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Resumo

Correlações puramente quânticas em sistemas de dimensão finita.
Tese de doutorado - Departamento de Física, Universidade Federal de Minas Gerais, Belo Hor-

izonte, 2014.

Alguns fenômenos são exclusivos de sistemas quânticos, ou seja, não possuem contrapartida
na mecânica clássica. Dois exemplos muito discutidos nos últimos anos são o emaranhamento e a
não localidade, ambos relacionados com a existência de estados não separáveis. A superposição
de estados quânticos é outra característica que merece destaque. Quando dois eventos são de-
scritos por estados não ortogonais, o fato de estes se sobreporem implica na inexistência de um
processo capaz de distingui-los. O princípio da superposição aliado ao processo de medição local
em sistemas quânticos compostos resulta em uma nova classe de correlações sem contrapartida
no mundo clássico e que vai além do emaranhamento. Essas correlações puramente quânticas re-
cebem o nome de quantumness of correlations, e são o assunto principal desta tese. Estudamos três
abordagens diferentes para as correlações puramente quânticas. Primeiramente definimos uma
medida geométrica para quantificar essas correlações baseada na norma Schatten-p, a qual con-
tém a norma do traço, norma de Hilbert-Schmidt e norma de operador. Demonstramos que essa
medida de correlações é limitada inferiormente pelo emaranhamento, quando este é calculado via
testemunhas de emaranhamento. A segunda abordagem das correlações puramente quânticas se
deu no contexto de informação acessível e discriminação de estados quânticos. Sabe-se que, dev-
ido a superposição, estados quânticos só podem ser perfeitamente distinguidos quando são ortog-
onais. Sendo assim para um ensemble finito de estados quânticos existe uma quantidade máxima
de informação que pode ser extraída pelo processo de medição. A quantidade de informação
acessível é limitada pela cota de Holevo, e atingirá a igualdade apenas quando os estados forem
ortogonais. Esse limite na quantidade de informação acessível está relacionada a incapacidade de
se distinguir estados quânticos pelo processo de medição. Nosso estudo consiste em investigar
a capacidade de se extrair informação, bem como em se distinguir os estados de um dado en-
semble, quando restringimos o processo de medição a medições projetivas. A restrição a medição
projetiva, bem como a generalização a POVMs pode ser abordada via teorema de Naimark, que
atesta que uma POVM pode ser descrito como uma medição projetiva em um espaço de dimensão
maior. O processo de "embeber" o estado em um espaço de dimensão maior pode ser feito, por
exemplo, acoplando uma ancila ao estado. Processo este que não gera correlações entre o sistema
e a ancila. Nosso principal objetivo é estudar as correlações nesse contexto para entender como
elas são afetadas pelo processo de embeber o estado em um espaço de dimensão maior, uma vez
que isto generaliza a forma de medição a ser realizada no sistema. Por fim estudamos correlações
quânticas no contexto de partículas indistinguíveis. Obtemos uma medida de emaranhamento
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para sistemas fermiônicos: a versão fermiônica da robustez generalizada de emaranhamento. Nós
também introduzimos o conceito de correlações puramente quânticas para partículas indistin-
guíveis, obtemos quem são os estados sem correlações puramente quânticas a partir do protocolo
de ativação. Como esses estados são um subconjunto dos estados separáveis, podemos garantir
quais estados não são emaranhados, pois não possuem nem mesmo correlações puramente quân-
ticas. Calculamos também uma medida dessas correlações para sistemas fermiônicos e bosônicos.
Palavras-Chave: Informação quântica, correlações quânticas, discórdia quântica, emaranhamento



Abstract

Quantumness of correlations in finite dimensional systems.
Phd Thesis - Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte,

2014.

Some phenomena are exclusive of quantum systems, in other words, there no exist counter-
part in classical mechanics. Two examples extensively discussed in recent years are the quantum
entanglement and quantum non locality, both are related to the existence of non separable states.
The superposition of quantum states is another characteristic which deserves attention. Consid-
ering two distinct events in superposition, it implies the nonexistence of a measurement process
capable of discriminating them. The superposition and the local measurement process together
result in a new class of correlations, without counterpart in classical world, and go beyond quan-
tum entanglement. These quantum correlations are named quantumness of correlations, and they
are the main issue of this thesis.

In the thesis we study three different approaches for the quantumness of correlations. Firstly,
we define a geometrical measure of quantumness of correlations via the Schatten-p norm, which
contain in its definition the trace norm, the Hilbert-Schmidt norm and the operator norm. We
demonstrate that it is limited below by the quantum entanglement, calculated via entanglement
witness. The second approach for the quantumness of correlations is in the context of accessible
information and the discrimination of quantum states. It is known that quantum states only can
be distinguished if they are orthogonal one each other. Then there exists a maximal amount of
information which can be extracted from an ensemble of quantum states, performing measure-
ments. The accessible information is limited by the Holevo’s quantity, and the bound is attained
only for orthogonal states. This limit in the amount of information that can be extracted from a
quantum ensemble is related to the incapacity to distinguish quantum states by measurement pro-
cess. Our study consists to investigate the capacity in to extract information, as well to distinguish
the states of a given ensemble, when we are restricted to perform projective measurements. The
restriction to projective measurements, as well the generalization to POVMs, can be approached
via the Naimark’s theorem, which state that a given POVM can be approached as a projective
measurement in a embedded space. The embedding process can be performed, for example, cou-
pling a pure ancilla on the state. Therefore this process cannot create any correlation between the
system and the ancilla. The main goal is approach the quantumness of correlations in this context,
to understand how they are affected by the embedding process, once that this process generalizes
the measurement to be performed on the system. Finally we study quantum correlations in the
context of indistinguishable particles. In our approach we obtained an entanglement measure for
fermionic systems, it is a fermionic version of the generalized robustness of entanglement. We also
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introduced the concept of quantumness of correlations for indistinguishable particles. We calcu-
lated who are the states without quantumness of correlations from the activation protocol, in this
context. As these states are a subset of separable states, we can attest what states are not entan-
gled, once they are the states without quantumness of correlation. We also calculated a measure
of quantumness of correlations for fermionic and bosonic systems.

Key-words: quantum information, quantum correlations, quantum discord, quantum entan-
glement
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Chapter 1

Introduction

In the beginning of 30 years, E. Schrodinger defines the quantum entanglement as the main
characteristic of the quantum mechanics [141]1. In the same year A. Einstein et al. called attention
to a possible non local action between quantum systems spatially separated [57]. Only in 60 years,
J. Bell explained that quantum entanglement cannot be written as a realist and local theory [13].
In 80 years A. Aspect et al. could measure entangled states in a quantum optics experiment [7].
During the 80 years the quantum entanglement let to be a exclusive curiosity of quantum me-
chanics, and started to be a scientific research topic. It was boosted by the motivation given by R.
Feynman [62], he asked about the possibility to simulate quantum systems in standard comput-
ers, and proposed that there may exists an improvement in the computational cost in the opposite
direction. The first protocol, following this idea, was the public quantum key protocol, known as
BB84 [16]. In the next decade, the quantum information and quantum computation theory had
began. The quantum entanglement could be approached as a resource for informational and com-
putational tasks: quantum teleport [17], superdense coding [142], quantum cryptography [58] and
the quantum factoring algorithm [146], are some examples.

Before the 2000 years, people considered quantum entanglement as the main difference be-
tween quantum and classical worlds, as stated by Schrodinger. However independently H. Ol-
livier and W. Zurek, and L. Henderson and V. Vedral found a new quantum property, without
counterpart in classical systems. They named it quantum discord, which is related to the measure-
ment and superposition principles of quantum mechanics in composed systems. Quantum dis-
cord is a measure of quantumness of correlations. This new kind of correlation reveals the amount
of correlations destroyed during the local measurement process, and goes through the quantum
entanglement. Quantumness of correlations quantifies the degree of quantumness in the corre-
lations point of view. J. Oppeinheim et al. approached these kind of correlations in a thermody-
namic point of view, and concluded that they are the main resource to the extraction of local pure
states [117]. The existence of quantumness of correlation makes impossible to clone mixed states
locally (no-local broadcast) [130]. It also quantifies the resource required to perform the state merg-
ing protocol [32, 106]. It bounds the amount of entanglement which two parties can increase only
exchanging part of their states, and applying local operations and classical communications [35].
Quantumness of correlations is a necessary condition to the quantum computational speed-up [44].
Experimentally it was revealed necessary for the existence of coherent interaction between two
systems [72]. These correlations are the responsible for the creation of entanglement between the
system and the measurement apparatus, during the local measurement process [129, 150].

In this thesis, besides the literature review about quantumness of correlations and the compi-
lations, of some interesting propositions and theorems in this context, we also present five original
works about this issue, they were listed previously. The thesis is organized as follows. In Chap.2
we present the mathematical framework of quantum information, we revise some concepts and
many results which were used in the thesis, in this chapter we also define the notation. In Chap.3

1A translation to English of this work can be found in the book Quantum Theory and Measurement in the page 152
[161].
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2 INTRODUCTION 1.0

we discuss the concept of quantum correlations. We present a revision about quantum entangle-
ment, defining the entanglement and discussing some interesting measures of entanglement. In
this chapter we introduce the concept of quantumness of correlations, discriminating who are the
classical correlated states. We present some interesting results about this issue, as well a revision
of the literature. Into the well known concepts there is a geometrical measure of quantumness of
correlations proposed by us. In Chap.4 we discuss the relation between entanglement and quan-
tumness of correlations. Firstly, we revise two ways to relate entanglement and quantumness of
correlations: the Koash-Winter relation and the activation protocol. Then we present our contri-
butions. We used the geometrical measure of quantumness of correlations via Schatten-p norm to
calculate that it is limited bellow by the witnessed entanglement, we also discuss the relation for
some particular norms and measures of entanglement [47,48]. Chapter 5 was designed to explore
the embedding process in the context of local measurements. In this chapter we present a discus-
sion about the consequences of restrict the local measurement process to projective measurements.
We first discuss the concept of accessible information, which is equal to the quantum discord for
classical-quantum states. Then we study the discrimination of quantum states in this context. We
define a measure of projectiveness of a POVM. Then we explore the capacity of a POVM named
pretty good measurement to discriminate quantum states, when a dephasing channel is performed
on it, which is the process that transform a POVM in a projective measurement [49]. Our main ob-
jective of this investigation is understand what happens with geometrical measures of quantum-
ness of correlations under embedding. It was stated that it remains unchanged, although there is
no exist any formal proof of it. In Chap.6 we introduce the concept of quantumness of correla-
tions for indistinguishable particle systems. There is no agreement about who are the separable
states in these context. We approached the separable states as those which can be written as only
one Slater determinant, via this definition we obtain the generalized robustness of entanglement
for fermionic systems [87]. We also discuss the quantumness of correlations for indistinguishable
particles, we proposed an approach via the activation protocol to obtain the class of states with-
out quantumness of correlations. This class can be obtained from the absence of entanglement
between the system and the measurement apparatus during the local measurement process. In
other words, we used entanglement between distinguishable subsystems to obtain the class of
states without quantumness of correlations for identical particle systems [86]. We conclude and
present the future perspectives in Chap.7.



Chapter 2

Mathematical framework of quantum
information

In this chapter we shall describe the mathematical framework which supports the other chap-
ters of the thesis. We decided to detail and discuss some fundamental concepts of the quantum
information theory to give comfort to the reader during the reading of the text. All of the concepts
discussed in this chapter can be found in text books of quantum information and quantum me-
chanics [5,14,114], lectures notes [133,159,162] and the review [11] about the specific topics. If the
language of quantum information is familiar to the reader, each section, even the whole chapter,
can be skipped by without compromissing the next sections and/or chapters.

2.1 Density matrix

The whole thesis deal with quantum mechanics of discrete systems, and therefore the Hilbert
space has finite dimension. A given Hilbert spaceHN = CN is defined as a complex vector space,
normed and with well defined inner product. For a given Hilbert space there exists a dual space
H∗N , which is the space of linear maps from H to the complex numbers. For finite dimensional
Hilbert spaces these two spaces are isomorphic, then H∗N = CN . We shall denote the space of
linear transformations which act on the Hilbert space asL(CN , CM). A given linear transformation
A belongs to the space L(CN , CM), if A : CN → CM. If A is a square matrix it acts on the Hilbert
space as: A : CN → CN , then we shall denote the space where A belongs as L(CN). The set
of linear transformations on the Hilbert space L(CN , CM) is also a Hilbert space, therefore it is
equipped with inner product. For two operators M, N ∈ L(CN), the inner product is defined as
the Hermitian form:

〈A, B〉 = Tr(A†B). (2.1)

As Tr(M†N) is always a finite number the vector space L is often called the space of bound opera-
tors. The vector space of operators which act on the Hilbert space is also named Hilbert-Schmidt
space. From the inner product, it is possible to define an Euclidean norm forL, it is named Hilbert-
Schmidt norm:

DHS(M) =
√

Tr[M† M] = |M|. (2.2)

We shall discuss this norm and other norms for this vector space in Sec.2.3.1.
Why are we interested in a vector space composed by operators? Because it generates a vector

space whose vectors have internal structure based on the mathematical properties of the opera-
tors and its matricial representation. Actually we are not indeed interested in the Hilbert-Schmidt
space by itself, we are interested in some subsets of this vector space, which are characterized
by the properties of the operators which belong to it. In quantum mechanics the observables are
represented by operators, and the physical quantities are the expectation values of the observ-
ables, in the state that the system was prepared. In this way the eigenvalues of the observables

3



4 MATHEMATICAL FRAMEWORK OF QUANTUM INFORMATION 2.1

are physical quantities. We can guarantee that a given operator A can be diagonalized, if and
only if it commutes with its complex conjugate [A, A†] = 0. The Hermitean operators satisfy this
condition, hence they have a well defined spectral decomposition. Therefore an interesting set,
which belongs to the linear operators space (L), is the set of Hermitian matrices (HM). As the
Hermitian matrices are matrices with real eigenvalues, then if we restrict this real numbers to be
positive, we can find another interesting set of matrices, the set of positive matrices, denoted as P .
A given matrix P is a vector in the positive matrices vector space P(CN) if it satisfies the following
conditions:

〈ψ| P |ψ〉 ≥ 0 ∀ ψ ∈ CN , (2.3)
P = AA†, (2.4)

for any vector |ψ〉 ∈ CN and any matrix A ∈ L(CN , CM). The dimension of the vector space of
positive matrices is equal to the dimension of the vector space of Hermitian matrices: dim(P) =
dim(HM) = N2. As the convex combination of positive matrices is also positive, this vector
space is a convex cone in the Hermitian matrices vector space [14]. If we restrict the matrices in
the positive cone to have trace=1, we arrive in another set of matrices, that is named the set of
density matrices. This set also forms a vector space denoted by D.1 Therefore the matrices which
belong to this set, or the vectors in this vector space, are named density matrices.

Definition 1. A linear positive operator ρ : L(CN) is a density matrix and represents the state of a
quantum system if it satisfies the following properties:

• Hermitean
ρ = ρ†; (2.5)

• Positive semi-definite
ρ ≥ 0; (2.6)

• Trace one
Tr(ρ) = 1. (2.7)

As the convex combination of density matrices is a density matrix, the vector space D is a
convex set whose pure states are projectors onto the real numbers. A given density matrix ρ ∈
D(CN) is a pure state if it satisfies:

ρ = ρ2 (2.8)
Tr(ρ3) = 1, (2.9)

then the state ρ is a rank-1 matrix which can be written as:

ρ = |ψ〉〈ψ| . (2.10)

The pure states form a 2(N − 1)-dimensional subset on the (N2 − 2)-dimensional boundary of
D(CN). Every state with at least one eigenvalue equal to zero belongs to the boundary [14]. For
2-dimensional systems (it is also named qubit [143]) the boundary is just composed by pure states.

To represent a given density matrix ρ ∈ D(CN), with rank = r, as convex convex combination
of pure states, it is necessary at least r pure states. A simplex is the minimum convex hull, therefore
this minimal set of states forms a N − 1-dimensional simplex, which is named the eigenvalue
simplex, and the set of pure state is composed by the eigenvectors of ρ. The set of r eigenvectors
of ρ, related to the non zero eigenvalues of ρ span a r-dimensional vector space, it is named support,
and is denoted by supp(ρ). The set of eigenvectors related to the zero eigenvalues span a N − r

1 The explicit demonstration of the density matrices satisfy the axioms of a vector space can be found in section 1.2
of Ref. [159].
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vector space named kernel denoted by kern(ρ). The direct sum of these two subspaces results in
the Hilbert space CN .

The decomposition of a density matrix in pure states is not unique, for example the maximal
mixture state I/N ∈ D(CN) can be written as a convex combination of any set of N orthogonal
states with the same coefficients, or taking all pure states with the same weight, or in many other
forms. The non uniqueness of the convex combination of the density matrices is expressed in the
following theorem:

Theorem 2. A given density matrix ρ ∈ D(CN) with diagonal form:

ρ =
r

∑
k

λk |λk〉〈λk| , (2.11)

can be decomposed as a convex combination

ρ =
M

∑
l

pl |φl〉〈φl | , (2.12)

where M ≥ r, if and only if there exists a unitary matrix U such that:

|φl〉 =
1
√

pl
∑

k

√
λkUlk |λk〉 . (2.13)

Proof. We shall prove the converse first. Multiplying 〈λk| on the left of Eq.2.13, we find:

Ulk =

√
pl

λk
〈λk|φl〉 . (2.14)

These are elements of a unitary matrix because:

∑
l

U†
klUl j = ∑

l

pl√
λkλj

〈λk|φl〉
〈
φl
∣∣λj
〉

(2.15)

=
1√
λkλj

〈λk| ρ
∣∣λj
〉

(2.16)

= δkj. (2.17)

To prove the direct side of the theorem, we must check that Eq.2.13 and Eq.2.12 imply in Eq.2.11.
If ρ = ∑k pk |φk〉〈φk| and |φl〉 = 1√

pl
∑k
√

λkUlk |λk〉, we have:

ρ = ∑
l

pl

[
1
√

pl
∑

k

√
λkUlk |λk〉

] [
1
√

pl
∑

j

√
λjU†

jl
〈
λj
∣∣] (2.18)

= ∑
l

U†
jlUl j ∑

kj

√
λkλj

∣∣λk
〉〈

λj
∣∣ (2.19)

=
r

∑
k

λk |λk〉〈λk| . (2.20)

This theorem is named Schrödinger mixture, or GHJW lemma. The theorem implies that the
states |φl〉, which a state ρ can be decomposed convexly, are linearly dependent on the eigenvec-
tors of ρ.

In quantum mechanics we have two ways to combine states. Consider a pure state |ψ〉, as it is
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a vector, it can be expanded as a linear combination of others pure states {|φk〉}k:

|ψ〉 = ∑
k

ck |φk〉 , (2.21)

where the coefficients ck are complex.Their square norm |ck|2 represent the probability to give the
state |φk〉 performing a measurement over |ψ〉, therefore ∑k |ck|2 = 1. Another way to decompose
states is the convex combination.Consider state ρ, it can be written as a convex combinations of
others states {ρk}k:

ρ = ∑
k

pkρk. (2.22)

The probability vector ~P = {pk}k is a classical probability distribution, whose coefficients pk rep-
resent the probability to draw the state ρk, as it is a convex combination ∑k pk = 1.

2.1.1 Composed systems

We we discussed above the kinematic state of the system is described by a density matrix.
Now suppose the system is compose by more than only one part, then we also must compose
the density matrices of the local subsystems. This composition is made via Kronecker product, or
tensor product of the Hilbert spaces where the density matrices are operating on. In this way, a
n-partite system is described in a Hilbert space CN , such that:

CN = CA1 ⊗ · · · ⊗CAn . (2.23)

The dimension of the total Hilbert space is the product of the dimensions of the local subsystems:

N = dim(CA1)× · · · × dim(CAn). (2.24)

A density matrices ρ ∈ D(Cd1 ⊗ · · · ⊗Cdn) on this space with spectral decomposition in the form:

ρ = ∑
i

λi |λi〉〈λi| , (2.25)

whose the eigenvectors can be decomposed in any basis in the space Cd1 ⊗ · · · ⊗Cdn , then a given
eigenstate |λ〉 can be written as:

|λ〉 = ∑
k1

. . . ∑
kn

ck1,...,kn |k1〉 ⊗ · · · ⊗ |kn〉 . (2.26)

Considering we are interested in the description of few subsystems, not in the whole system.
Suppose we would like to describe the system labeled by A1, the state of the solely subsystem is
named reduced density and is defined via the partial trace:

ρA1 = TrA2,...,An(ρ), (2.27)

where the trace is taken over all the subsystem except A1. The partial trace over some subsystem
results in the density matrix of the remaining system without the information of the other parties,
or the whole density matrix. As an example suppose we prepare a state composed by two atoms,
the preparation consists in interact one each other during a given time. Then we separate them,
and now we are just interested in one atom. The state of this atom is described by Eq.2.27.

The inverse operation of partial trace is the embedding operation. Given a system described
by the density matrix ρS ∈ D(CS), one kind of embedding is coupling an pure ancillary system
|0〉A ∈ CA on ρS and interacting them via a unitary operation on the global system:

ρS,A = U(ρS ⊗ |0〉〈0|A)U
†, (2.28)
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where ρS,A ∈ D(CS ⊗CA). We shall discuss more about unitary operations, but it is known that
unitary operation preserver the spectrum of the density matrix, therefore the embedding opera-
tion, as described above, does not change the spectrum of the density matrix, it just change the
dimension of the Hilbert space. Another way to compose systems is via an operation named pu-
rification. We can state the purification operation as a theorem.

Theorem 3 (Purification). For any quantum state ρ ∈ D(CS) there exists a pure state |psi〉SA ∈ CS ⊗
CA such that:

ρS = TrA(|ψ〉〈ψ|SA). (2.29)

Proof. Considering the spectral decomposition of ρS:

ρS = ∑
i

λr
i=1 |λi〉〈λi| , (2.30)

then we can write a pure state |psi〉SA such that it is decomposed in the eigenbasis of ρS as:

|psi〉SA =
r

∑
i=1

√
λi |λi〉S ⊗ |i〉A , (2.31)

where the dimension of the ancillary system is equal the rank of ρS: dim(CA) = r. It is clear that
taking the trace over A the results will be the state ρS in Eq.2.30.

Actually the pure state which satisfies Eq.2.29 is not unique. Given pure state in Eq.2.31 we can
realize that the purification operation also does not change the spectrum of ρS. We also can note
that the spectrum of the reduced state on CA, TrS(ρSA), is the same of ρS. Indeed any bipartite pure
state the reduced states have the same eigenvalues, and the decomposition like Eq.2.31 in their
eigenbasis is named Schmidt decomposition. We shall discuss more about this decomposition in
next chapter.

2.2 Quantum Operations

Given the definition of the operators which represent the states of the quantum system, now
we need discuss the operations on these states. Considering a linear transformation Φ : L(CN)→
L(CM), for this map to represent a physical process, it must satisfy some conditions, determined
by the physical properties of the input matrices and the outputs. Actually to describe maps acting
on quantum states we have to answer the question: what are the conditions which Φ must satisfy
to be a physical process? Indeed to be a physical process the transformation must map a quantum
state in another quantum state Φ : D(CN) → D(CM). Therefore it has to keep the properties of
the state.

• Linearity: As the representation of the state as a convex combination is arbitrary, the ac-
tion of the map cannot be dependent on the convex combination which the state is written.
Therefore the map must be linear. For two any operators ρ, σ ∈ L(CN)

Φ(ρ + σ) = Φ(ρ) + Φ(σ); (2.32)

• Positive: As a quantum state is a positive operator, the map must keep the state positive:

Φ(ρ) ≥ 0; (2.33)

• Trace preserving: The eigenvalues of a given state represent a probability distribution, there-
fore the state after the action of a physical process must also keep this property. Therefore
the quantum map has to maintain the trace of the state equal to one:

Tr[Φ(ρ)] = 1. (2.34)
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If a given map satisfies these three properties, it is named a positive trace preserving map 2.
However there is another condition which the map must satisfy. This property is related to the
composition of systems in quantum mechanics. A composed system is represented by the Kro-
necker product,or tensor product, of the spaces3. Therefore, given a bipartite system described
by the state ρAB ∈ D(CA ⊗ CB), if the map is acting just on one subsystem, the result of the ac-
tion must be a quantum state. In other words the map I⊗ Φ must transform states onto states.
I⊗Φ : D(CA ⊗CB) → D(CA ⊗CB). The map I⊗Φ is named a local map, because it acts locally
on the composed system. If the map Φ is trace preserving, it is straightforward to check that I⊗Φ
preserves the trace:

Tr[I⊗Φ(ρAB)] = Tr[ρA] = 1, (2.35)

where ρA = TrB[ρAB]. However the positivity of the map Φ does not guarantee the positivity of
the map I⊗ Φ. For example, suppose a state which can be written as a convex combination of
product states:

ρAB = ∑
k,l

pk,lρ
A
k ⊗ ρB

l , (2.36)

the action of the map I⊗Φ, by linearity, will be:

I⊗Φ(ρAB) = ∑
k,l

pk,lρ
A
k ⊗Φ(ρB

l ). (2.37)

If the map is positive Φ(ρB
l ) ≥ 0 for every l, it implies that I ⊗ Φ(ρAB) ≥ 0. Nonetheless in

general we cannot guarantee that. Suppose a bipartite pure state |ψ〉 = ∑k ck |ak〉 |bk〉, where the
coefficients ck are real numbers4. The map will act locally as:

I⊗Φ(|ψ〉〈ψ|) = ∑
k,l

ckcl |ak〉〈al | ⊗Φ(|bk〉〈bl |). (2.38)

Now suppose the transposition operation: ΦT(|bk〉〈bl |) = |bl〉〈bk|, which is clearly a positive and
trace preserving operation. The state after the action of the partial transpose map will be:

I⊗ΦT(|ψ〉〈ψ|) = ∑
k,l

ckcl |ak〉〈al | ⊗ |bl〉〈bk| . (2.39)

Consider the special case where dim(CA) = dim(CB) = 2 and c0 = c1 = 1/
√

2. In this case
the eigenvalues of the matrix in Eq.2.39 are {1/2,−1/2, 0, 0}. This means that the matrix after the
local action of the positive map ΦT, is not a density matrix. These kind of maps are not accepted to
represent physical process. In this way a given positive map may not represent a physical process.
Then another condition must be imposed to a map represent a physical operation:

• Completely Positive:
I⊗Φ(ρ) ≥ 0. (2.40)

The map which satisfies this property is named completely positive.

The linear transformations which map quantum states in quantum states are named quantum
channels. The space of quantum channels which maps N×N density matrices onto M×M density
matrices shall be denoted in text as C(CN , CM).

2The term linear shall be omitted because even though it is a property we are assuming it a priori.
3A pedagogical explanation about the composition of quantum systems can be find on section 2.2 of Ref. [159].
4We shall prove in the next chapter that every bipartite pure state can be written in this way. It is named Schmidt

decomposition. The tensor product of pure states shall be denoted as |ak〉 ⊗ |bk〉 = |ak〉 |bk〉, to simplify the notation we
often also written as |ak〉 ⊗ |bk〉 = |ak, bk〉.
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Isometric and unitary operations

Before to discuss the representation of a general map, let us introduce a class of transforma-
tions which is very important for quantum mechanics: the isometric transformations.

Definition 4. Consider a linear transformation V : CΓ → CΓ′ . If it satisfies:

V†V = IΓ, (2.41)

it is named an isometry.

The space of isometries V : CΓ → CΓ′ will be denoted as U (CΓ, CΓ′). Suppose a density matrix
ρ ∈ D(CΓ), an isometry V acts on it as:

ρ′ = VρV†, (2.42)

where ρ′ ∈ D(CΓ′).
The set of isometries which map the space CΓ on itself is named the set of unitary operators. If

an operator U ∈ U (CΓ), it is named a unitary transformation and satisfies U†U = UU† = IΓ. An
isometric transformation preserves the inner product, consequently the spectra of the operators.
In other words, an isometry does not change the eigenvalues of the operators, nor the rank of
them.

2.2.1 Quantum channel representations

Now we know what kind of maps can represent a physical process, we should define, in a
concrete way, how they are represented.

Choi-Jamiolkowski representation

The Choi-Jamiolkowski representation, or Choi-Jamiolkowski isomorphism, is the represen-
tation of quantum channels as positive operators in a enlarged space. However it is not possible
to represent any operator as a quantum map. Let us first define the map which formalizes this
representation.

Definition 5. Given a quantum channel Φ ∈ C(CA, CB), one defines a map J : C(CA, CB) → P(CB ⊗
CA) as:

J(Φ) = ∑
i,j

Φ(|i〉〈j|)⊗ |i〉〈j| , (2.43)

where J(Φ) ∈ P(CB ⊗CA) is the Choi operator of the map Φ.

The Choi operator must satisfy some conditions, namely:

Theorem 6. Given a map Φ ∈ T (CA, CB) and its Choi operator J(Φ), the map is completely positive if
and only if:

J(Φ) ∈ P(CB ⊗CA). (2.44)

The map is tracing preserving if and only if the following expression holds:

TrB(J(Φ)) = IA. (2.45)

Proof. If Φ is completely positive, then Φ ⊗ I(P) ∈ P(CB ⊗ CA) for any positive operator P ∈
P(CA). As ∑i,j |ii〉〈jj| is positive, the Choi operator J(Φ) of a given completely positive map is
positive. If the Choi operator J(Φ) is positive, then it can be diagonalized as:

J(Φ) = ∑
i
~ui~u†

i , (2.46)
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where ~ui ∈ CB ⊗CA. We introduce the transformation Vec : L(CA, CB) → CB ⊗CA. Consider an
operator |i〉〈j|, applying the Vec operation5 we obtain:

Vec(|i〉〈j|) = |i〉 |j〉 . (2.47)

Hence, there exists an operator Ai ∈ L(CA, CB), such that Vec(Ai) = ~ui and

J(Φ) = ∑
i

Vec(Ai)Vec(Ai)
†. (2.48)

The Vec transformation satisfies the following relation:

Vec(A) = (A⊗ IA)Vec(IA), (2.49)

where Vec(IA) = ∑i |ii〉. Then the Choi operator can be written as:

J(Φ) = ∑
i
(Ai ⊗ IA)Vec(IA)Vec(IA)

†(Ai ⊗ IA)
†. (2.50)

As J(Φ) is positive
J(Φ) = ∑

i
(Ai ⊗ IA)∑

ij
|ii〉〈jj| (Ai ⊗ IA)

† ≥ 0. (2.51)

By definition
J(Φ) = Φ⊗ IA(∑

i,j
|ii〉〈jj|), (2.52)

then, if the map can be represented as:

Φ(P) = ∑
i

AiPA†
i , (2.53)

the map Φ is completely positive. It is the Kraus representation.
If Φ is tracing preserving, then Tr[Φ(|i〉〈j|)] = δi,j, which implies:

TrB[J(Φ)] = ∑
i,j

Tr[Φ(|i〉〈j|)] |i〉〈j| = ∑
i,j

δi,j |i〉〈j| = IA. (2.54)

On the other hand, TrB[J(Φ)] = IA, then it:

∑
i,j

Tr[Φ(|i〉〈j|)] |i〉〈j| = IA = ∑
i
|i〉〈i| = ∑

i,j
δi,j |i〉〈j| , (2.55)

therefore Tr[Φ(|i〉〈j|)] = δi,j, which means that Φ is tracing preserving.

Usually in the literature one defines the maximally entangled state |φ〉 = 1√
|A|

∑i |ii〉, such

that:
J(Φ) = |A|Φ⊗ (|φ〉〈φ|), (2.56)

where |A| = dim(CA). It is usual to omit the factor |A|.
Given J(Φ), it is possible to obtain the channel acting on any state ρ ∈ D(CA) with the expres-

sion:
Φ(ρ) = TrB[J(Φ)(I⊗ ρ)], (2.57)

where Φ(ρ) ∈ D(CB).
As we anticipated, every quantum channel can be written as a positive operator, however not

5The Vec transformation is also named Reshape.
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all positive operators represent channels. We can realize it taking the partial trace over J(Φ)):

TrA[J(Φ)] = TrA[∑
i,j

Φ(|i〉〈j|)⊗ |i〉〈j|] = IA. (2.58)

As there exists positive operators whose partial trace is not the identity, or proportional to it, it is
not any positive operator that represents a quantum channel.

Kraus representation

Given a quantum channel Φ ∈ C(CA, CB), there exists a set of operators {Ei}N
i=1, where Ei ∈

L(CA, CB), such that the action of Φ on a state ρ can be written as:

Φ(ρ) =
N

∑
i=1

EiρE†
i , (2.59)

where {Ei}N
i=1 are the Kraus operators. In contrast with the Choi-Jamiokowski representation, the

Kraus representation is not unique. For a map Φ to be trace preserving, the Kraus operators must
satisfy the following property:

Proposition 7. The map Φ is a quantum channel, if the Kraus operators satisfy:

∑
i

E†
i Ei = IA. (2.60)

Proof. If the map Φ is a quantum channel it is completely positive and trace preserving. If the
property in Eq.2.234 holds:

Tr[Φ(ρ)] =
N

∑
i=1

Tr[EiρE†
i ] = Tr[∑

i
E†

i Eiρ] = Tr(ρ). (2.61)

Now we should prove that the map is completely positive. Consider a positive operator P ∈
P(CA ⊗CC), then:

(Ei ⊗ IC)P(Ei ⊗ IC)
† = ∑

α

λα(Ei ⊗ IC) |λα〉〈λα| (Ei ⊗ IC)
†, (2.62)

where P = ∑α λα |λα〉〈λα|, and λα ≥ 0. Suppose that (Ek ⊗ IC) |λα〉AC = exp(iφk) |γα,k〉BC. Hence
as the eigenvalues of P are positive, the operator in Eq.2.62 is clearly positive.

Stinespring representations

Consider a quantum channel Φ ∈ C(CA, CB), there exists an isometry V ∈ U (CA, CBC) such
that the quantum channel acting on a state ρ ∈ D(CA) can be represented as:

Φ(ρ) = TrC(VρV†). (2.63)

As the Kraus representation, the Stinespring representation is not unique. The Stinespring and
the Kraus representation often are denoted as the same representation. Actually all the represen-
tations are equivalent, but the Stinespring representation is often used in the literature to prove
the validity of the Kraus representation. We enunciate the equivalence between these two repre-
sentations in the following proposition.

Proposition 8. The Stinespring is equal to the Kraus representation:

Φ(ρ) = ∑
i

EiρE†
i = TrE(VρV†), (2.64)
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where {Ei} are the Kraus operators, ρ is a density matrix and V is an isometry.

Proof. Consider the following isometry:

V = ∑
i

Ei ⊗ |i〉C , (2.65)

hence:

TrE(VρV†) = TrE(∑
i

Ei ⊗ |i〉C ρ ∑
j

E†
j ⊗ 〈j|C) (2.66)

= ∑
i

EiρE†
i . (2.67)

From this proposition it is easy to check that in the Stinespring representation the map is trace
preserving and completely positive. Indeed the map is trace preserving only if the operator V is
an isometry (Eq.2.65):

V†V = (∑
i

E†
i ⊗ 〈i|C)(∑

j
Ej ⊗ |j〉C) = ∑

i
E†

i Ei = IA. (2.68)

To check the positivity of the map, we can use the same argument used in Proposition 7. Consider
a positive operator P ∈ P(CA ⊗CB):

Φ⊗ IB(P) = TrC[(V ⊗ IB)P(V† ⊗ IB)], (2.69)

if the isometry can be written as V = ∑i Ei ⊗ |i〉C, it is clear that the operator Φ⊗ IB(P) remains
positive.

The space labeled by C is named ancillary system or environment. The dimension of this space,
for a given channel Φ, is equal to the number of Kraus operators of the channel. On the other hand,
the number of Kraus operators is equal to the rank of the Choi operator J(Φ).

2.2.2 Dephasing channel

The dephasing channel Π ∈ C(CN) is an ideal quantum to classical channel. Because it maps
as the identity every diagonal matrix, and maps all the other states as a probabilistic vectors,
whose elements are the diagonal elements of the density matrix. To define a dephasing channel
we have to choose the basis in the density matrix space. The diagonal operators in this basis will
remains unchanged.

Definition 9. A dephasing channel Π ∈ C(CN) acts on quantum states as:

Π(ρ) = ∑
x

Tr(Πxρ) |x〉〈x| , (2.70)

where ρ ∈ D(CN) and {Πx = |x〉〈x|}N
x=1 is the basis in the space of density matrices where the dephasing

acts.

The Choi operator of a dephasing channel is written as:

J(Π) = ∑
i,j

Π(|i〉〈j|)⊗ |i〉〈j| = ∑
x
|x〉〈x| ⊗ |x〉〈x| . (2.71)

As J(Π) is a diagonal matrix with elements equal to 1, we conclude that the dephasing channel is
positive, and it is clear that taking the partial trace of the Choi operator the reduced matrix is the
identity, hence the dephasing channel is trace preserving.
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The Kraus representation of the dephasing channel is exactly the definition 2.70:

Π(ρ) = ∑
x
|x〉〈x| ρ |x〉〈x| = ∑

x
Tr(Πxρ) |x〉〈x| , (2.72)

where {Πx = |x〉〈x|}N
x=1.

Consider a bipartite system ρAB ∈ D(CA ⊗CB), suppose that the part B will be sent through
a noisy channel. The noise is represented by a dephasing channel in the computational basis
{|x〉}|B|x=1, where |B| = dim(CB). By the definition the action of the channel is:

IA ⊗ΠB(ρAB) = ∑
x

TrB[IA ⊗ΠxρAB]⊗ |x〉〈x| , (2.73)

where {Πx |x〉〈x|}x. We can write TrB[IA ⊗ΠxρAB] = pxρA
x , then:

IA ⊗ΠB(ρAB) = ∑
x

pxρA
x ⊗ |x〉〈x| . (2.74)

As we expected, the state after the action of the channel is not diagonal, although it is block
diagonal, in other words it can be written as:

IA ⊗ΠB(ρAB) =

p1ρA
1 · · · 0

...
. . .

...
0 · · · p|B|ρA

|B|

 . (2.75)

As the dephasing channel maps the density matrix in a diagonal matrix, the reduced state B is:

ΠB(ρB) = ∑
i

Tr(ΠiρB) |i〉〈i| , (2.76)

where {Πi = |i〉〈i|}i is the basis for the dephasing.

2.3 Norms and Distances

A distance measure between two points x and y in a vector space is a function D(x, y) satisfy-
ing:

• The distance between two points is not negative:

D(x, y) ≥ 0, (2.77)

it is zero when the points coincide D(x, x) = 0;

• It is symmetric
D(x, y) = D(y, x); (2.78)

• It satisfies the triangle inequality:

D(x, y) ≤ D(x, z) + D(z, y); (2.79)

• It is homogeneous:
D(λx, λy) = λD(x, y), ∀ λ ∈ R. (2.80)

The function which satisfies these four conditions is a Minkowski distance. An important
property of the Minkowski distance is that the corresponding unit ball created is a convex set.



14 MATHEMATICAL FRAMEWORK OF QUANTUM INFORMATION 2.3

The metric defined via the Minkowski distance is named norm. A norm of a vector ~v is repre-
sented as ‖~v‖. An interesting class of norms which shall be discussed below is the Schatten-p
norm.

2.3.1 Schatten-p norm

The Schatten-p norm for operators is the analogous to the lp norm for vectors. For a given
vector ~v = (v1, ..., vN) in a vector space V, the lp norm is defined as:

‖~v‖ = (∑
k
|vk|p)1/p. (2.81)

As density matrices are vectors in the space D, it is possible to calculate the norm of these states.
The analogous to the lp norm for density matrices is named Schatten-p norm.

Definition 10. Given a linear operator A ∈ L(CN , CM), the Schatten-p norm is defined as:

‖A‖p = {Tr[(AA†)p/2]}1/p, (2.82)

where p = [1, ∞).

