by homogeneous Hamiltonians
with certain symmetries.

Consider the Hamiltonian of a D-dimensional lattice, with N indistin-
guishable particles of spin Σ, LD sites (with the closure boundary condition,
L + 1 = 1), and the orthonormal basis {a†

~iσ
, a~iσ} of creation and annihilation

operators for the particles in that lattice, where ~i = (i1, .., iD) is the spatial
position vector, and σ = −Σ, (−Σ+ 1), ..., (Σ− 1), Σ is the spin in the direction
Ŝz. If the eigenstates are degenerate, we can use the Negativity to quantify
their entanglement, and if the eigenstates are non-degenerate, we can also use
any function of the purity of their reduced state as a quantifier. For example,
the purity function, i.e., Tr(ρ2

r ), is lower than 1/N if (if and only if, in the
case of fermions) the state is entangled. Thus we can define the measure “E”
based on the purity function as E(|ψ〉〈ψ|) = max{0, 1

N − Tr(ρ2
r )}. If, however,

the Hamiltonian has some symmetries, it is possible to obtain an analytic
expression for the particle entanglement of their eigenstates according to the
von Neumann entropy of its single-particle reduced state. Let the Hamiltonian
be homogeneous, and with the following properties: (1) their eigenstates are
non-degenerate, and (2) the Hamiltonian commutes with the spin operator
Sz (thus Sz and the Hamiltonian share the same eigenstates), if ρ is one its
eigenstates, we have then:

Tr(a†
~iσ

a~jσ ρ) = Tr(a†
(~i+~δ)σ

a(~j+~δ)σ ρ), (2.56)

Tr(a†
~iσ

a~jσ̄︸ ︷︷ ︸
σ 6=σ̄

ρ) = 0, ∀~i,~j, (2.57)

where Eq.(2.56) follows from the translational invariance property of the
quantum state due to the homogeneity of the Hamiltonian, while Eq.(2.57)
follows directly from Sz conservation (condition (2)). By condition (1) of
non-degeneracy and the results of the previous sections, we known that the
von Neumann entropy of the single-particle reduced state can be used as a
quantifier of the particle entanglement. Let us calculate it.

We know that matrix elements of the reduced state are given by ρr(~iσ,~jσ̄) =
1
N Tr(a†

~jσ̄
a~iσ|ψ〉〈ψ|) and, according to Eq.(2.57), subspaces of the reduced state

with different spin “σ” are disjoint. We can therefore diagonalize the reduced
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state in these subspaces separately. Eq.(2.56) together with the boundary
condition fix the reduced state to a circulant matrix. More precisely, for the
unidimensional case (D = 1), given the subspace with spin “σ” and {a†

iσ}L
i=1,

the reduced state is given by the following L× L matrix:

ρσ
r =

1
N



x0 x1 · · · xL−2 xL−1
xL−1 x0 x1 xL−2

... xL−1 x0
. . .

...

x2
. . . . . . x1

x1 x2 · · · xL−1 x0

, (2.58)

xδ =
〈

a†
(j+δ)σajσ

〉
, (2.59)

x0 =
〈

a†
jσajσ

〉
= njσ =︸︷︷︸

eq.2.56

niσ =
Nσ

L
, (2.60)

where Nσ = ∑L
j=1 njσ. The terms xδ are simply the quadratures of the model,

and can be obtained in several ways, e.g. directly from one-particle Green’s
function, by computational methods like quantum Monte Carlo, or by the
Density Matrix Renormalization Group method (DMRG). The eigenvalues
{λσ

k } are given by a Fourier transformation of the quadratures,

λσ
k =

1
L

L−1

∑
δ=0

eikδxδ, k =

[
0,

2π

L
, ..., (L− 1)

2π

L

]
. (2.61)

Thus the particle entanglement of that eigenstate can be calculated from
S(ρr) = − ∑

j,σ
λσ

j log λσ
j .

For higher dimensions, given the subspace of a single-particle with spin “σ”
and {a†

~iσ
}LD

i=1, the characteristic vector of its circulant matrix ( e.g. the matrix
first line) is given by,

[D=2] :

~vc =
(
[x00 · · · x(L−1)0] [x01 · · · x(L−1)1] · · ·

· · · [x0(L−1) · · · x(L−1)(L−1)]
)

, (2.62)

[D=3]:

~vc =
(

v2D
z=0 v2D

z=1 ... v2D
z=(L−1)

)
, (2.63)

where v2D
z=` =

(
[x00` · · · x(L−1)0`] [x01` · · · x(L−1)1`] · · · [x0(L−1)` · · · x(L−1)(L−1)`]

)
is the characteristic vector of the plane z = `, and xδxδyδz =

〈
a†
(`+δx)(m+δy)(n+δz)σ

a(`mn)σ

〉
.
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Thus, the eigenvalues {λσ
j }LD

j=1 of the reduced state are given by:

[D=2] : λσ
j =

L−1

∑
`,m=0

x`mw`+mL
j , (2.64)

[D=3] : λσ
j =

L−1

∑
`,m,n=0

x`mnw`+mL+nL2

j , (2.65)

where wj = exp 2πij
LD . If we wished to obtain the particle entanglement accord-

ing to the purity function, as presented in the beginning of this section, we
would easily obtain the following expression:

E(|ψ〉〈ψ|) = max{0,
1
N
− LD

N2 ∑
~δ,σ

∣∣∣〈a†
(~i+~δ)σ

a~iσ
〉∣∣∣2} (2.66)

for any fixed spatial position vector “~i”. Note however that, although the
calculation of the purity function is simple even for the case of a general
Hamiltonian, since it is just the sum over the one-particle Green’s function〈

a†
~i ¯̃σ

a~kσ

〉
(note that Tr(ρ2

r ) =
1

N2 ∑
~i,~k,σ,σ̃

∣∣∣〈a†
~i ¯̃σ

a~kσ

〉∣∣∣2) and thus does not require

the diagonalization of the single-particle reduced state, the measure accord-
ing to the von Neumann entropy can be more interesting, given its wide
application in quantum information theory.

2.7 Conclusion

Entanglement of distinguishable particles is related to the notion of separabil-
ity, i.e. the possibility of describing the system by a simple tensor product of
individual states. In systems of indistinguishable particles, the symmetriza-
tion or antisymmetrization of the many-particle state eliminates the notion of
separability, and the concept of entanglement becomes subtler. If one is inter-
ested in the different modes (or configurations) the system of indistinguishable
particles can assume, it is possible to use the same tools employed in systems
of distinguishable particles to calculate the entanglement of modes. On the other
hand, if one is interested in the genuine entanglement between the particles,
as discussed in the present work, one needs new tools. In this case, we have
seen that entanglement of particles in fermionic systems is simple, in the sense
that the necessary tools are obtained by simply antisymmetrizing the distin-
guishable case, and one is led to the conclusion that unentangled fermionic
systems are represented by convex combinations of Slater determinants. The
bosonic case, however, does not follow straightforwardly by symmetrization
of the distinguishable case. The possibility of multiple occupation implies
that a many-particle state of Slater rank one in one basis can be of higher
rank in another basis. This ambiguity reflects on the possibility of multiple
values of the von Neumann entropy for the one-particle reduced state of a
pure many-particle state. Aware of the subtleties of the bosonic case, we have
proven that a shifted von Neumann entropy and a shifted Negativity can
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particles

be used to quantify entanglement of particles. We presented fermionic and
bosonic entanglement witnesses, and showed an algorithm able to efficiently
determine OEW’s for such systems. We have shown, however, that the bosonic
entanglement witness are not completely optimal, due to the possibility of
multiple occupation. Nonetheless, numerical calculations have shown that the
bosonic witness improves with the increase of the single-particle Hilbert space
dimension. Finally, we have illustrated how the tools presented in this article
could be useful in analysing the properties of entanglement in many-body
systems, obtaining in particular analytic expressions for the entanglement of
particles according to the von Neumann entropy of the single-particle reduced
state in homogeneous D-dimensional Hamiltonians.

Though we have not yet studied quantum correlations beyond entangle-
ment, we mention that the quantumness or nonclassicality of states of indistin-
guishable particles can be reduced to the calculation of bipartite entanglement
between the main system and an ancilla, following the activation protocol intro-
duced by Piani et al. [34]. In this case, besides the usual symmetrization of
operations to preserve indistinguishability, one must be more careful with the
phraseology, for a system of indistinguishable particles cannot be classical. We
will defer this discussion to Chapter 3.

2.8 Appendix: Duality and theory of convex optimization

In optimization theory, we can usually exchange the original problem, called
primal problem, by an alternative formulation, called dual problem [43]. This
link is realized by the Lagrangean of the problem. Consider the following
primal optimization problem:

minimize fo(x)

under the constraints fi(x) ≤ 0 , i = 1, ..., m (2.67)

hi(x) = 0 , i = 1, ..., n

where x ∈ D is the variable of the problem, fo the function to be minimized,
and fi, hi, the constraints. Denote the optimum value of the problem as given
by p∗, i.e., f (xopt) = p∗.

The Lagrangean L of the problem encloses all of its information, given
by the objective function to be minimized with its weighted constraints as
follows,

L(x, λ, µ) = f0(x) +
m

∑
i=1

λi fi(x) +
n

∑
i=1

µihi(x), (2.68)

where λi, µi are called Lagrangean multipliers. The minimization of the
Lagrangean over the domain of the primal variables x provides the dual
Lagrangean function g(λ, µ),

g(λ, µ) = inf
x∈D

( f0(x) +
m

∑
i=1

λi fi(x) +
n

∑
i=1

µihi(x)) (2.69)
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A central property of such a dual Lagrangean relies on the fact that, for any
λ � 0 and µ, it provides a lower bound over the optimal primal minimization
problem,

g(λ, µ) ≤ p∗ (2.70)

Proof. Consider x̃ as a possible point of the problem, i.e. , fi(x̃) ≤ 0 and
hi(x̃) = 0, and let λ � 0. Thus, the Lagrangean L(x̃, λ, µ) will be limited by
the objective function f0 on such a point,

L(x̃, λ, µ) = f0(x̃) +
m

∑
i=1

λi fi(x̃) +
n

∑
i=1

µihi(x̃) ≤ f0(x̃) (2.71)

We see in this way that,

g(λ, µ) = inf
x∈D

L(x, λ, µ) ≤ L(x̃, λ, µ) ≤ f0(x̃), (2.72)

and since such a inequality is valid for all possible points of the problem, the
proof for Eq.(2.70) follows directly.

It raises now the question on what cases such an inequality would be
saturated, obtaining g(λ∗, µ∗) = p∗? If so, we would have two equivalent
formulations for the same problem: the primal problem as given in Eq.(2.67),
and its dual problem,

maximize g(λ, µ)

under the constraint λ � 0 (2.73)

In general such a inequality saturation is not valid. For some specific cases
, however, it is possible to show the complete saturation, as for example, in
cases where the optimization problem is convex,

minimize f0(x)

under the constraint fi(x) ≤ 0 , i = 1, ..., m (2.74)

Ax = B ,

where f0, ..., fm are convex functions. In such convex optimization problems
we have that d∗ = p∗.
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CHAPTER 3

Quantumness of correlations
in indistinguishable particles

The notion of entanglement, first noted by Einstein, Podolsky, and Rosen [6],
is considered one of the main features of quantum mechanics, and became
a subject of great interest in the last few years due to its primordial role
in quantum computation and quantum information [1, 2, 3, 4]. However,
entanglement is not the only kind of correlation presenting non classical
features, and a great effort has recently been directed towards characterizing a
more general notion of quantum correlations, the quantumness of correlations.
The quantumness of correlations is revealed in different ways, and there are
a wide variety of approaches, sometimes equivalent, in order to characterize
and quantify it, e.g., through the “activation protocol”, where the non classical
character of correlations in the system is revealed by a unavoidable creation
of entanglement between system and measurement apparatus in a local
measurement [34, 47]; or by the analysis of the minimum disturbance caused
in the system by local measurements [48, 49, 52], which led to the seminal
definition of quantum discord [48]; or even through geometrical approaches
[53].

As discussed in the previous chapters, the notion of entanglement in
systems of indistinguishable particles has two distinct approaches: the correl-
ations genuinely arising from the entanglement between the particles (“en-
tanglement of particles”) and the correlations arising from the entanglement
between the modes of the system (“entanglement of modes”). These two
notions of entanglement are complementary, and the use of one or the other
depends on the particular situation under scrutiny. For example, the correl-
ations in eigenstates of a many-body Hamiltonian could be more naturally
described by particle entanglement, whereas certain quantum information
protocols could prompt a description in terms of entanglement of modes.

The correlations between modes in a system of indistinguishable particles
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3. Quantumness of correlations in indistinguishable particles

is subsumed in the usual analysis of correlations in systems of distinguishable
ones. Thus we will, in this work, characterize and quantify a general notion
of quantum correlations (not necessarily entanglement) genuinely arising
between indistinguishable particles. We will call these correlations by quan-
tumness of correlations, to distinguish from entanglement, and it has an
interpretation analogous to the quantumness of correlations in systems of
distinguishable particles, as we will see. One must however be careful with
such phraseology, since systems of indistinguishable particles always have
exchange correlations coming from the symmetric or antisymmetric nature of
the wavefunction. The intrinsic exchange correlations are not included in the
concept of the quantumness of correlations. We will discuss these issues in
more detail throughout the chapter.

The chapter is organized as follow. In Sec.3.1 we briefly review the notion
of quantumness of correlations in distinguishable subsystems, and their in-
terplay with the measurement process via the activation protocol. In Sec. 3.2
we introduce the activation protocol for systems of indistinguishable particles;
and in Sec.3.3 we characterize and quantify the quantumness of correlations
in these systems. We conclude in Sec.3.4.

3.1 Quantumness of correlations

The concept of quantumness of correlations is related to the amount of inac-
cessible information of a composed system if we restrict to the application of
local measurements on the subsystems [48, 49, 50, 51]. Since quantumness
of correlations can be created with local operations on the subsystems, it
is also called as the quantum properties of classical correlations [48, 51]. A
model for the description of a measurement process is given via decoherence
[54], where in order to measure a quantum system we must interact it with
a measurement apparatus, which is initially uncorrelated with the quantum
system. This interaction, given by a unitary evolution, creates correlations
between them, and thereby the measurement outcomes will be registered on
the apparatus eigenbasis. A protocol that allows us to understand the inter-
play between a measurement process and the quantumness of correlations
in a system is known as the nonclassical correlations activation protocol. This
protocol shows that if and only if the system is strictly classically correlated,
i.e., has no quantumness of correlations, there exists a local measurement
on the subsystems that does not create entanglement between system and
measurement apparatus [34, 47, 55]; or rather, if the system has quantumness
of correlations, then it will inevitably create entanglement with the appar-
atus measurement in a local measurement process, hence the reference to
“activation”. A direct corollary of this protocol allows us to quantify the
amount of quantumness of correlations by measuring the minimal amount of
entanglement created between the system and the measurement apparatus
during a local measurement process [56].

Given, for instance, a bipartite system S described by the state ρS, in order
to apply a von Neumann measurement in this system we must interact it
with a measurement apparatus M, initially in an arbitrary state |0〉〈0|M.

40



3.2. Activation protocol for indistinguishable particles

Suppose that we are able to apply global von Neumann measurements in such
a system, e.g., a von Neumann measurement in the system eigenbasis {|i〉}S ,
ρS = ∑i λi|i〉〈i|. The system and the measurement apparatus must interact
under the action of the following unitary transformation: US:M|i〉S|0〉M =
|i〉S|i〉M. We see that the interaction simply creates classical correlations
between them: ρ̃S:A = US:A(ρS⊗ |0〉〈0|A)U†

S:A = ∑i λi|i〉〈i| ⊗ |i〉〈i|. If however
we are restricted to apply local measurements, the measurement process will
create entanglement between system and apparatus by their corresponding
coupling unitary U′S:A, unless the state is strictly classically correlated, as
stated by the activation protocol. The minimal amount of entanglement
E(ρ̃S:A) which is created in a local measurement process is quantified by the
quantumness of correlations Q(ρS) of the system, i.e.,

Q(ρS) = min
US:A

E(ρ̃S:A). (3.1)

Different entanglement measures will lead, in principle, to different quan-
tifiers for the quantumness of correlations. The only requirement is that the
entanglement measure be monotone under LOCC maps [34, 47, 56]. Other
measures of quantumness can be recovered with the activation protocol: the
quantum discord [47], one-way work deficit [47], relative entropy of quan-
tumness [34] and the geometrical measure of discord via trace norm [57], are
some examples.

3.2 Activation protocol for indistinguishable particles

As aforesaid, quantum correlations between distinguishable particles can be
interpreted via a unavoidable entanglement created with the measurement
apparatus in a partial von Neumann measurement on the particles [47, 34],
i.e., in a measurement corresponding to a non-degenerate local observable.
Note that although the approach is based on projective measurements, it
is valid and well defined also for POVMs: once the dimension and the
partitioning of the ancilla can be arbitrarily chosen, general measurements can
be realized through a direct application of the Naimark’s dilation theorem. In
systems of indistinguishable particles the notion of “local measurement” will
be implemented through the algebra of single-particle observables (see for
example Ref.[11] for a detailed discussion), and based on this identification
we will set up an “activation protocol” for indistinguishable particles. The
importance to study the correlations, particularly the entanglement, in terms
of subalgebras of observables has been emphasized in [11, 21, 25, 58, 59, 60],
and in the previous chapters, proving to be a useful approach for such analysis.
The algebra of single-particle observables is generated by,

Osp = M⊗ I ⊗ · · · ⊗ I + I ⊗M⊗ · · · ⊗ I + · · ·+
I ⊗ · · · ⊗ I ⊗M, (3.2)

where M is an observable in the Hilbert space of a single particle. We
can express this algebra in terms of fermionic or bosonic creation {a†

i } and
annihilation {ai} operators, depending on the nature of the particles in the
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3. Quantumness of correlations in indistinguishable particles

system. The algebra is generated by number conserving quadratic observables
Osp = ∑ij Mija†

i aj that can be diagonalized as Osp = ∑k λk ã†
k ãk, where ã†

k =

∑j Ukja†
j and U is the unitary matrix which diagonalizes M. Thus, since it is a

non-degenerate algebra, the eigenvectors of their single-particle observables
will be given by single Slater determinants, or permanents, for fermionic
and bosonic particles respectively; more precisely, given by the set {ã†

~k
|vac〉}

where ~k = (k1, · · · , kn), ki ∈ {1, 2, ..., dimsingle−particle}, represents the states
of occupation of n particles, ã†

~k
= ã†

k1
ã†

k2
· · · ã†

kn
|vac〉, dimsingle−particle is the

single-particle dimension and |vac〉 is the vacuum state. The measurement of
single-particle observables is therefore given by a von Neumann measurement,
which we shall call hereafter as single-particle von Neumann measurement,
according to the complete set of rank one projectors {Π̃~k = ã†

~k
|vac〉〈vac|ã~k},

∑~k Π̃~k = IA(S), being IA and IS the identity of the antisymmetric and
symmetric subspaces, respectively.

Recall that a measurement can be described by coupling the system to
a measurement apparatus, being the measurement outcomes obtained by
measuring the apparatus in its eigenbasis. Given a quantum state ρQ, and
a measurement apparatusM in a pure initial state |0〉M, such that ρQ,M =
ρQ ⊗ |0〉〈0|M, their coupling is given by applying a unitary U on the total
state that will correlate system and apparatus, ρ̃Q,M = U(ρQ ⊗ |0〉〈0|M)U†.
Such unitary U realizes a single-particle von Neumann measurement {Π~k} if
for any quantum state ρQ holds: TrM(U(ρQ ⊗ |0〉〈0|M)U†) = ∑~k Π~kρQΠ†

~k
.

It is not hard to see how the unitary U must act in order to realize the
{Π~k = a†

~k
|vac〉〈vac|a~k}, ∑~k Π~k = IA(S) measurement. Let us first consider

the following notation, {a†
~k
|vac〉} =

{∣∣∣ f (~k)〉}, f (~k) ∈ {1, 2, .., dimA(S)}, being

f a bijective function of the sets {~k} and {1, 2, .., dimA(S)}, and dimA(S) is
the dimension of the antisymmetric or symmetric subspaces. Given that the
apparatus has at least the same dimension as the system, the unitary is given
by,

U
∣∣∣ f (~k)〉

Q
⊗ |j〉M =

∣∣∣ f (~k)〉
Q
⊗
∣∣∣j⊕ f (~k)

〉
M

. (3.3)

It is easy to show that such operator is indeed unitary; note that

U = ∑
~k,j

∣∣∣ f (~k)〉∣∣∣j⊕ f (~k)
〉〈

f (~k)
∣∣∣〈j|, (3.4)

thus,
UU† = ∑

~k,j,~k′ ,j′
δ~k,~k′δj,j′

∣∣∣ f (~k)〉∣∣∣j⊕ f (~k)
〉〈

f (~k′)
∣∣∣〈j′ ⊕ f (~k′)

∣∣∣, (3.5)

and since {
∣∣∣ f (~k)〉

Q
}~k and {

∣∣∣j⊕ f (~k)
〉
M
}j form a complete set, we have that

UU† = IA(S) ⊗ IM.
Defined the coupling unitary, we are now able to analyze the entanglement

created between system and apparatus in a single-particle von Neumann
measurement, EQ,M. Given a quantum state ρQ, we intend to quantify the
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1 V

U

2 V

ρS ...
...

...

N V

|0〉〈0|M
Figure 3.1: Activation protocol for a system of indistinguishable particles,
where ρS is the state of the system, |0〉〈0|M represents the measurement ap-
paratus, V is the single-particle unitary transformations and U the unitary (as
given by Eq.(3.3)) respective to a single-particle von Neumann measurement.

minimum of such entanglement over all single-particle von Neumann meas-
urements, minU EQ,M

[
U(ρQ ⊗ |0〉〈0|M)U†]. This quantity then corresponds

to the quantumness of correlation in systems of indistinguishable particles.
Note that such minimization is analogous to the activation protocol given in
[34], but now for systems of indistinguishable particles, where the minimiz-
ation is carried out on the single-particle unitary transformations V⊗n, see
Fig.3.1.

3.3 Results

Regardless of which entanglement measure is used, let us first see which set
of states does not generate entanglement after the activation protocol, i.e., has
no quantumness of correlations. We find that this set {ξ} is given by states
that possess a convex decomposition in orthonormal pure states described by
single Slater determinants, or permanents,

ξ = ∑
~k

p~k ã†
~k
|vac〉〈vac|ã~k , ∑

~k

p~k = 1, (3.6)

where ã†
~k
|vac〉 = V⊗na†

~k
|vac〉, V is a unitary matrix, and {a†

~k
} an orthonormal

set of creation operators.

Proof. We shall first show that states given by Eq.(3.6) do not generate entan-
glement, and then that they are the only ones. Let U be the coupling unitary

corresponding to the {Π~k = a†
~k
|vac〉〈vac|a~k =

∣∣∣ f (~k)〉〈 f (~k)
∣∣∣}, ∑~k Π~k = IA(S)

measurement. Applying the activation protocol on states given by Eq.(3.6),
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using V̄ = V† as the single-particle unitary transformation, it follows that:

ρQ:M = U
[
(V̄⊗nξV̄†⊗n

)Q ⊗ |0〉〈0|M
]
U† (3.7)

= ∑
~k

p~k

∣∣∣ f (~k)〉〈 f (~k)
∣∣∣
Q
⊗
∣∣∣ f (~k)〉〈 f (~k)

∣∣∣
M

,

where ρQ:M ∈ Sep(Q⊗M). The demonstration that such states correspond
to the unique states that do not generate entanglement is given below. A
separable state between system and measurement apparatus can be given by,

σ = ∑
i

pi|ψi〉〈ψi|Q ⊗ |φi〉〈φi|M, (3.8)

noting that the sets {|ψi〉} and {|φi〉} are not necessarily orthogonal. Since the
activation protocol corresponds to a unitary operation, thus invertible, there
must exist a set {|ηi〉} of states for the system such that,

U(V⊗n) |ηi〉Q ⊗ |0〉M = |ψi〉Q ⊗ |φi〉M, (3.9)

and ρQ = ∑i pi |ηi〉〈ηi|. Expanding {|ηi〉} on the basis {a†
~k
|vac〉} “trans-

formed” by V†⊗n
,

|ηi〉 = ∑
~k

c(i)~k
V†⊗n

a†
~k
|vac〉, (3.10)

we see from Eqs.(3.9) and (3.10) that,

U(V⊗n) |ηi〉 ⊗ |0〉 = ∑
~k

c(i)~k
a†
~k
|vac〉 ⊗

∣∣∣ f (~k)〉 = |ψi〉 ⊗ |φi〉. (3.11)

The above factorization condition imposes the following restriction: c(i)~k
=

γi δ{~k,g(i)}, ‖γi‖ = 1, g : {i} 7→ {~k}. Therefore,

ρQ = ∑
i

pi |ηi〉〈ηi|,

= ∑
i

pi (∑
~k

γi δ{~k,g(i)} a†
~k
|vac〉) (3.12)

(∑
~k′
〈vac|a~k′ γ

∗
i δ{~k′ ,g(i)}),

= ∑
i

pi ‖γi‖︸︷︷︸
1

a†
g(i)|vac〉〈vac|ag(i),

i.e, the states with no quantumness of correlations as given by Eq.(3.6).

