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RESUMO

A pandemia de COVID-19 impulsionou a aplicagdo de tecnologias digitais
avangadas, como a inteligéncia artificial (IA), para prever a mortalidade em pacientes
adultos. No entanto, o desenvolvimento de modelos de aprendizado de maquina
(ML) para prever desfechos em criangas e adolescentes com COVID-19 ainda é
limitado. Este estudo teve como objetivo avaliar o desempenho de multiplos modelos
de aprendizado de maquina na previsao de mortalidade entre pacientes pediatricos
hospitalizados com COVID-19 e analisar sua viabilidade quando aplicados a grandes
bases de dados. Neste estudo de coorte, utilizamos o banco de dados SIVEP-Gripe,
um recurso publico mantido pelo Ministério da Saude, para monitorar a sindrome
respiratoria aguda grave (SRAG) no Brasil. Para criar subconjuntos destinados ao
treinamento e teste dos modelos de aprendizado de maquina (ML), dividimos o
banco de dados primario em trés partes. Com esses subconjuntos, desenvolvemos e
treinamos 12 algoritmos de ML para prever os desfechos. Avaliamos o desempenho
desses modelos utilizando diversas métricas, como acuracia, precisio,
sensibilidade, revocacéo e a area sob a curva caracteristica de operagao do receptor
(AUC). Entre as 37 variaveis examinadas, 24 foram identificadas como potenciais
indicadoras de mortalidade, conforme determinado pelo teste de independéncia do
qui-quadrado. O algoritmo de regresséo logistica (LR) obteve o maior desempenho,
com uma acuracia de 92,5% e uma AUC de 80,1% no conjunto de dados otimizado.
Os algoritmos de Gradient Boosting Classifier (GBC) e Adaptive Boosting (ADA)
apresentaram resultados semelhantes aos do algoritmo LR. Nosso estudo também
revelou que a saturacdo de oxigénio reduzida na linha de base, a presenca de
comorbidades e a idade avancada foram os fatores mais relevantes na previsao de
mortalidade em criancas e adolescentes hospitalizados. O uso de modelos de ML
pode ser uma ferramenta valiosa na tomada de decisdes clinicas e na
implementagao de estratégias de gestdo de pacientes baseadas em evidéncias, o
que pode melhorar os desfechos dos pacientes e a qualidade geral dos cuidados
médicos. Os modelos LR, GBC e ADA demonstraram eficiéncia na previsao precisa
de mortalidade em pacientes pediatricos com COVID-19.

Palavras-chave: COVID-19; inteligéncia artificial; aprendizado de maquina; crianga;
morte.



ABSTRACT

The COVID-19 pandemic has catalyzed the application of advanced digital
technologies such as artificial intelligence (Al) to predict mortality in adult patients.
However, the development of machine learning (ML) models for predicting outcomes
in children and adolescents with COVID-19 remains limited. This study aimed to
evaluate the performance of multiple machine learning models in forecasting
mortality among hospitalized pediatric COVID-19 patients and assess their feasibility
when applied to large-scale datasets. In this cohort study, we used the SIVEP-Gripe
dataset, a public resource maintained by the Ministry of Health, to track severe acute
respiratory syndrome (SARS) in Brazil. To create subsets for training and testing the
machine learning (ML) models, we divided the primary dataset into three parts. Using
these subsets, we developed and trained 12 ML algorithms to predict the outcomes.
We assessed the performance of these models using various metrics such as
accuracy, precision, sensitivity, recall, and area under the receiver operating
characteristic curve (AUC). Among the 37 variables examined, 24 were found to be
potential indicators of mortality, as determined by the chi-square test of
independence. The Logistic Regression (LR) algorithm achieved the highest
performance, with an accuracy of 92.5% and an AUC of 80.1%, on the optimized
dataset. The Gradient Boosting Classifier (GBC) and Adaptive Boosting (ADA)
algorithms closely followed the LR algorithm, producing similar results. Our study
also revealed that baseline reduced oxygen saturation, presence of comorbidities,
and older age were the most relevant factors in predicting mortality in hospitalized
children and adolescents. The use of ML models can be an asset in making clinical
decisions and implementing evidence-based patient management strategies, which
can enhance patient outcomes and overall quality of medical care. LR, GBC, and
ADA models have demonstrated efficiency in accurately predicting mortality in
COVID-19 pediatric patients

Keywords: COVID-19; artificial intelligence; machine learning; child; death.
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1. INTRODUCAO

Os profissionais de saude tém lidado com uma quantidade crescente de informagdes
em seus ambientes de trabalho, assim como sobrecarga dentro dos hospitais (1).
Essa sobrecarga foi agravada pela pandemia de COVID-19, que aumentou o
numero de pacientes hospitalizados em todo o mundo. Estudos mostram que
dezenas de milhares de pessoas morrem a cada ano devido a erros médicos,
frequentemente causados por exaustdo ou estresse que os médicos experimentam

em suas vidas diarias (2-6).

Durante e apés a pandemia de COVID-19, o mundo tem experimentado uma
evolugdo tecnolégica no campo da inteligéncia artificial. Com o poder dos algoritmos
de aprendizado de maquina, tarefas rotineiras e administrativas foram transferidas
para esses sistemas, possibilitando que pessoas se tornem mais produtivas com
menos esforco (7,8). Na area da saude, a IA tem o potencial de auxiliar os
profissionais em suas diversas areas de atuacio tanto do ponto de vista pessoal
como profissional. Por exemplo, no campo pessoal a IA pode aliviar a exaustao dos
profissionais, simplificar as tarefas cotidianas e reduzir a carga de trabalho,
automatizando deveres administrativos. No campo de atuagao profissional, a IA
pode contribuir com o desenvolvimento de uma medicina personalizada e de

intervencao precoce por meio de desenvolvimento de modelos de analise preditiva
(9).

Utilizando sistemas eficientes de aprendizado de maquina, profissionais de
saude podem triar pacientes com suporte computacional e avaliar probabilidades de
diversos desfechos, como &bito, internagdo em UTI, necessidade de suporte
ventilatorio, gravidade de uma doencga especifica, entre outros. Isso otimiza o fluxo
de trabalho do médico e da equipe de saude, fornecendo indicagcdes de quais

pacientes necessitam de atencdo imediata e tém maiores riscos de complicacbes
(9).

Estudos na literatura ja foram conduzidos utilizando metodologias de Machine
Learning (ML) na medicina para prever diversos desfechos em diferentes dominios
médicos, por meio de tipos variados de dados, como texto e imagens (10). No

entanto, ainda ha uma lacuna a ser preenchida quanto ao uso desses algoritmos em
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pediatria. Poucos estudos exploram o uso de algoritmos de ML para previséo de

desfechos em criancas e adolescentes, especialmente no contexto da COVID-19
(11).

Dessa maneira, o objetivo deste estudo € explorar técnicas de aprendizado de
maquina para melhorar a compreensao e previsdo dos desfechos da COVID-19 em
criangas e adolescentes. Dentre as principais metas, incluem-se o desenvolvimento
de modelos preditivos robustos para identificar os fatores de risco de mortalidade em
pacientes pediatricos hospitalizados com COVID-19. Ao analisar um conjunto de
dados abrangente que engloba varios parametros clinicos e demograficos, este
estudo busca determinar os preditores mais significativos de mortalidade, ajudando
assim os profissionais de saude a tomar decisdes informadas para o manejo do

paciente.

Além disso, esta tese tem como objetivo comparar o desempenho de
diferentes algoritmos de aprendizado de maquina, como AdaBoost, CatBoost,
Random Forest, Regressao Logistica, entre outros, na previsdo da mortalidade por
COVID-19 em casos pediatricos. Por meio de um processo rigoroso de avaliagao,
utilizando métricas como precisao, sensibilidade e area sob a curva ROC, o estudo
pretende identificar o modelo mais eficaz para a previsdo de mortalidade. Esta
analise comparativa visa destacar os pontos fortes e limitagbes de diversas
abordagens de aprendizado de maquina no contexto dos desfechos da COVID-19

em pacientes pediatricos.

Finalmente, este estudo pretende contribuir com percepg¢des importantes para
as politicas de saude publica, mostrando a utilidade dos algoritmos de aprendizado
de maquina na analise de bancos de dados de dominio publico e fornecendo
informagdes para os tomadores de decisdo em saude. Ao identificar parametros-
chave na previsao do risco de mortalidade, este estudo tem como objetivo aprimorar
a qualidade do atendimento e os desfechos clinicos dos pacientes pediatricos com
COVID-19.

Seguindo as normas do Programa de Pds-Graduagado em Saude da Crianga e
do Adolescente, esta tese é estruturada da seguinte forma: Introducdo, Revisdao da
literatura sob o formato de artigo cientifico previamente publicado, seguida pelos

objetivos. A seg¢do de Métodos esta incluida dentro de cada artigo, tanto a reviséo da
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literatura quanto o artigo original. Resultados, Discussdo e Conclusbes serao
apresentados no formato de um artigo original intitulado "Analise Comparativa de
Algoritmos de Aprendizado de Maquina para Previsdo de Mortalidade por COVID-19
em Criangcas e Adolescentes Usando um Grande Conjunto de Dados Publicos no
Brasil." Finalmente, a concluséo da tese e apéndices sao fornecidos. As Referéncias
Bibliograficas sdo listadas no final de cada artigo ou secgéo. As citagbes no texto
seguem o sistema Vancouver (Uniform Requirements for Manuscripts Submitted to

Biomedical Journals: Writing and Editing for Biomedical Publication - www.icmje.org).
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Abstract

Background and Objectives: We aimed to analyze the study designs, modeling
approaches, and performance evaluation metrics in studies using machine learning
techniques to develop clinical prediction models for children and adolescents with
COVID-19.

Methods: We searched four databases for articles published between 01/01/2020
and 10/25/2023, describing the development of multivariable prediction models using
any machine learning technique for predicting several outcomes in children and
adolescents who had COVID-19.

Results: We included ten articles, six (60% [95% confidence interval (Cl) 0.31 - 0.83])
were predictive diagnostic models and four (40% [95% CI 0.17 - 0.69]) were
prognostic models. All models were developed to predict a binary outcome (n=10/10,
100% [95% CI 0.72 - 1]. The most frequently predicted outcome was disease
detection (n=3/10, 30% [ 95% CI 0.11 - 0.60]). The most used machine learning
models in the studies were tree-based (n=12/33, 36.3% [95% CI 0.17 - 0.47]) and
neural networks (n=9/33, 27.2% [95% CI1 0.15 - 0.44]).
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Conclusion: Our review revealed that attention is required to address problems
including small sample sizes, inconsistent reporting practices on data preparation,
biases in data sources, lack of reporting metrics such as calibration and
discrimination, hyperparameters and other aspects that allow reproducibility by other

researchers and might improve the methodology.

Systematic Review Registration: PROSPERO, CRD42023414699. OSF,
https://doi.org/10.17605/OSF.IO/EW2JD

Introduction

The healthcare landscape has witnessed a significant transformation in recent years
with the advent of predictive models powered by advanced machine learning
algorithms (1). These models have played a role in the evidence-based medicine
revolution, providing clinicians with tools to improve decision-making, ameliorate
patient outcomes, and optimize healthcare (2). A prediction model can be defined as
a computational tool that utilizes historical data and statistical techniques to forecast
future events. The analysis of large amount of patient data, including demographics,
clinical variables, and diagnostic information, has the potential to aid in early detection
of diseases, risk assessment, treatment planning, and personalized medicine (3-5).
As predictive modeling continues to evolve, its impact on healthcare continues to
grow, enabling clinicians to make more informed decisions and ultimately leading to
better outcomes and patient care. Clinical prediction models typically fall into one of
two main categories: prognostic prediction models, which predict the likelihood of
developing a particular health outcome over a specific period, and diagnostic
prediction models, which determine an individual's likelihood of having a particular

health condition (typically a disease) (6).

Machine learning techniques have been helping in the analysis of large-scale
COVID-19 data, including in studies with children and adolescents. Several studies
provide insights into the clinical outcomes, vaccine efficacy, and risk factors
associated with COVID-19 in this specific population (7-9). These algorithms can


https://doi.org/10.17605/OSF.IO/EW2JD
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assist clinicians and researchers in analyzing these datasets by identifying patterns,
predicting outcomes, and finding relevant risk factors for severe illness or adverse
events. Taking advantage of computational methods, machine learning can help
uncover hidden relationships, identify early warning signs, and help clinical decision-
making. In the context of pediatric patients, machine learning can provide a tool for
extracting actionable insights from the complex and diverse data related to COVID-19
in children and adolescents, ultimately contributing to the development of targeted

interventions.

Development and validation of prediction models for clinical settings rely on the use of
appropriate study designs and modeling strategies. However, there is a lack of
comprehensive information regarding the specific study designs, modeling
approaches, and performance measures employed in studies that utilize machine
learning for prediction modeling (10). Therefore, our objective was to conduct a
systematic review to analyze and summarize the key characteristics related to study
design, modeling techniques, and performance measures reported in studies focusing
on clinical prediction models developed using supervised machine learning algorithms
in pediatric patients with COVID-19.

Methods

We followed the PRISMA 2020 guidelines for systematic reviews (11). This
systematic review was registered and approved in PROSPERO under the protocol
CRD42023414699 and in OSF available at https://doi.org/10.17605/OSF.IO/EW2JD.
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Figure 1. Flowchart of included studies

The systematic mapping was conducted following three adopted stages
described below. (12)

Step 1 - Conduct searches: Based on the research questions, a replicable method for
searching and retrieving articles in four selected scientific databases was defined and
executed. The databases were Embase, Google Scholar, Pubmed, and Scopus

Elsevier.

Step 2 - Selection of studies: A systematic method was defined and applied to select
only the relevant articles for this study using inclusion and exclusion eligibility criteria.
We used the open-source software Zotero (version 6.0.26) to exclude duplicate

articles from the search results.

Step 3 - Data extraction and analysis: Finally, the relevant data from the primary
studies were summarized and presented in this study. For each study, we collected

the following information: study design characteristics (such as cohort, case-control,
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randomized trial), data source (such as routinely collected data, registries,
administrative databases), study population details, outcome measures, setting
information, patient characteristics, sample size (before and after participant
exclusion), number of events, number of candidate and final predictors, handling of
missing data, hyperparameter optimization, dataset splitting (such as train-validation-
test), method for internal validation (such as bootstrapping, cross-validation), number
of models developed and/or validated, and availability of code, data, and model.
Country was defined based on the location of the first author's affiliation. For each
model, we extracted information on the algorithm used, predictor selection methods,
variable importance reporting, use of penalization techniques, hyperparameters

reporting, and performance metrics (such as discrimination and calibration).

Step 1 - Search strategy for scientific articles

To identify possible primary studies relevant to data extraction, the search was based
on (i) studies using keyword combinations derived from our objective and (ii) the
execution of automatic searches on scientific databases using search terms. Initially,
relevant keywords related to four main fields were selected: (a) COVID-19; (b)
medicine; (c) early childhood, childhood, and adolescence; (d) Atrtificial Intelligence

and Machine Learning.
The resulting keywords for each main field were:
COVID-19: COVID-19 OR SARS-COV-2

Medicine: outcomes OR outcome OR mortality OR death OR hospitalization OR
hospitalized OR ICU OR ventilation

Population: Early childhood, childhood, adolescence: child OR "early childhood" OR
children OR newborn OR adolescent OR adolescents

Al and Machine Learning: "machine learning" OR "artificial intelligence" OR
algorithm OR algorithms OR dataset OR dimensions OR training OR sample OR
samples OR prediction OR predict OR predicting OR forecast OR forecasting OR
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classification OR regression OR dimension OR models OR model OR predictive OR

predictors OR bootstrapping OR bootstrap

Search terms were defined by grouping keywords in the same domain with the
logical operator "OR" and grouping the three main concepts with the logical operator
"AND". Then, automatic searches were executed on four scientific databases,
including Embase, Google Scholar, Pubmed, and Scopus Elsevier. The search
limited articles by year of publication (2019 to 2023).

Step 2 - Eligibility criteria (Selection of studies)

The studies retrieved from automatic searches were filtered to exclude articles
not aligned with the study objectives. At this stage, three independent researchers

defined and applied the following inclusion and exclusion criteria.

Inclusion criteria:

Studies whose main focus is on the use of machine learning algorithms to predict

deaths and other outcomes in children or adolescents who had COVID-19.

The search period comprises 01/01/2020 to 10/25/2023. The year limit of 2019
was used because some databases did not allow filtering with monthly granularity.
Thus, it was not possible to specify the month of March 2020 (the beginning of the

pandemic).

To be included in the first selection, articles must address the topics of COVID-
19 in children or adolescents and use machine learning algorithms to predict various
outcomes in these patients. Although the outcome of death is highlighted in the
search keywords in the Medicine domain, this search also considered other outcomes
to increase the range of possible articles returned in the search. Only articles written
in English were considered for the search. Only articles published in journals or

conferences were considered for this search. Regarding articles published in
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conferences, we consider those papers presented at conferences and published in

the conference proceedings.

Exclusion criteria:

Articles written in languages other than English. Articles that do not deal with COVID-
19 in children and adolescents, articles that do not use machine learning algorithms in
the prediction of various COVID-19 outcomes, duplicated articles, and articles that
were selected in the databases but whose completed text files were not obtained

even after demanding the corresponding authors.

The study selection process was carried out in two phases: (i) in the first
selection phase, the titles and abstracts of the studies retrieved from the searches
were read, and studies that did not meet the inclusion criteria were excluded; (ii) in
the second selection phase, all articles were downloaded, and their introduction and

conclusion were read to remove studies that met the exclusion criteria.

For this review, we did not use the "snowballing" technique, which involves
checking if there are any articles in the references of the selected articles, after a
complete reading, that were not found in the initial database search. If such articles
are identified, they are then selected for inclusion in the review. Figure 1 presents the
number of articles selected after each phase and the application of inclusion and
exclusion criteria. And the table in the Supplemental File 1 also summarize the results

after each phase.

Screening and selection process

The titles and abstracts were thoroughly examined by three researchers
independently from a team of eight researchers to identify studies that potentially met
the eligibility criteria. The group of researchers comprised two senior medical

professors, a doctoral candidate, and five undergraduate medical students. The
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undergraduate medical students and the doctoral student were involved in research
projects related to the effects of COVID-19 in children and adolescents.
Subsequently, full-text articles were obtained, and three groups of two researchers
independently evaluated all articles, while the same articles were collectively
reviewed by four researchers to ensure agreement. In the event of any discrepancies
during the screening and selection process, the primary reviewer of this study was

consulted to assess the concerned article and resolve discrepancies carefully.

Step 3 - Data extraction

We selected several items from existing methodological guidelines for reporting and
critical appraisal of prediction model studies to build our data extraction form
(TRIPOD and PROBAST) (13-14). The following items were extracted in the selected
studies based on the systematic review conducted by Navarro et al. (10), including
the items described in step 3 of our methodology. One reviewer recorded all items,
while the other reviewers collectively assessed all articles. Articles were randomly
assigned to reviewers. Discrepancies in data extraction were discussed and solved
between the pair of reviewers. No limitations were imposed on the number of models

extracted per article.

Summary statistics and integration of findings

The findings were condensed into percentages (with confidence intervals calculated
using the Wilson score interval and the Wilson score continuity-corrected interval, as
appropriate), medians, and interquartile range (IQR), accompanied by a descriptive
synthesis.

We reported only overall performance data from the studies, specifically the
overall mean performance reported in the studies. We did not differentiate

performance into corrected, external validation, or apparent validation segments. We
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did not report external validation data, even for studies that validated their models

using different data from the model development and testing phase.

Rather than assessing the intricacies of each modeling approach and its
performance, our evaluations remained at the study level. We refrained from
conducting a quantitative synthesis of the models' performance, such as a meta-
analysis, as it fell outside the scope of our review due to the reason that the available
studies on the topic may have significant heterogeneity in terms of study design,
patient populations, interventions, or outcomes, making it inappropriate or unreliable
to combine their results quantitatively. All analyses were conducted using the

software R version 4.1.0 (R Core Team, Vienna, Austria).

Results

The search in the selected databases for this review yielded 5022 articles. After
assessing the titles and abstracts, 25 studies potentially met the eligibility criteria.
Following a thorough reading of all 25 studies, ten articles were included in this
review: 6 (60% [95% confidence interval (Cl) 0.31 - 0.83]) were predictive diagnostic
models and 4 (40% [95% CI 0.17 - 0.69]) were prognostic models (Figure 1).

We evaluated the quality of the articles regarding their adherence to the
TRIPOD guidelines and also assessed the risk of bias in the selected studies using
the PROBAST tool. Regarding the adherence to the TRIPOD guidelines, the selected
studies showed an average adherence of 67.09%. TRIPOD is a checklist consisting
of 31 items, and the selected studies, on average, fulfiled 20 items from this
checklist. The results of the adherence assessment of each article to the TRIPOD

guidelines can be found in Supplemental File 2.

Regarding the risk of bias assessment using the PROBAST tool, five studies
showed a high risk of bias concerning their prediction models, four studies showed a
low risk of bias, and one study had an unclear result regarding bias risk. The results
of the assessment for each study in the dimensions evaluated by PROBAST
(Participants, Predictors, Outcome, and Analysis) can be found in Supplemental File
3.
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Among the 10 articles, 7 studies (70% [95% CI 0.40 - 0.89]) developed
prediction models and assessed their performance using internal validation
techniques, while 3 studies (30% [95% CI 0.11 - 0.60]) developed and externally
validated the same machine learning predictive model. Six studies were published in
2022 (60% [95% CI 0.31 - 0.83]), three in 2021 (30% [95% CI 0.11 - 0.60]) and one
study in 2023 (10% [95% CI 0.018 - 0.40]). The clinical fields involved in the selected
articles were pediatrics (n=7/10, 70% [95% CI 0.40 - 0.89]), public health (n=2/10,
20% [95% CI 0.057 - 0.51]), and pulmonology (n=1/10, 10% [95% CI 0.018 - 0.40]).
The retrieved articles originated from Europe (n=4/10, 40% [95% CI 0.17 - 0.69]),
Asia (n=3/10, 30% [95% CI 0.11 - 0.60]), and North America (n=3/10, 30% [95% CI
0.11 - 0.60]). Other study characteristics are presented in Table 1.