As a function of a matrix is the function of the eigenvalues, and the set of eigenvalues of a
given matrix can be written as a vector, the Schatten-p norm for diagonal matrices is equal to the lp
norm. Therefore the Schatten-p norm can be written as the lp norm of the spectral decomposition
of the matrix A:

‖A‖p =

{
∑

k
|λ(A)k|p]

}1/p

, (2.83)

where {λ(A)k}k are the eigenvalues of A. Given this expression we realize that the Schatten norm
follows a hierarchy relation for the values of p. In other words, given two norms described by
p ∈ [1, ∞) and q ∈ [1, ∞), where p ≤ q, they satisfy:

‖A‖p ≥ ‖A‖q. (2.84)

As the Schatten norm only depends on the eigenvalues of the matrix, we realize that the norm
is invariant under action of operations which keep the eigenvalues invariant. An example of this
class is the isometric operations.

Proposition 11. The Schatten-p norm is invariant under the action of isometries:

‖UAV†‖p = ‖A‖p, (2.85)

where U ∈ U (CM, CK) and V ∈ U (CK, CN) are isometries.

Proof. Using the definition of the Schatten-p norm:

‖UAV†‖p = {Tr[(UAV†VA†U†)p/2]}1/p (2.86)

= {Tr[(U†U)p/2(AA†)p/2]}1/p (2.87)
= {Tr[(AA†)p/2]}1/p (2.88)
= ‖A‖p. (2.89)

As a unitary operation is an isometry, the proposition implies that the Schatten-p norm is
invariant under the action of unitary operations. This property leads us to another way to define



2.3 NORMS AND DISTANCES 15

the Schatten-p norm6. For any norm p, there exists another norm q which respects the relation
1/p + 1/q = 1, such that:

‖A‖p = max
‖B‖q≤1

Tr(AB†), (2.90)

where B ∈ L(CN , CM). This expression implies in the Holder inequality:

Tr(AB†) ≤ ‖A‖p‖B‖q, (2.91)

also for 1/p + 1/q = 1 and any matrices A, B ∈ L(CN , CM). The Holder inequality is a general-
ization for the Cauchy-Schwartz inequality.

From the Schatten-p norm, it is possible to obtain three well known norm measures:

• Operator norm (p = ∞):
‖A‖∞ = max

||u〉|=1
Tr(A |u〉〈u|). (2.92)

The infinity norm is just the largest eigenvalue of the operator.

• Hilbert-Schmidt norm (p = 2):

‖A‖2 =
√

Tr(AA†); (2.93)

The Hilbert-Schmidt norm is the sum of the square of the eigenvalues of the operator.

• Trace norm (p = 1):
‖A‖1 = Tr(

√
AA†); (2.94)

The trace norm is the sum of the absolute values of the eigenvalues of the operator. The trace
norm has some interesting properties for quantum information, which will be discussed
below.

Trace distance

Any Schatten-p norm can be written as a measure of the distance between two operators
A, B ∈ L(CN , CM).

‖A− B‖p = {Tr([(A− B)(A† − B†)]p/2)}1/p, (2.95)

The distance obtained via trace norm is named trace distance. For density matrices, the trace
distance is monotonic decreasing under quantum channels.

Proposition 12. Given two density matrices ρ, σ ∈ D(CN) and a quantum channel Φ ∈ C(CN), the
trace distance between the density matrices decreases under the action of a channel:

‖ρ− σ‖1 ≥ ‖Φ(ρ− σ)‖1. (2.96)

Proof. Given the definition of the trace distance in Eq.2.90:

‖Φ(ρ− σ)‖ = max
‖Λ‖∞≤1

Tr[Λ(Φ[ρ− σ])] = Tr[Λ̃(Φ[ρ− σ])]. (2.97)

Using the linearity of the channel and the cyclical property of the trace:

‖Φ(ρ− σ)‖ = Tr[Φ†(Λ̃)(ρ− σ)]. (2.98)

Taking again the definition Eq.2.90 and given the fact that a quantum channel is trace preserving:

‖Φ(ρ− σ)‖ = Tr[Φ†(Λ̃)(ρ− σ)] ≤ max
‖Ξ‖∞≤1

Tr[Ξ(ρ− σ)], (2.99)

6We shall not discuss here how can it be calculated, although the proof and a better discussion about this expression
can be found in Chap.5 of the Ref. [21].
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therefore:
‖ρ− σ‖1 ≥ ‖Φ(ρ− σ)‖1. (2.100)

The trace distance also can be interpreted in terms of probabilities. This comes from the fact
that the trace distance between two operators can be expressed as the difference between the
probability to find each operator performing a specific measurement.

Proposition 13. Given two operators ρ, σ ∈ D(CN), the trace distance between them is equal to twice of
the largest probability difference obtained from the same measurement:

‖ρ− σ‖1 = 2 max
0≤Π≤I

Tr[Π(ρ− σ)], (2.101)

where the optimization is taken over all positive operators with eigenvalues bounded by one.

Proof. As the matrix ρ− σ is Hermitian, there exists a unitary U such that:

ρ− σ = UDU† = U(D+ − D−)U†, (2.102)

where D = D+ −D− is a diagonal matrix, and D± are diagonal matrices with the absolute values
of the positive/negative eigenvalues. If we define two other matrices α± = UD±U†, we have:

ρ− σ = α+ − α−. (2.103)

By definition the matrices α+ and α− spam two orthogonal spaces, therefore

ρ− σ = α+ ⊕ (−α−). (2.104)

There exists a projective measurement {Π+, Π−} such that:

Π+(ρ− σ)Π+ = α+ and Π−(ρ− σ)Π− = α−. (2.105)

Also holds from Eq.2.104:
|ρ− σ| = |α+ − α−| = α+ + α−. (2.106)

The trace distance will be:

‖ρ− σ‖1 = Tr(|ρ− σ|) = Tr(α+) + Tr(α−). (2.107)

As Tr(α+ − α−) = Tr(ρ− σ) = 0, we have:

‖ρ− σ‖1 = 2Tr(α+) = 2Tr(Π+(ρ− σ)). (2.108)

This proves that there exists an optimal measurement on Eq.2.101. For any operator 0 ≤ ‖Γ‖∞ ≤ 1
it satisfies:

2Tr(Γ(ρ− σ)) = 2Tr(Γ(α+ − α−)) (2.109)
≤ 2Tr(Γα+) (2.110)
≤ 2Tr(α+) (2.111)
= ‖ρ− σ‖1, (2.112)

where we used in Eq.2.110 the positivity of Γ and in Eq.2.153 we used that its eigenvalues are less
than one.

This expression is very useful in quantum information, because it gives a statistical interpre-
tation for the trace distance. It shall be used to prove an interesting theorem about discrimination
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of states in Section 2.7. The last proposition also can be obtained directly from Eq.2.90, although
it is not explicit that the optimal operator is a measurement operator. Indeed the trace distance
is just the inner product of the difference between the states, and the projector composed by the
positive eigenstates of the difference. This proposition and Eq.2.90 were used by us to compare a
geometrical measure of quantum discord and entanglement witness [47].

2.4 Measurement

Measurement is a classical statistical inference of quantum systems. The measurement process
maps a quantum state in a classical probability distribution. In this section we shall discuss three
different ways to define the measurement process.

2.4.1 Measurement by operators

We can define a measurement as a function Π : Σ → P(CΓ),7 which associates an alphabet
Σ to positive operators {Πx}x ⊂ P(CΓ). The measurement process of a given density matrix
ρ ∈ D(CΓ) is the process where an element of Σ is chosen randomly. The probability distribution
which describes this random choice is described by a probability vector ~p ∈ RN

+ , where N is the
cardinality of the random variable described by ~p. The elements of the probability vector ~p are
given by the expression:

px = Tr(Πxρ), (2.113)

where Πx is the measurement operator associated to x ∈ Σ. The alphabet Σ is the set of measurement
outcomes, and the vector ~p is the classical probability vector associated with the measurement
process Π of a given density matrix ρ. As the outcomes are elements of a probability vector, these
elements must be positive, which explains why the measurement operators are positive, and the
sum of them must be equal to one. Therefore the measurement operators must sum to identity:

∑
x

Πx = IΓ, (2.114)

where IΓ is the identity matrix in CΓ. It is easy to check that this condition implies in ∑x px = 1:

∑
x

px = ∑
x

Tr(Πxρ) = Tr(∑
x

Πxρ) = Tr(ρ) = 1. (2.115)

For instance we shall restrict the measurements to a subclass of measurement operators named
projective measurements, which will be generalized via the Naimark’s theorem in the end of the
section. To obtain this kind of measurement, we should restrict the cardinality of ~p to be equal to
at least the dimension of ρ, and the measurement operators to be projector operators. Hence they
must satisfy another property:

Π2
x = Πx, (2.116)

for any x ∈ Σ. This choice implies in the following proposition:

Theorem 14. A measurement process, represented by the set of measurement operators {Πx}x, is a pro-
jective measurement, if the set {Πx}x must be orthogonal.

Proof. Any set of measurement operators holds:

∑
x

Πx = I = I2 = ∑
x,y

ΠxΠy. (2.117)

7 Just to clarify the notation, when we write a subscript in the complex euclidean vector space, as CΓ, it represents
a label to the space, it shall be very useful when we study composed systems. When we write a superscript in it, it
represents the dimension of the complex vector space. For example, if dim(CΓ) = N, we can also represent this space
as CN , the usage of the notation will depend of the context.
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As we are restricting to projective measurements PxPx = Px, then:

I = ∑
x,y

ΠxΠy = ∑
x

∑
x 6=y

ΠxΠy + ∑
x

Πx = ∑
x

∑
x 6=y

ΠxΠy + I, (2.118)

thus:
∑
x

∑
x 6=y

ΠxΠy = 0. (2.119)

The inner product between positive operators is non negative, which implies:

Tr[ΠxΠy] = 0. (2.120)

Therefore the projective measurement operators form an orthonormal basis in P(CΓ). If we
consider an orthonormal basis {|ex〉}, where the vectors |ex〉 span CΓ, this set represents a pro-
jective measurement for Πx = |ex〉〈ex|. This measurement defines a convex hull in P(CΓ), where
a measured state represents a pure state in this convex hull. The post-measurement state is de-
scribed by the expression:

ρx =
ΠxρΠx

Tr(Πxρ)
. (2.121)

An example of projective measurement is the well known Stern-Gerlach experiment.

2.4.2 Measurement as a quantum channel

As physical processes are described by quantum channels, we can describe the classical statis-
tical inference of the quantum measurements as a channel, with the output as classical registers.
A channel which maps a quantum state in a classical probability distribution is the dephasing
channel. In general the definition of a channel Φ ∈ C(CΓ, CΓ′), which map a quantum state to a
classical probability distribution must satisfy:

Φ = ΠΦ, (2.122)

where Π ∈ C(CΓ′). Given this definition, we are able to write explicitly how is the action of the
measurement channel, or measurement map.

Theorem 15. A given map Φ ∈ C(CΓ, CΓ′) is a measurement if and only if:

Φ(ρ) = ∑
x

Tr(Mxρ) |ex〉〈ex| , (2.123)

where ρ ∈ D(CΓ), Mx ∈ P(CΓ) and |ex〉 ∈ CΓ′ .

Proof. If Π ◦Φ(ρ) = Φ(ρ) and it is a channel, then applying a dephasing channel on Φ(ρ):

Π ◦Φ(ρ) = ∑
x

Tr[Φ(ρ)Πx] |ex〉〈ex| (2.124)

= ∑
x

Tr[Φ†(Πx)ρ] |ex〉〈ex| (2.125)

(2.126)

where Πx = |ex〉〈ex| ∈ P(CΓ′). If we named Φ† = Mx, then:

Φ(ρ) = ∑
x

Tr[Mxρ] |ex〉〈ex| . (2.127)
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For the set of positive operators {Mx}x to be a set of measurement operators, the sum of the
operators must be equal to one:

∑
x

Mx = ∑
x

Φ(Πx)
† = Φ(IΓ′)

†, (2.128)

as we are assuming that Φ is a channel it is CPTP:

Φ(IΓ′)
† = ∑

k

(
EkIΓ′E†

k

)†
= ∑

k
E†

k Ek = IΓ, (2.129)

where {Ek} are the Kraus operators of the map Φ, which implies:

∑
x

Mx = IΓ. (2.130)

To prove the converse part we should prove two things:

1 The set {Mx}x is unique;

2 Given a set {Mx}x, Φ is a channel.

To prove the Item 1 we assume the existence of another set {Nx}x for Φ, therefore:

Φ(ρ) = ∑
x

Tr[Nxρ] |ex〉〈ex| , (2.131)

as the map is the same:

∑
x

Tr[Nxρ] |ex〉〈ex| −∑
x

Tr[Mxρ] |ex〉〈ex| = 0 (2.132)

∑
x

Tr[(Nx −Mx)ρ] |ex〉〈ex| = 0 (2.133)

Nx −Mx = 0. (2.134)

The item 2 can be proved via the Choi representation of Φ:

J(Φ) = ∑
x

Φ(|ex〉〈ex|)⊗ |ex〉〈ex| = ∑
x

M†
x ⊗ |ex〉〈ex| ≥ 0, (2.135)

which implies that the map is completely positive. As J(Φ) ∈ L(CΓ ⊗ CE), the tracing over the
subsystem E results in:

TrE[J(Φ)] = ∑
x

Mx = IΓ, (2.136)

that is the trace preserving condition. Therefore the map Φ is CPTP, which implies that it is a
quantum channel.

In order to differ the set of measurement channels from general quantum channels, we shall
represent the former as P . A given measurement map M ∈ P(CΓ, CΓ′) is a quantum channel
which maps a density matrix in a probability vector,M : D(CΓ′) → R+

Γ′ . This probability vector
is described by a diagonal density matrix in Eq.2.140. The dimension of CΓ′ is the number of
outcomes of the measurement represented byM. In general the measurement operators will be
consider rank-1, because we can always diagonalize them and describe the same measurement
as a measurement with more outcomes. Actually we are interested in measurements described
by POVMs, whose elements are rank-1 and linearly independent. For this case the number of
elements of the POVM is at most N2, where N is the dimension of the density operators vector
space. If the measurement is projective, the number of outcomes is equal to the dimension of the
system, then a projective measurement map Π will be represented as Π ∈ P(CΓ).
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With the measurement channel Φ is possible to recover the description of the last section where
{Mx}x is the set of measurement operators, therefore Tr[Mxρ] = px are the elements of the prob-
ability vector which represents the post-measurement state. Thuswe can write the measurement
map as:

Φ(ρ) = ∑
x

px |ex〉〈ex| . (2.137)

For the case where the number of outcomes is at least the dimension of the density matrix and the
operators correspond to a projective measurement {Πx}x, the channel is a dephasing in the basis
{Πx = |ex〉〈ex|}x. Its Kraus representation is simply

ΦΠ(ρ) = ∑
x

ΠxρΠx. (2.138)

Via the Naimark’s theorem it is possible to obtain any measurement channel from a dephasing
channel on a state in a enlarged space. It will be study in the next section.

Given the Kraus representation of the dephasing channel in Eq.2.138, it is possible to obtain the
Stinerspring representation of the measurement channel. Let us enunciate the following theorem:

Theorem 16. Given a projective measurement channel Π ∈ P(CΓ) there exists an isometry V ∈ U (CΓ, CΓ⊗
CE) such that:

TrE[VρV†] = ∑
x

ΠxρΠx, (2.139)

where {Πx}x ⊂ P(CΓ) are the projective measurement operators.

Proof. If the measurement operators are projectors Πx = |ex〉〈ex|, then we can choose an isometry
which acts as:

V |ex〉Γ = |ex〉Γ |ex〉E . (2.140)

The action of V on ρ results in:

VρV† = ∑
i,j

cij
∣∣ei
〉〈

ej
∣∣
Γ ⊗

∣∣ei
〉〈

ej
∣∣

E , (2.141)

tracing over E:
TrE[VρV†] = ∑

i
cii |ei〉〈ei|Γ = ∑

i
ΠiρΠi. (2.142)

The isometry V can be written without loss of generality as:

V = U(I⊗ |0〉), (2.143)

where U ∈ U (CΓ ⊗CE) is a unitary operation, such that U |ek〉 |0〉 = |ek〉 |ek〉. Therefore the mea-
surement map on Γ can be described as a unitary evolution between the system and a ancilla E,
followed by a dephasing on the ancilla:

ΦΠ(ρ) = TrE[U(ρΓ ⊗ |0〉〈0|E)U
†] = ∑

x
TrE[(I⊗Πx)U(ρΓ ⊗ |0〉〈0|E)U

†(I⊗Πx)]Πx , (2.144)

where the trace is taken in the basis {|ex〉}x, then Πx = |ex〉〈ex|. In this way we can interpret the
Stinerspring representation of the measurement map as: the system is interacting with the mea-
surement apparatus, described by the ancillary system E, the interaction with the measurement
apparatus and tracing it over result in a new state which represents the post-measured state.

2.4.3 Local measurements

As the measurement can be described by a quantum channel, we can study how quantum
measurements can be applied locally.
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Definition 17. Given a N-partite composed system, represented by the state ρA1,...,AN ∈ D(CA1 ⊗ · · · ⊗
CAN ), we define the measurement applied locally on each subsystem:

ΦA1 ⊗ · · · ⊗ΦAN (ρA1,...,AN ) = ∑
~k

Tr[MA1
k1
⊗ · · · ⊗MAN

kN
ρA1,...,AN ]

∣∣∣~k〉〈~k∣∣∣ , (2.145)

where
∣∣∣~k〉 = |k1〉 ⊗ · · · ⊗ |kN〉 and the label~k in the sum represents the set of indexes k1, ..., kN . {MAx

kx
}kx

are measurement operators on each subsystem.

Suppose the measurement is applied on some subsystems, remaining other subsystems un-
measured. As the identity operation is a projector, it is possible to represent the unmeasured sub-
systems substituting the measurement operators on these systems by the identity operation, and
the trace is taken partially on the measured systems. For example, consider a bipartite system
ρAB ∈ D(CA ⊗CB), and suppose the measurement is applied on the system B, then the measure-
ment map will be written as:

IA ⊗ΦB(ρAB) = ∑
x

TrB[IA ⊗MB
x ρAB]⊗ |bx〉〈bx| . (2.146)

As the measurement is not applied on A, the post-measured state on A will remain the same. If
we write px = TrAB[IA⊗MB

x ρAB] and ρA
x = TrB[IA⊗MB

x ρAB]
TrAB[IA⊗MB

x ρAB]
, the post-measured state will be written

as:
IA ⊗ΦB(ρAB) = ∑

x
pxρA

x ⊗ |bx〉〈bx| . (2.147)

The local measurement is also a statistical inference process, even though the global post-
measured state is not a probability vector, however as the measurement is applied locally it char-
acterizes a local statistical inference process which implies that the local post-measured state is a
probability vector. As the measurement process is a statistical inference, in the local measurement
process the purely quantum features, of the composed system, are lost during the local measure-
ment process. As we shall discuss in the last chapters, the local measurement process destroys
the quantum correlations between the systems. Indeed the post-measured state is not a classical
probability distribution, although it only has classical correlations.

2.4.4 Naimark’s theorem

It is obvious that the expectation values of projective measurement operators result in elements
of a probability vector for the elements of the diagonal of the density matrix, which by definition
sum to one. However for measurements in general, where the measurement operators are POVM
elements, it is imposed that the sum of the operators is equal to identity, which implies that the
expectation value of the operators are elements of a probability vector. On the other hand, for
POVMs whose elements are rank-1 and linearly independent, it is possible to associate a projective
measurement on an enlarged space. This result is named Naimark’s theorem.

Theorem 18 (Naimark’s Theorem). Given a quantum measurement M ∈ P(CΓ, CΓ′), with POVM
elements {Mx}M

x=0, there exists a projective measurement Π ∈ P(CΓ), with elements {Πy}M
y=0 such that:

Tr(Mxρ) = Tr(ΠxVρV†), (2.148)

where V ∈ U (CΓ′ , CΓ′ is an isometry.

Proof. The expectation value of Πx in the state VρV† is:

Tr(ΠxVρV†) = Tr(V†ΠxVρ) = Tr(Mxρ). (2.149)

We must check that {Mx}x is a set of measurement operators. If {Πx}x are the measurement
operators of a projective measurement, the sum of them must be equal to the identity ∑x Πx = IΓ′ .
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This implies:
∑
x

Mx = ∑
x

V†ΠxV = V†V = IΓ. (2.150)

Which completes the proof.

The action of the isometry on the state ρ in the Naimark’s theorem is named embedding oper-
ations. The simplest way to embed the state ρ is coupling a pure ancilla. In this way the isometry
will be V = IΓ ⊗ |0〉E and the enlarged space CΓ′ = CΓ ⊗CE. For this simple case the relation be-
tween the POVM elements {Mx}x and the projective measurement on the enlarged space {Πx}x
is just:

Mx = (IΓ ⊗ 〈0|E)Πx(IΓ ⊗ |0〉E). (2.151)

In chapter 5 we shall study the consequences of the embedding in the context of local mea-
surements, and that is possible to extract more information applying a projective measurement
on the embedded state.

2.5 Semidefinite programing

Semidefinite programming (SDP) is a very useful computational and analytic tool for opti-
mization over convex sets. In this section we shall define the SDP optimization problems for Her-
mitean matrices.

Definition 19. Given two operators A ∈ HM(CA) and B ∈ HM(CB) and a map Φ ∈ T (CA, CB),
which preserver the Hermiticity, semidefinite programming is defined by the triple (Φ, A, B) with two
optimization problems:

Primal Problem Dual Problem
maximize : Tr(AX) minimize : Tr(BY)
Subject to: Φ(X) = B Subject to: Φ†(Y) ≥ A

X ∈ P(CA) Y ∈ P(CB)

(2.152)

The solution of the primal and dual problems are given by the following optimization prob-
lems:

α = sup
X∈A

Tr(AX), (2.153)

β = inf
X∈B

Tr(BY), (2.154)

where A and B are the primal and dual feasible sets respectively. The feasible sets are defined as
the set of possible solutions for the primal and dual problems:

A = {X ∈ P(CA) : Φ(X) = B}, (2.155)
B = {Y ∈ P(CB) : Φ†(Y) ≥ A}. (2.156)

The feasible sets will be empty sets if and only if the solutions are α = −∞ and β = ∞. It is
important to note that the values of α and β may not be achieved by any value of X and Y, in the
feasible domain.

The dual problem is concave even the primal problem is not convex, therefore the dual op-
timization problem is a convex optimization. A convex optimization problem is a minimization
problem where the function is convex, and the feasible set is a convex set. The solution for the
dual problem β is the best lower bound for the solution of the primal problem α, this lower bound
is obtained from the dual convex optimization problem. This relation between the primal and
dual problem is named duality.
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Theorem 20 (Weak duality). Given a semidefinite programming (Φ, A, B) and let α and β definite in
Eq.2.153, the weak duality holds:

α ≥ β. (2.157)

Proof. If the theorem is valid for any operator X ∈ P(CA) and Y ∈ P(CB), it holds for the opti-
mal values. Assuming that the solution is in the feasible sets Eq.2.155, it implies that the primal
problem holds:

Tr(AX) ≥ Tr(Φ(Y)X), (2.158)

and the dual problem:
Tr(BY) ≤ Tr(Φ†(X)Y). (2.159)

As Tr(Φ(Y)X) = Tr(Φ†(X)Y) it proves the theorem.

The difference between the optimal primal point and optimal dual point: α− β is named op-
timal dual gap. If the optimal dual gap is zero, i.e α = β, it is named strong duality. As we are
assuming in Eq.2.152 that the primal problem is also a convex optimization problem, the strong
duality usually holds. However to it really holds, we need impose other conditions. The other
conditions are named Slater’s conditions, which we shall enunciate as a theorem8.

Theorem 21 (Slater’s conditions). Given the semidefinite programming defined by the triple (Φ, A, B),
the feasible sets A and B defined in Eq.2.153 and the optimal solutions α and β defined in Eq.2.155. If the
semidefinite programming satisfies:

Primal Problem Dual Problem
maximize : Tr(AX) minimize : Tr(BY)
Subject to: Φ(X) = B Subject to: Φ†(X) > A

X ∈ P(CA) Y ∈ P(CB)

(2.160)

then α = β and there exist a X ∈ A and Y ∈ B such that Tr(AX) = α and Tr(BY) = β.

In the cases which the semidefinite programming is used in this text, the strong duality is valid.
We shall use semidefinite programming to prove a theorem in the next section about quantum
state discrimination. SDP will also be used in the context of entanglement witness.

2.6 Classical and quantum information

In this section we shall discuss the classical and quantum information theory. The focus of
this section is the definition of the measures of information for classical and quantum systems
(entropy). We also prove some propositions about the entropies which will be used throughout
the text.

2.6.1 Shannon entropy

Consider a random variable X. Each realization x of X belongs to an alphabet X 9. Let px repre-
sent the probability of x to occur. Each px is an element of a probability vector ~P, which represents
the probability density function of X. The information function i(x) quantifies the surprise that
we have after obtaining a result x, measuring X randomly. It can be defined as:

i(x) = − log2(px), (2.161)

8The proof of this theorem can be found on Section 20.2 of reference [159].
9As we are interested in quantum systems with finite dimensions, we are only considering discrete probability

distributions, where the number of possible results is finite.
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where the log function in the basis two measures the surprise in bits. Actually to learn about X,
we need to measure it many times, the average of the information in bits is an entropy function
named Shannon entropy.

Definition 22 (Shannon entropy). Let the probability vector ~P = {px}x describe the probability density
function of a random variable X. The Shannon entropy H(X) for the random variable X is defined as the
average of the information in Eq.2.161:

H(X) = −∑
x

px log2(px). (2.162)

By convention 0 log2 0 = 0.

The Shannon entropy intrinsically has an operational interpretation. Suppose two experimen-
talists Alice and Bob. Alice should send a message to Bob. She will codify an alphabet X in a
random variable X. Suppose this message is codified in bits, then the Shannon entropy measures
the amount of bits, which Alice needs to codify her message. As we are always interested in corre-
lation between systems, one interesting situation is when we have two random variables (X, Y).
Supposing, for example, that Alice sends a message codified in the random variable X to Bob, via a
noise channel, the noise will disturb the message and Bob will obtain a different probability distri-
bution Y. They would like to know how correlated are the message sent by Alice and the message
received by Bob. In other words, they must quantify how much information Bob learns about X
knowing Y. The joint probability distribution (X, Y) can be represented by a probability vector
with elements p(x, y). The joint probability represents the intersection between the probability
distributions X and Y, in the space of probabilities. The marginal distributions px = ∑y p(x, y)
and p(y) = ∑x p(x, y) represent the elements of the probability vectors, for the random variables
X and Y, respectively. It is possible to define a function which quantifies how distinct are the
random variables X and Y, It is named relative entropy or Kullback-Leibler entropy.

Definition 23 (Relative entropy). Consider two random variables X and Y given by the probability
vectors with elements {px} and {p(y)} respectively. The distance between these probability distributions
is represent by the relative entropy and written as:

D(X||Y) = ∑
x,y

px log2(
px

p(y)
). (2.163)

This function is always, positive and zero only for X = Y.

One can see that the relative entropy is not symmetric and D(X||Y) can be different from
D(Y||X). Indeed the relative entropy is not a measure of distance in the sense of 2.3.1, because
it does not measure the difference between the probability distributions, it is a distinguishability
measure.

As the joint probability is the intersection between two probabilities distributions, one can
be interested in quantifying, in bits, the amount of information that they have in common. The
quantity which measures in bits the amount of correlations between two probability distributions
is named mutual information. It is defined as the difference between the information which the
probability distributions have separately, with the information which they have in common.

Definition 24 (Mutual information). Given two random variables X and Y, the joint probability distri-
bution is represented as the probability vector with elements {p(x, y)}x,y, the amount of bits of information
which the probability distributions have in common is quantified by the function:

H(X : Y) = H(X) + H(Y)− H(X, Y), (2.164)

where H(A) = ∑a pa log2(pa) is the Shannon entropy of the random variable A.
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The mutual information also can be interpreted as how much distinct the joint probability
{p(x, y)}x,y is from the product of the distributions {px p(y)}. This interpretation can be recovered
from the following proposition.

Proposition 25. Given two random variables X and Y, the mutual information of them can be written as:

H(X : Y) = D((X, Y)||X ·Y) = ∑
x,y

p(x, y) log2[
p(x, y)
px p(y)

]., (2.165)

where {p(x, y)}x,y are the elements of the joint probability vector, {px}x and {p(y)}y are the elements of
the marginal probability distributions.

Proof. Given the definition of mutual information and Shannon entropy, we can write the mutual
information as:

H(X : Y) = −∑
x

px log2 px −∑
y

p(y) log2 p(y) + ∑
x,y

p(x, y) log2 p(x, y), (2.166)

using the marginal probabilities definition px = ∑y p(x, y) and p(y) = ∑x p(x, y):

H(X : Y) = ∑
x,y

p(x, y) {− log2 px − log2 p(y) + log2 p(x, y)} (2.167)

= ∑
x,y

p(x, y)
{

log2
p(x, y)
px p(y)

}
(2.168)

= D((X, Y)||X ·Y). (2.169)

Suppose, again, Alice is sending a message for Bob via a noisy channel, the probability of Bob
obtaining the result Y = y if Alice sent the value X = x is named conditional probability p(y|x),
and can be obtained from the joint probability and the marginal probability:

p(y|x) = p(x, y)
px

. (2.170)

If the probability distributions are uncorrelated, which means that p(x, y) = px p(y), the con-
ditional probability of Bob measuring Y is independent of Alice, therefore p(y|x) = p(y). The
probability of Bob guessing a result Y = y, considering that he had the output X = x, is the
conditional probability p(x|y) = p(x,y)

p(y) . As the joint probability is symmetric we obtain:

p(y)p(x|y) = px p(y|x). (2.171)

This expression is named Bayes rule.
The mutual information measures the amount of information we have about X given that we

know Y. Then we should define the entropy of X when Y is known. It is named conditional entropy.

Definition 26 (Conditional entropy). Given two random variables X and Y represented by the proba-
bility vector with elements {p(x, y)}x,y, the uncertainty about X when Y is known is quantified by the
function:

H(X|Y) = H(X, Y)− H(Y) = ∑
x,y

p(x, y) log2(p(x|y)). (2.172)

The mutual information can be written in function of the conditional probability:

H(X : Y) = H(X)− H(X|Y) = H(Y)− H(Y|X). (2.173)
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From this expression we can interpret the mutual information as the amount of information that
is obtained about X when Y is known, and vice versa.

2.6.2 von Neumann entropy

For information to be exchanged, it must be carried by a physical system. Therefore classical
information always can be processed to be carried by quantum systems. In other words, one can
prepare an ensemble of quantum states ξ = {px, ρx}x according to some random variable X.
Classical information can be extracted from a quantum ensemble, in the form of a variable Y
performing measurements on the quantum system.

The conditional probability distribution to obtain a value y, given the input the state ρx is:

p(y|x) = Tr(Myρx), (2.174)

where {My}y is the set of measurement operators. The joint probability distribution X and Y is
given by:

p(x, y) = pxTr(Myρx). (2.175)

The probability distribution of Y is obtained from the marginal probability distribution:

p(y) = ∑
x

p(x, y) = ∑
x

pxTr(Myρx) = Tr(My ∑
x

pxρx). (2.176)

Considering the Bayes rule:

p(x, y) = px p(y|x) = p(y)P(x|y), (2.177)

it is possible to obtain the conditional probability distribution with elements:

P(x|y) = px p(y|x)
p(y)

. (2.178)

Even in the case we are preparing always a given system in the same state, there exists an uncer-
tainty about the measurement of an observable. This uncertainty comes from the fact that, even in
the case which the system is always prepared in the same state, we are restrict to obtain expecta-
tion values, which measures the average of results. The probability distributions presented above
are evidencing this uncertainty, when the observables which are being measured compose a set of
POVM elements. These probability distributions are classical probability distributions extracted
from quantum systems, and the Shannon entropy quantifies the degree of surprise related to a
given measurement result.

It is also possible to define a quantum analogous to the Shannon entropy. But as the quan-
tum systems posses both quantum and classical uncertainties. We also expect that the entropy
is only dependent of the density matrix, as in the classical case it only depends of the probabil-
ity distribution. The quantum entropy is named von Neumann entropy and, in analogy with the
Shannon entropy, is defined as the expectation value of the operator log2(ρ), which measures the
information, as the function in Eq.2.161.

Definition 27 (von Neumann entropy). Given a density operator ρ ∈ D(CN), the quantum version of
the Shannon entropy is defined by the function:

S(ρ) = −Tr[ρ log2 ρ]. (2.179)

The von Neumann entropy can be rewritten as:

S(ρ) = −∑
k

λk log(λk), (2.180)



2.6 CLASSICAL AND QUANTUM INFORMATION 27

where {λk}k for ρ = ∑k λk |k〉〈k|. The von Neumann entropy has the same interpretation of the
Shannon entropy for the probability distribution composed by the eigenvalues of the density
matrix, in other words, it measures the uncertainty about the eigenvalues of the density matrix
in qubits. The von Neumann entropy is zero if the state is pure, and it is maximum if the state
is the maximally mixed state I/N, where it is S(I/N) = log2 N. As the von Neumann entropy
only depends on the spectral decomposition of the state, one realizes that it is invariant under the
action of isometries:

S(ρ) = S(VρV†), (2.181)

where V ∈ U (CN , CN′) is an isometry.
For composed systems the von Neumann entropy is analogous to the Shannon entropy for the

joint probability. For a bipartite state ρAB, the joint von Neumann entropy is:

S(ρAB) = −Tr(ρAB log2 ρAB). (2.182)

Until now we have seen that the properties of the von Neumann entropy are not so different from
the Shannon entropy. However as the supp(ρAB) ⊆ supp(ρA), the joint von Neumann entropy
has some interesting properties which are not found on its classical version.

Theorem 28. Consider a bipartite pure state |φ〉AB ∈ CA⊗CB, the von Neumann entropy of its marginals
are the same:

S(ρA) = S(ρB), (2.183)

where ρA = TrB(|φ〉〈φ|AB).

Proof. Any bipartite state |φ〉AB can be written as10:

|φ〉AB = ∑
i

ci |ai〉 |bi〉 , (2.184)

taking the partial trace over the subsystems:

ρA = TrB(|φ〉〈φ|AB) = ∑
i

ci |ai〉〈ai| , (2.185)

ρB = TrA(|φ〉〈φ|AB) = ∑
i

ci |bi〉〈bi| . (2.186)

As the eigenvalues of ρA and ρB are the same, the entropy also will be the same.

The same holds for multipartite systems, because it is always possible to divide the system in
two subsystems. For example, for a tripartite system described by the state |ψ〉ABC, the following
expression will hold:

S(ρAB) = S(ρC), (2.187)
S(ρA) = S(ρBC), (2.188)

S(ρAC) = S(ρB). (2.189)

Proposition 29 (Additivity). The von Neumann entropy is additive:

S(ρ⊗ σ) = S(ρ) + S(σ), (2.190)

where ρ and σ are density matrices.

Proof. Given the definition of the von Neumann entropy:

S(ρ⊗ σ) = −Tr[ρ⊗ σ log2(ρ⊗ σ)]. (2.191)

10This decomposition is named Schmidt decomposition and shall be presented in next chapter.
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If the spectral decomposition of the states are:

ρ = ∑
k

ak |ak〉〈ak| (2.192)

σ = ∑
l

bl |bl〉〈bl | , (2.193)

then

log2(ρ⊗ σ) = log2

(
∑

k
ak |ak〉〈ak| ⊗∑

l
bl |bl〉〈bl |

)
= log2(ρ⊗ I) + log2(I⊗ σ). (2.194)

Substituting in Eq.2.191:

S(ρ⊗ σ) = −Tr[ρ⊗ σ(log2(ρ⊗ I) + log2(I⊗ σ))] (2.195)
= −Tr[ρ⊗ σ log2(ρ⊗ I)]− Tr[ρ⊗ σ log2(I⊗ σ)] (2.196)
= −Tr[ρ log2(ρ)]− Tr[σ log2(σ)] (2.197)
= S(ρ) + S(σ). (2.198)

We also can define a quantum analogous to the mutual information for bipartite states.

Definition 30 (Mutual information). Given a bipartite state ρAB ∈ D(CA ⊗CB) the quantum mutual
information is defined as:

I(A : B)ρAB = S(ρA) + S(ρB)− S(ρAB). (2.199)

The quantum mutual information of ρAB quantifies the correlations between the states in
qubits.It can be interpreted as the number of qubits which one part must send to the other, to
destroy the correlation between them. As the amount of correlations in a quantum state must be
positive, we can obtain from the mutual information that:

S(ρA) + S(ρB) ≥ S(ρAB). (2.200)

From the Proposition 79 we can obtain that the mutual information will be zero when the bipartite
state is a product state ρAB = ρA ⊗ ρB. Then it guarantees that product states are not correlated.
It is the quantum analogous to the product of probability vectors: p(x, y) = px p(y). In Theorem
28 we calculated that the entropy of the reduced state of pure states are the same. Therefore the
mutual information of pure states will be equal to two times the entropy of the reduced state:

I(A : B)ψAB = 2S(ρA) = 2S(ρB), (2.201)

where ψAB = |ψ〉〈ψ|AB is pure state, and by definition: S(|ψ〉〈ψ|AB) = 0.
The quantum analogue to relative entropy defines a measure of distinguishability between

quantum states.

Definition 31 (Quantum relative entropy). Given two density matrices ρ, σ ∈ D(CN), the distin-
guishability between them can be quantified in qbits via the quantum relative entropy:

S(ρ||σ) = Tr[ρ log2 ρ− ρ log2 σ]. (2.202)

It will be zero if ρ = σ.

In the same way of the classical case, the quantum relative entropy, or von Neumann relative
entropy is not symmetric under exchange between the states. The quantum relative entropy is a
positive function and it will be real if the supp(ρ) ⊆ supp(σ), otherwise it diverges to infinity. As
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we calculated for classical probability distributions, the quantum mutual information also can be
written as the a quantum relative entropy.

Proposition 32. Consider a bipartite state ρAB, the following expression holds:

I(A : B)ρAB = S(ρAB||ρA ⊗ ρB), (2.203)

where ρA and ρB are the reduced states of ρAB.

Proof. From the definition of the relative entropy we have:

S(ρAB||ρA ⊗ ρB) = −S(ρAB)− Tr{ρAB log2[ρA ⊗ ρB]}. (2.204)

Using the same trick performed in Eq.2.194, we obtain:

S(ρAB||ρA ⊗ ρB) = −S(ρAB)− Tr{ρAB log2[ρA ⊗ ρB]} (2.205)
= −S(ρAB)− Tr{ρAB log2[ρA ⊗ IB]} − Tr{ρAB log2[IA ⊗ ρB]} (2.206)
= −S(ρAB)− Tr{ρA log2[ρA]} − Tr{ρB log2[ρB]} (2.207)
= S(ρA) + S(ρB)− S(ρAB). (2.208)

We also can use properties of the mutual information to obtain properties of the von Neumann
entropy. A useful property is the concavity of the von Neumann entropy. Before to prove it we
first should obtain the expression of the mutual information for classical-quantum states11.