Example. Let us show an example of the approach in order to clarify
the formalism and the above analysis. An interesting case concerns to the
controversial bosonic quantum state |ψb〉 = 1

2 (b
†
0b†

0 + b†
1b†

1)|vac〉 ∈ S(H2 ⊗
H2), where {b†

i } are the bosonic creation operators. Note that such a state can
actually be described by a single Slater permanent |ψb〉 = b†

+b†
−|vac〉, being

b†
± = 1√

2
(b†

0 ± b†
1). Defining the coupling unitary U corresponding to the
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{Π~k = b†
~k
|vac〉〈vac|b~k}, ∑~k Π~k = IS , {~k} = {(0, 0), (0, 1), (1, 1)}measurement,

and using the notation,

b†
0b†

0 |vac〉 = |0〉, b†
0b†

1 |vac〉 = |1〉, b†
1b†

1 |vac〉 = |2〉, (3.13)

we have that the unitary acts as follows,

U|k〉Q ⊗ |0〉M = |k〉Q ⊗ |k〉M. (3.14)

Applying this unitary on the bosonic state, we generate an entangled state
between system and apparatus, U(|ψb〉Q⊗|0〉M) = 1

2 (b
†
0b†

0 |vac〉⊗ |0〉+ b†
1b†

1 |vac〉⊗
|2〉), but this is not a unavoidable entanglement in order to realize that meas-
urement, since we could apply, before the unitary coupling, the following
single-particle unitary transformation, V : |+〉 = |0〉 + i|1〉 7→ |0〉, |−〉 =
|0〉 − i|1〉 7→ |1〉, i.e,

V ⊗V :
{

b†
+ 7→ b†

0 ,
b†
− 7→ b†

1 .
(3.15)

We see now that the coupling between system and apparatus does not generate
entanglement between them, U

[
(V ⊗V)|ψb〉Q ⊗ |0〉M

]
= U(b†

0b†
1 |vac〉Q ⊗

|0〉M) = b†
0b†

1 |vac〉Q ⊗ |1〉M ∈ Sep(Q⊗M), and thus such a state has no
quantumness of correlations.

An important result to be emphasized in this analysis via the activation
protocol relates to the establishment of an equivalence between the quantum-
ness of correlations with the distinguishable bipartite entanglement between
system and apparatus, showing the usefulness of the correlations between
indistinguishable particles. Note that the set {ξ} is simply the antisymmet-
rization or symmetrization of the distinguishable classically correlated states
(states with distinguishable particles with no quantumness of correlations),
and all their correlations are due to the exchange correlations; the activation
protocol then shows that any kind of correlations between indistinguishable
particles beyond the mere exchange correlations can always be activated or
mapped into distinguishable bipartite entanglement between Q :M.

The correlations between indistinguishable particles can thereby be charac-
terized by different types: the entanglement, the quantumness of correlations
as discussed in this chapter, the correlations generated merely by particle
statistics (exchange correlation), and the classical correlations. In fact, there
are quantum states whose particles are classically correlated, not even pos-
sessing exchange correlations, such as pure bosonic states with all their
particles occupying the same degree of freedom, |ψb〉 = 1√

n!
(b†

i )
n|vac〉, or

mixed states described by an orthonormal convex decomposition of such pure
states, χb = ∑i

1
n (b

†
i )

n|vac〉〈vac|(bi)
n. See Fig.3.2 for a schematic picture of

these different kinds of correlations. Interesting questions to raise concern
how the notion of entanglement of particles is related to the quantumness
of correlations, and if they are equivalent for pure states. We can note from
Eq.(3.6) that, for pure states, the set with no quantumness of correlations is
described by states with a single Slater determinant, or permanent, which is
equivalent to the set of unentangled pure states. Concerning mixed states,
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3. Quantumness of correlations in indistinguishable particles

Figure 3.2: Schematic picture of the distinct types of correlations in systems of
indistinguishable particles. The larger set (Q) denotes the set of all fermionic,
or bosonic, quantum states; the blue area (U ) represents the convex set of
states with no entanglement; the gray area (P) represents the non convex
set of states with no quantumness of correlations, as defined in this chapter
(Eq.(3.6)); and the light gray area (C) represents the non convex set of states
with no exchange correlations due to the particle statistics, possessing only
classical correlations. Note that for fermionic particles, the set C is a null set.
The following hierarchy is identified: C ⊂ P ⊂ U ⊂ Q.

it becomes clear that the set given by Eq.(3.6) is a subset of the unentangled
one, thereby being quantumness of correlations a more general notion of
correlations than entanglement.

According to the activation protocol, different entanglement measures will
lead, in principle, to different quantifiers for the quantumness of correlations.
We can thus define the measure QE for quantumness of correlations, associated
with the entanglement measure E, as follows,

QE(ρQ) = min
V

E(ρ̃Q,M), (3.16)

where ρ̃Q,M = U
[
(V⊗nρQV†⊗n

)⊗ |0〉〈0|M
]
U†.

We shall consider two different entanglement measures for the bipartite en-
tanglement, the physically motivated distillable entanglement ED [61] and the
relative entropy of entanglement Er [62, 63]. Note that the output states of the
activation protocol have the so called maximally correlated form [64] between

system and measurement apparatus, ρ̃Q,M = ∑~l,~l′ χV
~l,~l′

∣∣∣ f (~l)〉〈 f (~l′)
∣∣∣
Q
⊗
∣∣∣ f (~l)〉〈 f (~l′)

∣∣∣
M

,

being χV
~l,~l′

= (ΠV
~l
)†ρQ(ΠV

~l′
), where ΠV

~l
= V⊗nΠ~l (see appendix). It is known

that the entanglement for such states according to the distillable entanglement
[65], as well as for the relative entropy of entanglement [64], is given by
ED(r)(ρ̃Q,M) = S(ρ̃Q)− S(ρ̃Q,M), where S(ρ) = −Tr(ρ ln ρ) is the von Neu-

mann entropy. The first term is given by S(ρ̃Q) = S
(

∑~l(Π
V
~l
)†ρQ(ΠV

~l
)
∣∣∣ f (~l)〉〈 f (~l)

∣∣∣),
i.e., the entropy of the projected state ρQ according to a single-particle von
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Neumann measurement, and the second term is simply given by S(ρ̃Q,M) =
S(ρQ), since it is invariant under unitary transformations. Thus we have that
the quantumness of correlations measure is given by,

QED(r)
(ρQ) = min

V

[
S
(

∑~l(Π
V
~l
)†ρQ(ΠV

~l
)
∣∣∣ f (~l)〉〈 f (~l)

∣∣∣)
−S(ρQ)], (3.17)

which corresponds to the notion of minimum disturbance caused in the system
by single-particle measurements. This result is in agreement with the analysis
made in [66] for the particular case of two-fermion systems, and to the best of
our knowledge is the only study attempting to characterize and quantify a
more general notion of correlations between indistinguishable particles. Using
analogous arguments as those in [53], it is possible to prove the Eq.(3.17) is an
equivalent expression to,

QED(r)
(ρQ) = min

ξ
S(ρQ ‖ χ), (3.18)

where S(ρ ‖ χ) = Tr(ρ ln ρ− ρ ln χ) is the relative entropy. The above equation
introduces a geometrical approach to the particle correlation measure. Notably
we see that, as well as for the quantumness of correlations in distinguishable
subsystems, the correlations between indistinguishable particles defined in
this chapter has a variety of equivalent approaches in order to characterize
and quantify it, as shown by the activation protocol (Eq.3.16), minimum
disturbance (Eq.3.17) and geometrical approach(Eq.3.18).

3.4 Conclusion

In this work we discussed how to define a more general notion of correlation,
called quantumness of correlations, in fermionic and bosonic indistinguishable
particles, and presented equivalent ways to quantify it, addressing the notion
of an activation protocol, the minimum disturbance in a single-particle von
Neumann measurement, and a geometrical view for its quantification. An
important result of our approach concerns to the equivalence of these correl-
ations to the entanglement in distinguishable subsystems via the activation
protocol, thus settling its usefulness for quantum information processing. It
is interesting to note that the approach used in this work is essentially based
on the definition of the algebra of single-particle observables, dealing here
with the algebra of indistinguishable fermionic, or bosonic, single-particle
observables, but we could apply the same idea for identical particles of
general statistics, e.g. braid-group statistics, simply by defining the correct
single-particle algebra of observables.

3.5 Appendix: maximally correlated states

Let us show that the output states of the activation protocol for indistinguish-
able particles have the so called maximally correlated form between system

and measurement apparatus. If {a†
~k
|vac〉} =

{∣∣∣ f (~k)〉} is the system basis, U
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3. Quantumness of correlations in indistinguishable particles

is the coupling unitary given by Eq.(3.3), and V is the unitary respective to
the single particle transformation, we have that,

V⊗n a†
~k
|vac〉 = (∑

l1

vk1l1 a†
l1) · · · (∑

ln

vkn ln a†
ln)|vac〉,

= ∑
~l

vk1l1 · · · vkn ln

∣∣∣ f (~l)〉, (3.19)

where vki lj
are the matrix elements of V. A general state for the system can be

given as,

ρQ = ∑
~k,~k′

p~k,~k′

∣∣∣ f (~k)〉〈 f (~k′)
∣∣∣; (3.20)

thereby,

V⊗nρQV†⊗n = ∑
~k,~k′ ,~l,~l′

p~k,~k′(vk1l1 · · · vkn ln) (vk′1l′1
· · · vk′n l′n)

†
∣∣∣ f (~l)〉〈 f (~l′)

∣∣∣,
= ∑

~l,~l′
χV
~l,~l′

∣∣∣ f (~l)〉〈 f (~l′)
∣∣∣, (3.21)

where χV
~l,~l′

= ∑~k,~k′ p~k,~k′(vk1l1 · · · vkn ln) (v~k′1l′1
· · · v~k′n l′n

)†. The output states of
the activation protocol thus have the form,

ρQ:M = U
[
(V⊗nρQV†⊗n

)⊗ |0〉〈0|M
]
U† (3.22)

= ∑
~l,~l′

χV
~l,~l′

∣∣∣ f (~l)〉〈 f (~l′)
∣∣∣
Q
⊗
∣∣∣ f (~l)〉〈 f (~l′)

∣∣∣
M

,

i.e., the maximally correlated form.
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CHAPTER 4

Entanglement of
indistinguishable particles as

a probe for quantum phase
transitions in the extended

Hubbard model

We investigate the quantum phase transitions of the extended Hubbard model
at half-filling with periodic boundary conditions employing the entanglement
of particles, as opposed to the more traditional entanglement of modes. Our
results show that the entanglement has either discontinuities or local minima
at the critical points. We associate the discontinuities to first order transitions,
and the minima to second order ones. Thus we show that the entanglement
of particles can be used to derive the phase diagram, except for the subtle
transitions between the phases SDW-BOW, and the superconductor phases
TS-SS.

4.1 Introduction

The connection between two important disciplines of Physics, namely quantum
information theory and condensed matter physics, has been the subject of
great interest recently, generating much activity at the border of these fields,
with numerous interesting questions addressed so far [5]. In particular, the
properties of entanglement in many-body systems, and the analysis of its
behavior in critical systems deserve special attention.

In this work [67] we deal with the entanglement of indistinguishable
fermionic particles in the one dimensional extended Hubbard model (EHM).
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We focus in the half-filling case. The model is a generalisation of the Hubbard
model [68, 69], which encompasses more general interactions between the
fermionic particles, such as an inter-site interaction, thus describing more
general phenomena and a richer phase diagram. Precisely, it is given by,

HEHM = −t
L

∑
j=1

∑
σ=↑,↓

(a†
j,σaj+1,σ + a†

j+1,σaj,σ) +

+U
L

∑
j=1

n̂j↑n̂j↓ + V
L

∑
j=1

n̂jn̂j+1, (4.1)

where L is the lattice size, a†
j,σ and aj,σ are creation and annihilation operators,

respectively, of a fermion with spin σ at site j, n̂j,σ = a†
j,σaj,σ, n̂j = n̂j,↑ + n̂j,↓,

and we consider periodic boundary conditions (PBC), L + 1 = 1. The hopping
(tunnelling) between neighbor sites is parametrized by t, while the on-site
and inter-site interactions are given by U and V, respectively. Despite the
apparent simplicity of the model, it exhibits a very rich phase diagram,
which includes several distinct phases, namely: charge-density wave (CDW),
spin-density wave (SDW), phase separation (PS), singlet (SS) and triplet
(TS) superconductors, and a controversial bond-order wave (BOW). A more
detailed description of the model and its phases will be given in the next
section.

Our numerical analysis is performed employing entanglement measures
for indistinguishable particles introduced recently [27, 28, 14], in conjunction
with the density-matrix renormalisation group approach (DRMG)[70, 71],
which has established itself as a leading method for the simulation of one
dimensional strongly correlated quantum lattice systems. DMRG is a nu-
merical algorithm for the efficient truncation of the Hilbert space of strongly
correlated quantum systems based on a rather general decimation prescription.
The algorithm has achieved unprecedented precision in the description of
static, dynamic and thermodynamic properties of one dimensional quantum
systems, quickly becoming the method of choice for numerical studies.

The chapter is organized as follows. In Sec. 4.2 we review the model and
its phase diagram. In Sec. 4.3 we present our results. We conclude in Sec. 4.4.

4.2 Extended Hubbard Model

In this section we give a detailed description of the extended Hubbard model
[68, 69], and its distinct phases in the half-filling case. The reader familiar
with the subject may skip this section.

Many efforts have been devoted to the investigation of the EHM’s phase
diagram at half-filling, using both analytical and numerical methods [72,
73, 74, 75, 76, 77, 78, 79]. Despite the apparent simplicity of the model, it
exhibits a very rich phase diagram which includes several distinct phases:
charge-density wave (CDW), spin-density wave (SDW), phase separation (PS),
singlet (SS) and triplet (TS) superconductors, and a controversial bond-order
wave (BOW). See Fig.4.1 for a schematic drawing of the phase diagram at
half-filling.
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Figure 4.1: Phase diagram of the half-filled extended Hubbard model in
one dimension. The distinct phases correspond to the charge-density wave
(CDW), the spin-density wave (SDW), phase separation (PS), singlet (SS) and
triplet (TS) superconducting phases, and bond-order wave (BOW). The order
of the quantum phase transitions is identified by the different line shapes.
The order of the two superconducting phases transition (blue dotted line)
is controversial, being identified as a BKT transition [73], or a second order
transition [72].

In the strong coupling limit (|U|, |V| � t), one can qualitatively char-
acterize its phases as given by a charge-density wave, spin density wave
and a phase separation. For a strong repulsive on-site interaction (U > 0,
U � V), the ground state avoids double occupancy and the spin density is
periodic along the lattice, leading to an antiferromagnetic ordering, namely
spin-density wave. Its order parameter is given by,

Osdw(k) =
1
L ∑

m,n
eik(m−n)[〈σz

mσz
n〉 − 〈σz

m〉〈σz
n〉], (4.2)

where σz
j = 1

2 (n̂j↑ − n̂j↓). In the limit U → ∞, the ground state is dominated
by the following configurations:

|ψ〉sdw ≈
1√
2
( |↑, ↓, ↑, ↓, ... , ↑L−1, ↓L〉+

+ |↓, ↑, ↓, ↑, ... , ↓L−1, ↑L〉 ), (4.3)

where the state is described in the real space mode representation, in which
each site can be in the following set of configurations: {|0〉, |↑〉, |↓〉, |↑↓〉}.
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Considering a strong repulsive inter-site interaction (V > 0, V � U), a
periodic fermionic density is generated, leading to a charge-density wave. Its
order parameter is given by,

Ocdw(k) =
1
L ∑

m,n
eik(m−n)[〈n̂mn̂n〉 − 〈n̂m〉〈n̂n〉]. (4.4)

In the limit V → ∞, the ground state is dominated by the following configura-
tions,

|ψ〉cdw ≈
1√
2
( |↑↓, 0, ↑↓, 0, ... , ↑↓L−1, 0〉+

+ |0, ↑↓, 0, ↑↓, ... , 0, ↑↓L〉 ). (4.5)

In the range of strong attractive interactions (U, V < 0 or U > 0, V < 0
with |V| � |U|), the fermions cluster together, and the ground state becomes
inhomogeneous, with different average charge densities in its distinct spatial
regions. Such a phase is called phase separated state. In the limit V → −∞,
the ground state is dominated by the following configurations,

|ψ〉ps ≈ 1√
L

∑
{Π̂}

Π̂
∣∣∣↑↓, ↑↓, ... , ↑↓( L

2 )
, 0, ... , 0

〉
, (4.6)

where {Π̂} is the set of translation operators.
In the weak coupling limit, different phases appear. For small attractive

inter-site interactions (V < 0), superconducting phases are raised, character-
ized by the pairing correlations,

∆x =
1√
L

∑
j

aj,↑aj+x,↓, (4.7)

with the respective order parameter Os = ∑x,x′
〈
∆†

x∆x′
〉
. If the on-site inter-

actions are lower than the inter-site interactions (U ≤ 2V), the fermions will
pair as a singlet superconductor, characterized by nearest-neighbor (∆ssnn ) or
on-site (∆sso ) singlet pairing correlations given by,

∆ssnn = ∆x − ∆−x

=
1√
L

∑
j
(aj,↑aj+x,↓ − aj,↓aj+x,↑), (4.8)

∆sso = ∆0 =
1√
L

∑
j

aj,↑aj,↓, (4.9)

where x = 1. On the other hand, if the on-site interactions are higher than the
inter-site interactions (U ≥ 2V), we have a triplet superconductor, character-
ized by nearest-neighbor triplet pairing correlations (∆tsnn ) given by,

∆tsnn = ∆x + ∆−x

=
1√
L

∑
j
(aj,↑aj+x,↓ + aj,↓aj+x,↑), (4.10)
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where x = 1.
Note that the difference between the singlet and triplet pairing correla-

tions is simply a plus or minus sign. It can be clarified if we consider, for
example, the case of two fermions in a singlet or triplet spin state, given by
(|ij〉 ± |ji〉) (|↑↓〉 ∓ |↓↑〉). Expanding this state, we have,

|ij〉(|↑↓〉 ∓ |↓↑〉)± |ji〉(|↑↓〉 ∓ |↓↑〉)
= |i ↑, j ↓〉 ∓ |i ↓, j ↑〉 ± |j ↑, i ↓〉 − |j ↓, i ↑〉
= (|i ↑, j ↓〉 − |j ↓, i ↑〉)∓ (|i ↓, j ↑〉 − |j ↑, i ↓〉)
=

(
a†

i↑a
†
j↓ ∓ a†

i↓a
†
j↑
)
|vac〉, (4.11)

where the lower/upper sign corresponds to the singlet/triplet pairing correla-
tion.

The last phase in the diagram is the controversial bond-order-wave (BOW).
By studying the EHM ground state broken symmetries, using level crossings
in excitation spectra, obtained by exact diagonalization, Nakamura [73] argued
for the existence of a novel bond-order-wave phase for small to intermediate
values of positive U and V, in a narrow strip between CDW and SDW phases.
This phase exhibits alternating strengths of the expectation value of the kinetic
energy operator on the bonds, and is characterized by the following order
parameter,

Obow(k) =
1
L ∑

m,n
eik(m−n)[〈Bm,m+1Bn,n+1〉

−〈Bm,m+1〉〈Bn,n+1〉], (4.12)

where Bm,m+1 = ∑σ(a†
m,σam+1,σ + H.c.) is the kinetic energy operator associ-

ated with the mth bond. Nakamura argued that the CDW-SDW transition
is replaced by two separate transitions, namely: (i) a continuous CDW-BOW
transition; and (ii) a Berezinskii-Kosterlitz-Thouless (BKT) spin-gap transition
from BOW to SDW. Such remarkable proposal was later confirmed by sev-
eral works [74, 75, 76, 77, 78, 79], employing different numerical methods,
like DMRG, Monte Carlo or exact diagonalization. Nevertheless, while the
BOW-CDW phase boundary can be well resolved, since it involves a standard
second order (continuous) phase transition, the SDW-BOW boundary is more
difficult to locate, for it involves a BKT transition in which the spin gap opens
exponentially slowly as one enters the BOW phase. The precise location of the
BOW phase is then still a subject of debate. To the best of our knowledge, the
best estimates for the transitions, taking U/t = 4, correspond to a CDW-BOW
transition at V/t ≈ 2.16 [74, 75, 78, 79], and to a BOW-SDW transition in the
range V/t ≈ 1.88− 2.00 [74, 75, 78, 79], or V/t = 2.08± 0.02 [76].

4.3 Entanglement and Quantum Phase Transitions

The computation of the single particle correlations, and consequently the
entanglement of particles, was numerically performed using DMRG. Although
DMRG is less accurate for problems with periodic boundary conditions (PBC)
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than with open boundary conditions (OBC), from the Physical viewpoint PBC
are strongly preferable over OBC, as boundary effects are eliminated and
finite size extrapolations can be performed for much smaller system sizes. In
this work we analyze the extended Hubbard model considering PBC. Our
simulations were performed for systems up to L = 352 sites, always keeping
a large enough dimension (m) for the renormalized matrices (ranging from
m = 100 to 1000) and number of sweeps (∼ 20 sweeps), in order to obtain an
accurate precision. In Fig.4.2 (all figures and tables with our results are at the
end of the chapter), we see that m ranging from 200 to 300 is enough for an
entanglement accuracy of the order of O(10−4). The accuracy for the ground
state energy, as well as the truncation error, using such parameters, are of the
order of O(10−7).

Our results for the entanglement of particles in the extended Hubbard
model at half-filling are shown in Fig.4.3, to be dissected below. It is remark-
able that such picture highlights the known phase diagram of the model. We
first note that, as expected, we have a maximum of entanglement at the strong
coupling limits (Ep → 1), and as we decrease the interactions between the
particles, the entanglement tends also to decrease, until the unentangled case
for the non interacting Hamiltonian (U = V = 0). The figure thus presents
the shape of a valley around this point. Following then the discontinuities
and the local minimum points in the entanglement, we can easily identify the
quantum phase transitions, except for both the subtle SDW-BOW transition,
and the transition between the superconductor phases TS-SS. In the former
case, one needs to recall that the observation of the BOW phase is by itself
a hard task, since its gap opens exponentially slowly, and also that there are
evidences that such transition is of infinite order [80, 81]. Therefore we believe
that a possible detection of such transition by the entanglement of particles
would require higher precision numerical analysis as well as the study of
larger lattice sizes. Concerning the TS-SS transition, on the one hand the order
of the two superconducting phases transition is controversial, being identified
as a BKT transition [73] as well as a second order one [72] in the literature. On
the one hand, we would be led to strengthen the result of a BKT transition,
since our entanglement does not detect it. On the other hand, it is reasonable
the apathy of the entanglement of particles on distinguishing the two phases,
since the correlations between the particles in the two superconducting phases
have essentially the same characteristics. Thus it is hard to precisely con-
clude the reason for the failure to detect such transition with our measure of
entanglement.

The discontinuities in the entanglement are directly identified with the
first order quantum phase transitions, whereas the minimum points are
identified with the second order quantum phase transitions. When crossing
a first order transition, the ground state energy presents a discontinuity
and consequently also its observables. In this way, the eigenvalues “λk” of
the single particle reduced density matrix (Eq.(2.61)), and the entanglement
obtained from them, should present a discontinuity. The occurrence of the
minimum points are due to the divergence of the correlation length when
approaching the second order transitions. As described in the previous section,
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the eigenvalues “λk” are given in momentum space by the Fourier transform
of the real space quadratures “

〈
a†

jσalσ

〉
” (Eq.(2.61)). In this way, if we are close

to the transitions, such real space quadratures tend to become delocalised
or spread out along the lattice, thus leading to more localised eigenvalue
distributions in momentum space, and consequently to smaller von Neumann
entropies. It is worth remarking that such behavior is the opposite of the
entanglement of modes, where the sites are maximally entangled at the second
order transitions. As an example, see in Fig.4.4 the eigenvalue distribution for
a system with L = 128 sites when crossing the BOW-CDW quantum phase
transition.

We present now the entanglement behavior in some specific slices of the
phase diagram with L = 128, in order to clarify the above discussion and
results. More specifically, we show the entanglement behavior in the PS-SS-
CDW, PS-SS-SDW, and PS-SDW-CDW transitions. Notice that our finite-
size scaling analysis showed that in thermodynamic limit the entanglement
behavior is qualitatively similar (see Appendix), with a scaling inversely
proportional to the lattice size, Ep = aL−1 + b, where a and b are constants.

4.3.1 PS-SS-CDW

In Fig.4.5 we see the entanglement behavior across the PS-SS-CDW phases.
We clearly see, for any fixed attractive on-site interaction (U/t < 0), a discon-
tinuity in the entanglement followed by a local minimum point, as we increase
the value of the inter-site interactions V/t. The discontinuity is related to the
first order transition PS-SS, while the local minimum is related to the second
order transition SS-CDW. We see, however, that the SS-CDW transition is not
located exactly at V/t = 0, as expected from the phase diagram described in
the literature, but at a value close to this one. We believe that this discrepancy
is related to finite-size effects.

4.3.2 PS-TS-SDW

In Fig.4.6 we see the entanglement behavior across the PS-TS-SDW phases. We
see again the two kinds of behavior for any fixed attractive inter-site interaction
(V/t < 0): a first discontinuity, related to the first order transition PS-TS,
followed by a local minimum point related to the second order transition
TS-SDW. Note that, for large values of the attractive inter-site interaction,
V/t ' −1.5, the discontinuity and minimum converge to the same point, and
there is no TS phase anymore.