Table 1 — General characteristics of the included studies

Total (n = 10)

Key characteristics n (%) [95% CI]
Study aim

Diagnosis 6 (60) [0.31 - 0.83]

Prognosis 4 (40) [0.17 - 0.69]
Study Type

Model development only 7 (70)[0.40 - 0.89]

Model development with external validation 3(30)[0.11 - 0.60]
Outcome aim

Classification 6 (40) [0.31 - 0.83]

Risk Probabilities 4 (40) [0.17 - 0.69]
Setting @

General population 6 (60) [0.31 - 0.83]

Secondary care 1(10) [0.018 - 0.40]
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Tertiary care

3 (30) [0.11 - 0.60]

Outcome format

Binary

10 (100) [0.72 - 1]

Type of outcome

Death

1 (10) [0.018 - 0.40]

Severity prediction

1 (10) [0.018 - 0.40]

Hospitalization prediction

2 (20) [0.063 - 0.55]

Complications

2 (20) [0.063 - 0.55]

Need of ICU

1(10)[0.018 - 0.4]

Disease detection

3 (30) [0.11 - 0.60]

Mentioning reporting guidelines (Tripod, Strobe, Charms, other)

TRIPOD

1(10)[0.018 - 0.4]

None

9 (90) [0.60 - 0.98]

Model availability @

Repository for data

5 (50) [0.24 - 0.76]

Repository for code

2 (20) [0.057 - 0.51]

Model presentation

8 (80) [0.49 - 0.94]

None

2 (20) [0.057 - 0.51]

@ Counts are absolute numbers with column percentages in parentheses. The percentages sometimes do not add up to 100%

because studies reported more than one option. ICU = intensive care unit

In total, 33 prediction models were developed (Mean: 3 models per study, IQR:

4, Range: 1-5). We did not set a limit for extracting models per study, since were few

articles included in this review. Thus, all 33 models found in the selected studies were

evaluated. The most used machine learning models in the studies were tree-based
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(n=12/33, 36.36% [95% CI| 0.17 - 0.47]) and neural networks (n=9/33, 27.27% [95%
Cl1 0.15 - 0.44]). Other algorithms encountered are described in Table 2.

Table 2 - Algorithms used for modeling in all extracted models from the selected studies

All extracted models (n

=33)
Modeling algorithm 2 n (%) [95% CI]
Tree Based Models 12 (36.3) [0.17- 0.47]
Decision trees (for example, CART) 3 (25) [0.089- 0.53]
Random forest 2 (16.6) [0.047- 0.45]
Gradient boosting machine (Catboost) 3 (25) [0.089- 0.53]
XGBoost 4 (33.4) [0.14- 0.61]
Neural Network (incl. deep learning) 9(27.2)[0.15 - 0.44]
Support Vector Machine 2 (6.06) [0.017 - 0.20]
Naive Bayes 1 (3.03) [0.0054 - 0.15]
Multiple logistic regression 1 (3.03) [0.0054 - 0.15]
Logistic regression 4 (12.1)[0.048 - 0.27]
Linear discriminant analysis 2 (6.06) [0.017 - 0.20]
Other (TabNet, AutoM, DeepFM, etc) 3(9.09) [0.031 - 0.24]

@ Counts are absolute numbers with column percentages in parentheses. The percentages sometimes do not add up to 100%
because studies developed more than one model.

Participants

The participants included in the reviewed studies were recruited from the general
population (n=6/10, 60% [95% CI 0.31 - 0.83]), tertiary care settings (n=3/10, 30%
[95% CI 0.11 - 0.60]), and secondary care settings (n=1/10, 10% [95% CI 0.018 -
0.40]) (Table 1).
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Data sources

The prediction models were predominantly developed using administrative databases
(n=7/10, 70% [95% CI 0.40 - 0.89]). Prospective cohort data (n=1/10, 10% [0.018 -
0.40]) and retrospective cohort data (n=1/10, 10% [0.018 - 0.40]) were reported in
one study each. The reviewed studies utilized electronic medical records and
surveys. However, there was no information available in the selected articles
regarding the time spent on data collection for the studies. Similarly, no studies
reported the time horizon for the predictions (n=10/10, 100% [95% CI1 0.72 - 1]).

Outcomes

All models were developed to predict a binary outcome (n=10/10, 100% [95% CI 0.72
- 1]). The most frequently predicted outcome was disease detection (n=3/10, 30% [
95% CI 0.11 - 0.60]) followed by hospitalization prediction and complications both
with two studies each (n=2/10, 20%, [95% CI 0.057 - 0.51]). Other outcomes of

severity prediction are described in Table 1.
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Table 3 - Study design of included studies

Total (n = 10)

Key items 2 n (%) [95% CI]

Data sources

Prospective cohort 1(10) [0.018 - 0.40]

Retrospective cohort 1(10) [0.018 - 0.40]

Electronic health record 1(10) [0.018 - 0.40]

Administrative databases 7 (70) [0.4 - 0.89]

Survey 1(10) [0.018 - 0.40]

Predictor horizon

None 10 (100) [0.72 - 1]

Sample size justification

Size of existing/available data 7 (70) [0.40 - 0.89]

None 3 (30) [0.11 - 0.66]

Internal validation @

Split sample with test set 9 (90) [0.60 - 0.98]

(Random) split 5(50)[0.24 - 0.76]

(Nonrandom) split 2 (20) [0.018 - 0.59]

Split 1 (10) [0.022 - 0.40]

Bootstrapping 1(10) [0.022 - 0.40]

With test set 1(100) [0.21 - 1]

Cross-validation 5(50) [0.24 - 0.76]

Nested 5(100) [0.57 - 1]

External validation 3(30) [0.11 - 0.60]

Independent dataset 3(100) [0.44 - 1]

@ Counts are absolute numbers with column percentages in parentheses. The percentages sometimes do not add up to 100%

because studies reported more than one option.
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Candidate Predictors

Candidate predictors extracted from the studies were clinical history (n=5/10, 50% [
95% CIl 0.24 - 0.76]), demographics including sex, gender, and ethnicity/race
(n=5/10, 50% [ 95% CI 0.24 - 0.76]) and disease (the diagnosed disease) (n=5/10,
50% [ 95% CI 0.24 - 0.76]). Other predictors extracted (physical examination, blood
or urine parameters, imaging, pathology, and questionnaires) are described in Table
4. None of the selected studies used treatment modalities as predictors for the
developed models and for one study, treatment as a candidate predictor is not
applicable, since the developed models are dealing with imaging data. Studies
included a median of 15 candidate predictors (IQR: 6 - 14.5). Four studies included
continuous variables as candidate predictors (40% [ 95% CI 0.17 - 0.69]), the other
three studies did not use continuous variables as predictors (30% [ 95% CI 0.11 -
0.60]). Most studies did not report the methods to handle continuous predictors (60%
[95% CI10.31 - 0.83]).

Table 4 - Predictors in included studies

Total (n =10)
Key items n (%) [95% CI]
Type of candidate predictors @
Demography 5(50)[0.24 - 0.76]
Clinical history 5 (50) [0.24 - 0.76]
Physical examination 3(30)[0.11-0.6]
Disease 5 (50) [0.24 - 0.76]
Blood or urine parameters 3(30) [0.11 - 0.6]
Imaging 1(10) [0.018 - 0.40]
Pathology 3(30)[0.11 - 0.60]

Questionnaires 1(10) [0.018 - 0.40]
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Scale Score 1(10) [0.018 - 0.40]

Treatment as candidate predictor

Yes
No 9 (90) [0.60 - 0.98]
Not applicable 1(10) [0.018 - 0.40]

Continuous variables as candidate predictors P

Yes 4 (40) [0.17 - 0.69]
No 3 (30) [0.11 - 0.60]
Unclear 3(30) [0.11 - 0.60]

A-priori selection of candidate predictors

Yes 5 (50) [0.24 - 0.76]

No 5 (50) [0.24 - 0.76]

Methods to handle continuous predictors 2 b

Nonlinear (planned) 1(10) [0.018 - 0.40]
Unclear 6 (60) [0.31 - 0.83]
Not applicable 3(30)[0.11 - 0.60]

Categorization of continuous predictors °

Not reported 10 (100) [0.72 - 1]

@ Counts are absolute numbers with column percentages in parentheses. The percentages sometimes do not add up to 100%
because studies reported more than one option.

b as data preparation

Sample size

Selected studies had a median sample size of 11,108 participants (IQR: 5,664 -

65,518). Most studies report a sample size justification or calculation rationale as the
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size of existing/available data used (n=7/10, 70% [95% CI 0.40 - 0.89]), and 3 studies
did not report any rationale about sample size (n=3/10, 30% [ 95% CI 0.11 - 0.66])
(Table 3) (Table 5).

Table 5 - Sample size of included studies

Total (n =10)
Key items n (%) [95% CI] Median [IQR], range
Initial sample size 10 (100) 11,108 [5664 - 65518] 105 to
23 million
Final sample size 10 (100) 7,801 [5664 - 65518] 99 to
23 million
Model development 10 (100) 6,955 [3000 - 65518] 99 to
20 million
Internal validation 9(88.9) 7,139 [799 - 58188] 99 to 16
million
External validation @ 3 (22.3) Not significant
Number of candidate predictors 10 (100) 23 [14 - 33] 3 to 200
Number of included predictors 10 (100) 16 [7 - 21] 3to 65

@ Only three studies conducted external validation. For the IQR calculation to have significance, a minimum of four values is
required.

Missing values

Missing values were an exclusion criterion of participants in three studies (30% [ 95%
Cl 0.11 - 0.60]). On the other hand, seven studies were unclear regarding missing
data being a criterion for exclusion of participants, as we did not find this information
(70%, [95% CI 0.40 - 0.89]). When a study did not explicitly mention that there are no
missing data, we consider that the study was not clear about the existence of missing
data. To handle missing data, most of the studies are unclear (n=4/10, 40% [95% CI
0.17 - 0.69]). One study used Bayesian optimization (n=1/10, 10% [95% CI 0.018 -
0.40]), and two studies did not make imputation of the missing data in the data source
(n=2/10, 20% [95% CI 0.057 - 0.51]). Other information about how studies reported

ways to handle missing data is presented in Table 6.
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Table 6 — Methods used for missing values handling

Total (n = 10)

Key items n (%) [95% CI]
Missingness as exclusion criteria for participants

Yes 3(30)[0.11 - 0.6]

Unclear 7 (70)[0.4 - 0.89]
Number of patients excluded

Median [IQR] (range) 1007 [303 - 6,247,840] (6 to 12,494,266)
Methods of handling missing data

No missing data 3(30)[0.11 - 0.6]

No imputation 2 (20) [0.057 - 0.51]

Bayesian optimization 1(10) [0.018 - 0.4]

Unclear 4 (40) [0.17 - 0.69]
Presentation of missing data

Not summarized 6 (60) [0.31 - 0.83]

By all candidate predictors 1(10) [0.018 - 0.4]

Not applicable 3(30)[0.11 - 0.6]

Class imbalance and dimensionality reduction techniques

Eight among 10 studies (80%, [95% CI 0.49 - 0.94] did not report unbalanced data or
any strategy to deal with class imbalance like Synthetic Minority Oversampling
Technique (SMOTE), Random Undersampling Boosting (RUSBoost), Random
oversampling, random under sampling, or other techniques. For one study class
imbalance is not applicable, since the study deals with imaging as a data source and
one study report the use of SMOTE to deal with class imbalance. Regarding
dimensionality reduction, most studies did not report any technique to reduce the
dimension of data (n=8/10, 80% [95% CI 0.49 - 0.94]). One study used principal

component analysis (PCA) to reduce the dimension of data (Table 7).
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key items

Total (n = 10)

n (%) [95% CI]

Data preparation @

Cleaning

2 (20) [0.057 - 0.51]

Aggregation

1 (10) [0.018 - 0.40]

Augmentation

1 (10) [0.018 - 0.40]

Encoding

2 (20) [0.057 - 0.51]

Normalization

1 (10) [0.018 - 0.40]

Other

2 (20) [0.057 - 0.51]

Not reported

6 (60) [0.31 - 0.83]

Data splitting

Train-test set

6 (60) [0.31 - 0.83]

Train-validation-test set

4 (40) [0.17 - 0.69]

Dimensionality reduction techniques

Principal component analysis

1 (10) [0.018 - 0.40]

Not Reported

8 (80) [0.49 - 0.940]

Not applicable

1 (10) [0.018 - 0.40]

Class Imbalance

SMOTE

1 (10) [0.018 - 0.40]

Not Reported

8 (80) [0.49 - 0.94]

Not applicable

1 (10) [0.018 - 0.40]

Strategy for hyperparameter optimization @

Cross-validation

4 (40)[0.17 - 0.69]

Manual search

1 (10) [0.018 - 0.40]

Predefined values/default

1 (10) [0.018 - 0.40]

Done automatically by CatBoost

1 (10) [0.018 - 0.40]

Not Reported

7 (70) [0.40 - 0.89]

@ Counts are absolute numbers with column percentages in parentheses. The percentages sometimes do not add up to 100%
because studies reported more than one option. SMOTE = Synthetic Minority Oversampling TEchnique
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Modeling Algorithms

Neural networks were used in 9 among 33 models (27.2% [95% CI 0.15 - 0.44])
extracted from the selected studies, including multilayer perceptron, convolutional
neural network, and recurrent neural networks. Tree-based models were reported in
12 among 33 models (36.3% [95% CI 0.17 - 0.47]). Other models such as TabNet,
AutoML, and DeepFM were also adopted in the selected studies (n=3/33, 9.09%
[95% CI1 0.031 - 0.24]). We did not find any study that reported penalized regression
models. Support Vector Machine (SVM), a popular machine learning technique, was
also reported two times (n=2/33 6.06% [95% CI 0.017 - 0.20]).

Selection of predictors

Regarding the strategy to build models, different methods of selection of predictors
were reported as presented in Table 8. Some of the strategies found in the selected
studies include term frequency-inverse document frequency (TF-IDF) embedding,
frequency encoding, and embedding in the learning process (data-driven approach),
decided by pediatricians and others. The most cited method for model building was
Spearman Correlation (n=4/33, 12.12% [95% CI 0.048 - 0.27]).
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Table 8 - Model building of all included studies

Total (n = 33)
Key items n (%) [95% CI]
Selection of predictors 2
Impurity Based Feature Importance 1(3.03) [0.054 - 0.15]
TF-IDF Embedding 1(3.03) [0.054 - 0.15]
Frequency Encoding/Count Encoding 1(3.03) [0.054 - 0.15]
Spearman Correlation 4 (12.12) [0.048 - 0.27]
All predictors 2 (6.06) [0.017 - 0.20]
Decided by pediatricians 1 (3.03) [0.054 - 0.15]
Propensity Score 1(3.03) [0.054 - 0.15]
Embedded in learning process 1 (3.03) [0.054 - 0.15]
Unclear 1(3.03) [0.054 - 0.15]
Hyperparameter tunning reported
Yes 2 (6.06)[0.017 - 0.2]0
No 7 (21.21)[0.11 - 0.38]
Unclear 1(3.03) [0.054 - 0.15]
Variable importance reported 2
Shapley Value 2 (6.06) [0.017 - 0.20]
By Random Forest 2 (6.06) [0.017 - 0.20]
Weights/correlation 4 (12.12) [0.048 - 0.27]
Gain information 1(3.03) [0.054 - 0.15]
None 3(9.09) [0.031 - 0.24]
Penalization methods used
Not reported 10 (30.3) [0.17 - 0.47]

Abbreviations: TF-IDF, term frequency-inverse document frequency.

@ Counts are absolute numbers with column percentages in parentheses. The percentages sometimes do not add up to 100%
because studies developed more than one model.
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Variable Importance and hyperparameters

The variable importance scores provide valuable information on the extent to which
each variable contributed to the prediction model (Probst et al, 2019). Despite our
sample of studies being small, we found a heterogeneity of information about variable
importance. Three studies did not provide any information about scores for variables
(9.09% [95% CI 0.031 - 0.24]). For 4/33 (12.12% [95% CIl 0.048 - 0.27]) the
importance weights of variables/correlations were used to report variable importance
to the models. Shapley values, another method to determine importance, were used
in two studies (6.06% [95% CI 0.017 - 0.20]). Other methods informed by studies to
determine variable importance are defined in Table 8. Hyperparameters (including
default settings of models) were not reported in 7/10 (70% [95% CI 0.40 - 0.89])
studies. The most described strategy for hyperparameter optimization was cross-
validation (n=4/10, 40% [95% CI 0.17 - 0.69]). Seven studies did not report any
information about hyperparameter optimization (n=7/10, 70% [95% CI 0.40 - 0.89)),

as shown in Table 7.

Performance metrics

The most used measure for the extracted models was the area under the Receiver
Operating Characteristic curve (AUC/ROC) (n=15/33, 15.15% [95% CI 0.30 - 0.62]) to
describe the discriminative ability of the proposed models (Table 9). Few methods for
measuring agreement between predictions and observations (also called calibration)
were used in the selected studies. Only four models used a calibration plot (12.12%,
[95% CI 0.048 - 0.27]). Other measures of calibration used were calibration slope and
calibration-in-the-large. General metrics were found in most studies for the developed
models, such as accuracy (n=25/33, 75.75% [95% CI 0.59 - 0.87]) and F1-score
(n=12/33, 36.36% [95% CI 0.22 - 0.53)).
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Key items

All extracted models (n = 33)

n (%) [95% CI]

Calibration @

Calibration plot

4 (12.12) [0.048 - 0.27]

Calibration slope

1 (3.03) [0.0054 - 0.15]

Calibration in the large

1 (3.03) [0.0054 - 0.15]

None

5 (15.15) [0.067 - 0.31]

Discrimination

AUC/AUC-ROC

15 (45.45) [0.30 - 0.62]

AUPRC 8(24.24)[0.13 - 0.41]
Min(Re,Pr) 3(9.09) [0.031- 0.24]
C-statistic 1(3.03) [0.0054 - 0.15]
None 1 (3.03) [0.0054 - 0.15]
Classification
Sensitivity 12 (36.36) [0.22- 0.53]
Specificity 12 (36.36) [0.22- 0.53]
Recall 9 (27.27) [0.15- 0.44]
Precision 8(24.24)[0.13- 0.41]
Overall @

Predictive values

1(3.03) [0.0054 - 0.15]

AUC difference

2 (6.06)[0.017 - 0.2]

Accuracy

25 (75.75) [0.59 - 0.87]

F1-score

12 (36.36) [0.22 - 0.53]

Youden Index

1 (3.03) [0.0054 - 0.15]

Abbreviations: AUC/ROC, Area Under the Receiver Operating Characteristic Curve, AUPRC, Area Under the Precision-Recall
Curve, Min (Re, Pr), Minimum value between Recall and Precision.

@ Counts are absolute numbers with column percentages in parentheses. The percentages sometimes do not add up to 100%
because studies developed more than one model.

Predictive performance

Studies that reported their discriminative abilities of the proposed models had solid
results (AUC next to 1) with an internally validated median AUC of 0.91 (IQR 0.76-
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0.98; range 0.68 - 0.98). For calibration and overall performance metrics, as shown in
Table 10.

Table 10- Predictive performance of all extracted models 2

All extracted models (n = 33)

Key items Reported, Apparent performance
n (%)

Median [IQR], range

Calibration
Slope 2 (6.06) Not significant
Calibration-in-the large 1(3.03) Not significant
Pearson chi-square 1(3.03) Not significant

Discrimination

0.98[0.84 - 0.98], 0.68 to

AUC 15 (45.45) 0.98
AUPRC 3(9.09) Not significant
AUROC 3(9.09) Not significant
0.81[0.8-0.92],0.79 to
Accuracy 22 (66.66) 0.96
0.84[0.84 - 0.92], 0.45 to
F-Measure 11 (33.33) 0.92
Min(Re, Pr) 3(9.09) Not significant
0.90[0.69 - 0.93], 0.69 to
Sensitivity 18 (54.54) 0.94
0.89[0.87 - 0.94], 0.87 to
Specificity 18 (54.54) 0.99
0.83[0.83 - 0.93], 0.77 to
Precision 10 (30.3) 0.99
Recall 7 (21.21) 0[0.85-0.85], 0.82t0 0.92

Abbreviations: AUC/ROC, Area Under the Receiver Operating Characteristic Curve, AUPRC, Area Under the Precision-Recall
Curve, Min (Re, Pr), Minimum value between Recall and Precision.

@ Counts are absolute numbers with column percentages in parentheses. The percentages sometimes do not add up to 100%
because studies reported more than one option.

Internal validation and external validation

Nine among 10 studies (88.9% [ 95% CI 0.60- 0.98]) internally validate their models,

splitting samples into a training and test set. The train-test set was split randomly into
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5/10 studies (50% [ 95% CI 0.24 - 0.76]) and 2/10 studies used a nonrandom split
(20% [ 95% CI 0.057, 0.51]). One study reported bootstrapping on a test set without
citing the number of iterations. Five studies that performed cross-validation (50%
[95% CI 0.24 - 0.76]), all of them used nested cross-validation (100% [95% CI 0.57 -
1]). For further details, see Table 4. Only three studies performed an external
validation of their models (30% [ 95% CI 0.11 - 0.60] by using independent datasets
to validate their models (100% [95% CI 0.44 — 1]).

Model availability

We did not find any studies that created an online calculator or web system
containing some way to use the developed models. We found a repository for data in
five studies (n=5/10, 50% [ 95% CI 0.24 - 0.76]), and in two studies we did not find
any information about data, code, and even a detailed description of model
construction (n=2/10, 20% [95% CI 0.057 - 0.51]). The presentation of the models in
detail with flowcharts or other images that convey the architecture of the solution
proposed in the study was found in eight articles (80% [95% CI 0.49 - 0.94]). We
found two studies that reported a repository for accessing and reading the source

code of the developed model (Table 1).

Discussion

Principal findings

The present review aimed to identify and analyze predictive and prognostic models
developed using machine learning techniques for children and adolescent who had
COVID-19. Firstly, a notable finding was the low number of studies found that utilized
machine learning models for predicting various outcomes in children and adolescents.

This highlights the need for further studies of this nature in the field of pediatrics.

Despite obtaining a low number of studies in this review, the quantity of

machine learning models found in the selected studies was diverse. The most used
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models were tree-based models, such as XGBoost, decision trees, and Categorial
Boosting (CatBoost) (14-15). XGBoost is an optimized gradient boosting algorithm
that excels in handling complex datasets and achieving high predictive accuracy. It
utilizes a combination of gradient boosting and regularization techniques to produce
strong predictive models. XGBoost is widely recognized for its scalability, speed, and
effectiveness in a variety of machine learning tasks. In another spectrum of machine
learning, neural network models were also utilized in the selected studies. An
example of a neural network model is the multilayer perceptron. A multilayer
perceptron is a type of artificial neural network consisting of multiple layers of
interconnected neurons (16). It is commonly used for non-linear regression and
classification tasks. The network utilizes forward propagation to process input data

and backpropagation to adjust the weights and biases during the training process.

Our findings suggest that machine learning techniques have potential for
developing accurate predictive models across various clinical fields. For instance,
several studies demonstrated high accuracy rates for predicting outcomes including
disease diagnosis or prognosis. These models could be used to improve patient care
by identifying high-risk individuals who may benefit from early interventions or

personalized treatment plans.

Despite the promising results of some studies, we found that there was a lack of
consistency in reporting model development and validation procedures across the
selected articles. For instance, some studies did not provide detailed information
about data sources or model construction methods. This lack of transparency can
hinder reproducibility and limit the generalizability of the models to other populations

or settings.