Proposition 33. Consider a bipartite state in the form ρAB = ∑x px |x〉〈x| ⊗ ρx, the von Neumann
entropy will be:

S(∑
x

px |x〉〈x| ⊗ ρx) = H(X) + ∑
x

pxS(ρx). (2.209)

Proof. Given the definition of the von Neumann entropy:

S(∑
x

px |x〉〈x| ⊗ ρx) = −Tr{∑
x

px |x〉〈x| ⊗ ρx log2(∑
x

px |x〉〈x| ⊗ ρx)}. (2.210)

Writing the spectral decomposition of each ρi = ∑α λi
α

∣∣λi
α

〉〈
λi

α

∣∣, we will have:

S(∑
x

px |x〉〈x| ⊗ ρx) = −Tr

{
∑
x

px |x〉〈x| ⊗ ρx log2

(
∑
x

px |x〉〈x| ⊗∑
α

λi
α

∣∣∣λi
α

〉〈
λi

α

∣∣∣)}

= −∑
α

Tr

{
∑
x

px |x〉〈x| ⊗ ρx |λx
α〉〈λx

α| log2 pxλx
α

}
(2.211)

= −∑
α

∑
x

pxλx
α log2 pxλx

α (2.212)

= −∑
x

∑
α

λx
α ∑

x
px log2 px −∑

x
px ∑

α

λi
α log2 λi

α, (2.213)

as ∑α λi
α = 1 and S(ρi) = −∑α λi

α log2 λi
α thus:

S(∑
x

px |x〉〈x| ⊗ ρx) = H(X) + ∑
x

pxS(ρx), (2.214)

where H(X) = −∑x px log2 px.

11This class of states shall be discussed with details in next chapter, when we introduce the concept of quantum and
classical correlated states.
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Proposition 34. The von Neumann entropy of a state written in a convex combination ρ = ∑i piρi is
concave:

S(∑
i

piρi) ≥∑
i

piS(ρi). (2.215)

Proof. This proof can be obtained calculating the mutual information of a bipartite state in the
form:

ρXB = ∑
i

pi |i〉〈i| ⊗ ρi, (2.216)

and the mutual information will be:

I(X : B)ρAB = S(ρX) + S(ρB)− S(ρXB). (2.217)

As S(ρX) = H(X) is the Shannon entropy of the random variable X, and using the proposition
33:

I(X : B)ρAB = H(X) + S(ρB)− H(X)−∑
i

piS(ρi) (2.218)

= S(∑
i

piρi)−∑
i

piS(ρi). (2.219)

As the mutual information is positive:

S(∑
i

piρi) ≥∑
i

piS(ρi). (2.220)

This property means that the von Neumann entropy cannot decrease under mixing operations.
In contrast with the von Neumman entropy, the relelative entropy always decreases under the

action of any quantum channel. This property has an operational meaning: two states are always
less distinguishable under the action of noise.

Theorem 35. Given two density matrices ρ, σ ∈ D(CA) and a quantum channel Γ ∈ C(CA, CB), the
following inequality holds:

S(ρ||σ) ≥ S(Γ(ρ)||Γ(σ)) (2.221)

Proof. As the relative entropy only depends of the spectral decomposition of the states, it is also
invariant under the action of isometries operations. Considering an isometry V ∈ D(CA, CBE),
then:

S(ρ||σ) = S(VρV†||VσV†). (2.222)

The action of a quantum channel can be written, by Stinespring representation, as an isometric
operator, where the channel is obtained from the partial trace on the extended space:

S(Γ(ρ)||Γ(σ)) = S(TrE(VρV†)||TrE(VσV†)). (2.223)

As the relative entropy is monotonic decreasing under the partial trace12

S(ρAB||σAB) ≥ S(ρA||σA), (2.224)

hence:
S(VρV†||VσV†) ≥ S(TrE(VρV†)||TrE(VσV†)), (2.225)

or by Eq.2.223 and Eq.2.222:
S(ρ||σ) ≥ S(Γ(ρ)||Γ(σ)). (2.226)

12The proof of this inequality can be found on Appendix B of the Ref. [162].
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This theorem implies in another property of the quantum mutual information: it is monotonic
under local maps. As mutual information quantifies correlations, this means that the amount of
correlations reduce under local noise.

Corolary 36. Given a bipartite state ρAB ∈ D(CA ⊗ CB) and quantum channel ΦB ∈ C(CB, CB), the
mutual information satisfies:

I(A : B)ρAB ≥ I(A : B′)I⊗Φ(ρAB). (2.227)

Proof. Given the mutual information:

I(A : B)ρAB = S(ρAB||ρA ⊗ ρB) (2.228)

using the theorem above:

I(A : B)ρAB ≥ S(IA ⊗ΦB(ρAB)||ρA ⊗ΦB(ρB)) = I(A : B′)I⊗Φ(ρAB). (2.229)

As the states can be written as convex combinations of others states, it is interesting to study
the convexity of the information functions. A property that can be used later is the joint convexity
of the relative entropy.

Proposition 37. Consider two states ρ = ∑x pxρx and σ = ∑x pxσx, the relative entropy is joint convex:

S(ρ||σ) ≤∑
x

pxS(ρx||σx). (2.230)

Proof. Defining two bipartite states:

ρXB = ∑
i

pi |i〉〈i| ⊗ ρi, (2.231)

σXB = ∑
i

pi |i〉〈i| ⊗ σi, (2.232)

where ρXB, σXB ∈ D(CX ⊗ CB), the reduced density matrices of these states are ρ and σ written
above. The relative entropy of these states will be:

S(ρXB|σXB) = −S(ρXB)− Tr{∑
i

pi |i〉〈i| ⊗ ρi log2 ∑
j

pj |j〉〈j| ⊗ σj} (2.233)

= −S(ρXB)−∑
i

Tr{pi |i〉〈i| ⊗ ρi log2 pi |i〉〈i| ⊗ σi} (2.234)

= −S(ρXB)−∑
i

Tr{piρi log2 piσi} (2.235)

= −S(ρXB)−∑
i

Tr{piρi log2 σi} −∑
i

Tr{piρi log2 pi} (2.236)

= −H(X)−∑
i

piS(ρi)−∑
i

piTr{ρi log2 σi} −∑
i

Tr{pi log2 pi} (2.237)

= ∑
i

pi(−S(ρi)− Tr{ρi log2 σi}) = ∑
i

piS(ρi||σi). (2.238)

As S(ρXB|σXB) ≥ S(ρB|σB) then:

S(ρ||σ) ≤∑
x

pxS(ρx||σx). (2.239)

This property will be used later to prove that the information that can be accessed from an
ensemble, via a given POVM, is convex on the POVM. This is interesting because it proves that
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the optimal accessible information can always be composed by rank one operators.
In analogy with the classical conditional entropy, preparing a bipartite system ρAB, we can

define a measure for the information which we cannot access of A given B, .

Definition 38. Consider a bipartite system ρAB, the quantum conditional entropy is defined as the func-
tion:

S(A|B)ρAB = S(ρAB)− S(ρB). (2.240)

One interesting property of the quantum conditional entropy is that it can be non positive.
For example, if we consider a bipartite pure state |φ〉AB = (|00〉+ |11〉)/

√
2, the von Neumann

entropy of the pure state is zero: S(|φ〉〈φ|AB) = 0. Nonetheless the reduced state is the maximally
mixed state: ρB = I/2, whose von Neumann entropy is S(I/2) = 1. Therefore the conditional en-
tropy of this state is negative S(A|B)|φ〉〈φ|AB)

= −1. It is out of the scope of the thesis discuss about
the negativity of the conditional entropy, although it is very useful and relevant in the context of
quantum information. The negative value of the quantum conditional entropy is defined as the
coherent information:

I(A〉B) = −S(A|B). (2.241)

As the conditional entropy is not symmetric the coherent information is not symmetric too. The
conditional entropy has a operational meaning in the state merging protocol, where a tripartite
pure state is shared by two experimentalists, one will send part of its state through a quantum
channel to the other. The coherent information quantifies the amount of entanglement required
to the sender be able to perform the protocol. If it is positive, they cannot use entanglement to
perform the state merging, and in the end of it they gain an amount of entanglement [32, 83, 106].
The coherent information also quantifies the capacity of a quantum channel, when optimized over
all input states ρA, the output state will be ρB, this result is known as LSD theorem ( [52, 99, 145],
apud [162]).

The final measure of information presented in this section is named conditional mutual in-
formation. Classically it refers to the amount of information of two random variables X and Y
have in common, given that a third random variable Z is known. In the quantum case, the con-
ditional mutual information of a tripartite state ρABC measures the correlations between A and B
conditioned to C.

Definition 39. Consider a tripartite state ρABE ∈ D(CA⊗CB⊗CC), the conditional mutual information
is defined by the function:

I(A : B|C)ρABC = S(A|C) + S(B|C)− S(AB|C). (2.242)

We shall see in next chapter that the quantum discord can be written as a conditional mutual
information, whose one part of the state is a classical register.

The quantum conditional mutual information is related to the mutual information via the so
called chain rule:

I(AB : C) = I(B : C|A) + I(A : C), (2.243)

for a given tripartite state ρABC.

2.7 Quantum states discrimination

In this section we shall discuss the discrimination of quantum states. Consider for example a
set of orthogonal states. In this case the states can be perfectly distinguished applying a projective
measurement. However in general it is not so simple. We start the discussion with the discrimi-
nation between states which compose an ensemble, in other words, for a set of states with a well
defined probability to draw each one randomly. After we discuss the discrimination between two
states, we shall calculate that the capacity to discriminate the states is related to the trace distance
between them.
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Suppose two experimentalists Alice and Bob. Alice codify an alphabet in a finite ensemble of
quantum systems ξ = {pk, ρk}N

k=0, she will send the alphabet to Bob. Bob must use his best strat-
egy to recover the alphabet. Suppose both of them know the probabilities pk and the states ρk.
Therefore the problem which Bob has in his hands is to distinguish between the states, in other
words, when he receives the state ρx, he should be able to discriminate this state of the others.
However the only thing that Bob can do to discriminate the states is performing measurements
on them. Bob cannot tomograph ξ, because the state ρ = ∑x pxρx has an infinity number of de-
compositions. Bob also cannot to tomography the states ρk because he shall receive each one with
probability pk. Actually Bob should choose a POVMM, with elements {Ml}N

l=0, such that with
high probability he can associate an outcome Mx with an input state ρx. The probability of success
of Bob distinguish the states can be determined by the optimization over all POVMs.

Definition 40. Given a finite ensemble of quantum states ξ = {pk, ρk}, {ρk} ∈ D(CN), the probability
of success to distinguish the states in the ensemble is defined as:

Psuc(ξ) = max
M∈P∑

x
pxTr[Mxρx], (2.244)

where {Mx}x are the POVM elements of the measurementM ∈ P(CN).

As the probability of success plus the probability of error must be equal to one, we also can
write an optimization problem for the probability of error in distinguishing the states in the en-
semble as:

Perr(ξ) = 1− Psuc(ξ) = min
M∈P∑

x
∑
y 6=x

pxTr[Myρx]. (2.245)

This equation is named min-error problem, which is a well studied technique to the discrimination
of quantum states [11, 20, 34]. The min-error optimization can be calculated analiticaly for some
specific class of states, as we shall see in Chapter 5.

Consider an ensemble ξ = {pk, Mk}M
k=1, where ρk ∈ D(CX) and Mk ∈ P(CΓ) for every k =

{0, ..., M}. The optimization problem in Eq.2.244 can be written as a semidefinite program:

maximize ∑x pxTr[ρx MX]
suject to ∑x Mx = I

Mx ∈ P(CΓ)
(2.246)

According to Eq.2.152:

Primal Problem Dual Problem
maximize : Tr(AX) minimize : Tr(BY)
Subject to: Φ(X) = B Subject to: Φ†(Y) ≥ A

X ∈ P(CA) Y ∈ P(CB)

(2.247)

We can immediately identify:

Φ(X) = ∑
x

Mx, (2.248)

B = IΓ. (2.249)

To obtain ∑x pxTr[ρx MX] = Tr[XA] we can write the operators A ∈ D(CΓ ⊗CΣ) and X ∈ P(CΓ ⊗
CΣ) in the following way:

X = ∑
x

Mx ⊗ |x〉〈x| (2.250)

A = ∑
y

pyρy ⊗ |y〉〈y| , (2.251)
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therefore dim(CΣ) = M. This choice implies that the map Φ = TrΣ and Φ† = ⊗IΣ. Thus we can
rewrite the optimization of Eq.2.246 as the SDP defined by the triple (TrΣ, A, IΓ):

Primal Problem Dual Problem
maximize : Tr(AX) minimize : Tr(Y)
Subject to: TrΣ(X) = IΓ Subject to: Y⊗ IΣ ≥ A

X ∈ P(CΓ) Y ∈ P(CB)

(2.252)

Actually this SDP satisfies the Slater conditions, once that X > 0 and there exist feasible solutions
for the dual problem such that Y ⊗ IΣ > A. For example, one solution is Y = γIΓ, which is
a strictly feasible solution for any γ > ‖A‖∞. Therefore there exists a value of γ such that the
primal and dual solutions are equal. This means that just there exist only one solution for the
min-error optimization problem, and this solution is described by the SDP above.

It is not intuitive to find an analytic solution for this problem, although it is generally easy to
check if a given POVM is optimal. A closed expression for the optimal POVM can be obtained
from the SDP above. This result is known as Holevo criterion for measurement optimality, which we
enunciate in the next theorem:

Theorem 41. Given a POVM measurement M ∈ P(CΓ, CΓ′) with elements {Ml}l , it is an optimal
measurement in Eq.2.244 if and only if the following expression holds:

∑
k

pk Mkρk ≥ plρl , (2.253)

for every l ∈ {1, ..., dim(CΓ′)}.

Proof. The proof of this theorem makes use of the SDP 2.252. Therefore as the solution is strictly
feasible we shall prove the reverse and converse solution proving that the optimality of the primal
problem implies in the statement in Eq.2.253 and optimality of the dual problem also implies in
the statement. IfM is an optimal solution the following operator is the optimal primal solution
of the problem 2.252:

X = ∑
k

Mk ⊗ |k〉〈k| . (2.254)

Using the complementary slackness:

(Y⊗ IΣ)X = AX. (2.255)

Taking the trace over Σ:
Tr((Y⊗ IΣ)X) = YTrΣ(X) = Y (2.256)

and
TrΣ(AX) = ∑

x
px Mxρx. (2.257)

Therefore given an optimal solution for the primal problem this implies in:

Y = ∑
x

px Mxρx, (2.258)

which from the dual problem of the optimization problem 2.252 is Y ≥ plρl for every l.
The reverse can be proved if we assume that Y = ∑x px Mxρx is the optimal solution for the

dual problem. If the Slater’s condition are satisfied, by strong duality, the primal solution and
dual solution are the same. Therefore:

Tr(XA) = Tr(Y) = Tr(∑
x

px Mxρx), (2.259)

which implies that X = ∑k Mk ⊗ |k〉〈k| is the optimal solution for the primal problem.
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This theorem implies in another property of the POVM for the min-error problem, which often
in the literature appears as a condition for the optimality of the POVM.

Corolary 42. If the POVM elements {Ml}l satisfy the condition in Eq.2.253, for an ensemble ξ =
{pk, Mk}k, these also must satisfy:

Mk(pkρk − plρl)Ml = 0. (2.260)

Proof. If Eq.2.253 is valid the following also is:

∑
k

pk Mkρk − plρl ≥ 0. (2.261)

Multiplying Ml on the right and summing over l:

∑
l
(∑

k
pkTr[Mkρk]− plρl)Ml = ∑

l,k
(∑

k
pk Mkρk Ml − pl Mkρl Ml) (2.262)

= ∑
l,k

∑
k

pk Mkρk Ml −∑
l,k

pl Mkρl Ml (2.263)

= 0, (2.264)

hence:
Mk(pkρk − plρl)Ml = 0. (2.265)

Even though it is not possible to use the Holevo criterion for measurement optimality to obtain
an expression for the optimal POVM in general, it is possible to use it to check if the solution is
the optimal via necessary and sufficient conditions. This will be useful in Chap.5, where we shall
use a measurement named pretty good measurement, which is not optimal although it is pretty
good, as the very name says, to check the optimality of it.

2.7.1 Discriminating a pairs of states

Suppose two experimentalists Alice and Bob. Alice will send a binary alphabet {0, 1} to Bob,
this alphabet is described by the random variable Y. Alice prepares the random variable such that
she draws the binary states as:

• She draws 0 with probability λ;

• She draws 1 with probability 1− λ.

To send the binary information to Bob, Alice must codify the information in a physical system.
Alice chooses to codify the information in a quantum system described by two quantum states
ρ0, ρ1 ∈ D(CN) of a random variable X. Then if Alice draws the value Y = 0, she prepares X
in the state ρ0 and sends it to Bob; and if she draws the values Y = 1, she prepares X in the
state ρ1 and send it to Bob. Now Bob must correctly determine the bit stored in Y performing
a measurement in the quantum state received from Alice. To Bob learn about Y just measuring
X, he must be able to distinguish between the states (way suppose λ, ρ0 and ρ1 are known).
Because he must know what state was sent by Alice. Suppose Bob chooses a POVMM composed
by two elements M0, M1. Bob hopes that when he measures Mx the state sent by Alice is ρx,
therefore the probability of success which represents the hope of Bob to distinguish the state with
the measurementM, is the function:

PMsuc = p0 p(0|0) + p1 p(1|1), (2.266)

where p0 = λ and p1 = 1− λ are the probabilities that Bob receive the state ρ0 and ρ1 respectively,
and p(x|x) = Tr(Mxρx) is the probability that Bob measures Mx when the input is ρx.
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The main objective here will be prove that the probability of success that Bob correctly per-
forms the discrimination depends on the trace distance of ρ0 and ρ1. First of all we shall prove the
following lemma:

Lemma 43. Given a set of positive operators {Xi}M
i=1 ⊂ P(CN) and a vector ~v ∈ CM with components

{vi}M
i=1, the following relation is valid:

‖∑
i

viXi‖∞ ≤ ‖~v‖∞‖∑
i

Xi‖∞. (2.267)

Proof. Given an isometry A ∈ U (CN , CN ⊗CE):

A = ∑
i

√
Xi ⊗ |i〉 , (2.268)

therefore:
∑

i
viXi = ∑

i
vi A†(I⊗ |i〉〈i|)A. (2.269)

Taking the infinity norm of this operator:

‖∑
i

viXi‖∞ = ‖∑
i

vi A†(I⊗ |i〉〈i|)A‖∞ (2.270)

≤ ‖A†‖∞‖∑
i

vi |i〉〈i| ‖∞‖A‖∞ (2.271)

= ‖A†‖∞‖A‖∞‖~v‖∞. (2.272)

Using the property of the infinity norm ‖A†‖∞‖A‖∞ = ‖A† A‖∞ and

‖A† A‖∞ = ‖(∑
i

√
Xi ⊗ 〈i|)(∑

j

√
Xj ⊗ |j〉)‖∞ = ‖∑

i
Xi‖∞. (2.273)

Substituting Eq.2.273 in Eq.2.272 we prove the lemma.

The interplay between the scenario described above and the trace distance is given by the
Holevo-Helstron inequality.

Theorem 44 (Holevo-Helstron). Given two states ρ0, ρ1 ∈ D(CN) where each one can be draw with the
probability λ and 1− λ respectively, and a POVMM with elements {M0, M1} ∈ P(CN), the following
expression holds:

λTr(M0ρ0) + (1− λ)Tr(M1ρ1) ≤
1
2
− 1

2
‖ρ0 − ρ1‖1, (2.274)

where ‖ρ0 − ρ1‖1 is the trace distance between the states.

Proof. First we define two new operators:

X = λρ0 − (1− λ)ρ1, (2.275)
ρ = λρ0 + (1− λ)ρ1. (2.276)

Rewriting the left hand side of Eq.2.274 as:

λTr(M0ρ0) + (1− λ)Tr(M1ρ1) =
1
2

Tr[(M0 + M1)ρ] +
1
2

Tr[(M0 −M1)X]. (2.277)
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Using the Holder inequality in both terms on the right hand side:

1
2

Tr[(M0 + M1)ρ] =
1
2

(2.278)

1
2

Tr[(M0 −M1)X] ≤ 1
2
‖M0 −M1‖∞‖X‖1. (2.279)

(2.280)

As M0 −M1 = ~v · ~M for ~v = (1,−1) and ~M = (M0, M1), therefore using Lemma 43:

‖M0 −M1‖∞ ≤ ‖~v‖∞‖M0 + M1‖∞ = 1. (2.281)

Hence the expression 2.277 satisfies:

λTr(M0ρ0) + (1− λ)Tr(M1ρ1) ≤
1
2
+

1
2
‖X‖1 =

1
2
+

1
2
‖ρ0 − ρ1‖1. (2.282)

To complete the proof, we should prove that there is a measurement such that the equality is
attained. We can calculate it using the same arguments in the proof of Proposition 13. There exists
a projective measurement: {Π+, Π−} such that:

Π+(ρ0 − ρ1)Π+ = α+ (2.283)
Π−(ρ0 − ρ1)Π− = α−, (2.284)

where α+ and α− are matrices whose eigenvalues are the absolute values of the positive and
negative eigenvalues of X = ρ0 − ρ1 respectively. Thus Eq.2.277 resulting:

1
2
+

1
2

Tr[(Π+ −Π−)X] =
1
2
(α+ + α−). (2.285)

As the spaces which α+ and α− spam are orthogonal:

‖X‖1 = Tr(|X|) = Tr|α+ − α−| = Tr(α+) + Tr(α−), (2.286)

that implies:
1
2

Tr[(Π+ −Π−)X] =
1
2
‖X‖1, (2.287)

and proves the theorem.

The best strategy to distinguish the states is:

psuc = max
{M0, M1} ∈ P
M0 + M1 = I

[Tr(M0ρ0) + Tr(M1ρ1)] , (2.288)

As we have seen in the theorem, there exist a POVM such that the equality is attained, therefore:

psuc =
1
2
+

1
2
‖λρ0 − (1− λ)ρ1‖. (2.289)

The best case for Bob is when the states are orthogonal and the λ = 1/2. For this case the probabil-
ity of success is equal to one and Bob can always distinguish the states, and consequently decode
the binary message sent by Alice. The worst case is when the trace distance between the states is
zero, for this case the probability of success is a half, which means that the best thing to do is to
choose randomly between any of the the results, and associate it to any state.
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2.8 Accessible information

As we are discussing information, we must be able to quantify in bits the amount of infor-
mation which one can extract from an ensemble of states. It is a way to quantify the degree of
discriminality between the states.

Suppose two experimentalists Alice and Bob, where the former will send a message for the
latter. She encodes the message in a set of quantum states given by the quantum ensemble ξ =
{pi, ρi}M−1

i=0 , where pi is the probability to obtain the state ρi ∈ D(CB). The ensemble can be rep-
resented as a classical-quantum bipartite state ρXB ∈ D(CX ⊗ CB) as: ρXB = ∑x px |x〉〈x| ⊗ ρx,
where {|x〉}M−1

x=0 is an orthonormal basis in CX. Alice gets the register {x}M−1
x=0 and sends the mes-

sage ξ to Bob, he must perform a measurementM ∈ P(CB, CY), where dim CY = M, to extract the
information codified in ξ. The amount of information which can be extracted by Bob, performing
the measurement M, is given by the correlations between Alice and Bob after the action of the
measurement map.

Definition 45. Given the measurement map IX⊗MB(ρXB) = ∑x px |x〉〈x| ⊗M(ρx), whereM(ρx) =

∑M−1
y=0 Tr[ρx My] |y〉〈y|. The amount of information I(ξ : M) extracted from the ensemble ξ, performing

the measurementM, is defined as the mutual information of the state ρXY = IX ⊗MB(ρXB):

I(ξ :M) = S(ρX) + S(ρY)− S(ρXY), (2.290)

where S(ρ) is the von Neumann entropy of the state ρ.

As the post-measurement state will be a probability vector given by the joint probability
p(x, y) = px p(y|x) = pxTr[ρx My], where the conditional probability to obtain the result y given
the state x is given by p(y|x) = Tr[ρx My], therefore the information I(ξ : M) extracted from
the ensemble ξ performing the measurement M = {My}y=0,...,M−1 must be a classical Shannon
mutual information for joint probability {p(x, y)}x,y=0,...M−1:

Proposition 46. The mutual information of the post-measurement state is given by the Shannon mutual
information of the probability distribution given by the vector {p(x, y)}x,y=0,...,M−1:

I(ξ :M) = I(X : Y) = H(X : Y) = ∑
x,y

p(x, y) log[
p(y|x)

∑z p(z)p(y|z) ]. (2.291)

Proof. The mutual information of the post-measurement state ρXY = ∑xy p(x, y) |x〉〈x| ⊗ |y〉〈y| is
given by:

I(X : Y) = S(ρX) + S(ρY)− S(ρXY) = −∑
x

px log px −∑
y

p(y) log p(y) + ∑
x,y

p(x, y) log p(x, y),

(2.292)
where px = ∑y p(x, y) and p(y) = ∑x p(x, y). We can rewrite the last expression as:

I(X : Y) = ∑
x,y

p(x, y) log
p(x, y)
px p(y)

(2.293)

= ∑
x,y

p(x, y) log
px p(y|x)
px p(y)

(2.294)

= ∑
x,y

p(x, y) log
p(y|x)

∑z pz p(y|z) . (2.295)

The maximum amount of information which can be extracted from an ensemble is named
accessible information, by the last proposition, it represents the maximal correlations between the
input probability distribution and the output.
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Definition 47. The accessible information I(ξ) for the ensemble ξ is defined as the maximum amount of
information which can be extracted from the ensemble optimizing over all rank-1 POVMs:

I(ξ) = max
M=P(CB,CY)

I(ξ :M). (2.296)

The analytical optimal Eq.2.296 is not known, for some classes of states it can be calculated
analytically as we shall discuss in the next section. Nonetheless there is a necessary, but not suf-
ficient, condition for a given POVMM = {My}y=0,...,M−1 to maximize Eq.2.296 for an ensemble
ξ = {p,k , ρk}k=0,...,M−1, it must satisfies the following conditions [2]:

Mi[Fj − Fi]Mj = 0, (2.297)

for Fi = ∑k pkρk log [p(i|k)/ ∑l pl p(j|l)]. This condition is related to the inflection point δI(ξ) =
0, where δ is the variation with respect to {My}y=0,...,M−1. A sufficient condition equivalent to
δ2 I(ξ) ≤ 0 is not known. Therefore given a POVM which satisfies Eq.2.297, it is an extremal point
for the accessible information, but we cannot guarantee that it is a minimum or a maximum point.
Even numerically this is a hard computational problem, once that the mutual information is not a
linear function and the space of POVMs has the square of the dimension of the space of states.

As the space of POVMs is a convex space, thus we can write a POVM P as a convex combina-
tion of other POVMs Pk, by means of direct sum:

Q =
⊕

k

λkPk, (2.298)

for ∑k λk = 1, which is equivalent to refine the measurement. An example is the post-processing,
where each element of the POVM is decomposed in the singular value decomposition originat-
ing another POVM which can be viewed as a convex combination of other POVMs restricted to
projective measurements [31].

Proposition 48. The information extracted from a finite ensemble of quantum states ξ = {pk, ρk} per-
forming a measurementM is a convex function in the POVM.

Proof. This proof comes directly from the convexity of the relative entropy in proposition 37, and
from the definition of the extracted information I(ξ :M).

2.8.1 Holevo’s bound

The accessible information quantifies the information which can be extracted from a quantum
ensemble. But how much information can be codified in a quantum system? The function which
quantifies the maximum amount of information that can be codified in quantum ensemble is
measured by the Holevo information.

Definition 49. Given a finite ensemble of quantum states ξ = {px, ρx}x, the Holevo information is defined
as.

χ(ξ) = S(∑
x

pxρx)−∑
x

pxS(ρx), (2.299)

where ρx ∈ D(CN) and ∑x px = 1.

As the Holevo’s information quantify the maximum amount of bits which can be codified in
a quantum ensemble, we hope that the maximum amount of bits which can extracted from the
ensemble is at least equal to this quantity. Which feeds our hopefulness is named Holevo’s bound
and is stated by the following theorem.

Theorem 50 (Holevo’s bound). Given a finite quantum ensemble ξ = {px, ρx}x, the accessible informa-
tion is upper bounded by the Holevo’s information:

I(ξ) ≤ χ(ξ), (2.300)
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where the quantity χ(ξ) = S(∑x pxρx)−∑x pxS(ρx) is the Holevo information.

Proof. Given the state which represents the ensemble ξ:

ρXB = ∑ px |x〉〈x| ⊗ ρB
x , (2.301)

The mutual information for this state is:

I(X : B)ρXB = S(ρX) + S(ρB)− S(ρXB), (2.302)

where S(ρX) = H(X) and S(ρXB) = H(X) + ∑x pxS(ρB
x ), then:

I(X : B)ρXB = S(ρB)−∑
x

pxS(ρB
x ) = χ(ξ). (2.303)

Now we must prove that this quantity is greater than the accessible information. Indeed it comes
from the monotonic property of the mutual information. For a given measurementM with mea-
surements operators {My}y, the after measured state is

ρXY = IX ⊗M(ρXB) = ∑
x

pxTr(ρx My) |x〉〈x| ⊗ |y〉〈y| . (2.304)

The after measured state suffers the action of a quantum channel, named as measurement channel,
therefore as the mutual information is monotonic under local maps:

I(X : Y)IX⊗M(ρXB) ≤ I(X : B)ρXB = χ(ξ). (2.305)

As it is valid for any measurement it will remains valid for the measurement which optimizes the
accessible information.

The Holevo’s quantity measures the amount of classical information which one can codify in
a quantum system, described by a finite ensemble of quantum states. Therefore there is a parallel
between the amount of classical information which can be codified in a quantum system, de-
scribed by the Holevo’s quantity, and the amount of classical information which can be extracted
from a quantum system, described by the accessible information. When we write an ensemble
ξ = {px, ρx}x as a bipartite stat ρXB = ∑ px |x〉〈x| ⊗ ρB

x we are describing the ensemble as a quan-
tum system correlated with a classical register X.

As the mutual information quantifies correlations, the Holevo’s quantity quantifies the corre-
lations between the classical register X and the quantum system, described by the ensemble ξ.
On other hand as the accessible information is a classical mutual information it is quantifying the
amount of classical correlation between the classical register X and the quantum system B, which
means that the measurement process destroyed the quantum correlations between the classical
and quantum system. We shall discuss later in the text that the difference between the Holevo’s
information and the accessible information quantifies the amount of quantum correlations de-
stroyed by the measurement process.



Chapter 3

Quantum correlations

3.1 Quantum Entanglement

The problem of quantum entanglement is related to determine if a quantum state of a com-
posed system is separable or not. In this way, to determine if a state is separable it necessary find
if it is inside or outside the set of the separable states. Therefore, the quantum entanglement is not
a property of a density matrix by itself, it is a property of the composed space of density matrices.
We can understand it if we take an example a positive, semi-definite and trace 1 4 × 4 matrix.
What can we say about entanglement of it? Nothing, we must first define the partitioning of it,
what means that: we must define the space of density matrix where it lives. The, if I said that the
space of density matrix is partitioned as 2⊗ 2 system, hence I should to determine if the state is
a separable or not. The degree of inseparability is named amount of entanglement, in this section
we present some measure of entanglement: negativity, generalized robustness of entanglement,
random robustness of entanglement, entanglement formation, entanglement cost, distillable en-
tanglement. The first three of them we show that come from a geometrical approach related to the
entanglement witness.

3.1.1 Separable states

Pure states

We consider two systems A and B, often we named the experimentalists responsible by the
systems as Alice and Bob respectively. The state of the systems A and B is described by a density
matrix on a Hilbert space. In this way we can consider two finite Hilbert spaces CA and CB, and a
basis in each one:

{|ai〉}|A|−1
i=0 ∈ CA; (3.1)

{|bk〉}
|B|−1
k=0 ∈ CB, (3.2)

where |A| = dim(CA) and |B| = dim(CB). The global, system composed by A and B, can be
obtained via the tensor product between the basis in the Hilbert space of each system:

{|ai, bk〉}
|AB|−1
i,j=0 = {|ai〉 ⊗ |bk〉}

|A|−1,|B|−1
i,k=0 , (3.3)

hence the dimension of the composed system is the product of the dimension: |AB| = dim(CAB) =
dim(CA) · dim(CB). The Hilbert space of the composed system is denoted as CAB = CA ⊗CB. A
pure state which describes the state of the composed system can be decomposed in the basis in
Eq.3.3:

|ψ〉AB = ∑
i,k

ci,k |ai〉 ⊗ |bk〉 . (3.4)

41
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From this expression we can realize that: in general a pure state which describes a composed
system cannot be written as the product of the state of each system. In other words, suppose the
system A is describe by the state |α〉A = ∑i ai |ai〉 ∈ CA and |β〉B = ∑k bk |bk〉 ∈ CB. The composed
system is described by the state:

|α〉 ⊗ |β〉 = ∑
i,k

aibk |ai〉 ⊗ |bk〉 . (3.5)

It is the particular case where the coefficients in Eq.3.4 are ci,k = ai · bk. If a composed system can
be written as Eq.3.5 it is called a product state, and there is no correlations between A and B. It can
be checked easily via the mutual information of the state, which is clearly zero once that the von
Neumman entropy of the pure state is zero. In the pure states subspace, the set of product states
is a tiny set ( [131, 132], apud [170]).

If a state of a composed system cannot be written as Eq.3.5 it is named a entangled state. For
bipartite systems, the entanglement of pure states can be characterized and quantified via the
Schmidt decomposition.

Theorem 51 (Schmidt decomposition). For any bipartite pure state |ψ〉AB ∈ CA ⊗ CB, there exists a
basis {|ai, bi〉}r−1

i=0 ∈ CA ⊗CB such that the state can be written as:

|ψ〉AB =
r−1

∑
i=0

ci |ai, bi〉 , (3.6)

where the coefficients {ci}i are real numbers named Schmidt coefficients and ∑i c2
i = 1, the number r ≤

min(|A|, |B|) is named Schmidt rank.

Proof. Decomposing the state |ψ〉AB in the canonical basis:

|ψ〉AB = ∑
k,l

ak,l |k, l〉 , (3.7)

then, we can approach the coefficients {ak,l}k,l as the coefficients of |A| × |B|matrix a with singular
value decomposition a = udv, therefore the coefficients can be written as:

ak,l = ∑
i

uk,idi,ivi,l . (3.8)

Substituting this expression in Eq.3.7 we have:

|ψ〉AB = ∑
i

∑
k,l

uk,idi,ivi,l |k, l〉 , (3.9)

relabeling |ai〉 = ∑k uk,i |k〉, |bi〉 = ∑l vi,l |l〉 and ci = di,i, we have the Schmidt decomposition:

|ψ〉AB =
r−1

∑
i=0

ci |ai, bi〉 . (3.10)

From the singular value decomposition is easy to check that the states {|ai, bi〉}i form an orthonor-
mal basis, and ∑i c2

i = 1 because ∑i,j a2
i,j = 1.

We can realize from the Schmidt decomposition that the entropy reduced matrices of a bipar-
tite pure states are the same for the subsystems A and B:

S(TrA(ψAB)) = S(TrB(ψAB)) = −∑
i

c2
i log2(c

2
i ), (3.11)

where ψAB = |ψ〉〈ψ|AB = ∑i,j cicj
∣∣ai, bi

〉〈
aj, bj

∣∣.
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Given the Schmidt decomposition of a bipartite pure state |ψ〉AB, the entanglement of the
state can be characterized via the Schmidt rank. It is possible to understand this just looking
over the product state in Eq.3.5. For this kind of states we just have only one Schmidt coefficient
c0 = 1, the other are equal to zero. Therefore the Schmidt rank is equal to 1 for product states.
We also can define a measure of entanglement for bipartite pure state calculated via the Schmidt
decomposition, it is named entanglement entropy.

Definition 52 (Entanglement entropy). Given a bipartite state |ψ〉AB the amount of entanglement in
the state is quantified by the von Neumann entropy of the reduced state:

E(|ψ〉) = S(ρA) = −∑
i

c2
i log2(c

2
i ). (3.12)

The entanglement entropy is zero for product states, and its maximal value is log2 r. The states
which the entanglement entropy is maximum are named the maximally entangled states, and their
Schmidt decompositions are in the form:

|φ〉AB =
1√
r

r−1

∑
i=0
|ai, bi〉 , (3.13)

where r is the Schmidt rank, for the maximally entangled states it is r = min(|A|, |B|). For bipartite
systems where |A| = |B| = d the Schmidt rank is just equal to d, and the maximally entangled
state is written as:

|φ〉AB =
1√
d

d−1

∑
i=0
|ai, bi〉 . (3.14)

Maximally entangled estates are often called e-bits. For two qubits systems the maximally entan-
gled states are named Bell states, and they form a orthonormal basis in the 4-dimensional Hilbert
space.

Mixed states

The concept of product state can be generalized for mixed state. Considering a composed
system represented by the state ρAB ∈ D(CA ⊗CB), it is called a product state if can be written as:

ρAB = ρA ⊗ ρB, (3.15)

where ρA ∈ D(CA) and ρB ∈ D(CB) are the states of the system A and B respectively. The product
state for mixed states is also no correlated, we can check it calculating the mutual information of
the state ρAB, that as we showed in the last chapter is zero for product states.

As the space of quantum states is a convex set, the convex combination of states will also be a
quantum state. Then we can generalize the notion of product states taking the convex combination
of them. The resulting state is named a separable state [160].

Definition 53 (Separable states). Considering a composed system described by the state
σ ∈ D(CA ⊗CB), it is named separable state if and only if can be written as:

σ = ∑
i,j

pi,jσ
A
i ⊗ σB

j , (3.16)

where σA
i ∈ D(CA) and σB

j ∈ D(CB).

The quantum channels which let the set of separable state invariant is named local operations
and classical communication (LOCC). The set of separable states form a subspace in the space of
density matrices, will be denote it as Sep(CAB). The space of separable states has nonzero volume,
then we can think of it as a (|A| · |B|)-dimensional ball around the maximal mixture state [170].
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The separable state can be easily extended to multipartite systems. Considering a n-partite sys-
tem it is named m-separable if it can be decomposed in a convex combination of product states
composed by m parties. Where naturally m ≤ n.

As for bipartite mixed states as for any multipartite state the Schmidt decomposition is not
valid, then the entanglement entropy cannot be used. therefore, how can we characterize and
quantify the entanglement for any mixed state? We shall present three methods in next sections.

3.1.2 Partial transpose

In last chapter when we discuss the completely positive condition for a given map be a quan-
tum channel we use as example the transposition operation, which is positive but not completely
positive. This property of the transposition map can be used to characterize the separability of a
quantum state.

Theorem 54 (Peres Criterion). If a bipartite state σAB ∈ D(CA ⊗CB) is separable then:

I⊗ T(σAB) ≥ 0 and T ⊗ I(σAB) ≥ 0, (3.17)

where T is the transposition map.

Proof. Considering a bipartite separable state σAB:

σAB = ∑
k

pkρA
k ⊗ ρB

k . (3.18)

As the transposition operation is a positive map T(ρA
k ) ≥ 0 and T(ρB

k ) ≥ 0, then the theorem
holds.

This criterion was introduced by A. Peres [126], and gives a necessary condition for a bipartite
state be separable, nonetheless it is not sufficient to guaranty that a given state is separable.

From the Peres criterion it is possible to write a necessary and sufficient condition for 2⊗ 2
and 2⊗ 3 systems [81].

Theorem 55 (Horodecki criterion). Considering a Hilbert space C2 ⊗C2, or C2 ⊗C3, a given density
matrix ρAB, on any of this spaces, is separable if and only if I⊗ T(ρAB) ≥ 0. Otherwise it is entangles.

Proof. A pedagogical proof of this theorem can be found in the M. Lewenstein lectures [95].

These two criteria are usually attached in only one condition for separability, that is name
Peres-Horodecki criterion. The Peres-Horodecki criterion makes the calculation of entanglement for
two qubits systems be analytic. In other words, it is possible to define analytical measure for
the entanglement for two qubits, all of them based on the Peres-Horodecki criterion, for exam-
ple Concurrence [77], entanglement of formation [163] and negativity [157]. The entanglement of
formation is a entropic measure of entanglement which the analogous to the entanglement en-
tropy for mixed states, it is just analytical for two qubits, where it can be written in function of
the concurrence. We shall present it in Sec.3.1.4. The concurrence and negativity are measures of
entanglement which hold just for systems with dimension 2⊗ 2 and 2⊗ 3. In this thesis we are
particularly interested in the negativity, because it shall be use to compare quantum entanglement
and the geometric measure of quantum discord in the next chapter. The negativity is defined as
the sum of the negative eigenvalues of the partial transposed matrix [157].