4.3.3 PS-SDW-(BOW)-CDW

In Fig.4.7 we see the entanglement behavior across the PS-SDW-BOW-CDW
phases. We see that, as we increase the value of the inter-site interactions, for
any fixed repulsive on-site interactions (U/t > 0), the entanglement identifies
two transitions. Firstly we see a discontinuity, related to the first order trans-
ition PS-SDW, followed then by: (i) a discontinuity, when considering large
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U/t, or (ii) a local minimum point, when considering small U/t. Such discon-
tinuity is related to the first order SDW-CDW transition, while the minimum
points are related to the second order BOW-CDW transition (the SDW-BOW
transition is not seen, as aforementioned). We see that the transitions to the
CDW phase occur at U ≈ 2V. Performing a finite-size scaling analysis (see
Appendix) we obtain that, for U/t = 4, the BOW-CDW transition is located at
V/t = 2.11± 0.01, which is slightly lower than the literature results, namely
V/t ≈ 2.16 [74, 75, 78, 79].

4.4 Conclusion

We studied the entanglement of indistinguishable particles in the extended
Hubbard model at half-filling, with focus on its behavior when crossing
the quantum phase transitions. Our results showed that the entanglement
either has discontinuities, or presents local minima, at the critical points. We
identified the discontinuities as first order transitions, and the minima as
second order transitions. In this way, we concluded that the entanglement
of particles can “detect” all transitions of the known diagram, except for the
subtle transitions between the superconductor phases TS-SS, and the transition
SDW-BOW.

It is also interesting to compare our results with other entanglement
measures, such as the entanglement of modes, which was widely studied in
several models, as well as in the extended Hubbard model [82, 83, 81]. Gu et
al. [82] firstly showed that the entanglement of modes, i.e., the entanglement
of a single site with the rest of the lattice, could detect three main symmetry
broken phases, more specifically, the CDW, SDW and PS. Other phases were
not identified due to the fact that they are associated to off-diagonal long-
range order. Further investigation were performed analysing the block-block
entanglement [83, 81], i.e., the entanglement of a block with l sites with the
rest of the lattice (L− l sites), showing that this more general measure could
then detect the transition to the superconducting phase, as well as the bond-
order phase. The measure, however, could not detect the SS-TS transition,
besides presenting some undesirable finite-size effects in the PS phase. On
the other hand, the entanglement of particles studied in this work showed
no undesirable finite-size effects in the PS phase, but could not detect the
superconductor SS-TS transition either. Regarding the BOW phase, from
the above discussion we see that it would be worth to analyze more general
measures for the entanglement of particles, which goes beyond single particle
information. Some steps in this direction were made in [12], where a notion
of entanglement of “subgroups” of indistinguishable particles was defined.

4.5 Appendix: Finite-size scaling analysis

In this appendix we perform a finite-size scaling analysis in the system
entanglement, in order to extract information about the ground state of the
model. We obtained that the entanglement behavior is qualitatively the same
for lattices larger than L ≈ 100, with just small differences of the order of
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O(10−2) in its magnitude. In a general way, the entanglement scales with the
inverse of the lattice size, Ep = aL−1 + b, where a and b are constants. See in
Fig.4.8 , for example, the entanglement scaling for the SDW-BOW-CDW phase
transitions. In Tab. I we show the computed values for the scaling constants
at different points in the phase diagram, as highlighted in Fig.4.3.
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Figure 4.2: Accuracy analysis for the computation of entanglement of particles
using DMRG. It is shown the accuracy of the entanglement, ∆(Ep) = Ep(m)−
Ep(m− 50), as a function of m (dimension of the renormalized matrices), at
the point U = 4, V = 2.11, and using 20 sweeps in the computation, which is
enough for the ground state convergence.
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Figure 4.3: Contour map for the entanglement of particles “Ep” as a function
of the interaction terms V/t and U/t, in a system with L = 128 sites at
half-filling. The entanglement behavior in the thermodynamic limit, L→ ∞,
keeping fixed the filling n = N/L = 1, is qualitatively the same, with slight
differences of the order of O(10−2) in its magnitude; see Appendix 4.5 for
a detailed discussion. The (green) continuous line denotes the discontinuity
at the entanglement function, while the (red) dashed line denotes the local
minima. The white dots correspond to the points where we performed a
detailed finite-size scaling analysis (see Table I in Appendix 4.5).
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Figure 4.4: (top) Single particle quadratures “
〈

a†
L/2aj

〉
” along the lattice sites,

and (bottom) eigenvalue distribution “λk” for the single particle reduced state
in a fixed spin sector, as given in Eq.(2.61). We consider a fixed U/t = 4.
The vertical axis is in log-scale, in order to make clearer the visualisation. As
we approach the BOW-CDW quantum phase transition point, at V/t ≈ 2.13,
we see that the quadratures tend to delocalise along the lattice, whereas the
eigenvalue distribution becomes more localised.
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Figure 4.5: Entanglement behavior across the PS-SS-CDW phases. The
entanglement, for any fixed atractive on-site interaction (U/t), is characterized
by a discontinuity (PS-SS transition), followed by a local minimun (SS-CDW
transition).
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Figure 4.6: Entanglement behavior across the PS-TS-SDW phases. The entan-
glement, for any fixed atractive inter-site interaction (V/t), is characterized
by a discontinuity (PS-TS transition), followed by a local minimun (TS-SDW
transition). For large V/t, the two transitions shrink at the same point, and
there is no TS phase anymore.
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Figure 4.7: Entanglement behavior across the PS-SDW-BOW-CDW phases.
The bottom panel is a magnification of the top panel in the region 1 ≤
V/t ≤ 4.5. The entanglement, for any fixed repulsive on-site interaction
(U/t), is characterized by a discontinuity (PS-SDW transition), followed by:
(i) a discontinuity for large V/t (SDW-CDW transition), or (ii) local minimun
points for small V/t (BOW-CDW transition).
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Figure 4.8: Scaling of the entanglement at the SDW-BOW-CDW phase
transitions. For a fixed parameter U/t = 4, we have: (upper-left) minimum
entanglement critical point (V/t)c = 2.11; (upper-right) V/t = (V/t)c + 0.5;
(bottom-left) V/t = (V/t)c − 0.5 . For a fixed U/t = 8 (bottom-right),
there is a discontinuity in the entanglement, highlighted by the scaling at
V/t = 4.147 (bottom curve), and V/t = 4.153 (upper curve).
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U/t(±0.01) V/t(±0.01) Ep(L→ ∞)(±0.001) a(±0.001)
4 1.61 0.407 1.09

4∗ 2.11∗ 0.332 1.52

4 2.61 0.661 0.826

8 4.147 0.59 0.69

8 4.153 0.702 0.91

5.723∗ 3∗ 0.457 0.911

−1.76 −0.6 0.273 2.41

−1.76∗ −0.233∗ 0.174 3.08

−1.76 0 0.211 2.51

0.4 −1 0.211 2.11

0.67∗ −1∗ 0.204 2.59

2 −1 0.33 2.48

−7.73 −2.55 0.995 −
−7.73 −2.33 0.884 0.69

−2.03 −0.72 0.978 −
−1.875 −0.72 0.403 7.59

3.75 −2.95 0.985 −
4.05 −2.95 0.772 0.439

Table 4.1: Scaling constants for the entanglement, Ep = aL−1 + Ep(L→ ∞), at
different points of the phase diagram, as highlighted in Fig.4.3. The symbol “∗”
denotes the critical points, and “−” means that the entanglement is constant,
apart from numerical inaccuracy, for the analyzed lattices.
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Part II

Topological states of matter in a
number conserving setting
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CHAPTER 5

Topological states of matter

In a general perspective, matter has many distinct phases, such as ordinary
gas, liquid and solid phases, as well as more interesting conductors, insulat-
ors, superfluids, and others phases. Despite formed by the same elementary
particle constituents, each phase has striking different properties. The proper-
ties of a phase emerge from the pattern in which the particles are organized
and correlated in the material. These different patterns are usually called the
order of the phase.

As a very simple example, one could consider an ordinary liquid, such as
liquid water. In such a phase the particles (atoms) are randomly distributed
in the material, in such a way that it remains invariant under an arbitrary
translation of its particles. We say that it has a “continuous translation
symmetry”. If we increase the external pressure, or decrease the temperature
of the material, we know that it becomes a solid after a critical point, with
clear distinct macroscopical properties. The material suffers a phase transition
at this point. In a solid phase, also called as a crystal phase, the particles
are now organized in a regular pattern, remaining unchanged only by some
specific translations of its particles. Thus, we say that the crystal has “discrete
translation symmetry”. We see that such a liquid-solid phase transition breaks
the symmetries of the state, or equivalently, breaks its internal order. Such a
transition is called as spontaneous symmetry breaking transition, and constitutes
the essence of Landau’s theory [84] in order to systematically understand
and characterize the different phases of matter. Landau’s theory is a very
successful theory, and for a long time it was believed that it could describe
all possible orders on materials and its phase transitions. We know today,
however, that this is not true, and the main reason comes from the fact that
such a theory does not takes into account quantum effects, so one should
not be surprised if there are states at zero-temperature which can not be
characterized by the theory.

We recall that the concept of order for distinct quantum phases was
implicitly discussed in Chapter.4, at the presentation of the phase diagram
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for the extended Hubbard model. All the phases were there characterized by
a distinct local order “Oj” acting at the neighborhood of site j, studying its
correlations along the lattice “

〈
OjOj+r

〉
−
〈
Oj
〉〈

Oj+r
〉
”.

We are now able to introduce the main focus of this work: the study of
states which present a different kind of order than the ones presented above, a
“topological order” [87, 88]. Such states can not be described simply by Landau
symmetry breaking theory, nor by any local order parameter. A topological
order is a kind of order, for systems at zero temperature, which is intrinsically
quantum, and involves non-local order parameters; in other words, it can be seen,
in a general perspective, as a global pattern of collective correlations between
the particles in the system, which leads to patterns of long-range entanglements.
Topological states are very interesting not only due to its paradigm breaks
in the understanding and characterization of distinct phases of matter, as
well as, due to its amazing physical properties, such states could have wide
technological applications, such as in topological quantum computation. We
will discuss the aforementioned points in more details now.

Historically, in the late 1980’s, it has become apparent in the study of
the Quantum Hall Effect (QHE) that some states might not be described by
Landau’s theory nor any local order parameter. QHE is observed by the
confinement of electrons in a 2D space, under the influence of a external
magnetic field, and cooled to a very low temperature (∼ 1Ko). In such
a picture, physicists found that the resistivity RH (Hall coefficient) of the
induced current flow presents itself as several plateaus as we vary the external
magnetic field. Furthermore, such a resistivity is quantized in a very specific
way: as a rational number Rh = p/q. An intriguing feature is that the distinct
ground states of such system, corresponding to the distinct plateaus in the
resistivity, have all the same symmetries according to Landau’s theory (chiral
symmetry). It was then realized that, in order to completely characterize these
states one must take into account other properties of the ground state, as its
topological order! Wen [87, 88], in a very beautiful presentation, shows that
the different plateaus in the resistivity are related to different “global dancing
pattern”, where all electrons round around each other in a very specific way.
The number of rounds the electrons perform around each other generate the
different plateaus in the resistivity. A formal definition of such order could be
given by looking at its Berry phase, the fractional statistics of its quasiparticles,
and other properties of the phase... we will not go, however, deeper into such
subjects for this phase.

In general, topological states share some interesting properties:
• degenerate ground state subspace;
• robustness against local perturbations;
• edge excitations;
• non-local correlations;
• ....

In this thesis we focus into the analysis of topological states of matter
in fermionic systems. A minimal setting showcasing all the key aspects of
topological states in such systems consist of the paradigmatic Kitaev model.
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Figure 5.1: Phase diagram of the Kitaev Hamiltonian for a one-dimensional
chain of spinless fermions (Eq.(5.1)). The topological phase is within the blue
region, |µ| < 2J and ∆ 6= 0, where the red lines correspond to the phase
transitions to a non-topological phase. The gray dot at µ = 0, and ∆ = J > 0,
corresponds to the “sweet point” of the model.

The ground states of such model presents all aforementioned topological
properties, which we will discuss in detail now.

5.1 Kitaev Hamiltonian

The Kitaev Hamiltonian for a one-dimensional chain of spinless fermions [89]
is given by,

ĤK = ∑
j

[
− Jâ†

j âj+1 − ∆âj âj+1 + H.c.− µ
(
n̂j − 1/2

)]
.

Here, J > 0 denotes the hopping amplitude, µ and ∆ the chemical potential
and the superconducting gap, respectively; â(†)j are fermionic annihilation

(creation) operators on site j, and n̂j ≡ â†
j âj. This model has i) two density-

driven phase transitions from finite densities to the empty and full states
at |µ| = 2J (for ∆ 6= 0), and ii) a transition driven by the competition of
kinetic and interaction energy (responsible for pairing) at ∆/J = 0 (for |µ| <
2J) (see Fig.5.1). For |µ| < 2J and ∆ 6= 0, the ground state is unique for
periodic boundary conditions, but twofold degenerate for open geometry,
hosting localized edge zero-energy Majorana modes. This topological phase is
symmetry protected by total fermionic parity P̂ = (−1)N̂ , where N̂ ≡ ∑j n̂j.

Let us focus on the so-called “sweet point”, namely µ = 0, and ∆ = J > 0
and real, which enjoys the property

ĤK = (J/2)∑
j

d̂†
j d̂j = i J ∑

j
γ2jγ2j+1, (5.1)
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fermion in a lattice site paired Majoranas

Figure 5.2: Majorana fermions can be roughly seen as “half fermions”,
representing the real or imaginary part of a fermion. Schematically we
represent a fermion in a lattice site (blue circle) as two paired Majorana
fermions (red circles connected by a light gray wire).

with d̂j = Ĉ†
j + Âj, Ĉ†

j = â†
j + â†

j+1, Âj = âj − âj+1 (d̂L is defined identifying

L + 1 ≡ 1) and {γj}2L
j=1 are Majorana operators satisfying the Clifford algebra,

γ2j−1 = i(aj − a†
j ), (5.2)

γ2j = aj + a†
j , (5.3)

with γ†
j = γj, and {γj, γl} = 2δj,l . Such Majorana operators can be seen

as “half fermions” representing the real and imaginary part of a fermion
(notice the inverse relation aj = (γ2j − iγ2j−1)/2), as schematically presented
in Fig.5.2.

The ground state (|g〉) of such Hamiltonian for periodic boundary condi-
tions, satisfying d̂j|g〉 = 0, ∀j, is described by a fermionic p-wave superfluid.
We see that, if the system has open boundary conditions, the absence of
the term “d̂†

Ld̂L” in the Hamiltonian, where d̂L = (γ2L − iγ1)/2, induces a
degeneracy in the ground state, related to a zero energy mode; more precisely,
adding the non-local fermion d̂†

L does not change the energy, and in this way
the ground state subspace will be spanned by the following eigenstates: |g〉
and d̂†

L|g〉. This degeneracy corresponds to a highly delocalized fermion, or
alternatively, to completely localized Majorana edge modes γ1 and γ2L. See a
schematically picture in Fig.5.3.

We will use both momentum as well as real space representation in order
to describe the ground state. We denote |GK〉/|ψ〉e(o) for its momentum/real
space representation. In momentum space, the ground state is formally
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Figure 5.3: Schematic representation for the Kitaev Hamiltonian at the “sweet
point” µ = 0, and ∆ = J > 0, with periodic conditions. The missing term
“d̂†

Ld̂L” leads to a topological degeneracy related to localized edge Majorana
fermions γ1 and γ2L, or alternatively, to a non-local fermion d̂†

L.

described by a p-wave superconductor,{
L odd : |GK〉 ∝ (xo + x1d̂†

L)|BCS, α = 1〉,
L even : |GK〉 ∝ (xo + x1d̂†

L)a†
k=0|BCS, α = 1〉, (5.4)

where L is the number of the sites in the chain, |x0|2 + |x1|2 = 1, and |BCS, α〉
is the BCS state with a fixed phase α. Setting x0 = 1, x1 = 0 we recover the
periodic boundary conditions ground state. The BCS state is defined by,

|BCS, α〉 = Nα

[
∏
k>0

(1 + αϕka†
−ka†

k)

]
|vac〉 (5.5)

where Nα = ∏k>0(1 + |αϕk|2)−1/2 is a global normalization constant, α is an
arbitrary complex number, ϕk = −i [tan(k/2)]−1, and a†

k = ∑j e−ikja†
j are the

momentum fermionic operators, where k = (−π,−π + 2π/L, ..., π − 2π/L).
The detailed demonstration is given in Appendix A.

In the real space representation, the ground states can be written [90] as
the equal weighted superposition of all even (e) or odd (o) particle number
states:

|ψ〉e(o) = N−1/2
e(o),L ∑

n
(−1)n ∑

{~j2n(2n+1)}

∣∣∣~j2n(2n+1)

〉
. (5.6)

Here |~jm〉 = â†
j1

â†
j2

...â†
jm |vac〉 with ji < ji+1 (ji = 1, . . . , L) and Ne,L = ∑n (

L
2n);

No,L = ∑n (
L

2n+1) (see Appendix B).
We are now equipped to present our studies and results concerning topo-

logical Majorana edge modes in a number conserving setting.
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CHAPTER 6

Localized Majorana-like
modes in a number
conserving setting:

An exactly solvable model

In this chapter we present, in a number conserving framework, a model
of interacting fermions in a two-wire geometry supporting non-local zero-
energy Majorana-like edge excitations. The model has an exactly solvable line,
on varying the density of fermions, described by a topologically non-trivial
ground state wave-function. Away from the exactly solvable line we study
the system by means of the numerical density matrix renormalization group.
We characterize its topological properties through the explicit calculation of a
degenerate entanglement spectrum and of the braiding operators which are
exponentially localized at the edges. Furthermore, we establish the presence
of a gap in its single particle spectrum while the Hamiltonian is gapless, and
compute the correlations between the edge modes as well as the superfluid
correlations. The topological phase covers a sizeable portion of the phase
diagram, the solvable line being one of its boundaries.

6.1 Introduction

Large part of the enormous attention devoted in the last years to topological
superconductors owes to the exotic quasiparticles such as Majorana modes,
which localize at their boundaries (edges, vortices, . . . ) [91, 92] and play a key
role in several robust quantum information protocols [93]. Kitaev’s p-wave
superconducting quantum wire [89] provides a minimal setting showcas-
ing all the key aspects of topological states of matter in fermionic systems.
The existence of a so-called “sweet point” supporting an exact and easy-to-
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handle analytical solution puts this model at the heart of our understanding
of systems supporting Majorana modes. Various implementations in solid
state [94, 95] and ultracold atoms [96] via proximity to superconducting or
superfluid reservoirs have been proposed, and experimental signatures of
edge modes were reported [97].

Kitaev’s model is an effective mean-field model and its Hamiltonian
does not commute with the particle number operator. Considerable activity
has been devoted to understanding how this scenario evolves in a number-
conserving setting [98, 99, 100, 101, 102]. This effort is motivated both by the
fundamental interest in observing a topological parity-symmetry breaking
while a U(1) symmetry is intact, and by an experimental perspective, as in
several setups (e.g. ultracold atoms) number conservation is naturally present.
It was realised that a simple way to promote particle number conservation to
a symmetry of the model, while keeping the edge state physics intact, was
to consider at least two coupled wires rather than a single one [98, 99, 100].
However, since attractive interactions are pivotal to generate superconducting
order in the canonical ensemble, one usually faces a complex interacting many-
body problem. Therefore, approximations such as bosonization [98, 99, 100],
or numerical approaches [101] were invoked. An exactly solvable model of a
topological superconductor in a number conserving setting, which would dir-
ectly complement Kitaev’s scenario, is missing, although recent work pointed
out an exacly solvable, number conserving model analogous to a non-local
variant of the Kitaev chain [102].

In this chapter we present an exactly solvable model of a topological su-
perconductor which supports exotic Majorana-like quasiparticles at its ends
and retains the fermionic number as a well-defined quantum number. The
construction of the Hamiltonian with local two-body interactions and of its
ground state draws inspiration from recent work on dissipative state prepar-
ation for ultracold atomic fermions [103, 104, 105], here applied to spinless
fermions in a two-wire geometry. The solution entails explicit ground state
wave-functions, which feature all the main qualitative properties highlighted
so far for this class of models, with the advantage of being easy-to-handle.

In particular, we establish the following key features: i) The existence of
one/two degenerate ground states depending on the periodic/open bound-
aries with a two-fold degenerate entanglement spectrum; ii) the presence of
exponentially localized, symmetry-protected edge states and braiding matrices
associated to this degeneracy; iii) exponential decay of the fermionic single
particle correlations, even if the Hamiltonian is gapless with collective, quad-
ratically dispersing bosonic modes; iv) p-wave superconducting correlations
which saturate at large distance.

By tuning the ratio of interaction vs. kinetic energy of our model, we can
explore its properties outside the exactly-solvable line. The full phase diagram
(Fig. 6.1) is obtained by means of density matrix renormalization group
(DMRG) calculations. The exactly solvable is found to stand between a stable
topological phase and a phase-separated state. This finding is rationalized by
a relation to the ferromagnetic XXZ chain.
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6.2 The model

We begin by recapitulating some properties of the Kitaev chain, as presented
in Chapter 5.1, whose Hamiltonian reads [89]

ĤK = ∑
j

[
− Jâ†

j âj+1 − ∆âj âj+1 + H.c.− µ
(
n̂j − 1/2

)]
.

Here, J > 0 denotes the hopping amplitude, µ and ∆ the chemical potential
and the superconducting gap, respectively; â(†)j are fermionic annihilation

(creation) operators on site j, and n̂j ≡ â†
j âj. This model has i) two density-

driven phase transitions from finite densities to the empty and full states at
|µ| = 2J (for ∆ 6= 0), and ii) a transition driven by the competition of kinetic
and interaction energy (responsible for pairing) at ∆/J = 0 (for |µ| < 2J).
For |µ| < 2J and ∆ 6= 0, the ground state is unique for periodic boundary
conditions, but twofold degenerate for open geometry, hosting localized zero-
energy Majorana modes. This topological phase is symmetry protected by
total fermionic parity P̂ = (−1)N̂ , where N̂ ≡ ∑j n̂j.

Let us focus on the so-called “sweet point”, namely µ = 0, and ∆ = J > 0
and real, which enjoys the property ĤK = (J/2)∑j d̂†

j d̂j with d̂j = Ĉ†
j + Âj,

Ĉ†
j = â†

j + â†
j+1 and Âj = âj − âj+1 (d̂L is defined identifying L + 1 ≡ 1).

For open geometry, the two ground states with L sites satisfy d̂j|ψ〉 = 0, for
1 ≤ j ≤ L− 1, and can be written [90] as the equal weighted superposition of
all even (e) or odd (o) particle number states:

|ψ〉e(o) = N−1/2
e(o),L ∑

n
(−1)n ∑

{~j2n(2n+1)}

∣∣∣~j2n(2n+1)

〉
. (6.1)

Here |~jm〉 = â†
j1

â†
j2

...â†
jm |vac〉 with ji < ji+1 (ji = 1, . . . , L) and Ne,L = ∑n (

L
2n);

No,L = ∑n (
L

2n+1).
We now turn to a number conserving version of this model on a single

wire [104]. Consider the Hamiltonian Ĥ′K ≡ ∑j L̂†
j L̂j, with L̂j = Ĉ†

j Âj,
whose exact ground state wave-functions can be obtained as follows. Since
Âj|ψ〉e(o) = −Ĉ†

j |ψ〉e(o), |ψ〉e(o) are also ground states of Ĥ′K: L̂i|ψ〉e(o) = 0

because (Ĉ†
j )

2 = 0. As L̂i conserves the particle number, [L̂i, N̂] = 0, we can
classify ground states for each fixed particle number sector N by number
projection, |Ψ, N〉 = P̂N |ψ〉e(o). This is implemented by choosing the state
with 2n = N (or 2n + 1 = N) in the sum over n in Eq. (6.1), and adjust-
ing the normalization to NL,N = ( L

N). The positive semi-definiteness of Ĥ′K
implies that these states, having zero energy eigenvalue, are ground states.
However, once N is fixed, the ground state |Ψ, N〉 is unique, as follows from
the Jordan-Wigner mapping to the Heisenberg model [84]. The topological
twofold degeneracy is lost.

Guided by the previous analysis, we construct an exactly solvable to-
pological two-wire model with canonical fermionic operators â(†)j , b̂(†)j . In

addition to those involving each wire L̂a(b),j = Ĉ†
a(b),j Âa(b),j, we introduce new
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Figure 6.1: Phase diagram for the number and local parity conserving two-
wire model (6.3) as a function of λ and filling ν = N/2L obtained through
DRMG simulations. The exactly solvable topological line is at λ = 1 (another,
trivially solvable non-topological line is at λ = 0). For λ > 1, the system
undergoes phase separation (see the density profile 〈n̂a

j 〉 in the inset). For
0 < λ < 1 and ν 6= 0, 1, the system is in a homogeneous topological phase (see
inset). The phase diagram is symmetric with respect to half filling ν = 1/2
due to particle-hole symmetry of Ĥλ.

operators L̂I,j = Ĉ†
a,j Âb,j + Ĉ†

b,j Âa,j. The Hamiltonian

Ĥ = ∑
α=a,b,I

L−1

∑
j=1

L̂†
α,j L̂α,j (6.2)

coincides with the λ = 1 point of the following more general model:

Ĥλ =4
L−1

∑
j=1

α=a,b

[
(α̂†

j α̂j+1+H.c.)−(n̂α
j + n̂α

j+1) +λn̂α
j n̂α

j+1

]

− 2λ
L−1

∑
j=1

[
(n̂a

j + n̂a
j+1)(n̂

b
j + n̂b

j+1)− (â†
j âj+1b̂†

j b̂j+1

+ â†
j âj+1b†

j+1b̂j − 2b̂†
j b̂†

j+1 âj+1 âj + H.c.)
]
. (6.3)

Ĥλ conserves the total particle number N̂ = N̂a + N̂b and the local wire
parities P̂a,b = (−1)N̂a,b , which act as protecting symmetries for the topological
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phase. The coupling λ tunes the relative strength of the kinetic and interaction
terms similarly to ∆/J in ĤK. Although only λ = 1 is exactly solvable, we
will later consider λ 6= 1 to explore the robustness of the analytical results.
The phase diagram is anticipated in Fig. 6.1.