Concerning data sources, there are several biases existing in datasets used
for machine learning model constructions. Bias, a statistical term, denotes when a
model fails to provide an accurate representation of the population. Some biases
present in datasets include:

e Selection Bias: This bias arises when data from a specific part of the

population is used, not representing the entire target population of the study.
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To mitigate this bias, it is essential to audit the dataset, ensuring samples

accurately represent the study's target population.

e Overgeneralization Bias: Researchers encounter this bias when assuming
that observations in their dataset mirror those in any dataset aimed at
assessing the same problem. To address this issue, external validation is

crucial for evaluating model performance.

e Automation Bias: This bias occurs when researchers heavily rely on
automation tools for data processing before model training. Complete trust in
these tools is discouraged; it's vital to verify correct data transformation

outcomes.

e Sampling Bias: This bias occurs when sampling techniques are not used to
balance classes within the dataset. This may lead to models with high

accuracy in classifying the most represented class in the dataset.

Still regarding to biases in the data, the most common inconsistency observed in the
identified articles pertains to the failure to share modified training data. Researchers
should elucidate the state of data post-modifications made for training, including the
removal of erroneous features, handling of features with substantial missing data,
categorical variable encoding, data sampling, and other relevant procedures. Mere
mention of using data from a specific website is insufficient. Without this crucial
information, the assessment of the actual data employed in the studies becomes
challenging. This can lead to indications of biases in the models and render them
less interpretable. Studies that do not disclose their data and source code make the
research less transparent.

To address these issues, future studies should follow established guidelines for
developing and reporting predictive models (e.g., TRIPOD statement) (17).
Additionally, researchers should consider external validation of their models to

assess their performance in independent datasets (18).

Another consideration is the ethical implications of using machine learning models in

clinical practice. For instance, there is a risk of perpetuating bias or discrimination if
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the models are trained on biased data or if they are not validated across diverse
populations (19). Therefore, it is crucial to ensure that these models are developed

and used ethically and responsibly.

Another finding from our review is that the majority of the selected studies
used administrative databases as their primary data source. This suggests that
machine learning techniques may be particularly useful for analyzing large-scale

administrative datasets to identify patterns and predict outcomes.

The machine learning models have a potential impact on clinical decision-
making. These models have shown promise for improving patient outcomes by
identifying high-risk individuals or predicting disease progression. However, the
models should not be viewed as a replacement for clinical judgment or human
expertise (20). Instead, they should be used as a tool to support clinical decision-

making and improve patient care.

There is a deficiency in the way the selected studies reported data in the
models. The limitations include inadequate reporting of sample sizes, missing
information about hyperparameter tuning, lack of implementation details, and
performance measures of the models. These issues are important for reproducibility

purposes (37).

Few studies employed cross-validation techniques in model development. Cross-
validation helps to prevent the phenomenon of overfitting (21), where the model
achieves 100% accuracy on the test data, which represents the model's development
data that has not been seen by the model before. However, if the test data happens
to be identical to the training data, it is necessary to train and test the model using
different folds of the data. Cross-validation divides the model development data into
multiple folds, using each fold as both training and testing data. The lack of cross-
validation can lead to inaccurate information regarding the performance of the

models.

The most commonly used method for predictor selection in the selected
studies was Spearman correlation. Few studies discussed techniques for
dimensionality reduction of predictors, although most studies had a low number of

features for model development. The selected studies did not provide clear
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information about missing data and how they handled it. Many methodological details
in the majority of studies were unclear. Several studies did not make their code or
data available in separate repositories for other researchers to read and reproduce
the analysis. Many studies did not report information regarding the calibration and
discrimination of the models. It is important to report data about the calibration and
discrimination of a machine learning model because these metrics provide insights
into the model's performance and reliability. Calibration measures the agreement
between the predicted probabilities and the observed outcomes, indicating whether
the model's predictions are well-calibrated and accurate. Discrimination, on the other
hand, assesses the model's ability to distinguish between different outcomes or
classes, indicating its predictive power. Reporting these metrics allows researchers
and practitioners to evaluate the model's effectiveness, identify potential biases or
limitations, and compare its performance against other models or benchmarks.
Ultimately, it promotes transparency, reproducibility, and informed decision-making in

utilizing machine learning models.

The studies did not provide a solid contribution to the medical community as
they did not create any website or other means for physicians and other interested
parties to test the model. There is a need for closer collaboration between this
emerging field of evidence-based medicine and practicing clinicians. The availability
of models is crucial for other physicians to provide feedback on the performance of

the models developed for data specific to their regions.

No selected study provided information on the prediction horizon of the models. This
type of information can be important for the clinical field to understand the validity of

the predictions made.

It is worth noting the lack of external validation to effectively test the selected
models with unseen data. However, obtaining external validation data can be
challenging, and testing models with multiple sources requires time and effort to
acquire and organize large databases for evaluation by machine learning models.

The nature of the data was not widely discussed in the majority of articles. As
important as the model itself, the quality and preparation of the data used for training
greatly influence the model's performance. If the data is not properly prepared before

training, biases may be introduced, affecting the model's true performance. Few
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studies mentioned how the data were treated in terms of their nature (continuous,
discrete, etc.) and how the data were encoded for evaluation by the developed

models.

How models were externally validated

In the three studies that use external validation to validate their models, the
procedure has been conducted to assess the model's real-world applicability. The
studies conducted external validation, adapting to their specific dataset
characteristics. For models with small sample sizes, the researchers in the first study
employed data splitting, allocating a portion of the dataset for training and another for
validation. Additionally, they acquired external data from independent sources to
further validate the model's performance. Key performance metrics, such as accuracy
and precision, were calculated and compared between the internal and external
datasets, ensuring a comprehensive assessment of generalization of results. In the
second and third study, addressing models with large sample sizes, adopted a similar
approach, splitting their dataset into training and validation subsets. They
emphasized the importance of external validation, even with large data, by obtaining
an independent and unseen dataset. Performance metrics were evaluated on both
the internal and external validation datasets. Data splitting was complemented by
techniques such as k-fold cross-validation to maximize data utilization. Since all
studies report good metric values with tests with the external validation datasets, this
can exemplify the importance of external validation in machine learning research,

contributing to the transparency and real-world applicability of their findings.

Traditional Statistical Models versus Machine Learning Models

Traditional statistics has greater transparency and interpretability of relationships
between different variables in the data, clearly showing insights between dependent
and independent variables. On the other hand, machine learning models can learn
different relationships between data that were not detected by traditional statistical
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models, but this is not the focus. Until recently, developers paid little attention to the
explainability of machine learning models. The models were seen as black boxes.
This scenario has changed, and today's models are more explicit about their results.
However, the aim of machine learning models is different from traditional statistical
models. The aim of these models is that from a set of data that the model has never
seen, it is able to classify that data correctly or predict something correctly as if it
were a human being, machine learning models are oriented towards the result and

the final performance of the prediction.

For example, when using a diagnostic system for a disease that uses machine
learning, the aim is for the doctor to enter the patient's data into the system and it will
tell them whether the patient is likely to have the disease, showing which variables
contributed most to that outcome. These models often see different relationships
between the data compared to traditional statistics, as the focus is on providing an
answer with a higher degree of accuracy for the task proposed to the model. For the
same set of data, machine learning models often find different relationships between
the data than statistical models. This is because for the model to give the correct
answers as to which classes the data belongs to, the variables that are important to it

are different.

We will delve into a comparison of machine learning models and traditional statistical
models regarding performance and utility, highlighting the strengths and limitations of
both approaches (39-41).

Strengths and Limitations of Traditional Statistical Models:

e Statistical models are designed for inference about the relationships between
variables. They are used to identify the underlying patterns and relationships
in the data and establish both the scale and significance of the relationship.

e Statistical models explicitly specify a probabilistic model for the data and
identify variables that are usually interpretable and of special interest, such as
effects of predictor variables.

e Statistical models are best suited for small to medium-sized datasets.
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e Statistical models require a lot of assumptions to identify the underlying
relationships between variables.

e Statistical models presuppose that the input variables are not highly
associated with one another and do not exhibit multicollinearity.

e Certain statistical models rely on the sample size being sufficiently big to

guarantee precise parameter estimates.

Strengths and Limitations of Machine Learning Models:

e Machine learning models are designed to make the most accurate predictions
possible. They are built for providing accurate predictions without explicit
programming.

e Machine learning models can provide better predictions than statistical
models.

e Machine learning models are more empirical and do not impose relationships
between predictors and outcomes, nor isolate the effect of any single variable.

e Machine learning models are best suited for large datasets.
Machine learning models are more difficult to understand and explain than
statistical models.

e Machine learning models do not provide a level of interpretability that is

possible with statistical models.

Choosing between machine learning models and traditional statistical models
depends on the purpose of the analysis. If the goal is to find and explain the
relationships between variables, statistical models are the better approach. If the goal

is to make accurate predictions, machine learning models are the better approach.
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Comparison to previous studies

To the best of our knowledge, at the present moment of writing the results of this
study, we did not find another study that has conducted a systematic review to
identify the methodological conduct and study design of research utilizing prediction
models for outcomes in children and adolescents using machine learning algorithms.
However, in other similar studies that evaluated machine learning models for adult
patients, similar issues regarding methodological conduct and reporting have been
identified in various reviews that have explored different machine learning techniques
(22-24). Neglected aspects such as missing data, sample size, calibration, and model
availability have been consistently observed (22, 24-26). In a review examining the
trends of prediction models utilizing electronic health records (EHR), it was noted that
the utilization of ensemble models increased from 6% to 19% (27). Another
comprehensive review focusing on prediction models for hospital readmission
revealed a substantial growth in the application of algorithms including Support
Vector Machine (SVM), Random Forest (RF), and Neural Networks (NN), with an
increase from none to 38% over the past 5 years (28). Additionally, the adoption of
methods to address class imbalance in EHR datasets increased from 7% to 13%
(27).

Limitations of this study

The information extracted in our study was solely based on the content reported in
the articles. Regrettably, only a small number of articles provided the essential
information required by reporting guidelines, making the process of data extraction
challenging (29). Additionally, there was inconsistency in the terminology used across
papers. For instance, the term "validation" was frequently used to describe both
tuning and testing (i.e., internal validation), a concern previously identified in a review
of studies on deep learning models (30). This highlights the necessity of a uniform

terminology for the critical evaluation of machine learning models (31).

In our study, we encountered such limitations that prevented us from
conducting a meta-analysis. The scarcity of studies refers to the limited number of
relevant studies available, which may arise due to the novelty of the research area,
ethical considerations, or limited research resources. Additionally, the heterogeneity
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among studies, in terms of study design, population characteristics, interventions, or
outcome measures, the variation in methodologies and findings across studies may
introduce substantial clinical and methodological heterogeneity, making it

inappropriate to combine the results quantitatively.

Our data extraction form was primarily drawn based on the items and signaling
questions from the TRIPOD and PROBAST tools. Although these tools were initially
developed for regression-based prediction models, the majority of items and
signaling questions were still applicable to studies on machine learning-based

models.

Implications for future research

The extent to which the selected studies aimed to improve clinical care with the
developed models or primarily sought to showcase promising results with the
proposed models is questionable. There was limited emphasis on aspects including
the study's objective, clinical workflow, outcome format, prediction horizon, and
clinically relevant performance metrics. Guidelines and meta-epidemiological studies
have strongly emphasized the importance of applying optimal methodology and
transparent reporting in prediction model studies (32,35). The TRIPOD and
PROBAST provide best practice recommendations for the design, conduct, and
reporting of prediction models, regardless of the modeling technique employed
(12,17,32,33). However, it is crucial to extend these recommendations to include

areas such as data preparation, tunability, fairness, and data leakage.

Extensions of PROBAST and TRIPOD specifically designed for artificial
intelligence (Al) or machine learning-based prediction models, namely PROBAST-AI
and TRIPOD-AI, are currently being developed (31,34). As machine learning
continues to gain importance in healthcare, it is highly recommended for future
studies to reinforce the adoption of a minimum standard in methodological conduct
and reporting to increase the generalizability and applicability of these models
(12,17,32, 33).
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Furthermore, the limited accessibility of the developed models poses a barrier
to conducting independent validation, a crucial step before their integration into
clinical practice. Openly sharing the source code and, ultimately, the clinical
prediction model itself is a fundamental measure to establish trust and credibility in

the application of Al and machine learning in the clinical setting (36).

Conclusion

Our study highlights important considerations when developing and using machine
learning models in healthcare settings. Future research should focus on addressing
limitations including small sample sizes, inconsistent reporting practices, biases in
data sources, and ethical implications to ensure that these models are developed and

used responsibly to improve patient care.
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3. OBJETIVOS

3.1 OBJETIVO PRINCIPAL

Utilizar algoritmos de Aprendizado de Maquina para identificar as principais
caracteristicas clinicas e fatores de risco para mortalidade de criangcas e

adolescentes hospitalizados com COVID-19.

3.2 OBJETIVOS SECUNDARIOS

1 - Realizar uma revisao sistematica da literatura com o objetivo de analisar estudos
que utilizaram modelos preditivos com Inteligéncia Artificial para estudar
caracteristicas clinicas e fatores de risco relacionados a COVID-19 em criangas e

adolescentes.

2 - Utilizar algoritmos de Aprendizado de Maquina para identificar as principais
caracteristicas clinicas e fatores de risco preditivos da gravidade da COVID-19 em

criangas e adolescentes hospitalizados com COVID-19.

3 - Comparar o desempenho e a precisdo dos modelos para prever 6bitos na

populagao-alvo.
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4. METODOS

Desenho do estudo

O delineamento da pesquisa é de um estudo de coorte retrospectivo incluindo
a andlise de todos os casos de COVID-19 em criangas e adolescentes
hospitalizados (pacientes com idade inferior a 18 anos) registrados no Sistema de
Informacdo de Vigilancia Epidemiolégica da Influenza (SIVEP-Gripe) e néo
hospitalizados incluidos no sistema e-SUS Notifica do Ministério da Saude-Brasil
(MS).

Fonte dos dados
Sistema de vigilancia e-SUS Notifica:

Em 27 de margo de 2000, o Departamento de Informatica do SUS -
DATASUS disponibilizou o e-SUS Notifica, ferramenta online para registro de
notificacdo de casos suspeitos e confirmados de sindrome gripal leve relacionada a
COVID-19.

Sistema de vigilancia SIVEP-gripe:

Sistema de registro de dados de abrangéncia nacional estabelecido pelo
Ministério da Saude em 2009 para manter vigilancia de infecgbes respiratérias
agudas graves no Brasil. O SIVEP-Gripe tem sido a principal fonte de informacdes
sobre as admissodes e obitos hospitalares do COVID-19 no Brasil(1, 2). A notificagcao
do COVID-19 é compulsdria no Brasil e o SIVEP-Gripe recebe notificagdes de
pacientes internados em hospitais publicos e privados(3). Para todos os pacientes
cadastrados no sistema, os dados relativos as caracteristicas demograficas e

clinicas tém sido registrados sistematicamente.

O Ministério da Saude do Brasil disponibiliza essas bases de dados na plataforma
OpenSUS  (https://opendatasus.saude.gov.br/dataset).  Portanto, informagdes
detalhadas sobre esses bancos de dados, incluindo formulario de relatério e
dicionario de dados, cdodigos e todos os dados ndo identificados, como dados de

participantes individuais, estao disponiveis publicamente neste site.
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Para o presente estudo, baixamos a ultima versdo disponivel dos conjuntos de
dados em abril de 2023. Para o propésito da presente analise, limitamos o periodo
do estudo de 24 de fevereiro de 2020 a fevereiro de 2023.

O SIVEP-gripe é disponibilizado em arquivos unicos divididos por ano desde 2009.
Ja os arquivos e-SUS Notifica sédo divididos por ano e UF da Federagéo. O Brasil é
um pais continental com uma populacdo de mais de 200 milhdes de pessoas. Além
disso, o e-SUS Notifica registra ndo apenas os casos confirmados de COVID-19,
mas todos os casos sintomaticos com sintomas respiratorios ou outros suspeitos de
infeccdo por SARS-CoV-2. No Brasil, o registro € obrigatério; portanto, prestadores
de servicos de saude publicos e privados devem notificar casos suspeitos de
COVID-19 e internagoes.

Assim, devido a grande quantidade de dados disponiveis, o e-SUS Notifica é
disponibilizado em arquivos de acordo com os 27 Estados da Federagdo. Além
disso, para alguns Estados populosos, como Sao Paulo, foram 13 lotes com cerca
de 800.000 individuos por arquivo. Assim, foram disponibilizados 144 lotes com

informagdes de interesse para nossa analise.

Abordamos esses arquivos passo a passo para obter informagdes confiaveis pela
seguinte metodologia. Primeiro, baixamos a ultima versao disponivel dos conjuntos
de dados em abril de 2023; Em seguida, retiramos todos os individuos cadastrados
fora do periodo de interesse do nosso estudo; Retiramos individuos maiores de
18anos; Por fim, retiramos individuos sem informacdes sobre o teste de COVID-19
ou com testes indisponiveis no momento da analise. Apds essas etapas, mesclamos
sequencialmente os arquivos por Estado, por Regides e para todo o pais. Por fim,
unimos as duas bases de dados (SIVEP-gripe e e-SUS Notifica), reunindo todos os
dados em um unico arquivo para analise. Antes de combinar os conjuntos de dados,
tornamos as variaveis incluidas compativeis para o processo de mesclagem.
Também, antes da analise final, procuramos ativamente por individuos duplicados

nos conjuntos de dados.
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Participantes

Os critérios de inclusao e exclusao para o estudo sdo os seguintes:

a) Critérios de inclusao

Serao incluidos no estudo todos os pacientes registrados consecutivamente
nestas bases de dados, com idade inferior a 18 anos, com um resultado positivo do
teste RT-PCR quantitativo (RT-qPCR) ou de antigeno para SARS-CoV-2.

Para ser incluido no banco de dados SIVEP-Gripe, o caso deve apresentar quadro
clinico de sindrome respiratéria semelhante a gripe e pelo menos um dos seguintes
critérios: dispneia ou dificuldade respiratéria ou saturacao de O2 menor que 95% em
ar ambiente ou cianose ou sintomas especificos para criangas (retragoes

intercostais, batimento de aletas nasais, desidratagéo e inapeténcia).

Para ser incluido no banco de dados do e-SUS Noitifica, o caso deve apresentar uma
sindrome gripal leve com a seguinte definicdo: Individuo com quadro respiratério
agudo, caracterizado por pelo menos 2 (dois) dos seguintes sinais e sintomas: febre,
calafrios, dor garganta, dor de cabeca, tosse, corrimento nasal, disturbios do olfato
ou disturbios do paladar. Para criangas, além dos itens anteriores, a obstrugao nasal

também é considerada, na auséncia de outro diagndéstico especifico.
b) Critérios de exclusao

Pacientes com idade superior a 18 anos de idade. Casos sem confirmacéao
laboratorial de COVID-19.

Apos coletado e armazenado dos dados, conforme descrito acima, os dados foram
preparados para analise. Esta etapa envolveu tarefas como limpeza dos dados,
recodificagao, integracdo de dados, transformacdo de dados, manipulagdo de
valores ausentes, remoc¢ao de valores discrepantes e garantia da consisténcia dos
dados. Apéds todas estas etapas, de um total de aproximadamente 135 milhdes de
individuos registrados nas bases de dados, foram selecionados 3,521,883 criangas e
adolescentes elegiveis para a participacdo no estudo, como descrito nos
fluxogramas abaixo na Figura 1 e Figura 2.



e-SUS Notifica
130 175 060 individuals registered

(from Feb 2020 to Feb 2023)

Children and adolescents
14 645 531 (11.2%)

Children and adolescents
3,571,482individuals

Participants
3,465,519 individuals

Excluded >18y
115 529 529 individuals

Excluded
Test missing
2,945,899
Other viruses
3,232,452
Test not performed / Waiting result
4,895,698

Excluded
Diagnasis by image
1231
Diagnosis by epidemiology

Clinical diagnosis
47,496
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Figura 1 — Digrama mostrando os processos de incluséo e excluséo de participantes no estudo para a
base de dados e-SUS Notifica.
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SIVEP-Gripe
3515 224 Entries
(from Feb 2020 to Feb 2023)

Excluded
>18 years 3 103 824

Children and adolescents ( < 18 years)
411 400

Excluded

other causes 2206
test missing 22 614
test not performed 1106

ve

Positive test for another virus 60 294
Negativetest 119171

Positive test SARS-CoV_2

56 364 individuals

Figura 2 — Digrama mostrando os processos de inclusdo e exclusao de participantes no estudo para a
base de dados Sivep-Gripe.

Variaveis expositivas

Entre as variaveis expositivas forma incluidas dados clinicos e demograficos.

Dados demograficos: idade, sexo, etnia e regides do pais. O Brasil esta
geopoliticamente dividido em cinco macrorregides: Norte, Nordeste, Centro-Oeste,
Sudeste e Sul. Essas macrorregides tém diferencas histéricas na capacidade e
cobertura social, econdbmica e do sistema de saude(4, 5). O Instituto Brasileiro de
Geografia e Estatistica (IBGE) classifica racialmente a populagéo brasileira em cinco

categorias. Essa classificagdo do IBGE € baseada na cor e os individuos séo
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solicitados a se auto identificarem como Branco, Preto, Pardo, Amarelo, ou

Indigena(6).

Dados clinicos: data de inicio dos sintomas, definida como o dia em que o primeiro
sintoma ou sinal ocorreu, e a data de admissdo quando o paciente foi hospitalizado.
Sinais e/ou sintomas de apresentacao (febre, tosse, desconforto respiratério,
gastrointestinal e saturacdo de oxigénio reduzida) e presenca de comorbidades
preexistentes (doenca cardiaca, doenga pulmonar, asma, doenga renal, doenca
neuroldgica (incluindo atraso no desenvolvimento), doenca hematoldgica, diabetes,
obesidade, deficiéncia imunoldgica, malignidade, anormalidades péds-transplante,
sindrémicas e cromossdmicas) também foram registrados. Para analise, a presenca
de comorbidade sera categorizada em dicotomizada (sim/ndo) e em quatro niveis
(nenhuma, uma, duas e trés ou mais condi¢des medicas preexistentes). A evolugéo
clinica foi relatada em termos de suporte respiratorio (nenhum, suporte ndo invasivo
de oxigénio e ventilagado invasiva), admissdo em unidade de terapia intensiva (UTI),
recuperacao, obito e situagao clinica em andamento. A data do 6bito ou alta também

foi registrada.
Desfechos

O desfecho primario sera o tempo até o evento (mortalidade intra-hospitalar).
O tempo de sobrevida foi definido desde o dia da admissao até o evento (6bito ou
alta). Como desfechos secundarios, também serdo avaliados o uso de recursos
assistenciais (internagdo na UTI e suporte respiratorio, definidos como nenhum, néo

invasivo ou invasivo).
Definicoes dos desfechos

Os seguintes desfechos serdo considerados para a analise dos casos com

infeccdo comprovada por SARS-CoV-2:

1. necessidade de suporte respiratério: estratificado em trés grupos nenhum,
suporte ndo invasivo de oxigénio e ventilagdo mecanica invasiva,

2. UTI: Admissdo em unidade de terapia intensiva, dicotdmica (sim/n&o)

3. Gravidade da COVID-19: As categorias de gravidade clinica incluem leve
[sem necessidade de suporte de oxigénio sem internagcdo na unidade de

terapia intensiva (UTI)], moderada (necessidade de suporte de oxigénio sem



60

ventilagdo mecénica invasiva) e grave (necessita de ventilagdo mecanica
invasiva ou morte

4. Tempo até a morte (mortalidade intra-hospitalar): Criamos variaveis para as
analises de sobrevida de risco competitivo. Por exemplo, a partir dos campos
‘data de admisséo” e “data de alta ou Obito” criamos a variavel time_event
(em dias de internacdo). Alternativamente, por falta de informagdo nestes
arquivos, foram utilizados, respectivamente, os campos “data de inicio dos
sintomas” ao invés de “data de admissdo” ou a data de fechamento do
formulario ao invés de “data de alta ou o6bito”. O tempo de sobrevida sera

definido desde o dia da admisséo até o evento (6bito ou alta).