Definition 56. Considering a bipartite state ρAB ∈ D(CA ⊗CB), for |A| · |B| = 4 or 6, one defines the
Negativity as:

N (ρAB) =
1
2
(‖I⊗ T(ρAB)‖1 − 1) , (3.19)

where T is the transposition operation.
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Why is the Peres criterion necessary but no sufficient to characterize a separable state? Because
for systems with dimension different of 2⊗ 2 and 2⊗ 3 there exist entangled states with positive
partial transpose (PPT - entangled states). This states are ofter called bound entangled states, be-
cause they are not distillable1. A recipe to construct a class of PPT-entangled states is via a special
orthogonal and incomplete basis named unextendible product basis (UPB) [15, 55].

An interesting measure of entanglement is named Robustness of entanglement, it quantifies the
amount of mixture with a separable state needed to destroy the entanglement of the system [158].
Actually it quantifies the entanglement in a geometrical sense, once that the space of separable
states is a convex set. Nonetheless we are not interested in the robustness of entanglement, we are
indeed in it general form: the generalized robustness of entanglement. This quantifies the amount of
mixture with any state needed to destroy the entanglement [149]. Formally it is defined as:

Definition 57 (Generalized robustness of entanglement). Consider a n-partite state ρ ∈ D(CA1 ⊗
· · · ⊗ CAn), and another state ρs, we call general robustness of entanglement of ρ the minimal value of
s ≥ 0, such that the state:

ρ(s) =
1

1 + s
(ρ + sρs) (3.20)

is separable.

The parameter s shall be zero if the state ρ is separable, and it is always finite, once that the
set of separable state is a ball around the identity, as we are interested in the minimal value,
the minimal s will be found in border of the separable states [158]. In this way the state ρs is
the state whose the entanglement of ρ is most sensible. We also can present a particular case of
generalized robustness: the renadom robustness. It is defined as the minimal mixture of the state
with the maximally mixture state.

Definition 58. We named random robustness of ρ the minimal value of s ≥ 0 such that the state:

ρ(s) =
1

1 + s
(ρ + s

I

N
), (3.21)

where N = dim(CA1 ⊗ · · · ⊗CAn).

The operational definition of the random robustness is related to the amount of white noise
needed to wash out all the entanglement in the system [158].

These two measures of entanglement shall be revisited in the next chapters. We shall calculated
a linear bound between random robustness and the geometrical measure of quantum discord via
trace norm in Chap.4. We shall obtain, via entanglement witness, the generalized robustness of
entanglement for fermionic systems of indistinguishable particles in Chap.6.

3.1.3 Entanglement witness

An approach which holds for any composed system, in any dimension and also for multi-
partite system is via the entanglement witness. As the name indicates entanglement witness are
observables which characterize the entanglement of the system ( [153], apud [84]). Follow the
definition of the entanglement witness.

Definition 59. A Hermitian operator W ∈ L(CN) is an entanglement witness for the entangled state ρ
if:

Tr(Wρ) < 0 (3.22)
Tr(Wσ) ≥ 0 ∀ σ ∈ Sep (3.23)

As the set of separable states is convex, it is possible to obtain a limited version of the separa-
tion theorem [95].

1We shall discuss the distillation process in the Sec.3.1.4.
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Theorem 60. Let S be a convex set in a finite dimensional Hilbert space. Considering ρ as a point in this
space, such that ρ 6∈ S. Then there exists a hyperplane that separates ρ from S.

Given this theorem and the entanglement witness definition Horodecki et al. stated that: for
any bipartite state there exists an entanglement witness W [81]. Therefore for any composed sys-
tem there exist an observable which characterize the entanglement of the state. One important
point about the entanglement witness regards about their optimality. For a given entangled state
rho there exist a infinity of hyperplanes which witness its entanglement. Nonetheless there exist a
class of optimal entanglement witness. A given entanglement witness is named optimal if it is tan-
gent to the set of separable states [94]. As the entanglement witness are Hermitian matrices, they
can be approach as observables, therefore can be measured directly in the lab, without perform
the tomography of the state.

The optimal entanglement witness gives a notion of a distance between the state and the bor-
der of the separable set. Then this notion can be used to quantify the entanglement of the system.
It is possible to define a class of measures of entanglement named witnessed entanglement [23, 25].

Definition 61 (Witnessed entanglement). Considering a n-partite system represented by the state ρ ∈
D(CA1 ⊗ · · · ⊗CAn). The witnessed entanglement is defined as:

Ew(ρ) = max {0,− min
W∈W

[Tr(Wρ)]}, (3.24)

whereW is the set of entanglement witness of ρ.

Being the optimal entanglement witness equal Wρ, then as it is tangent to the separable space,
it has the most negative expectation value in ρ, therefore:

Tr(Wρρ) = min
W∈W

[Tr(Wρ)]. (3.25)

As the Tr(Wρρ) is negative for entangled states, by definition, the witnessed entanglement is pos-
itive for entangled states and is zero for separable states. The witnessed entanglement satisfies all
the property of a good measure of entanglement ( [30], apud [23]):

• It is invariant under local unitary operations:

Ew(ρ) = Ew(U ⊗ · · · ⊗UρU† ⊗ · · · ⊗U†), (3.26)

where U ⊗ · · · ⊗U ∈ C(CA1 ⊗ · · · ⊗CAn) is a local unitary operation.

• It is monotone under LOCC operations:

Ew(ρ) = Ew(Γ(ρ)), (3.27)

where Γ ∈ C(CA1 ⊗ · · · ⊗CAn) is a LOCC channel.

• It is continuous:
For every ε ≥ 0, and density matrices ρ and σ, there exists a real number C ≥ 0 such that
holds:

‖ρ− σ‖p ≤ ε ⇒ |Ew(ρ)− Ew(σ)| ≤ C(p), (3.28)

where ‖ · ‖p is the Schatten-p norm, note that C(p) depends on the choice of the norm.

• It is convex:

Ew(λρ + (1− λ)σ) ≤ λEw(ρ) + (1− λ)Ew(σ), (3.29)

where λ ≥ 0.
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The proof of these properties can be found in the reference [23].
Besides the witnessed entanglement is by itself a measure of entanglement, from it we can

recover some other measures of entanglement via semi-definite programming [25]. The optimiza-
tion problem of find the optimal entanglement witness is a SDP [24]. This semi definite program-
ming is slight different fro that presented in Chap.2, here we change the condition of W be positive
to be Hermitian, and the condition of Φ(W) be Hermitian to be positive. Actually there are an in-
finity way to write a SDP, and for each one there exist a different class of feasible points [22].

Theorem 62. Given a bipartite state ρ, the set of entanglement witness W ∈ Herm, and a linear map
Φ :W → Pos. We can write the primal problem of finding the optimal entanglement witness as:

maximize −Tr(Wρ) (3.30)
subject to Φ(W) ≤ B (3.31)

Tr(σW) ∈ Pos ∀ σ ∈ Sep (3.32)

The constraint Tr(σW) ∈ Pos characterize W as a entanglement witness, the condition Φ(W) ≤
B restricts the set of entanglement witness for an specific set where this holds for a given B ∈
Pos and a given map Φ. For each different set of entanglement witness, which satisfies a prior
condition, we can obtain a different measure of entanglement as the dual problem [25]. Follow
three measure of entanglement, which can be written as entanglement witness, that shall be used
in the next chapters:
Considering ρ ∈ D(CA1 ⊗ · · · ⊗CAn)

• Negativity:

N (ρ) = max{0, min
0≤W≤I

Tr(I⊗ T(W)ρ)}, (3.33)

where T is the transposition operation.

• Generalized Robustness:

Rg(ρ) =
1
N

max{0, min
W≤I

Tr(Wρ)}, (3.34)

where N = dim(CA1 ⊗ · · · ⊗CAn).

• Random Robustness:

Rr(ρ) = max{0, min
Tr(W)=1

Tr(Wρ)}. (3.35)

These interplay between the robustness(random and generalized) and the witnessed entan-
glement gave a good operational point of view for these measure of entanglement, once that
now the entanglement can be calculated numerically, with a very good approximation, the entan-
glement of mixture states in any dimension, even multipartite [26, 27]. The problem to calculate
entanglement numerically: : is that for large-dimensional Hilbert spaces it is intractable, because
the entanglement, as every interesting problem in physics, is a NP-hard problem ( [73], apud [26]).
Although an algorithm can be obtained in a quasi-polinomial time for bipartite [28].

3.1.4 Entanglement cost and distillable entanglement

Another measure of entanglement for mixed state can be obtained from the quantification of
entanglement for pure states. We can construct a measure of entanglement in this sense calculating
the average of entanglement taken on pure states needed to form the state. The most important
measure which follow this idea is named entanglement of formation. The entanglement of formation
is interpreted as the minimal pure-states entanglement required to build the mixed state [19].
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Definition 63. Considering a quantum state ρ ∈ D(CA ⊗CB), the entanglement of formation is defined
as:

E f (ρ) = minξρ ∑
i

piE(|psii〉), (3.36)

where the optimization is performed over all ensembles ξρ = {pi, |ψi〉〈ψi|}M
i=1, such that ρ = ∑i pi |ψi〉〈ψi|,

∑i pi = 1 and pi ≥ 0.

As we presented below the entanglement entropy E(|psii〉) is defined as:

E(|psii〉) = S(TrB[|ψi〉〈ψi|]), (3.37)

where S(TrB[|ψi〉〈ψi|]) is the von Neumann entropy of the reduced state of ketψi. There might
exist many possible ensemble such that ρ can be constructed, in the entanglement of formation
optimization process we are always looking for the ensemble with the smallest cardinality M.
From the definition we can realize that for pure states the entanglement of formation is equal
to the entanglement entropy. The entanglement of formation satisfies the good properties for a
measure of entanglement, as the witnessed entanglement. However the most important problem
of it is that: it is not easy to evaluate. Indeed the problem is related to find the minimal convex hull
to form ρ in function of a nonlinear function. Although it can be calculated analytically for two
qubits systems [163]. In Chap.4 we present the interplay between the entanglement of formation
with the amount of classical correlations created in the purification process, in Chap.5 we shall use
this approach to evaluate the entanglement of formation via the quantum discord the nonlinear
optimization of quantum discord.

Quantum entanglement also enables an operational interpretation. This interpretation has two
different ways: the resource required to construct a given quantum state, and the resource ex-
tracted from a quantum system. The resource here refers to the amount of copies of maximally
mixture states. Then we can define the measure of this resources as a measure of entanglement,
which is implicitly calculated in the limit of many copies.

The number o copies m of maximally entangled states required to construct a n copies of given
state ρ, via all possible LOCC protocols, is named entanglement cost [19]. The entanglement cost
can be written as the regularized version of the entanglement of formation [75].

Definition 64 (Entanglement cost). The number of copies of the maximally entangled states required to
build the state ρ is given by:

EC(ρ) = lim
n→∞

E f (ρ
⊗n)

n
, (3.38)

where E f (ρ
⊗n) is the entanglement of formation of the n copies of ρ.

The number of copies m of the maximally entangled state which can be extract from n copies
of a given state ρ, via all possible LOCC protocols, is named distillable entanglement [19].

Definition 65 (Distillable entanglement). The distillable entanglement of a given state ρ is defines as:

ED(ρ) = lim
n←∞

m
n

, (3.39)

where m is the number of maximally entangled states which can be extracted from ρ in the limit of many
copies.

The distillable entanglement is a very important operational measure of entanglement, be-
cause it quantifies how useful is a given quantum state, for the quantum information purpose.

The operational meaning of the entanglement cost and the distillable entanglement can be
understood closer if we consider the capacity to convert many copies of a quantum state, via
LOCC protocols, in maximally quantum states, and then apply the reversal process and convert
the amount of copies of maximally entangled states, obtained from the distillation process, in the
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original quantum state. Actually it is natural to think that the amount of copies of the original state
extracted in the end of the reversal process is equal to the number of copies gave as the input in the
distillation process, nonetheless it is not true. Therefore, the entanglement cost and the distillable
entanglement of a given state are not the same. Indeed the cost of entanglement is greater than the
distillable entanglement. The point is: it is most expensive create a state with copies of maximally
mixture state than we can extract from it. One example are the bound entangled state, even it is
entangled it is not possible to extract any maximally mixture state2, although it require an amount
of maximally entangled states to build it.

3.2 Quantumness of Correlations

3.2.1 Classical and quantum correlated states

We shall give the an example to clarify in what sense we are characterizing classical and
quantum systems. Assume a flip coin game with two distinct events described by the states
{|0〉〈0| , |1〉〈1|}, each with the same probability 1/2. As it is well known, it is possible to dis-
tinguish the two faces of the coin, with probability of error zero. We discussed in Chap.2 that the
probability of error to distinguish two events, or two probability distributions, depends on the
trace distance of the events:

PE(|0〉〈0| , |1〉〈1|) =
1
2
− 1

4
|| |0〉〈0| − |1〉〈1| ||1, (3.40)

as the states are orthogonal || |0〉〈0| − |1〉〈1| ||1 = 2, therefore the probability of error
PE(|0〉〈0| , |1〉〈1|) = 0, as we expected. Now suppose we can flip a quantum coin described by the
events {|φ〉〈φ| , |ψ〉〈ψ|}, with equal probability 1/2. |φ〉 , |ψ〉 ∈ C2 can be arbitrary qubit states.
We can consider as an example the states |φ〉 = (|0〉 + |1〉)/

√
2 and |ψ〉 = |1〉, for this case the

overlap is 〈φ|ψ〉 = 1/
√

2. The trace distance of these states is just || |φ〉〈φ| − |ψ〉〈ψ| ||1 =
√

2, then
the probability of error to distinguish the events is not zero. This is what we mean with classical
or quantum events. Classical events always can be distinguished, on the other hand the superpo-
sition of states in quantum mechanics creates events which cannot be perfectly distinguished. The
purpose here is to characterize quantum and classical system in the context of correlations. For
this we use another measure of distinguishability of events, named Jensen-Shannon divergence.
For the case where there are just two probability distributions it is defined as the symmetric and
smoothed version of the Shannon relative entropy, or in the quantum case the von Neumman
relative entropy [98, 108].

Definition 66. The Jensen-Shannon divergence for two arbitrary events |ψ〉 , |φ〉 is defined as:

J(|ψ〉 , |φ〉) = 1
2

S
(
|φ〉〈φ|+ |ψ〉〈ψ|

2
‖ |φ〉〈φ|

)
+

1
2

S
(
|φ〉〈φ|+ |ψ〉〈ψ|

2
‖ |ψ〉〈ψ|

)
. (3.41)

The Jensen-Shannon divergence is related to the Bures distance and it induces a true metric
for pure quantum states related to the Fisher-Rao metric [91].

For the classical coin flip the Jensen-Shannon divergence will be just J(|0〉 , |1〉) = 1. On the
other hand, for the quantum coin flip with states |φ〉 = (|0〉+ |1〉)/

√
2 and |ψ〉 = |1〉, it will be

J(|φ〉 , |ψ〉) =
√

2. If the Jensen-Shannon divergence was a true measure of distance, we expect
that this distance would be larger for events which could be always distinguished. On the other
hand, the Jensen-Shannon divergence for two events is related to the mutual information between
a random variable and another register with distinguishable events. For our two arbitrary events
|ψ〉 , |φ〉 [108]:

J(|ψ〉 , |φ〉) = I(R : E), (3.42)

2The name come from this property.
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where R represents the register and E represents the events. For two arbitrary events |ψ〉 , |φ〉 ∈ CE
we can create another state ρRE ∈ D(CR ⊗ CE), which represents the possible events and the
register, it is written as:

ρRE =
1
2
|0〉〈0|R ⊗ |φ〉〈φ|E +

1
2
|1〉〈1|R ⊗ |ψ〉〈ψ|E . (3.43)

Then, coming back to the coin flip example, for the classical coin flip case it is:
ρc

RE = 1
2 |0〉〈0| ⊗ |0〉〈0|+

1
2 |1〉〈1| ⊗ |1〉〈1|, with mutual information I(R : E)ρc

RE
= 1, and for the

quantum coin flip, described above, the state will be ρ
q
RE = 1

2 |0〉〈0| ⊗ |φ〉〈φ|+
1
2 |1〉〈1| ⊗ |ψ〉〈ψ|,

where for |φ〉 = (|0〉+ |1〉)/
√

2 and |ψ〉 = |1〉, and the mutual information is I(R : E)ρ
q
RE

=
√

2.
As the mutual information is a measure of correlations between two probability distributions, we
realize that there are more correlations between the register and the events which are not distinct
than the events which are completely distinguishable. However we know that two binary classical
distributions cannot share more then one bit, in other words, their mutual information cannot be
greater than one. As the correlations between the quantum coin events and the register are bigger
than one, it means that there are correlations beyond the classical ones, therefore they are quantum
correlated, even though they are not entangled by definition.

Indeed there exists another kind of quantum correlation for which the quantum entanglement
is a subset. This is the kind of quantum correlations which we are interested. This was named as
quantumness of correlations [115,117], which characterizes the degree of quantumness of the system
from the correlation point of view.

As one can perceive in the last example, we can change from ρc
ER to ρ

q
ER only applying local

operations, and it is not acceptable that correlations can be created without interaction, therefore
quantumness of correlations expresses a quantum character of classical correlations [115].

The classical correlated state ρc
ER, described above, is just an example which is named classical-

classical, because it is strictly classically correlated. The quantum correlated state ρ
q
ER is named

classical-quantum. In general we can define classical correlated states as the states which remain
undisturbed by a local measurements, in other words, there exists a local projective measurement
which the state remains the same [76, 115, 117].

Definition 67. Given a bipartite state ρAB ∈ D(CA ⊗ CB), it is strictly classical correlated if there
exists a local projective measurement Π ∈ P(CA ⊗CB) with elements {ΠA

l ⊗ΠB
k }k,l such that the post-

measurement state is equal to the input state:

Π(ρAB) = ∑
k,l

ΠA
l ⊗ΠB

k ρABΠA
l ⊗ΠB

k = ρAB, (3.44)

therefore ρAB = ∑k,l pk,lΠA
l ⊗ΠB

k .

The states which satisfy definition 67 are called classical-classical states, being ρc
ER an example.

The states such that there exists a local measurement which acts just on one subsystem and the
state remains unchanged is also classical correlated in relation with that part and these states
are named classical-quantum or quantum-classical, depending on which subsystem it is invariant
under the projective measurement. In other words, the state ρAB is classical-quantum if there exists
a projective measurement ΠA ∈ P(CA, CA) such that:

ΠA ⊗ IB(ρAB) = ρAB = ∑
k

pk |ak〉〈ak| ⊗ ρk. (3.45)

We name the set of classical-classical states as Ωcc and the space of classical-quantum states
as Ωcq

3. These sets of classically correlated states live inside the subspace of the separable states
and Ωcc ⊆ Ωcq. As the set of classical correlated states is composed by block diagonal matrices

3Often we shall say just Ω or the set of classical correlated states because it is general and encompasses all the sub
definitions for these states.



3.2 QUANTUMNESS OF CORRELATIONS 51

it is not convex, because we cannot guarantee that the convex combination of block diagonal
matrices remains block diagonal. As the identity matrix is block diagonal, or just diagonal, this
set is connected by the maximal mixture state. Finally, this set is a thin set or in a terminology
used in the area of quantum information it has null measure [61].

3.2.2 Quantum discord

The amount of classical correlations in a quantum state is measured by the capacity to ex-
tract information locally. As the measurement process is a classical statistical inference, it can be
measured by the amount of correlations that remains in the system after a local measurement.

Definition 68. For a bipartite density matrix ρAB ∈ D(CA ⊗ CB), the classical correlations between A
and B can be quantified by the amount of correlations which can be extracted via local measurements 4:

J(A : B)ρA:B = max
I⊗B∈P

I(A : X)I⊗B(ρAB), (3.46)

where the optimization is taken over the set of local measurement maps I⊗ B ∈ P(CAB, CAX) and I⊗
B(ρAB) = ∑x pxρA

x ⊗ |bx〉〈bx| is a quantum-classical state in the space D(CA ⊗CX).

Originally H. Ollivier and W. Zurek [115] defined this expression with the optimization re-
stricted to projective measurements. Independently, L. Henderson and V. Vedral [76] defined the
optimization of the classical correlations over general measurements. As the mutual information
quantifies the total amount of correlations in the state, it is possible to define a measure of quan-
tum correlations as the difference between the total of correlations in the system, quantified by
the mutual information, and only the classical correlations, measured by Eq.3.46. This measure of
quantumness of correlations is named quantum discord:

Definition 69. The quantum discord D(A : B)ρAB of a state ρAB is defined as:

D(A : B)ρAB = I(A : B)ρAB − J(A : B)ρAB , (3.47)

where I(A : B)ρAB is the von Neumann mutual information.

The quantum discord quantifies the amount of information which cannot be accessed via local
measurements, therefore it measures the quantumness which is shared between A and B that
cannot be recovered via a classical statistical inference process. We decided to use the formalism
of quantum channels to describe the measurement on the quantum discord, although Eq.3.46 can
be written as originally defined in the seminal papers [76, 115], we enunciate it as proposition:

Proposition 70. The Eq.3.46 can be rewritten as:

J(A : B)ρA:B = max
I⊗B∈P

{
S(ρA)−∑

x
pxS(ρA

x )

}
. (3.48)

where pxρA
x = Trb[I⊗ BxρAB] and the {Bx}x are the elements of the POVM B ∈ P(CB, CX).

Proof. Given a measurement map I⊗B, such that

ρAX = I⊗B(ρAB) = ∑
x

pxρA
x ⊗ |bx〉〈bx| , (3.49)

where pxρA
x = TrB[I⊗ BxρAB], and the mutual information will be:

I(A : X)I⊗B(ρAB) = S(ρA) + S(ρX)− S(ρAX), (3.50)

4In the definition we are not taking care to label the function J(A : B) in which subsystem the measurement is being
applied, although we can specify if necessary.
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then S(ρX) = H(X) = ∑x px log px and:

S(ρAX) = H(X)−∑
x

pxS(ρA
x ), (3.51)

which is the Shannon entropy for block diagonal states. Substituting S(ρX) and Eq.3.51 in the
Eq.3.50 we prove the proposition.

The optimization of quantum discord is a NP-hard problem, in the sense that to calculate
quantum discord the running time for any algorithm grows exponentially with the dimension of
the measured system [85]. A general analytical solution for quantum discord is not known, nor a
criterion for a giving POVM to be optimal, for a specific state. Nonetheless there are some analytic
expressions for some specific states [6, 67, 100, 101].

It is natural from Eq.3.47 a generalization of quantum discord to the case in which the mea-
surement is applied locally on both subsystems.

Definition 71. Given a bipartite state ρAB ∈ D(CA ⊗ CB) the quantum discord over measurements on
both systems is:

D(A : B)ρAB = min
A⊗B∈P

{
I(A : B)ρAB − I(A : B)A⊗B(ρAB)

}
, (3.52)

where A ∈ P(CA, CY) and B ∈ P(CB, CX).

This generalization of quantum discord was first discussed in [130] in the context of the no-
local-broadcast theorem. This definition is often named WPM-discord, because it was also stud-
ied by S. Wu et. al [165]. It was also approached restricted to projective measurements by some
authors [68,110,137]. Analogous to the generalization done above, it is possible to propose a mea-
sure of quantum discord for multipartite systems. First let us understand the mutual information
for multipartite systems. The mutual information I(A : B) quantifies the number of bits that
part A must send to B to destroy the correlations between them. In this same way a multipartite
and nonpairwise version of mutual information I(A1 : ... : AN) can be defined as the num-
ber of bits which A1 must send to destroy its correlations with the others A2, ..., AN subsystems
(I(A1 : A2, ..., AN)), summed what A2 must spend to destroy its correlations with the remaining
subsystems I(A2 : A3, ..., AN |A1), so forth, until all the systems be uncorrelated [71].

Definition 72. Given a multipartite state ρA1,...,AN , composed by N subsystems. The mutual information
which represents the above process can be written as:

I(A1 : ... : AN) = I(A1 : A2, ..., AN) + I(A2 : A3, ..., AN |A1) + · · ·+ I(AN |A1, . . . , AN−1). (3.53)

where I(A : B|C)ρABC = S(A|C)ρABC + S(B|C)ρABC − S(AB|C)ρABC is the conditional mutual information
for the state ρABC.

The multipartite mutual information has the same properties of the pairwise mutual informa-
tion. It comes from the fact that both of them can be written as the relative entropy between the
state and the product of the marginals. From the operational point of view it is the same that the
amount of information needed to destroy the correlations between all the systems, measured in
bits.

Proposition 73. Given the relative entropy S(ρA1,...,AN ||ρA1 ⊗ · · · ⊗ ρAN ), for the multipartite state
ρA1,...,AN , the multipartite mutual information can be rewritten as:

I(A1 : ... : AN) = S(ρA1,...,AN ||ρA1 ⊗ · · · ⊗ ρAN ) = ∑
i

S(ρAi)− S(ρA1,...,AN ), (3.54)

where ρi = TrÂi
[ρA1,...,AN ] is the state of the ith subsystems, the notation Âi means that the trace is taken

over all subsystems except the system Ai.



3.2 QUANTUMNESS OF CORRELATIONS 53

Proof. Given the definition of the conditional entropy and using the same tricks used in Chap.2 in
the proof of proposition 32:

S(ρA1,...,AN ||ρA1 ⊗ · · · ⊗ ρAN ) = −S(ρA1,...,AN )− Tr[ρA1,...,AN log ρA1 ⊗ · · · ⊗ ρAN ] (3.55)
= −S(ρA1,...,AN ) + S(ρA1) + · · ·+ S(ρAN ). (3.56)

For the mutual information we will prove for tripartite systems, although it is a particular case,
we can realize from it that the result is valid for any multipartite system. From the chain rule for
the mutual information:

I(A : BC) = I(A : B) + I(A : B|C), (3.57)

we can rewrite Eq.3.53 as:

I(A : B : C) = I(A : BC) + I(B : C) = S(A) + S(B) + S(C)− S(ABC). (3.58)

Given the definition of the multipartite mutual information we are close to define a multipar-
tite version of the quantum discord, we first should define the multipartite measurement map
MK ∈ P(CA1,...,Ak , CX1,...,Xk), that acts locally on the fist k subsystems of the composed system
describe by ρA1,...,AN . Then the post-measurement state is defined as:

MK ⊗ IAk+1,...,N (ρA1,...,AN ) = ∑
f (x)

TrA1,...,Ak [E f (x) ⊗ IAk+1,...,N ρA1,...,AN )]⊗ | f (x)〉〈 f (x)| , (3.59)

where | f (x)〉 = |x1〉 · · · |xk〉 and E f (x) = Ex1 ⊗ · · · ⊗ Exk . Analogous to the bipartite case the quan-
tum discord is defined as the smallest difference between the total correlations and the remained
correlations after the local measurement.

Definition 74. For a given N-partite system, described by the state ρ = ρA1,...,AN , the multipartite quan-
tum discord can be defined as [130]:

D(A1 : ... : AN)
K
ρ = inf

MK∈P

{
I(A1 : ... : AN)ρ − I(X1 : ... : Xk : Ak+1 : ... : AN)MK⊗I(ρ)

}
, (3.60)

where the superscript K on the quantum discord is just to indicate that the measurements will be taken over
the first k subsystems.

Rulli et. al [137] discussed a definition of multipartite quantum discord which follows the same
idea, although their definition is restricted to projective measurements. The properties of quan-
tum discord, shall be calculated for bipartite systems, however they remains true for multipartite
systems [130].

Properties of quantum discord

For a bipartite quantum state ρAB ∈ D(CA ⊗CB), follow the properties of quantum discord:

Proposition 75 (i). Quantum discord is not symmetric:

D(A : B)ρAB 6= D(B : A)ρAB . (3.61)

Proof:(i). Given a measurement mapM ∈ P(CX, CY) in general

I⊗M(ρAB) 6=M⊗ I(ρAB), (3.62)

which implies that the mutual information I(A : Y) 6= I(Y : B).
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For the quantum discord which the measurements are applied on both subsystems it is clear
that it is symmetric, by this property it is sometimes named symmetric quantum discord.

Proposition 76 (ii). Quantum discord is non-negative:

D(A : B)ρAB ≥ 0. (3.63)

Proof:(ii). As the mutual information is monotone decreasing under LOCC maps:

I(A : B)ρAB ≥ I(A : X)I⊗B(ρAB), (3.64)

where B ∈ P(CA, CY).

Proposition 77 (iii). Quantum discord vanishes if and only if the state is classical correlated.

Proof:(iii). The easiest way to prove this property is via the activation protocol which we will
present in next chapter [129]. Given the theorem 2 of Ref. [150] that the quantum discord of ρAB
is equal the minimal partial distillable entanglement between the measured subsystem and the
measurement apparatus:

D(A : B)ρAB = min
U

PED(IA ⊗UBE(ρAB ⊗ |0〉〈0|E)IA ⊗U†
BE), (3.65)

where UBE are unitary evolutions which characterize a projective measurement on system B,
therefore TrE[UBEσBEU†

BE] = ∑x ΠxσBΠx. The partial distillable entanglement PED(ρABE) = ED(ρAB:E)−
ED(ρB:E) quantifies the entanglement lost if the part A is ignored [150]. As the activation protocol
tells that the entanglement created between the system and the measurement apparatus is zero if
and only of the state is classical correlated [129], the discord will be zero when there exists a mea-
surement unitary evolution U†

BE such that PED(IA ⊗UBE(ρAB ⊗ |0〉〈0|E)IA ⊗U†
BE) = 0, therefore

it will be zero if and only if the state is classical correlated.

A. Datta proved this statement from the strong sub-additivity of the von Neumann entropy
[43].

Proposition 78 (iv). Quantum discord is invariant under local unitary operations:

D(A : B)ρAB = D(A : B)(UA⊗UB)ρAB(U†
A⊗U†

B)
. (3.66)

Proof:(iv). Suppose the POVM B with elements {Bx}x is the optimal in the calculation of quantum
discord D(A : B)ρAB , hence the POVM B̃ with elements {U†

BBxUB}x will be the optimal for D(A :
B)(UA⊗UB)ρAB(U†

A⊗U†
B)

. Both expressions are the same because

pxUAρA
x U†

A = TrB[I⊗ Bx(UA ⊗UB)ρAB(U†
A ⊗U†

B)] = TrB[I⊗ (U†
BBxUB)(UA ⊗ I)ρAB(U†

A ⊗ I)].
(3.67)

Then, as the von Neumann entropy is invariant under unitary operations: S(UAρA
x U†

A) = S(ρA
x )

and S(UAρAU†
A) = S(ρA).

Proposition 79 (v). Quantum discord does not necessary decrease under local maps which acts on the
measured subsystem, however it is contractive under local maps on the non measured subsystem [127].

Proof:(v). The first statement can be checked with an example, and it was given in last section. Sup-
pose a local map Φ ∈ C(CB) which acts on the following way on the orthogonal basis {|0〉 , |1〉}
Φ(|0〉) = (|0〉+ |1〉)/

√
2 and Φ(|1〉) = |1〉. Then given the classical-classical state ρcc

AB = (|00〉〈00|+
|11〉〈11|)/2 after the action of the map it will be:

Φ(ρcc
AB) = (|0+〉〈0+|+ |11〉〈11|)/2, (3.68)
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for |+〉 = (|0〉 + |1〉)/
√

2. As the state after the action of the map is a classical-quantum state,
therefor it is possible to create quantum discord for measurements on the subsystem B.

The second statement comes from the fact that the mutual information is monotone decreas-
ing. Given the definition of the quantum discord:

D(A : B) = inf
I⊗B∈P

{
I(A : B)ρAB − I(A : X)I⊗B(ρAB)

}
, (3.69)

Suppose a local isometry V ∈ U (CB, CXR), such that TrR[IA ⊗ VρABIA ⊗ V†] = I⊗ B(ρAB). As
the mutual information is invariant under local isometries I(A : B)ρAB = I(A : XR)ρAXR and
I(A : X)I⊗B(ρAB) = I(A : X)ρAXR , therefore:

I(A : B)ρAB − I(A : X)I⊗B(ρAB) = I(A : XR)ρAXR − I(A : X)ρAXR = I(A : R|X), (3.70)

where in the right hand side we used the definition of the conditional mutual information. As the
conditional mutual information is contractive under the action of local PPT maps on A and R, this
proves the property.

This property of quantum discord also can be proved via the activation protocol [129] using
the monotonicity of the entanglement measures [150].

Proposition 80 (vi). Quantum discord is upper bounded by the von Neumann entropy of the measured
subsystem [96]:

D(A : B)ρAB ≤ S(B). (3.71)

Proof:(vi). Given a purification of ρAB as ρABE = |ψ〉〈ψ|ABE and the post-measurement state5

σABE = IAE ⊗M(ρABE) = ∑
x

px |ψx〉〈ψx|AE ⊗ |bx〉〈bx| , (3.72)

for a given measurement map M ∈ P(CB, CX), which represents a POVM B with rank-1 ele-
ments, then:

I(A : B)σAB − I(B : E)σBE =

(
S(ρA)−∑

x
pxS(ρA

x )

)
−
(

S(ρE)−∑
x

pxS(ρE
x )

)
(3.73)

= S(ρA)− S(ρE) (3.74)
= S(ρA)− S(ρAB), (3.75)

where ρA
x = ρC

x = TrA[|ψx〉〈ψx|AE]. As the classical correlations, by definition, is
J(A : B)ρAB ≥ I(A : B)σAB , hence the quantum discord is:

D(A : B)ρAB = I(A : B)ρAB − J(A : B)ρAB (3.76)
≤ I(A : B)ρAB − I(A : B)σAB (3.77)
= I(A : B)ρAB − S(ρA)− S(ρAB) (3.78)
= S(ρB). (3.79)

It was conjectured that the quantum discord is upper bounded by the entropy of both marginals
[105], however the it was disproved that by N. Li and S. Luo [96].

Proposition 81 (vii). The mutual information I(A : X)I⊗B(ρAB) is convex on the POVMs.

5A detailed explanation about the action of measurement maps on the purified state shall be done in the Section.4.1.
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Proof:(vii). Consider a POVM B ∈ P(CB, CX) which can be written as convex combination of a
set of POVMs B̃k ∈ P(CB, CYk):

B = ∑
k

qkB̃k. (3.80)

As a quantum channel is a linear map, applying the local measurement map of B on a bipartite
state ρAB:

I⊗B(ρAB) = ∑
k

qkI⊗ B̃k(ρAB), (3.81)

where ∑k qk = 1. The mutual information of the post-measurement state can be written as:

I(A : X)I⊗B(ρAB) = S(I⊗B(ρAB)‖ρA ⊗B(ρB)) (3.82)

= S(∑
k

qkI⊗ B̃k(ρAB)‖∑
k

qkρA ⊗ B̃k(ρB)) (3.83)

≤ ∑
k

qkS(I⊗ B̃k(ρAB)‖ρA ⊗ B̃k(ρB)) (3.84)

= ∑
k

qk I(A : Yk)I⊗B̃k(ρAB)
. (3.85)

In Eq.3.83 we used the linearity of the trace, in Eq.3.84 we used the joint convexity property of the
relative entropy.

This statement implies that the non optimized quantum discord is a concave function. The
way we proved the proposition 81 is original of this thesis, and in the opinion of the author is
clearer than the proof performed in the literature. Another original way to prove it can be obtained
from the concavity of the conditional mutual information I(A : E|X) on the variable X, which
represents the after measured state. The proof of this statement also can be find in the literature
on the A. Datta phd thesis [42], where the concavity of the quantum discord can be obtained from
the concavity of the conditional entropy.

Corolary 82 (vii). There exists an optimal POVM with rank-1 elements.

Proof: Corollary (vii). Given a POVM B whose elements {Bx}x are not rank-1, it is possible to de-
compose each one in its eigenbasis Bx = ∑z Cxz, where the operators Cxz are rank-1. In this
way we can rewrite the POVM B =

⊕
z pzCz, where ∑z pz = 1. As the mutual information

I(A : X)I⊗M(ρAB) is convex on the POVMs:

I(A : X)I⊗B(ρAB) ≤∑
z

pz I(A : X)I⊗Cz(ρAB) ≤ I(A : X)I⊗Cz(ρAB). (3.86)

Suppose the POVM B optimizes the classical correlations, then there exist one value of z such that
a Cz also maximizes the classical correlations.

Proposition 83 (viii). For bipartite pure states the quantum discord is equal to the entropy of entanglement
[76]:

D(A : B)ΨAB = S(ρA), (3.87)

where ΨAB = |ψ〉〈ψ|AB and ρA = TrB[ΨAB].

Proof. Given the mutual information for pure states:

I(A : B)Ψ = 2S(ρA), (3.88)

the quantum discord will be:

D(A : B)ΨAB = S(ρA) + inf
I⊗B∈P

{S(I⊗B[ΨAB])− S(B[ρB])}. (3.89)
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If we find a POVM such that the difference S(I⊗B[ΨAB])− S(B[ρB]) = 0 it of course will be the
optimum POVM. This optimum POVM is a dephasing channel in the Schmidt basis. Given the
Schmidt decomposition of the state: |ψ〉 = ∑i ci |ai〉 |bi〉, the state after the local dephasing on B:

I⊗ΠB[Ψ] = ∑
ij

cicj
∣∣ai
〉〈

aj
∣∣⊗ΠB[

∣∣bi
〉〈

bj
∣∣] = ∑

i
cici |ai〉〈ai| ⊗ |bi〉〈bi| . (3.90)

As this state is classical-classical:

S(I⊗B[ΨAB]) = S(B[ρB]). (3.91)

3.2.3 Geometrical approach

In this section we shall give a geometrical point of view for quantumness of correlations. As
quantum entanglement, the quantumness of correlations can be quantified geometrically by the
distance between the state and the set of states without quantum correlations. As the space of
states in quantum mechanics is not a flat space there are many different kinds of measures of dis-
tances [14]. Independently T. Debarba et al. [47] and T. Nakano et al. [113] proposed that the geo-
metrical quantifiers of quantumness of correlations can be via Schatten-p norm, from this measure
it is possible to define other measures via Hilbert-Schmidt distance named geometrical quantum
discord [40, 104] and via trace distance named 1-norm geometrical quantum discord [47, 113]. It
is also possible to measure quantumness of correlations via Fidelity or Bures distance [4, 148].
Another measure of quantumness based on distance is the via the relative entropy [112, 117]. Ac-
tually the distance between the state and the set of classical correlated states is not the only way
to quantify quantumness of correlations geometrically, another way is based on the disturbance
created in the state after a local measurement [102], therefore distances between the state and
the disturbed state also quantifies quantum correlations. However we shall focus on the measure
of distance based on the Schatten-p norm, notwithstanding we shall dedicate a whole section to
discuss the measure of quantumness of correlation based on the relative entropy.

In general, for a state ρAB ∈ D(CA, CB), a geometrical measure of quantum discord can be
defined as the distance between ρAB and the closest classical correlated state. An interesting norm
to describe the quantum discord is the Schatten-p norm, as discussed in the Chap.2, carries in its
definition the trace distance and the Hilbert-Schmidt distance.

Definition 84. The geometrical quantum discord for any Schatten-p norm can be defined as [47, 113]:

Dp(ρAB) = inf
ξAB∈ΩQC

||ρAB − ξAB||
p
p, (3.92)

where ||A||p = Tr[(A† A)p/2]1/p is the Schatten-p norm.

The Schatten-p geometrical discord will be zero if and only if the state ρAB is inside the set of
classical correlated states.