6.3 Exact results for λ = 1

For a fixed particle number N and open boundaries, the ground state of Ĥ is
twofold degenerate, due to the freedom in choosing the local parity. For even
N, the ground states read

|ψL(N)〉ee = N−1/2
ee,L,N

N/2

∑
n=0

∑
{~j2n},
{~qN−2n}

|~j2n〉a ⊗ |~qN−2n〉b, (6.4)

|ψL(N)〉oo = N−1/2
oo,L,N

N/2−1

∑
n=0

∑
{~j2n+1},
{~qN−2n−1}

|~j2n+1〉a ⊗ |~qN−2n−1〉b

where Nee,L,N = ∑N/2
n=0 (

L
2n)(

L
N−2n); Noo,L,N = ∑N/2−1

n=0 ( L
2n+1)(

L
N−2n−1). The

states |~j〉a and |~q〉b are simple generalizations of the states |~j〉 defined in
Eq.(6.1) to the wire a and b respectively. These describe the cases of even (ee)
or odd (oo) particle numbers in each of the wires. For odd N, the ground
states |ψL(N)〉eo(oe) with an even (odd) number of particles in either wire take
the identical sum structure as above with the normalization Nee,L,N in both
cases. The wave-functions (6.4) are the unique ground states of the model
(Appendix 6.7). An interesting interpretation of |ψL(N)〉σσ′ is in terms of
number projection of the ground state of two decoupled even-parity Kitaev
chains |G〉 = |ψ〉ae ⊗ |ψ〉be :

|ψL(N)〉ee ∝ P̂N |G〉; |ψL(N)〉oo ∝ P̂N d̂a†

L d̂b†

L |G〉;
|ψL(N)〉oe ∝ P̂N d̂a†

L |G〉; |ψL(N)〉eo ∝ P̂N d̂b†

L |G〉; (6.5)

where d̂a†

L and d̂b†

L are the zero-energy modes of the decoupled Kitaev wires
at half filling. This interpretation provides intuition that the two-fold ground-
state degeneracy is absent for periodic boundary conditions: since on a circle
ĤK has a unique ground state, the ground state of Ĥ with N particles is also
unique (Appendix 6.7).

Important evidence of a topologically nontrivial bulk state is obtained
from the double degeneracy of the entanglement spectrum, which we now
compute for one of the wave-functions (6.4). To this end, we consider the
reduced state of l sites on each wire ρl = Tr(L−l)

[
|ψL(N)〉ee〈ψL(N)|ee

]
. Taking

the symmetries into account, it can be written in diagonal form as (Appendix
6.7)

ρl =
min(2l,N)

∑
Nl=0

∑
σ,σ′

χ
(L,N)
(σσ′ ,l,Nl)

|ψl(Nl)〉σσ′〈ψl(Nl)|σσ′ (6.6)
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Figure 6.2: Analysis of model Ĥ. (a) Entanglement spectrum for a reduced
state ρl with l = 60 for L = 240. (b) DMRG results for the scaling of the
gap computed at fixed parity, which is compatible with L−2 (dashed line);
here the number of kept states is m = 400. (c) Localization of the edge mode
computed via |〈ψL(N)|oo â†

j b̂j|ψL(N)〉ee|. (d) Single-fermion edge correlations

|〈â†
1 âj〉| computed for a system of size L = 240. The wave-function is shift

invariant, such that |〈â†
i âi+j〉| ≡ |〈â†

1 âj〉| (i + j ≤ L).

with the following nonzero eigenvalues: for Nl even

χ
(L,N)
(ee(oo),l,Nl)

= Nee(oo),l,Nl
Nee(oo),L−l,N−Nl

/Nee,L,N

whereas for Nl odd

χ
(L,N)
(eo,l,Nl)

= χ
(L,N)
(oe,l,Nl)

= χ
(L,N)
(ee,l,Nl)

.

In the odd-particle number sector the entanglement spectrum is manifestly
twofold degenerate. In the even one, such degeneracy appears in the thermo-
dynamic limit: χ

(L,N)
(ee,l,Nl)

/χ
(L,N)
(oo,l,Nl)

→ 1 (see Appendix 6.7 and Fig. 6.2a).

An interesting insight is provided by Oj ≡ 〈ψL(N)|oo â†
j b̂j|ψL(N)〉ee, where

â†
j b̂j is the only single-site operator which commutes with N̂ and changes the

local parities P̂a,b, so that the two ground states can be locally distinguished.
The calculation of such matrix elements leads to a lengthy combinatorial
expression (Appendix 6.7) and is shown in Fig. 6.2c. We interpret the
exponential decay of Oj into the bulk as a clear signature of localized edge
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modes with support in this region only. At half filling the edge states are
maximally localized, but away from half filling the number projection increases
the localization length. In the thermodynamic limit, this length diverges for
ν ≡ N/2L → 0, 1, indicating a topological phase transition. We emphasize
that this exponential behavior is different from [98, 99], reporting algebraic
localization of the edge states, but similar to [101, 107]. Non-local correlations
of edge states are another clear indication of topological order and can be
proven via 〈â†

1 âj〉, which is sizeable both at j ∼ 1 and j ∼ L (see the analytical
expression in Appendix (6.7) and Fig. 6.2d).

Furthermore, the Hamiltonian is gapless and hosts long wavelength col-
lective bosonic excitations, while the single fermion excitations experience a
finite gap. This is a crucial property of the ground state; the absence of gapless
fermion modes in the bulk ensures the robustness of the zero energy edge
modes, in analogy to non-interacting topologically non-trivial systems. The
gapped nature of single fermion excitations is established via the exponential
decay of the fermionic two-point function, e.g. 〈â†

i âj〉. Again, the resulting
formula is a lengthy combinatorial expression (Appendix 6.7), evaluated
numerically for very large sizes and plotted in Fig. 6.2d. For ν → 0, 1, the
correlation length diverges, indicating the vanishing of the fermion gap and a
thermodynamic, density-driven phase transition in full analogy to the Kitaev
chain.

On the other hand, the analysis of the superfluid correlations demonstrates
the existence of gapless modes. The p-wave nature of these correlations
follows from the correlation of the pairing operator âj+1 âj. A direct calculation
(Appendix 6.7) shows a saturation at large distance〈

â†
i â†

i+1 âj+1 âj

〉
L→∞−→ ν2(1− ν)2 . (6.7)

Similar expressions hold for cross-correlations between the wires. The finite
asymptotic value in Eq. (6.7) hints at the absence of bosonic modes with linear
dispersion, which would lead to algebraic decay. A DMRG analysis of the
excitation spectrum of Ĥ for system sizes up to L = 144 demonstrates a
vanishing of its gap ∼ L−2 (Fig. 6.2b). This indicates the presence of collective
excitations with quadratic dispersion. Further support to this statement is
provided from the fact that Eq. (6.3) without the wire coupling term reduces
to the XXZ model at the border of its ferromagnetic phase, which hosts
quadratically dispersing spin waves, ω ∼ q2. This dispersion, with dynamic
exponent z = 2, gives rise to an effective phase space dimension deff = z+ 1 =
3 at zero temperature, explaining the constancy of superfluid correlations due
to the absence of a divergence in the soft mode correlators. This finding is
special for λ = 1.

6.4 Non-abelian statistics

We now proceed to demonstrate that the edge modes obey a non-abelian
statistics completely equivalent to that of Majorana fermions – i.e., Ising
anyons. Consider the operator B̂aR,bR(j) = (Î + ẐaR,bR,j)/

√
2 with j <
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Figure 6.3: DMRG results for model Ĥλ. (a) Entanglement spectrum for a
reduced state ρl with l = 100 for L = 240 (m = 300). (b) Algebraic scaling
of the gap computed at fixed parity, which is compatible with L−1 (dashed
line). Here m = 420. (c, d) Single-particle |〈â†

i âj〉| and p-wave superfluid
〈â†

i â†
i+1 âj âj+1〉 correlations at distance r = |i − j| computed in the bulk of

system with L = 240 (m = 300). Analogous data were obtained for other
values of ν, λ (red circles in Fig. 6.1).

L/2, where ẐaR,bR,j = (∑
j
p=1[∏

p−1
q=0 ŶaR,bR,q] X̂aR,bR,p)/F (j), with X̂aR,bR,j =

(a†
L+1−jbL+1−j − b†

L+1−jaL+1−j), ŶaR,bR,j = na
L+1−jn

b
L+1−j + (1− na

L+1−j)(1−
nb

L+1−j) for j > 0, ŶaR,bR,0 = Î and Fj =
√

1− [ν2j + (1− ν)2j]. B̂aR,bR(j) is
thus exponentially localized at the right edge of the ladder and an analogous
operator B̂aL,bL(j) can be defined at the left edge through the transformation
mapping an operator at site l to site L + 1− l (and viceversa). Similarly, the
operators B̂aR,aL(j) and B̂bL,bR(j) can be defined through the transformations
bL+1−l → −ial and aL+1−l → −ibl , respectively. In general, one can define
operators B̂mΛ,m′Λ′(j) with m, m′ = a, b and Λ, Λ′ = L, R. These operators
have the following key properties: They (i) are exponentially localized at
the edges, (ii) act unitarily in the ground state subspace, (iii) are particle
number conserving, and (iv) most importantly, provide a representation of
Majorana braiding operators. From this we conclude that the localized edge
modes behave as non-abelian Majorana fermions [108], in full analogy to the
case of two neighboring Kitaev wires. Properties (i)–(iii) are demonstrated in
Appendix 6.7, whereas here we focus on (iv). Strictly speaking, properties
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(ii) and (iv) are only true apart from an error which is exponentially small
in j and L, which can always be made negligible. In this case we can define
the braiding operator R̂mΛ,m′Λ′ ≡ B̂mΛ,m′Λ′(j). We initialize the system in
the state |ψL(N)〉ee and then perform two braiding operations on the edges
in different sequences. If we consider for example R̂aR,aL and R̂aR,bR we
obtain [R̂aR,aL, R̂aR,bR]|ψL(N)〉ee = i|ψL(N)〉oo which demonstrates the non-
abelian character of these operations. Moreover, this is the pattern that the
conventional braiding operators produce on two neighboring Kitaev wires
R̂′mΛ,m′Λ′ = e

π
4 γmΛγm′Λ′ = (I + γmΛγm′Λ′)/

√
2, where γmΛ are Majorana oper-

ators fulfilling the Clifford algebra appearing at the left and right (Λ = L, R)
edges of two Kitaev wires m = a, b. This pattern coincides for the application
of [R̂mΛ,m′Λ′ , R̂nΥ,n′Υ′ ] on all |ψL(N)〉σσ′ states (see e.g. [109]). In other words,
the operators R̂mΛ,m′Λ′ form a number-conserving representation of Majorana
braiding operators on the ground state subspace.

6.5 Numerical results

To further explore the status of these results, we now move to the full model
Ĥλ away from the solvable line λ = 1. The study is performed with DMRG
on systems with sizes up to L = 240 and open boundary conditions.

We first establish the absence of a topological phase for λ > 1. The density
profile, shown in the inset of Fig. 6.1 for ν = 0.5 and λ = 1.01, displays
a clear phase-separation tendency. Analogous data are obtained for other
values of ν (see dark crosses in Fig. 6.1). These results can be intuitively
understood considering that Ĥλ>1 without interwire coupling can be mapped
to a gapped ferromagnetic XXZ model with domain walls dual to fermionic
phase separation.

For λ < 1, simulations support the existence of a homogeneous phase
(Fig. 6.1). Note that λ = 0 is a free-fermion point trivially non-topological. For
λ 6= 0 we observe: i) two quasi-degenerate ground states with different relative
parity and same particle numbers, ii) degenerate entanglement spectrum, iii) a
gap closing as L−1 for fixed parity, iv) exponentially decaying single-fermion
correlations, v) power-law decaying superfluid correlators. Plots in Fig. 6.3
display our numerical results. Simulations at lower filling ν→ 0 and small λ
are more demanding, owing to the increasing correlation length of the system.
The numerics is consistent with the phase diagram in Fig. 6.1 exhibiting a
topological phase delimited by three trivial lines at λ = 0, ν = 0 and ν = 1
and an inhomogeneous non-topological phase for λ > 1. The exactly solvable
topological line at λ = 1 serves as a boundary; the fixed-ν phase diagram is
reminiscent of the ferromagnetic transition in the XXZ model.

6.6 Conclusion

We presented an exactly solvable two-wire fermionic model which conserves
the number of particles and features Majorana-like exotic quasiparticles at
the edges. Our results can be a valuable guideline to understand topological
edge states in number conserving systems. For example, the replacement
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âi → ĉi,↑, b̂i → ĉi,↓ results in a one-dimensional spinful Hubbard Hamiltonian
without continuous spin rotation, but time reversal symmetry. The resulting
model with an exactly solvable line belongs to the class of time reversal
invariant topological superconductors [112], analyzed in a number conserving
setting recently [107], with edge modes protected by the latter symmetry.
Moreover, exactly solvable number conserving models can be constructed in
arbitrary dimension.

6.7 Appendix

In this Appendix we provide additional information about some details of the
analytical results for the exactly solvable two-wire topological system which
have been omitted from the main text.

6.7.1 Two-wire ground state

In this section we show that the wave-functions |ψL(N)〉ee(oo) in Eq. (6.4) of the
main text are the only ground states of the two-wire Hamiltonian Ĥλ=1. Our
proof actively constructs all of the zero-energy eigenstates of the Hamiltonian,
which are the lowest-energy states because Ĥλ=1 ≥ 0. Such states are obtained
projecting the grand-canonical ground state of two decoupled Kitaev chains
onto a given particle-number sector.

Let us first consider only the operators {L̂α,j, L̂α,j} and the corresponding
parent Hamiltonian Ĥab = ∑α=a,b ∑j L̂†

α,j L̂α,j which corresponds to two de-
coupled single-wires. We know that the ground states of each single wire are
given by P̂α

N |ψ〉ασ. Hamiltonian Ĥab thus has a ground space spanned by{
P̂a

n P̂b
N−n|ψ〉aσ ⊗ |ψ〉bσ′

}N

n=0, (σ,σ′)=e(o)
(6.8)

and (σ, σ′) take the values (e, e) and (o, o) when N is even and (e, o) and (o, e)
when N is odd.

An important relation holds because d̂a
j |ψ〉

a
σ ⊗ |ψ〉bσ′ = 0. Upon the inser-

tion of the identity operator ∑L
n,n′=0 P̂a

n P̂b
n′ we get

L

∑
n,n′

(Ĉ†
a,j P̂

a
n−1 + Âa,j P̂a

n+1)P̂b
n′ |ψ〉aσ ⊗ |ψ〉bσ′ = 0. (6.9)

Each of the elements in the above sum must vanish independently because of
orthogonality, and the important relation

Ĉ†
a,j P̂

a
n−1P̂b

n′ |ψ〉aσ ⊗ |ψ〉bσ′ = −Âa,j P̂a
n+1P̂b

n′ |ψ〉aσ ⊗ |ψ〉bσ′ , ∀n, n′ (6.10)

is derived (the same holds for the b wire).
Let us now compute the N-fermions state such that Ĥ|φN〉 = 0. In general,

|φN〉 must be in the kernel of Ĥab:

|φN〉 =
N

∑
n=0

∑
σ,σ′

xn,σ,σ′ P̂
a
n P̂b

N−n|ψ〉aσ ⊗ |ψ〉bσ′ ; ∑
n,σ,σ′

|xn,σ,σ′ |2 = 1. (6.11)
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Imposing now that ĤI |φN〉 = ∑j L̂†
I,j L̂I,j|φN〉 = 0, we obtain that:

L̂I,j|φN〉 = (Ĉ†
a,j Âb,j + Ĉ†

b,j Âa,j)
N

∑
n=0

∑
σ,σ′

xn,σ,σ′ P̂
a
n P̂b

N−n|ψ〉aσ ⊗ |ψ〉bσ′ ,

= Ĉ†
a,j Âb,j|φN〉 − Ĉ†

a,j Âb,j ∑
n

∑
σ,σ′

xn,σ,σ′ P̂
a
n−2P̂b

N−n+2|ψ〉aσ ⊗ |ψ〉bσ′ ,

= Ĉ†
a,j Âb,j ∑

n
∑
σ,σ′

(xn,σ,σ′ − xn+2,σ,σ′)P̂a
n P̂b

N−n|ψ〉aσ ⊗ |ψ〉bσ′ ,

= 0 ⇐⇒ xn,σ,σ′ = xn+2,σ,σ′ , (6.12)

since Ĉ†
a,j Âb,j P̂a

n P̂b
N−n|ψ〉aσ ⊗ |ψ〉bσ′ 6= 0. Such a relation uniquely defines a

ground state for a fixed local parity (even-even, odd-odd, even-odd, odd-
even), and thus, for each fixed particle number N, there is a double degeneracy
related to distinct wire parities. Indeed, a general ground state for 2N particles
is given by

|φ2N〉 ∝ ∑
n

[
w0P̂a

2n P̂b
2(N−n)|ψ〉

a
e ⊗ |ψ〉be + w1P̂a

2n+1P̂b
2N−(2n+1)|ψ〉

a
o ⊗ |ψ〉bo

]
,

(6.13)
and is parametrized by the complex coefficients w0 and w1.

Alternatively, we can consider the ground states of two decoupled even
parity Kitaev chains at half filling µ = 0 and ∆ = J on a circle with odd
number of sites (no edges), |G〉 = |ψ〉ae ⊗ |ψ〉be , and on an open system of the
same length,

{|G〉, d̂a†

L |G〉, d̂b†

L |G〉, d̂a†

L d̂b†

L |G〉},
which are related to the edge Majorana fermions d̂α

L = γ̂α
2L + iγ̂α

1 , where

{γ̂α
i , γ̂

β
j } = 2δijδαβ, γ̂α

2j−1 = i(α̂j − α̂†
j ), and γ̂α

2j = α̂j + α̂†
j , for α = a, b. In this

writing, we are exploting the highly non-generic properties of Kitaev’s wire
“sweet point”, namely that the ground state of a closed wire (L odd) coincides
with the ground state with even parity of an open wire |ψ〉a (L odd).

Thus, the ground states for the two wires number conserving Hamiltonian,
as analysed in this section, are described by

|φN〉 ⊂ span
{

P̂N |G〉, P̂N d̂a†

L d̂b†

L |G〉
}

for N even,

|φN〉 ⊂ span
{

P̂N d̂a†

L |G〉, P̂N d̂b†

L |G〉
}

for N odd.

6.7.2 Entanglement spectrum

In this section we provide the detailed derivation for the entanglement spec-
trum, presented in the main text. We consider the reduced state of l sites
on each wire ρl = Tr(L−l)

[
|ψL(N)〉ee〈ψL(N)|ee

]
(in the following expression

identity operators on the first l sites are omitted):

ρl = ∑
{~jm},{~q′m}

〈~jm|a ⊗ 〈~qm′ |b|ψL(N)〉ee〈ψL(N)|ee |~jm〉a ⊗ |~qm′〉b.
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Notice now that for Nl even:

〈~j2m(2m+1)|a ⊗ 〈~qN−Nl−2m(2m+1)|b |ψL(N)〉ee =

√
Nee(oo),l,Nl

Nee,L,N
|ψl(Nl)〉ee(oo),

(6.14)
which, as we see, does not depend on the specific ~j or ~q. A similar relation
exists for Nl odd,

〈~j2m(2m+1)|a ⊗ 〈~qN−Nl−2m(2m+1)|b |ψL(N)〉ee =

√
Nee,l,Nl

Nee,L,N
|ψl(Nl)〉eo(oe),

(6.15)
Summing up such terms, we obtain the reduced state in diagonal form and
its eigenvalues, as given in the main text.

The demonstration for the double degeneracy in the entanglement spec-
trum in the limit of large L and L− l (i.e., large lattices and bipartitions not
close to its edges), is related to the fact that, in this limit, Nee,l,Nl

∼ Noo,l,Nl
.

Even if we do not have an explicit analytical proof of the previous relation,
numerical tests in several regimes corroborate this intuitive result.

From the eigenvalues computed in this section, we can also compute the
entanglement entropy of the block matrices, and see how it scales with the size
of the block. We see in Fig. 6.4 a behavior typical of a gapless Hamiltonian,
which does not scale as an area law.

6.7.3 Edge modes

As discussed in the main text, in order to directly characterize the localization
length of the edge modes we may compute the local parity breaking perturba-

tion 〈g2|â†
i b̂i|g1〉, where

∣∣∣g1(2)

〉
correspond to the two ground states for fixed

N in Eq. (6.5). The task of computing these observables reduces merely to
counting the suitable configurations, by looking at the ground states as given
in Eq. (6.4). Let us consider, for simplicity, the case of an even number of

particles N, and
∣∣∣g1(2)

〉
the even-even (odd-odd) local parity ground state.

If we act with the V̂j = â†
j b̂j operator on the even-even ground state, the

only states
∣∣∣~j2n

〉
a
⊗ |~qN−2n〉a (see Eq.(6.4) in the main text) which are not

annnihilated bt V̂j are those which have a particle at site bj, and a hole at
site aj. Due to the anticommutation relations, each of these configurations

obtain a phase (−1)(n
a
R+nb

L), where na
R =

L
∑

r=j+1
na

r is the number of particles

located at the right of the jth site in the a-wire, and nb
L =

j−1
∑

r=1
nb

r the number of

particles located at the left of the jth site in the b-wire. These phases describe
the parity of the configuration on the segments [j + 1, L] for the a-wire and
[1, j− 1] for the b-wire. Since the ground state is an equal superposition of all
configurations distributing N particles between the two wires and fixing the
parity of the number of particles for each wire, na

R varies from a minimum
value equal to max(0, N − j) to a maximum value min(N, L− j). Analogous
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Figure 6.4: Entanglement entropy Sl for a block with l sites, (upper panel)
considering a fixed filling n = N

2L = 1
3 , (lower panel) or a fixed particle number

sector N = 10.

relations exist for nb
R. The matrix element Oj defined in the text is thus related

to a simple counting argument of particle configurations which takes into
account the phase (−1)(n

a
R+nb

L). Realizing then the expectation value of these
configurations with the odd-odd ground state, it will be simply related to the
number of such configurations weighted by its corresponding phases.

Let us discuss this in more detail. The total number of configurations for
the even-even state, is given by

∑
n

(
L

2n

)
︸ ︷︷ ︸
b−wire

(
L

N − 2n

)
︸ ︷︷ ︸

a−wire

, (6.16)

whereas those which have a particle at site bj and a hole at site aj correspond
to

∑
n

(
L− 1

2n− 1

)
︸ ︷︷ ︸

b−wire

(
L− 1

N − 2n

)
︸ ︷︷ ︸

a−wire

= ∑
n

∑
nb

L

(
j− 1
nb

L

)(
L− j

2n− 1− nb
L

)
︸ ︷︷ ︸

b−wire

∑
na

R

(
L− j
na

R

)(
j− 1

N − 2n− na
R

)
︸ ︷︷ ︸

a−wire

.
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Taking into account the phase (−1)(n
a
R+nb

L), we have that

〈ψL(N)|oo â†
j b̂j|ψL(N)〉ee =

1√
Nee,L,NNoo,L,N

∑
n,nb

L ,na
R

(−1)(n
b
L+na

R)

(
j− 1
nb

L

)(
L− j

2n− 1− nb
L

)
︸ ︷︷ ︸

b−wire

(
L− j
na

R

)(
j− 1

N − 2n− na
R

)
︸ ︷︷ ︸

a−wire

Following the same steps as above, it is not hard to see that for a general
single-particle operator we have

〈ψL(N)|oo â†
j b̂r|ψL(N)〉ee =

1√
Nee,L,NNoo,L,N

∑
n,nb

L ,na
R

(−1)(n
b
L+na

R)

(
r− 1

nb
L

)(
L− r

2n− 1− nb
L

)
︸ ︷︷ ︸

b−wire

(
L− j
na

R

)(
j− 1

N − 2n− na
R

)
︸ ︷︷ ︸

a−wire

.

for (L + r)− j > 1.
In particular, the edge-edge correlations can be reduced to a simple expres-

sion in the thermodynamic limit,

〈ψL(N)|oo â†
1 b̂L|ψL(N)〉ee =

1√
Nee,L,NNoo,L,N

∑
n
(−1)(N−1)

(
L− 1

2n− 1

)
︸ ︷︷ ︸

b−wire

(
L− 1

N − 2n

)
︸ ︷︷ ︸

a−wire

,

〈ψL(N)|oo â†
L b̂1|ψL(N)〉ee =

1√
Nee,L,NNoo,L,N

∑
n

(
L− 1

2n− 1

)
︸ ︷︷ ︸

b−wire

(
L− 1

N − 2n

)
︸ ︷︷ ︸

a−wire

. (6.17)

Using the Chu-Vandermonde identity, ∑r
k=0 (

m
k )(

n
r−k) = (m+n

r ), for non-negative
integer m, n, r, we obtain in the limit of large lattices,

∑
n

(
L− 1

2n− 1

)
︸ ︷︷ ︸

b−wire

(
L− 1

N − 2n− 1

)
︸ ︷︷ ︸

a−wire

≈ 1
2

(
2L− 2
N − 1

)
, (6.18)

and Nee(oo),L,N ≈ 1
2 (

2L
N ). Thus, the edge-edge correlations are

〈ψL(N)|oo â†
1 b̂L|ψL(N)〉ee ≈

ν(1− ν)

(1− 1
2L )

L→∞−→ ν(1− ν). (6.19)

and similarly for 〈g2|â†
L b̂1|g1〉. Note that, if N is odd, we would have a minus

sign in the above correlation, 〈g2|â†
1 b̂L|g1〉 L→∞−→ −ν(1− ν), due to the overall

phase (−1)(N−1) in Eq. (6.17).