Analise Estatistica

A amostra sera composta por todos os pacientes pediatricos (idade < 18
anos) com COVID-19 cadastrados nos sistemas de vigilancia do MS entre fevereiro
de 2020 e fevereiro de 2023.

Para a analise descritiva, serdo utilizadas medianas e interquartis ou médias e
desvio-padrédo para resumir variaveis continuas e frequéncias calculadas e
proporgdes para variaveis categoricas. Para comparagao de medianas e proporgoes,

serao utilizados, respectivamente, os testes qui-quadrado e teste de Mann-Whitney.

A mortalidade sera avaliada por analise de riscos competitivos, utilizando a funcéo
de incidéncia cumulativa (CIF)(7). A alta foi analisada como evento concorrente na
analise de riscos competitivos(8). Dados completos ndo estavam disponiveis para
todas as variaveis, especialmente etnia, sintomas na apresentacao e comorbidades.
Realizamos imputacdo multipla usando todos os preditores mais o CIF para o
desfecho primario. Isso envolve a criagao de varias copias dos dados e a imputacao
dos valores ausentes para cada conjunto de dados com valores sensiveis
selecionados aleatoriamente de sua distribuicdo prevista. Dez imputados serdo
gerados usando o pacote de equagdes da cadeia de imputagdo multipla (MICE) do
software R. Combinamos os resultados das andlises de cada um dos valores
imputados usando as regras de Rubin para produzir estimativas e intervalos de
confianga que incorporam a incerteza dos valores imputados(9). Para aqueles casos
com dados ausentes sobre um determinado sintoma ou comorbidade, assumimos

que a condicdo clinica estava ausente. Informacbdes detalhadas sobre o
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gerenciamento de dados ausentes sao fornecidas no artigo apresentado na segéo

de resultados desta Tese.
Desenvolvimento do Modelo de Previsao de Risco (estatistica convencional)

Desenvolvemos um modelo de predigao clinica e um sistema de pontuagao de risco
baseado em pontos seguindo as diretrizes fornecidas por Austin et al.(10) para
modelos na presenga de riscos concorrentes. A coorte de desenvolvimento sera

derivada dos casos admitidos na primeira onda da COVID-19 no Brasil.

Os dados nao disponiveis para variaveis, especialmente etnia e sintomas de
apresentacao serdo imputados para as analises. Para comorbidades, consideramos
os valores faltantes como auséncia do quadro clinico. Serdao usados medianas e
intervalos interquartis ou meédias e desvio-padrdo para resumir as variaveis
continuas e sera calculada frequéncias e proporg¢des para as variaveis categoricas.
Sera examinado o desenvolvimento espacial e temporal da epidemia de COVID-19
(total de casos e mortes) em todo o pais, dividindo nossa amostra em quartis. A
mortalidade sera avaliada por analise de riscos concorrentes, usando a fungao de
incidéncia cumulativa (CIF). A alta hospitalar sera analisada como um evento
concorrente pela analise de riscos concorrentes. O modelo de sub-distribuicdo
proporcional de riscos de Fine e Gray sera ajustado para estimar o efeito das
covariaveis na mortalidade. As covariaveis usadas para analises multivariadas serao
selecionadas com base em sua significancia na analise univariada (p <0,10). As
variaveis do modelo final com valor de p <0,05 serédo consideradas estatisticamente
significativas. Os resultados serdo expressos como taxas de risco ajustadas (HR) e

seus intervalos de confianga de 95% (Cl).
Desenvolvimento do Modelo de Previsao de Risco (inteligéncia artificial)

Outro ponto a ser abordado neste projeto € a utilizacdo de algoritmos de
aprendizado de maquina para comparar e predizer desfechos clinicos de criancas e
adolescentes com COVID-19. Este conjunto de dados incluindo quase 4 milhdes de
pacientes pediatricos, seguramente configura uma das maiores bases de dados
disponiveis sobre este tema em todo o mundo. Para a analise de banco de dados
deste porte (na literatura de analise dados chamados de BIG DATA), as técnicas de

inteligéncia artificial podem construir com relevantes informacdes(11). Esta etapa
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exige a aplicagdo de varias técnicas de analise de dados para obter insights
clinicamente relevantes. Deve envolver analise descritiva, analise exploratoria de
dados, analise estatistica convencional, mineracdo de dados, aprendizado de
maquina ou modelagem preditiva(12). Devem ser usados algoritmos e metodologias
apropriados para analisar os dados e testar suas hipoteses. A hipotese investigada é
de que possa haver diferentes fatores relacionados aos desfechos clinicos durante a
pandemia(13). Para entender esses fatores e, principalmente, lidar com possiveis
mudangas na importancia desses fatores em diferentes periodos, trabalharemos
com modelos de causalidade em aprendizado de maquina. O conceito de
causalidade em aprendizado de maquina vai além de simplesmente prever o
desfecho baseado em um conjunto de fatores. Isso porque a previsao do desfecho
por si s6 pode nao ser tao relevante quanto seus efeitos na proposta de intervengdes
— seja através de mudancgas nos protocolos de tratamentos ou mesmo em politicas
publicas — para reduzir, no caso dessa proposta, mortalidade, a necessidade de UTI

ou uso de respiradores na populagao de interesse.

Modelos de causalidade vao além de detectar simples correlagbes nos dados, e
trabalham com um grafo causal(14). Um grafo causal pode ser aprendido
automaticamente a partir de um conjunto de dados, e posteriormente validado e
refinado por especialistas do dominio. Tendo o grafo e um modelo de aprendizado
capaz de inferir os desfechos, é possivel planejar intervencbes e simular

contrafactuais.

Mais especificamente, um modelo de aprendizado de maquina € associativo, ou
seja, capaz de responder perguntas utilizando padrbes encontrados nos dados,
como: quais os fatores que levam um paciente a UTI? Ja um modelo de intervencéo,
que depende tanto do modelo associativo quanto do grafo causal, consegue
responder perguntas do tipo "e se?". Por exemplo, e se os pacientes tivessem sido
vacinados contra COVID-19, isso diminuiria suas chances de ir para UTI? Por ultimo,
tendo esses dois elementos e o0 modelo causal, conseguimos gerar contrafactuais,
ou seja, simular se realmente ao receber a vacina contra COVID-19, um menor

numero de pacientes necessitaria de UTI.
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Abstract

Background

The COVID-19 pandemic has led to the use of advanced digital technologies such as
artificial intelligence (Al) to predict mortality in adult patients. Nevertheless, machine
learning (ML) models capable of predicting outcomes in children and adolescents are
scarce. The primary objective of this study was to develop several ML models for
forecasting mortality in hospitalized children and adolescents with confirmed COVID-
19, and to assess their practicality in relation to extensive databases.

Method

In this cohort study, we used the SIVEP-Gripe dataset, a public resource maintained
by the Ministry of Health, to track severe acute respiratory syndrome (SARS) in
Brazil. To create subsets for training and testing the machine learning (ML) models,
we divided the primary dataset into three parts. Using these subsets, we developed

and trained 12 ML algorithms to predict the outcomes. We assessed the performance
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of these models using various metrics such as accuracy, precision, sensitivity, recall,
and area under the receiver operating characteristic curve (AUC).

Results

Among the 37 variables examined, 24 were found to be potential indicators of
mortality, as determined by the chi-square test of independence. The LR algorithm
achieved the highest performance, with an accuracy of 92.5% and an AUC of 80.1%,
on the optimized dataset. GBC and ADA closely followed the LR algorithm, producing
similar results. Our study also revealed that baseline reduced oxygen saturation,
presence of comorbidities, and older age were the most relevant factors in predicting
mortality in hospitalized children and adolescents.

Conclusions

The use of ML models can be an asset in making clinical decisions and implementing
evidence-based patient management strategies, which can enhance patient
outcomes and overall quality of medical care. LR, GBC, and ADA models have
demonstrated efficiency in accurately predicting mortality in COVID-19 pediatric
patients.

Keywords: COVID-19; artificial intelligence, machine learning; children; death

prediction.

Introduction

Since the onset of the COVID-19 pandemic, the global community has witnessed
remarkable progress in artificial intelligence (Al), particularly in machine learning (ML)
algorithms, such as large language models (LLMs) [1,2]. These models have played a crucial
role in assisting researchers globally in devising innovative solutions to the diverse
challenges in the healthcare field. The utilization of generative Al to provide diagnoses and
prognoses for various diseases across different medical specialties has experienced
substantial growth in recent years [3]. This growth also encompasses the application of ML

algorithms to predict various outcomes of COVID-19.

Despite the extensive use of ML algorithms in diagnostics and prognosis of
COVID-19 in adults, there is a notable lack of studies specifically for children and

adolescents. This significant gap needs to be addressed [4]. Early identification of
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high-risk patients is vital for reducing the strain on healthcare systems and
formulating public policies aimed at minimizing death and mortality rates. The
development of a predictive model that anticipates unfavorable outcomes in patients
with COVID-19 could aid in the efficient allocation of scarce medical resources,
improve healthcare quality, and optimize patient management strategies.

The objective of this study was to examine the ability of machine learning (ML)
models to predict mortality or hospital discharge in a cohort of hospitalized children
and adolescents with laboratory-confirmed COVID-19. To accomplish this, this study
utilized data from a comprehensive nationwide dataset provided by the Brazilian
government. This analysis aimed to determine the most critical predictors for ML
models and the criteria used by these models when making predictions. Additionally,
this study evaluated the effectiveness of these models in forecasting deaths resulting
from COVID-19.

Methods

Study design and dataset description

In this retrospective cohort study, we used data from the Surveillance Information
System (SIVEP-Gripe) to investigate COVID-19 cases among hospitalized individuals
aged < 18 years. In 2009, the Ministry of Health established a nationwide database to
register severe acute respiratory infections in Brazil. SIVEP-Gripe has served as the
primary repository for information on COVID-19 hospitalizations in the country. The
reporting of hospitalizations due to COVID-19 is mandatory in Brazil, with SIVEP-
Gripe receiving notifications from both public and private hospitals. The database
systematically recorded the demographic and clinical findings of all enrolled patients.
Our analysis covered the period from epidemiological week 08 (commencing on
February 16, 2020) to epidemiological week 08, 2023 (ending on February 19, 2023).
We included all consecutively registered patients under the age of 18 years who
tested positive for SARS-CoV-2 using quantitative RT-PCR (RT-gPCR) or antigen

tests and had been admitted to a hospital.

Data preparation
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Over the designated period, 56,330 patient records with verified RT-PCR test

outcomes for SARS-CoV-2 infection were documented. After completing the required
procedures for preprocessing data for the machine learning algorithms, 24,097
records were chosen for the training, validation, and testing stages of the models.
The subset of data from the SIVEP-Gripe dataset, which includes information about
children and adolescents, is hereafter referred to as the SIVEP-Kids dataset.
In the SIVEP-Kids dataset, there are 37 primary features in four main categories:
patient demographics (four features), clinical features (12 features), personal
disease/comorbidity history (14 features), virus strain information (one feature),
vaccine information (two features), a feature indicating the number of different
comorbidities a patient has, a feature indicating whether a patient has comorbidities
or not, a feature categorizing the number of comorbidities a patient has, a feature
indicating the time of the outcome, and an output variable (0: survived and 1:
deceased) for COVID-19 patients. The primary features of the SIVEP-Kids dataset
are presented in Supplementary Table 1.

Regarding the primary features presented in the SIVEP-Kids dataset, the
ethnicity feature had five categories: Asian, Black, Brown, Indigenous, and White.
Similarly, the region was divided into five regions: Central West, North, Northeast,
South, and Southeast. The virus strain feature identified four types of strains in the
dataset: ancestral, delta, gamma, and Omicron. For features 6 through 32, all are of
the nominal type and have values of "Yes" or "No," indicating the presence or
absence of a specific disease or clinical condition in the patient. The total comorbidity
feature records the total number of comorbidities per patient in the SIVEP-Kids
dataset. Feature 34 (number of vaccine doses) had valid values ranging from zero to
three doses. Feature 38 is the target variable of this study, with three types of
outcomes: discharge, death, and in-hospital, with the latter referring to cases in which
the patient is still in the hospital in an ongoing clinical situation. In the present study,
we considered only two types of outcomes in the target variable: death and
discharge. This decision aimed to enhance the accuracy of machine learning
algorithms, as multi-class problems (those with more than two classes in the target
variable) are challenging and tend to reduce the accuracy of ML models because of
the large number of decision boundaries to navigate, often failing to accurately
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separate instances across more than two classes [5,6]. Detailed information on the
clinical, demographic, and epidemiological covariates recorded in the SIVEP-Gripe is

described elsewhere [7, 8].

Data pre-processing

Data preprocessing is a critical step in addressing the influence of irrelevant,
redundant, and unreliable data, ultimately improving data quality and resolving
inconsistencies [9]. In this study, data preprocessing was conducted prior to training
the machine learning models. Initially, the patient records with missing data were
removed from the dataset. For example, records of sex, ethnicity, and reduced
oxygen saturation were excluded if any missing values were detected. Missing values
for the target variable were treated as the absence of the outcome of interest (death).
Additionally, we utilized categorical encoding to transform nominal data into
numerical representations. By applying one-hot encoding, we ensured that our
analysis was guided by intrinsic relationships within the data rather than by the
constraints of non-numerical representations [10].

After applying the criteria for excluding data in the pre-processing step, we obtained a
final sample consisting of 24,097 records. The dataset comprised 22,586 and 1,511
cases in the discharge and death classes, respectively. An imbalanced input
distribution can lead to a bias in the results towards the dominant class, potentially
skewing model performance and reducing generalizability. To address the problem
posed by an imbalanced dataset, we employed the Synthetic Minority Over-sampling
Technique (SMOTE) method, as outlined in <https://imbalanced-learn.org/stable/>.
The SMOTE algorithm, which is widely utilized for synthetic oversampling, generates
artificial samples for the minority class by randomly selecting instances from the
minority class and their k-nearest neighbors. In this approach, a random data
instance along with its k-nearest neighbors is chosen. Subsequently, the second data
instance was selected from this set of k-nearest neighbors [11]. The synthesis of a
new sample occurred along the line connecting these two instances as a convex
combination. This process was iterated until a balance was achieved between

minority and majority classes. The SMOTE method mitigates the risk of overfitting,
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distinguishing it from the random oversampling technique, and it is recognized for its

potential to produce better results [12, 13, 14].

Feature Selection

Chi-square tests were used to discern statistically significant differences
between the outcomes of discharged and deceased patients. Feature importance
scores derived from XGBoost and random forests (as detailed in Supplementary
Figure 1) were utilized to identify the essential variables for forecasting COVID-19
mortality. This methodology aims to increase the interpretability and steadfastness of
mortality prediction models.

Feature selection techniques exhibited elevated scores for robust predictors
such as overall comorbidities, diminished oxygen saturation, and age. Nevertheless,
some disparities were evident in the importance scores between XGBoost and
random forest for specific parameters. XGBoost showed considerable importance in
reducing oxygen saturation and overall comorbidities, whereas random forest
allocated minimal importance. A statistically significant difference (P < 0.01) in
oxygen saturation and total comorbidities was observed between patients who
survived and those who died. Chi-square tests were applied to recognize crucial
mortality predictors, demonstrating moderate to high importance in XGBoost and low
importance in random forest.

Owing to the inconsistencies observed between the two methods, we opted to
select the most pertinent features for training the models using the chi-squared test.
Consequently, we developed three distinct datasets to train and validate the machine
learning models. These datasets included a dataset with features selected using the
chi-squared test, a dataset with features chosen by two pediatricians, and a dataset
with all 37 features, according to Supplementary Table 1, except for the target
variable. Our objective was to determine the dataset that yielded the most favorable
results.

The dataset containing characteristics chosen by pediatricians comprised 17
features: sex, age, ethnicity, region, virus strain, dyspnea, fever, cough,
odynophagia, abdominal pain, ageusia, anosmia, respiratory distress, reduced
oxygen saturation, total comorbidities, vaccine doses, and nosocomial. The dataset
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selected by the chi-squared test comprised 24 features: age, ethnicity, region, viral
strain, dyspnea, cough, respiratory distress, reduced oxygen saturation, cardiology,
pulmonary disease, hypertension, immunosuppression, renal disease, asthma, total
comorbidities, comorbidities, dichotomous comorbidities, time for outcome, vaccine
doses, hematology, neurology, oncology, Down syndrome, and nosocomial infection.
For the purpose to conducting feature selection calculations using the Chi-square
test, XGBoost, and random forest, the Scikit-learn library in its version 1.3.1 was
used. The Pycaret library version 3.1.0 was employed for training and validating the

models. Statistical significance was set at P <0.01.

Model Development

In this study, a total of twelve machine learning algorithms were employed to develop
predictive models. These algorithms included Gradient Boosting (GB), AdaBoost
(Ada), CatBoost (Cat), Random Forest (RF), Extreme Gradient Boosting (XGBoost),
Extra Trees (ET), Logistic Regression (LR), Linear Discriminant Analysis (LDA),
Decision Tree (DT), Naive Bayes (NB), k-nearest neighbors (KNN), and Quadratic
Discriminant Analysis (QDA) [11]. The evaluation process involved the use of k-fold
cross-validation, which is known to have low bias and variation. The optimized
hyperparameters for the machine learning algorithms are provided in Supplementary
Table 2, with constant values maintained across the three variations of the SIVEP-
Kids dataset.

The performance of the predictive model was evaluated using various metrics, such
as accuracy, precision, sensitivity, F1 score, and area under the ROC curve (AUC). A
comprehensive analysis was conducted across all 12 machine learning algorithms to
determine the best model for predicting mortality in COVID-19 patients.

Ethical aspects

We assessed data in SIVEP-Gripe, which are de-identified and publicly available.
The study was approved by the Federal University of Minas Gerais institutional
review board (register 6.127.414). The funding organizations had no role in the
design and conduct of the study; collection, management, analysis, and interpretation

of the data; and preparation, review, or approval of the manuscript.
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Results

Feature Selection

Twenty-four features, comprising demographic and clinical factors, were
identified as the most relevant predictors using the chi-square independence test
(Table 2). Additionally, Table 2 shows mean decreases in impurity and the
importance scores of these variables calculated using the XGBoost and random
forest algorithms. The descriptive statistics of these features are summarized in
Supplementary Table 3

Table 2 - The significance levels, importance scores, and mean decreases in Gini for the key variables

in COVID-19 mortality prediction were computed using XGBoost, Random Forest, and Chi-squared

tests.
N° |Feature Name Chi-squared test Random Forest XGBoost
) G P-value Mean decrease | Importance Score
impurity
1 |Age 396.94 < 0.001 0.171 0.029
2 |Region 17.02 < 0.001 0.084 0.035
3 | Ethnicity 9.59 < 0.001 0.04 0.022
3 | Virus Strain 34.25 < 0.001 0.048 0.023
4 |Dyspnea 57.69 < 0.001 0.026 0.025
5 |Cough 37.89 < 0.001 0.030 0.050
6 |Respiratoy distress 79.53 < 0.001 0.025 0.035
7 | Oxygen saturation reduced [ 175.43 < 0.001 0.027 0.125
at admission
8 |Obesity 66.27 < 0.001 0.005 0.020
9 |Cardiology 212.09 < 0.001 0.009 0.029
10 | Pulmonary 33.75 < 0.001 0.006 0.025
11 |Hypertension 25.17 < 0.001 0.002 0.011
12 | Immunosuppression 108.01 < 0.001 0.008 0.032
13 |Renal 49.48 < 0.001 0.004 0.016
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14 | Asthma 18.74 < 0.001 0.007 0.040
15 | Total Comorbidities 861.55 < 0.001 0.021 0.106
16 | Comorbidities dichotomic [527.13 < 0.001 0.012 0.0002
17 | Comorbidities categoric 830.74 < 0.001 0.019 0.0002
18 | Time for Outcome 504.48 < 0.001 0.208 0.023
19 |Hematology 27.33 < 0.001 0.004 0.014
20 | Neurology 278.64 < 0.001 0.013 0.024
21 | Oncology 52.08 < 0.001 0.003 0.020
22 |Down Syndrome 79.18 < 0.001 0.006 0.023
23 | Nosocomial 70.17 <0.001 0.013 0.024

a8Comorbidities dichotomic and comorbidities categoric had zero values for importance scores
calculated with XGBoost. This is because the XGBoost algorithm detected multicollinearity between
the two characteristics and total comorbidities. In this case, these two columns are ignored by the

algorithm.

The findings in Table 2 suggest that the most important factors, as identified
by the chi-square test, were age, cardiovascular disease, decreased oxygen
saturation upon admission, total comorbidities, comorbidities as a binary feature,
comorbidities as a categorical feature, and time to outcome. These factors
demonstrated a higher level of statistical significance in distinguishing between the
patients who experienced fatal outcomes and those who were discharged. This
statistical significance is also apparent in the developed models and was of
paramount importance in the training process.