For p = 2 the Schatten-p norm represents the Hilbert-Schmidt norm and the quantum discord
is named geometrical discord [40]:

D2(ρAB) = inf
ξAB∈ΩQC

||ρAB − ξAB||22. (3.93)

This measure of quantum discord can be calculated analytically for general bipartite state [104]
and has friendly expressions for 2⊗ 2 systems [40, 67]. S. Luo and S. Fu showed that the geomet-
rical quantum discord is equal to the local disturbance [104]:

D2(ρAB) = inf
ΠB∈P(CB)

||ρAB − IA ⊗ΠB(ρAB)||22, (3.94)
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where now the optimization is taken over local projective measurement maps ΠB ∈ P(CB). Us-
ing the disturbance is possible to calculate the quantum discord analytically for any pure state,
Bell diagonal state and 2⊗ n-dimensional states [103]. The geometrical measure of discord was
also studied in the context of the quantum computation protocols [40, 120]. It was also measured
experimentally [39, 147]. The geometrical quantum discord has a special interesting because it is
very operational. It is just the smallest difference between the purity of the state (Tr[ρ2]) and the
purity of the local dephased state (Tr[(I⊗Π(ρ))2]). We state it as a proposition [103].

Proposition 85. Given a bipartite state ρAB ∈ D(CA ⊗ CB) the geometrical discord Eq.3.94 can be
written as:

D2(ρAB) = inf
ΠB∈P(CB)

{
Tr[ρ2

AB]− Tr[IA ⊗ΠB(ρAB)
2]
}

, (3.95)

where ΠB ∈ P(CB) is a dephasing channel.

Proof. The square of the Hilbert-Schmidt norm:

||ρAB − IA ⊗ΠB(ρAB)||22 = Tr[ρ2
AB]− 2Tr[ρAB · IA ⊗ΠB(ρAB)] + Tr[IA ⊗ΠB(ρAB)

2]. (3.96)

We can write a general bipartite state as ρAB = ∑ij OA
ij ⊗ |i〉〈j|, the local dephasing channel acts on

ρAB as I⊗Π(ρAB) = ∑ij OA
ij ⊗Π(|i〉〈j|), where Π(|i〉〈j|) = ∑k δikδjk |k〉〈k|, then:

Tr[ρABI⊗Π(ρAB)] = Tr[∑
ij

OA
ij ⊗ |i〉〈j| ·∑

kl
OA

kl ⊗Π(|k〉〈l|)] (3.97)

= ∑
ij

∑
kl

Tr[ρA
ij ρA

kl ]Tr[Π(|i〉〈j|) |k〉〈l|] (3.98)

= ∑
ij

∑
kl

Tr[ρA
ij ρA

kl ]Tr[Π(|i〉〈j|)Π(|k〉〈l|)] (3.99)

= Tr[Π(ρAB)Π(ρAB)]. (3.100)

Where we used in Eq.3.99 that Tr[Π(σ)γ] = Tr[Π(σ)Π(γ)], for two square matrices σ, γ : Cd →
Cd, and in Eq.3.100 we reordered the terms to get ρAB again.

Although the geometrical discord is an operational measure for quantumness of correlation
it does not satisfy the good conditions to be a quantifier of quantum correlation [29]. The com-
monly acceptable properties for quantumness of correlations are the properties 76-79 of quantum
discord. The problem with the geometrical discord is that it does not satisfy the second statement
on property 79, i.e, it can increase under local channels on the non measured subsystem [127]. It
comes from the fact that the Hilbert-Schmidt norm is not monotonic decreasing under PPT maps6.
A simple example was given by Marco Piani [127]. Suppose a bipartite state ρAB and a local pro-
jective measurement ΠB ∈ P(CB) on B, then the Hilbert-Schmidt distance between the state and
the dephased state will be:

D(AB, ABΠ)ρAB = ||ρAB − IA ⊗ΠB(ρAB)||2. (3.101)

Now suppose a channel ΓA ∈ C(CA, CA ⊗CE) which acts on A just appending an ancilla σ with
arbitrary dimension:

ΓA ⊗ IB(ρAB) = ρA′B = ρAB ⊗ σE. (3.102)

The Hilbert-Schmidt distance between ρAB ⊗ σE and the dephased state on B:

D(A′B, A′BΠ)ΓA⊗IB(ρAB) = ||ρAB⊗ σE− IA⊗ΠB(ρAB)⊗ σE||2 = ||ρAB⊗−IA⊗ΠB(ρAB)||2 · ||σ||2,
(3.103)

6This was discussed in the context of quantum entanglement when arise the question if Hilbert-Schmidt norm was
a good measure for quantum entanglement [118].
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however ||σ||2 =
√

Tr[σ2], which will be equal to 1 only if the ancilla is a pure state. As we can
apply local operations on the ancilla, then applying a purification on the ancillary system it can
increase the geometrical quantum discord just applying local operations, which means that we are
increasing the amount of total correlations without creating any correlations in the system [127].
The problems of the geometric discord based on Hilbert-Schmidt distance were solved redefining
a measure of quantum correlations in function of the geometric discord. This function keeps some
entropic properties of the quantum discord [154].

The Schatten-1 norm was first proposed by T. Debarba et al. to obtain a linear bound between
geometrical discord via trace distance and random robustness of entanglement [47, 48]. Indepen-
dently other authors proposed it in different contexts [113, 154]. Indeed the Schatten-1 norm is
the only norm which is an acceptable measure for quantumness of correlations [122]. By the
last example for the state ρABE = ρAB ⊗ σE, then the Schatten-p norm of this state can be writ-
ten as ||ρABE||p = ||ρAB||p||σE||p, as ||σE||p = Tr[σp

E ]
1/p the only norm which cannot increase

the quantum correlations applying any quantum channel on subsystem E is the Schatten-1. In
Chap.2 we studied the properties of the trace distance, then the 1-norm geometrical discord will
keep these properties. As we discussed for a measure of quantumness of correlations to be ac-
ceptable it should satisfy some properties, the more important are the properties 76-79 of quantum
discord [29].

Definition 86 (1-norm geometrical quantum discord). Given an bipartite quantum state ρAB ∈
D(CA ⊗CB) we can define the 1-norm geometrical quantum discord:

D1(ρAB) = inf
ξAB∈ΩQC

||ρAB − ξAB||1, (3.104)

where ξAB ∈ D(CA ⊗CB) is a quantum-classical state.

The 1-norm geometrical quantum discord satisfy the following properties 7:

Proposition 87 (ii). The 1-norm geometrical quantum discord is non-negative:

D1(ρAB) ≥ 0. (3.105)

Proposition 88 (iii). The 1-norm geometrical quantum discord vanishes if and only if the state is classically
correlated.

Proposition 89 (iv). The 1-norm geometrical quantum discord is invariant under local unitary operations:

D1(ρAB) = D1((UA ⊗UB)ρAB(U†
A ⊗U†

B)). (3.106)

Proof:(ii)-(iv). This properties come from the properties of the trace distance. For two density ma-
trices ρ, σ ∈ D(Cn) the trace distance respects:

(ii) Non-negative:
||ρ− σ||1 ≥ 0; (3.107)

(iii) Vanishes if and only if the states are the same:

||ρ− σ||1 = 0 ⇐⇒ σ = ρ; (3.108)

(iv) Invariant under isometry operations:

||ρ− σ||1 = ||VρV† −VσV†||1, (3.109)

where V ∈ U (Cn, Cn′) is an isometry.

7All of the properties described below came from the properties of the trace distance which were proved in last
chapter.
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As occurs with quantum discord, Proposition.79, the 1-norm geometrical quantum discord
can increase by local operations on the measured system. The example for it is the same discussed
above, which applying a local map that changes a classical-classical state to a classical-quantum
state. The next property comes from the fact that trace distance is contractive under quantum
channels. The proof of this statement is straightforward, because comes directly from the mono-
tonicity of the trace distance.

Proposition 90 (v). The 1-norm geometrical quantum discord is contractive under local maps on the non
measured subsystem

Proof. Consider a bipartite state ρAB and a local channel ΦA, then the trace distance between ρAB
and the closest quantum-classical state ξ̄AB will satisfy:

||ρAB − ξ̄AB||1 ≥ ||ΦA ⊗ IB(ρAB)−ΦA ⊗ IB(ξ̄AB)||1, (3.110)

the state ΦA ⊗ IB(ξ̄AB) remains quantum-classical, although cannot be the closest state to ΦA ⊗
IB(ρAB). If we named the closest as ξΦ

AB, hence ||ΦA ⊗ IB(ρAB) − ΦA ⊗ IB(ξ̄AB)||1 ≥ ||ΦA ⊗
IB(ρAB)− ξΦ

AB||1, which implies:

||ρAB − ξ̄AB||1 ≥ ||ΦA ⊗ IB(ρAB)− ξΦ
AB||1. (3.111)

Another way to quantify quantum correlations is via the local disturbance under measure-
ments [102]. In this way it is possible to define a local disturbance via 1-norm, it is named negativity
of quantumness (NQ) [113].

Definition 91. Given a bipartite state ρAB ∈ D(CA⊗CB), the negativity of quantumness is defined as the
minimal amount of disturbance created in the quantum state, optimized over local projective measurements,
measured via 1-norm distance:

DNQ(ρAB) = inf
ΠB∈P

||ρAB − IA ⊗ΠB(ρAB)||1, (3.112)

where ΠB ∈ P(CB) is a local dephasing on the subsystem B.

In contrast to the local disturbance via Hilbert-Schmidt distance, the negativity of quantum-
ness is not equal to the 1-norm geometrical discord for any bipartite system, they will be the same
just for 2 ⊗ 2 systems [113]. However for measurements on both subsystems the negativity of
quantumness is equal to the 1-norm geometrical discord for classical-classical states [113]:

Theorem 92. Given a bipartite state ρAB the negativity of quantumness with measurement on both sides
is:

DNQ(ρAB)
ΠAB = inf

ΠA⊗ΠB∈P
||ρAB −ΠA ⊗ΠB(ρAB)||1, (3.113)

and the 1-norm geometrical discord for classical-classical states is:

D1(ρAB)
CC = inf

ξAB∈ΩCC
||ρAB − ξAB)||1, (3.114)

they are the same measures of quantumness of correlations:

D1(ρAB)
CC = DNQ(ρAB)

ΠAB . (3.115)

The 1-norm geometrical discord and the negativity of quantumness can be calculated analyti-
cally for 2⊗ 2 systems [36, 113, 122, 123]. They were also applied experimentally in a NMR device
where the entropic properties of the quantum discord were inferred [121].
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3.2.4 Relative entropy of quantumness and work deficit

The relative entropy is a measure of distance which does not satisfies the symmetric property
to be a true distance [14], however for a given dephasing channel Π ∈ P(Cn) acting on any state
ρ ∈ D(Cn) the support of the dephased state contains the support of the input state: supp(ρ) ⊆
supp(Π[ρ]), therefore the measure of quantumness of correlations based on the relative entropy
remains finite for every composed state [14, 162].

Suppose Alice and Bob have a common composed system described by the state ρAB ∈ D(CA⊗
CB) and they would like to extract work from this system, to perform a task. To attain their in-
tention they can perform the closed set of local operations and communicate classically (CLOCC). This
class of operations is composed by: i) addition of pure ancillas, ii) local unitary operations, iii) lo-
cal dephasing channels. Sending states through a local dephasing channel represents the classical
communication. If Alice and Bob are together in the same lab, they can extract work globally from
the total system, then the total amount of information which Alice and Bob can extract from ρAB
together is defined as the total work [117].

Definition 93. The work which can be extracted from a quantum system, described by the state ρ ∈
D(CN), is defined as the change in the entropy:

Wt(ρ) = log2 N − S(ρ), (3.116)

log2 N is the entropy of the maximally mixed state, for which it is not possible extract work and S(ρ) is the
von Neumann entropy of the state.

This function can be viewed as a function which measures information, such that if the state
is a maximally mixed state no information can be extracted from it, therefore if the state is a pure
state we have the maximum value of the information [79, 117]. The entropy function also repre-
sents the information about the system, although it represents the amount of information which
we can get to know about the system and the function Eq.3.116 represents the amount of infor-
mation we already know8. On the other hand, Alice and Bob cannot be in the same lab, therefore
the information, or work, which can be extracted from the total state is restricted to be locally
accessed. In the same way we defined the total information, it is possible to define a local work.
Then Alice and Bob should apply CLOCC operation in order to obtain the maximal amount of
local information:

Wl(ρAB) = log2 N − sup
Γ∈CLOCC

S(Γ[ρAB]), (3.117)

where the state Γ(ρAB) is the state after the protocol. If after the protocol the whole state is with
one part, for example A, then the dimension of the other will be 1 and its entropy will be zero,
therefore the state in the end of the protocol will be Γ(ρAB) = ρAA′ . When we are talking about lo-
cal information, it does not mean getting some outputs via local measurements, it means applying
a quantum channel, described by CLOCC operations, and taking a function of the state after the
action of the channel, this function is named local information, or local work, and it is described
by Eq.3.117 [79].

Actually the important function is not Wl(ρAB), the function which we are interested is the
difference between the total work which can be extracted from the composed system described
by ρAB and the work which we can extracted locally. This function is named work deficit and it
measures the amount of work that is not possible to extract locally [117].

Definition 94. Given a bipartite state ρAB, the information which two parts Alice and Bob cannot access,
via CLOCC, is the work deficit:

∆(ρAB) = Wt(ρAB)−Wl(ρAB). (3.118)

8A pedagogic discussion about this definition, in the thermodynamic point of view, can be find in the Ref. [79].
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From the definition of the total work and the local work we can rewrite the work deficit as:

∆(ρAB) = inf
Γ∈CLOCC

{S(Γ[ρAB])− S(ρAB)} . (3.119)

Even though the total and the local work depend explicitly on the dimension of the system, the
work deficit should not depend on the dimension of Γ[ρAB]. Adding local pure ancillas belongs
to the CLOCC, it should not change the amount of work deficit. As we shall see below, the work
deficit is a measure of correlations, then it must not change by the simple addition of a uncorre-
lated system [79, 112]. On the other hands this issue will be discussed better in Chap.5, where we
shall study the effect of the embedding on the local measurement scenario.

In general the work deficit of a state ρAB is related with the relative entropy between the state
ρAB and the final state Γ[ρAB] [80].

Theorem 95. The work deficit is upper bounded by the relative entropy of the state with the set of pseudo-
classical correlated states PC [80]:

∆(ρAB) ≤ inf
σAB∈PC

S(ρAB‖σAB), (3.120)

where the set of pseudo-classically correlated states PC is the set of states which can be converted in clas-
sically correlated states via CLOCC operations without create any correlation. This set contain the set of
classically correlated states: ΩCC ⊆ ΩCQ ⊆ PC.

Proof. The final state Γ[ρAB] ∈ PB. Then we can choose a basis B, which is the basis that Alice
and Bob applied the dephasing during the protocol, this basis is named implementable product basis
(IPB). In the end of the protocol the final state has entropy:

S(Γ[ρAB]) = H(ρAB,B), (3.121)

where H(ρAB,B) = −∑k 〈βk| ρAB |βk〉 log2 〈βk| ρAB |βk〉 for {|βk〉}k ⊂ B. Then optimizing over all
possible IPB, such that the state has the smaller entropy, we obtain:

inf
Γ∈CLOCC

S(Γ[ρAB]) ≤ inf
B

H(ρAB,B). (3.122)

We named the set SB as the set of states which commute with the basis B, then a state in this
set we named ρB . We also have the following relation to the Shannon entropy H(ρ,B):

inf
σ∈SB
{S(ρ||σ)− S(ρ)} = inf

σ∈SB
[−Tr(ρ log2 σ)] (3.123)

= inf
σ∈SB

[−Tr(ρB log2 σ)] + Tr(ρB log2 ρB)− Tr(ρB log2 ρB) (3.124)

= inf
σ∈SB
{S(ρB)− S(ρB‖σ)} (3.125)

= H(ρ,B). (3.126)

In Eq.3.124 we used the fact that B commutes with σ9 and summed zero. In Eq.3.126 we used that
σ ∈ SB , then infσ∈SB S(ρB‖σ) = 0 and H(ρ,B) = S(ρB). Now combining Eq.3.122 with Eq.3.126
we have:

∆(ρ) = inf
Γ∈CLOCC

S(Γ[ρ])− S(ρ) (3.127)

≤ inf
B∈IPB

H(ρ,B)− S(ρ) (3.128)

= inf
B∈PC

S(ρ||σ). (3.129)

In Eq.3.128 we substituted the Eq.3.122. In Eq.3.129 we substituted E.3.126 and rewrote

9This step will be calculated explicitly in Theorem 99.
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infB∈IPB infσ∈SB{S(ρ||σ) = infB∈PC S(ρ||σ)

In the asymptotic limit (the limit of many copies) the work deficit quantifies the amount of
pure states which can be extracted locally [51, 80]. However as resource cannot be created freely,
the addition of pure local ancillas is not allowed, then it is replaced by the addition of maximally
mixed states. The set of operations which contains: i) addition of maximal mixture states, ii) local
unitary operations, iii) local dephasing channels, is named noise local operations and classical com-
munication (NLOCC) [80]. The extraction of local pure states is a protocol, whose the goal is to
extract resource, where the set of available operations is the NLOCC operations and the set of free
resource states is composed just by the maximal mixture state, which is the only state which does
not have any local purity [82]. It remains an open question if the CLOCC class and the NLOCC
class are equivalent [79].

In the limit of one copy, the work deficit can quantify quantum correlations present in a given
composed system [116]. The scenario where Alice and Bob can perform many steps of classical
communication is named two way, and the work deficit is named two-way work deficit. In this case
they can perform measurements and communicate in each step of the protocol. Mathematically
the two-way work deficit does not have a closed expression [79]. As discussed above, we can "ac-
tive" quantum correlations performing operations on the measured system. Therefore this many
steps scenario is not good to quantify quantum correlations, because if Alice and Bob can per-
form dephasing channels that would not commute with the dephasing applied in the before, then
the only state which remains invariant, under the actions of the arbitrary dephasing channels, is
the maximally mixed state. In this way, it is necessary a one round description, where the only
thing that Alice and Bob can do is communicate in the end of the protocol. Following this idea,
it is possible to define two classes of work deficit, the one way work deficit, which just one side
can communicate. If Bob communicates to Alice, the state created in the end of the protocol is
a quantum-classical state (or a classical-quantum state if Alice communicates in the end of the
protocol).

Definition 96 (one way work deficit). Given a bipartite state ρAB, the work deficit with just one side
communication is named one way work deficit [117]:

∆→(ρAB) = min
ΠB∈P

{S(IA ⊗ΠB[ρAB])− S(ρAB)} , (3.130)

where ΠB ∈ P(CB) is a local dephasing on subsystem B. We shall write ∆→(ρAB) when the communica-
tion is from A to B and ∆←(ρAB) otherwise.

Another definition for the work deficit is defined when both Alice and Bob communicate in
the end of the protocol, this is named zero way work deficit. The state created in the end of the
protocol is a classical-classical state.

Definition 97 (zero way work deficit). Given a bipartite state ρAB, the work deficit with no communi-
cation until the end of the protocol is named zero work deficit [117]:

∆∅(ρAB) = min
ΠA⊗ΠB∈P

{S(ΠA ⊗ΠB[ρAB])− S(ρAB)} , (3.131)

where ΠA ⊗ΠB ∈ P(CA ⊗CB) is a local dephasing on subsystem A and B.

K. Modi et. al proposed a measure of quantumness of correlation defined as the relative en-
tropy of the state and the set of classical correlated states [112]. This measure is named relative
entropy of quantumness.

Definition 98 (Relative entropy of quantumness). The relative entropy of quantumness D(ρAB)QC for
a given state ρAB is defined as the minimum relative entropy over the set of quantum-classical states [112]:

D(ρAB)QC = min
ξAB∈ΩQC

S(ρAB‖ξAB), (3.132)
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where ΩQC is the set of quantum-classical states.

The relative entropy of quantumness for classical-classical states is denoted as D(ρAB)CC. It is
analogous to Eq.3.133 when the optimization is taken over the set of classical-classical states ΩCC:

D(ρAB)CC = min
ξAB∈ΩCC

S(ρAB‖ξAB). (3.133)

As discussed in the limit of one copy the one way and the zero way work deficit are quantifiers
of quantum of correlations. For these cases the equality is attained in the last theorem.

Theorem 99. The 1-way work deficit is equal to the relative entropy of quantumness for quantum-classical
states [79, 112]:

D(ρAB)QC = ∆→(ρAB), (3.134)

Proof. Suppose ξρ ∈ ΩQC is the state which optimizes the Eq.3.133 and another state
X = ∑k(IA ⊗ |k〉〈k|)ρAB(IA ⊗ |k〉〈k|), such that [ξρ, X] = 0. As the state ξρ is the nearest state,
measuring via the relative entropy, the next expression must hold:

S(ρAB‖X)− S(ρAB‖ξAB) ≥ 0. (3.135)

Then calculating explicitly the relative entropies:

S(ρ‖X) = −S(ρ)− Tr[ρ log X] (3.136)
= −S(ρ)−∑

k
Tr[(IA ⊗ |k〉〈k|)ρAB log X] (3.137)

= −S(ρ)−∑
k

Tr[(IA ⊗ |k〉〈k|)ρAB(IA ⊗ |k〉〈k|) log X] (3.138)

= −S(ρ) + S(X), (3.139)

we used the idempotent property of projectors, the cyclic property of the trace and the fact that
[ξρ, X] = 0, respectively. Repeating the same algebra for S(ρAB‖ξAB):

S(ρ‖ξρ) = −S(ρ)− Tr[ρ log ξρ] (3.140)
= −S(ρ)− Tr[X log ξρ]. (3.141)

Therefore:
S(ρAB‖X)− S(ρAB‖ξAB) = S(X) + Tr[X log ξρ] = −S(X‖ξρ) ≤ 0, (3.142)

which implies that S(X‖ξρ), hence X = ξρ.

The same is valid for the zero way work deficit and the relative entropy of quantumness for
classical-classical states:

D(ρAB)CC = ∆∅(ρAB). (3.143)

The one way and zero way work deficits quantify quantum correlations beyond the quantum
entanglement, therefore we should be able to compare these two classes of quantum correlations.
For the relative entropy this comparison is natural, and it comes directly from the relative entropy
of the fact that CLOCC is a sub class of LOCC operations.

Proposition 100. The work deficit is lower bounded by the relative entropy of entanglement:

∆(ρ) ≥ Er(ρ). (3.144)

Proof. As CLOCC ⊂ LOCC the minimization of the relative entropy over these sets:

inf
Γ∈CLOCC

S(ρ||Γ[ρ]) ≥ inf
Γ∈LOCC

S(ρ||Λ[ρ]) = inf
σ∈Sep

S(ρ||σ), (3.145)
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where Sep is the set of separable states. Given the definition of the relative entropy of entangle-
ment and the work deficit:

∆(ρ) = inf
Γ∈CLOCC

S(ρ||Γ[ρ]) ≥ inf
σ∈Sep

S(ρ||σ) = Er(ρ). (3.146)

The separable states are the states which can be created via LOCC operations, a given bipartite
separable state σ

sep
AB can be written as a convex combination of pure product states:

σ
sep
AB = ∑

k
qk |φk〉〈φk|A ⊗ |ψk〉〈ψk|)B, (3.147)

as discussed this state is classically correlated if the states satisfy
〈
φi
∣∣φj
〉
= δi,j or/and

〈
ψi
∣∣ψj
〉
=

δi,j. In other words a classically correlated state is a convex combination of pure product states
which form a orthogonal basis. Therefore a separable pure state is also classically correlated, then
it is natural to expect that a measure of quantumness of correlations captures this characteristic.
Indeed for bipartite pure states the work deficit quantifies the quantum correlations in the pure
state, which is just the entanglement.

Proposition 101. For bipartite pure states |ψ〉AB ∈ CA ⊗ CB, the work deficit is equal to the relative
entropy of entanglement [117]:

∆(ΨAB) = Er(ΨAB) = S(ρA), (3.148)

where ΨAB = |ψ〉〈ψ|AB.

Proof. It is well known that for pure states the relative entropy of entanglement is equal to the von
Neumann entropy of the marginal. As the work deficit is lower bounded by the relative entropy
of entanglement, if we find a local dephasing channel, such that the work deficit is equal to the
relative entropy of entanglement, it is the optimal protocol which minimize the work deficit, once
that:

S(Ψ||ΠA ⊗ΠB[Ψ]) ≥ ∆(Ψ) ≥ Er(Ψ), (3.149)

where ΠA⊗ΠB ∈ P(CA⊗CB). Given the Schmidt decomposition of the state |ψ〉AB = ∑i ci |ai〉 |bi〉,
hence if we apply a dephasing channel on the Schmidt basis:

ΠA ⊗ΠB[Ψ] = ∑
ij

cicjΠA[
∣∣ai
〉〈

aj
∣∣]⊗ΠB[

∣∣bi
〉〈

bj
∣∣] = ∑

i
c2

i |ai〉〈ai| ⊗ |bi〉〈bi| . (3.150)

Thus the von Neumann entropy of ΠA ⊗ ΠB[Ψ] is equal to the von Neumann entropy of the
marginals of Ψ:

S(ΠA ⊗ΠB[Ψ]) = −∑
i
(c2

i ) log2 c2
i = S(ρA). (3.151)

An interesting corollary of this proposition is that the quantum discord is equal to the work
deficit for pure states, because it is also equal to the entropy of entanglement for pure states, as
calculated in Proposition 83.
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Chapter 4

Interplay between quantum
entanglement and quantumness of
correlations.

In this chapter we shall explain three different ways to relate quantum entanglement and
quantumness of correlations. In the first two sections we present two ways to relate entanglement
and quantumness of correlations. In Sec.4.1, we revise the literature about the expressions calcu-
lated via the well known Koashi-Winter relation. Section 4.2 is intended to the description of the
quantum correlation activation protocol. We have a special interest in this protocol because we
shall use it on Chap.6 to characterize the classical correlated states in indistinguishable particle
systems. In Sec.4.3, we present an original work which relates the quantumness of correlations on
the geometrical approach with the witnessed entanglement.

4.1 Monogamy relation: entanglement, classical correlations and quan-
tumness of correlations

Given a bipartite system ρAB ∈ D(CA ⊗ CB), then we can purify this state in a larger space
CABE, of the dimension: dim(CABE) = dim(A) · dim(B) · rank(ρAB). The purification process will
create quantum correlations between the system AB and the purification system E, unless the
state is already pure. Intrinsically to the process of purification there is a restriction in the amount
of correlations which the state can share with the purification system, otherwise the amount of
classical correlations would be free. This balance between the correlations for tripartite states can
be understood via the Koashi-Winter relation.

Given the definition of the classical correlations for a bipartite state ρAB:

J(A : B)ρAB = max
I⊗∈P

I(A : X)I⊗(ρAB), (4.1)

where I(A : X)I⊗(ρAB) is the mutual information of the post-measured state I⊗ (ρAB), and the
optimization is taken over all local POVM measurement maps ∈P(CB, BCX).

Given also the definition of the entanglement of formation of a bipartite state ρAB:

E f (ρAB) = min
ξρ={pi ,|ψi〉〈ψi |}i

∑
i

piE(|ψi〉), (4.2)

where the optimization is taken over all possible convex hull defined by the ensemble ξ = {pi, |ψi〉〈ψi|}i,
such that ρAB = ∑i pi, |ψi〉〈ψi|, and E(|ψi〉) is the entropy of entanglement of |ψi〉.
Theorem 102 (Koashi-Winter relation [89]). Considering ρABE ∈ D(CA⊗CB⊗CE) a pure state then:

J(A : E)ρAE = S(ρA)− E f (ρAB), (4.3)

67
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where ρX = TrY[ρYX].

Proof. Suppose ρAB = ∑i pi |ψi〉〈ψi| is written in the convex combination which optimizes the
entanglement of formation E f (ρAB) = ∑i piS(TrB[|ψi〉〈ψi|]). To obtain the classical correlations in
system AE we should relate this decomposition with a measurement on the subsystem E. There
exists a measurement {ME

j } on system E such that ρ′ABE = ∑j TrE[ρABE(IAB ⊗ ME
j )] ⊗

∣∣ej
〉〈

ej
∣∣

E
and TrE[ρ

′
ABE] = ∑i pi |ψi〉〈ψi|. As we are calculating the classical correlations on ρAE, the post-

measurement state will be:

ρ′AE = ∑
j

pjTrB[
∣∣ψj
〉〈

ψj
∣∣]⊗ ∣∣ej

〉〈
ej
∣∣ , (4.4)

in this way we can compute the mutual information of the post-measurement state:

I(A : E)ρ′AE
= S(ρA) + S(ρ′E)− S(ρ′AE), (4.5)

= S(ρA) + H(E)− H(E)−∑
i

piS(TrA[
∣∣ψj
〉〈

ψj
∣∣]), (4.6)

= S(ρA)−∑
i

piS(TrA[
∣∣ψj
〉〈

ψj
∣∣]), (4.7)

= S(ρA)− E f (ρAB), (4.8)

we used the property of the Shannon entropy for a block diagonal state, where
TrB[

∣∣ψj
〉〈

ψj
∣∣] = TrA[

∣∣ψj
〉〈

ψj
∣∣] and E f (ρAB) = ∑i piS(TrB[|ψi〉〈ψi|]). As by definition

J(A : E)ρAE ≥ I(A : E)ρ′AE
, then

J(A : E)ρAE ≥ S(ρA)− E f (ρAB). (4.9)

Now we shall prove equality conversely. Given ρAE, there exists a POVM A ∈ P(CE, CE′) with
rank-1 elements {Al}, such that TrE[AlρAE] = qlρ

A
l and it optimizes the classical correlations

J(ρAE) = S(ρA) − ∑l qlS(ρA
l ). As the elements of the POVM are rank-1, Al = |µl〉〈µl |, and the

state ρABE is pure, the state after local measurement on E will be described by an ensemble of
pure states:

ρ′ABE = ∑
l

TrE[ρABE(IAB ⊗ |µl〉〈µl |)]⊗ |el〉〈el | = ∑ ql |φl〉〈φl | ⊗ |el〉〈el | . (4.10)

It is easy to understand once that ρABE = |κ〉〈κ|, and the pure state can be written in the bipartite
Schmidt decomposition |κ〉 = ∑n cn |n〉AB ⊗ |n〉E, if 〈µl |n〉 = rln, therefore

TrE[ρABE(IAB ⊗ |µl〉〈µl |)] = ∑
ij

cirlicjr∗l j |i〉〈j|AB =

(
∑

i
cirli |i〉AB

)(
∑

j
cjr∗l j 〈j|AB

)
= ql |φl〉〈φl | .

(4.11)
Calculating the mutual information of ρ′AE = TrB[ρ

′
ABE]:

I(A : E)ρ′AE
= S(ρA)−∑

l
qlS(TrB[|φl〉〈φl |]), (4.12)

as the POVM A is the optimal measurement in the calculation of the classical correlations it im-
plies I(A : E)ρ′AE

= J(A : E)ρAE . By the definition of the entanglement of formation: E f (ρAB) ≤
∑l qlS(TrB[|φl〉〈φl |]) for any decomposition {pl , |φl〉〈φl |}. Substituting the mutual information on
Eq.4.55:

J(A : E)ρAE ≤ S(ρA)− E f (ρAB). (4.13)

Given Eq.4.9 and Eq.4.13 it proves the theorem.

The Koashi-Winter equation quantifies the amount of entanglement among A and B, consid-
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ering that the former is classically correlated with another system C. This property is interesting
once that it is related with the monogamy of entanglement [37], where the amount of entangle-
ment shared by three parts is limited, and this limitation is given by the amount of classical corre-
lations among the parties and the entropy of them (related with the rank of the density matrices).
This property is valid for any tripartite state as stated in the following corollary:

Corolary 103. For any tripartite state ρABC ∈ D(CA ⊗CB ⊗CC), it follows:

E f (ρAB) + J(A : C)ρAC ≤ S(ρA). (4.14)

The equality holds for ρABC pure.

Proof. If ρABC is not a pure state, there exists a purification ρABCE, such that we can separate the
composed Hilbert space in three CA ⊗CB ⊗CCE, then follows the last theorem:

J(A : CE)ρACE + E f (ρAB) = S(ρA), (4.15)

therefore as the classical correlations are monotonic under local maps, then taking the trace over
the system E we have J(A : CE)ρACE ≥ J(A : C)ρAC .

As the Shannon entropy of ρA represents the effective size of A in qubits [143], this size can
be viewed as the capacity of the system A makes correlations with other systems B and C [89]. In
other words, this means that the existence of the quantum or classical correlations between A and
another system B is enough to restrict the amount of quantum or classical correlations which A
can make with another system C.

As the quantumness of correlations present in a composed system can be viewed as the dif-
ference between the total correlations and the classical correlations, then for a pure tripartite state
ρABE ∈ D(CA ⊗ CB ⊗ CE), we can sum the mutual information I(A : E)ρAE on both sides of
the Koashi-Winter relation, Eq.4.3, and obtain a monogamy expression for the entanglement of
formation of the state ρAB in function of the quantum discord [60]:

D(A : E)ρAE = E f (ρAB)− S(A|E)ρAE , (4.16)

where D(A : E)ρAE is the quantum discord of the state ρAE with local measurement on the sub-
system E and S(A|E)ρAE = S(AE) − S(E) is the conditional entropy. As the label in the states
is arbitrary we can rewrite this expression changing the labels E → B and vice versa to obtain
D(A : B)ρAB = S(A|B)ρAB − E f (ρAE), taking the sum between this and Eq.4.16:

D(A : E)ρAE + D(A : B)ρAB = E f (ρAE) + E f (ρAB), (4.17)

as the total state is pure S(A|E)ρAE = −S(A|B)ρAB . This expression means that the total amount of
entanglement which one part can have with two different other parts is restricted by the sum of
the amount of quantum correlations which this part can have. This restriction is also valid in the
opposite side [60].

From Eq.4.16 it is possible to calculate an interesting expression which relates the irreversibility
of the entanglement distillation protocol and quantum discord [38]. This is irreversible because, as
we discussed in Chapter.3, the entanglement cost can be larger than the distillable entanglement,
in other words we need more maximally entangled states to create such a state than we can extract.
The entanglement cost can be defined as the regularization of the entanglement of formation [75]:

Definition 104. For a mixed state ρAB ∈ D(CA⊗CB) the regularization of the entanglement of formation
E f (ρAB) results in the entanglement cost:

EC(ρAB) = lim
n→∞

1
n

E f (ρ
⊗n
AB). (4.18)
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The Hashing inequality says that the distillable entanglement of ρAB is lower bounded by the
coherent information I(A〉B)ρAB = −S(A|B) [54]. As the coherent information can increase under
LOCC it is possible to optimize it under LOCC attaining the distillable entanglement [54].

Definition 105. The regularized coherent information after optimization over LOCC for a mixed state ρAB
gives the distillable entanglement:

ED(ρAB) = lim
n→∞

1
n

I(A〉B)(Vn⊗I)ρ⊗n
AB

, (4.19)

where Vn ⊗ I acts locally on the n copies of ρAB.

It is also possible to define the regularized quantum discord:

Definition 106. The regularized quantum discord can be defined as the quantum discord of a state ρAB in
the limit of many copies:

D∞(A : B)ρAB = lim
n→∞

1
n

D(A : B)ρ⊗n
AB

. (4.20)

Therefore similarly to Eq.4.16 in the limit of many copies:

D(A : E)ρ⊗n
AE

= E f (ρ
⊗n
AB)− S(A|E)ρ⊗n

AE
, (4.21)

taking the regularization we have:

D∞(A : E)ρAE = EC(ρAB)− S(A|E)ρAE , (4.22)

as the conditional entropy is additive S(A|E)ρ⊗n
AE

= nS(A|E)ρAE . Then for states which satisfy the
following theorem:

Theorem 107 (M. Cornelio et al. [38]). For every mixed entangled state ρAB, if

ED(ρAB) =
1
n

I(A〉B)(Vn⊗I)ρ⊗n
AB

(4.23)

EC(ρAB) =
1
k

EF(ρ
⊗n
AB), (4.24)

for a finite number of n and k, the entanglement is irreversible EC(ρAB) > ED(ρAB).

Taking the limit of many copies, the equation can be rewritten as:

D∞(A : E)σAE = EC(σAB)− ED(σAB), (4.25)

where σAB = (Vk ⊗ I)ρAB and ED(σAB) = kED(ρAB). The quantum discord D∞(A : E)σAE in this
context can be viewed as the minimal amount of entanglement lost in the distillation protocol,
for states belonging to the class described in the theorem [38]. This expression can be viewed
as an operational interpretation for quantum discord, where the quantum discord between the
system and the purification system restricts the amount of e-bits lost in the distillation process.
A similar interpretation can be obtained via the state merging protocol [83], as we discussed in
Chap.3, Alice (A), Bob (B) and the Environment (E) share a pure tripartite state ρABE, she would
like to send her state to Bob, keeping the coherence with the system E. They can perform this
protocol consuming an amount of entanglement in the process, the amount of entanglement is
the regularized quantum discord D∞(A : E)ρAE [32, 106].

In addition to the above relations, some upper and lower bounds between quantum discord
and entanglement of formation have been calculated via the Koashi-Winter relation and the prop-
erties of entropy [166–169]. The Eq.4.16 was also used to calculate the quantum discord and the
entanglement of formation analytically for systems with rank-2 and dimension 2⊗ n [33, 59, 92].
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4.2 Activation protocol

Since the beginning we are describing the measurement process as a classical statistical in-
ference obtained via a dephasing channel on the state. Physically we can describe it as an in-
teraction between the measurement apparatus and the system, followed by a projective mea-
surement on the apparatus. Suppose we have a state ρS = ∑k λk |k〉〈k| ∈ D(CS ), the input
state which take in account the state of the system and the state of the measurement appara-
tus can be described as ρS :M = ρS ⊗ |0〉〈0|M. The interaction between the system and the ap-
paratus ancillary state will be done via a unitary evolution: US :M ∈ U (CS ⊗ CM), such that
TrM[US :MρS :MU†

S :M] = ∑l ΠlρSΠ†
l . A unitary operation which satisfies this condition is given

by:
US :M |k〉S |0〉M = |k〉S |k〉M , (4.26)

where {|k〉} is an orthonormal basis in CS . If the orthogonal basis {|k〉〈k|} is the canonical basis,
this interaction is just the Cnot gate [114]. Therefore, after the interaction, the state will be:

ρ̃S :M = US :M(ρS :M)U†
S :M = ∑

k
λk |k〉〈k|S ⊗ |k〉〈k|M . (4.27)

The interaction between the system and the measurement apparatus results in a classical corre-
lated state between the system and the apparatus, hence applying a projective measurement on
the apparatus state we can recovery the state of the system.

Suppose now the state of the system is a composed system, for example a bipartite system1

CS = CA ⊗CB, and measurement will be performed locally in each system, then CM = CMA ⊗
CMB . The unitary which represents the interaction between the system and the measurement
apparatus is US :M = UA:MA ⊗UB:MB , and the post-measured state is:

ρ̃S = TrM[US :M(ρS ⊗ |0〉〈0|)US :M†] = ∑
k,l

ΠA
k ⊗ΠB

l ρABΠ†A
k ⊗Π†B

l . (4.28)

As described above, the measurement process consists in interacting the system with an ancilla,
which represents the measurement apparatus, and then applying a projective measurement on
the state of the apparatus. Although the dimension of the ancilla is arbitrary, we can choose to
couple an ancilla with the same size of the state, such that the measurement represents an general
POVM measurement. To obtain it we can write an input state ρS ′ :M = ρS ⊗ |0〉〈0|E ⊗ |0〉〈0|M,
where |0〉〈0|E is an ancillary state on space CE , then the interaction with the apparatus will be
given by a unitary evolution US ′ :M such that the post-measured state is:

ρ̃S = TrM[US ′ :MρS ′ :MU†
S ′ :M] = ∑

l
Πl(ρS ⊗ |0〉〈0|E )Πl , (4.29)

as by the Naimark’s theorem Tr[Πl(ρS ⊗ |0〉〈0|E )] = Tr[ElρS ] for El = (I ⊗ 〈0|)Πl(I ⊗ |0〉) it
represents a general measurement.