6.7.4 Single-particle and superfluid correlations

In a general way, any ground state observable can be computed as in the
previous section through a simple counting of the suitable configurations. In
this section we evaluate the single particle correlations 〈â†

j âj+r〉, as well as the
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superfluid correlations 〈â†
i â†

i+1 âj+1 âj〉. We skip unnecessary details and focus
mainly on the presentation of the final results. We only consider ground states
with even-even or odd-odd local parities because the even-odd and odd-even
cases are mathematically equivalent to the even-even one.

Single particle correlations:

〈ψL(N)|ee(oo) â
†
j âj+r|ψL(N)〉ee(oo) =

1
Nee(oo),L,N

∑
n,na

(j,r)

(−1)na
(j,r)

(
L

2n(2n + 1)

)
︸ ︷︷ ︸

b−wire

(
r− 1
na
(j,r)

)(
L− r− 1

N − 2n(2n + 1)− 1− na
(j,r)

)
︸ ︷︷ ︸

a−wire

,

(6.20)

if r > 1, and

〈ψL(N)|ee(oo) â
†
j âj+r|ψL(N)〉ee(oo) =

1
Nee(oo),L,N

∑
n

(
L

2n(2n + 1)

)
︸ ︷︷ ︸

b−wire

(
L− r− 1

N − 2n(2n + 1)− 1

)
︸ ︷︷ ︸

a−wire

,

(6.21)

if r ≤ 1, where na
(j,r) = ∑r−1

i=1 na
j+i is the number of particles between the sites j

and j + r, which varies from a minimum of zero (where all the particles are
in the b-wire), to a maximum value equal to min(N − 1, r− 1) (where all the
remaining N − 1 particles lie between these sites, or it is completely filled).

Superfluid correlations:

The superfluid order can be characterized by the following p-wave super-
conducting correlators “â†

i â†
i+1 âj+1 âj”. We compute it analytically, and show

that it saturates along the lattice, â†
i â†

i+1 âj+1 âj
L→∞−→ ν2(1− ν)2. The evaluation

is similar as the previous ones, following through a simple counting of the
suitable configurations.

〈ψL(N)|ee(oo) â
†
i â†

i+1 âj+1 âj|ψL(N)〉ee(oo) =
1

Nee(oo)(L, N) ∑
n

(
L

2n

)
︸ ︷︷ ︸
b−wire

(
L− 4

N − 2n− 2

)
︸ ︷︷ ︸

a−wire

,

(6.22)
for i + 1 < j. Using the Chu-Vandermonde identity, we obtain in the limit of
large lattices,

∑
n

(
L

2n

)
︸ ︷︷ ︸
b−wire

(
L− 4

N − 2n− 2

)
︸ ︷︷ ︸

a−wire

≈ 1
2

(
2L− 4
N − 2

)
, (6.23)
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and Nee(oo)(L, N) ≈ 1
2 (

2L
N ). Thus, the superfluid correlations is

〈ψL(N)|ee(oo) â
†
i â†

i+1 âj+1 âj|ψL(N)〉ee(oo) ≈
24ν2(1− ν)2L4 +O(L3)

24L4 +O(L3)
L→∞−→ ν2(1− ν)2.

(6.24)

6.7.5 Braiding

In this section we demonstrate the properties of the braiding operator B̂aR,bR(j) =
(Î + ẐaR,bR,j)/

√
2 presented in the main text. To that end, it is useful to first

study the action of ẐaR,bR,j, starting from the simpler case j = 1:

ẐaR,bR,1 =
X̂aR,bR,1

F1
; X̂aR,bR,1 = a†

LbL− b†
LaL; F1 =

√
1− [ν2 + (1− ν)2];

(6.25)
with ν = N

2L . The action of a†
LbL on |ψL(N)〉ee produces an unnormalized

state proportional to the equal-weighted superposition of all fermionic con-
figurations with (i) N fermions, (ii) odd wire parities, (iii) a hole in the L-th
site of the wire a, and (iv) a particle in the L-th site of the wire b. Due to
the anticommuting properties of fermionic operators, this state gets a global
phase (−1)(N−1)+(Na) = (−1)Nb−1 (recall that (−1)Na and (−1)Nb are well-
defined although Na and Nb are not fixed). With similar reasoning one can
also characterize b†

LaL|ψL(N)〉ee (here the hole (fermion) is in the L-th site of
the wire a (b) and the global phase is (−1)(Na−1)+(N−1) = (−1)Nb ). The state
ẐaR,bR,1|ψL(N)〉ee is the normalized state described by the equal weighted
superposition of all fermionic configurations with (i) N fermions and (ii) odd
wire parities and without (iii) the simultaneous presence of two holes or two
particles at the L-th site of both wires a and b. The normalization constant F1
corresponds to the “fidelity” of the state with the ground state with such local

parities, F1 =
√
〈ψL(N)|ooẐaR,bR,1|ψL(N)〉ee =

√
1− [ν2 + (1− ν)2].

The operator ẐaR,bR,j acts on the last j sites of the wires. Let us consider
for example j = 2:

ẐaR,bR,2 =
X̂aR,bR,1 + ŶaR,bR,1X̂aR,bR,2

F2
;

ŶaR,bR,1X̂aR,bR,2 =
(

na
Lnb

L + (1− na
L)(1− nb

L)
)(

a†
L−1bL−1 − b†

L−1aL−1

)
;

F2 =
√

1− [ν4 + (1− ν)4]. (6.26)

Note that the term ŶaR,bR,1X̂aR,bR,2|ψL(N)〉ee acts only on the fermionic con-
figurations which were missing in X̂aR,bR,1|ψL(N)〉ee. However, it is clear that
ẐaR,bR,2|ψL(N)〉ee does not contain any configuration with four holes or four
particles in the L-th and (L− 1)-th sites of both wires. Whereas this still makes
ẐaR,bR,2|ψL(N)〉ee different from |ψL(N)〉oo, it is a considerable improvement
with respect to the previous case. In general, the state ẐaR,bR,j|ψL(N)〉ee is
the equal weighted superposition of all fermionic configurations with (i)
N fermions and (ii) odd wire parities, and without (iii) the simultaneous
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presence of 2j holes or 2j particles in the last j sites of both wires. Fj corres-
ponds to the fidelity of the state to the ground state with such local parity

pattern, Fj =
√
〈ψL(N)|ooẐaR,bR,j|ψL(N)〉ee =

√
1−

[
ν2j + (1− ν)2j

]
. For a

large enough j < L/2, the difference between ẐaR,bR,j|ψL(N)〉ee and |ψL(N)〉oo
becomes exponentially small, so that the above operator in the zero-energy
subspace reads

ẐaR,bR,j ∼ ∑
N even

(|ψL(N)〉ee〈ψL(N)|oo − |ψL(N)〉oo〈ψL(N)|ee)+

+ ∑
N odd

(|ψL(N)〉oe〈ψL(N)|eo − |ψL(N)〉eo〈ψL(N)|oe). (6.27)

For j and L are such that the error is negligible, we define the number conserving
operator R̂aR,bR = B̂aR,bR(j).

We observe that R̂aR,bR acts on the zero-energy states in the same way
done in the conventional number non-conserving scenario of two neighboring
Kitaev wires by the braiding operator R̂′aR,bR = e

π
4 γaRγbR = (I + γaRγbR)/

√
2,

where γmΛ are the zero-energy Majorana operators exponentially localized at
the Λ = R, L edge of the wire m = a, b. In order to verify this explicitly, we
first recall that the number non-conserving edges Majoranas are related to a
non-local fermion as f̂m = γ̂mL − iγmR which is the Bogoliubov zero-energy
mode. The two degenerate ground states of the wire m = a, b, |ψ〉mσ (σ
is the parity of the number of fermions, even, e or odd, o, and labels the
two ground states), correspond to the presence or absence of the non-local
fermion f̂m: f̂m|ψ〉me = 0, and f̂ †

m|ψ〉me = |ψ〉mo. Using the inverse relations

γ̂mL ∝
(

f̂m + f̂ †
m

)
and γ̂mR ∝ i

(
f̂m − f̂ †

m

)
, it is now easy to see that:

γ̂aRγ̂bR|ψ〉aσ|ψ〉bτ = pσ(γ̂aR|ψ〉aσ)(γ̂bR|ψ〉bτ) = pσ(−ipσ)(−ipτ)|ψ〉aσ̄|ψ〉bτ̄

= −pτ |ψ〉aσ̄|ψ〉bτ̄ (6.28)

where pσ = 1 for σ = e and pσ = −1 for σ = o; σ̄, τ̄ are the flipped σ, τ.
As claimed, γ̂aRγ̂bR acts on the ground space in a way which is completely
analogous to that of ẐR

ab in Eq. (6.27) for the number-conserving model. The
equivalence of R̂aR,bR and R̂′aR,bR follows directly.

The unitarity of the braiding operator R̂aR,bR restricted to the ground
subspace can be proved explicitly. Let us first notice that:

〈ψL(N)|στ R̂†
aR,bRR̂aR,bR|ψL(N)〉σ′τ′

=
1
2
〈ψL(N)|στ

(
I + ẐaR,bR,j + Ẑ†

aR,bR,j + Ẑ†
aR,bR,jẐaR,bR,j

)
|ψL(N)〉σ′τ′

=
1
2
〈ψL(N)|στ

(
I + Ẑ†

aR,bR,jẐaR,bR,j

)
|ψL(N)〉σ′τ′

= δσ,σ′δτ,τ′ (6.29)

where in the second line we used the fact that ẐaR,bR,j is anti-Hermitian. Thus,
in the ground state subspace we have,

P̂g R̂†
aR,bR R̂aR,bR P̂†

g = P̂g (6.30)
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With similar procedures we can define other braiding operators with com-
pletely analogous properties. For example, let us consider the transformation
i ↔ (L + 1 − i) which maps an operator at site i to site (L + 1 − i), thus
mapping the right edge to the left one and viceversa. When we apply it to
ẐaR,bR,j, we can define ẐaL,bL,j, which is exponentially localized at the left edge
of the wire. For j and L large enough, its explicit expression is:

ẐaL,bL,j ∼ ∑
N even

(−|ψL(N)〉ee〈ψL(N)|oo + |ψL(N)〉oo〈ψL(N)|ee)

+ ∑
N odd

(|ψL(N)〉oe〈ψL(N)|eo − |ψL(N)〉eo〈ψL(N)|oe). (6.31)

The braiding operator R̂aL,bL can be defined, and an explicit calculation shows
that it is unitary and that it resembles the operator R̂′aL,bL for the number
non-conserving case.

As a second example, let us consider the transformation bL+1−j → −iaj
for j < L/2 which maps the right edge of the wire b to the left edge of the
wire a, leaving the other two edges unchanged. When we apply it to ẐaR,bR,j,
we can define the operator ẐaR,aL,j, whose explicit expression for j and L large
enough is:

ẐaR,aL,j ∼ ∑
N even

i (|ψL(N)〉ee〈ψL(N)|ee − |ψL(N)〉oo〈ψL(N)|oo)

+ ∑
N odd

i (|ψL(N)〉eo〈ψL(N)|eo − |ψL(N)〉oe〈ψL(N)|oe). (6.32)

Again, everything follows as before. In general, with this method one can
define sixteen braiding operators R̂mΛ,m′Λ, with m, m′ = a, b labeling the wires
and Λ, Λ′ = L, R labeling the left and right edge.

Let us conclude with an explicit verification of the non-abelian character
of these operators; to this aim, we initialize the system in the state |ψL(N)〉ee.
We then perform two braiding operations on the edges in different sequences:(

R̂aR,aLR̂aR,bR − R̂aR,bRR̂aR,aL
)
|ψL(N)〉ee

=
1
2

(
ẐaR,aL,jẐaR,bR,j − ẐaR,bR,jẐaR,aL,j

)
|ψL(N)〉ee

= i|ψL(N)〉oo. (6.33)

The result shows explicitly the non-commutativity of the braiding operations.
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CHAPTER 7

Dissipative preparation of
topological superconductors

in a number-conserving
setting

In this chapter we discuss the dissipative preparation of p-wave supercon-
ductors in number-conserving one-dimensional fermionic systems. We focus
on two setups: the first one entails a single wire coupled to a bath, whereas
in the second one the environment is connected to a two-leg ladder. Both
settings lead to stationary states which feature the bulk properties of a p-wave
superconductor, identified in this number-conserving setting through the
long-distance behavior of the proper p-wave correlations. The two schemes
differ in the fact that the steady state of the single wire is not characterized
by topological order, whereas the two-leg ladder hosts Majorana zero modes,
which are decoupled from damping and exponentially localized at the edges.
Our analytical results are complemented by an extensive numerical study of
the steady-state properties, of the asymptotic decay rate and of the robustness
of the protocols.

7.1 Introduction

Topological quantum computation has recently emerged as one of the most
intriguing paradigms for the storage and manipulation of quantum informa-
tion [85, 86]. The defining features of topological order, namely the existence
of degenerate ground states which (i) share the same thermodynamic prop-
erties and (ii) can only be distinguished by a global measurement, portend
for a true many-body protection of quantum information. Additionally, the
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non-Abelian anyons which typically appear in these models are crucial for
the active manipulation of the information, to be accomplished through their
adiabatic braiding [123, 124].

Among the several systems featuring topological order, free p-wave su-
perconducting systems with symmetry protected topological properties have
lately attracted a significant amount of attention [125, 126, 127]. On the one
hand, they are exactly-solvable fermionic models which help building a clear
physical intuition of some aspects of topological order [89, 108]. On the other
one, they are physically relevant, and several articles have recently reported
experimental evidences to be linked to p-wave-like superconductors featuring
zero-energy Majorana modes [97, 128, 129, 130, 131].

Whereas up to now these experimental results have been obtained in
solid-state setups, it is natural to ask whether such physics might as well
be observed in cold atomic gases [132], which owing to their well-controlled
microscopic physics should allow for a more thorough understanding of these
peculiar phases of matter. Important theoretical efforts have thus proposed a
variety of schemes which exploit in different ways several properties of such
setups [133, 134, 96, 104, 135, 101, 136].

Among these ideas, that of a dissipative preparation of interesting many-
body quantum states [113, 114] is particularly appealing: rather than suffering
from some unavoidable open-system dynamics, such as three-body losses or
spontaneous emission, one tries to take advantage of it (see Refs. [137, 104,
105, 138, 139] for the case of states with topological order, such as p-wave
superconductors). The key point is the engineering of an environment that in
the long-time limit drives the system into the desired quantum state. This ap-
proach has the remarkable advantage of being a workaround to the ultra-low
temperatures necessary for the observation of important quantum phenomena
which constitute a particularly severe obstacle in fermionic systems. The trust
is thus that the mentioned “non-equilibrium cooling” may open the path
towards the experimental investigation of currently unattainable states, e.g.
characterized by p-wave superconductivity.

In this chapter we discuss the dissipative engineering of a p-wave supercon-
ductor with a fixed number of particles, an important constraint in cold-atom
experiments. We consider two different setups: (i) A single quantum wire,
introduced in Ref. [104]; this system displays the typical features of a p-wave
superconductor but it is not topological in its number conserving variant.
(ii) A two-leg ladder [98, 99, 100, 101, 102, 115, 140], supporting a dissipative
dynamics which entails a two-dimensional steady state space characterized
by p-wave superconducting order with boundary Majorana modes for every
fixed particle number.

We identify the p-wave superconducting nature of the steady states by
studying the proper correlators, which saturate to a finite value in the long
distance limit. Their topological properties are best discussed using a math-
ematical connection between dark states of the Markovian dynamics and
ground states of a suitable parent Hamiltonian. In both setups we demon-
strate that the dissipative gap closes at least polynomially in the system size
and thus that the typical decay time to the steady state diverges in the ther-
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modynamic limit. This contrasts with the case where number conservation
is not enforced. In this case typically the decay time is finite in the thermo-
dynamic limit [104, 105], and reflects the presence of dynamical slow modes
related to the particle-number conservation [141, 142], which also exist in
non-equilibrium systems (see also Ref. [143, 144, 145]).

Our exact analytical findings are complemented by a numerical study
based on a matrix-product-operator representation of the density matrix [117,
118], one of the techniques for open quantum systems which are recently
attracting an increasing attention [146, 119, 147, 148, 149, 150, 151, 152, 153].
These methods are employed to test the robustness of these setups to perturb-
ations, which is thoroughly discussed.

The chapter is organized as follows: in Sec. 7.2 we review the key facts
behind the idea of dissipative state preparation using the dark states of a
many body problem, and exemplify them recalling the problem studied in
Ref. [104]. A simple criterion for signalling the divergence of the decay-
time with the system size is also introduced. In Sec. 7.3 we present the
exact analytical study of the single-wire protocol, and in Sec. 7.4 a numerical
analysis complements the previous discussion with the characterization of the
robustness to perturbations of these setups. In Sec. 7.5 we discuss the protocol
based on the ladder geometry. Finally, in Sec. 7.6 we present our conclusions.

7.2 Dissipative state preparation of Majorana fermions:
known facts

7.2.1 Dark states and parent Hamiltonian of Markovian dynamics

The dissipative dynamics considered in this chapter is Markovian and, in the
absence of a coherent part, can be cast in the following Lindblad form:

∂

∂t
ρ̂ = L[ρ̂] =

m

∑
j=1

[
L̂jρ̂L̂†

j −
1
2
{L̂†

j L̂j, ρ̂}
]

, (7.1)

where L is the so-called Lindbladian super-operator and the L̂j are the (local)
Lindblad operators. We now discuss a fact which will be extensively used in
the following. Let us assume that a pure state |Ψ〉 exists, with the property:

L̂j|Ψ〉 = 0; ∀ j = 1, . . . , m. (7.2)

A simple inspection of Eq. (7.1) shows that |Ψ〉 is a steady state of the dynam-
ics, and it is usually referred to as dark state. Although the existence of a state
satisfying Eq. (7.2) is usually not guaranteed, in this chapter we will mainly
consider master equations which enjoy this property.

A remarkable feature of dark states is that they can be searched through
the minimization of a parent Hamiltonian. Let us first observe that Eq. (7.2)
implies that 〈Ψ|L̂†

j L̂j|Ψ〉 = 0 and since every operator L̂†
j L̂j is positive semi-

definite, |Ψ〉 minimizes it. Consequently, |Ψ〉 is a ground state of the parent
Hamiltonian:

Ĥp =
m

∑
j=1

L̂†
j L̂j. (7.3)
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Conversely, every zero-energy ground state |Φ〉 of Hamiltonian (7.3) is a steady
state of the dynamics (7.1). Indeed, Ĥp|Φ〉 = 0 implies that 〈Φ|L̂†

j L̂j|Φ〉 = 0

for all j = 1, . . . , m. The last relation means that the norm of the states L̂j|Φ〉
is zero, and thus that the states themselves are zero: L̂j|Φ〉 = 0. As we have
already shown, this is sufficient to imply that |Φ〉 is a steady-state of the
dynamics.

In order to quantify the typical time-scale of the convergence to the steady
state, it is customary to consider the right eigenvalues of the super-operator L,
which are defined through the secular equation L[θ̂λ] = λθ̂λ. The asymptotic
decay rate for a finite system is defined as

λADR = inf
λ is eigenvalue of L

<(λ) 6=0

{−<(λ)}. (7.4)

The minus sign in the previous equation follows from the fact that the real
part of the eigenvalues of a Lindbladian super-operator satisfy the following
inequality: <(λ) ≤ 0.

Remarkably, for every eigenvalue ξ of Ĥp there is an eigenvalue λ = −ξ/2
of L which is at least two-fold degenerate. Indeed, given the state

∣∣ψξ

〉
such

that Ĥp
∣∣ψξ

〉
= ξ

∣∣ψξ

〉
, the operators made up of the dark state |Ψ〉 and of

∣∣ψξ

〉
θ̂
(1)
−ξ/2 = |Ψ〉

〈
ψξ

∣∣, θ̂
(2)
−ξ/2 =

∣∣ψξ

〉
〈Ψ| (7.5)

satisfy the appropriate secular equation. This has an important consequence:

if Ĥp is gapless, then λADR
L→∞−−−→ 0 in the thermodynamic limit, where L is

the size of the system. Indeed:

0 < λADR ≤
ξ

2
, (7.6)

for every eigenvalue ξ of Ĥp; if ξ closes as L−α (α > 0), then the dissipative
gap closes at least polynomially in the system size. Note that this argument
also implies that if L is gapped, then the parent Hamiltonian is gapped as
well.

It is important to stress that the spectral properties of the parent Hamilto-
nian Ĥp do not contain all the information concerning the long-time dissipat-
ive dynamics. As an example, let us assume that the Markovian dynamics in
Eq. (7.1) (i) supports at least one dark state and (ii) has an associated parent
Hamiltonian which is gapped. If the Lindblad operators are Hermitian, then
the fully-mixed state is a steady state of the master equation too. The presence
of such stationary state is not signaled by the parent Hamiltonian, which is
gapped and only detects the pure steady states of the dynamics.

Whereas the some of the above relations have been often pointed out in the
literature [113, 114], to the best of our knowledge the remarks on the relation
between the spectral properties of L and Ĥp are original.
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7.2.2 The Kitaev chain and the dissipative preparation of its
ground states

Let us now briefly review the results in Ref. [104] and use them to exemplify
how property (7.2) can be used as a guideline for dissipative state preparation
in the number non-conserving case. This will be valuable for our detailed
studies of its number conserving variant below.

The simplest model displaying zero-energy unpaired Majorana modes is
the one-dimensional Kitaev model at the so-called “sweet point” [89]:

ĤK = −J ∑
j

[
â†

j âj+1 + âj âj+1 + H.c.
]
, J > 0, (7.7)

where the fermionic operators â(†)j satisfy canonical anticommutation relations
and describe the annihilation (creation) of a spinless fermion at site j. The
model can be solved with the Bogoliubov-de-Gennes transformation, and,
when considered on a chain of length L with open boundaries, it takes the
form:

ĤK = E0 +
J
2

L−1

∑
j=1

ˆ̀†
j
ˆ̀ j , (7.8)

with

ˆ̀ j = Ĉ†
j + Âj, (7.9)

Ĉ†
j = â†

j + â†
j+1, Âj = âj − âj+1. (7.10)

The ground state has energy E0 and is two-fold degenerate: there are two
linearly independent states |ψe〉 and |ψo〉 which satisfy:

ˆ̀ j|ψσ〉 = 0; ∀ j = 1, . . . , L− 1; σ = e, o. (7.11)

The quantum number distinguishing the two states is the parity of the number

of fermions, P̂ = (−1)∑ â†
j âj , which is a symmetry of the model (the subscripts

e and o stand for even and odd). Both states |ψσ〉 are p-wave superconductors,
as it can be explicitly proven by computing the expectation value of the
corresponding order parameter:

〈ψσ|âj âj+1|ψσ〉 L→∞−−−→ 1
4

. (7.12)

It is thus relevant to develop a master equation which features |ψe〉 and
|ψo〉 as steady states of the dynamics [104, 105]. Property (7.11) provides the
catch: upon identification of the ˆ̀ j operators with the Lindblad operators of a
Markovian dynamics, Eq. (7.2) ensures that the states |ψσ〉 are steady states
of the dynamics and that in the long-time limit the system evolves into a
subspace described in terms of p-wave superconducting states. This becomes
particularly clear once it is noticed that the parent Hamiltonian of this Markov
process coincides with ĤK in Eq. (7.8) apart from an additive constant.

Let us conclude mentioning that the obtained dynamics satisfies an im-
portant physical requirement, namely locality. The Lindblad operators ˆ̀ j only
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act on two neighboring fermionic modes; this fact makes the dynamics both
physical and experimentally feasible. On the other hand, they do not conserve
the number of particles, thus making their engineering quite challenging with
cold-atom experiments. The goal of this chapter is to provide dissipative
schemes with Lindblad operators which commute with the number operator
and feature the typical properties of a p-wave superconductor.