In contrast, odynophagia, vaccine dose, abdominal pain, fever, vaccination,
transplant, diabetes mellitus, vomiting, other syndromes, sex, diarrhea, and ageusia
were identified as less relevant features in predicting COVID-19 mortality. Despite the
clinical significance of these parameters in treatment efficacy and mortality prediction,
a considerable number of them could be excluded from our machine learning
analyses. Consequently, the execution of mortality prediction models could be

achieved with a reduced set of factors while maintaining equivalent accuracy.
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Assessment of the developed models

In this study, COVID-19 mortality prediction models were developed using 12 ML
algorithms, namely, GBC, ADA, CatBoost, RF, XGBoost, ET, LR, LDA, DT, NB, KNN,
and QDA. These models were trained on three feature datasets: dataset 1,
containing all features; dataset 2, with features selected by pediatricians; and dataset
3, with features selected by the chi-squared independence test. The performance
evaluation metrics used were accuracy, AUC, recall, precision, and sensitivity. The

results are shown in Figure 1.
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In general, the majority of the models demonstrated comparable levels of
accuracy, displaying good to excellent performance across all three datasets. More
specifically, numerically, the models performed best when trained on Dataset 3,
which was selected using the chi-square method, followed by Datasets 2 and 1.
However, Dataset 1 still exhibited commendable performance even when all features
were included. For Dataset 3, the highest accuracies were achieved by LR (92.53%),
GBC (92.34%), and ADA (92.19%). For Dataset 2, GB (92.08%), ADA (91.92%), and
LR (91.73%) achieved the highest accuracy. For Dataset 1, GBC (91.41%), ADA
(90.32%), and CatBoost (90.01%) were the best-performing models in terms of
accuracy. Among the 12 algorithms analyzed, QDA consistently displayed the lowest
performance across all datasets. Detailed comparison of the AUC for the top three
models trained on Dataset 3, which achieved better results, is provided in Figure 2.
Considering the reliability of the AUC metric for imbalanced datasets, particularly
relevant in our study despite using SMOTE for balancing, is crucial. The AUC results
are nearly identical across all three datasets, with a notable emphasis on dataset 1

containing all features.

Receiver Operating Characteristic (ROC) Curves
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Figure 2 - ROC curves of the three best ML models for Dataset 3 that achieved better results.
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Model Interpretation

We used SHAP summary and force plots to explain the decision-making
process of the Gradient Boosting Classifier (GBC) model. GBC was chosen for its
high ranking across the three datasets, and its decision-making process was
analyzed to identify the most important features influencing its predictions. The force
plot analysis is presented in Supplementary Figures 2 and 3.

In the summary plot for the SHAP values, the impact of each feature on the
model's output is displayed as a dot on the horizontal axis. The position of the dot
represents the SHAP value for that feature, indicating its contribution to prediction.
The color of the dots corresponds to the value of the feature: red for higher values
and blue for lower values, aiding in understanding the direction and magnitude of the
impact on prediction. Figure 3 illustrates the contribution of feature values to the GBC
decision. Features are plotted in the order of importance, with the most important

characteristics at the top and the least important at the bottom.
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Figure 3 shows a summary plot of the SHAP values for each data point in the

dataset. Each line corresponds to a point representing the impact of each feature. A

greater separation of feature values indicates more effective variables for decision-

making. In this context, the most crucial feature in the model's decision-making

process is "oxygen saturation reduced." Blue points indicate low values of the

feature, with "oxygen saturation reduced" taking on values of zero and one in our

dataset. Zero indicates normal oxygen saturation and one indicates reduced

saturation. Therefore, the graph illustrates that when "oxygen saturation reduced" is

0, it contributes to predicting a favorable outcome (patient discharge), whereas a
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value of 1 contributes to predicting a worse outcome (death). Similarly, the variable
"comorbidities categoric" also exhibited a notable separation. Higher values in this
variable, indicating the number of different comorbidities a patient may have ranged
from zero to three or more, showed a significant influence. The graph reveals that for
high values of this variable signifying patients with numerous comorbidities, the
model tends to predict our target variable as 1 (death). Similar patterns were

observed for dyspnea, respiratory distress, total comorbidities, and comorbidities.

Discussion

Key Points

In this study, we analyzed data from a large public dataset provided by the Brazilian
government on patients hospitalized with COVID-19 in Brazil to develop and evaluate
ML models predicting COVID-19 mortality risk in pediatric patients. Demographic
information, risk factors, and clinical manifestations were evaluated to identify the key
mortality predictors. We tested the ML models using three data subsets: (1) all
dataset features, (2) features selected by pediatricians, and (3) statistically relevant
features for predicting mortality. Our results show that ML models are robust and
effective even without previous feature selection, which minimally improves model
accuracy. However, we believe that feature selection is crucial for the model
development. Dataset 3 (24 features) performed the best, followed by dataset 2 (17
features selected by medical experts). The findings from Dataset 1 may not apply to
other data contexts. Models with fewer features are preferred if they achieve equal or
better results. Therefore, for clinical use, models with fewer features, such as those
trained on datasets 3 and 2, are preferable because they require less input from

clinicians while providing accurate predictions.

Comparative analysis

Our findings are in agreement with other studies that have reported some important

clinical predictors for COVID-19 patient mortality, the most relevant features included
age[17, 18, 19, 20, 21], ethnicity[22], region [22], dyspnea[23], cough[17, 18, 21, 24,
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25, 26], reduced oxygen saturation[26, 27, 28], cardiology disease[17, 19, 22, 26, 29,
30], pulmonary disease[17, 27], immunosuppression[22, 31, 32], renal[22, 33],
asthma[22, 34, 35, 36], total comorbidities[17, 27, 34], hematology disease[37, 38,
39], neurology disease[17, 20, 21, 22], oncology disease[17, 20, 26, 40, 41],
hypertension[17, 19, 20, 25], down syndrome[42], and total comorbidities [43].

In our analysis, 12 ML algorithms were tested to develop prediction models for
hospitalized pediatric patients with COVID-19. The LR model performed the best,
with 92.5% accuracy, 98.11% sensitivity, 94.13% precision, 96.07% F1-score, and
80.15% AUC. GBC and ADA models also showed good performance, with AUCs =
79.6%. Other ML algorithms had acceptable performances, with AUCs ranging from
80.1 to 81.6%. The DT model had the weakest performance (AUC = 62.9%), and
QDA had the lowest accuracy (7.9% to 24.3%). In addition, the importance and
efficiency of multiple features in predicting COVID-19 mortality using XGBoost,
random forest, and chi-squared tests were investigated. The results indicated that
reduced oxygen saturation at admission, comorbidities, and older age were the most
relevant predictors of mortality risk, as shown in the SHAP plots. These features are
strong predictors of mortality risk in hospitalized pediatric COVID-19 patients.
Integrating these with 23 other statistically relevant features improved the prognostic
performance of the ML algorithms for mortality prediction in this group.

Models are often presented in the literature as black-box systems, lacking
transparency regarding the contribution of each characteristic to their predictions.
Machine learning models make decisions based on individual feature values, and it is
crucial to understand these decisions, particularly in medical applications in which
patient well-being is at stake. The concept of Explainable Artificial Intelligence (XAl)
[44] enhances the interpretability and trustworthiness of these models. One XAl
technique is the SHapley Additive extension (SHAP) values, which explain model
outputs by attributing each feature's contribution to the prediction. Rooted in
cooperative game theory, the SHAP values provide a unified measure of feature
importance, considering all feature combinations. SHAP is a post-hoc interpretation
technique that can be applied to any machine learning model. In this regard, our
analysis revealed that reduced oxygen saturation, comorbidities (presented as
numerical, binary, or ordinal features), dyspnea, and respiratory distress at admission
were reliable predictors of mortality in pediatric patients with COVID-19.
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Few studies have evaluated ML models for predicting deaths of children and
adolescents with COVID-19. In this regard, we recently conducted a systematic
review to analyze and summarize the key characteristics related to the study design,
modeling techniques, and performance measures reported in studies focusing on
clinical prediction models developed using supervised machine learning algorithms
in pediatric patients with COVID-19 [4]. We found 10 studies (six predictive
diagnostic models, and four were prognostic models). All models were developed to
predict binary outcomes. The most frequently predicted outcome was disease
detection. The most commonly used machine learning models in these studies were
tree-based and neural networks. However, our systematic review revealed that most
studies failed to address relevant issues, including small sample sizes, inconsistent
reporting practices on data preparation, biases in data sources, lack of reporting
metrics such as calibration and discrimination, hyperparameters, and other aspects
that allow reproducibility by other researchers and might improve the methodology.
Other studies have evaluated ML models for predicting various outcomes in the
pediatric setting, but in contexts other than COVID-19. Detailed information regarding

each of these studies is provided in Supplementary Material.

Public policies in data management, Information Systems and audit for

government data

As shown in the methodology section the SIVEP-Kids dataset had a total of 56,330
records and after data pre-processing, 24,097 records were kept in the database.
This loss of data in pre-processing was due to errors and inconsistencies in the data
that arise from the process of generating these datasets. Currently, the Brazilian
government does not have an entity to audit health data made available by the
Ministry of Health. Furthermore, there is no concern in the development of the
systems that feed this data. Many systems have important fields that are not
mandatory. In a hospital, during periods of high demand, the tendency is for
healthcare professionals who are working to fill out data in these systems to only
provide the data that is mandatory, or those that they consider most important. In this

way, a lot of data is lost, or important information is not reported in these systems.
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It is important that the Brazilian government creates public policies for data
management and auditing, as well as modernizing monitoring systems, constantly
updating them and investing in staff training so that they can correctly fill in data in

government systems.

Strengths and limitations of this study

The strength of this study lies in the use of a nationwide database to provide
comprehensive data on COVID-19 in Brazilian pediatric patients. With a large sample
size of lab-confirmed cases, this study details the clinical features, risk factors, and
outcomes of hospitalized children. Another important finding of our study is that ML
algorithms are robust for large databases, which may provide valuable insights for
public health policies. Additionally, ML models may assist in clinical decision-making
and evidence-based patient management, enhancing outcomes and medical care
quality.

However, its limitations include a lack of generalizability to other regions, inclusion of
only hospitalized (likely severe) cases, absence of hospital record data, missing data

issues, and lack of a national audit system for data consistency.

Conclusions

In this study, we compared various machine learning (ML) algorithms to predict the
mortality of hospitalized children and adolescents with COVID-19. The LR, GBC, and
ADA models were particularly effective in accurately predicting mortality in
hospitalized pediatric COVID-19 patients, potentially optimizing hospital resources,
and improving patient survival chances.

Our findings revealed that characteristics such as reduced oxygen saturation levels
at the time of admission and the presence of comorbidities are crucial factors for
decision-making in ML models. By employing a Logistic Regression (LR) predictive
model that incorporated a set of predictors, we were able to effectively identify high-
risk patients upon admission, thereby improving the likelihood of patient survival.
Further studies are required to explore different feature sets for classifier training and
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validation. For instance, this study focused on predicting short-term adverse
outcomes, such as mortality or discharge, rather than long-term effects or protective

public health measurements, such as the vaccination program.
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6. RESULTADOS ADICIONAIS PRELIMINARES

Esta tese também utilizou modelos de aprendizado de maquina para predigdo de
outros desfechos, que foram: gravidade da COVID-19, necessidade de UTI (Unidade
de Terapia Intensiva) e necessidade de suporte ventilatério. Esses desfechos
estavam presentes na base de dados do SIVEP -Gripe e, portanto, foram analisados
pelos algoritmos de aprendizado de maquina que também avaliaram o desfecho
obito. Para todos os desfechos existentes na base de dados do SIVEP-Gripe, o
melhor método de selecdo de caracteristicas da base de dados foi o método Chi-
quadrado. Nas sec¢des a seguir apresentaremos os resultados dos modelos para
esses desfechos. Todos os procedimentos metodolégicos adotados para o desfecho
obito e que foram apresentados na se¢ao 5 (artigo original) também foram adotados

para os desfechos apresentados nessa secao.
6.1. Desfecho gravidade da COVID-19

O desfecho gravidade diz respeito a evolugdao da COVID-19 nos pacientes. A
evolugdo da doencga esta relacionada com os outros desfechos, mas é importante
analisarmos esse desfecho isoladamente para saber o comportamento dos modelos
em relagdo as caracteristicas e a predicdo de gravidade para um determinado
paciente. A Tabela 1 mostra o resultado dos modelos de aprendizado de maquina
para o desfecho gravidade.

Tabela 1 — Desempenho dos algoritmos de aprendizado de maquina no conjunto de dados 3

(caracteristicas selecionadas pelo teste de independéncia de Chi-quadrado) para predi¢do de
gravidade da COVID-19.

Algoritmo Acuracia AUC Recall Precisao F1 Sensitividade
NB 0.7040 0.6811 0.3311 0.4888 0.3946 0.3311
XGBOOST 0.6959 0.7328 0.6232 0.4836 0.5444 0.6232
RF 0.6875 0.7241 0.6308 0.4733 0.5406 0.6308
GBC 0.6854 0.7429 0.6643 0.4720 0.5517 0.6643
ET 0.6839 0.7135 0.6187 0.4686 0.5330 0.6187
ADA 0.6684 0.7360 0.6839 0.4544 0.5459 0.6839
DT 0.6469 0.6363 0.6109 0.4262 0.5019 0.6109
QDA 0.6216 0.6455 0.4657 0.4498 0.4067 0.4657
LDA 0.6084 0.7112 0.7499 0.4070 0.5276 0.7499
KNN 0.6063 0.6692 0.6966 0.3995 0.5077 0.6966
LR 0.6053 0.7111 0.7522 0.4049 0.5263 0.7522
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Como podemos ver na Tabela 1, os trés algoritmos que tiveram melhor
desempenho na predicdo de gravidade da COVID-19 em pacientes pediatricos
hospitalizados foram: Gradient Boosting Classifier (GBC), Adaboost (ADA) e Extreme
Gradient Boosting (XGBOOST). Lembrando que para conjuntos de dados que
precisaram de ser balanceados com SMOTE como foi o caso do nosso conjunto de
dados, a AUC € a nossa métrica principal. A AUC € uma métrica mais confiavel para

dados desbalanceados e que passaram por processos de imputagao.

Os modelos apresentaram uma baixa sensibilidade na predigdo da gravidade
da doenga. Isso significa que, para o desfecho gravidade, os modelos tenderam a
classificar um numero maior de falsos negativos, dessa forma identificando um
paciente que teve maior gravidade da doenga como sendo um paciente de baixo
risco para este evento. A acuracia dos modelos para o conjunto de dados foi
mediana, apresentando em média 65% de acertos em relacdo aos dados do

conjunto.

A Figura 3 mostra o grafico de resumo de contribuicbes de caracteristicas
para a decisdo do melhor modelo na predicao de gravidade por COVID-19, o modelo
GBC. As caracteristicas com maior discriminacdo para que o modelo classifique um
paciente com gravidade acentuada, moderada ou leve por COVID-19 foram:
saturacdo de oxigénio reduzida, total de comorbidades, tosse, desconforto
respiratorio, problemas cardioldgicos e diabetes. Em relagdo a saturagao de oxigénio
reduzida, a presenca deste quadro clinico no paciente faz com que o modelo tenha
tendéncia para classificar o paciente como quadro de gravidade acentuada ou
moderada de COVID-19 e a nao presenca faz com que o modelo classifique o
paciente como um quadro que nao vai apresentar gravidade acentuada ou
moderada. Essa é a caracteristica mais importante do modelo. A mesma ldégica vale
para o total de comorbidades e para pacientes que tem problemas cardiacos e

diabetes.
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Figura 3. Grafico de resumo de contribuigées para tomada de decisdo do algoritmo GBC para

predigao do desfecho gravidade.

6.2. Desfecho Necessidade de Suporte Ventilatério

O desfecho suporte ventilatério diz respeito a necessidade ou ndo de ventilacdo
mecanica para um paciente. A Tabela 2 mostra o resultado dos modelos de
aprendizado de maquina para esse desfecho presente no conjunto de dados do
SIVEP-Kids.



Tabela 2 — Desempenho dos algoritmos de aprendizado de maquina no conjunto de dados 3
(caracteristicas selecionadas pelo teste de independéncia de Chi-quadrado) para predi¢ao de

necessidade de suporte ventilatorio.
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Algoritmo | Acuracia AUC Recall Precisao F1 Sensitividade
NB 0.5767 0.7029 0.5767 0.6217 0.5922 0.5910
ET 0.5618 0.7374 0.5618 0.6370 0.5842 0.4622
XGBOOST 0.5592 0.7461 0.5592 0.6448 0.5840 0.4608
RF 0.5565 0.7445 0.5565 0.6441 0.5807 0.4402
GBC 0.5438 0.7613 0.5438 0.6522 0.5703 0.3951
ADA 0.5255 0.7597 0.5255 0.6579 0.5521 0.3331
DT 0.5236 0.6538 0.5236 0.6151 0.5512 0.4418
LDA 0.4681 0.7546 0.4681 0.6695 0.4468 0.0779
LR 0.4414 0.7447 0.4414 0.6611 0.4555 0.1370
KNN 0.4274 0.6579 0.4274 0.6113 0.4652 0.2821
QDA 0.3671 0.6091 0.3671 0.3315 0.2980 0.2225

Os modelos nao apresentaram bons resultados para o desfecho necessidade de
suporte ventilatorio, sendo os trés melhores: GBC, ADA e LDA. Entretanto, as
acuracias para a base de dados do SIVEP-Gripe n&o foram satisfatérias, ou seja, os

modelos erram mais do que acertam para esse tipo de desfecho. A Figura 4 mostra

o grafico de resumo de contribuicdes de caracteristicas para tomada de decisao pelo

modelo GBC. As caracteristicas mais importantes para que o modelo classifique que

0 paciente pediatrico tera necessidade de suporte ventilatério sdo: saturacado de

oxigénio reduzida, total de comorbidades, tosse, desconforto respiratorio, infeccéo

nosocomial, diabetes e ageusia.
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Figura 4. Grafico de resumo de contribuigdes para tomada de decisédo do algoritmo GBC para
predi¢cdo do desfecho suporte ventilatério.

6.3. Desfecho admissao em Unidade de Terapia Intensiva (UTI)

Nesse desfecho, os modelos tentam prever se o paciente pediatrico sera internado
na Unidade de Terapia Intensiva - UTI a partir dos dados presentes no conjunto. O
desfecho UTIl se aproxima muito do desfecho suporte ventilatério em termos

praticos, pois pacientes com COVID-19 que foram para UTI fizeram a utilizacdo de
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suporte ventilatério na maioria das vezes. A Tabela 3 mostra o desempenho dos
modelos para esse desfecho.
Tabela 3 — Desempenho dos algoritmos de aprendizado de maquina no conjunto de dados 3

(caracteristicas selecionadas pelo teste de independéncia de Chi-quadrado) para predi¢do de
necessidade de UTI.

Algoritmo | Acuracia AUC Recall Precisao F1 Sensitividade
NB 0.7155 0.6727 0.3215 0.4261 0.3663 0.3215
QDA 0.7151 0.6699 0.3229 0.4254 0.3670 0.3229
XGBOOST 0.6991 0.7215 0.5795 0.4339 0.4961 0.5795
GBC 0.6940 0.7334 0.6403 0.4336 0.5169 0.6403
RF 0.6875 0.7096 0.6006 0.4221 0.4956 0.6006
ET 0.6823 0.6916 0.5887 0.4147 0.4865 0.5887
ADA 0.6688 0.7263 0.6705 0.4098 0.5086 0.6705
DT 0.6537 0.6330 0.5905 0.3846 0.4658 0.5905
LDA 0.5968 0.7011 0.7437 0.3604 0.4855 0.7437
KNN 0.5954 0.6607 0.6937 0.3523 0.4672 0.6937
LR 0.5936 0.6997 0.7437 0.3582 0.4835 0.7437

De forma similar aos outros dois desfechos, nos resultados para necessidade de UTI
o algoritmo GBC apresentou melhor performance, considerando AUC como métrica
principal, seguido pelos algoritmos ADA e XGBOOST, respectivamente. Por outro
lado, os resultados de acuracia foram um pouco melhores que os outros dois
desfechos com valores de AUC um pouco mais elevados. Em relagdo a
sensibilidade, os algoritmos continuam produzindo falsos negativos e, nesse caso,
deixando de prever casos que foram positivos. Em relagdo a Figura 5, o grafico de
resumo de contribuicdes, mostra as principais caracteristicas clinicas utilizadas pelo
modelo GBC para realizar a tomada de decisao entre classificar um paciente que vai
para a UTl e um paciente que nao vai. A principal caracteristica para que o modelo
classifique um paciente para ir para UTI € o tempo para o desfecho, ou seja o tempo
que o paciente estda no hospital, isso quer dizer que quanto maior o tempo do
paciente no hospital maiores as chances de ir para a UTI. Também foram
considerados saturacdo reduzida de oxigénio, desconforto respiratério e total de

comorbidades do paciente.
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Figura 5. Grafico de resumo de contribuigdes para tomada de decisdo do algoritmo GBC para
predi¢cdo do desfecho UTI.

6.4. Sistema de suporte a decisao na triagem de risco de mortalidade para

criangas e adolescentes por COVID-19

O trabalho apresentado nessa tese também quis ampliar os horizontes de aplicagao
de aprendizado de maquina e levar o contexto dos algoritmos para um sistema
pratico, permitindo que profissionais de saude possam utilizar um sistema de suporte
a tomada de decisdo em um ambiente real. Dessa forma, desenvolvemos um

sistema que utiliza o melhor algoritmo de aprendizado de maquina para o desfecho
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obito e disponibilizamos o sistema para utilizacdo neste link:

https://covidriskcalculator.streamlit.app/. O sistema foi totalmente desenvolvido

utilizando-se a linguagem de programacéao Python.

A Figura 6 apresenta a tela principal do sistema que contém as caracteristicas
selecionadas para treinamento dos modelos, como campos de entradas de dados
pelo profissional de saude. O profissional informa as caracteristicas clinicas e
comorbidades do paciente e apds inserir os dados desejados ele seleciona o botédo
realizar previsdo. Na parte esquerda da imagem, o sistema informa o risco de
mortalidade do paciente que pode ser alto risco de mortalidade ou baixo risco de
mortalidade e informa também o percentual de confianga que o modelo tem naquela

previsdo de mortalidade informada.

X Share

3 Acesso

Triagem de Risco de Mortalidade de Criangas e adolescentes por COVID-19

i= Triagem COVID-19 . .
Prezado médico, é obrigatério informar dados em TODOS os campos

para que o modelo de IA faca a previsdo.
b Sobre o projeto
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b Publicagfes sobre os dados dos campos.
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Figura 6 — Tela principal do sistema de suporte a decisdo para triagem de risco de
mortalidade de criangas e adolescentes por COVID-19

Com o presente sistema esperamos que as aplicagcdes de aprendizado de
maquina para saude saiam do ambito exclusivamente tedrico e possam também
contribuir para o contexto pratico, ou seja, hospitalar. Isso possibilitara que
profissionais de saude tenham uma ferramenta com inteligéncia artificial a
disposicdo como suporte para a tomada de decisdo. E importante ressaltar que um

profissional de saude ndo pode definir o destino de um paciente somente baseado


https://covidriskcalculator.streamlit.app/
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no que é informado pelo sistema. O sistema serve apenas como um apontador de
indicios. Quaisquer decisdes devem ser tomadas pelo médico de acordo com as
evidéncias clinicas e laboratoriais. E importante destacar que este sistema foi
desenvolvido apenas para ilustrar as potencialidades das aplicagdes de |IA utilizadas
em nosso estudo. E imperativo comentar que a implementacdo na pratica clinica de
um sistema desta natureza deve seguir os principios cientificos mais rigorosos e os

tramites legais e éticos previstos nas legislacbes dos diversos o6rgaos regulatérios.
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7. PERSPECTIVAS

O presente estudo se insere no contexto da utilizagao da IA e do chamado Big Data
em Medicina e de suas promissoras aplicagdes na area. Essa nova era, propiciada
pelo acelerado desenvolvimento tecnoldgico das ultimas décadas, abre um leque de
oportunidades inéditas para o avango do conhecimento cientifico e para a pratica
meédica. As aplicagcdes de IA podem gerar inovagdes em diversos aspectos da
Medicina, desde a identificagcdo de novos farmacos e o desenvolvimento de terapias
personalizadas até a compreensdo mais profunda dos complexos mecanismos
fisiopatoldgicos, sociais, e epidemioldégicos que determinam a saude e a doencga.
Essa vasta gama de dados, proveniente de diversas fontes como bancos de dados
publicos, prontuarios eletrbnicos, pesquisas genémicas e dispositivos médicos de
monitoramento continuos, oferece uma riqueza de informagdes sem precedentes
para a pesquisa meédica. Em nossa opinido, para extrair o maximo de conhecimento
do Big Data na Medicina, € fundamental a sinergia entre métodos estatisticos
tradicionais e técnicas de |A. A combinagao da robustez e flexibilidade da estatistica
com o poder de aprendizado de maquina da IA permite aos pesquisadores analisar
conjuntos de dados complexos e identificar padrées sutis que podem ter um impacto

significativo na compreensao de doencas e no desenvolvimento de novas terapias.