A general bipartite state can be written as ρ = ∑i,j |i〉〈j| ⊗Oi,j, where Oi,j is an Hermitean oper-
ator with trace different from zero. Then if the measurement is performed only on the subsystem
A, the state ρ̃S :M after the interaction with the measurement apparatus will be:

ρ̃S :M = US :M(ρS :M)U†
S :M (4.30)

= UA:MA ⊗ IB

(
∑
i,j
|i〉〈j|A ⊗ |0〉〈0|MA

⊗OB
i,j

)
U†

A:MA
⊗ IB (4.31)

= ∑
i,j
|i〉〈j|A ⊗ |i〉〈j|MA

⊗OB
i,j, (4.32)

1Although the description made here is also valid for multipartite systems, as has been done by the authors in one
of the seminal papers [129].
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where differently from the case which the measurement is applied on the whole system, for local
measurements the system and the measurement apparatus can be quantum correlated after the
interaction between them. The way how the interaction can create quantum correlations and what
kind of correlations can be created for a given state are managed by the following theorem:

Theorem 108 ( [129,150]). A state is classical correlated (has no quantumness of correlations) if and only
if there exists a unitary operation such that the post interaction state is separable with respect to system and
measurement apparatus.

Proof. Here we will prove the general case, which we can apply the measurement on both systems.

If : If the state is classical correlated:

ρS = ∑
k,j

pk,j
∣∣ak, bj

〉〈
ak, bj

∣∣
S , (4.33)

the state after the interaction with the measurement apparatus represented by the unitary opera-
tion UA:MA ⊗UB:MB will be:

ρ̃S :M = ∑
k,j

pk,j
∣∣ak, bj

〉〈
ak, bj

∣∣
S ⊗

∣∣ak, bj
〉〈

ak, bj
∣∣
M , (4.34)

which is clearly separable.

Only if : Given a general separable state between the system and the measurement apparatus:

ρ̃S :M = ∑
α

pα |φα〉〈φα|S ⊗ |ψα〉〈ψα|M , (4.35)

as the interaction is unitary, there is a convex combination such that ρS = ∑α pα |κα〉〈κα|, therefore
the interaction must act in the following way:

US :M |κα〉 |0〉 = |φα〉 |ψα〉 . (4.36)

On the other hand, as the state ρS is bipartite, the pure states {|κα〉} can be written in general as:
|κα〉 = ∑l,i cα

l,i

∣∣aα
l

〉 ∣∣bα
i
〉
, after the interaction the state is:

US :M |κα〉 |0〉 = ∑
l,j

cα
l,j

∣∣∣aα
l , bα

j

〉
S
⊗
∣∣∣aα

l , bα
j

〉
M

. (4.37)

As the state in Eq.4.37 must be separable, it implies that the coefficients must satisfy:

cα
i,j = c f (α)δi,j; f (α) and |c f (α)| = 1 (4.38)

where f (α) ∈N2. As f (α) are orthogonals it proves the theorem.

Therefore the local measurement process will create entanglement between the system and
the measurement apparatus, for any unitary interaction, when the state of the system has quan-
tum correlations. The unitary evolution depends to the basis of the ancillary pure state, which
is coupled on the system before the measurement. Then we can fix the basis of the ancilla and
change the basis of the system, in other words, we can rewrite the unitary evolution as US :M =
CS :M(US ⊗ IM), where for bipartite systems UM = UA ⊗ UB is a local unitary operation and
CS :M = CA:MA ⊗CB:MB is the system-apparatus Cnot gate, with the system as the control and the
apparatus as the target. It is possible to quantify the amount of quantum correlation in a given
system via the amount of entanglement which it can have with the measurement apparatus.
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Definition 109. Each measure of entanglement used to quantify the entanglement between the system and
the apparatus will result in a measure of quantumness of correlations.

QE(ρS ) = min
US

EQ(ρS :M). (4.39)

Different entanglement measures will lead, in principle, to different quantifiers for the quan-
tumness of correlations. The only requirement is that the entanglement measure be monotone
under LOCC maps [128, 129, 150]. Other measures of quantumness can be recovered with the
activation protocol: the quantum discord [150], one-way work deficit [150], relative entropy of
quantumness [129] and the geometrical measure of discord via trace norm [113], are some exam-
ples.

From the Eq.4.39 it is straightforward to calculate an interplay between entanglement and its
related measure of quantumness of correlation.

Proposition 110 (M. Piani and G. Adesso [113]). For ρAB ∈ D(CA ⊗CB):

QE(ρAB) ≥ EQ(ρAB), (4.40)

where QE and EQ are related via Eq.4.39.

Proof. Any bipartite state can be written as ρAB = ∑i,j |i〉〈j|A ⊗ OB
ij , suppose we are applying

the measurement just on the subsystem A, therefore after the interaction with the measurement
apparatus the state will be:

ρ̃AB:M = ∑
i,j
|i〉〈j|A ⊗OB

ij ⊗ |i〉〈j|M , (4.41)

as the measure of entanglement is monotone by definition:

E(ρ̃AB:M) ≥ E(ρ̃B:M) = E(ρA:B). (4.42)

To compare two measures of different quantities, in our case we are comparing quantumness
of correlation with quantum entanglement, it is necessary a common rule, the activation protocol
gives the rule to compare these two quantities and this rule says that the measures of quantumness
of correlations and quantum entanglement must be related via Eq.4.39.

4.3 Witnessed entanglement and geometrical measure of discord

In this section we will calculate a hierarchy relation between entanglement and quantumness
of correlation following a geometrical approach. The measure of quantumness of correlation used
will be the geometrical quantum discord via Schatten-p norm and we will quantify the entangle-
ment via the witnessed entanglement description. Our motivation to study the relation between
entanglement and geometrical discord follows from the following conjecture [66]:

Conjecture 111. Given a density matrix ρAB ∈ D(Cm ⊗Cn), where min{m, n} = p. Then the geomet-
rical quantum discord via Hilbert-Schmidt norm is always greater or equal to the square of the negativity:

D(2)(ρAB) ≥
4

p(p− 1)
N 2(ρAB). (4.43)

This bound for the Hilbert-Schmidt geometric discord has been proved for bipartite pure
states, two-qubit states in general, and some bipartite Bell-diagonal states [66]. We can under-
stand the validity of this conjecture for these cases and why it does not work in general via the
following theorem [47, 48].
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Theorem 112. Given a density matrix ρAB ∈ D(Cm ⊗ Cn), the geometrical discord for any Schatten-p
norm Dp(ρAB) and the witnessed entanglement Ew(ρAB) of ρAB satisfy the inequality:

D(p)(ρAB) ≥
(

Ew(ρAB)

‖Wρ‖q

)p

, (4.44)

where 1/p + 1/q = 1.

Proof. Given two operators A,B, which act on the same finite dimensional vector space Cd and the
Schatten p-norm ‖A‖p = Tr[(AA†)p/2]1/p, then follow the Holder inequality:

‖A‖p‖B‖q ≥ |Tr[AB†]|, (4.45)

where 1/q + 1/p = 1. The geometrical discord for a state ρAB ∈ D(CA ⊗CB) is:

Dp(ρAB) = ‖ρ− ξ̄‖p
p, (4.46)

where ξ̄ is the closest non-discordant state. The witnessed entanglement of ρ can be written as:

Ew(ρAB) = max{0,−Tr[Wρρ]}, (4.47)

where Wρ is an optimal entanglement witness of ρAB for a given measure of entanglement. Plug-
ging A = ‖ρ− ξ̄‖p

p and B = Wρ in Eq.4.47, we have:

‖ρ− ξ̄‖p‖Wρ‖q ≥ |Tr[(ρ− ξ̄)Wρ]|. (4.48)

If ρ is entangled and ξ̄ is separable we have |Tr[(ρ− ξ̄)Wρ]| ≥ |Tr[ρWρ]|, thus:

‖ρ− ξ̄‖p ≥
|Tr[ρWρ]|
‖Wρ‖q

, (4.49)

which in terms of geometric discord in Eq.4.46 reads:

D(p)(ρ) ≥
(

Ew(ρ)

‖Wρ‖q

)p

. (4.50)

As the witnessed entanglement is a measure of entanglement well defined also for multipartite
systems and the geometrical discord can be extended to multipartite states just optimizing over
the classical correlated states on the multipartite space, then the generalization of this bound for
multipartite cases follow directly from Eq.4.44. This expression is interesting because we can com-
pare the quantum discord - calculated geometrically - with any measure of entanglement which
can be written in the witnessed entanglement form. We cannot guarantee that this bound is tight
for every entanglement witness because the values of the entanglement for a given state ρ follow
an hierarchy relation and each measure of entanglement has the optimal entanglement witness
living in a different domain [23, 25].

For the case where the geometrical discord is calculated via the Hilbert-Schmidt norm:

D(2)(ρAB) = min
ξ∈ΩQ.C.

||ρAB − ξAX||22, (4.51)

where ξAX = ∑x pxρx ⊗ |x〉〈x| and ρAB, ξAX ∈ D(CA ⊗CB), we have in Eq.4.44 p = 2 and q = 2,
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therefore:

D(2)(ρ) ≥
(

Ew(ρ)

‖Wρ‖2

)2

, (4.52)

where ‖Wρ‖2
2 = Tr[W2

ρ ]. We can take as an example the entanglement witness of the Negativity.
The Negativity, N (ρ) ≡ (‖ρTA‖(1) − 1)/2, can also be expressed in terms of witnessed entangle-
ment as [25]:

N (ρ) = max{0,− min
0≤WTA≤I

Tr(Wρ)}. (4.53)

The optimal entanglement witness for the negativity is given by the partial transpose of the pro-
jector composed by the eigenvectors of the partial transpose of ρAB related to the negative eigen-
values, therefore we can name Wρ = PTA

− . The Hilbert-Schmidt norm of the optimal entanglement
witness will be:

‖Wρ‖2
2 = Tr[W2

ρ ] = Tr[(PTA
− )2] = Tr[P2

−] = Tr[P−], (4.54)

which is just the number of negative eigenvalues of the partial transpose of ρAB. For a pure state
|ψ〉 ∈ Cm ⊗Cn with Schmidt decomposition

|ψ〉 =
r

∑
i=1

ci |ai〉 |bi〉 , (4.55)

where r is the Schmidt number, the number of negative eigenvalues of the partial transpose of the
state is given by the following proposition:

Proposition 113. For a pure state with Schmidt decomposition as written in Eq.4.55, the spectrum of
ρTA = I⊗ T(|ψ〉〈ψ|) is: {cici, i = 1, ..., r} ∪ {±cicj, i < j = 1, ..., r} and for p = min(m, n) there are
p(|m− n|+ p)− r2 eigenvalues equal to zero.

Proof. Taking the partial transpose of |ψ〉:

I⊗ T(|ψ〉〈ψ|) =
r

∑
i,j=1

ci
∣∣ai
〉〈

aj
∣∣⊗ ∣∣bj

〉〈
bi
∣∣ , (4.56)

this matrix can be diagonalized in blocks, we have inside it some matrices which can be diagonal-
ized easily, we have one diagonal matrix in the form:

c1c1 · · · 0 · · · 0
. . .

0 · · · cici · · · 0
. . .

0 · · · 0 · · · crcr

 , (4.57)

whose eigenvalues are {cici, i = 1, ..., r} and the respective eigenvectors are {|ai〉 |bi〉} . We also
have r(r− 1)/2 2× 2 matrices in the form:(

0 ci+1ci
ci+1ci 0

)
, (4.58)

whose eigenvalues are {±ci+1ci} and the eigenvectors are {|ai + 1〉 |bi〉 ± |ai〉 |bi + 1〉}. The re-
maining eigenvalues are zero, as the matrix is mn× mn, we have mn− r2 zero eigenvalues, and
as p = min(m, n) then mn = p(|m− n|+ p), which proves the proposition.

Therefore the partial transpose of a pure state has r negative eigenvalues, which is the Schmidt
number. As r ≤ p = min(m, n) the number of negative eigenvalues of the partial transpose are
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at most the dimension of the subsystem with the smallest dimension. Hence we can rewrite the
Eq.4.52 for the Negativity of pure states as:

D(2)(ρ) ≥
N 2(Ψ)

p
, (4.59)

where Ψ = |ψ〉〈ψ| and p = min(m, n). For systems with the same dimensions and m = n = d > 3,
the bound in Eq.4.52 is tighter than the bound in the Conjecture.111.

For a general density matrix ρ ∈ D(Cm ⊗Cn), with an arbitrary rank, the spectrum of the par-
tial transposed matrix I⊗ T(ρ) in function of the eigenvalues of ρ is not known, nor the number of
negative eigenvalues in function of the rank or the dimension. However the number of negative
eigenvalues is bounded by the dimension of the density matrix via the following theorem:

Theorem 114. The number of negative eigenvalues of the partial transpose of ρ ∈ D(Cm ⊗Cn) is always
less than (m− 1)(n− 1) [3, 135]

Proof. A straightforward proof can be found on theorem 1, in the reference [135]. The idea to prove
that the matrix I⊗ T(ρ) cannot have (m− 1)(n− 1) + 1 negative eigenvalues.

The proof that this bound is tight is not known, although numerically it was proved for some
cases [88, 135]. Therefore we can rewrite the inequality Eq.4.52 as:

D(2)(ρ) ≥
N 2(ρ)

(m− 1)(n− 1)
. (4.60)

Then we can compare this bound with the Conjecture.111 and we realize that we cannot guar-
antee that the conjecture is valid at all if the bipartite system has one dimension much greater
than the other, for example if the system has dimension 2⊗ n we have 2N 2(ρ) ≥ N 2(ρ)

(n−1) . Indeed
a counter-example for the conjecture was showed by S. Rana and P. Parashar for a system with
dimension 2⊗ 3 [136]. In that work they claim that the entanglement cannot be a lower bound for
geometrical discord, however they just showed a counterexample for the conjecture. The entan-
glement can be a lower bound for geometrical discord as showed in Eq.4.44, the important point
is: for geometrical discord calculated via Hilbert-Schmidt norm, the Hilbert-Schmidt norm of the
witnessed entanglement must be take into account, then we have a rule and we can compare.

Another interesting measure of discord to discuss is the geometrical discord calculated via the
trace norm. For a bipartite state ρAB ∈ D(CA ⊗CB) the discord will be:

D(1)(ρ) = min
ξ∈ΩQ.C.

||ρAB − ξAX||1. (4.61)

For this measure of discord we can calculate a linear bound between quantum discord and wit-
nessed entanglement from Eq.4.44, as for p = 1 we have q = ∞:

D(1)(ρ) ≥
Ew(ρ)

‖Wρ‖∞
, (4.62)

as we discussed in Chap.3 the trace-norm is the only norm such that the Schatten-p discord is
an acceptable measure of the quantumness of correlations. This bound is interesting because the
trace-norm is the best norm to distinguish the states, therefore we can write it linearly for the ran-
dom robustness of entanglement. As discussed in Chap.3 the random robustnessRr(ρ) quantifies
the resilience of the entanglement to white noise [158], and its witnessed entanglement is given
by [23]:

Rr(ρ) =
1
d

max (0,− min
{W∈W | Tr(W)=1}

Tr(Wρ)). (4.63)

The random robustness is a subclass of the generalized robustness, with an extra restriction on
the domain of the optimal entanglement witness Tr(WRR = 1). As the optimal entanglement
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witness of the generalized robustness lives in the domain WGR ≤ I [25], which implies that the
biggest eigenvalue of the optimal entanglement witness of the random robustness must be be-
tween [−1, 1], in other words, the domain of the optimal entanglement witness for the random
robustness must satisfy ||WRR||∞ ≤ 1. In this way the infinity norm of the entanglement witness
in the numerator of the Eq.4.62 contributes to the inequality to be tighter. Which implies that the
inequality can be tight. An example is for 2⊗ 2 systems [48]. This property of the entanglement
witness of the random robustness also implies that we can rewrite Eq.4.62 in a linear form:

D(1)(ρ) ≥
ERr

||WRR||∞
≥ ERr . (4.64)

In last section we showed via the activation protocol that each measure of quantumness of corre-
lation has an analogous measure of entanglement which is a linear lower bound for the quantum-
ness of correlation. In Eq.4.64 we calculated a linear lower bound for the measure of quantumness
of correlations related to the witnessed entanglement of the random robustness. This can be inter-
esting because the witnessed entanglement of the random robustness can be calculated numeri-
cally via semidefinite programs [26, 27], which make comparison between quantumness of corre-
lation and entanglement calculable. The bounds obtained in this section are a consequence of the
geometry of the Hilbert space. To compare two different physical properties is always necessary
a rule to the comparison makes sense, therefore we compare a geometrical measure of quantum-
ness of correlation, calculated via Schatten-p norm, with a geometrical measure of entanglement,
calculated via the entanglement witness formalism.
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Chapter 5

Exploring the embedding in the context
of local measurements

In this chapter we discuss the comparison between measurements via POVM and via projec-
tive measurements in the context of accessible information and discrimination of quantum states.
We shall discuss that the former is related to the quantum discord of classical-quantum states,
then the results obtained for it can be applied for the quantum discord. For the later we propose a
dephased-POVM to obtain the projective measurement in this context. Based in this definition we
introduce the concept of projectiveness of a given POVM, which is the shortest distance between
the POVM and its dephased version. As an ensemble of quantum states ξ = {px, ρx}x is prepared
according to a some classical random variable X, we can approach the measurement on an en-
semble as a local measurement on a composed system. This system is composed by the classical
random variable and the quantum system prepared according it:

ρXS = ∑
x

px |x〉〈x| ⊗ ρx, (5.1)

where ρX = ∑x px |x〉〈x| is the state of the classical random variable X, and ρS = ∑x pxρx is the
state of the system. Therefore the ability to extract information and discriminate the states of an
ensemble is intrinsically related to the quantumness of correlations of the state composed by the
classical random variable and the quantum system prepared according it. Then we also discuss
the comparison between POVM and projective measurement in the optimization of quantumness
of correlations, first we discuss the quantum discord and in the end of the chapter the 1-way work
deficit.

5.1 Accessible information: POVM vs Projective Measurement

In this section we shall introduce the concept of accessible information, and the amount of
information which can be extracted from a finite ensemble of states, via a given POVM or a pro-
jective measurement. A particular class of ensemble which we will discuss is the G-covariant
ensemble, which is generated via the action of the unitary representation of a group on the vector
space. Finally we study an ensemble generated via the action of the ZM group on 2-dimensional
real space. We shall compare the information which can be extracted via projective measurement
and via POVM.

5.1.1 Accessible information for real symmetric states

In this section we will illustrate a special kind of ensemble, the so called G-covariant ensemble.
This class of ensembles is generated via the action of a group G on the Hilbert space. We are
interested in these ensembles because the POVM which optimizes the accessible information has
some friendly properties which permit us to calculate analytically a 2-dimensional ensemble of

79
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real states. We also compare the optimal strategy to maximize the accessible information with the
optimal accessible information restricted to projective measurements. Let us first introduce the
concept of G-covariant ensembles.

Definition 115. A finite ensemble ξ of states is named G-covariant, or invariant under the action of a
group G, if there is a unitary representation Ug of G such that for all states ρg = UgρU−1

g is in the
ensemble whenever ρ is in the ensemble.

For a G-covariant ensemble, the POMV which optimizes the accessible information is also
G-covariant [45, 138].

Theorem 116. Let ξM = {pi, ρi}i=0,...,M−1 be an ensemble of real states, ρi ∈ Rd, if it is G-covariant
under the action of the irreducible unitary representation Uk ∈ U(Cd) of G with size |G| = M ≥ d, there
exists a state |α〉 ∈ Rd, such that the POVM A, with elements

Ak =
d
M

Uk |α〉〈α|U†
k , (5.2)

where k = 0, ..., M− 1, optimizes the accessible information.

Proof. Given A = {Al}l=1,...,n a rank-1 POVM which represents an optimal strategy to extract
information from ξM, taking just the real part of A, Ã = Re(A) = {Ãl}l=1,...,n, we have:

• as the elements Ai are positive, Ãi =
Ai+A†

i
2 is positive too;

• as ∑i Ai = I, then ∑i Ãi = ∑i
Ai+A†

i
2 = I;

• given a state ρ ∈ D(Cd), the probability elements remain the same:

Tr[Ãiρ] = Tr

[
Ai + A†

i
2

ρ

]
=

Tr[Aiρ] + Tr[A†
i ρ]

2
= Tr[Aiρ]. (5.3)

Therefore the POVM Ã remains an optimal measurement for accessible information, although
we cannot guarantee it remains rank-1. Decomposing Ã in a rank-1 POVM B = {Bk}k=1,...,m, for
m ≥ n, in this way each element Ai = ∑ bkBki. We can express the accessible information via the
Shannon relative entropy (2):

I(ξM) = I(ξM : A) = H(p(x, y)||px p(y)), (5.4)

given

p(x, y) = pxTr[Ayρx] = px ∑
z

bzTr[Bzyρx]; (5.5)

p(y) = ∑
x

∑
z

pxbzTr[Bzyρx], (5.6)

then

H(p(x, y)||px p(y)) = H

(
∑

z
bz px p(zy|x)||∑

z
bz px p(zy)

)
(5.7)

≤ ∑
z

bzH(px p(zy|x)||px p(zy)) (5.8)

= ∑
z

bz ∑
x

px ∑
y

p(zy|x) log
(

px p(zy|x)
px p(zy)

)
(5.9)

= ∑
x

px ∑
z

∑
y

bz p(zy|x) log
(

bz px p(zy|x)
bz px p(zy)

)
(5.10)

= I(ξM : B). (5.11)
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In Eq.5.8 we used the convexity of the relative entropy, in the Eq.5.9 we wrote the relative entropy
by the definition (2). As the accessible information is given by the optimal measurement, the
POVM B must be an optimal measurement too.

The POVM B is composed by rank-1 real elements. We can define another POVM C with M ·m
elements:

Ckg =
1
M

UgBkU†
g . (5.12)

Now we must check that I(ξM : B) = I(ξM : C). The conditional probability to get an outcome
Ckg will be:

p(kg|i) = Tr[Ckgρi] =
1
M

Tr[UgBkU†
gρi], (5.13)

as the set of states ρi is invariant under the action of the group G:

∑
i

pi p(kg|i) = 1
M ∑

i
piTr[UgBkU†

gρi] =
1
M ∑

i
piTr[Bk(UgρiU†

g)
†], (5.14)

thus the action of the group G will imply in just a reordering in the sum, thus

∑
i

pi p(kg|i) = 1
M ∑

i
piTr[Bkρi] =

1
M ∑

i
pi p(k|i). (5.15)

Therefore taking the mutual information:

I(ξM : C) = ∑
i

pi ∑
kg

p(kg|i) log
(

p(kg|i)
∑l pl p(kg|l)

)
(5.16)

= ∑
i

pi ∑
kg

Tr[Ckgρi] log
(

Tr[Ckgρi]

∑l pl p(k|l)/M

)
(5.17)

= ∑
i

pi ∑
kg

Tr[Bk(UgρiU†
g)

†] log

(
Tr[Bk(UgρiU†

g)
†]

∑l pl p(k|l)/M

)
(5.18)

= I(ξM : B). (5.19)

Thus C remains optimal. Finally, for each Bl/Tr[Bl ] we have another POVM Dl , as enunciated by
the Schur’s lemma, with elements Dl

g = d
M UgBlU†

g/Tr[Bl ]. Hence the POVM C can be written as a
convex combination of Dl :

C =
⊕

i

Tr[Bi]

d
Di, (5.20)

therefore via Proposition 48:

I(ξM : C) ≤∑
i

Tr[Bi]

d
I(ξM : Di) ≤ max

i
I(ξM : Di). (5.21)

As C is optimal, at least one Di is optimal, which proves the theorem.

This theorem was enunciated and proved restricted to the real space, although it is also valid
when the representation of the group acts irreducibly in the whole complex space [45]. We just
proved for the real space because we shall study an ensemble composed by real symmetric states,
in this way ensuring the validity of the description hereafter. If the representation of the group
is not irreducible this theorem is not valid. In this case we must take in account the number of
reductions, and we have one POVM for each irreducible representation. The optimal POVM will
be a convex combination of these POVMs [50]. P. Shor calculated numerically the accessible infor-
mation for a G-covariant ensemble of real states in a 3-dimensional space, and he has shown that
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in order to attain the accessible information is necessary a convex combination of two POVMs
with 3 elements each [144].

Lemma 117. The information extracted from a covariant ensemble of equiprobable states ξM = {1/M, ρx}x=0,...,M−1
and a covariant POVM A with elements Ay = d

M Uy |α〉〈α|U†
y , for a given |α〉 ∈ Cd can be written as:

I(ξM : A) = log d +
d
M

M−1

∑
x=0
〈α| ρx |α〉 log 〈α| ρx |α〉. (5.22)

Proof. Given the conditional probability p(x|y) = Tr[ρx Ay] the joint probability will be:

p(x, y) =
1
M

Tr[ρx Ay] (5.23)

=
d

M2 Tr[ρxUy |α〉〈α|U†
y ] (5.24)

=
d

M2 Tr[(UyρxU†
y )

† |α〉〈α|]. (5.25)

Therefore the probability to get the output x given ξ = 1
M ∑x UxρU†

x is :

p(y) = ∑
x

p(x, y) =
d

M2 ∑
x

Tr[(UyρxU†
y )

† |α〉〈α|], (5.26)

as the action of the group in the states will just reorder the sum, hence:

∑
x

p(x, y) =
d

M2 ∑
x

Tr[U†
x ρUx |α〉〈α|], (5.27)

as Ay are POVM elements, ∑y Ay = ∑y
d
M Uy |α〉〈α|U†

y = I, hence:

∑
x

p(x, y) =
1
M

Tr[ρ] =
1
M

. (5.28)

In this way we have ∑x p(x, y) = ∑y p(x, y) = 1/M.
Taking the Shannon mutual information for the joint probability distribution {p(x, y)}x,y=0,...,M−1:

H(X : Y) = H(X) + H(Y)− H(X, Y) (5.29)

H(X : Y) = 2 log (M) + ∑
x,y

d
M2 〈α|U

†
y ρxUy |α〉 log

[
d

M2 〈α|U
†
y ρxUy |α〉

]
, (5.30)

for each element y the action of the group will reorder the sum over x, therefore we can relabel
the sum such that:

H(X : Y) = 2 log (M) + M ∑
x

d
M2 〈α| ρx |α〉 log

[
d

M2 〈α| ρx |α〉
]

, (5.31)

H(X : Y) = log (d) +
d
M ∑

x
〈α| ρx |α〉 log [〈α| ρx |α〉]. (5.32)

Given a density matrix ζ ∈ D(Cd), we have a set of states UgζU†
g covariant under the action

of the group G, as the unitary representation of this group {Ug}g=0,...,M−1 is irreducible in the
space Cd, by the Schur’s lemmas an operator which commutes with all elements of the irreducible
representation will be a constant times the identity in Cd. It is straightforward to check that the
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operator K = ∑g UgζU†
g commutes with the matrices {Uh}h=0,...,|G|−1:

KUh = ∑
g

UgζU†
gUh = ∑

g

I︷ ︸︸ ︷
UhU†

h UgζU†
gUh (5.33)

= ∑
g

UhUgh−1 ζU†
gh−1 = Uh ∑

l
UlζU†

l (5.34)

= UhK. (5.35)

Therefore we have K = ∑g UgζU†
g = λI, and we can determine λ taking the trace of K:

Tr[K] = ∑
g

Tr[UgζU†
g ] = |G|Tr[ζ] (5.36)

= Tr[λI] = dλ, (5.37)

hence λ = |G|
d and:

∑
g

UgζU†
g =
|G|
d

I, (5.38)

which also guarantees that the set Ay = d
M Uy |α〉〈α|U†

y is a set of elements of a POVM. This also
gives the following property for the states ξ = 1

|G| ∑g UgρU†
g ∈ D(Cd):

ξ =
1
|G|∑g

UgρU†
g =

I

d
. (5.39)

Therefore the action of the irreducible representation of a group gives a set of states symmetric
enough to the convex combination of them, with the same probability, be the maximal mixture
state in the representation space.

Case of Study: d = 2

An example of group which we can study is the real symmetric permutation group ZM, which
is the set of integer numbers with the operation of sum modulo M. The accessible information of
the covariant ensemble generated via this group in a 2-dimensional Hilbert space was investigate
by A. Peres and W. Wotters [125], where the authors studied the incapacity to access the infor-
mation performing local measurements. Curiously this work was the seed for the development
of the quantum teleport [17]. Another interesting study about this ensemble was performed by C.
Bennett et. al [18], where the authors discuss quantum correlations and nonlocal action without
the presence of entanglement between the parts.

Considering the ensemble of real equiprobable states ξ = {1/M, |ψk〉〈ψk|}, where |ψk〉 ∈ Rd

are generated via the action of the unitary representation {Uk}k=0,...,M−1 of the group ZM. For
this class of states, the irreducibility of this representation is restricted to the real space, thus Uk ∈
U (Rd). For a 2-dimensional Hilbert spaces, this representation is given by Uk = exp (−iπσyk/M),
where σy is the Pauli matrix:

σy =

(
0 −i
i 0

)
. (5.40)

As this representation group is irreducible over the action on the real space, the covariant ensem-
ble must be a set of real states, which in the Bloch sphere is the XZ-plane:

|ψ0〉 =
(

1
0

)
, |ψk〉 = Uk |ψ0〉 =

(
cos (πk/M)
sin (πk/M)

)
. (5.41)
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For M = 2, it is clear that the states |ψ0〉 =
(

1
0

)
and |ψ0〉 =

(
0
1

)
are orthogonal, then for any

M =even this orthogonality symmetry holds. It is enunciated in the following proposition:

Proposition 118. If the number of states in the ensemble ξ = {1/M, |ψk〉〈ψk|} is even, where the states
|ψk〉 are given in 5.41, the optimal strategy to access the information is a projective measurement.

Proof. This occurs because the ensemble is composed by M/2 pairs of orthogonal states. Given
the state written as a convex combination of the states in the ensemble with equal probability:

ρ =
1
M

M−1

∑
k=0
|ψk〉〈ψk| =

1
M

M/2−1

∑
k=0

|ψk〉〈ψk|+
1
M

M−1

∑
k=M/2

|ψk〉〈ψk| = ρ0 + ρM/2, (5.42)

where

ρM/2 =
1
M

M−1

∑
k=M/2

|ψk〉〈ψk| =
1
M

M/2−1

∑
k=0

|ψk+M/2〉〈ψk+M/2| , (5.43)

therefore the states in the ensemble will be

|ψk+M/2〉 =
(

cos [π(k + M/2)/M]
sin [π(k + M/2)/M]

)
=

(
cos [πk/M + π/2]
sin [πk/M + π/2]

)
=

(
− sin (πk/M)
cos (πk/M)

)
, (5.44)

where 〈ψ0|ψM/2〉 = 0, hence the states ρ0 and ρM/2 have orthogonal projections, in other words for
each pure state in the state ρ0 there is another pure state in ρM/2 orthogonal to it. By the symmetry
of the states, each orthogonal pair forms an optimal projective measurement.

This symmetry will appear again when we compare the accessible information with the infor-
mation extracted from an ensemble restricted to projective measurement, we will see that for M
even this information is the accessible information.

For a covariant ensemble, given the theorem 116, the elements of the POVM A which opti-
mizes the accessible information are in the form:

Ak =
2
M

Uk |α〉〈α|U†
k , (5.45)

such that given Uk = exp (−iπkσy/M) and |α〉 in the XZ-plane, elements of the POVM A are the
vectors

|αk〉 =
√

2
M

Uk |α〉 =
√

2
M

(
cos (θ + πk/M)
sin (θ + πk/M)

)
,

where θ is the angle between the vector |α〉 and the Z-axis in the Bloch sphere. In this way we can
write the information extracted from the ensemble ξM in function of θ and find the angle which
optimizes the accessible information. The conditional probability p(y|x) = |

〈
αy
∣∣ψx
〉
|2 to give the

output
∣∣αy
〉〈

αy
∣∣ given the input state |ψx〉〈ψx| will be:

p(y|x) = |
〈
αy
∣∣ψx
〉
|2 (5.46)

=

(√
2
M

[cos (θ + πy/M) cos (πx/M) + sin (θ + πy/M) sin (πx/M)]

)2

(5.47)

=
2
M

cos [θ − π(x− y)/M]2 (5.48)

=
2
M

(
1 + cos [2θ − 2π(x− y)/M]

2

)
(5.49)

=
1
M

(1 + cos [2θ − 2π(x− y)/M]) , (5.50)

where |ψx〉 = cos (xπ/M) |0〉+ sin (kπ/M) |1〉 and
∣∣αy
〉
=
√

2/M[cos (θ + πy/M) |0〉+ sin (θ + πy/M) |1〉].
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Therefore the joint probability is p(x, y) = px p(y|x) = 1
M p(y|x) = 1

M2 [1 + cos [2θ − 2π(x− y)/M]]
and the marginal probability distribution p(y) = ∑x p(x, y) will be:

p(y) =
1
M ∑

x
p(x, y) =

1
M2 ∑

x
[1 + cos (2θ − 2π(x− y)/M)] (5.51)

=
1

M2 ∑
l
[1 + cos (2θ − 2πl/M)] (5.52)

=
1

M2 ∑
l
[1 + cos (2θ) cos (2πl/M) + sin (2θ) sin (2πl/M)] (5.53)

= 1/M, (5.54)

where in Eq.5.52 we relabeled the sum with l = x− y and reordered the terms, in Eq.5.54 we used
the trigonometric property of ∑k cos πk/M = ∑k sin πk/M = 0. Hence the information extracted
from ξM with the POVM A can be written in function of θ as:

I(θ) = 2 log M +
1

M2 ∑
x,y
{1 + cos [2θ − 2π(x− y)/M]} log

1
M2 {1 + cos [2θ − 2π(x− y)/M]},

=
1

M2 ∑
x,y
{1 + cos [2θ − 2π(x− y)/M]} log {1 + cos [2θ − 2π(x− y)/M]}, (5.55)

=
1
M ∑

l
{1 + cos [2θ − 2πl/M]} log {1 + cos [2θ − 2πl/M]}, (5.56)

where in Eq.5.55 we used the multiplication property of the log function and in Eq.5.56 we rela-
beled the sum with l = x− y and used the same trick performed in Eq.5.54. The value of θ which
optimizes the accessible information is ruled by the following proposition:

Proposition 119 (Optimal strategy for accessible information [138]). For the ensemble of real symmet-
ric states ξM = {1/M, |ψk〉〈ψk|}k=0,...,M−1, where the states |ψ〉 ∈ R2 are given by Eq.5.41, each element
of the POVM which optimizes the accessible information is orthogonal with one state in the ensemble and
it has the form Al =

d
M Ul |α〉〈α|U†

l .

Proof. Given Eq.5.56:

I(θ) =
1
M ∑

l
[1 + cos (2θ − 2πl/M)] log [1 + cos (2θ − 2πl/M)], (5.57)

as | cos [2θ − 2πl/M]| ≤ 1 we can expand I(θ) with the aid of the expression 1

(1 + x) log (1 + x) = x +
∞

∑
n=2

(−1)n

n(n− 1)
xn |x| ≤ 1, (5.58)

thus:

I(θ) =
1
M ∑

l

[
cos (2θ − 2πl/M) +

∞

∑
n=2

(−1)n

n(n− 1)
cos (2θ − 2πl/M)n

]
, (5.59)

=
1
M ∑

l

[
∞

∑
n=2

(−1)n

n(n− 1)
cos (2θ − 2πl/M)n

]
, (5.60)

=
1
M ∑

l

[
∞

∑
n=1

(−1)2n

2n(2n− 1)
cos (2θ − 2πl/M)2n +

∞

∑
n=1

(−1)2n+1

2n(2n + 1)
cos (2θ − 2πl/M)2n+1

]
,

1This expression is the expansion for the natural logarithm, as we can change this expansion for the logarithm in
the basis 2 just multiplying for 1/ ln 2 in the series, although to clear the notation we shall omit this constant.
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where in Eq.5.60 we used that ∑l cos [2θ − 2πl/M] = 0 and in the last expression we separated
the series in even and odd terms. Getting the power reduction formula for cosine:

cosm ω =
1

2m

(
m

m/2

)
+

2
2m

m/2−1

∑
k=0

(
m
k

)
cos (m− 2k)ω for m even, (5.61)

cosm ω =
2

2m

(m−1)/2

∑
k=0

(
m
k

)
cos (m− 2k)ω for m odd, (5.62)

hence for ω = 2θ − 2πk/M,

I(θ) =
1
M

M−1

∑
l=0

∞

∑
n=0

(−1)2n

2n(2n− 1)

{
1

22n

(
2n
n

)
+

2
22n

n−1

∑
k=0

(
2n
k

)
cos [(2n− 2k)(2θ − 2πk/M)]

}
+

+
(−1)2n+1

2n(2n + 1)

{
2

22n+1

n

∑
k=0

(
2n + 1

k

)
cos [(2n + 1− 2k)(2θ − 2πk/M)]

}
(5.63)

as we have

∑
k

cos (2θ − 2
kπ

M
L) = cos 2θL ∑

k
cos

2πk
M

L + sin 2θL ∑
k

sin
2πk
M

L (5.64)

and using the Lagrange’s trigonometric identity:

M−1

∑
k=0

cos ωk = −1
2
+

sin (M + 1/2)ω
2 sin ω/2

, (5.65)

M−1

∑
k=0

sin ωk =
1
2

cot (ω/2)− cos (M + 1/2)ω
2 sin ω/2

. (5.66)

In our case we have ω = 2πL/M, thus

M−1

∑
k=0

cos 2πL/Mk = MδL,Mq, (5.67)

M−1

∑
k=0

sin 2πL/Mk = 0, (5.68)

for q = integer. Replacing L = 2n + 1− 2k in the mutual information and applying the last two
results we have:

I(θ) =
∞

∑
n=0

1
22n

(
2n
n

)
+

n

∑
k=0

∞

∑
n=0

∞

∑
q=0

[ (−1)2n

2n(2n− 1)
2

22n

(
2n
k

)
δ2n+2k,qM + (5.69)

+
(−1)2n+1

2n(2n + 1)
2

22n+1

(
2n + 1

k

)
δ2n+2k−1,Mq

]
cos (2θMq),

I(θ) =
∞

∑
n=0

1
22n

(
2n
n

)
+

∞

∑
q=0

f (qM)(−1)qM cos (2θMq), (5.70)

where

f (qM) = ∑
n

∑
k

1
2(2l + qM)(2l + qM− 1)

1
2(2l + qM− 1)

(
2l + Mq

k

)
(δ2n+2k,qM + δ2n+2k−1,Mq),

(5.71)
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as f (qM) does not depend on θ, the function I(θ) is maximized when

(−1)qM cos (2θMq) = 1, (5.72)

which as Mq is an integer is solved for θ = π/2 for all M, thus the state |α〉 = |1〉. Therefore the
POVM which optimizes the accessible information will be such that the elements are rank-1 and
each one is orthogonal to the states in the ensemble:

〈αl |ψl〉 = 0 and 〈αl |ψk〉 6= 0 for k 6= l. (5.73)

Physically this result means that when we get the output
∣∣αj
〉

we can with certainly that
the state

∣∣ψj
〉

was not the input. The optimal strategy for accessible information is not unique,
thus we can choose for example the optimal POVM with the smaller amount of elements. E.
Davies showed that for an ensemble of real states the optimal POVM can be composed at least
by d(d − 1)/2 [45]. For the ensemble of real states 5.41 Sasaki et. al gave a recipe to construct
an optimal POVM with 3 elements, which atain the Davies bound [138]. For an ensemble with
3 elements composed by 3-dimensional real symmetric states P. Shor calculated numerically an
optimal POVM with 6 elements, although he used a reducible representation of the permutation
group, thus the optimal POVM must be composed via convex combination of two POVMs, where
which one has 3 elements, as we discussed [144]. For ensemble of states with more elements than
the Davies bound the optimal strategy can be chosen based on the coding-decoding process to
attain the channel capacity of the measurement map [45]. With this idea is possible to propose a
measure of information power of measurement maps [41].