7.3 Single wire: Analytical results

The simplest way to generalize the previous results to systems where the
number of particles is conserved is to consider the master equation induced
by the Lindblad operators [104, 105]:

L̂′j = Ĉ†
j Âj, ∀ j = 1, . . . , L− 1, (7.13)

for a chain with hard-wall boundaries and spinless fermions:

∂

∂t
ρ̂ = L′[ρ̂] = γ

L−1

∑
j=1

[
L̂′jρ̂L̂′†j −

1
2
{L̂′†j L̂′j, ρ̂}

]
; γ > 0; (7.14)

where γ is the damping rate. This Markovian dynamics has already been
considered in Refs. [104, 105]. Using the results presented in Ref. [115], where
the parent Hamiltonian related to the dynamics in Eq. (7.14) is considered,
it is possible to conclude that for a chain with periodic boundary conditions
(i) there is a unique dark state for every particle number density ν = N/L,
and (ii) this state is a p-wave superconductor. A remarkable point is that the
L̂′j are local and do not change the number of particles: their experimental
engineering is discussed in Ref. [104], see also [154].

Here we clarify that for the master equation for a single wire with hard-wall
boundaries, the steady state is not topological and does not feature Majorana
edge physics, although they still display the bulk properties of a p-wave
superconductor (instead, the two-wire version studied below has topological
properties associated to dissipative Majorana zero modes). The asymptotic
decay rate of the master equation is also characterized. An extensive numerical
study of the stability of this protocol is postponed to Sec. 7.4.

7.3.1 Steady states

In order to characterize the stationary states of the dynamics, let us first
observe that Eq. (7.11) implies [115]

Ĉ†
j |ψσ〉 = −Âj|ψσ〉, (7.15)

so that:
L̂′j|ψσ〉 = Ĉ†

j Âj|ψσ〉 = −Ĉ†
j Ĉ†

j |ψσ〉 = 0. (7.16)

Thus, |ψσ〉 are steady states of the dynamics. Let us define the states

|ψN〉 = Π̂N |ψσ〉, (7.17)
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where Π̂N is the projector onto the subspace of the global Hilbert (Fock) space
with N fermions (Π̂N |ψσ〉 = 0 when the parity of N differs from σ and thus
we avoid the redundant notation |ψσ,N〉). Since [L̂′j, N̂] = 0, where N̂ = ∑j â†

j âj

is the particle-number operator, it holds that L̂′j|ψN〉 = 0 for all j = 1, . . . , L− 1
and thus the |ψN〉 are dark states. Let us show that there is only one dark
state |ψN〉 once the value of N is fixed. To this end, we consider the parent
Hamiltonian (7.3) associated to the Lindblad operators (7.13):

Ĥ′p =2J
L−1

∑
j=1

[
n̂j+n̂j+1−2n̂jn̂j+1− â†

j+1 âj− â†
j âj+1

]
, (7.18)

where n̂j ≡ â†
j âj and J > 0 is a typical energy scale setting the units of

measurement. Upon application of the Jordan-Wigner transformation, the
model Ĥ′p is unitarily equivalent to the following spin-1/2 chain model:

Ĥ′p,spin = J
L−1

∑
j=1

[
1 + σ̂x

j σ̂x
j+1 + σ̂

y
j σ̂

y
j+1 − σ̂z

j σ̂z
j+1

]
, (7.19)

where σ̂α
j are Pauli matrices. Apart from a constant proportional to L− 1,

Ĥ′p,spin is the ferromagnetic Heisenberg model. The particle-number conser-
vation corresponds to the conservation of the total magnetization along the
ẑ direction. It is a well-known fact that this model has a highly degenerate
ground state but that there is only one ground state for each magnetization
sector, both for finite and infinite lattices. Thus, this state corresponds to the
state |ψN〉 identified above; therefore, the possibility that the ground state of
Ĥ′p is two-fold degenerate (as would be required for the existence of Majorana
modes) for fixed number of fermions and hard-wall boundary conditions is
ruled out.

Summarizing, the dynamics induced by the Lindblad operators in (7.13)
conserves the number of particles and drives the system into a quantum state
with the properties of a p-wave superconductor (in the thermodynamic limit
|ψe〉 and Π̂N |ψe〉 have the same bulk properties, as it is explicitly checked in
Ref. [104, 105], but see also the discussion below). Since the steady states of
the system for open boundary conditions are unique, they do not display any
topological edge property.

7.3.2 P-wave superconductivity

Let us explicitly check that the states |ψN〉 have the properties of a p-wave
superconductor. Since each state has a definite number of fermions, the
order parameter defined in Eq. (7.12) is zero by symmetry arguments. In a
number-conserving setting, we thus rely on the p-wave pairing correlations:

G(p)
j,l = 〈ψN |Ô(p)†

j Ô(p)
l |ψN〉 = 〈ψN |â†

j â†
j+1 âl+1 âl |ψN〉. (7.20)

If in the long-distance limit, |l − j| → ∞, the expectation value saturates
to a finite value or shows a power-law behavior, the system displays p-
wave superconducting (quasi-)long-range order. If the decay is faster, e.g.
exponential, the system is disordered.
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In this specific case, the explicit calculation shows a saturation at large
distance (see also Ref. [115]):

G(p)
j,l

|j−l|→∞−−−−−→ ν2(1− ν)2 (7.21)

in the thermodynamic limit. The saturation to a finite value captures the
p-wave superconducting nature of the states. Note that the breaking of a
continuous symmetry in a one-dimensional system signaled by Eq. (7.21) is
a non-generic feature: a perturbation of Hamiltonian Ĥ′p would turn that
relation into a power-law decay to zero as a function of |j− l| (see Ref. [115]
for an explicit example).

7.3.3 Dissipative gap

An interesting feature of Ĥ′p,spin is that it is gapless; the gap closes as L−2

due to the fact that the low-energy excitations have energy-momentum re-
lation ωq ∼ q2, as follows from well-known properties of the ferromagnetic
Heisenberg model. The Jordan-Wigner transformation conserves the spectral
properties and thus Ĥ′p is also gapless. Thus, according to the discussion in
Sec. 7.2.1, the asymptotic decay rate λ′ADR associated to the Lindbladian L′
closes in the thermodynamic limit. This is true both for periodic and hard-wall
boundary conditions.

This fact has two important consequences. The first is that the dissip-
ative preparation of a fixed-number p-wave superconductor through this
method requires at least a typical time τ′ that scales like L2. In Sec. 7.4 we
numerically confirm this polynomial scaling. Although this requires an effort
which is polynomial in the system size, and which is thus efficient, it is a
slower dynamical scenario than that of the non-number-conserving dynamics
considered in Refs. [104, 105] and summarized in Sec. 7.2.2, where τ does
not scale with L (the super-operator L in that case is gapped), and thus the
approach to stationarity is exponential in time. The difference can be traced
to the presence of dynamical slow modes related to exact particle number
conservation, a property which is abandoned in the mean field approximation
of Refs. [104, 105].

The second consequence is that a gapless Lindbladian L does not ensure
an a priori stability of the dissipative quantum state preparation. Roughly
speaking, even a small perturbation εM′ (ε� 1) to the Lindbladian L′ such
that the dynamics is ruled by L′ + εM′ has the potential to qualitatively
change the physics of the steady-state (see Refs. [156, 157, 158] for some
examples where the presence of a gap is exploited for a perturbative analysis
of the steady states). This concerns, in particular, the long-distance behavior of
correlation functions. To further understand this last point, in Sec. 7.4 we have
analyzed the effect of several perturbations through numerical simulations. In
the case in which the steady state has topological properties, they may still
be robust. We further elaborate on this point in Sec. 7.5, where we study the
ladder setup.

Notwithstanding the gapless nature of the Lindbladian L′, we can show
that waiting for longer times is beneficial to the quantum state preparation.
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If we define p0(t) = tr
[
P̂0ρ̂(t)

]
, where P̂0 is the projector onto the ground

space of the parent Hamiltonian Ĥ′p, then the following monotonicity property
holds:

d
dt

p0(t) ≥ 0. (7.22)

Indeed, d
dt p0(t) = tr

[
P̂0L′[ρ̂(t)]

]
= tr

[
L′∗[P̂0]ρ̂(t)

]
, where L′∗ is the adjoint

Lindbladian. It is easy to see that L′∗[P̂0] = γ ∑j L̂′†j P̂0 L̂′j, which is a non-
negative operator because for any state |φ〉 it holds that:

〈φ|L′∗[P̂0]|φ〉 =γ ∑
j
〈φ|L̂′†j P̂0 L̂′j|φ〉 =

=γ ∑
j,α
|〈ψα|L̂′j|φ〉|2 > 0 (7.23)

where {|ψα〉} are a basis of the ground space of the parent Hamiltonian Ĥ′p. If
we consider the spectral decomposition of ρ̂(t) = ∑β pβ

∣∣φβ

〉〈
φβ

∣∣, with pβ > 0,
we obtain Eq. (7.22).

7.4 Single wire: Numerical results

Although the previous analysis, based on the study of the dark states of
the dynamics, has already identified many distinguishing properties of the
system, there are several features which lie outside its prediction range. Let
us list for instance the exact size scaling of the asymptotic decay rate or the
resilience of the scheme to perturbations. In order to complement the analysis
of the dissipative dynamics with these data, we now rely on a numerical
approach.

The numerical analysis that we are going to present is restricted to systems
with hard-wall boundary conditions. In order to characterize the time evolu-
tion described by the master equation (7.14), we use two different numerical
methods. The first is a Runge-Kutta (RK) integration for systems of small
size (up to L = 10) [116]. This method entails an error due to inaccuracies in
the numerical integration, but the density matrix is represented without any
approximation.

On the contrary, the second method, based on a Matrix-Product-Density-
Operator (MPDO) representation of the density matrix, allows the study of
longer systems through an efficient approximation of ρ̂ [117, 118, 119]. The
time evolution is performed through the Time-Evolving Block Decimation
(TEBD) algorithm, which is essentially based on the Trotter decomposition
of the Liouville super-operator etL′ . Although this method has been shown
to be able to reliably describe problems with up to ∼ 100 sites [150], in this
case we are not able to consider lengths beyond L = 22 because of the highly-
entangled structure of the states encountered during the dynamics. It is an
interesting perspective to investigate whether algorithms based on an MPDO
representation of the density matrix, which compute the steady state through
maximization of the Lindbladian super-operator L′, might prove more fruitful
in this context [149, 152].
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Finally, we have also performed Exact-Diagonalization (ED) studies of
system sizes up to L = 5 in order to access properties of L′, such as its
spectrum, which cannot be observed with the time-evolution.

7.4.1 Asymptotic decay rate

Let us first assess that the asymptotic decay rate of the system closes polyno-
mially with the system size (from the previous analysis we know that it closes
at least polynomially. As we discuss in Appendix 7.7.1, in the asymptotic limit,
it is possible to represent the expectation value of any observable Â as:

〈Â〉(t)− 〈Â〉ss ∼ κe−λADRt + . . . (7.24)

where 〈Â〉(t) = tr
[
Â ρ̂(t)

]
, 〈Â〉ss = limt→∞〈Â〉(t) and κ is a non-universal

constant. The notation −λADR is due to the fact that λADR is positive, being
defined through the additive inverse of the real part of the eigenvalues, see
Eq. (7.4). It is possible to envision situations where κ = 0 and thus the
long-time decay is dominated by eigenvalues of L′ with smaller real part.

The study of the long-time dependence of any observable can be used
to extract the value of λADR; among all the possible choices, we employ
the pairing correlator G(p)

j,l (t) = 〈Ô(p)†
j Ô(p)

l 〉(t) [see Eq. (7.20)] because of its
special physical significance. In Fig. 7.1(top), we consider L = 10 and plot
the time evolution of G(p)

j,l (t) for j = 1 and l = L− 1 (no relevant boundary
effects have been observed as far as the estimation of λADR is concerned).
The calculation is performed through RK integration of the master equation.
The initial state of the evolution is given by the ground state of the non-
interacting Hamiltonian, Ĥ0 = −J ∑j â†

j âj+1 + H.c. (N = L/2 for L even, and
N = (L + 1)/2 for L odd).

In order to benchmark the reliability of the RK integration for getting
the steady state, we compare the expectation value of several observables
(in particular of pairing correlators) with the exactly-known results (Sec. 7.3
provides the exact wavefunction of the steady state, from which several
observables can be computed). In all cases the absolute differences are below
10−6. Similar results are obtained for smaller system sizes, where it is even
possible to compute the trace-distance of the RK steady-state from the λ = 0
eigenstate of the Liouvillian computed with ED.

In the long-time limit, the observable (7.20) displays a clear stationary
behavior,

[
G(p)

j,l
]

ss = limτ→∞ G(p)
j,l (τ), consistently with Eq. (7.24). Once such

stationary value is subtracted, it is possible to fit λADR from the exponential
decay of

G(p)
j,l (t)−

[
G(p)

j,l
]

ss (7.25)

The subtraction is possible to high precision because the value of
[
G(p)

j,l
]

ss is
known from the previous analytical considerations. Moreover, as we have
already pointed out, the evolution continues up to times such that G(p)

j,l (t)

differs in absolute terms from the analytical value for . 10−6, which makes
the whole procedure reliable.
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Figure 7.1: (Top) Runge-Kutta time evolution of the pairing correlator G(p)
1,L−1(t)

for the largest available system size, L = 10. The inset shows that upon
subtraction of the steady value, an exponential decay is observed, from which
λADR is extracted. (Bottom) Time evolution of G(p)

1,L−1(t) −
[
G(p)

1,L−1
]

ss for
several system sizes. The inset shows the scaling of λADR with L, which is
fitted by an algebraic function. 103
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In Fig. 7.1(bottom) we display the quantity in (7.25) for various lattice
sizes L. It is clear that the convergence of the observable requires an amount
of time which increases with L. A systematic fit of λADR for several chain
lengths allows for an estimate of its dependence on L [see Fig. 7.1(bottom)]:
the finite-size dissipative gap scales as

λADR ∝ L−2.13±0.05 . (7.26)

The exact diagonalization (ED) of the Liouvillian up to L = 5 allows a number
of further considerations. First, the Liouvillian eigenvalues with largest real
part (<(λ) . 0) are independent of the number of particles (the check has
been performed for every value of N = 1, ..., 5). Second, comparing the ED
with the previous analysis, we observe that the λADR in Eq. (7.26) coincides
with the second eigenvalue of the Liouvillian, rather than with the first [here
the generalized eigenvalues are ordered according to the additive inverse of
their real part −<(λ)]. Numerical inspection of small systems (up to L = 5)
shows that the first excited eigenvalue of L′ is two-fold degenerate and takes
the value −ξ/2, where ξ is the energy of the first excited state of Ĥ′p (see the
discussion in Sec. 7.2.1). Our numerics suggests that it does not play any role
in this particular dissipative evolution, hinting at the fact that the chosen ρ̂(0)
does not overlap with the eigensubspace relative to −ξ/2. In this case, the
value of κ in Eq. (7.24) is zero.

7.4.2 Perturbations

In order to test the robustness of the dissipative scheme for the preparation
of a p-wave superconductor, we now consider several perturbations of the
Lindbladian L′ of both dissipative and Hamiltonian form. The robustness
of the dissipative state preparation of the p-wave superconductor is probed
through the behavior of the correlations G(p)

j,l (t), which define such phase.

Perturbations of the Lindblad operators

Let us define the following perturbed Lindblad operator:

L̂′j,ε = Ĉ†
j Âj,ε; Âj,ε = âj − (1− ε)âj+1; ε ∈ R, (7.27)

which allows for slight asymmetries in the action of the dissipation between
sites j and j + 1. The continuity equation associated to the dynamics, ∂tn̂i =
−( ĵi − ĵi−1), is characterized by the following current operator: ĵi = n̂i −
(1− ε)2n̂j + (ε2 − 2ε)n̂in̂i+1. When ε 6= 0, ĵi is not anymore odd under space
reflection around the link between sites i and i + 1, so that in the stationary
state a non-zero current can flow even if the density profile is homogeneous
(and even under the previous space-inversion transformation), which is quite
intuitive given the explicit breaking of inversion symmetry in this problem.

We employ the MPDO method to analyze the steady-state properties
of a system with size L = 22 initialized in the ground state of the free
Hamiltonian Ĥ0 for N = 11 and subject to such dissipation. The results in
the inset of Fig. 7.2 show that the steady state is not homogeneous and that a
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[
G′(p)

4,j
]

ss [see Eq. (7.28)] for a lattice with
L = 22 sites at half-filling, ν = 1/2, computed with MPDO for different values
of ε in L̂′j,ε [see Eq. (7.27)]. The inset displays the steady-state values of the
local number of fermions 〈n̂j〉ss for the same systems.

relatively high degree of inhomogeneity 〈n̂L〉−〈n̂1〉
〈n̂L/2〉 ≈ 1 is found also for small

perturbations ε = 0.05. This is not to be confused with the phase-separation
instability which characterizes the ferromagnetic parent Hamiltonian Ĥ′p,spin.
Indeed, if PBC are considered, the system becomes homogeneous and a
current starts flowing in it (not shown here).

P-wave superconducting correlations are affected by such inhomogeneity.
Whereas for ε = 0 the correlations

[
G(p)

j,l
]

ss do not show a significant depend-
ence on |j− l|, this is not true even for small perturbations ε ≤ 0.05. In order
to remove the effect of the inhomogeneous density, in Fig. 7.2 we show the
value of properly rescaled p-wave correlations:

[
G′(p)

j,l
]

ss ≡ 〈 Ô
′(p)†
j Ô′(p)

l 〉ss =
(N/L)4 〈Ô(p)†

j Ô(p)
l 〉ss

〈n̂j〉ss〈n̂j+1〉ss〈n̂l〉ss〈n̂l+1〉ss
(7.28)

where Ô′(p)
j = (N/L)2Ô(p)

j /(〈n̂j〉ss〈n̂j+1〉ss). An exponential decay behavior
appears as a function of |j − l|, which becomes more pronounced when ε
is increased. Even if the simulation is performed on a finite short system,
for significant perturbations, ε = 0.1, the value of

[
G′(p)

j,l
]

ss decays of almost
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two decades, so that the exponential behavior is identified with reasonable
certainty.

In Appendix 7.7.2 we discuss some interesting analogies of these results
with the properties of the ground state of the parent Hamiltonian Ĥ′p,ε =

J ∑j L̂′†j,ε L̂′j,ε. It should be stressed that, since Ĥ′p,ε does not have a zero-energy
ground state, there is no exact correspondence between its ground state and
the steady states of L′ε.

Concluding, we mention that a similar analysis can be done introducing
an analogous perturbation in the operator Ĉ†

j ; our study did not observe any
qualitative difference (not shown).

Perturbations due to unitary dynamics

An alternative way of perturbing the dynamics of L′ in Eq. (7.14) is to intro-
duce a Hamiltonian into the system, chosen for simplicity to be the already-
introduced free Hamiltonian Ĥ0:

∂

∂t
ρ̂ = −i[εĤ0, ρ̂] + L[ρ̂]. (7.29)

Using the MPDO method to characterize the steady state of the dynamics,
we analyze the spatial decay of the pairing correlations for L = 22 and
at half-filling (N = 11); the initial state is set in the same way as in the
previous section. In Fig. 7.3 (top) we display the results: even for very small
perturbations the pairing correlator

[
G(p)

4,j
]

ss decays rapidly in space. The
long-distance saturation observed in the absence of perturbations is lost and
qualitatively different from this result. In Fig. 7.3 (bottom) we highlight that
the decay is exponential.

Summarizing, in all the cases that we have considered, the p-wave pairing
correlations of the stationary state

[
G(p)

j,l
]

ss are observed to decay as a function
of |j − l|. Due to the interplay between the targeted dissipative dynamics
and the perturbations, which do not support a p-wave ordered dark state,
the steady state is mixed, similar to a finite temperature state. From this
intuition, the result is easily rationalized: Any (quasi) long range order
is destroyed in one-dimensional systems at finite temperature. We note
that the true long range order found in the unperturbed case (correlators
saturating at large distance; opposed to the more generic quasi-long range
order defined with algebraic decay) is non-generic in one-dimensional systems
and a special feature of our model, see [115] for a thorough discussion.
However, the destruction of any such order via effective finite temperature
effects must be expected on general grounds. The absence of quasi-long-
range p-wave superconducting order, which in one-dimension only occurs at
zero-temperature for pure state, is likely to be in connection with this fact.

Perturbation strength

Finally, we perform a quantitative investigation of the dependence of the
pairing correlations on the perturbation strength, ε.
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Figure 7.3: (Top) Pairing correlations
[
G(p)

4,j
]

ss for the steady state of the
dynamics in the presence of a Hamiltonian perturbation (7.29). The calculation
of the steady state is performed with MPDO technique for L = 22 and N = 11.
(Bottom) The decay of

[
G(p)

4,j
]

ss is exponential in j (here, ε = 0.1).
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Figure 7.4:
[
G′(p)

2,L−2
]

ss in the presence of a perturbed Lindblad operator as a
function of the perturbation strength ε. The perturbation is considered both
for the Âj (top) and Ĉ†

j (bottom) operators (see text for the definitions). The
calculation is done with RK integration of the equation of motion for L = 8
and N = 4.

Lindblad perturbation – In Fig. 7.4 we plot the p-wave superconducting
correlation

[
G(p)

2,L−2
]

ss of a system of length L = 8 as a function of the intensity

of the perturbation ε in L̂′j,ε (for completeness, the complementary case L̂′(2)j,ε =

Ĉ†
j,ε Âj, with Ĉ†

j,ε = â†
j + (1− ε)â†

j+1, is also included). Our data confirm that
correlations undergo a clear suppression in the presence of ε 6= 0, which
in one case is exponential in ε and in the other in ε2. The calculation is
performed through RK integration of the dynamics.

Hamiltonian perturbation – We begin with the two cases: Ĥ0 and Ĥnn =
−J ∑j n̂jn̂j+1. Fig. 7.5 shows, in both cases, an exponential decay to zero

of
[
G′(p)

2,L−2
]

ss when ε is increased. On the contrary, a Hamiltonian which
introduces p-wave correlations in the system, such as

Ĥpair = −J ∑
j,l
(â†

j â†
j+1 âl+1 âl + H.c.), (7.30)

changes the value and the sign of
[
G′(p)

2,L−2
]

ss, leaving it different from zero.
Concluding, we have shown that in all the considered cases, perturbations

of both dissipative and Hamiltonian form are detrimental to the creation of a
p-wave superconductor. This is rationalized by the mixedness of the stationary
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ss in the presence of a perturbing Hamiltonian as a
function of the perturbation strength ε. We consider Ĥ0, Ĥnn and Ĥpair (see
text for the definitions). The inset highlights the exponential decay with ε.

state in that case, and parallels a finite temperature situation. In any generic,
algebraically ordered system at T=0, one has gapless modes.

7.5 Two wires

An intuitive explanation of why the dissipative setup discussed in Sec. 7.3 does
not show topological dark states with fixed number of particles is the fact that
this constraint fixes the parity of the state, and thus no topological degeneracy
can occur. It has already been realized in several works that a setup with two
parallel wires can overcome this issue [98, 99, 100, 101, 102, 115, 140]. In this
case it is possible to envision a number-conserving p-wave superconducting
Hamiltonian which conserves the parity of the number of fermions in each
wire: such symmetry can play the role of the parity of the number of fermions
for ĤK in Eq. (7.8). Several equilibrium models have already been discussed in
this context; here we consider the novel possibility of engineering a topological
number-conserving p-wave superconductor with Markovian dynamics.
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7.5.1 Steady states

Let us study a system composed of two wires with spinless fermions described
by the canonical fermionic operators â(†)j and b̂(†)j . For this model we consider
three kinds of Lindblad operators:

L̂′′a,j = Ĉ†
a,j Âa,j; (7.31a)

L̂′′b,j = Ĉ†
b,j Âb,j; (7.31b)

L̂′′I,j = Ĉ†
a,j Âb,j + Ĉ†

b,j Âa,j. (7.31c)

We now characterize the dark states of the Markovian dynamics induced by
these operators for a two-leg ladder of length L with hard-wall boundary
conditions:

∂

∂t
ρ̂ = L′′[ρ̂] = γ

L−1

∑
j=1

∑
Λ=a,b,I

[
L̂′′Λ,jρ̂L̂′′†Λ,j −

1
2
{L̂′′†Λ,j L̂

′′
Λ,j, ρ̂}

]
. (7.32)

In particular, we will show that, for every fermionic density different from the
completely empty and filled cases, there are always two steady states.

It is easy to identify the linear space SN of states which are annihilated by
the L̂′′a,j and L̂′′b,j and have a total number of particles N:

SN = span{|ψa,0〉
∣∣ψb,N

〉
, |ψa,1〉

∣∣ψb,N−1
〉
, . . . , |ψa,N〉

∣∣ψb,0
〉
}. (7.33)

where the states |ψα,N〉 are those defined in Eq. (7.17) for the wire α = a, b.
Let us consider a generic state in SN :

|ψ〉 =
N

∑
m=0

αm|ψa,m〉
∣∣ψb,N−m

〉
,

N

∑
m=0
|αm|2 = 1. (7.34)

From the condition Ĉ†
j |ψσ〉 = −Âj|ψσ〉 we obtain:

Ĉ†
j |ψN−1〉 = −Âj|ψN+1〉, N ∈ (0, 2L) (7.35a)

0 = −Âj|ψ1〉, (7.35b)

Ĉ†
j |ψ2L−1〉 = 0, (7.35c)

and when we impose the condition L̂′′I,j|ψ〉 = 0:

L̂′′I,j|ψ〉 =
N−1

∑
m=0

αmĈ†
a,j Âb,j|ψa,m〉

∣∣ψb,N−m
〉
+

N

∑
m=1

αmĈ†
b,j Âa,j|ψa,m〉

∣∣ψb,N−m
〉
=

=
N−1

∑
m=0

αmĈ†
a,j Âb,j|ψa,m〉

∣∣ψb,N−m
〉
−

N+1

∑
m=2

αmĈ†
a,j Âb,j|ψa,m−2〉

∣∣ψb,N−m+2
〉
= 0.