Contudo, a utilizagdo do Big Data na Medicina n&o esta isenta de desafios. A
garantia da privacidade e seguranca dos dados, a integracao de diferentes fontes de
informacgao e a interpretagcao dos resultados complexos gerados pelas analises de
Big Data exigem solu¢des inovadoras e colaboracéo interdisciplinar. No entanto, as
perspectivas para o futuro sdo promissoras. Acredita-se que a IA aliada ao Big Data
tém o potencial de revolucionar a Medicina, levando a diagnosticos mais precisos,
tratamentos mais eficazes e uma melhor compreensdo da saude humana em sua

totalidade.

Ao se inserir nessa area da pesquisa médica, julgamos que este estudo pode
contribuir para o avangco do conhecimento e a busca por solugdes inovadoras para
os desafios da pratica clinica em Pediatria. Além disso, a extensiva revisdo da
literatura indica um amplo espago para pesquisas com aprendizado de maquina na

Pediatria. Para futuros estudos, pretendemos utilizar modelos de aprendizado de
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maquina para verificacdo da efetividade das vacinas na prevencao de o&bitos por
COVID-19. Também pretendemos utilizar esses modelos para diagndsticos e
prognosticos de outras doengas em criangas e adolescentes, integrando dados
clinicos, laboratoriais e de exames de imagem. Outra area de investigagao para
trabalhos futuros € sobre a utilizacdo de grandes modelos de linguagem como
ChatGPT, Llama e Gemini para auxiliar estudantes, residentes e profissionais de
saude no treinamento do diagnostico clinico e na atuagdo nos mais diversos

cenarios da pratica pediatrica.
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8. CONCLUSAO

Esta tese apresentou modelos de aprendizado de maquina para prever a
mortalidade em criangas e adolescentes com COVID-19 e seus principais fatores
clinicos de risco. Os resultados foram satisfatorios, mostrando que os modelos de
aprendizado de maquina podem auxiliar os médicos em um processo de triagem
para identificar pacientes com uma probabilidade maior de mortalidade. Os principais
fatores preditivos da mortalidade de criangas e adolescentes hospitalizados com
COVID-19 de acordo com os algoritmos de aprendizado de maquina utilizados
foram: baixa saturagcdo de oxigénio na admissao, dispneia, desconforto respiratorio,
total de comorbidades apresentadas pelo paciente ou se paciente tem alguma
comorbidade. Os resultados dos algoritmos de aprendizado de maquina para os
desfechos UTI, suporte ventilatério e gravidade da COVID-19 nado tiveram o mesmo

desempenho em comparacao aos resultados para o desfecho obito.
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APENDICE

Supplementary Material Systematic Literature Review

Supplemental File 1 - Selected studies after selection process

Studies that do Studies

Studies not address where
selected by Duplica COVID-19in the PDF Selected studies
retrieved abstract and te children or was not  after complete
studies title studies adolescents found screening
Elsevier
Scopus 509 2 0 0 0 2
Embase 1406 7 0 4 0 4
Pubmed 1995 7 6 0 0 1
Google
Scholar 1112 8 1 1 3 3

Total 5022 25 7 5 3 10




Supplemental File 2 - Tripod adherence score per study

Study Tripod adherence score per study (Total
Tripod checklist items: 31)
Byeon2022 24 (77,41%)

Cetin et al 2022

26 (83,87%)

Gao 2022 21 (67,74%)
Liu2022 26 (83,87%)
Ma2021 25 (80,64%)
Magrelli2021 14 (45,16%)
Mamlook2021 15 (48,38%)
Nugawela2022 16 (51,61%)
Pavliuk2022 16 (51,61%)
zhang2023 25(80,64%)

Mean

20,8 (67,09%)
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ABSTRACT

Background and ohjectives We aimed to analyze the study designs, modeling approaches, and performance evaluation metries in studies using machine learning
techniques to develop clinical prediction modek for children and adolescents with COVID-19.

Methods: We searched four databases for articles published between 01,01 /2020 and 10,/25/2023, describing the development of multivariable prediction models
using any machine learning technique for predicting several outcomes in children and adolescents who had COVID-19.

Resuls: We included ten articles, six (60 % [95 % confidence interval (17 0.31 - 0.83]) were predictive diagnostic models and four (40% [95 % CI 0.170.69]) were
prognostic models. All models were developed to predicta hinary outeoame (n= 10,10, 100 % [95 % CI 0.72-1]11. The most frequently predicted outcome was disease
detection (n=3/10, 30% [95 % CI 0L 11-0L60])0 The most commonly used machine learning models in the studies were tree-hased (n=12/33, 36.3% [95 % CI 0L17-
0.47]) and newural netwaorks (n=9,27, 33 2% [95% CI 0.15-0.44] 1

Conclusion: Our review revealed that attention is required to address problems including small sample sizes, inconsistent reporting practices on data preparation,
hiases in data sources, lack of reporting metries such as calibmtion and diserimination, hyperparameters and other aspects that allow reproducibility by other re-

seamrchers and might improve the methodology.

1. Introduction

The healtheare landsape has wimessed a significant transformation
in recent years with the advent of predictive models powered by
advanced machine learning algorithms [1]. These models have played a
role in the evidence-based medidne revolution, providing clinicians
with tools to improve decision-making, ameliorate patient outcomes,
and optimize healtheare [2]. A predicion model can be defined as a
computational tool that utilizes historical data and statistical technigues
to forecast future events. The analysis of large amount of patient data,
including demographics, clinical variables, and diagnostic information,
has the potential to aid in early detection of disesses, risk assessment,
treatment planning, and personalized medicine [3-5]). As predictive
modeling continues to evolve, its impact on healtheare continues to
grow, enabling clinicians to make more informed decisions and ulti-
mately leading to better outcomes and patient care. Clinical prediction
maodels typically fall into one of two main @tegories: prognostic pre-
diction models, which predict the likelihood of developing a par ticul ar

“ Systematic Review Registration: PROSPERD, CROM 20234 14699, OSF, doi: 10,1 7505 O5F. 10

health outcome over a spedfic period, and diagnostic prediction model s,
which determine an individual's likelihood of having a particular health
condition (typically a disesse) [6].

Machine learning techniques have been helping in the analysis of
large-scale COVID-19 data, including in studies with children and ado-
lescents. Several studies provide insights into the clinical outcomes,
waccine efficacy, and risk factors sssociated with COVID-19 in this
specific population [7-9]. These algorithms can assist clinicians and
researchers in analyzing these datasets by identifying patterns, pre-
dicting outcomes, and finding relevant risk factors for severe illness or
adverse events, Taking advantage of computational methods, machine
learning can help uncover hidden relationships, identify early warning
signs, and help clinical decision-making. In the context of pediatric
patients, machine learning can provide a tool for extracting actionable
insights from the complex and diverse data related to COVID-19 in
children and adolescents, ultimately contributing to the development of
targeted interventions,

Development and validation of prediction models for clinical settings
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rely on the use of appropriate study designs and modeling strategies,
However, there is a lack of comprehensive information regarding the
sped fic study designs, modeling approaches, and performance messures
employed in studies that utilize machine learning for prediction
maodeling [10]. Therefore, our ohjective was to conduct a systematic
review to analyze and summarize the key characteristics related to study
design, modeling techniques, and performance measures reported in
studies focusing on clinical prediction models developed using super-
vised machine learning algorithms in pediatric patients with COVID-19,

2. Methods

We followed the PRISMA 2020 guidelines for systematic reviews
[11]. This systematic review was registered and approved in FROSPEROC
under the protocol CRD42023414699 and in OS5F available at doi: 10
A7605/05F.10/EW2ID.

The systematic mapping was conducted following three adopted
stages described below [12].

Step 1 - Conduet searches: Based on the research questions, a repli-
cable method for searching and retrieving articles in four selected sci-
entific databases was defined and executed. The databases were Embase,
Google Scholar, Pubmed, and Scopus Elsevier.

Step 2 - Selection of studies: A systematic method was defined and
applied to select anly the relevant articles for this study using inclusion
and exclusion eligibility criteria. We used the open-source software
Zotero (version 6.0, 26) to exclude duplicate articles from the search
results.

Step 3 - Data extraction and analysis: Finally, the relevant data from
the primary studies were summarized and presented in this study. For
each study, we collected the following information: study design char-
acteristics (such as cohort, case-control, randomized trial), data source
(such as routinely collected data, registries, administrative databases),
study population details, outcome measures, setting information, pa-
tient characteristics, sample size (before and after participant exclu-
sion), number of events, number of candidate and final predictors,
handling of mizsing data, hyper parameter optimization, datasetsplitting
(such as train-validation-twest), method for internal validaton (such as
bootstrapping, cross-validation), number of models developed and/or
validated, and awailability of code, data, and model. Country was
defined based on the location of the first author's affiliation. For each
model, we extracted information on the algorithm used, predictor se-
lection methods, variable importance reporting, use of penalization
technigues, hyperparameters reporting, and performance metrics (such
as discrimination and cali bration).

2.1, Sep 1 - Search strategy for scientific articles

To identify possible primary studies relevant to data extraction, the
search was based on (i) studies using keyword combinations derived
from our objective and (i) the execution of automatic searches on sci-
entific databases using search terms. Initially, rel evant keyw ords related
to four main fields were selected: (a) COVID-19; (b) medicine; (c) early
childhood, childhood, and adolescence; (d) Artificial Intelligence and
Machine Learning.

The resulting keywords for each main field were:

COVID-1%: COVID-19 OR SARS-COV-2,

Medicine: outcomes OR outcome OR mortality OR death OR hos-
pitalization OR hospitalized OR ICU OR ventilation.

Population: Early childhood, childhood, adolescence: child OR
“garly childhood” OR children OR newborm OR adolescent OR
adolescents,

Al and Machine Leaming: “machine learning™ OR “artificial intel-
ligence™ OR algorithm OR algorithms OR dataset OR dimensions OR
training OR sample OR samples OR prediction OR predict OR predicting
OR forecast OR forecasting OR classification OR regression OR dimen-
sion OR models OR model OR  predictive OR predictors OR
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boatstrapping OR bootstrap.

Search terms were defined by grouping keywords in the same
domain with the logical operator “OR” and grouping the three main
concepts with the logical operator “AND”. Then, automatic searches
were executed on four scientific databases, including Embase, Google
Schaolar, Pubmed, and Scopus Elsevier. The search limited articles by
year of publication (2019 to 2023).

2.2, Step 2 - Elighhility criteria (selection of studies)

The studies retrieved from automatic searches were fillered to
exclude artides not aligned with the study objectives. At thisstage, three
independent rescarchers defined and applied the following inclusion
and exclusion criteria.

2.2.1. Inclusion criteria

Studies whose main focus is on the use of machine learning algo-
rithms to predict deaths and other outecomes in children or adolescents
whao had COVID-19,

The search period comprises 01,/01/2020 to 10/25/2023. The year
limit of 2019 was used because some databases did not allow filtering
with monthly granularity. Thus, it was not possible to specify the month
of March 2020 (the beginning of the pandemic).

To be included in the first selection, articles must address the topics
of COVID-19 in children or adolescents and use machine learning al-
gorithms to predict various outeomes in these patients, Although the
outeome of death is highlighted in the search keywords in the Medicine
domain, this search also considered other outcomes o incresse the
range of possible articles returned in the search. Only articles written in
English were considered for the search. Only articles published in

Jjournals or conferences were considered for this search, Regarding ar-

ticles published in conferences, we consider those papers presented at
conferences and published in the conference procesdings.

2.2.2. Exclusion criteria

Articles written in languages other than English. Articles that do not
deal with COVID-19 in children and adolescents, articles that do not use
machine learning algorithms in the prediction of various COVID-19
outcomes, duplicated articles, and articles that were selected in the
databases but whose completed text files were not obtained even after
demanding the corresponding authors,

The study selection process was carried out in two phases: (i) in the
first selection phase, the titles and abstracts of the studies retrieved from
the searches were read, and studies that did not meet the inclusion
criteria were exduded; (i) in the second selection phase, all articles
were downloaded, and their introduction and condusion were read to
remove studies that met the exclusion criteria,

Far this review, we did not use the “snowballing™ technique, which
involves checking if there are any articles in the references of the
selected articles, after a complete reading, that were not found in the
initial database search. If such articles are identified, they are then
selected for inclusion in the review. Fig. 1 presents the number of articles
selected after each phase and the application of inclusion and exclusion
criteria. And the table in the Supplemental File 1 also summarize the
results after each phase.

2.3 Screening and selection process

The titles and abstracts were thoroughly examined by three re-
searchers independently from a team of eight researchers to identify
studies that potentially met the eligibility criteria. The group of re-
searchers comprised two senior medical professors, a doctoral candi-
date, and five undergraduate medical students. The undergraduate
medical students and the doctoral student were involved in research
projects related to the effects of COVID-19 in children and adolescents,
Subsequently, full-text articles were obtained, and three groups of two
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Records identified from Records identified from Records identified from Records identified from
_E Embase Database Pubmed Database Scopus Database Google Scholar
g {n=1408) (n=1995) {n=509) (n=1112)
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= title and abstract
'E (n=5022)
@ Records excluded (n=4997)
& = dealt with COVID-19 but did not use
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=
3 I
=
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Fig. 1. Flowchart of included studies.

researchers independently evaluated all articles, while the same articles
were collectively reviewed by four researchers to ensure agreement. In
the event of any discrepancies during the screening and selection pro-
cess, the primary reviewer of this study was consulted to assess the
concerned article and resolve discrepancies carefully.

2.4, Sep 3 - Dato extraction

We selected several items from existing methodologicl guidelines
for reporting and critical appraisal of prediction model studies to build
our data extraction form (TRIPOD and PROBAST) [13-14]. The
following items were extracted in the selected studies based on the
systematic review conducted by Navarro et al. [10], including the items
described in step 3 of our methodology, One reviewer recorded all items,
while the other reviewers collectively assessed all articles, Articles were
randomly assigned to reviewers, Discrepandes in data extraction were
discussed and solved between the pair of reviewers. No limi tations were
imposed on the number of models extracted per article.

2.5, Summary statistics and ntegration of findings

The findings were condensed into percentages (with confidence in-
tervals calculated using the Wilson score interval and the Wilson score
continuity-corrected  interval, as appropriate), medians, and inter-
quartile range (IQR), sccompanied by a descriptive synthesis,

We reported only overall performance data from the studies, spe-
cifically the overall mean performance reported in the studies, We did
not differentiate performance into corrected, external validation, or

apparent validation segments. We did not report external validation
data, even for studies that validated their models using different data
from the model development and testing phase.

Rather than assessing the intricacies of each modeling approach and
its performance, our evaluations remained at the study level. We
refrained from conducting a quantitative synthesis of the models’ per-
formance, surh a5 a meta-analysis, as it fell outside the scope of our
review due to the reason that the available studies on the topic may have
significant heterogeneity in terms of study design, patient populations,
interventions, or cutcomes, making it inappropriate or unreliable to
combine their results quantitatively. All analyses were conducted using
the software B version 4. 1.0 (R Core Team, Vienna, fustria).

3. Results

The search in the selected datmbases for this review yielded 5022
articles. After assessing the titles and abstracts, 25 studies potentially
met the eligibility criteria. Following a thorough reading of all 25
studies, ten articles were induded in this review: 6 (60 % [95 % confi-
dence interval (C1) 0. 31-40.83]) were predictive diagnostic models and 4
{405 [95 % C1 0. 17-0.69] ) were prognostic models (Fig. 1),

We evaluated the quality of the articles regarding their adherence to
the TRIPOD guidelines and also assessed the risk of bias in the selected
studies using the PROBAST tool. Regarding the adherence to the
TRIPOD guidelines, the selected studies showed an average adherence of
67070 %, TRIPOD is a checklist consisting of 31 itermns, and the selected
studies, on average, fulfilled 20items from this checldist. The results of
the adherence assessment of each article to the TRIPOD guidelines can
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be found in Supplemental File 2.

Regarding the risk of bias assessment using the PROBAST tool, five
studies showed a high risk of bias concerning their prediction models,
four studies showed a low risk of bias, and one study had an unclear
result regarding bias risk. The results of the assessment for each study in
the dimensions evaluated by PROBAST (Participants, Predictors,
Outeome, and Analysis) can be found in Supplemental File 3.

Among the 10 articles, 7 studies (70 % [95 % CI 0.40 - 0.89])
developed prediction models and assessed their performance using in-
ternal validation techniques, while 3 studies (30% [95% CI1 0.11 - 0.60])
developed and externally validated the same machine learning predic-
tive model. Six studies were published in 2022 (60 % [95 % CI 0.31 -
0.83]), three in 2021 (30% [95 % €1 0.11 - 0.60]) and one study in 2023
(10% [95 % C10.018-0. 40]). The clinical fields involved in the selected
artides were pediatrics (n=7/10, 70% [95% CI 0.40-0.89]), public
health (n=2/10, 20 % [95 % CI 0.057-0.51]), and 'pll]mundq;}' (n=1/
10 % [95 % CI 0.018-0.40]). The retrieved articles uri.gi.‘lulbl:d from
Europe (n=4/10, 40% [95 % CI10.17-0.69]), Asia (n=3/10, 30% [95 %
CI011 -0060]), and North America (n=3/10, 30% [95 % C10.11-0.60]).
Other study characteristics are presented in Table 1

In total, 33 prediction models were developed {Mcan 3 models per
study, IQR: 4, Range: 1-5). We did not set a limit for extracting models
per study, sinee were few articles included in this review. Thus, all 33
models found in the selected studies were evaluated. The most
commonly used machine learning modelsin the studies were tree-based

Table 1
Geneml characteristics of the included studies.
Key charackeristics Total {n = 10}
n (%) [95 % CI]
Study aim
Dizgnuesis & (60 [0.31-0.83]
Prognesis 4 (40 [0.17-0.69]
Study type

7 (70 [040-0.89]
3 (30 [0.11-00600

Made] development anly
Made] development with external validation
Outcome aim

Clamification & (40 [0.31-0.83]
Risk probabilities A (4% [0.17-0.69]
Setting’
Genemal popadation & (6 [0.31-0.831
Secondary care 1 {1H
[0.018-0.40]

Tertiary care
Outcome frmat

3 (30 [0.11-0.60]

Binary 10 {100) [0.72-1]
Ty pe of autaymes

Death 1{1m
[018-0.401

Severity prediction 1(1m
[0L018-0.40]

Haspitalization prediction 2 (20
[L63-0.55]

Camplications 2 (2
[0.063-0.551

Mead of ICU 1 {10 [018-04]

Diisezgse detection
Mentioning reparting guklelines {Tripod, Strobe, Charms,

3 (30 [0.11-0.60]

other)
TRIFOLD 1 {1H [0018-04]
Nane G (9 [(60-0.98]

Muoxde] availability”

Repasitary for data 5 (50) [024-0.76]

Fepazitary for code 2 (2
[0.057-0.511

Made] presentation 8 (30 [0.49-0.94]

Nane 2 (2
[0057-0.51]
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(n=12/33, 36.36 % [95% CI0.1741.47]) and neural networks (n=9/27,
33.27 % [95 % CI 0.150.44]). Other algorithms encountered are
deseribed in Table 2.

3.1. Participants

The participants included in the reviewed studies were recruited
from the general population (n=6/10, 60 % [95 % CI 0.31 - 0.83]),
tertiary care settings (n=3/10, 30 % [95 % €1 0.11-0.60]), and sec-
ondary care settings (n=1,/10 % [95 % CI 0.018-0.40]) (Table 1).

4.2 Dato sources

The prediction models were predominantly  developed  using
administrative databases (n=7/10, 70 % [95 % C1 0.40-0.89]). Pro-
spective cohort data (n=1,/10 % [0.018 - 0.40]) and retrospecive cohort
data (n=1,/10 % [0.018-0.40]) were reported in one study each. The
reviewed studies utilized  electronic medical records and  surveys,
However, no information was available in the selected articles regarding
the time spent on datas collection for the studies, Similarly, no studies
reported the time horizon for the predictions (n=10,/10, 100 % [95% C1
0.72-17).

3.3, Ouromes

All models were developed to predict a binary outcome (n=10,10,
1040 % [95 %6 C1 0.72-1]). The most frequently predicted outcome was
disease detection (n=3,/10, 30 % [95 % CI 0.11-0.60]) followed by
hospitalization prediction and complications both with two studies each
(n=2,/10, 20 %, [95 % CI 0.057-0.51]). Other outcomes of severity
prediction are described in Table 1.

3.4. Candidote predictors

Candidate predictors extracted from the studies were clinical history
(n=5/10, 50 % [95 % CI 0.24 - 0.76]), demographics including sex,
gender, and ethnicity/race (n=5/10, 50 % [95 % CI 0.24 - 0.76]) and
disease (the diagnosed disease) (n=5/10, 50 % [95 % CI 0.24-0.76]).
Other predictors extracted (physical examination, blood or urine pa-
rameters, imaging, pathology, and questionnaires) are described in
Table 4, None of the selected studies used treatment modalities as pre-
dictors for the developed models and for one study, treatment as a
candidate predictor is not applicable, since the developed models are
dealing with imaging data. Studies included a median of 15 candidate
predictors (IQR: 6-14. 5). Four studies included continuous variables as
candidate predictors (40% [95 % €1 0.17-0.69]), the ather three studies
did not use continuous variables as predictors (30% [95 % O 0.11 -

Table 2
Algorithms used for modeling in all extracted models from the selected studies.