Substituting the optimal strategy on Eq.5.22, the accessible information will be:

I(ξM) = log 2 +
2
M

M−1

∑
x=0

sin2 xπ/M log sin2 xπ/M, (5.74)

where 〈α| ρx |α〉 = (〈α|ψk〉)2 = sin2 xπ/M. We shall calculate the maximal amount of information
which can be extracted from ξM restricting the strategy to projective measurements. As the states
in the ensemble are restricted to the XZ-plane in the Bloch sphere, we expect that the optimal
projective measurement lives in the XZ-plane too, because components outside this plane do not
contribute to the expectation values of the measurement observables. Hence we can restrict the
projective measurement P = {|φ0〉〈φ0| , |φ1〉〈φ1|} to live in this plane:

|φ0〉 = V |0〉 = cos θ |0〉+ sin θ |1〉 (5.75)
|φ1〉 = V |1〉 = − sin θ |0〉+ cos θ |1〉 , (5.76)

where:

V =

(
cos θ − sin θ
sin θ cos θ

)
.

The conditional probability p(y|x) to give the output φy when the input is the state |ψx〉 is defined
as:

p(y|x) = | 〈y|V |ψx〉 |2, (5.77)

thus we have the joint probability distribution p(x, y) = 1/M| 〈y|V |ψx〉 |2, the marginal distribu-
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tion will be:

px =
1

∑
y=0

P(x, y) = 1/M 〈ψx|
(

∑
y

V |y〉〈y|V†

)
|ψx〉 = 1/M (5.78)

p(y) =
M−1

∑
x=0

P(x, y) = 1/M 〈y|V†

(
∑
x
|ψx〉〈ψx|

)
V |y〉 = 1/2. (5.79)

The Shannon entropy for the joint probability and the marginal distributions will be:

H(X) = log M (5.80)
H(Y) = log 2 (5.81)

H(X, Y) = log M− 1
M ∑

x,y
| 〈y|V |ψx〉 |2 log (| 〈y|V |ψx〉 |2), (5.82)

therefore the information extracted from ξM via the projective measurement P will be:

I(ξM : P) = H(X) + H(Y)− H(X, Y) = log 2 +
1
M ∑

x,y
| 〈y|V |ψx〉 |2 log (| 〈y|V |ψx〉 |2), (5.83)

where elements of the series in y are:

〈0|V† |ψk〉 = cos θ cos πk/M + sin θ sin πk/M = cos (θ − πk/M) (5.84)
〈1|V† |ψk〉 = cos θ sin πk/M− sin θ cos πk/M = − sin (θ − πk/M) (5.85)

as they are real we have:

I(ξM : P) = log 2 +
1
M ∑

x
(cos (θ − πk/M))2 log [(cos (θ − πk/M))2] + (5.86)

+
1
M ∑

x
(sin (θ − πk/M))2 log [(sin (θ − πk/M))2].

Now our challenge is to calculate the value of θ which maximizes Eq.5.86, thus follows the propo-
sition:

Proposition 120 (Optimal projective measurement to extract information [49]). The elements of
the optimal projective measurement P ∈ P(CB, CB) to extract the information from the ensemble of real
symmetric states ξM = {1/M, |ψk〉〈ψk|}k=0,...,M−1, where |ψk〉 ∈ R2 is given by

|ψk〉 = cos (πk/M) |0〉+ sin (πk/M) |1〉 .

Proof. We shall calculate the point of maximum using the same tricks used to get the optimum
POVM in the Proposition.119. Substituting the following trigonometric identities:

sin2 x =
1− cos 2x

2
and cos2 x =

1 + cos 2x
2

, (5.87)

then replacing, just to clear the notation, xk = θ − πk/M in Eq.5.86:

I(ξM : P) = 1
2M ∑

k
(1 + cos 2xk)

2 log [(1 + cos 2xk)
2] +

1
2M ∑

k
(1− cos 2xk))

2 log [(1− cos 2xk))
2].

(5.88)
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Given again the series expansion:

(1± x) log (1± x) = ±x +
∞

∑
n=2

(−1)n

n(n− 1)
(±x)n |x| ≤ 1, (5.89)

substituting in Eq.5.88:

I(ξM : P) = 1
2M

M−1

∑
k=0

∞

∑
n=2

(
(−1)n

n(n− 1)
(cos 2xk)

n +
(−1)n

n(n− 1)
(−1)n(cos 2xk)

n
)

, (5.90)

as the n =odd terms will cancel:

I(ξM : P) = 1
2M

M−1

∑
k=0

∞

∑
n=1

(
(−1)2n

2n(2n− 1)
(cos 2xk)

2n
)

. (5.91)

Given the power reduction formula Eq.5.61 for even power and summing over k:

∑
k

cos(2n) [2xk] =
1

22n

(
2n
n

)
+

2
22n

n−1

∑
l=0

(
n
l

)
∑

k
cos [(2n− 2l)2xk], (5.92)

repeating the same steps of calculus performed from Eq.5.65 to Eq.5.67, the mutual information
will be:

I(ξM : P) =
∞

∑
n=1

1
22n

(
2n
n

)
+

n

∑
l=0

∞

∑
n=1

2
22n

(
2n
l

) ∞

∑
q=0

cos (2θ[2n− 2l])δ2n−2l,Mq. (5.93)

The term which depends on θ is

cos (2θ[2n− 2l])δ2n−2l,Mq = cos (2θMq)δ2n−2l,Mq,

as Mq = 2n− 2l =even and M is odd implies q is odd, therefore

cos (2θMq) = cos (2θ2p),

we attain the maximum when cos (2θ2p) = 1, or 2θ2p = 2pπ, then the mutual information I(ξ :
P) is maximum for θ = 0 or θ = π/2, which implies that the projective measurement P =
{|0〉〈0| , |1〉〈1|} is the optimal strategy restricted to projective measurements.

Substituting the optimal projective measurement strategy in Eq.5.86:

I(ξM)Π = log 2 +
1
M ∑

k
(cos (πk/M))2 log [(cos (πk/M))2] + (5.94)

+
1
M ∑

k
(sin (πk/M))2 log [(sin (πk/M))2].

Therefore we can compute the difference between the information extracted from the ensemble
ξM via the optimal POVM and via the optimal projective measurement:

I(ξM)− I(ξM)Π =
1
M ∑

k

{
(sin (πk/M))2 log [(sin (πk/M))2]− (cos (πk/M))2 log [(cos (πk/M))2]

}
,

(5.95)
where I(ξM)Π is the accessible information restricted to projective measurements given in Eq. 5.94
and I(ξM) is the accessible information given in Eq.5.74. We can realize that it indeed is greater
than zero, which means that even in qubit systems POVM can extract more information than
projective measurements. As for M = even the Eq.5.94 is zero and it decreases when M grows,
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then the biggest value of the difference in Eq.5.94 is for M = 3. A general relation like obtained
for 2-dimensional systems in Eq.5.94 is not easy to obtain, once that the G-covariant ensemble
depends on the representation of the group G, and this representation depends on the dimension.
The other important trouble, that we had in our "saga" to understand the difference between the
restriction to projective measurements in the optimization of the accessible information, is that
the POVM in theorem 116 is the optimal only if the representation of the group G is irreducible.

5.2 Quantum states discrimination

In this section we discuss the minimal error to distinguish the states in the ensemble. We define
the optimization problem of the minimal average probability of error to distinguish the states.
We also present a POVM named pretty good measurement, which is optimal for G-covariant
ensembles. We will define the the dephased-POVM, which is a dephasing map acting on the
elements of the POVM. The dephased-POVM represents a projective measurement in the minimal
error problem. Finally we compare the probability of success to distinguish the states via POVM
and the analogous dephased-POVM.

Suppose Alice will send a fix number of states {px, ρx}x=0,...,M−1 to Bob and he has to apply
the best strategy to distinguish the states. The minimal error probability consists in Bob minimizing
the average probability of error.

Definition 121. Given an ensemble ξ = {px, ρx}x=0,...,M−1, the minimal error to distinguish the states in
the ensemble is defined as:

Perr = min
{Ak}⊂POVM

M−1

∑
l=0

M−1

∑
k 6=l=0

plTr[Akρl ], (5.96)

where the optimization is taken over POVMs with elements {Ak}k=0,...,M−1 and the number of elements in
the POVM is equal to the elements in the ensemble.

As the probability of success is Psuc = 1− Perr by definition it will be:

Psuc = min
{Ak}⊂POVM

∑
k

pkTr[Akρk]. (5.97)

On the other hand solv ing this problem analytically is not easy and just some cases are known.
Am interesting class of measurements which is not optimal in general but is always almost op-
timal is named pretty good measurement (PGM) [74]. This class of POVM just depends on the en-
semble. It can be easily constructed for ensembles of pure states. Suppose an ensemble of states
ξ = {pk, ρk}k=0,...,M−1 and a set of rank-1 operators Ml = |µl〉〈µl |, we define a matrix with ele-
ments Pij =

√pj
〈
µi
∣∣ψj
〉
. For the set of operators Ml be a valid measurement the square of P must

be a Gram matrix G, in other words it must satisfy (P†P)ij = Gij, where ∑i Gii = 1 and Gij = Gji:

(P†P)ij = ∑
k

√
pi
√

pj 〈ψi|µk〉
〈
µk
∣∣ψj
〉
=
√

pi
√

pj
〈
ψi
∣∣ψj
〉
= Gij. (5.98)

An artless way to produce a vector P which always satisfies this condition is assuming (P2)ij =
Gij. Then we must find a set of vectors {µk} which satisfies this condition:

(P2)ij = Gij =
√

pi
√

pj
〈
ψi
∣∣ψj
〉
=
√

pi
√

pj 〈ψi| ρ−1/2ρρ−1/2 ∣∣ψj
〉

, (5.99)

= ∑
k

√
pi
√

pj pk 〈ψi| ρ−1/2 |ψk〉〈ψk| ρ−1/2 ∣∣ψj
〉

, (5.100)

where in the Eq.5.100 we substituted ρ = ∑k pk |ψk〉〈ψk|, therefore the elements Pij =
√

pi
√pj 〈ψi| ρ−1/2

∣∣ψj
〉

satisfy the condition for a POVM which elements Ml = |µl〉〈µl |where the vectors |µl〉 =
√

plρ
−1/2 |ψl〉
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and ρ = ∑k pk |ψk〉〈ψk|. This POVM defines a measurement whose elements are almost orthogo-
nal to the states in the ensemble [1] and it is named pretty good measurement [74]. For pure state, it
is easy to compute the probability of success via PGM:

PPGM
suc = ∑

k
pk 〈ψk| ρ−1/2 |ψk〉〈ψk| ρ−1/2 |ψk〉 , (5.101)

substituting Pii = pi 〈ψi| ρ−1/2 |ψi〉 we have:

PPGM
suc = ∑

k
(P)2

kk = ∑
k
(
√

G)2
kk. (5.102)

The relation between the probability of error to distinguish the states via PGM in the minimum
probability of error is proved in the following theorem:

Definition 122 (Pretty good measurement). Given an ensemble of states ξ = {px, ρx}x=0,...,M−1, where
ρx ∈ D(Cd), the pretty good measurement (PGM) is defined as a POVMMPGM with elements:

MPGM
k = pkρ−1/2ρkρ−1/2, (5.103)

where ρ = ∑M−1
k=0 pkρk and the inverse is the Moore–Penrose pseudoinverse, which is taken over the non-

zero eigenvalues of ρ.

Therefore we can calculate the probability of error to distinguish the states instead of all pos-
sible measurement but applying the PGM. This POVM is named pretty good because it performs
reasonable well for any ensemble of states.

Theorem 123 ( [12]). Given an ensemble ξ = {px, ρx}x=0,...,M−1, where ρx ∈ D(Cd), the probability of
error applying PGM is upper bounded by the optimal probability of error as:

PPGM
err ≤ 2Perr, (5.104)

where Perr is define in Eq.5.96.

Proof. Considering a state σ = ∑M−1
i=0 pi |i〉〈i|, where the states {|i〉}i=0,...,M−1 form a orthonormal

base on CM, where dim(CM) = M. We also define a quantum channel A ∈ C(CM, Cd), such that
A(|i〉〈i|) = ρx and a measurement map R ∈ P(Cd, CM), such that R(ρx) = ∑y Tr[Eyρx] |y〉〈y|
and ∑y Ey = Id. Finally we define the classical fidelity: Fclass(σ,M) for a state σ and a channel
M ∈ P(CM, CM), with elements {Ml}M−1

l=0 as:

Fclass(σ,M) = ∑
i

pi 〈i|M(|i〉〈i|) |i〉 = ∑
i

pi ∑
l
|Tr(Ml |i〉〈i|)|2. (5.105)

Before proving the theorem we must prove two lemmas about the classical fidelity:

Lemma 124. Given an ensemble ξ = {px, ρx}x=0,...,M−1 and defining the probability of success to distin-
guish the states on ξ via the POVMR = {El} as Psuc(ξ,R) = ∑l plTr[ρlEl ], we have:

Fclass(σ,R ◦A) = Psuc(ξ,R). (5.106)

Proof of Lemma.124.

Fclass(σ,R ◦A) = ∑
i
〈i| R[A(|i〉〈i|)] |i〉 = ∑

i
〈i| R[ρi] |i〉 = ∑

i
piTr[Eiρi] = Psuc(ξ,R). (5.107)

Lemma 125. For a map A = {Aij =
√

λij
∣∣vij
〉〈

i
∣∣} and Rσ,A = {Ri = σ1/2AiA(σ)−1/2} the classical

Fidelity represents the probability of success to distinguish the states in ξ via the pretty good measurement
for ξ.
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Proof of Lemma.125.

Fclass(σ,Rσ,A ◦ A) = ∑
i

pi ∑
l,n

∑
k,j
|Tr[σ1/2Al A(σ)−1/2Ak

j |i〉〈i|]|2, (5.108)

although σ1/2 |i〉 =
√

pi |i〉 and Aj
k |i〉〈i| Al

n = δjiδil
√

λkj
√

λln
∣∣vkj
〉〈

vln
∣∣, thus for A(σ) = ρ =

∑i piρi :

Fclass(σ,Rσ,A ◦ A) = ∑
i

pi ∑
l,k

piλkiλli|Tr[ρ−1/2 |vki〉〈vli|]|2 (5.109)

= ∑
i

p2
i ∑

l,k
λkiλli 〈vli| ρ−1/2 |vki〉〈vki| ρ−1/2 |vli〉 (5.110)

= ∑
i

p2
i ∑

l
λli 〈vli| ρ−1/2ρiρ

−1/2 |vli〉 (5.111)

= ∑
i

piTr[piρiρ
−1/2ρiρ

−1/2] (5.112)

= PPGM
suc . (5.113)

Now we can use these lemmas to prove the theorem. Given the classical fidelity for any mea-
surement map, we named the probability of success as Pany

succ, by Lemma.124:

Pany
suc = Fclass(σ,R ◦A), (5.114)

where the map R = {Ri}, and without loss of generality we can assume that Ri act in the
supp(A(σ)), therefore there is an operator Bi such that Ri = σ1/2BiA(σ)−1/2, then:

Pany
suc = Fclass(σ,R ◦A) = ∑

l
pl ∑

i,j
|Tr[σ1/2BiA(σ)−1/2Aj |l〉〈l|]|2. (5.115)

Define:
Xl

ij := Tr[σ1/2B†
i A(σ)−1/2Aj |l〉〈l|], (5.116)

getting a good choice of {Bl
i} and {Al

i} such that they correspond to the singular decomposition
of the matrix Xl :

Yiil = Tr[σ1/2B†
i A(σ)−1/2Ai |l〉〈l|], (5.117)

therefore:
Pany

suc = ∑
l

pl ∑
i
|Tr[σ1/2BiA(σ)−1/2Al

i |l〉〈l|]|2. (5.118)

We can rewrite Tr[σ1/2BiA(σ)−1/2Al
i |l〉〈l|] = Tr[|l〉〈l| σ1/4BiA(σ)−1/4A(σ)−1/4Al

iσ
1/4 |l〉〈l|], then

defining:

Xil := A(σ)−1/4Al
iσ

1/4 |l〉〈l| ; (5.119)
Yil := A(σ)−1/4Bl

i σ
1/4 |l〉〈l| , (5.120)

substituting in Eq.5.118:

Pany
suc = ∑

l
pl ∑

i
|Tr[Y†

il Xil ]|2, (5.121)

≤ ∑
l

pl ∑
i
|Tr[Y†

ilYil ]Tr[X†
ilXil ]|, (5.122)

≤
{

∑
l

pl ∑
i
|Tr[Y†

ilYil ]|2 ∑
k
|Tr[X†

klXkl ]|2
}1/2

, (5.123)
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where in the first and second inequalities we used the triangle inequality. As the sum in Yil is
smaller than 1:

∑
i
|Tr[σ1/2B†

i A(σ)−1/2Bl
i |l〉〈l|]|2 ≤∑

ij
|Tr[σ1/2B†

i A(σ)−1/2Bl
jk |l〉〈l|]|2 = Fclass(σ,R ◦ B) ≤ 1.

Substituting this bound in Eq.5.123:

Pany
suc ≤

{
∑

l
pl ∑

k
|Tr[X†

klXkl ]|2
}1/2

, (5.124)

≤
{

∑
l

pl ∑
kj
|Tr[X†

klXjl ]|2
}1/2

, (5.125)

= ∑
i
|Tr[σ1/2A(σ)−1/2Al

i |l〉〈l|]|2, (5.126)

= Fclass(σ,Rσ,A ◦ A), (5.127)
= (PPGM

suc )1/2, (5.128)

where in the second inequality we just summed another M terms. As Psuc = 1− Perr we have:

1− PPGM
err ≥ (1− Pany

err )2, (5.129)

or just
PPGM

err ≤ 2Pany
err − (Pany

err )2 ≤ 2Pany
err . (5.130)

As the main goal of this chapter is to compare general measurements with projective measure-
ments we must obtain an analogous of the probability of success restricted to projective measure-
ments. Although we cannot just substitute projective measurements in the min-error expression
Eq.5.96, as the interesting case is when the number of states in the ensemble is greater than the
dimension of the states in the ensemble. If the number of states in the ensemble is less than the
dimension, even for linearly dependent states, projective measurement are enough [1]. There-
fore when the number of states in the ensemble is greater than the dimension we need a POVM
with more elements than the dimension in the calculus of the minimal error probability. However
we know that a POVM whose all the elements commute is just a projective measurement. Thus
for a given POVM with elements {Mk}k=0,...,M−1 we define a dephased-POVM with elements
{MΠ

l = Π(Ml)}l=0,...,M−1, where Π(A) = ∑β

∣∣eβ

〉〈
eβ

∣∣ A
∣∣eβ

〉〈
eβ

∣∣ is a dephasing channel acting
on the operator A. If the POVM is composed by rank-1 operators, the dephased-POVM will be
composed by operators with rank=dim{supp(Π(Ml))}.

Definition 126. For a given POVMM with elements {Ml}l and an ensemble ξ = {pk, ρk}k, the proba-
bility of success via the dephased-POVM optimizing over all dephasing channels is:

PΠ
suc = max

Π
∑

k
pkTr[Π(Mk)ρk]. (5.131)

As the dephasing channel is a linear CPTP map, the probability of success can be viewed as
the best probability to distinguish quantum states when all of them are submitted to the same
classical noise:

PΠ
suc = max

Π
∑

k
pkTr[MkΠ(ρk)]. (5.132)

This property of CPTP maps was proved in Section.2. Given this property of CPTP maps we can
calculate an upper bound for the difference in the probabilities of success via a POVM and the
corresponding dephased-POVM which just depends of the ensemble.
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Theorem 127. The difference between the optimal probability of success Popt
suc and the dephased-probability

of success PΠ
suc for a ensemble ξ = {pk, ρk}k=0,...,M−1, where ρk ∈ D(Cd), is upper bounded by the local-

disturbance of the state: ρXB = ∑x px |x〉〈x| ⊗ ρx ∈ D(CM ⊗Cd).

Popt
suc − PΠ

suc ≤ min
Π
||ρXB −Π(ρXB)||1. (5.133)

Proof. If it is valid for any POVM, it will be valid for the optimal too, then given a POVMMwith
elements {Ml}l :

PMsuc − PΠ
suc = min

Π
∑

l
pl {Tr[Mlρl ]− Tr[MlΠ(ρl)]} = min

Π
∑

l
plTr[Ml{ρl −Π(ρl)}], (5.134)

given the Holder inequality Tr[AB†] ≤ ||A||∞||B||1 for two operators A and B:

PMsuc − PΠ
suc ≤ min

Π
∑

l
pl ||Ml ||∞||ρl −Π(ρl)||1, (5.135)

as the matrices {Ml}l are elements of a POVM, they are positive and have trace less than one,
hence ||Ml ||∞ ≤ 1, which implies:

PMsuc − PΠ
suc ≤ min

Π
∑

l
pl ||ρl −Π(ρl)||1. (5.136)

However the local-disturbance D1(ρXB) of a classical-quantum state measured via trace-norm is:

D1(ρXB) = min
Π
||∑

x
px |x〉〈x|⊗ ρx−∑

x
px |x〉〈x|⊗Π(ρx)||1 = min

Π
∑
x

px|| |x〉〈x| ||1||ρx−Π(ρx)||1,

(5.137)
as || |x〉〈x| ||1 = 1 this proves the theorem because if this is valid for any POVM will be valid for
the optimal.

We can immediately realize that this bound is tight once that for an ensemble of orthogonal
states the difference on the probabilities of success via POVM and dephased-POVM is zero. For
orthogonal states the bipartite state ρXB is a classical-classical state, therefore the local-disturbance
is also zero. Actually for classical-quantum states the local disturbance will be equal to the 1-
norm geometrical quantum discord for classical-classical states. As we discussed in Sec.3.2.3 the
1-norm geometrical quantum discord for classical-classical states is equal to the local disturbance
when the measurement is performed on both systems. Therefore as ρXB in Eq.5.133 is a classical-
quantum states, it persists unchanged under the action of a measurement on the classical part.

Definition 128. Given a POVM map M ∈ P(Cd, CM), with elements {Ml}l=0,...,M−1 we define the
degree of projectiveness of the POVM as:

Π(M) = min
Π

∑
l
||Ml −Π(Ml)||1, (5.138)

where Π ∈ P(Cd, Cd) is a dephasing map.

This expression is optimal for the basis where the elements of the POVM can be written, such
that the POVM map is the closest to a projective measurement. The degree of projectiveness
will be zero when all of the elements in the POVM commute, in this way it can be viewed as a
projective measurement.

For the pretty good measurement the degree of projectiveness can be limited by the difference
of the probability of success for the PGM and the probability of success for the dephased PGM.

Proposition 129. For an ensemble ξ = {pk, ρk}k=0,...,M−1 the degree of projectiveness of the PGM mea-
surement with elements MPGM

l = plρ
−1/2ρlρ

−1/2 is is limited above by the difference between the proba-
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bility of success via PGM and dephased-PGM:

min
Π

∑
k
||Mk −Π(Mk)||1 ≥ PPGM

suc − PΠ−PGM
suc , (5.139)

where PPGM
suc and PΠ−PGM

suc are the probability of success via PGM and the probability of success via the
dephased-PGM.

Proof.

PPGM
suc − PΠ−PGM

suc = min
Π

∑
l

pl {Tr[Mlρl ]− Tr[Π(Ml)ρl ]} = min
Π

∑
l

plTr[ρl{Ml −Π(Ml)}],

(5.140)
again applying the Holder inequality :

PPGM
suc − PΠ−PGM

suc ≤ min
Π

∑
l

pl ||ρl ||∞||Ml −Π(Ml)||1, (5.141)

and pl ||ρl ||∞ ≤ 1:
PPGM

suc − PΠ−PGM
suc ≤ min

Π
∑

l
||Ml −Π(Ml)||1. (5.142)

For a G-covariant ensemble of pure states ξ|G| = {pk, |ψk〉〈ψk|}k=0,...,M−1 it is known that the
PGM is the optimal measurement [10]. The elements of the POVM are proportional to the states of
the ensemble, because the convex combination of the states in the ensemble ρ = ∑k pk |ψk〉〈ψk| =
Id. By the definition of the PGM, the elements of the POVM are [10]:

MPGM
k = pkρ−1/2 |ψk〉〈ψk| ρ−1/2 = dpk |ψk〉〈ψk| , (5.143)

where |ψk〉 ∈ Cd. For an ensemble whose the states are linearly independent, the PGM is also
the optimal measurement, and it is a projective measurement [111]. Then if the number of the
elements in the ensemble is smaller than the dimension, for G-covariant ensembles, the optimal
measurement is a projective measurement. Given Eq.5.143 we can calculate the probability of suc-
cess to discriminate the state of a G-covariant ensemble, as the PGM is the optimal measurement,
it is given by:

PPGM
suc = ∑ pkTr[MPGM

k |ψk〉〈ψk|] = d ∑
k

p2
k . (5.144)

If we consider a ensemble of equiprobable states ξG = ξ|G| = {1/M, |ψk〉〈ψk|}M−1
k=0 the probability

of success is simply:

PPGM
suc =

d
M

. (5.145)

It is not simple calculate a general expression for the probability of success restricted to dephased-
PGM. However we can calculated for a given G-covariant ensemble. Then we define the 2-design
ensemble [109].

Definition 130. Consider an ensemble of equiprobable states ξ = {1/n, Pk}n
k=1, where Pk ∈ Cd are rank-1

projectors, and d < n. The projectors Pk satisfy the following conditions:

1
n ∑k Pk =

I
d ; (5.146)

1
n ∑k Pk ⊗ Pk =

1
d(d+1) (I + F), (5.147)

where F = ∑i,j |i, j〉〈j, i| is named Swap operator, and it has the following property F = (U ⊗U)F(U† ⊗
U†), and d is the dimension of the Hilbert space.
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Given the definition of the probability of success to discriminate the states in the ensemble
defined above (Defi.130), when the measurement is restricted to the dephased-PGM (Eq.5.131):

PΠ−PGM
suc = max

Π
∑

k

1
n

Tr(PkΠ(Mk)). (5.148)

The two design ensemble is a G-covariant ensemble, once that there exist a irreducible unitary
representation {Uk}k of a group G such that:

1
n ∑

k
UkP0U†

k =
I

d
, (5.149)

where P0 is a specific projector such that {UkP0U†
k }k satisfies the condition in Eq.5.147. If the pro-

jector P0 is a special state named Fiducial state and the group G is the Weyl-Schwinger group, the
set of state which satisfy the definition 130 is named spherical 2-design, with the minimum num-
ber of elements n = d2, and the PGM for this ensemble is named SIC-POVM [152]. Therefore the
POVM which optimizes the probability of success to discriminate the states in a 2-design ensem-
ble of states is the PGM. Specially for this ensemble we can calculate the probability of success in
Eq.5.148. It is interesting because this ensemble is symmetric enough to the probability of success
to discriminate the states via a dephased POVM is independent on the dephasing. This statement
is proved in the following theorem.

Theorem 131. The probability of success to discriminate the states, in a 2-design ensemble, via a dephased-
PGM is:

PΠ−PGM
suc =

2d
n(d + 1)

, (5.150)

where n is the number of states in the ensemble, d is the dimension of the Hilbert space and n > d.

Proof. For a given dephasing Π applied on the PGMMPGM = {Mk =
d
n Pk}:

PΠ−PGM
suc =

d
n2 ∑

k
Tr(PkΠ(Pk)), (5.151)

as:

Tr(PkΠ(Pk)) = Tr[Π(Pk)Π(Pk)] (5.152)
= Tr[Π(Pk)⊗Π(Pk)F] (5.153)
= Tr[Π⊗Π(Pk ⊗ Pk)F]. (5.154)

The property in Eq.5.153 comes from the definition of the Swap operator: F(A⊗ B) = A · B⊗ I.
Substituting Eq.5.154 in Eq.5.151 we have:

PΠ−PGM
suc =

d
n2 ∑

k
Tr[Π⊗Π(Pk ⊗ Pk)F] (5.155)

=
d
n2 Tr[Π⊗Π(∑

k
Pk ⊗ Pk)F] (5.156)

=
d
n

Tr
{

Π⊗Π[
1

d(d + 1)
(I + F)]F

}
(5.157)

=
d
n

1
d(d + 1)

{Tr[Π⊗Π(I)F] + Tr[Π⊗Π(F)F]} , (5.158)

where in Eq.5.156 we used the linearity of the dephasing channel, and in Eq.5.157 we used the
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Eq.5.147. Then, calculating each term separately we have:

Tr[Π⊗Π(I)F] = Tr[F] = Tr[∑
i,j
|i, j〉〈j, i|] = d. (5.159)

As the Swap operator is invariant under the action of local unitary operations, and the dephasing
in Eq.5.158 is applied locally, the second term will be:

Tr[Π⊗Π(F)F] = ∑
k,l
〈k, l|F |k, l〉 〈k, l|F |k, l〉 , (5.160)

for any basis {|k, l〉}k,l , the expectation value of F is:

〈k, l|F |k, l〉 = δk,l . (5.161)

Therefore the Eq.5.160 will be:

Tr[Π⊗Π(F)F] =
d

∑
k,l=1

δk,l = d. (5.162)

Hence, substituting Eq.5.159 and Eq.5.162 in Eq.5.158, we have:

PΠ−PGM
suc =

2d
n(d + 1)

. (5.163)

From this theorem we can obtain the difference between the the optimal probability of suc-
cess to discriminate the states in the 2-design ensemble (Eq.5.145) and the probability of success
restricted to projective measurements (Eq.5.163):

PPGM
suc − PΠ−PGM

suc =
d
n

(
d− 1
d + 1

)
. (5.164)

We can realize that the difference in above equation decreases with the increase of the number of
the states in the ensemble, fixed the dimension. It means that, when the number of states in the
ensemble is very large, perform the PGM or a projective measurement the ability to distinguish
the states is very bad independent of the measurement.

5.3 Quantumness of correlations

In this section we shall discuss about the consequence of the embedding in the context of quan-
tumness of correlations. We will study the quantum discord and compare two definitions of it, one
definition which the optimization is taken over general measurements and the other restricted to
projective measurements. We will use the results obtained in the last section to calculate a lower
bound for the difference between the definitions for a class of states. We use the discussion of the
last section to understand about the requirement of the optimization of the quantum discord over
POVM for classical-quantum states.

5.3.1 Quantum discord: POVM vs Projective measurement

When quantum discord was introduced By H. Olivier and W. Zurek [115], the optimization
was just over projective measurements, however in another seminal paper, L. Henderson and V.
Vedral [76] introduced the optimization of quantum discord over general measurements (POVM).
There is no problem in defining quantum discord over projective measurements because it can
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be easily extended to POVMs via Naimark’s theorem, which states that a general measurement
can be performed by projective measurement in a extended space. In this section we shall discuss
about the consequence to restrict the optimization of quantum discord to projective measurements
in comparison with POVMs.

The optimization of quantum discord over POVM is intractable. Therefore analytical calcu-
lation for quantum discord only can be performed for some specific states [6, 67, 100, 101]. Then
we are interested in understand what are the consequences of the extension of the space in the
optimization of quantum discord.

Given a state ρAB ∈ D(CA ⊗ CB), a local measurement map IA ⊗MB ∈ P(CAB, CAY) and a
projective measurement map IA ⊗ΠB ∈ P(CAB, CAB), these maps act on ρAB as:

IA ⊗MB(ρAB) =
N−1

∑
k=0

TrB[IA ⊗MB
k ρAB] |k〉〈k|Y , (5.165)

IA ⊗ΠB(ρAB) =
dB−1

∑
l=0

TrB[IA ⊗ΠB
l ρAB] |l〉〈l|B (5.166)

where dim(CY) = N.

Definition 132. We define the quantum discord and quantum discord restricted to projective measurement
for a state ρAB ∈ D(CA ⊗CB):

D(A : B)ρAB = min
IA⊗MB∈P(CAB,CAY)

{I(A : B)ρAB − I(A : B)IA⊗MB(ρAB)} (5.167)

DΠ(A : B)ρAB = min
IA⊗ΠB∈P(CAB,CAB)

{I(A : B)ρAB − I(A : B)IA⊗ΠB(ρAB)}. (5.168)

As we discussed an ensemble of states can be written as classical-quantum state which relates
quantum discord with accessible information [53].

Proposition 133 ( [53]). The accessible information I(ξ) for the ensemble ξ is equal to the classical corre-
lation J(X : B)ρXB of the state ρXB.

Proof. The definition of the measure of the classical correlations for a bipartite state ρAB ∈ D(CA⊗
CB), under measurement in B, is given by:

J(A : B)ρAB = max
M∈P(CB,CY)

I(A : Y)ρAY , (5.169)

where ρAY = IA ⊗MB(ρAB) = ∑y TrB[ρABIA ⊗My
B] |y〉〈y|. For ρAB = ρXB = ∑x px |x〉〈x| ⊗ ρx we

have
J(X : B)ρXB = max

M∈P(CB,CY)
I(X : Y)ρXY = I(ξ), (5.170)

where ξ = {pi, ρi}i=0,...,M−1.

Given the definition of quantum discord D(A : B)ρAB = I(A : B)ρAB − J(A : B)ρAB , thus the
quantum discord for a classical-quantum state ρXB = ∑x px |x〉〈x| ⊗ ρx can be written in function
of the accessible information of the ensemble ξ = {px, ρx}:

D(X : B)ρXB = I(X : B)ρXB − I(ξ), (5.171)

The mutual information for a classical-quantum state is equal the Holevo quantity for the ensem-
ble ξ, in other words I(X : B)ρXB = χ(ξ), then:

D(X : B)ρXB = χ(ξ)− I(ξ), (5.172)

in this way the quantum discord for the classical-quantum state ρXB measures the amount of in-
formation which we cannot access from the ensemble ξ, once that the χ(ξ) quantifies the amount
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of information we can codify in the ensemble ξ in bits and the quantity I(ξ) quantifies the amount
of information we can extract in bits, performing the best decodification strategy. Therefore all the
properties of the accessible information can be rescued for quantum discord of classical-quantum
states. One interesting property which we will study in the next section is the additivity of quan-
tum discord. It is known that for an ensemble composed by states in a 2-dimensional space, if
the number of states in the ensemble is less or equal to the dimension, projective measurements
are enough in the calculation of the accessible information [93]. For ensemble of states in a d-
dimensional space it was conjectured that is also valid [93].

Given the expression Eq.5.172 we can calculate a lower bound for the difference of quantum
discord and the quantum discord restricted to projective measurements for a class of classical-
quantum states. An interesting class of classical-quantum states is the G−covariant states. For
this kind of ensemble we know that the POVM which optimizes the quantum discord is also
G−covariant. As we are applying the measurement in just one system we expect that we should
not worry about the dimension of the system which we will not apply the measurement, how-
ever we can see that the dimension of the nonmeasured system is also important for the kind
of measurement which will be applied. We can take the case of a classical-quantum state ρXB ∈
D(CM ⊗C2) which was studied in the last section, i.e.:

ρXB =
1
M

M−1

∑
x=0
|x〉〈x| ⊗ |ψk〉〈ψk| , (5.173)

where the states |ψk〉 = cos πk/M |0〉 + sin πk/M |1〉. For this case we calculate a lower bound
of the difference between the optimal projective measurement and the optimal POVM in the ac-
cessible information for an ensemble composed by 2-dimensional states in Eq.??. Given Eq.?? and
Eq.5.172 we obtain a lower bound for the difference in the quantum discord and the quantum dis-
cord restricted to projective measurements for classical-quantum states, where the measurement
is applied on a 2-dimensional system:

D(A : B)ρXB − DΠ(A : B)ρXB =
1
M ∑

k

{
(sin (πk/M))2 log [(sin (πk/M))2]

}
− (5.174)

− 1
M ∑

k

{
(cos (πk/M))2 log [(cos (πk/M))2]

}
.

We immediate realized that the measurement which optimize the quantum discord also depends
on the system which is not being measured. For 2⊗ 2 states it was studied numerically and re-
alized that projective measurements are enough to calculate quantum discord [63]. However the
same is not valid for M ⊗ 2 systems even the measurement is performed on the 2-dimensional
system. It can also be interesting to obtain a general upper bound for the difference in the opti-
mization of quantum discord via POVM or projective measurements.

5.3.2 1-way work deficit under embedding

The 1-way work deficit of a state ρAB ∈ D(CA ⊗CB) is a measure of the amount of pure states
which can be distilled locally from ρAB in the limit of many copies under CLOCC (local unitary
operations and one way classical communication). In the limit of one copy the 1-way work deficit
measures the amount of quantum correlation in ρAB. Suppose now we couple a pure ancilla on
ρAB. In the limit of many copies we can think this process as a catalysis, where pure states should
be used to produce more pure states, what is not acceptable, therefore local pure ancillas must
not increase the amount of pure states which can be extracted [79] 2. In the limit of one copy,
as coupling a pure ancilla cannot increase the amount of correlations, the 1-way work deficit
must not change. Although this argument makes sense physically, a rigorous mathematical proof

2A mathematical proof of this argument can be find on Theorem 4 of [79].
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still lacking. We are raising questions about the validity of this argument because mathematically
coupling a pure ancilla and applying a projective measurement is the same of performing a POVM
on the state. As we know that the projective measurement is a restricted kind of POVM, it is
natural to think that the 1-way work deficit of the embedded state, in the limit of one copy, will
be less than the original state.



Chapter 6

Quantum Correlations for
indistinguishable particles

In this chapter we discuss the concept of quantum correlations for indistinguishable particles:
bosonic or fermionic systems. We introduce the approach of entanglement witness for fermionic
systems, and also the witnessed entanglement in this context . We obtain the Fermionic General-
ized robustness [87]. We also discuss the concept of quantumness of correlations for indistinguish-
able particles. We shall obtain the set of classical correlated states in this context via the activation
protocol. This set can be obtained from the absence of entanglement between the system and the
measurement apparatus during the a local measuring. We also calculated from the distinguish-
able entanglement between the system and the measurement apparatus the relative entropy of
quantumness for indistinguishable particles [86]. Given the definition of the set of states without
quantumness of correlations we also define a geometrical discord based on trace distance [87].

6.1 The indistinguishable particle formalism

Indistinguishability is related to the nonexistence of intrinsic properties that allow us to iden-
tify the particles of the system individually. For classical systems, even if the particles are identical,
it is always possible to label them and follow their paths in the phase space. Then we can identify
them in any subsequent time. However for quantum systems, the kinematic objects are vectors in
a complex vector space, from where only expectation values of the observables can be extracted.
Then, there exists an intrinsic uncertainty about the position of the particles in each instant of
time, which makes unfeasible the characterization of the paths [46].