(7.36)
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The result is αm = αm+2, so that two linearly independent states can be
constructed which are annihilated by all the Lindblad operators in (7.31):

|ψN,ee〉 =
1

N 1/2
N,ee

∑
m
|ψa,2m〉

∣∣ψb,N−2m
〉
, (7.37a)

|ψN,oo〉 =
1

N 1/2
N,oo

∑
m
|ψa,2m−1〉

∣∣ψb,N−2m+1
〉
. (7.37b)

The subscripts ee and oo refer to the fermionic parities in the first and
second wire assuming that N is even; NN,ee and NN,oo are normalization
constants [115]. For N odd one can similarly construct the states |ψN,eo〉 and
|ψN,oe〉. By construction, the states that we have just identified are the only
dark states of the dynamics.

It is an interesting fact that at least two parent Hamiltonians are known
for the states in (7.37), as discussed in Refs. [115, 140]. We refer the reader
interested in the full characterization of the topological properties of these
steady-states to those articles.

Finally, let us mention that the form of the Lindblad operators in (7.31) is
not uniquely defined. For example one could replace L̂′′I,j in Eq. (7.31c) with
the following:

L̂′′I,j =
(

Ĉ†
a,j + Ĉ†

b,j

)(
Âa,j + Âb,j

)
, (7.38)

without affecting the results [115]. The latter operator is most realistic for an
experimental implementation, as we point out below.

7.5.2 P-wave superconductivity

Let us now check that the obtained states are p-wave superconductors. Sim-
ilarly to the single-wire protocol discussed in Eq. (7.21), the explicit calcu-
lation [115] shows that p-wave correlations saturate to a final value at large
distances in the thermodynamic limit [for the two-leg ladder we consider
ν = N/(2L)]

〈ψN,ee|Ô(p)†
j Ô(p)

l |ψN,ee〉
|j−l|→∞−−−−−→ ν2(1− ν)2. (7.39)

This relation clearly highlights the p-wave superconducting nature of the
states.

7.5.3 Dissipative gap

In order to demonstrate that the asymptotic decay rate λADR associated to L′′
tends to 0 in the thermodynamic limit, we consider the parent Hamiltonian of
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the model:

Ĥ′′p =− 4J
L−1

∑
j=1

α=a,b

[
(α̂†

j α̂j+1+H.c.)−(n̂α
j + n̂α

j+1) +n̂α
j n̂α

j+1

]

− 2J
L−1

∑
j=1

[
(n̂a

j + n̂a
j+1)(n̂

b
j + n̂b

j+1)− (â†
j âj+1b̂†

j b̂j+1

+ â†
j âj+1b̂†

j+1b̂j − 2b̂†
j b̂†

j+1 âj+1 âj + H.c.)
]
, (7.40)

where J > 0 is a typical energy scale setting the units of measurement. This
Hamiltonian has been extensively analyzed in Ref. [115]. Numerical simu-
lations performed with the density-matrix renormalization-group algorithm
assess that Ĥ′′p is gapless and that the gap is closing as 1/L2. According to
the discussion in Sec. 7.2.1, the asymptotic decay rate λADR associated to the
Lindbladian L′′ closes in the thermodynamic limit with a scaling which is
equal to ∼ L−2 or faster. This is true both for periodic and hard-wall boundary
conditions.

7.5.4 Experimental implementation

The Lindblad operators in Eqs. (7.31a), (7.31b) and (7.38) lend themselves to a
natural experimental implementation. The engineering of terms like L̂′′a,j and

L̂′′b,j has been extensively discussed in Ref. [104] starting from ideas originally

presented in Ref. [113]. As we will see, the Lindblad operator L̂′′I,j in Eq. (7.38)
is just a simple generalization.

The idea is as follows: a superlattice is imposed which introduces in the
system additional higher-energy auxiliary sites located in the middle of each
square of the lower sites target lattice. Driving lasers are then applied to the
system, whose phases are chosen such that the excitation to the auxiliary sites
happens only for states |ϕ〉 such that (Âa,j + Âb,j)|ϕ〉 6= 0. If the whole system
is immersed into, e.g., a Bose-Einstein condensate reservoir, atoms located in
the auxiliary sites can decay to the original wire by emission of a Bogoliubov
phonon of the condensate. This process is isotropic and, for a wavelength
of the emitted phonons comparable to the lattice spacing, gives rise to the
four-site creation part with relative plus sign: Ĉ†

a,j + Ĉ†
b,j.

7.5.5 Perturbations

An important property of topological Hamiltonians is the robustness of their
edge physics to local perturbations. Similar features have been highlighted
in the case of topological superconductors where the setup is not number
conserving [104, 105]. The goal of this section is to probe the resilience of
the twofold-degenerate steady states of L′′. A conclusive analysis is beyond
our current numerical possibilities; here we present some preliminary results
obtained via exact diagonalization methods.
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We consider the natural choice of Lindblad operators Eqs. (7.31a,7.31b,7.38),
subject to perturbations:

L̂′′a,j,ε = Ĉ†
a,j Âa,j,ε; Âa,j,ε = âj − (1− ε)âj+1; (7.41a)

L̂′′b,j,ε = Ĉ†
b,j Âb,j,ε; Âb,j,ε = b̂j − (1− ε)b̂j+1; (7.41b)

L̂′′I,j =
(

Ĉ†
a,j + Ĉ†

b,j

)(
Âa,j,ε + Âb,j,ε

)
; ε ∈ R (7.41c)

Those define a perturbed Lindbladian L′′ε . They are a simple generalization of
those defined in Eq. (7.27) for the single-wire setup.

Let us begin our analysis by showing that for small sizes L ∼ 6 the
degeneracy of the steady space for ε = 0 is broken. Let us first remark that for
ε = 0 the steady space is four-fold degenerate; a possible parameterization is:

B = {|ψN,ee〉〈ψN,ee|, |ψN,ee〉〈ψN,oo|, (7.42)

|ψN,oo〉〈ψN,ee|, |ψN,oo〉〈ψN,oo|}. (7.43)

A direct inspection of the eigenvalues of Lε shows that this degeneracy is
broken once ε 6= 0. Results, shown in Fig. 7.6 for a fixed lattice size L = 6 and
N = 6, display a quadratic splitting of the steady steady degeneracy with the
perturbation strength.

Let us now check the behavior with the system size of the first eigenvalues
of the system for longer system sizes. In order to obtain a reasonable number
of data, the extreme choice of setting N = 2 in all simulations has been taken,
which allows us to analyze system sizes up to L = 20. Results shown in
Fig. 7.7 (top) show that the Liouvillian eigenvalues related to the steady-state
degeneracy display an algebraic scaling λADR ∼ L−1 in the accessible regime
of system sizes for small perturbations (ε = 10−2), while they are gapped for
larger perturbations (ε = 10−1). Note that, for the system sizes which could
be accessed, larger eigenvalues clear display an algebraic decay, as shown in
Fig. 7.7 (bottom), also for ε = 0.1. The scaling of the eigenvalues related to
the steady state degeneracy is not exponential and thus in principle should
not be connected to the topological properties of the system. However, these
preliminary considerations suffer from two significant biases: (i) the small
considered sizes, (ii) the fact that they are not performed at exactly fixed
density, and (iii) the very low filling. A more thorough analysis is left for
future work.

7.6 Conclusions

In this chapter we have discussed the dissipative quantum state preparation
of a p-wave superconductor in one-dimensional fermionic systems with fixed
number of particles. In particular, we have presented two protocols which have
been fully characterized in the presence of hard-wall boundaries. Whereas
the former does not display topological property, the latter features a two-
dimensional steady space to be understood in terms of boundary Majorana
modes for any number of fermions. Through the analysis of a related parent
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Figure 7.6: Real part of the first six eigenvalues of the Lindbladian operator
L′′ε for L = 6 and N = 6 as a function of ε. Eigenvalues λj are sorted according
to increasing −<(λj). The plot highlights the presence of a λ = 0 eigenvalue
(within numerical accuracy 10−15), of three eigenvalues which scale as ε2 and
of other eigenvalues of magnitude ∼ 1.

Hamiltonian, we are able to make precise statements about the gapless nature
of the Lindbladian super-operators associated to both dynamics.

The peculiar form of the master equations considered in this chapter
allows for the exact characterization of several properties of the system, and
in particular of the steady state, even if the dynamics is not solvable with
the methods of fermionic linear optics [120, 121] exploited in Refs. [104, 105].
This result is very interesting per se, as such examples are usually rare but can
drive physical intuition into regimes inaccessible without approximations. It
is a remarkable challenge to investigate which of the properties presented so
far are general and survive to modifications of the environment, and which
ones are peculiar of this setup.

Using several numerical methods for the study of dissipative many-body
systems, we have presented a detailed analysis of the robustness to per-
turbations of these setups. Through the calculation of the proper p-wave
correlations we have discussed how external perturbations can modify the
nature of the steady state. In the ladder setup, where the steady states are
topological, we have presented preliminary results on the stability of the
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degenerate steady-space of the system.
The analysis presented here has greatly benefited from exact mathematical

relations between the properties of the Lindbladian and of a related parent
Hamiltonian. Since the study of closed systems is much more developed than
that of open systems both from the analytical and from the numerical points
of view, a more detailed understanding of the relations between Lindbladians
and associated parent Hamiltonian operators stands as a priority research
program.

7.7 Appendix

7.7.1 Spectral properties of the Lindbladian super-operator

In order to discuss the long-time properties of the dissipative dynamics, it is
convenient to start from the spectral decomposition of the Lindbladian. Since
L is in general a non-Hermitian operator, its eigenvalues are related to its
Jordan canonical form [159]. Let us briefly review these results. The Hilbert
space of linear operators on the fermionic Fock space, H, can be decomposed
into the direct sum of linear spaces Mj (usually not orthogonal) such that if
we denote with Pj the projectors onto such subspaces (usually not orthogonal)
and with Nj a nilpotent super-operator acting on Mj, the following is true:

L = ∑
j

[
λjPj +Nj

]
. (7.44)

The {λj} are the generalized complex eigenvalues of the super-operator
L and, for the case of a Lindbladian, have non-positive real part; the Nj
can also be equal to zero. By this explicit construction it is possible to
observe that the {Pj} and {Nj} are all mutually commuting (PjPk = δj,kPj,
PjNk = NkPj = δj,kNj and NjNk = δj,kN 2

j ).
Using these properties, the time evolution can be written as:

ρ̂(t) = etL′ [ρ̂(0)] = ∑
j

eλjtetNjPj[ρ̂(0)], (7.45)

which highlights that at a given time t only the terms of the sum such that
|<(λj) t| � 1 play a role. In the long-time limit, it is possible to represent the
expectation value of any observable Â as:

〈Â〉(t) ≈ tr[ÂP0[ρ̂(0)]] + e−λADRt tr[Â etNADRPADR[ρ̂(0)]]. (7.46)

Eq. (7.46) is the mathematical formula motivating Eq. (7.24) in the text, defin-
ing also the meaning of κ.

Let us mention that in the example discussed in the text NADR = 0: this
is observed by explicit inspection via exact diagonalization of small systems
(L = 5). Since the presence of a non-zero nilpotent super-operator is a fine-
tuned property, it is reasonable to assume that the situation remains similar
for longer systems.
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7.7.2 Analogies with the parent Hamiltonian

In this Appendix we discuss some interesting analogies between the steady
state ρ̂ss of the dissipative dynamics for the perturbed Lindblad operator
L̂′j,ε in Eq. (7.27) with the ground state |g〉 of its parent Hamiltonian Ĥ′p,ε =

J ∑j L̂′†j,ε L̂′j,ε. It should be stressed that, since Ĥ′p,ε does not have a zero-energy
ground state, there is no exact correspondence between both states.

We first study a small lattice with L = 8 sites at half-filling, performing
a Runge-Kutta integration of the master equation. The initial state of the
evolution is the ground state of Ĥ0. In Fig. 7.8 it is shown that both the purity
of the steady state P(ρss) = tr

[
ρ̂2

ss
]

and its fidelity with the ground state of the
parent Hamiltonian decrease with the perturbation strength. Notice, however,
that for small perturbations the fidelity F (ρ̂ss, |g〉) = 〈g|ρ̂ss|g〉 remains close
to one, thus revealing the similarity of the states in such regime.

Such feature is also observed for larger lattices. Using the MPDO method
for ρ̂ss and an algorithm based on matrix product states for |g〉, we analyze a
lattice with L = 22 sites at half-filling. We compare the pairing correlations
and density profiles for both states, which differ only for O(10−2), when the
perturbation strength is ε . 0.05 (not shown). Let us explicitly show the
results for the Hamiltonian case. In Fig. 7.9 we show that, for a lattice with
L = 40 sites at half-filling, even a small perturbation (ε ∼ 10−3) produces
a non-negligible inhomogeneity. Moreover, the pairing correlations decay,
indicating that such perturbation breaks the p-wave ordered nature of the
purely dissipative dark state.

This similarity encourages the possibility of accessing some steady-state
properties for large lattices through the study of the ground states of the
corresponding parent Hamiltonians, even if no mathematical connection
is present and the mixedness of the state is expected to act like a finite
temperature, washing out several ground-state properties.
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Figure 7.7: Real part of the eigenvalues j = 2, 3 and 4 (top) and j = 5 and 6
(bottom) of the Lindbladian operator L′′ε for N = 2 as a function of L (here,
L ≤ 20). The two values ε = 0.1 and ε = 0.01 are considered. In the top panel,
the values of the eigenvalues relative to ε = 0.1 have been rescaled by 0.01 in
order to facilitate the readability of the plot.
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Figure 7.9: (top) Density profile 〈g|n̂j|g〉 and (bottom) renormalized pairing

correlations 〈g|Ô′(p)†
j Ô′(p)

` |g〉, with j = (L/2)− 2 and ` > j. The computation
is performed for a lattice with L = 200 sites at half-filling and different values
of ε in L̂′j,ε [see Eq. (7.27)].
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CHAPTER 8

Witnessing non-Markovian
dynamics with the

divisibility criterion: a qubit
interacting with an Ising

model environment

By means of the divisibility criterion, i.e., the non-positivity of the dynamical
matrix for some intermediate time, we characterize the dynamics of a qubit
interacting with an arbitrary quadratic fermionic environment. We obtain an
analytical expression for the Kraus decomposition of the quantum map, and
check its non-positivity with a simple function. With an efficient sufficient
criterion to map the non-Markovian regions of the dynamics, we analyze the
particular case of an environment described by the Ising Hamiltonian with a
transverse field.

8.1 Introduction

The need to fight decoherence, to guarantee the proper working of the
quantum enhanced technologies of information and computation [1], has
renovated the motivation for the in-depth study of system-environment inter-
action dynamics. In particular, the Markovian or non-Markovian nature of the
dynamics is of great interest [161]. Several witnesses and measures have been
proposed in order to characterize the non-Markovianity of quantum processes
[162]. For instance, the information flow between system and environment,
quantified by the distinguishability of any two quantum states [163, 164], or
by the Fisher information [165], or mutual information [166]; the Loschmidt
echo [167, 168]; the entanglement between system and environment [169].
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In this work, we will focus on the divisibility criterion [169, 170, 171],
which consists in checking the non-positivity of intermediate time quatum
maps. The system we will consider is formed by qubits governed by general
fermionic quadratic Hamiltonians. Performing an exact diagonalization of
the system-environment Hamiltonian [84], we will obtain, analytically, the
Kraus representation of the quantum map [46]. Then we will propose a non-
Markovianity measure, and will investigate in detail a model governed by the
Ising Hamiltonian.

The chapter is organized as follows. We briefly revise the formalism of dy-
namical maps and the divisibility criterion in Sec.8.2. Our first result appears
in Sec.8.3, where we present the exact Kraus decomposition for general quad-
ratic fermionic Hamiltonians, and introduce a witness of non-Markovianity. In
Sec.8.4, we introduce the model we shall investigate numerically, and relate it
to the formalism of Sec.III. Our results for the dynamics of a qubit interacting
with an environment governed by the Ising model are presented in Sec.8.5,
and then we conclude.

8.2 Quantum Dynamical Maps and the Divisibility
Criterion

The evolution of an open quantum system (ρ′ = Φ(ρ)) can be written in the
well known operator sum representation as:

ρ′ = ∑
µ

KµρK†
µ, ∑

µ

K†
µKµ = I, (8.1)

where the Kµ are the Kraus operators related to the quantum map Φ, and
I is the identity in the Hilbert space of the system. Using the vec operation,
defined by:

vec(|x〉〈y|) = |x〉 ⊗ |y〉, (8.2)

and the following relation,

ABC = (A⊗ CT)vec(B), (8.3)

where A,B,C are matrices, the evolution (Eq.(8.1)) can be rewritten as:∣∣ρ′〉 = Φ|ρ〉, Φ = ∑
µ

Kµ ⊗ K∗µ , (8.4)

where |ρ〉 ≡ vec(ρ).
Consider the evolution of the system from an initial time t0 to a final time

t f , ∣∣∣ρ(t f )
〉
= Φ(t f , t0)|ρ(t0)〉. (8.5)

Suppose this evolution is broken in two steps with an intermediate time,
t f > tm > t0, namely:∣∣∣ρ(t f )

〉
= Φ(t f , tm)Φ(tm, t0)|ρ(t0)〉. (8.6)
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Whereas Φ(t f , t0) is a completely positive (CP) map for arbitrary t f , the map
corresponding to the intermediate step, Φ(t f , tm), may be non-CP for some tm.
As realizable maps are always CP, Φ(t f , tm) being non-CP for the particular
time tm witnesses the fact that such a division is not possible. A trivial
case in which any intermediate division is possible corresponds to unitary
evolutions. Markovian evolutions also admit arbitrary intermediate steps.
The intermediate map may fail to be CP only in the case of non-Markovian
evolutions. This divisibility criterion [169] is therefore a sufficient condition to
detect non-Markovianity.

In order the check the complete positivity of a map, we use the well known
duality between CP maps and positive operators, expressed by the Choi’s
theorem [46]. First we define the unique dynamical matrix associated to the
map:

Dmn
µν = Φmµ

nν = 〈mµ|Φ|nν〉, (8.7)

where latin and greek indices correspond to system and environment Hilbert
spaces, respectively. The Choi’s theorem states that the map (Φ) is CP if and
only if its dynamical matrix (D) is a positive semidefinite operator. Finally, to
check the complete positivity of the intermediate map, we form the matrix of
its super-operator by means of the product:

Φ(t f , tm) = Φ(t f , t0)Φ−1(tm, t0). (8.8)

8.3 Dynamical Matrix for a General Fermionic Quadratic
Hamiltonian

In the previous section, we reviewed the formalism of quantum maps and the
divisibility criterion. We now apply such formalism to environments described
by general fermionic quadratic Hamiltonians, interacting with a qubit. We
will show how to obtain the exact expression for the Kraus decomposition of
the dynamical matrix.

Let us then consider a general fermionic quadratic Hamiltonian, namely,

Hg =
L

∑
m,n=1

(xm,na†
man + ym,na†

ma†
n + h.c.). (8.9)

where L is the lattice size, and xm,n, ym,n are arbitrary complex numbers, a†
j (aj)

is the creation (annihilation) operator, satisfying the usual anti-commutation
relations:

{ai, a†
j } = δij, {ai, aj} = 0. (8.10)

For the interaction of the qubit with this environment, we consider the
following Hamiltonian:

Hint = −δ|e〉〈e| ⊗Ve, (8.11)

where |g〉 and |e〉 are the qubit ground and excited states, respectively, and
Ve is a fermionic quadratic Hamiltonian. We consider that the qubit and
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environment are initially uncorrelated, and they are in an arbitrary pure initial
state,

|ψ(0)〉 = |χ(0)〉 ⊗ |ϕ(0)〉 = (cg|g〉+ ce|e〉)⊗ |ϕ(0)〉, (8.12)

where |χ(0)〉 = cg|g〉+ ce|e〉, with |cg|2 + |ce|2 = 1, is the initial qubit state.
The evolution under the total Hamiltonian,

H = Hg + Hint, (8.13)

is given by:
|ψ(t)〉 = e−iHt/h̄|χ(0)〉 ⊗ |ϕ(0)〉, (8.14)

|ψ(t)〉 = cg|g〉 ⊗ e−iHgt/h̄|ϕ(0)〉︸ ︷︷ ︸
|ϕg(t)〉

+ce|e〉 ⊗ e−iHet/h̄|ϕ(0)〉︸ ︷︷ ︸
|ϕe(t)〉

, (8.15)

where
He = Hg + Ve. (8.16)

Such Hamiltonians, He and Hg, can be easily diagonalized by a Bogoliubov
transformation [84], namely:

Bk ≡ cos(θk
b)ak − i sin(θk

b)a†
−k, (8.17)

Ak ≡ cos(θk
a)ak − i sin(θk

a)a†
−k. (8.18)

These new fermionic operators are related according to

B±k = cos(αk)A±k − i sin(αk)A†
∓k, (8.19)

where αk = (θk
g − θk

e )/2. The Hamiltonians in diagonal form read:

Hg = ∑
k

εk
g(B†

k Bk + Cg), He = ∑
k

εk
e (A†

k Ak + Ce), (8.20)

where Cg and Ce are both real constants, and εk
g(e) are the single-particle

eigenvalues. The ground states of Hg (Gg) and He (Ge) are related by:∣∣Gg
〉
= ∏

k>0

[
cos(αk)− i sin(αk)A†

k A†
−k

]
|Ge〉. (8.21)

Now we derive the Kraus decomposition of the map super-operator (Φ).
The Kraus operators of the evolution are:

Ki = (IS ⊗ 〈i|) e−iHt/h̄ (IS ⊗ |ϕ(0)〉), (8.22)

with IS = |g〉〈g| + |e〉〈e|. Assuming, without loss of generality (the map
does not depend on the initial states of the qubit-environment), that the
environment is initially in its ground state , |ϕ(0)〉 =

∣∣Gg
〉
, and using Eq.(8.15),

we obtain:

Ki = IS ⊗ 〈i|
[
|g〉〈g| ⊗

∣∣ϕg(t)
〉
+ |e〉〈e| ⊗ |ϕe(t)〉

]
. (8.23)
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The environment states
∣∣ϕg(t)

〉
and |ϕe(t)〉 are given by:∣∣ϕg(t)

〉
= e−iHgt/h̄∣∣Gg

〉
= e−iEgt/h̄∣∣Gg

〉
= (8.24)

e−iEgt/h̄ ∏
k>0

[
cos(αk)− i sin(αk)A†

k A†
−k

]
|Ge〉,

where Eg is the ground state energy of Hg. Likewise, using Eq.(8.21), we
obtain:

|ϕe(t)〉 = e−iHet/h̄× (8.25)

∏
k>0

[
cos(αk)− i sin(αk)A†

k A†
−k

]
|Ge〉 =

∏
k>0

[
cos(αk)− e−i(εk

e+ε−k
e )t/h̄i sin(αk)A†

k A†
−k

]
×

e−iEet/h̄|Ge〉.
In order to obtain the Kraus operators, it is enough to calculate the overlaps〈

i
∣∣ϕg(t)

〉
and 〈i|ϕe(t)〉, for a given environment basis {|i〉}, as shown in

Eq.(8.23). A convenient basis is formed by the eigenstates of He, namely:

{|i〉} = {|Ge〉, A†
~kN
|Ge〉}, (8.26)

where ~kN = (k1, k2, ..., kN) is the vector representing the momentum of the
N(= 1, . . . , L) excitations, and A†

~k
= A†

k1
A†

k2
...A†

kN
. It is easy to see that the

only non null elements for “
〈
i
∣∣ϕg(t)

〉
”, using Eq.(8.24), are given by,〈

Ge
∣∣ϕg(t)

〉
= e−iEgt/h̄(∏

k>0
cos(αk)), (8.27)

and

a~kN
(t) ≡ 〈Ge|A−~kN

A†
~kN

∣∣ϕg(t)
〉
= (8.28)

e−iEgt/h̄ ∏
k∈~kN

(−i sin(αk))( ∏
k>0, k/∈~kN

cos(αk)),

where N varies from 1 to L/2. Analogously, the non null terms for “〈i|ϕe(t)〉”,
using Eq.(8.25), are given by,

b~kN
(t) ≡ 〈Ge|A−~kN

A†
~kN
|ϕe(t)〉 = (8.29)

e−iEet/h̄ ∏
k∈~kN

[
−i sin(αk) exp(−i(εk

e + ε−k
e )t/h̄)

]
×

( ∏
k>0, k/∈~kN

cos(αk)).

