Please use this identifier to cite or link to this item: http://hdl.handle.net/1843/35669
Full metadata record
DC FieldValueLanguage
dc.contributor.advisor1Frederico Gadelha Guimarãespt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2472681535872194pt_BR
dc.contributor.advisor-co1Miri Weiss Cohenpt_BR
dc.contributor.referee1Rosângela Ballinipt_BR
dc.contributor.referee2Eduardo Pestana de Aguiarpt_BR
dc.contributor.referee3Rodrigo César Pedrosa Silvapt_BR
dc.contributor.referee4Laura Corina Carpipt_BR
dc.creatorCarlos Alberto Severiano Juniorpt_BR
dc.creator.Latteshttp://lattes.cnpq.br/8804024128339716pt_BR
dc.date.accessioned2021-04-13T18:00:00Z-
dc.date.available2021-04-13T18:00:00Z-
dc.date.issued2020-11-27-
dc.identifier.urihttp://hdl.handle.net/1843/35669-
dc.description.abstractSistemas de energias renováveis, como energia solar fotovoltaica e eólica, são fontes de energia muito sensíveis a variações climáticas, o que pode afetar seus padrões de geração. É muito importante usar mecanismos que possam ajudar a antecipar tais variações e possibilitar uma tomada de decisão mais informada. Métodos de previsão podem contribuir para essa tarefa e, portanto, sua aplicação nessa área tem sido amplamente estudada. Os métodos de previsão geralmente utilizam dados históricos da série temporal gerada pelo ponto de interesse. Para melhorar a precisão desses resultados, as informações disponíveis no espaço também vem sendo aplicadas aos métodos de previsão. Essas abordagens, chamadas de métodos espaço-temporais, utilizam todos os dados disponíveis coletados em diferentes localidades. Em energias renováveis, variações observadas em localidades vizinhas podem acontecer em algum ponto de interesse em um futuro próximo, dado que muitos desses eventos são resultado de fenômenos climáticos. Isso reforça a possibilidade de que a análise de dados espaço-temporais possa melhorar o desempenho da previsão em sistemas de energias renováveis. Além disso, eventos climáticos tendem a influenciar os padrões observados nas séries temporais relacionadas com a produção de energia no sistema, de modo a apresentarem não-estacionariedade. Tal cenário demanda o desenvolvimento de mecanismos que permitam ao modelo de previsão se adaptar às mudanças nos padrões das series temporais. Nesta tese são apresentadas propostas para o tratamento de tais problemas relacionados com a previsão de energias renováveis. A partir da extensão de modelos de Fuzzy Time Series (FTS), são aplicadas propostas para, primeiramente, lidar com o problema de não-estacionariedade de series temporais de energias renováveis a partir de um mecanismo de adaptação do modelo. Em seguida, um modelo que também propõe um mecanismo de adaptação, alinhado ao processamento de dados multivariados, é apresentado e avaliado quanto à previsão de energias solar e eólica. Os mecanismos de adaptação analisados se mostram capazes de prover um ganho de desempenho para os modelos propostos, assim como o uso de dados multivariados dispostos em um contexto de um problema espaço-temporal. O modelo e-MVFTS, que integra uma técnica evolutiva de clusterização com um modelo FTS para desempenhar previsão espaço-temporal, apresentou resultados comparáveis a modelos de maior complexidade e abrangência. O modelo ainda apresenta como vantagens sua robustez de parâmetros e capacidade de adaptação às mudanças dos dados sem necessidade de novas etapas de treinamento. Seu mecanismo de adaptação provê uma maior flexibilidade a modelos FTS, uma vez que não requer uma configuração prévia de seu particionamento e é capaz de adaptar tal estrutura dinamicamente durante sua execução. Além disso, o algoritmo de clusterização utilizado no modelo foi originalmente desenvolvido para problemas de fluxo de dados, sendo portanto apto a lidar com grandes volumes de informação. Tais características o posicionam como uma extensão dos modelos FTS aplicável ao problema de previsão de energias renováveis. Adicionalmente, sua fundamentação baseada em FTS o tornam um modelo cuja representação de regras é de maior facilidade de entendimento, sendo este um incentivo adicional para que possa ser adotado no suporte a tomada de decisão em sistemas de energias renováveis. O e-MVFTS ainda apresentou bons resultados em bases não-estacionarias geradas artificialmente. Portanto, uma avaliação do modelo aplicado a outros problemas de previsão pode ser uma direção para trabalhos futuros.pt_BR