Madeling algorithm™ All extracted madeks {n < 33)
n (%) [95 % CI]

12 (36.36) [L17-047]
3 {25} [0.089-0.53]

Tree Bassd Madels
Dredsion trees {fr example, CART)

Random forest 2 (16.57) [0047-0L45]

Gradient boosting machine (Catboast) 3 {25) [0.089-0.53]

HGBaost 4 {33.43) [014-061]
Neural Netwark (incl. deep leaming) 9 (2727 [0.15-044]
Suppart Vectar Machine 2 (6.06) [0.017-0.20H
Naive Bayes 1 (3.03) [0.0054-0.151
Multiple lagitic regression 1 {3.03) [0.0054- 0. 151
Logitic regression 4 (12.12) [0.048-0.27]

Linear discriminant amalysis
Other (TablNet, AutaM, DeepPM, eic)

2 (6.06]) [0.017-0.20H
3 {9.09) [0.031-0.24]

* Counts are absolute numbers with column percentages in parentheses. The
percentages sometimes do not add up to 100 % beease studies reported mome
than one option. ICU = intensive care unit.

% Counts are absolute numbers with column percentages in parentheses. The
percentages sometimes do not add up to 100 % because studies developad more
than ene model.
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0L60]). Most studies did not report the methods to handle continuous
predictors (60 % [95 % CI0.31-0.83]).

3.5. Sample size

Selected studies had a median sample size of 11,108 participants
(IQR: 5,664-65518). Most studies report a sample size justification or
calculation rationale as the size of existing /available dataused (n=7,10,
70 % [95 % C1 0.40-0.89] ), and three studies did not report any rationale
about sample size (n=3/10, 30 % [95 % CI 0.11-0.66]) (Table 3,
Table 5).

3.6. Mising values

Mizsing values were an exclusion criterion of participants in three
studies (309 [95 % CI0.11-0.60]). On the other hand, seven studies
were unclear regarding missing data being a criterion for excluding
partici pants, as we did not find this information (70 %, [95 % CI 0.40-
0.89]). When a study did not explicitly mention that there are no
missing data, we consider that the study was not clear about the exis-
tenee of missing data. To handle missing data, most of the studies are
unclear (n=4/10, 40% [95% CI0.17 - (L69] ). One study used Bayesian
optimization (n=1,/10% [95 % CI 0.018-0.40]), and two studies did not
make imputation of the missing data in the data source (n=2/10, 20 %
[95 % CI 0,057-0.51]). Other information about how studies reported
ways to handle missing data is presented in Table 6.

3.7. (lass imbalance and dimensionality reduction technigues

Eight among 10 studies (80 %, [95 % C1 0.49-0.94]) did not report
unbalanced data or any strategy to deal with class imbalance like Syn-
thetic Minority Oversampling Technique (SMOTE), Random Under-
sampling Boosting (RUSBoost), Random oversampling, random under
sampling, or other techniques. For one stdy class imbalance is not
applicable, since the study deals with imaging as a data source and one
study report the use of SMOTE to deal with class imbalance. Regarding
dimensionality reduction, most studies did not report any technique to
reduce the dimension of data (n=8/10, 80 % [95 % 1 0.49-0.94]). One

Table 3
Study design of included studies.
Key items™ Tetal {n = 100
m %) [95 % CI)
Dt sources
Prespective cohort 1 {10 [0.018-0.40]
Retrospective cohort 1{10] [0018-0.40]
Elsctranic health remrd 1{10) [0u018-0.40]
Adminitrative databoses T {70 [0.4-0.83]
Survey 1{14] [0018-0.40]
Predictar harizon
Nane 10 {1 [0.72-1]

Sample size justification
Size of existing/available data 7 {70 [0.40-0.89]
Nane 3 {30) [(11-0.686]

Intemal validation™
Split sample with test set
{Random) split
{ Manramedom) split

9 (90 [0.60-0.98]
5 (50) [24-0.76]
2 {207 [0.018-0.59]

Split 1{10) [0.022-0.40]
Baats trapping 1{10) [0022-0.40]
With test set 1 {10 [021-1]
Crossalidation 5 (50) [24-0.76]
Nemtex] 5 (1007 [057-1]
Excternal validation 3 {30) [(11-0.60]
Indlependent dataset 3 {1007 [0.44-1]

% Counts are absolute numbers with column percentages in parentheses. The
percentages sometimes donot add up to 100 % because studies reported maore
than one option.
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sty used prindpal component analysis (PCA) to reduce the dimension
of data (Table 7).

3.8. Modeling algorithms

Neural networks were used in 9 out of 33 models (27, 27 % [95 % C1
0.15-0.44]) extracted from the selected studies, including multilayer
pereeptron, convolutional neural network, and recurrent neural net-
works, Tree-based models were reported in 12 of 33 models (36, 36 %
[95 % CI 0.17 - 0.47]). Other models such as TabNet, AutoML, and
DeepFM were also adopted in the selected studies (n=13,/9, 33.00 % [95
% CI0.031-0.24]), We did not find any study that reported penalized
regression models. Support Vector Machine (8VM), a popular machine
learning technigue, was also reported two times (n=2,33 6.06 % [95 %
CI 0.017-0.207).

3.9, Selecton of predictors

Regarding the strategy to build models, different methods of selec-
tion of predictors were reported as presented in Table 5. Some of the
strategies found in the selected studies include term frequency-inverse
document frequency (TEIDF) embedding, frequency encoding, and
embedding in the learning process (data-driven approach), decided by
pediatricians and others, The most cited method for model building was
Spearman Correlation (n=4/12, 33.12 9% [95 % CI 0.048-0.27]).

3.10. Varable importance and hyperparameters

The variable importance scores provide valuable information an how
much esch variable contributed to the predicion model (Probst et al.,
2019). Despite our small sample of studies, we found a heterogeneity of
information about variable importance. Three studies did not provide
any information about scores for variables (909 % [95 % O 0.031-
0.24]). For 4/33 (1212 % [95 % I 0.0480.27]) the importance
weights of variables/correlations were used to report variable impor-
tance to the models. Shapley walues, another method to determine
importance, were used in two studies (6.06 % [95 % CI 00017 - 0.20]).
Other methods informed by studies to determine variable importance
are defined in Table 8. Hyperparameters (including default settings of
models) were not reported in 7,10 (70 % [95 % C1 0.40-0.89]) studies.
Cross Validation was the most described strategy for hyperparameter
optimization (n=4,10, 40% [95 % CI0.1740.69]). Seven studies did not
report any information about hyper parame ter optimization (n=7,/110,
70 % [95 % CI 0.40-0.89]), as shown in Table 7.

3.11. Performance metrics

The most used measure for the extracted models was the area under
the Receiver Operating Characteristic curve (AUC/ROC) (n=15/15,
33,15 % [95 % CI 0.30-0062] ) to describe the discriminative ability of
the proposed models (Table 9). Few methods for measuring agreement
between predictions and observations (also called calibratbion) were
used in the seleaed studies. Only four models used a calibration plot
(12, 12%, [95% CI 0.048-0.27]). Other measures of calibration used
were calibration slope and calibration-in-the-large. General metrics
were found in most studies for the developed models, such as aceuracy
(n=25/33, 75.75 % [95 % CI 0.59-0.87]) and Fl-score (n=12,33, 36.36
% [95 % CI 0.22-0.53]).

3.12. Predictive performance

Studies that reported their disaiminative abilities of the proposed
maodels had solid results (AUC next to 1) with an internally validated
median AUC of 0.91 (IQR 0.76-0.98; range 0.68-0.98). For calibration
and overall performance metrics, as shown in Table 10,
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3.13. Internal validotion and external validation

Nine out of 10 studies (88. 9% [95 % CI 0.60-40.98]) internally
validate their models, splitting samples into a training and test set. The
train-test set was split randomly into 5/ 10 studies (50 % [95 % C10.24 -
0.76]) and 2,10 studies used a nonrandom split (20% [95 % C1 0,057,
0.51] ). One study reported bootstrapping ona test set without citing the
number of iterations. Five studies that performed cross-validation (50 %
[95 %6 Cl 0.24-0.76]), all of them used nested cross-validation (100 %
[95 % CI 0.57-1]). For further details, see Table 4. Only three studies
performed an external validation of their models (30% [95 % CI 0.11-
0.60]) by using independent datasets to validate their models (100 %
[95 % CI 0:44 — 1]).

314 Model availability

We did not find any studies that created an online calculator or web
system containing some way to use the developed models. We found a
repository for data in five studies (n=5/10, 50 % [95 % CI 0.24-0.76]),
and in two studies we did not find any information about data, code, and
even a detailed description of model construction (n=2/10, 20 % [95 %
I 0.057-0.51]). The presentation of the models in detail with flowcharts
or other images that convey the architecture of the solution proposed in
the study was found in eight articles (80 % [95 % O 0.49-0.94]). We
found two studies that reported a repository for accessing and reading
the source code of the developed model (Table 1)

4. Discussion
4.1. Principal findings

The present review aimed to identify and analyze predictive and
prognostic models developed using machine learning techniques for

Table 4
Predictors in included studies.
Key items Tatal {n = 10
o (%6} [95 % O

Ty pe of candidate predictars’

Demagraphy 5 {50) [0_24-0.76]
Clinical histary 5 (500 [024-0.761
Physical examination 3 {30) [0.11-0.6]
D eme 5 (50) [024-0.76]
Elod orurine parameters 3 (30) [0.11-0.6]
Imaging 1 {100 [0.018-0.40
Pathalagy 3 {30) [0.11-0.60]
Cuestionnaines 1 {1 [Q018-0.40
Seale Scare 1 {1 [Q018-0.40
Treatment 25 candilate predictar
Ve
Na 9 (90) [0.60-0.98]
Kat applicable 1 {10) [G018-0.40
Continuous variables 2 candidate predictars
Yes A (A0 [0.17-0.691
Ka 3 (300 [0.11-0.601
Unclesar 3 {30 [0.11-4L60]
Aepriod selecton of candilate predictars
Yes 5 {(50) [0:24-0.76]
Na 5 {50) [024-0.746]

Methads to handle continuous predicions™

Nanlinear {planned) 1 {10 [Q.018-0.40

Unclear & (60) [0.31-0.83]
Kat applicable 3 {300 [0.11-0.60]
Categorization aof mmntinuous predictors
Wart reparied 10 {1000 [72-1]

* Counts are absolute numbers with column percentages in parentheses. The
percentages sometimes do not add up to 100 % because studies reported mome
than one option.

® Asdata prepamtion
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Table 5
Sample size of included studies
Key items Taotal {n = 1)
n {H) [95 W Median [IQR], ramge
<
Imitial sample size 10 {104 11108 [5664-65,518] 105 to 23
million
Final sample siee 10 {1000 7all [5664-65,518] 99 10 23
millian
Macde] develapment 10 {1000 G965 [I000-65,518] 99 1w 20
million
Intemal validation 9(84. 9) T139 [799-54,188] 951 16
million
External validation™ Y ich Mot significant
Number of candidate 10 {10 23 [14-33] 3 w AW
predictars
Number of ncluded 10 {108 16 [7-21] 3 o 65
preslictars

“ Omnly three studies conducted external walidation. In arder for the TQR
calculation te have significance, a minimum of four values is required.

Table &
Methods 1sed for missing values handling.
Key items Total (n = 10)
n (%) [95 % CI)
Missingne=s a exclusion criteria for
participants
Yes 3 {3 [R11-a)
Unelear 7 (70 [4-089]

Number of patients exchided
Median [1QR] {range) 1007 [X3-6,247 840 (6 to
12,494,266)
Methads of handling mising dam
No mising data
N im putantion
Bayesian optimization
Unclear
Presentation of mising data
Mot summarized
By all candlidate predictors
Mot applicable

3 (30 [Q11-0a]
2 (20 [Q057-0.51]
1 {10 [018-0.4]
A (A (17069

& (6 [(L31-0.83]
1 {1 [L018-0.4]
3 (3 [11-06]

children and adolescents who had COVID-19. Firstly, a notable finding
was the few number of studies that utilized machine learning models for
predicting various outcomes in children and adolescents. This fact
highlights the need for further studies of this nature in the feld of
pediatrics,

Despite obtaining a low number of studies in this review, the guan-
tity of machine learning models found in the selected studies was
diverse. The most commonly used were tree-based models, such as
XGBoost, decision trees, and Categorial Boosting (CatBoost) [15-16].
XGBoost is an optimized gradient-boosting algorithm that handles
complex datasets and achieves high predictive accuracy. It combines
gradient boosting and regularization techniques to produce strong pre-
dictive models, XGBoost is widely recognized for its scalability, speed,
and effectiveness in various machine learning tasks, In another spectrum
of machine learning, neural network models were also utilized in the
selected studies. An example of a neural network model is the multilayer
perceptron. A multilayer perceptron is an artificial neural network
consisting of multiple layers of interconnected neurons [17]. It is
commonly used for non-linear regression and classification tasks, The
network utilizes forward propagation to process input data and back-
propagation to adjust the weights and biases during the training process,

Our findings suggest that machine learning technigues can poten-
tially develop accurate predictive models across various clinical fields,
For instance, several studies demonstrated high accuracy rates for pre-
dicting outcomes, including disease diagnosis or prognosis. These
models could be used to improve patient care by identifying high-risk
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Table 7 Table 9
Machine leaming aspects in the included studies. Performance measures reported by included studies.
Ky itemis Tatal {n = 100 Kay items All mctracted madek (n = 33)
n (%) [95 % CI] n (%) [95 % CI]

Data preparation” Calibration™
Cleaming 2 (200 [0.057-051] Calibration pkit 4 (1212 [0.048-0.27]
Aggregation 1 (100 [0.0] 8-0.40] Calibration slope 1 (3.03]) [(0054-0 15]
Augmentation 1 {10 [.018-0.40 Calibration in the large 1 {3.03) [0.0054- 0. 15]
Encading 2 (200 [0:057-0.51] Nane 5 (15.15) [0.067-0.311
Narmaltzation 1 {10 [.018-0.40 Dvis crimuina tion
Other 2 (209 [0057-0.51] AUC/ALNC-ROC 15 (45.45) [Q30-062]
Not reparted & (607 [031-0.83] AUFRC 8 (2424 [0.13-0.41]

Data splitting Min{Re,Pr) 3 (9.09] [0.031-D.24]
Traindest set & (60 [0.31-083] Cstatistic 1 (3.03]) [(0054-0 15]
Train-valilation test set 4 (405 [0.17-0.59] Nane 1 {3.03) [0.0054- 0. 15]

Drimemnsionality reduction techniques Clasification
Principal companent analysis 1 {10 [.018-0.40 Sensitivity 12 {36.35) [22-0.53]
Hon Reported 2 {80) [0.49-0.940] Specificity 12 (3%.36) [0.22-0.53
Mot applicable 1 {10 [001 8040 Reecall 9 (2727 [0.15-0.44]

Claxs Imbalance Preciion a8 (24.24) [0.13-D.41]
SMOTE 1 (100 [0.0] 8-0.40] Overall *

Nt Fee partex] & (307 [0.49-0.94] Predictive vahies 1 {3.03) [0.0054- 0. 15]
Nat applicable 1 (100 001 8- 040 AUC difference 2 (6.06) [0.017-02]
Strategy fr hyper parameter optimization” Accuracy 25 {75.753) [(L59-0.47]
Cress-validation 4 (407 [0.17-0.59] Fl-score 12 (36.36) [22-0.53]
Manual search 1 {10 [001 8040 Youden ndex 1 {3.03) [00054- 0 15]

Prresclesfinesd vahues /e nuht
Deme autamatically by CnBaast
Nt Reparted

1 (100 [001 8- 040
1 (100 [001 8- 040
7 {70 [2A0-0.89]

* Counts are absolute numbers with eolumn percentages in parentheses. The
percentages sometimes do not add up to 100 % beeause siudies reported mome
than one option. SMOTE = Synthetic Minority Oversampling TEchnigue.

Table 8
Model building of all included studies.
Key items Total {n = 33)
n %) [95 % CI]

Selection of predictoms”

Impurity Bemed Feature Impartance
TEIDF Embedding
Fregquency Encoding/Count Encading

1{3.03) [0054-0.15]
1{3.03) [0.054-0.15]
1{3.03) [0054-0.15]

Spearman Comelation A4{12.12) [Q048-027]
All presliciors 2 {6.06) (00170201
Dresciclesed by peslistricians 1{3.03) [0.054-0.15]
Propensity Soare 1{3.03) [1054-0.15]
Embeckled in leaming process 1{3.03) [0.054-0.15]
Unclear 1{3.03) [1054-0.15]
Hyperparamseter tunning reported
Yo 2 {6.06) [0.017-0.201
Na 721213 [0.11-0348]
Unclear 1{3.03) [0.054-0.15]
Variable impontance reparted
Shapley ¥ahue 2{6.06) [0.017-020]
By Random Forest 2 {6.06) (0170201
Weig hts/comelation 4{12.12) [0.048-0.27]
Gain information 1{3.03) [1054-0.15]
Nane 3(9.09) [0.031-0.24]
Penaliztion me thads ussd
Net reparted 10 (30.3) [0.17-0.47]

Abbreviations: TF-IDF, term frequency-imverse document frequency.

" Counts are absolute numbers with eolumn percentages in parentheses The
percentages sometimes do not add up to 100 % becanse studies developed mome
than one model.

individuals who may benefit from early interventions or personalized
treatment plans.

Despite the promising results of some studies, we found a lack of
consistency in reporting model development and validation procedures
across the selected articles, For instance, some studies did not provide
detailed information about data sources or model construction methods,
This lack of transparency can hinder reproducibility and limit the

Abbreviations: AUC/ROC, Area Under the Receiver Opemting Characteristic
Curve, AUPRC, Area Under the Precision-Recall Curve, Min (Re, Pr), Minimum
value between Recall and Precision

# Counts are absolute numbers with column percentages in parentheses. The
percentages sometimes do not add up to 100 % because studies developed maore
than cne maodel.

Table 10
Predictive performance of all extracted models.”

Key items All extracted madels (n < 33)
Reported, n (%) Apparent perfrmance
Median [IQR], mnge

Calibration

Shpe 2 {6.06) Mot significant

Calibration-inthe large 1{3.03) Mot significant

Pearsan chi-sguare 1{3.03) Mot significant
Driscorimima tion

AUC 15 {45.45) (.94 [0.84-0.94], 0.68 &« 098

AUPRC 3{9.09) Mot significant

AURDC 3909 Mot significant
Acouracy 2 (66.66) 0481 [0.8-0.92], 0.79 1w 096
F-Mexure 11 {3333} 84 [0.84-0.92], 0. 45 1w (.92
Min{Re, Pr) 30909 Mot significant
Semitivity 18 (54.54) 0530 [1.69-0.931, 0.69 o (94
Specificity 18 {5454} 049 [0.A7-0.94], 0.87 & 199
Precizsion 10 (30.3) 083 [0.83-0.93], 0.77 o 099
Recall 7{21.21) 0 [0.85-0.85], 0.82 o 0.92

Abbreviations: AUC/ROC, Area Under the Receiver Opemting Characteristic
Curve, AUPRC, Area Under the Precision-Recall Curve, Min (Re, Pr), Minimum
value between Recall and Precision

* Counts are absolute numbers with column percentages in parentheses. The
percentages sometimes do not add up to 100 % becawse studies reported maore
than ane aption

generalizability of the models to other populations or settings.

Concerning data sources, there are several bisses in datasets used for
machine learning models. Bias is a statistical term that can occur whena
maodel fails to provide an accurate representation of the population.
Some bigses present in the datasets include the following:

# Selection Bias: This biss arises when data from a specific part of the
population is used, not representing the entire target population of
the study. To mitigate this bias, it is essential to andit the dataset,
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ensuring the sample accurately represents the study's target
population.

» Overgeneralization Bias: Researchers encounter this bias when
assuming that observations in their dataset mirror those in any
dataset aimed at assessing the same problem. To address this issue,
external validation is crucial for evaluating model performance.

» Automation Bias: This bias occurs when researchers heavily rely on
automation tools for data processing before model training. Com-
plete trust in these tools is discouraged; it's vital to verify correct data
transformation outcomes.

# Sampling Bias: This bias occurs when sampling techniques are not
used to balance classes within the dataset. This may lead to models
with high accuracy in classifying the most represented class in the
dataset.

Still regar ding the bisses in the data, the most common inconsistency
observed in the identified articles pertains o the failure to share
modified training data. Researchers should elucidate the state of data
post-modifications made for training, including the removal of erro-
neous features, handling of features with substantial missing data, cat-
egorical variable encoding, data sampling, and other relevant
procedures, Mere mention of using data from a specific website is
insufficient. Without this crucial information, the assessment of the
actual data employed in the studies becomes challenging. This can lead
to indications of bizsesin the models and render them less interpretable.
Studies that do not disclose their data and souree code make the research
less trans parent.

To address these issues, future studies should follow established
guidelines for developing and reporting predictive models (e.g., TRIPOD
statement) [1H]. Additionally, researchers should consider external
validation of their models to sssess their performance in independent
datasets [19].

Another consideration is the ethical implications of using machine
learning models in clinical practice. For instance, there is a risk of
perpetuating bias or discrimination if the models are trained on biased
data or are not validated across diverse populatons [20]. Therefore,
ensuring that these models are developed and used ethically and
respansibly is aucial.

Another finding from our review is that most of the selected studies
used administrative databases as their primary data source. This sug-
gests that machine learning techniques may be particularly useful for
analyzing large-scale administrative datasets to identify patterns and
predict outcomes,

Machine learning models have a potental impact on clinical
decision-making. These models have shown promise for improving pa-
tient outcomes by identifying high-risk individuals or predicting disease
progression, However, the models should not be viewed as a replace-
ment for clinical judgment or human expertise [21]. nstead, they should
b used as a tool to support clinical decision-making and improve pa-
tient care.

There is a deficiency how the selected studies reported data in the
maodels. The limitations include insdequate reporting of sample sizes,
missing information about hyperparameter tuning, lack of imple-
mentation details, and performance measures of the models. These is-
sues are essential for reproduci bility purposes [22].

Few studies employed crossvalidation techniques in model devel-
opment. Crossvalidation helps to prevent the phenomenon of awer-
fitting [23], where the model achieves 100 % accuracy on the test data,
which represents the model's development data that has not been seen
by the model before. However, if the test data happens to beidentical to
the training data, it is neceszary to train and test the model using
different folds of the data, Cross-validation divides the model develop-
ment data into multiple folds, using each fold as both training and
testing data. The lack of cross-validation can lead to inaccurate infor-
mation regarding the performance of the models.