It is easy to check the following relation:

b~kN
(t) = a~kN

(t) f~kN
(t), (8.30)

where

f~kN
(t) ≡ e−i(Ee−Eg)t/h̄ exp(−i

N

∑
k∈~kN

(εk
e + ε−k

e )t/h̄). (8.31)
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Finally, we reach the first result of this work, obtaining a simple expression
for the Kraus operators of the quantum map,

K~kN
= a~kN

(t)(|g〉〈g|+ f~kN
(t)|e〉〈e|). (8.32)

Note that
∣∣∣a~kN

(t)
∣∣∣2 is not a time dependent variable, and

∑
{~kN}

∣∣∣a~kN
(t)
∣∣∣2 = Tr(

∣∣ϕg(t)
〉〈

ϕg(t)
∣∣) = 1. (8.33)

By using this fact, we can then write the quantum map in terms of the Kraus
operators as follows,

Φ(t, 0) = ∑
{~kN}

K~kN
⊗ K∗~kN

=

∑
{~kN}

[|g〉〈g| ⊗ |g〉〈g|+ |e〉〈e| ⊗ |e〉〈e|+

|g〉〈g| ⊗ |e〉〈e|
∣∣∣a~kN

(t)
∣∣∣2 f~kN

(t)∗+ (8.34)

+|e〉〈e| ⊗ |g〉〈g|
∣∣∣a~kN

(t)
∣∣∣2 f~kN

(t)
]

.

If we define the following variable,

x(t) ≡ ∑
{~kN}

∣∣∣a~kN
(t)
∣∣∣2 f~kN

(t), (8.35)

the quantum map can be rewritten as,

Φ(t, 0) = [|g〉〈g| ⊗ |g〉〈g|+ |e〉〈e| ⊗ |e〉〈e|+
|g〉〈g| ⊗ |e〉〈e|x(t)∗ + |e〉〈e| ⊗ |g〉〈g|x(t)]. (8.36)

As expected, the quantum map consists in a decoherence channel, and
thus we can identify the variable “x(t)” with the known Loschmidt echo L(t)
[167, 168],

L(t) = |x(t)|2 = |
〈
φg(t)

∣∣φe(t)
〉
|2. (8.37)

The above relation follows just by noticing that the qubit reduced state, ρS(t) =
TrE(|ψ(t)〉〈ψ(t)|), taking the partial trace of Eq.(8.12), is given by ρS(t) =
|cg|2|g〉〈g|+ |ce|2|e〉〈e|+ c∗gceµ(t)|e〉〈g|+ H.c., where µ(t) =

〈
φg(t)

∣∣φe(t)
〉

is
the decoherence factor. The quantum map corresponding to such an evolution
is the decoherence channel, as described before.

Using now Eq.(8.8), we have the following expression for the intermediate
map:

Φ(t f , tm) = [|g〉〈g| ⊗ |g〉〈g|+ |e〉〈e| ⊗ |e〉〈e|+
|g〉〈g| ⊗ |e〉〈e|y(t f , tm)

∗ + (8.38)

|e〉〈e| ⊗ |g〉〈g|y(t f , tm)
]
,
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where

y(t f , tm) ≡
x(t f )

x(tm)
. (8.39)

The dynamical matrix of this quantum map is

DΦ(t f ,tm) =



1 0 0 y(t f , tm)∗

0 0 0 0

0 0 0 0

y(t f , tm) 0 0 1


. (8.40)

Using the Schur’s complement, we arrive at the following simple sufficient
condition for the positive-semidefiniteness of the dynamical matrix:

1− |y(t f , tm)|2 ≥ 0. (8.41)

Therefore we have obtained a simple function capable to witness the non-
Markovianity of the dynamics, i.e., Φ is non-Markovian if |y(t f , tm)|2 > 1.

8.4 Ising Hamiltonian

In this section we will analyze an specific environment and interaction
Hamiltonians, in order to exemplify our method. We focus on an envir-
onment described by the Ising Hamiltonian in a transverse field (Hising), with
periodic boundary conditions (L + 1 = 1). The interaction with the environ-
ment (Hint) is by means of the transverse magnetic field in the Z direction
(see Fig.8.1), more precisely,

HIsing = −J
L

∑
j=1

(σx
j σx

j+1 + λσz
j ), (8.42)

Hint = −δ|e〉〈e| ⊗
L

∑
j=1

σz
j . (8.43)

In order to employ the previous section’s results, we first do the identifica-
tion:

He = Hising − δ
L

∑
j=1

σz
j , (8.44)

Hg = Hising. (8.45)

We now diagonalize the Ising Hamiltonian [172]. First we use the usual
Jordan-Wigner transformation,

σ+
j = exp (iπ ∑

l<j
a†

l al) = ∏
l<j

(1− 2a†
l al)aj, (8.46)

aj = (∏
l<j

σz
l )σ

+
j . (8.47)
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Figure 8.1: Schematic view of spins forming a ring array, described by
the environment Ising Hamiltonian (Eq.(8.42)). The central spin is the qubit
interacting with the environment according to Eq.(8.43).

The Ising Hamiltonian can then be rewritten in terms of quadratic fermionic
operators:

Hising = −J

[
L−1

∑
j=1

(a†
j aj+1 + a†

j a†
j+1 + h.c.)

+e(iπ)N̂(a†
La1 + a†

La†
1 + h.c.) + 2λN̂ − λL

]
, (8.48)

where N̂ = ∑j a†
j aj. The Hamiltonian conserves the parity,

[
H, e(iπ)N̂

]
= 0.

Thus we can analyze its odd/even subspaces separately. The gap between
the ground state energy of these two subspaces obviously closes in the ther-
modynamic limit. For simplicity, we shall proceed the analysis in the odd
sector, which leads to a simple quadratic Hamiltonian with periodic boundary
conditions. Using the momentum eigenstates,

ak =
1√
L

∑
j

e(−ikj)aj, (8.49)

with k = 2π
L q, q = 0, ..., L− 1, and the Bogoliubov transformation (Eq.(8.18)),

with phases

θk
e (δ) =

1
2

arctan
[ − sin(k)

cos(k)− (λ + δ)

]
, (8.50)

the Hamiltonian assumes the desired diagonal form:

He = ∑
k

εk
e (A†

k Ak − 1/2), (8.51)

with eigenvalues given by:

εk
e (δ) =

√
1 + (λ + δ)2 − 2(λ + δ) cos(k). (8.52)

130



8.5. Witnessing the non-Markovianity in the Ising Model

8.5 Witnessing the non-Markovianity in the Ising Model

Now we are equipped to characterize the dynamics of a qubit interacting with
an environment governed by the Ising model (Fig.8.1). We consider lattices
up to L = 5× 105 sites, and investigate the non-Markovianity in the vicinity
of the critical point of the quantum Ising model, which is well known to be
equal to λ∗ ≡ λ + δ = 1.

Let us define a measure (η) of non-Markovianity as the minimum of the
eigenvalues for the intermediate quantum dynamical matrix DΦ(tt ,tm) over all
final times t f and over all time partitions tm, precisely:

η = min
{t f }

min
{tm<t f }

eig{DΦ(tt ,tm)}, (8.53)

where eig is the set of eigenvalues of the intermediate dynamical matrix
DΦ(t f ,tm). In order to exemplify such a non-Markovianity measure, we plot,
in Fig.8.2, the smallest eingenvalue of the intermediate map as a function
of the final (t f ) and intermediate (tm) times, at the critical point of the Ising
model, for a lattice with L = 10 sites. As the values of tm and t f are swept,
the non-Markovian regions of the dynamics are revealed.

In Fig.8.3, the non-Markovianity, quantified by η (Eq.(8.53)), is plotted
against the transverse field (λ), in the vicinity of the Ising model critical point,
for a fixed interaction coupling constant δ = 0.01. We see that the larger the
lattice, the larger the non-Markovianity. The most interesting feature shown
in this figure is the maximum of non-Markovianity occurring precisely at
the Ising model critical point. The behavior of this measure for larger lattice
sizes, and in the thermodynamic limit, for the particular model studied in
this section could also be inferred by the Loschimdt echo [167, 168], from
Eqs.(8.37) and (8.41). Note, however, that this equivalence between η and the
Loschimdt echo is not necessarily true in general.

In Fig. 8.4 ,we see the behavior of the Loschmidt echo, for different lattice
sizes, at the critical point (λ∗ = 1). We highlight some of its features: (i)
the Loschmidt echo has an abrupt decay followed by a revival, with a time
period “τ”, which is proportional to the lattice size, τ ∝ L; (ii) the difference
between the minimun value of the decay (which we shall denote by Ldec)
and the maximal of the revival (Lrev) becomes higher as we increase the
lattice size. In this way, the non-Markovianity measure is simply given by
η = Lrev/Ldec. Performing a finite-size scaling analysis, we see, in Fig. 8.5,
that such a measure grows exponentially with lattice size, η(λ∗) ∝ exp(α∗L),
with α∗ ∼ 2.36 × 10−3. Notice however that, despite such exponentially
increasing behavior, at the thermodynamic limit the period τ diverges, and
there is no revival of the function, consequently, the non-Markovianity pointed
by this measure must be null: η(λ∗) = 0 for L→ ∞.

The behavior of the Loschmidt echo out of the critical point is plotted in
Fig. 8.6. We highlight some of its features: (i) due to finite size effects, we
see that after a certain time (Γ), which increases with the lattice size (Γ ∝ L),
the function has a chaotic behavior; (ii) the “shape” of the function before
the chaotic behavior is invariant with the lattice size, only its amplitude is
changed. Performing then a finite-size scaling analysis, we see, in Fig. 8.7, that
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the non-Markovianity measure grows exponentially with lattice size, η(λ∗ −
0.1) ∝ exp(βl L), with βl ∼ 1.43× 10−5, and η(λ∗ + 0.1) ∝ exp(βrL), with
βr ∼ 1.29× 10−5. Notice that although the measure also has an exponential
scaling, as in the critical point, its exponential factors are much smaller, namely,
βl(r)/α∗ ∼ 10−2.

In summary, we see that the non-Markovianity measure, for finite size sys-
tems, reaches its maximal at the critical point, whereas in the thermodynamic
limit it is zero exactly at the critical point, and it diverges out of the critical
point.

8.6 Conclusion

We derived an analytical expression for the Kraus representation of the map
corresponding to the evolution of a qubit interacting with an environment,
for a general quadratic fermionic Hamiltionian, and introduced a simple
function which is sufficient to check the non-Markovianity of the dynamics.
We analyzed our proposed non-Markovianity function for the quantum map
of a qubit interacting with an environment governed by the Ising model. For
lattices up to 105 sites we studied the non-Markovianity of the dynamics, in the
vicinity of the Ising model critical point. We quantified the non-Markovianity
by the most negative eigenvalue (η) of the dynamical matrix, and obtained that,
for finite size systems, it reaches its maximum at the critical point, whereas
in the thermodynamic limit it is zero exactly at the critical point, diverging
outside the critical point. In the particular case of the Ising environment, we
obtained that the Loschmidt echo and our measure η are equivalent.
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Figure 8.2: Manifestation of the non-Markovianity by means of the most
negative eigenvalue of the intermediate quantum map DΦ(t f ,tm) (greyscale),
in function of t f and tm, for a lattice with parameters L = 10 , λ = 0.5 and
δ = 0.5.
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Figure 8.3: The non-Markovianity measure η (Eq. (8.53)) in function of the
transverse field λ, for δ = 0.01, and for different lattice sizes (L), in the vicinity
of the Ising model critical point.
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Figure 8.4: The Loschmidt echo L (Eq. (37)) as a function of the time, at the
critical point λ∗ = λ + δ = 1, with δ = 10−2, for different lattice sizes.
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Figure 8.5: Finite size scaling analysis: ln(−η) as a function of L, for L = 100
to L = 105 sites, at the critical point λ∗ = 1, with δ = 10−2. The linear fit
reveals an exponential divergence of the non-Markovianity with the lattice
size.
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Figure 8.6: The Loschmidt echo L (Eq. (37)) as a function of the time, out of
the critical point; more precisely, for λ = λ∗− 0.1, and δ = 10−2. The behavior
for λ = λ∗ + 0.1 is completely similar to this one.
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and δ = 10−2. The linear fit reveals an exponential divergence of the non-
Markovianity with the lattice size, (−η) ∝ eβL.
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APPENDIX A
Mean-field dark state

Dark states for linear Lindblad operators: Given a one-dimensional lattice
governed uniquely by a dissipative evolution given by the linear Lindblad op-
erators ˆ̀ j = αC†

j + Aj (Eq.(7.9)), here neglecting the Hamiltonian contribution

(Ĥ = 0), we have that its pure dark states are uniquely given by,

{
L odd : |d〉 ∝ (x0 + x1 ˆ̀†

L) |BCS, α〉,
L even : |d〉 ∝ (x0 + x1 ˆ̀†

L) a†
k=0|BCS, α〉, (A.1)

with |BCS, α〉 as given in Eq.(5.5), and x0 = 1, x1 = 0 for periodic boundary
conditions (L + 1 = 1), while a topological degeneracy is generated for open
boundary conditions, |x0|2 + |x1|2 = 1. We see that the Kitaev ground state
at the “sweet point”, namely µ = 0, and ∆ = J > 0, is the particular case for
α = 1.

Proof: The proof below is similar to the one given in [105]. Since the lind-
blad operators are translational invariant it’s convenient to work in momentum
space,

C†
k = ∑

j
e−ikjC†

j = ∑
l

e−ikla†
l (∑

j
e−ik(j−l)vj,l)︸ ︷︷ ︸

vk(independent o f “l′′)

, (A.2)

and since vj,l = vj−l,0, we have that,

C†
k = vka†

k , Ak = ∑
j

eikj Aj = ukak, (A.3)

for k = −π + 2π
L (j− 1), j = 1, ..., L, where,

vk =
L

∑
j=−L

e−ikjvj,0, uk =
L

∑
j=−L

eikjuj,0. (A.4)
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A. Mean-field dark state

This way the Lindblad operators are local in momentum space,

ˆ̀k = ∑
j

eikj ˆ̀ j = αC†
−k + Ak,= αv−ka†

−k + ukak, (A.5)

It’s easy to see that, if we assume v−k = ± vk, u−k = ∓uk, such that φk =
vk/uk is antissimetric, the above momentum operators satisfy the following
properties, {

ˆ̀†
k , ˆ̀†

k′
}

=
{

ˆ̀k, ˆ̀
k′
}
= 0, (A.6){

ˆ̀k, ˆ̀†
k′
}

= (|uk|2 + |αvk|2) δk,k′ , (A.7)

i.e., they satisfy the anti-commutation relations, forming a complete Dirac
algebra. These operators can thus be seen as “creation” and “annhilitation”
operators, and the dark state shall be the “vacuum state”, being unique, and
satisfying ˆ̀k|d〉 = 0, ∀k. The dark state is given simply by,

|d〉 = ∏
{k}

ˆ̀k|vac〉, (A.8)

where is trivial to see that ˆ̀
k′ |d〉 = ∏{k}−k′

ˆ̀k ( ˆ̀
k′ ˆ̀k′)|vac〉 = 0, ∀k′. In

the particular linear Lindblad operators proposed in [104], we have vk =
2eik/2 cos(k/2), uk = −2ieik/2 sin(k/2), such that ˆ̀k=−π ∝ ak=π , and ˆ̀k=0 ∝
a†

k=0; since ak=π |BCS, α〉 = 0, we can write the dark states as,

|d〉 = ˆ̀k=0 ∏
{k 6=π}

ˆ̀−k ˆ̀k|vac〉 ∝ a†
k=0|BCS, α〉. (A.9)

In case L = odd, where there isn’t zero momentum, the dark state are
simply the fixed phase BCS state.

If we are dealing with open boundary conditions, then @ ˆ̀L acting in the
dissipation, and it generates a degeneracy in the dark states given by the
subspace {|d〉, ˆ̀†

L|d〉}.
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APPENDIX B
Real-space representation of

the Kitaev ground state

For the Kitaev model at the “sweet point”, namely µ = 0, and ∆ = J > 0 and
real, one can check that its degenerate ground states can be written as a equal
weighted superposition of all real space configurations with fixed fermion
parity (even or odd). E.g., the even sector would be given by,

|gK〉 ∝ ∑
n=even

(−1)n/2

∑
{~j}

∣∣∣ψ~j(n)〉
, (B.1)

where
∣∣∣ψ~j(n)〉 ≡ ∣∣∣~jn〉 (as in Eq.(6.1)), and the sum runs over all the possible

configurations with even number of particles. Let us first look the action of
the C†

i and Ai operators in their respective local subspace:

{|vac〉, a†
i |vac〉, a†

i+1|vac〉, a†
i a†

i+1|vac〉}, (B.2)

where we see that,

C†
i |vac〉 = C†

i |vac〉, Ai|vac〉 = 0
C†

i a†
i |vac〉 = a†

i+1a†
i |vac〉, Aia†

i |vac〉 = |vac〉
C†

i a†
i+1|vac〉 = a†

i a†
i+1|vac〉, Aia†

i+1|vac〉 = −|vac〉
C†

i a†
i a†

i+1|vac〉 = 0, Aia†
i a†

i+1|vac〉 = C†
i |vac〉

(B.3)

In this way one can note the following relations,

C†
i ∑
{~j}

∣∣∣ψ~j(n)〉 = C†
i ∑
{~J}

∣∣∣ψ~J(n)
〉

, (B.4)

Ai ∑
{~j}

∣∣∣ψ~j(n)〉 = C†
i ∑
{~J}

∣∣∣ψ~J(n− 2)
〉

, (B.5)
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B. Real-space representation of the Kitaev ground state

where ~J = (j1, j2, .., jn), jm 6= i, jm′ 6= i + 1 are the configurations with no
particles at both sites “i” and “i + 1”. We have then that,

d̂i|gK〉 = ∑
n=even

(−1)n/2

C†
i ∑
{~j}

∣∣∣ψ~j(n)〉+ Ai ∑
{~j}

∣∣∣ψ~j(n)〉
,

= ∑
n=even

(−1)n/2C†
i

∑
{~J}

∣∣∣ψ~J(n)
〉
+ ∑
{~J}

∣∣∣ψ~J(n− 2)
〉,

= ∑
n=even

(−1)n/2C†
i

∑
{~J}

∣∣∣ψ~J(n)
〉
−∑
{~J}

∣∣∣ψ~J(n)
〉,

= 0, (B.6)

where in the second line we used the relations from Eqs.(B.4), (B.5); and then
in the third line we just made change of index for the second term of the sum.
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Conclusion and Perspectives

In the first part of this thesis we studied quantum correlations and entan-
glement in systems of indistinguishable particles. Entanglement of distin-
guishable particles is related to the notion of separability, i.e. the possibility of
describing the system by a simple tensor product of individual states. In sys-
tems of indistinguishable particles, the symmetrization or antisymmetrization
of the many-particle state eliminates the notion of separability, and the concept
of entanglement becomes subtler. If one is interested in the different modes
(or configurations) the system of indistinguishable particles can assume, it
is possible to use the same tools employed in systems of distinguishable
particles to calculate the entanglement of modes. On the other hand, if one is
interested in the genuine entanglement between the particles, as discussed
in the present work, one needs new tools. In this case, we have seen that
entanglement of particles in fermionic systems is simple, in the sense that the
necessary tools are obtained by simply antisymmetrizing the distinguishable
case, and one is led to the conclusion that unentangled fermionic systems
are represented by convex combinations of Slater determinants. The bosonic
case, however, does not follow straightforwardly by symmetrization of the
distinguishable case. The possibility of multiple occupation implies that a
many-particle state of Slater rank one in one basis can be of higher rank in
another basis. This ambiguity reflects on the possibility of multiple values
of the von Neumann entropy for the one-particle reduced state of a pure
many-particle state. Aware of the subtleties of the bosonic case, we have
proven that a shifted von Neumann entropy and a shifted Negativity can
be used to quantify entanglement of particles. We presented fermionic and
bosonic entanglement witnesses, and showed an algorithm able to efficiently
determine OEW’s for such systems. We have shown, however, that the bosonic
entanglement witness are not completely optimal, due to the possibility of
multiple occupation. Nonetheless, numerical calculations have shown that the
bosonic witness improves with the increase of the single-particle Hilbert space
dimension. Finally, we have illustrated how the tools presented in this section
could be useful in analysing the properties of entanglement in many-body
systems, obtaining in particular analytic expressions for the entanglement of
particles according to the von Neumann entropy of the single-particle reduced
state in homogeneous D-dimensional Hamiltonians.

We also discussed how to define a more general notion of correlation,
called quantumness of correlations, in fermionic and bosonic indistinguish-
able particles, and presented equivalent ways to quantify it, addressing the
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notion of an activation protocol, the minimum disturbance in a single-particle
von Neumann measurement, and a geometrical view for its quantification.
An important result of our approach concerns to the equivalence of these cor-
relations to the entanglement in distinguishable subsystems via the activation
protocol, thus settling its usefulness for quantum information processing. It
is interesting to note that the approach used in this work is essentially based
on the definition of the algebra of single-particle observables, dealing here
with the algebra of indistinguishable fermionic, or bosonic, single-particle
observables, but we could apply the same idea for identical particles of
general statistics, e.g. braid-group statistics, simply by defining the correct
single-particle algebra of observables.

Finally, we studied the entanglement of indistinguishable particles in the
extended Hubbard model at half-filling, with focus on its behavior when
crossing the quantum phase transitions. Our results showed that the entan-
glement either has discontinuities, or presents local minima, at the critical
points. We identified the discontinuities as first order transitions, and the
minima as second order transitions. In this way, we concluded that the en-
tanglement of particles can “detect” all transitions of the known diagram,
except for the subtle transitions between the superconductor phases TS-SS,
and the transition SDW-BOW. It is also interesting to compare our results with
other entanglement measures, such as the entanglement of modes, which was
widely studied in several models, as well as in the extended Hubbard model
[82, 83, 81]. Gu et al. [82] firstly showed that the entanglement of modes, i.e.,
the entanglement of a single site with the rest of the lattice, could detect three
main symmetry broken phases, more specifically, the CDW, SDW and PS.
Other phases were not identified due to the fact that they are associated to off-
diagonal long-range order. Further investigation were performed analysing
the block-block entanglement [83, 81], i.e., the entanglement of a block with l
sites with the rest of the lattice (L− l sites), showing that this more general
measure could then detect the transition to the superconducting phase, as well
as the bond-order phase. The measure, however, could not detect the SS-TS
transition, besides presenting some undesirable finite-size effects in the PS
phase. On the other hand, the entanglement of particles studied in this work
showed no undesirable finite-size effects in the PS phase, but could not detect
the superconductor SS-TS transition either. Regarding the BOW phase, from
the above discussion we see that it would be worth to analyze more general
measures for the entanglement of particles, which goes beyond single particle
information. Some steps in this direction were made in [12], where a notion
of entanglement of “subgroups” of indistinguishable particles was defined.

In the second part of this thesis we addressed the generation of topolo-
gical states of matter, similar to the Kitaev model ground states, in a number
conserving setting. Working in a Hamiltonian setting, we then presented an
exactly solvable two-wire fermionic model which conserves the number of
particles and features Majorana-like exotic quasiparticles at the edges. Our
results can be a valuable guideline to understand topological edge states in
number conserving systems. For example, the replacement âi → ĉi,↑, b̂i → ĉi,↓
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in our Hamiltonian (Eq.(6.3)) results in a one-dimensional spinful Hubbard
Hamiltonian without continuous spin rotation, but time reversal symmetry.
The resulting model with an exactly solvable line belongs to the class of time
reversal invariant topological superconductors [112], analyzed in a number
conserving setting recently [107], with edge modes protected by the latter
symmetry. Moreover, exactly solvable number conserving models can be
constructed in arbitrary dimension.

We also analysed the problem in a dissipative setting, i.e., the dissipative
quantum state preparation of a fixed-number p-wave superconductor in one-
dimensional fermionic system. In particular, we have presented two protocols
which have been fully characterized in the situation of open boundary con-
ditions. Whereas the former does not display any topological property, the
latter features a two-dimensional steady space to be understood in terms of
boundary Majorana modes for any number of fermions. Through the ana-
lysis of a related parent Hamiltonian, we are able to make precise statements
about the gapless nature of the Lindbladian super-operators associated to
both dynamics.

The peculiar form of the master equations considered in this thesis allows
for the exact characterization of several properties of the system, most import-
antly the steady state, even if the dynamics is not solvable with the methods
of fermionic linear optics [120, 121] exploited in Refs. [104, 105]. This result
is very interesting per se, as such examples are usually rare but can drive
physical intuition into regimes unaccessible without proper approximations.
It is a remarkable challenge to investigate which of the properties presented
so far are general and survive to modifications of the environment, and which
ones are peculiar of this setup.

The analysis presented in this thesis has greatly benefited from exact
mathematical relations between the properties of the Lindbladian and of a
related parent Hamiltonian. Since the study of closed systems is much more
developed than that of open systems both from the analytical and from the
numerical points of view, the complete characterization of all the possible
relations between Lindbladians and associated Hermitian operators stands as
a priority research program.

In the third part of this thesis we analysed the non-Markovian nature of
the dynamics by means of the divisibility criterion. We derived an analytical
expression for the Kraus representation of the map corresponding to the
evolution of a qubit interacting with an environment, for a general quadratic
fermionic Hamiltionian, and introduced a simple function which is sufficient
to check the non-Markovianity of the dynamics. We analyzed our proposed
non-Markovianity function for the quantum map of a qubit interacting with
an environment governed by the Ising model. For lattices up to 105 sites
we studied the non-Markovianity of the dynamics, in the vicinity of the
Ising model critical point. We quantified the non-Markovianity by the most
negative eigenvalue (η) of the dynamical matrix, and obtained that, for finite
size systems, it reaches its maximum at the critical point, whereas in the
thermodynamic limit it is zero exactly at the critical point, diverging outside
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the critical point. In the particular case of the Ising environment, we obtained
that the Loschmidt echo and our measure η are equivalent.
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