Consider a system composed by two particles represented by the state:

|φ〉 = ∑
n1,n2

cn1,n2

∣∣∣n(1)
1

〉 ∣∣∣n(2)
2

〉
, (6.1)

where
∣∣∣n(y)

x

〉
represents the particle x in the state y and {|nx〉}n=0,1,2,... are orthogonal states in the

space of particle x. We also can consider another state |φ′〉:∣∣φ′〉 = ∑
n1,n2

cn1,n2

∣∣∣n(2)
1

〉 ∣∣∣n(1)
2

〉
. (6.2)

The states |φ〉 and |φ′〉 are related by the permutation operator P12:

P12

∣∣∣n(1)
1

〉 ∣∣∣n(2)
2

〉
=
∣∣∣n(2)

1

〉 ∣∣∣n(1)
2

〉
, (6.3)

hence P12 |φ〉 = |φ′〉 and P12 |φ′〉 = |φ〉. Therefore P12 = P†
12 = P−1

12 . For the particles to be indistin-

101
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guishable any observable g must satisfy:

〈φ| g |φ〉 =
〈
φ′
∣∣ g
∣∣φ′〉 = 〈φ| P12gP12 |φ〉 , (6.4)

then, any observable which acts on the space of the indistinguishable particles must commute
with the permutation operator:

[P12, g] = 0. (6.5)

As the permutation operator must commute with any observable which acts on the system of
indistinguishable particles, the identity operator can be decomposed as:

I =
I− P12

2
+

I + P12

2
= A⊕ S . (6.6)

WhereA and S are named antisymmetric and symmetric operators, they define two subspaces in
the space of linear operators. Given their definitions we can have:

A = A† = A2 , S = S† = S2 and AS = SA = 0. (6.7)

As all observables commute with the permutation operator, considering an observable g = g†:

SgA = AgS = 0. (6.8)

Hence, the observables cannot mixture the symmetric and antisymmetric subspaces. In this way
a Hamiltonian, which describes the dynamic of the system of indistinguishable particles, must
respect the symmetry of the state during the evolution. The same is valid for density matrices. A
system of particles whose state is symmetric, with relation to the exchange of particles, cannot be
transformed in an antisymmetric state. This impossibility to change a symmetric observable to an
antisymmetric, and vice e versa, reflects intrinsic properties of the system of particles. If the state
of the system is symmetric the particles of the system are named Bosons, if it is antisymmetric the
particles are named Fermions. Applying the symmetric and antisymmetric operations on the state
in eq.6.1 and normalizing, we have:

S |φ〉 = |φ+〉 =
1√
2

∑
n1,n2

cn1,n2

(∣∣∣n(1)
1

〉 ∣∣∣n(2)
2

〉
+
∣∣∣n(2)

1

〉 ∣∣∣n(1)
2

〉)
(6.9)

A |φ〉 = |φ−〉 =
1√
2

∑
n1,n2

cn1,n2

(∣∣∣n(1)
1

〉 ∣∣∣n(2)
2

〉
−
∣∣∣n(2)

1

〉 ∣∣∣n(1)
2

〉)
. (6.10)

The antisymmetrization and symmetrization operations are also named Slater permanent and Slater
determinant respectively. Antisymmetric states respect the Pauli exclusion principle, which states
that fermions cannot be found in the same state. Therefore the probability amplitude of the parti-
cles be in the same state is zero, as we can check applying 〈n1 = 0, n2 = 0| on |φ−〉: 〈n1 = 0, n2 = 0|φ−〉 =
0.

As discussed, the space state for indistinguishable fermions or bosons is antisymmetric or
symmetric under permutation of particles. For these systems is convenient to use the second quan-
tization formalism, in order to deal with the antisymmetric or symmetric states in the Fock space.
Accordingly we introduce an algebra of operators which satisfies the following anti-commutation
relations for systems of fermions, and commutation relation for bosons:

{ f †
i , f †

j } = { fi, f j} = 0, { fi, f †
j } = δij, (6.11)

[b†
i , b†

j ] = [bi, bj] = 0, [bi, b†
j ] = δi,j, (6.12)

where f †
i and g†

i are the fermionic and bosonic creation operators respectively, fi and bi are the
fermionic and bosonic annihilation operators, respectively. The action of the annihilation operator
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on the vacuum state (|vac〉) is defined:

fi |vac〉 = 0, (6.13)
gi |vac〉 = 0. (6.14)

The vacuum state in the Fock space is defined as the absence of particles. We denote the Fock
space of n fermions(bosons) sharing a d-dimensional single particle space as: F d

n (Bd
n).

An immediate consequence of the antisymmetric structure of the state space can be realized
even in the simplest example of a two-fermion system, which, if analyzed in the usual way, will
always be considered entangled. We must therefore rethink the way entanglement is calculated
for systems of indistinguishable particles, as well as its physical interpretation.

In the case which the identical particles are localized in distinct laboratories and independently
prepared, it is natural to think that the entanglement calculated in the usual way should not have
any relevant physical meaning; or rather, “no quantum prediction, referring to an atom located in
our laboratory, is affected by the mere presence of similar atoms in remote parts of universe” [124].

We are interested in the case of identical particles that are sufficiently close together such that
the overlap between their wave functions is no longer negligible, and therefore they are indistin-
guishable. Fermionic systems of this kind can be described using Slater determinants. Consider,
for example, a two-fermion state represented by a single Slater determinant, namely,

|ψ〉 = 1√
2
(|φ〉 ⊗ |χ〉 − |χ〉 ⊗ |φ〉) = f †

φ f †
χ |0〉 , (6.15)

where |φ〉 and |χ〉 correspond to orthonormal wave functions (spin-orbitals). It is easy to see, in
this simple case, that the anti-symmetrization of coordinates introduces correlations between the
fermions, namely, the well known exchange contributions from the Hartree-Fock theory. On the
other hand, a single Slater determinant is solution of a one-particle Schrödinger equation and,
therefore, can have no quantum correlation between the particles. Considering states described by
more than one Slater determinant introduces additional correlations beyond the exchange contri-
bution. We will then interpret such additional correlations as the analog of quantum entanglement
in systems of distinguishable particles, calling them as fermionic entanglement [56].

A measure of fermionic entanglement was proposed as the analogous of Wootters concur-
rence [164]. Notwithstanding, such measure, called Schliemann concurrence (CS), is valid only for
two-fermion states with a four-dimensional single-particle Hilbert space (F 4

2 ), i.e. the antisym-
metric space of lowest dimension where can exist quantum correlated states. For distinguishable
particles the lowest dimension where can exist correlations is 2⊗ 2, nonetheless for fermions the
lowest dimension of a composed space is 4⊗ 4, because each particle has 2 possible spin configu-
rations and 2 possible modes, and by the Pauli principle of exclusion they cannot be in the same
mode with the same spin. For bosons, because the exclusion principle is not valid, the smallest
composed system has dimension 2⊗ 2, which is two possible configurations of spin for each par-
ticle.

In order to define the Schliemann concurrence, we have to introduce some operators. Let Uph
be the operator of particle-hole transformation:

Uph f †
i U †

ph = fi, Uph |vec〉 =
d

∏
i=1

f †
i |vec〉 , (6.16)

being d the single-particle Hilbert space dimension. Similarly, define K as the anti-linear operator
of complex-conjugation, satisfying the following relations:

K f †
i K = f †

i , K fiK = fi, K |vec〉 = |vec〉 . (6.17)

Thus, given the operator D = KUph, called operator of dualisation, and the dual states ρ̃ =
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DρD−1, we have that the Schliemann concurrence for states ρ ∈ D(F 4
2 ) is given by

CS(ρ) = max(0, λ6 − λ5 − λ4 − λ3 − λ2 − λ1), (6.18)

where λ′is are, in descending order of magnitude, the square roots of the singular values of the
matrix R = ρρ̃. The reader can find more details about the theory of entanglement for fermionic
and bosonic systems in the review [56].

6.2 Entanglement Witness for Fermionic systems

The states without entanglement for indistinguishable particles are those that can be described
by a single Slater determinant, or a convex mixture of them. Consider F d

n as the Fock space of n
indistinguishable fermions sharing a d-dimensional single-particle space. As introduced by Iem-
ini et al. the following definition of “separable” states [87]:

Definition 134 (State with no fermionic entanglement (separable)). A state σ ∈ D(F d
n ) has no

fermionic entanglement if it can be decomposed as

σ = ∑
i

pi ai†
1 · · · ai†

n |vec〉 〈vec| ai
n · · · ai

1, ∑
i

pi = 1, (6.19)

where ai†
k =

d
∑

l=1
cik

l f †
l , and { f †

l } is an orthonormal basis of fermionic creation operators for the space of a

single fermion (F d
1 ).

The states defined by Eq.6.19 are not separable in the usual mathematical sense, meaning that
they are product states or convex mixtures of it. But we will insist in referring to them as separable,
for they are just anti-symmetrization of the usual distinguishable separable states. Entanglement,
in the case of distinguishable particles, is defined in opposition to separability, i.e., an entangled
state is that one which is not separable. We want to keep this notion.

It is interesting to note that, as in the case of distinguishable particles, the set of separable states
is invariant under local operations, taking now into account that the local operations must be sym-
metric, due to the indistinguishability of the particles. Let Φ be a local symmetric operation (LSO),
i.e., an operation that respects the Pauli exclusion principle and does not involve any interaction
between particles. An LSO can be written as:

Φ(ρ) = ∑
i
(Mi ⊗Mi ⊗ · · · ⊗Mi) ρ (M†

i ⊗M†
i ⊗ · · · ⊗M†

i ) (6.20)

where Mi is a linear operator acting on the Hilbert space of a single particle. Given a fermionic
separable pure state (i.e. a single Slater determinant)

∣∣ψsep
〉
= A(|e1〉 ⊗ · · · ⊗ |en〉), where A is the

anti-symmetrization operator, {|ei〉} is an orthonormal basis, and noting that [Φ,A] = 0, we see
that

(Mi ⊗ · · · ⊗Mi)
∣∣ψSep

〉
= (Mi ⊗ · · · ⊗Mi)A |e1 · · · en〉
= A (Mi ⊗ · · · ⊗Mi) |e1 · · · en〉
= A |(Mie1) · · · (Mien)〉
= A

∣∣e′1 · · · e′n〉 (6.21)

=
∣∣∣ψ′Sep

〉
and such result clearly extends to mixed states. Summarizing, given a separable state σ is separa-
ble, we have that ΦLSO(σ) is also separable, indicating that in order to have quantum entangle-
ment, the particles must interact by means of some global operation.
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Now we adapt Brandão and Vianna’s [27] technique in order to obtain a new algorithm to
determine OEWs for indistinguishable fermions in the Fock space. The new method was proposed
in [87], it can be enunciated as follows.

Theorem 135 (Determination of OEW using RSDP [87]). A fermionic state ρ ∈ D(F d
n ) is entangled

if and only if the optimal value of the following RSDP is negative: minimize Tr(Wρ) subject to

d
∑

in−1=1
· · ·

d
∑

i1=1

d
∑

j1=1
· · ·

d
∑

jn−1=1
(cn−1∗

in−1
· · · c1∗

i1 c1
j1 · · · c

n−1
jn−1
×

Win−1···i1 j1···jn−1) ≥ 0,
∀ck

i ∈ C, 1 ≤ k ≤ (n− 1), 1 ≤ i ≤ d,
AWA† = W,

W ≤ A,

. (6.22)

where d is the dimension of the single particle Hilbert space, { f †
l } is an orthonormal basis of fermionic cre-

ation operators,A is the anti-symmetrization operator, and Φ(W) = Win−1···i1 j1···jn−1 = fin−1 · · · fi1 W f †
j1 · · · f †

jn−1
∈

P(F d
1 ) is an operator acting on the space of one fermion.

The notation W ≤ Ameans that (A−W) ≥ 0 is a positive semidefinite operator. If ρ is entan-
gled, the operator W that minimizes the problem corresponds to the OEW of ρ.

Proof. It is known that a state is entangled if and only if there exists a witness operator W such
that Tr(Wρ) < 0 and Tr(Wσ) ≥ 0 for every separable state σ. Consider a general separable state
as given by Eq.6.19. The semi-positivity condition Tr(Wσ) ≥ 0 is equivalent to:

〈0| anan−1 · · · a1 W a†
1 · · · a†

n−1a†
n |0〉 ≥ 0, (6.23)

for all {a†
k}k Note however that to satisfy Eq.6.23, it is sufficient that the operator

an−1 · · · a1 W a†
1 · · · a†

n−1 is positive semidefinite. Thus follows directly that the operator W satisfy-
ing the problem in Eq.6.22 corresponds to an optimal entanglement witness.

The RSDP given above is solved by means of probabilistic relaxations it terms of SDPs, as
done in [27], where the set of infinite constraints is exchanged by a finite sample. Thus the witness
operator obtained is such that satisfy most of the constraints in Eq.6.22. The small probability (ε)
that a constraint be violated (i.e. Tr(Wσ) < 0) diminishes as the size of the sample of constraints
increases.

The constraint AWA† = W restricts the operator to the space of antisymmetric entangle-
ment witnesses (W(F d

n ) = AWA†). The other constraint, W ≤ A, follows directly from the
anti-symmetrization of the constraint of the entanglement witnesses of the generalized robust-
ness, and implies that the OEW corresponds to the anti-symmetrized version of the Generalized
Robustness, namely,

RFg (ρ) = max(0,− min
M={W∈W(F d

n ) |W≤A}
Tr(Wρ)). (6.24)

RFg (ρ) measures the minimum required mixture with a fermionic state such that all the entangle-
ment of ρ is washed out. In other words, the Generalized Robustness is the minimum value of s
such that

σ =
ρ + sϕ f

1 + s
(6.25)

be a separable state (Eq.6.19), where ϕ f can be any fermionic state.
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6.3 Quantumness of correlations in indistinguishable particles systems

As discussed above, for indistinguishable particles the space of quantum states is restricted to
symmetric S or antisymmetric A subspaces, depending on the bosonic or fermionic nature of the
system, and the particles are no longer accessible individually, thus eliminating the usual notions
of separability and local measurements, and making the analysis of correlations much subtler.
Note that the correlations between modes in a system of indistinguishable particles is subsumed
in the usual analysis of correlations in systems of distinguishable ones. Thus we shall character-
ize and quantify a general notion of quantum correlations (not necessarily entanglement) gen-
uinely arising between indistinguishable particles. We shall call these correlations by quantum-
ness of correlations, to distinguish from entanglement, and it has an interpretation analogous to
the quantumness of correlations in systems of distinguishable particles, as we shall see. One must
however be careful with such phraseology, since systems of indistinguishable particles always
have exchange correlations coming from the symmetric or antisymmetric nature of the wavefunc-
tion. The intrinsic exchange correlations are not included in the concept of the quantumness of
correlations.

6.3.1 Activation protocol and the set of classical correlated states

As aforesaid, quantum correlations between distinguishable particles can be interpreted via
a unavoidable entanglement created with the measurement apparatus in a partial von Neumann
measurement on the particles, see Section 4.2. In systems of indistinguishable particles the notion
of “local measurement” will be implemented through the algebra of single-particle observables
(see for example Ref. [8, 9] for a detailed discussion), and based on this identification we shall set
up an “activation protocol” for indistinguishable particles.

The importance to study the correlations, particularly the entanglement, in terms of subal-
gebras of observables has been emphasized in [8, 9], proving to be a useful approach for such
analysis. The algebra of single-particle observables is generated by,

Osp = M⊗ I⊗ · · · ⊗ I + I⊗M⊗ · · · ⊗ I + · · ·+ I⊗ · · · ⊗ I⊗M, (6.26)

where M is an observable in the Hilbert space of a single particle. We can express this algebra in
terms of fermionic or bosonic creation {a†

i }i and annihilation {ai}i operators, depending on the
nature of the particles in the system. The algebra is generated by quadratic observables Osp =

∑ij Mija†
i aj that can be diagonalized as:

Osp = ∑
k

λk ã†
k ãk, (6.27)

where ã†
k = ∑j Ukja†

j and U is the unitary matrix which diagonalizes M. Thus, since it is a non-
degenerate algebra, the eigenvectors of their single-particle observables will be given by single
Slater determinants, or permanents, for fermionic and bosonic particles respectively; more pre-
cisely, given by the set {ã†

~k
|vac〉}k where~k = (k1, · · · , kn), ki ∈ {1, 2, ..., d}, represents the states of

occupation of n particles:
ã†
~k
|vac〉 = ã†

k1
ã†

k2
· · · ã†

kn
|vac〉 , (6.28)

where d is the single-particle dimension and |vac〉 is the vacuum state. The measurement of single-
particle observables is therefore given by a von Neumann measurement, which we shall call here-
after as single-particle von Neumann measurement, according to the complete set of rank one
projectors {Π̃~k = ã†

~k
|vac〉 〈vac| ã~k}~k, where they must satisfy:

∑
~k

Π̃~k = IA(S). (6.29)
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being IA = A the anti-symmetrization operator and IS = S the symmetrization operator, they
represent the identity on the fermionic and bosonic spaces. Let us consider the following notation,
{a†

~k
|vac〉} =

{∣∣∣ f (~k)〉}, f (~k) ∈ {1, 2, .., dimA(S)}, being f a bijective function of the sets {~k} and
{1, 2, .., dimA(S)}, and dimA(S) is the dimension of the antisymmetric or symmetric subspaces.

To represent a projective measurement on the system, the interaction unitary U must act in
order to perform the projective measurement Π with operators {Π~k = a†

~k
|vac〉 〈vac| a~k}, where

∑~k Π~k = IA(S).

Definition 136. A unitary operator U ∈ U (F d
n ) for fermionic systems, or U ∈ U (Bd

n) for bosonic
systems, it represents the interaction between the system of particles and the measurement apparatus during
a local measurement, and its action is defined as:

U
∣∣∣ f (~k)〉

Q
⊗ |j〉M =

∣∣∣ f (~k)〉
Q
⊗
∣∣∣j⊕ f (~k)

〉
M

. (6.30)

Given that the apparatus has at least the same dimension as the system.

It is easy to show that such operator is indeed unitary; note that

U = ∑
~k,j

∣∣∣ f (~k)〉 ∣∣∣j⊕ f (~k)
〉 〈

f (~k)
∣∣∣ 〈j| , (6.31)

thus,
UU† = ∑

~k,j,~k′,j′
δ~k,~k′δj,j′

∣∣∣ f (~k)〉 ∣∣∣j⊕ f (~k)
〉 〈

f (~k′)
∣∣∣ 〈j′ ⊕ f (~k′)

∣∣∣ , (6.32)

and since {
∣∣∣ f (~k)〉

Q
}~k and {

∣∣∣j⊕ f (~k)
〉
M
}j form a complete set, we have that UU† = IA(S) ⊗ IM.

Now we can use the approach of the activation protocol to find the set of classical correlated
state in the system of indistinguishable particles.

Theorem 137 (States without quantumness of correlations [86]). Considering a n-partite system in-
distinguishable particles, represented by the state ξ ∈ D(F d

n ) for fermions and ξ ∈ D(Bd
n) for bosons. This

state has no quantumness of correlations if and only if the exist an local orthonormal basis as:

ξ = ∑
~k

p~k ã†
~k
|vac〉 〈vac| ã~k, ∑

~k

p~k = 1, (6.33)

where ã†
~k
|vac〉 = V⊗na†

~k
|vac〉, V is a unitary matrix, and {a†

~k
} an orthonormal set of creation operators

Proof. We shall first show that states given by Eq.(6.33) do not generate entanglement, and then
that they are the only ones. Let U be the coupling unitary corresponding to the measurement Π
with measurement operators {Π~k = a†

~k
|vac〉 〈vac| a~k =

∣∣∣ f (~k)〉 〈 f (~k)
∣∣∣}~k, where ∑~k Π~k = IA(S).

Applying the activation protocol on states given by Eq.(6.33), using V̄ = V† as the single-particle
unitary transformation, it follows that:

ρQ:M = U
[
(V̄⊗nξV̄†⊗n

)Q ⊗ |0〉〈0|M
]

U† (6.34)

= ∑
~k

p~k
∣∣∣ f (~k)〉〈 f (~k)

∣∣∣
Q
⊗
∣∣∣ f (~k)〉〈 f (~k)

∣∣∣
M

,

where ρQ:M ∈ Sep(Q⊗M). The demonstration that such states correspond to the unique states
that do not generate entanglement is given below. A separable state between system and mea-
surement apparatus is given as:

σ = ∑
i

pi |ψi〉〈ψi|Q ⊗ |φi〉〈φi|M , (6.35)
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noting that the sets {|ψi〉} and {|φi〉} are not necessarily orthogonal. Since the activation protocol
corresponds to a unitary operation, thus invertible, there must exist a set {|ηi〉} of states for the
system such that,

U(V⊗n) |ηi〉Q ⊗ |0〉M = |ψi〉Q ⊗ |φi〉M , (6.36)

and ρQ = ∑i pi |ηi〉 〈ηi|. Expanding {|ηi〉} on the basis {a†
~k
|vac〉} “transformed” by V†⊗n

,

|ηi〉 = ∑
~k

c(i)~k
V†⊗n

a†
~k
|vac〉 , (6.37)

we see from Eqs.(6.36) and (6.37) that,

U(V⊗n) |ηi〉 ⊗ |0〉 = ∑
~k

c(i)~k
a†
~k
|vac〉 ⊗

∣∣∣ f (~k)〉 = |ψi〉 ⊗ |φi〉 . (6.38)

The above factorization condition imposes the following restriction: c(i)~k
= γi δ{~k,g(i)}, ‖γi‖ =

1, g : {i} 7→ {~k}. Therefore,

ρQ = ∑
i

pi |ηi〉 〈ηi| ,

= ∑
i

pi (∑
~k

γi δ{~k,g(i)} a†
~k
|vac〉) (6.39)

(∑
~k′
〈vac| a~k′ γ

∗
i δ{~k′,g(i)}),

= ∑
i

pi ‖γi‖︸︷︷︸
1

a†
g(i) |vac〉 〈vac| ag(i),

i.e, the states with no quantumness of correlations as given by Eq.6.33.

Example. Let us show an example of the approach in order to clarify the formalism and the
above analysis. An interesting case concerns to the controversial bosonic quantum state |ψb〉 ∈ B2

2 ,
written as:

|ψb〉 =
1
2
(b†

0b†
0 + b†

1b†
1) |vac〉 , (6.40)

where {b†
i } are the bosonic creation operators. Such a state is considered both entangled by some

authors [56, 69, 70, 119], as non entangled for others [9, 64, 65, 97]. Note that such a state can ac-
tually be described by a single Slater permanent |ψb〉 = b†

+b†
− |vac〉, being b†

± = 1√
2
(b†

0 ± b†
1).

Defining the coupling unitary U corresponding to the {Π~k = b†
~k
|vac〉 〈vac| b~k}, ∑~k Π~k = IS ,

{~k} = {(0, 0), (0, 1), (1, 1)}, and using the notation,

b†
0b†

0 |vac〉 = |0〉 , b†
0b†

1 |vac〉 = |1〉 , b†
1b†

1 |vac〉 = |2〉 , (6.41)

we have that the unitary acts as follows,

U |k〉Q ⊗ |0〉M = |k〉Q ⊗ |k〉M . (6.42)

Applying this unitary on the bosonic state, we generate an entangled state between system and
apparatus, U(|ψb〉Q ⊗ |0〉M) = 1

2 (b
†
0b†

0 |vac〉 ⊗ |0〉 + b†
1b†

1 |vac〉 ⊗ |2〉), but this is not a unavoid-
able entanglement in order to realize that measurement, since we could apply, before the unitary
coupling, the following single-particle unitary transformation: V : |+〉 = |0〉+ i |1〉 7→ |0〉, and
V : |−〉 = |0〉 − i |1〉 7→ |1〉, then applying on the Fock space of the bosons:

V ⊗V :
{

b†
+ 7→ b†

0 ,
b†
− 7→ b†

1 .
(6.43)
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Figure 6.1: (Color online) Schematic picture of the distinct types of correlations in systems of indistinguishable
particles. The largest set (Q) denotes the set of all fermionic, or bosonic, quantum states; the blue area (U ) represents
the convex set of states with no entanglement; the gray area (P) represents the non convex set of states with no
quantumness of correlations, as defined in this article (Eq.(6.33)); and the yellow area (C) represents the non convex
set of states with no exchange correlations due to the particle statistics, possessing only classical correlations. Note
that for fermionic particles, the set C is a null set. The following hierarchy is identified: C ⊂ P ⊂ U ⊂ Q.

We see now that the coupling between system and apparatus does not generate entanglement
between them, U

[
(V ⊗V) |ψb〉Q ⊗ |0〉M

]
= U(b†

0b†
1 |vac〉Q ⊗ |0〉M) = b†

0b†
1 |vac〉Q ⊗ |1〉M ∈

Sep(Q⊗M), and thus such a state has no quantumness of correlations.
The correlations between indistinguishable particles can thereby be characterized by differ-

ent types: the entanglement, the quantumness of correlations, the correlations generated merely
by particle statistics (exchange correlation), and the classical correlations. In fact, there are quan-
tum states whose particles are classically correlated, not even possessing exchange correlations,
such as pure bosonic states with all their particles occupying the same degree of freedom, |ψb〉 =

1√
n!
(b†

i )
n |vac〉, or mixed states described by an orthonormal convex decomposition of such pure

states, χb = ∑i
1
n (b

†
i )

n |vac〉 〈vac| (bi)
n. See Fig.6.1 for a schematic picture of these different kinds

of correlations. Interesting questions to raise concern how the notion of entanglement of particles
is related to the quantumness of correlations, and if they are equivalent for pure states. We can
note from Eq.6.33 that, for pure states, the set with no quantumness of correlations is described by
states with a single Slater determinant, or permanent, which is equivalent to the set of unentan-
gled pure states. Actually there is an ongoing debate regarding the correct definition of particle
entanglement [8,9,56,64,65,97,139,140], but at the same time there are strong physical reasons to
consider particle entanglement in pure states as the correlations beyond the mere exchange corre-
lations [8,9,65,97,139,140]. Concerning mixed states, it becomes clear that the set given by Eq.6.33
is a subset of the unentangled one, thereby being quantumness of correlations a more general
notion of correlations than entanglement.

Quantifying quantumness of correlations for indistinguishable particles

According to the activation protocol, different entanglement measures will lead, in principle,
to different quantifiers for the quantumness of correlations. We can thus define the measure QE
for quantumness of correlations, associated with the entanglement measure E, as follows [86].

Definition 138. Considering a system of n particles sharing a d-dimensional single particle space, de-
scribed by the state ρQ. We can define a given measure of quantumness of correlations QE as:

QE(ρQ) = min
V

E(ρ̃Q,M), (6.44)

where ρ̃Q,M = U
[
(V⊗nρQV†⊗n

)⊗ |0〉〈0|M
]

U†.

We shall consider two different entanglement measures for the bipartite entanglement, the
physically motivated distillable entanglement ED [19] and the relative entropy of entanglement
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Er [155, 156]. Note that the output states of the activation protocol have the so called maximally
correlated form [134] between system and measurement apparatus.

Lemma 139. The state after the interaction between the system and the measurement apparatus is a max-
imally correlated state:

ρ̃Q,M = ∑
~l,~l′

χV
~l,~l′

∣∣∣ f (~l)〉〈 f (~l′)
∣∣∣
Q
⊗
∣∣∣ f (~l)〉〈 f (~l′)

∣∣∣
M

, (6.45)

being χV
~l,~l′

= (ΠV
~l
)†ρQ(ΠV

~l′
), where ΠV

~l
= V⊗nΠ~l .

Proof. Let us show that the output states of the activation protocol for indistinguishable particles
have the so called maximally correlated form between system and measurement apparatus. If
{a†

~k
|vac〉} =

{∣∣∣ f (~k)〉} is the system basis, U is the coupling unitary given by Eq.(6.30), and V is
the unitary respective to the single particle transformation, we have that,

V⊗n a†
~k
|vac〉 = (∑

l1

vk1l1 a†
l1) · · · (∑

ln

vkn ln a†
ln) |vac〉 ,

= ∑
~l

vk1l1 · · · vkn ln

∣∣∣ f (~l)〉 , (6.46)

where vki lj are the matrix elements of V. A general state for the system is given by:

ρQ = ∑
~k,~k′

p~k,~k′

∣∣∣ f (~k)〉〈 f (~k′)
∣∣∣ ; (6.47)

thereby,

V⊗nρQV†⊗n = ∑
~k,~k′,~l,~l′

p~k,~k′(vk1l1 · · · vkn ln) (vk′1l′1
· · · vk′n l′n)

†
∣∣∣ f (~l)〉〈 f (~l′)

∣∣∣ ,

= ∑
~l,~l′

χV
~l,~l′

∣∣∣ f (~l)〉〈 f (~l′)
∣∣∣ , (6.48)

where χV
~l,~l′

= ∑~k,~k′ p~k,~k′(vk1l1 · · · vkn ln) (v~k′1l′1
· · · v~k′n l′n

)†. The output states of the activation protocol
thus have the form

ρQ:M = U
[
(V⊗nρQV†⊗n

)⊗ |0〉〈0|M
]

U† (6.49)

= ∑
~l,~l′

χV
~l,~l′

∣∣∣ f (~l)〉〈 f (~l′)
∣∣∣
Q
⊗
∣∣∣ f (~l)〉〈 f (~l′)

∣∣∣
M

,

i.e., the maximally correlated form.

If the entanglement between the measurement apparatus and system during the local mea-
surement process is quantified via the distillable entanglement, the related measure of quantum-
ness of correlations is the relative entropy of quantumness for indistinguishable particles.

Proposition 140. Given a system of indistinguishable particles described by the state ρQ, distillable en-
tanglement between the system and the apparatus results in the relative entropy of quantumness:

QED(r)(ρQ) = min
χ∈Ω

S(ρQ ‖ χ), (6.50)

where S(ρ ‖ χ) = Tr(ρ ln ρ− ρ ln χ) is the relative entropy and Ω is the set of states without quantumness
of correlations.
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Proof. The entanglement for maximally correlated states according to the distillable entanglement
[78], as well as for the relative entropy of entanglement [134], is given by:

ED(r)(ρ̃Q,M) = S(ρ̃Q)− S(ρ̃Q,M), (6.51)

where S(ρ) = −Tr(ρ ln ρ) is the von Neumann entropy. The first term is given by:

S(ρ̃Q) = S

(
∑
~l

(ΠV
~l
)†ρQ(ΠV

~l
)
∣∣∣ f (~l)〉〈 f (~l)

∣∣∣) , (6.52)

i.e.,the entropy of the projected state ρQ according to a single-particle von Neumann measure-
ment. The second term is simply:

S(ρ̃Q,M) = S(U[V⊗nρQ ⊗ |0〉〈0|M V†⊗n]U†) = S(ρQ), (6.53)

since it is invariant under unitary transformations. Thus we have that the quantumness of corre-
lations measure is given by,

QED(r)(ρQ) = min
V

[
S

(
∑
~l

(ΠV
~l
)†ρQ(ΠV

~l
)
∣∣∣ f (~l)〉〈 f (~l)

∣∣∣)− S(ρQ)

]
, (6.54)

which corresponds to the notion of minimum disturbance caused in the system by single-particle
measurements. This result is in agreement with the analysis made in [107] for the particular case
of two-fermion systems, and to the best of our knowledge is the only study attempting to char-
acterize and quantify a more general notion of correlations between indistinguishable particles.
Repeating the calculations in Theorem 99, it is possible to obtain that the Eq.(6.54) is an equivalent
expression to:

QED(r)(ρQ) = min
χΩ

S(ρQ ‖ χ), (6.55)

The above equation introduces a geometrical approach to the particle correlation measure. No-
tably we see that, as well as for the quantumness of correlations in distinguishable subsystems, the
correlations between indistinguishable particles defined in this section has a variety of equivalent
approaches in order to characterize and quantify it, as shown by the activation protocol (Eq.6.44),
minimum disturbance (Eq.6.54) and geometrical approach(Eq.6.55).

The set of states without quantumness of correlations for indistinguishable particles in Eq.6.33
can be obtained applying the symmetrization or anti-symmetrization operation on the set of
strictly classical correlated states for distinguishable particles. As a simple symmetrization or anti-
symmetrization cannot create or destroy quantum correlations, it creates a bijective map between
the set of strictly classical correlated states in the space of states and the set of classical correlated
states in the Fock space. Although the states in Eq.6.33 do not have any kind of quantum corre-
lations, they cannot be treated like classical probability distributions, since they respect quantum
rules: like the Pauli exclusion principle. Given the geometric approach, and the set of states with-
out quantumness of correlations obtained from the activation protocol we can define an analogous
to the geometric discord for indistinguishable particles. This measure of quantumness of correla-
tions for indistinguishable particles was proposed for fermions, before we had obtained the result
in Theorem 137, where we define the set of states without quantumness of correlations as the
antisymmetrization of the distinguishable set of classical correlated states [87].

Definition 141. Consider a system composed by n particles with d degrees of freedom each, described by
the state ρ ∈ D(F d

n ) for fermions, and ρ ∈ D(Bd
n) for bosons. The geometric measure of quantum discord

can be written as [87]:
D1(ρ) = min

ξ∈Ω
‖ξ − ρ‖1, (6.56)
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where Ω is the set of states without quantumness of correlations for indistinguishable particles.

The geometrical discord for identical particles has the same properties of the the geometrical
discord via 1-norm discussed in Chapter 3. As for indistinguishable particles we cannot apply
the measurement in just one system, without affect the others, because the particles cannot be
distinguished, the monotonic property of the trace distance is not valid.



Chapter 7

Conclusions and future perspectives

The quantumness of correlations revealed very interesting for quantum information area, not
only by the role in some quantum informational and quantum computational tasks, but also be-
cause its fundamental meaning in quantum mechanics. It is related to some fundamental aspects
of quantum mechanics, as well the mathematical structure of it. Quantumness of correlations is
related to the superposition principle of quantum mechanics, the measurement process and the
composition of quantum systems. Actually it comes from the incapacity to extract all the informa-
tion shared by two parts of a same system. This incapacity is related to the way that the quantum
measurement is performed on the quantum systems, as a classical statistical inference process.
In the thesis we always approached quantum measurements as quantum to classical channels,
because in this way it is clear how fundamental is the quantumness of correlations, and this foun-
dations are related to destruction of the quantum character of the system during the measurement
process. We can illustrate what this means comparing two distinct situations. Considering, as ex-
ample, a source which prepares always the same quantum state, if we would like to know what
state is created we can perform any tomographic method to recovery the state. However, consider-
ing now the source is creating two states according a classical random variable. If the states are not
orthogonal, does not exist a measurement process capable to distinguish them. This comes from
the fact that there exist quantum correlations between the classical random variable and the quan-
tum source. These quantum correlations are completely destroyed by the measurement process,
it also destroys the quantum characteristics of the system. Calculating a measure of quantumness
of correlations, quantum discord for example, we are obtaining the degree of quantumness of the
systems, in the correlations point of view, in other words, quantum discord is given to us the
amount of quantumness which will be destroyed by the measurement process.

In this thesis we approached quantumness of correlation in three different ways. Indeed we
walked on some fundamental descriptions for quantumness of correlations: geometrical approach,
and its relation with quantum entanglement; entropic approach, and its role in the discrimination
of quantum states and accessibility of information; and the indistinguishable particle approach,
where we calculate the class of states without quantumness of correlation for identical particles
from the entanglement between distinguishable systems. This thesis is a journey in the quantum
world in its most foundational form.

Our original contributions started to appear in the thesis in Chap.3, where we introduced a
general geometrical measure for quantumness of correlations via Schatten-p norm. The 1-norm
geometrical quantum discord deserves a special attention, once that after our proposal people
proved that it is the only geometrical measure which satisfies the entropic properties of quan-
tum discord. In Chap.4 we revise two different ways to compare quantumness of correlations
and quantum entanglement. The Koash-Winter relation associates quantum discord in a bipar-
tite system with the entanglement created, between the system and purification environment,
in the purification process. We also present the activation protocol, which relates quantumness
of correlations with the entanglement created between the system and the apparatus during the
measurement process. Then we present an original relation between a general geometrical mea-
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sure of quantumness of correlations and the quantum entanglement, calculated via entanglement
witness. We adopt a kind of rule to compare these two quantities, as both are calculated via a geo-
metrical approach. In Chap.5 we compared the capacity to access the information of a G-covariant
ensemble via projective measurements and POVM, we obtained an expression for qubit systems,
where we state that even for this simple case POVM are needed. It reflects on quantum discord
for classical-quantum states, that is equal to the amount of information which cannot be extracted
from the ensemble. The result obtained in this section is counterintuitive, because we do not ex-
pect that the measurement performed to optimize quantum discord depends on the dimension of
the unmeasured system. In the context of indistinguishable particles we defined a projective mea-
surement on the ensemble of states as a dephasing on the optimal POVM. Given this definition
we calculated that 1-norm geometrical quantum discord, of the composed by a classical random
variable and the states of the ensemble, is a lower bound for the difference in the probability o
success, to distinguish the states, via POVM or the dehased-POVM. We introduced a measure of
projectiveness of a given POVM, we obtained a bound between this value and the difference in
the probability of success for POVM or the dephased-POVM. We investigate these concepts for
a given POVM named pretty good measurement, and calculated the difference in the probability
of success via PGM and the dephased-PGM for a 2-design ensemble. In the end of this chapter
we discuss an open question about the 1-way work deficit under embedding. The last chapter
is the Chap.6. In this chapter we presented the formalism of identical particles. We introduced
an approach for the separable states in this context and proposed a measure of entanglement for
fermions. The measure of entanglement calculated by us is the fermionic version of the gener-
alized robustness of entanglement. Indeed it is not well understood in the literature who are the
separable states for indistinguishable particles, there exist more than one approach and interpreta-
tion for it. Our description is supported by the following statement: quantum correlations cannot
be created just symmetrizing the space of states. This kind of argument supports the approach
discussed in this chapter. In this chapter we also discussed the concept of quantumness of corre-
lation for indistinguishable particles. We calculated who are the states without quantumness of
correlation, in this context, via the activation protocol. Then we obtained that the states which
do not create entanglement with the measurement apparatus during a local measurement are the
states without quantumness of correlations. These states has only exchange correlations, which
are the correlations created by symmetrization of the Hilbert space. Therefore, as entanglement
is a subclass of quantumness of correlations, we know what are the states that are not entangled,
if they are states without quantumness of correlations. We discussed a bosonic state, which is
approached in the literature as an entangled state, although it is a state without quantumness of
correlations. We performed the same formalism to obtain the relative entropy of quantumness for
identical particles. We believe that this work will help people to understand what is the meaning
of quantum correlations for identical particles systems. These are the contributions performed by
us in this phd thesis.

As start to work with science means create more work, in this thesis it is not different. We have
some open problems and subjects that can be interesting to investigate.

• In Chap.5 we introduced the dephased-PGM, then it can be interesting to obtain an inter-
play between the probability of success for the PGM and its dephased version, which de-
pends exclusively in the ensemble. Given this expression we can use for example the Fano’s
inequality [162] and the definition of max-entropy [90] to obtain an upper bound for the
difference in the quantum discord calculated via POVM and projective measurements for
classical-quantum states, and a function of the probability of success to distinguish the states
via PGM;

• continuing in Chap.5 we have a conjecture that the diamond norm of the measurement map
via POVM and the dephasing channel, which optimize the quantum discord, is very smaller
than 1. Proving the conjecture we can use the Alicki-Fannes inequality [162] to obtain a
general upper bound for the difference in the quantum discord via POVM and projective
measurement;
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• an open problem which interesting me is calculate the answer for the question: i the 1-way
work deficit embedding free?

• it is known that Koash-Winter (KW) relation reveals many important properties about the
monogamy of quantum correlations. However quantumness of correlations are related to
local measurements in composed system, then it is not clear, in the literature, a foundational
interpretation for the KW relation. I would like to study a possible generalization for other
measures than entanglement of formation, may be a way to obtain it is via the generalized
entanglement of formation, which contain as a subclass the negativity and the concurrence
[14]. Another approach for the KW that I am interested is via the activation protocol [129];

• finally, it is known that the quantumness of correlation can increase under the action of local
maps applied on the measured system. Then the following question arises from this fact:
what are the operation such the quantumness of correlations are monotonic? Two interesting
classes to study are the unital operations and the mixed unitary operations. It is know that
for two qubits systems the quantum discord is monotonic under the action of the dephasing
channel [151], also for qubits any unital map is mixed unitary, although it is not true in
general [159].
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