The most commonly used method for predictor selection in the
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selected studies was the Spearman correlation. Few studies discussed
techniques for dimensionality reduction of predictors, although most
studies had a low number of features for model development. The
selected studies did not provide clear information about missing data
and how they handled it. Many methodological details in the majority of
studies were unclear. Several studies did not make their code or data
available in separate repositories for other researchers to read and
reproduce  the analysis. Many studies did not report information
regarding the calibration and discrimination of the models. It is
important to report data about the calibration and discrimination of a
machine learning model bemuse these metrics provide insights into the
maodel's performance and reliability. Calibration measures the agree-
ment between the predicted probabilities and the observed outcomes,
indicating whether the model's predictions are well-calibrated and ac-
curate. Conversely, discrimination assesses the models ability to
distinguish between different outcomes or classes, indicating its pre-
dictive power. Reporting these metrics allows researchers and pract-
tioners to evaluate the model's effectiveness, identi fy potential biases or
limitations, and compare its performance against other models or
benchmarks, Ultimately, it promotes ransparency, reprodudbility, and
informed decision-making in utilizing machine learning models,

The studies did not provide a solid contribution to the medical
community s they did not create any website or other means for phy-
sicians and other interested parties to test the model. There is a need for
closer mollaboration between this emerging field of evidence-based
medicine and practicing clinicians. The availability of models is
crucial for other physicians to provide feedback on the performance of
the models developed for data specific to their regions.

Noselected study provided information on the prediction horizon of
the models. This type of information can be necessary for the clinical
field to understand the predictions validity.

The lack of external validation to effectively test the selected models
with unseen data is worth noting. However, obtaining external valida-
tion data can be challenging, and testing models with multiple sources
requires time and effort to scquire and organize large databases for
evaluation by machine learning models,

The nature of the data was not widely discussed in the majority of
articles. As important as the model iself, the quality and preparation of
the data used for training greatly influenoe the model's performance. If
the data is not properly prepared before the training, biases may be
introduced, affecting the model's true performance. Few studies
mentioned how the data were treated in terms of their nature (contin-
uous, discrete, and others) and how the data were encoded for evalua-
tion by the developed models,

4.2, How models were externally validated

In the three studies that use external validation, the procedure has
been conducted to sssess the model's real-waorld applicability [24-26].
The studies conducted external validation, adapting to their specific
dataset characteristics. For models with small sample sizes, the re-
searchers in the first study employed data splitting, allocating a portion
of the dataset for training and another for validation. Additionally, they
acquired external data from independent sources to further validate the
model's performance. Key performance metrics, such as accuracy and
precision, were calaulated and compared between the internal and
external datasets, ensuring a comprehensive assessment of results
generalization. In the second and third study, addressing models with
large sample sizes, the authors adopted a similar approach, splitting
their dataset into training and validation subsets. They emphasized the
importance of external validation, even with large data, by obtaining an
independent and unseen dataset. Performance metrics were evaluated in
bath internal and external validation datasets. Data splitting was com-
plemented by techniques such as k-fold cross-validation to maximize
data utilization. Since these three studies reported good metric values in
the tests with external validation datasets, this can exemplify the
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importance of external validation in machine learning research,
contributing to the transparency and real-world applicability of their
findings.

4.3. Troditional statistical models versus machine learning models

Traditional statistics has greater transparency and interpretability of
relationships between different variables in the data, clearly showing
insights between dependent and independent variables. On the other
hand, machine learning models can learn different relationships be-
tween data that were not detected by traditional statistical models, but
this is not the focus, Untl recently, developers paid little attention to the
explainability of machine learning models. The models were seen as
black boxes. This scenario has changed, and today's models are more
explicit about their results. However, the aim of machine learning
madels is different from traditional statistical models. The aim of these
madels is that, by using a set of data that the model has never seen, it is
able to classify the data correctly or predict something accurately. The
machine learning models are oriented towards the result and the final
performance of the prediction.

For example, when a machine learning model is used to disgnose a
disease, the doctor must enter the patient's data into the system and it
will tell whether the patient is likely to have the disease, showing which
variables contributed most to that outcome. These models often see
different relationships between the data compared to traditional statis-
tics, as the focus is on providing an answer with a higher degree of ac-
curacy for the task proposed to the model. For the same set of data,
machine learning models often find different relationships between the
data than statistical models. This is because the variables that allow the
maodel to give the correct answers are different,

The comparison between machine learning models and tradidonal
statistical models regarding performance and utility has the following
strengths and limitations [27-249].

4.4. Srengths and Imitatons of tradiional statistical models

» Statistical models are designed to infer relationships between vari-
ables. They are used to identify the underlying patterns and re-
lationships in the data and establish both the scale and significance of
the relationship.

# Statstical models explicitly specify a probabilistic model for the data
and identify variables that are usually interpretable and of special
interest, such as effects of predictor variables,

# Statistical models are best suited for small to mediuom-sized datasets.

= Statistical models require many assumptions to identfy the under-
lying relationships between variables,

» Statistical models presuppose that the input variables are not highly
associated with one another and do not exhibit muld collinearity.

# Certain statistical models rely on a suffidently large sample size to
guarantee precise parameter estimates,

4.5. Smengths and Imitatons of machine karning models

« Machine learning models are designed to make the most accurate
predicions possible. They are built to provide accurate predictions
without explicit programming.

« Machine learning models can provide better predictions than sta-
tistical models,

« Machine learning models are more empirical and do not impose re-
lationships between predictors and outcomes, or isolate the effects of
any single variable,

# Machine learning models are best suited for large datasets.

Machine learning models are more difficult to understand and
explain than statistical models.

« Machine learning models do not provide the level of interpretability
that is possible using statistical models,
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The choice between machine learning models and traditional sta-
tistical models depends on the purpose of the analysis. If the goal is to
determine and explain the relationships between variables, statistical
madels are the best approach. If the goal is to make accurate predictions,
machine learning models are the most adequate option.

5. Comparison to previous studies

To the best of our knowledge, at the present moment of writing the
results of this study, we did not find another study that has conducted a
systematic review to identify the methodological conduct and study
design of research utilizing prediction models for outcomes in children
and adolescents using machine learning algorithms, However, studies
evaluating machine-learning models for adult patients have identified
similar methodological conduct and reporting issues in various reviews
exploring different machine-learning techniques [30-32]. Meglected
aspects such as missing data, sample size, calibration, and model
availability have been consistently observed [37,22-34] In a review
examining the trends of prediction models utilizing electronic health
records (EHR), it was noted that the utilization of ensemble models
incressed  from 6% to 19% [35]. Another comprehensive review
focusing on prediction models for hospital readmission revealed a sub-
stantial growth in the application of algorithms, including Support
Vector Machine (SWM), Bandom Forest (BF), and Neural Netwarks (MM,
with an increase from none to 38% over the past 5 years [36]. Addi-
tionally, the adoption of methods to address a class imbalance in EHR
datasets increased from 7% to 13% [35].

6. Limitations of this study

The information extracted in our study was solely based on the
contentreported in the articles, Regrettably, only a few articles provided
the essential information required by reporting guidelines, making the
data extraction process challenging [37]. Additionally, there was
inconsistency in the terminology used across papers. For instance, the
term “validation” was frequently used to describe both tuning and
testing (Le., internal validation), a concern previously identified in a
review of studies on deep learning models [38]. This fact highlights the
necessity of uniform terminology for critically evaluating machine
learning models [39].

In our study, we encountersd limitations that prevented us from
conducting a meta-analysis. The scarcity of studies refers to the limited
number of relevant studies available, which may arise due to the novelty
aof the research area, ethical considerations, or limited research re-
sources. Additionally, the heterogeneity among studies, in terms of
study design, population characteristics, interventions, or outcome
measures, and the variation in methodologies and findings across
studies may introduce substantial clinical and methodological hetero-
geneity, making it inappropriate to combine the results quantitatively.

Our data extraction form was primarily drawn based on the items
and signaling questions from the TRIPOD and PROBAST tools. Although
these tools were initially developed for regression-based prediction
madels, most items and signaling questions were still applicable to
studies on machine learning-based models,

7. Implications for future research

The extent to which the selected studies aimed to improve clinical
care with the developed models or primarily sought to showcase
promising results with the proposed models is questionable. There wasa
limited emphasis on aspects including the study’s objective, clinical
workflow, outcome format, prediction horizon, and clinically relevant
performance metrics, Guidelines and meta-epidemiological studies have
strongly emphasized the importance of applying optimal methodology
and transparent reporting in predicion model studies [40,43], The
TRIPOD and PROBAST provide best practice recommendations for
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designing, conducting, and reporting prediction models, regardless of
the modeling technique employed [13,18,40,41]. However, extending
these recommendations to include areas such as data preparation,
tunability, fairness, and data leakage is crucial,

Extensions of PROBAST and TRIPOD specifically designed for art-
ficial intelligence (Al) or machine learning-based prediction models,
namely PROBAST-AL and TRIPOD-AI, are currently being developed
[39,42]. As machine learning continues to gain importance in health-
care, it is highly recommended for future studies to reinforee the
adoption of a minimum standard in methodological conduct and
reporting to increase the generalizability and applicability of these
models [13,14,40,41].

Another notable aspect in the selected studies of this review concerns
the explainability of the developed models. Only three of the nine
studies addressed the explainability of the models using the Shapley
Additive exPlanations (SHAF) method. The explainability of machine
learning models in the healtheare domain is crucial as this research field
deals with various interested parties who demand fair, unbiased, reli-
able, and interpretable learning models rather than black-box machine
learning models, The findings of our study align with recent research
highlighting that mestmachine learning models developed in heal theare
did not employ explainable artificial intelligence (XAI) methods o
elucidate the predictions made by the models [44,45]. This is an issue
that requires the attention of researchers.

Furthermore, the limited accessibility of the developed models poses
a barrier o conducting independent validation, a crudal step before
their integration into clinical practice. Openly sharing the source code
and, ultimately, the clinical predicion model itself is a fundamental
measure to establish trust and credibility in applying Al and machine
learning in the clinical setting [46].

8. Conclusion

Our study highlights important considerations when developing and
using machine learning models in healthcare settings. Future research
should address limitations, including small sample sizes, inconsistent
reporting practices, bigses in data sources, and ethical implications, to
ensure that these models are developed and used responsibly to improve
patient care,

Supplementary data to this article can be found online at hitp:

1016,/f.artmed. 2024, 102824,
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Supplementary Figure 1 - The importance scores of the predictors were calculated using random
forest (a) and XGBoost (b) tests.
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Supplementary Table 1 — Primary features documented in the SIVEP-Kids database.

No. Feature name Variable Type No. Feature name Variable type
1 Gender Nominal 21 Hypertension Nominal
2 Age Numeric 22 Immunosuppression Nominal
3  Ethnicity Nominal 23 Renal disease Nominal
4  Region Nominal 24 Asthma Nominal
5 Virus strain Nominal 25 Hematology disease Nominal
6 Dyspnea Nominal 26  Neurology Nominal
7 Fever Nominal 27 Oncology Nominal
8 Cough Nominal 28 Transplanted Nominal
9 Odynophagia Nominal 29 Down Syndrome Nominal
10 Diarrhea Nominal 30 Other Syndrome Nominal
11 Vomit Nominal 31 Nosocomial Nominal
12 Abdominal pain Nominal 32 Comorbidities dichotomic ~ Nominal
13 Ageusia Nominal 33 Total Comorbidities Numeric
14 Anosmia Nominal 34 Number of vaccine doses  Numeric
15 Respiratory distress Nominal 35 Comorbidities categoric Nominal
16 Oxygen saturation reduced Nominal 36 Time for outcome Numeric
17 Diabetes Nominal 37 Vaccinated Nominal
18 Obesity Nominal 38 Outcome (Target Variable) Nominal
19 Cardiology Nominal

20 Pulmonary Nominal
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Supplementary Table 2 - The Hyperparameters of the selected ML algorithms for COVID-19 mortality
prediction in children and adolescents.

ML Algorithms Hyperparameters used to create the models

GBC criterion="friedman_mse', learning_rate=0.0005, max_depth=9,
max_features='log2', min_impurity _decrease=0.001, min_samples_leaf=1,
min_samples_split=9, n_estimators=120, subsample=0.9, tol=0.0001,
validation_fraction=0.1.

ADA algorithm='SAMME', learning_rate=0.005, n_estimators=260.

CATBOOST Iterations=1000, learning_rate=0.1, depth=6, 12_leaf_reg=3.0, subsample=0.8,
colsample_bylevel=0.8, border_count=128, loss='log_loss'.

RF criterion='gini', max_depth=4, max_features=1.0, max_leaf _nodes=None,
min_impurity _decrease=0.3, min_samples_leaf=2, min_samples_split=7,
n_estimators=90.

XGBOOST booster="gbtree', colsample_bytree=1, learning_rate=0.4, max_depth=1,
min_child_weight=2, n_estimators=120, objective='binary:logistic'

ET criterion='gini', max_depth=4, max_features=1.0, min_impurity _decrease=0.3,
min_samples_leaf=2, min_samples_split=7, n_estimators=90.

LR C=0.662, fit_intercept=True, intercept_scaling=1, I1_ratio=None,
max_iter=1000, penalty="l2', solver='Ibfgs', tol=0.0001.

LDA shrinkage=0.4, solver="Isqr', tol=0.0001.

DT criterion="entropy', max_depth=4, max_features=1.0,
min_impurity_decrease=0.5, min_samples_leaf=3, min_samples_split=2,
splitter="best'.

NB var_smoothing=1

KNN leaf_size=30, metric='manhattan’, n_neighbors=50, p=2, weights='distance’'.

QDA reg_param=0.29, tol=0.0001.
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Supplementary Table 3 - Descriptive statistics of the most important variables selected in the feature
selection phase for mortality in COVID-19 children and adolescents’ patients.

NO

Feature name

Variable Type

Frequency or mean * SD

1

Age

Numeric

5.04 +5.25

2

Region

Nominal

Southeast (10,819)
South (4,379)
Northeast (4,033)
North (2,609)
Central West (2,257)

Ethnicity

Nominal

Asian (178)
Black (778)
Brown (11,467)
Indigenous (221)
White (11,453)

Virus Strain

Nominal

Omicron (13,432)
Gamma (8,251)
Delta (2,414)

Dyspnea

Nominal

Haven’t (11,126)
Have (12,971)

Cough

Nominal

Haven’t (7,198)
Have (16,899)

Respiratory distress

Nominal

Haven't (11245)
Have (12852)

Oxygen saturation reduced at admission

Nominal

Haven't (12018)
Have (12079)

Obesity

Nominal

Haven't (23675)
Have (422)

10

Cardiology

Nominal

Haven't (23314)
Have (783)

11

Pulmonary

Nominal

Haven't (23608)
Have (489)

12

Hypertension

Nominal

Haven't (24029)
Have (68)

13

Immunosuppression

Nominal

Haven't (23580)
Have (517)

14

Renal

Nominal

Haven't (23876)
Have (221)

15

Asthma

Nominal

Haven't (22711)
Have (1386)
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16 | Total Comorbidities Numeric 0.22 £ 0.54
(0, 19670)
(1, 3512)
(2, 757)
(3, 128)
(4, 24)
(5.2)
(6,2)
(7, 1)
(10, 1)
17 | Comorbidities dichotomic Nominal Haven't (19670)
Have (4427)
18 |Comorbidities categoric Nominal Haven't (19670)
One (3512)
Two (757)
Three or more (158)
19 |Time for Outcome Numeric 7.63 £6.83
20 |Hematology Nominal Haven't (23649)
Have (448)
21 |Neurology Nominal Haven't (22397)
Have (1700)
22 | Oncology Nominal Haven't (24048)
Have (49)
23 |Down Syndrome Nominal Haven't (23681)
Have (416)
24 |Nosocomial Nominal Haven’t (23476)
Have (621)
- -550 3.704 1.704 0.2956 f\L
b (. ( { ( ( { (({
1704 0 _-6.49 0.2956 1.296 2.296 3.296
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Supplementary Figure 2 — Force plot of feature contributions to the decision-making process of the

model for discharge outcome.
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In a force plot for SHAP values, as can be seen in Supplementary Figure 2 (showing
specific cases where the model made medical discharge predictions) and Figure 5
(showing specific cases where the model made death predictions), the goal is to
illustrate the contributions of individual features to a specific model prediction. Each
feature is represented by a horizontal bar, and the length of the bar corresponds to
the magnitude of the SHAP value for that feature. The features are arranged
horizontally based on their importance to the prediction. We show in each figure three
examples of force plots for each class of model prediction (death or discharge).

The plots in Supplementary Figure 2a illustrate the forces for three patients
who were discharged from the dataset. Each plot corresponds to an individual
patient, and it is evident that reduced oxygen saturation is the most influential feature
in the model's decision-making process. However, the force associated with this
feature is lower compared to other values, resulting in the classification of the patient
into class 0 (medical discharge). It is noteworthy that the region representing the
southern region of Brazil had the highest force value, influencing the model's decision
to classify the patient as discharged. The absence of respiratory distress, short
hospitalization duration, white ethnicity, and the absence of comorbidities were also
important factors in the model's decision to classify these patients as discharged. A
comparison of Supplementary Figure 2a, 2b, and 2c reveals that lower age values
tend to lead the model to classify the patient as discharged, while higher age values,
as seen in Supplementary Figure 2b, contribute to the model classifying the patient
as deceased. Additionally, variables associated with comorbidities with lower values

contribute to the model classifying the patient as discharged.
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In Supplementary Figure 3a, we observe that a patient presenting reduced
oxygen saturation was the primary feature contributing to the model classifying the
patient into class one (deceased). Additionally, the model considered an ethnicity
value of 2, indicating indigenous, as a variable contributing to an increased prediction
value for the higher class, which is deceased. Furthermore, factors such as the
northern region of Brazil and reports of respiratory distress contribute to the model
classifying the patient as deceased. In Supplementary Figure 3b, the presence of
comorbidities emerges as an important factor for the model to classify as deceased.
However, solely relying on the presence of comorbidities in patients does not serve
as a strong predictor for the model, as the final value of the model's decision function
was negative, close to zero. Nevertheless, the model correctly classified this instance
as deceased. In Supplementary Figure 3c, besides variables crucial for decision-
making regarding mortality, we observe that higher age leads the model to predict the

patient as deceased, in contrast to what was shown in Supplementary Figure 2.

Other studies in the literature that evaluated ML algorithms for predicting

deaths in children and adolescents.

Other studies evaluated ML models for predicting the deaths of children and
adolescents from COVID-19. The study conducted by Zhang et al [1]. utilized ML
techniques to predict infant mortality rates in the United States based on factors
related to birth facility, prenatal care, labor and delivery, and newborn characteristics.
The analysis was performed on data from 2016 to 2021, including 116,309 infant
deaths among 22,669,736 live births. Among the five ML models compared, XGBoost
demonstrated the best predictive performance, achieving an AUC of 93% and an
Average Precision (AP) score of 0.55. The study highlighted the significance of
utilizing the original imbalanced dataset over balanced datasets created through
oversampling techniques, as the former yielded superior predictive outcomes. The
validation of the predictive model on data from 2020 to 2021 maintained the

performance level, with an AUC of 93% and an AP value of 0.52. The performance of
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the model during both pre-pandemic (2016-2019) and pandemic periods (2020-
2021) shows potential utility in informing strategies to mitigate infant mortality rates.

In the study conducted by Byeon et al. [2], a population-based cross-sectional
survey was employed to investigate the impact of the COVID-19 pandemic on the
prevalence of obesity among South Korean adolescents. The research utilized
categorical boosting, specifically the CatBoost algorithm, to develop a predictive
model for adolescent obesity. The model's performance was evaluated using various
metrics, and the results indicated that the model achieved an AUC of 68%, with a
general accuracy of 82%. The data used in the study encompassed a range of
factors including exercise, academic performance, and lifestyle habits, which were
analyzed to identify potential risk factors for adolescent obesity. The utilization of the
CatBoost algorithm, in conjunction with the evaluation of various performance
metrics, underscores the rigorous approach taken to predict vulnerability to obesity in
South Korean adolescents post-pandemic.

Gao et al. [3] presents a hybrid approach that combines domain knowledge-
based features with data-driven methods to predict pediatric COVID-19
hospitalization and severity. The authors split two cohorts into training, validation, and
testing sets by 6:1:3 and used the training set to fit the models, the validation set to
determine the hyper-parameters, and the testing set to evaluate the models. The
evaluation metrics were AUROC, AUPRC, and Min (Re, Pr). The best model,
MedML, achieved a 3% higher AUROC and 4% higher AUPRC on the hospitalization
prediction task and a 7% higher AUROC and 14% higher AUPRC on the severity
prediction task compared to the best baseline model. The authors used the N3C Data
Enclave with Code Workbook and the mini-batch gradient descent to train the models
and the batch size was set to 128. The results showed that MedML is generalizable
in all nine national geographical regions of the United States and temporally across
all consecutive pandemic stages. The authors state that MedML serves as a bridge
between clinicians, data engineers, and computer scientists to augment the clinical
decision-making process through intuitive knowledge representation, explainable
construction, and powerful computation.

Pavliuk et al. [4] developed a ML model for analyzing and predicting the
hospitalization numbers of children in the Lviv region during the fourth wave of the
COVID-19 pandemic, characterized by the Omicron strain's dominance. The surge in
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hospitalizations, especially among children, is attributed to their high sociability and
low vaccination rates in Ukraine. Utilizing publicly available data, the ML model
comprises analysis and prediction components. Pearson correlation coefficient was
employed for analyzing hospitalized children's numbers, while short and medium-
term predictions utilized neural networks.

The study of Mamlook et al. [5] focuses on evaluating and comparing five well-
known ML approaches, including artificial neural network (ANN), random forest (RF),
support vector machines (SVM), decision trees (DT), and gradient boosted trees
(GBM), to detect COVID-19 in children. The classification performance of each model
was assessed using a standard 10-fold cross-validation procedure. The findings
reveal that the classification model based on decision trees (CART) outperforms
others, achieving 92.5% accuracy for binary classes (positive vs. negative) based on
laboratory findings. Important predictors such as Leukocytes, Monocytes, Potassium,
and Eosinophils were identified, suggesting their crucial role in COVID-19 detection.
The proposed model offers a tool for medical experts to predict COVID-19 in children
and validate primary laboratory findings, showcasing the potential of ML methods in
facilitating accurate predictions for COVID-19 laboratory outcomes in pediatric cases.

Ma et al. [6] investigate whether clinical symptoms and laboratory results can
serve as predictors for the necessity of CT (Computed Tomography) scans in
pediatric patients with positive RT-PCR results. Data from 244 pediatric patients were
collected, and advanced decision tree-based ML models were employed. The study
revealed that age, lymphocyte count, neutrophils, ferritin, and C-reactive protein are
crucial indicators for predicting CT outcomes. The developed decision support
system demonstrated promising performance, achieving an AUC of 84% with
accuracy of 82% and sensitivity of 84%. These findings suggest a reconsideration of
CT use in pediatric patients, highlighting the potential non-indispensability of this
imaging modality.

Nugawela et al. [7] developed a predictive model for identifying children and
young people at a higher risk of experiencing long COVID, defined as having at least
one impairing symptom three months after SARS-CoV-2 positive RT-PCR testing.
The research utilized data from a nationally matched cohort of SARS-CoV-2 test-
positive and test-negative patients aged 11 to 17 years. Predictors considered
included SARS-CoV-2 status, demographic factors, quality of life/functioning,
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physical and mental health, loneliness, and the number of symptoms at testing. The
logistic regression model demonstrated an accuracy of 83%, achieving good

calibration and discrimination measures.
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