dc.description.resumoRenewable energy systems such as solar photovoltaics and wind are sources of energy very sensitive to climate variations, which can affect their generation patterns. It is very important to use mechanisms that can help to anticipate such variations and enable more informed decision-making. Forecasting methods can contribute to this task and therefore their application in this area has been widely studied. Forecasting methods usually take as input historical data from the time series generated by the point of interest. For a further improvement in forecasting accuracy, the information available in space has been also added to forecasting methods. These approaches, called spatio-temporal methods, make use of all the available data collected from different locations. In renewables, variations observed at neighbor locations may occur in the near future at some point of interest, since many of these events are result of climatic phenomena. This reinforces the possibility that spatio-temporal data analysis can improve forecasting performance in renewable energy systems. In addition, climatic events tend to influence the patterns observed in the time series related to energy production in the system, thus presenting non-stationarity. Such scenario demands the development of mechanisms that allow the forecasting model to adapt to changes in time series patterns. In this thesis, proposals for the treatment of such problems related to renewable energy forecasting are presented. From the extension of Fuzzy Time Series (FTS) models, proposals are applied to first deal with the nonstationarity problem using a model adaptation mechanism. Then, another model that also proposes an adaptation mechanism, aligned with the processing of multivariate data, is presented and evaluated regarding the forecast of solar and wind energy. The analyzed adaptation mechanisms were able to provide a performance gain for the proposed models, as well as the use of multivariate data arranged in the context of a spatio-temporal problem. The e-MVFTS model, which integrates an evolving clustering technique with an FTS model to perform spatio-temporal forecasting, presented results comparable to models of greater complexity and scope. The model also presents the advantages of its robustness of parameters and the ability to adapt to changes in data without the need for new training steps. Its adaptation mechanism provides greater flexibility to FTS models, since it does not require a previous configuration of its partitioning scheme and is able to adapt this structure dynamically during runtime. In addition, the clustering algorithm used in the model was originally developed for data stream problems, and is therefore able to handle large volumes of information. These characteristics position it as an extension of the FTS models applicable to the renewable energy forecasting problem. In addition, its FTS-based rationale makes it a model whose representation of rules is easier to understand, which is an additional motivation for being adopted in support of decision making in renewable energy systems. The e-MVFTS also showed good results on artificially generated non-stationary data sets. Therefore, an assessment of the model applied to other forecasting problems can be a direction for future work.pt_BR
dc.description.sponsorshipFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Geraispt_BR
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpt_BR
dc.languageengpt_BR
dc.publisherUniversidade Federal de Minas Geraispt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentENG - DEPARTAMENTO DE ENGENHARIA ELÉTRICApt_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia Elétricapt_BR
dc.publisher.initialsUFMGpt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectRenewable energypt_BR
dc.subjectSolar energypt_BR
dc.subjectWind energypt_BR
dc.subjectFuzzy time seriespt_BR
dc.subjectSpatio-temporal forecastingpt_BR
dc.subjectEvolving modelspt_BR
dc.subject.otherEngenharia elétricapt_BR
dc.subject.otherEnergia eólicapt_BR
dc.subject.otherEnergia renovávelpt_BR
dc.subject.otherEnergia solarpt_BR
dc.subject.otherSéries temporaispt_BR
dc.titleEvolving spatio-temporal forecasting models for renewable energy systemspt_BR
dc.typeTesept_BR
dc.identifier.orcid0000-0002-9100-9013pt_BR
Appears in Collections:Teses de Doutorado

Files in This Item:
File Description SizeFormat 
Tese-Carlos-Severiano.pdfTese de Doutorado - Carlos Severiano6.85 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.