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RESUMO 

 

A pandemia de COVID-19 impulsionou a aplicação de tecnologias digitais 

avançadas, como a inteligência artificial (IA), para prever a mortalidade em pacientes 

adultos. No entanto, o desenvolvimento de modelos de aprendizado de máquina 

(ML) para prever desfechos em crianças e adolescentes com COVID-19 ainda é 

limitado. Este estudo teve como objetivo avaliar o desempenho de múltiplos modelos 

de aprendizado de máquina na previsão de mortalidade entre pacientes pediátricos 

hospitalizados com COVID-19 e analisar sua viabilidade quando aplicados a grandes 

bases de dados. Neste estudo de coorte, utilizamos o banco de dados SIVEP-Gripe, 

um recurso público mantido pelo Ministério da Saúde, para monitorar a síndrome 

respiratória aguda grave (SRAG) no Brasil. Para criar subconjuntos destinados ao 

treinamento e teste dos modelos de aprendizado de máquina (ML), dividimos o 

banco de dados primário em três partes. Com esses subconjuntos, desenvolvemos e 

treinamos 12 algoritmos de ML para prever os desfechos. Avaliamos o desempenho 

desses modelos utilizando diversas métricas, como acurácia, precisão, 

sensibilidade, revocação e a área sob a curva característica de operação do receptor 

(AUC). Entre as 37 variáveis examinadas, 24 foram identificadas como potenciais 

indicadoras de mortalidade, conforme determinado pelo teste de independência do 

qui-quadrado. O algoritmo de regressão logística (LR) obteve o maior desempenho, 

com uma acurácia de 92,5% e uma AUC de 80,1% no conjunto de dados otimizado. 

Os algoritmos de Gradient Boosting Classifier (GBC) e Adaptive Boosting (ADA) 

apresentaram resultados semelhantes aos do algoritmo LR. Nosso estudo também 

revelou que a saturação de oxigênio reduzida na linha de base, a presença de 

comorbidades e a idade avançada foram os fatores mais relevantes na previsão de 

mortalidade em crianças e adolescentes hospitalizados. O uso de modelos de ML 

pode ser uma ferramenta valiosa na tomada de decisões clínicas e na 

implementação de estratégias de gestão de pacientes baseadas em evidências, o 

que pode melhorar os desfechos dos pacientes e a qualidade geral dos cuidados 

médicos. Os modelos LR, GBC e ADA demonstraram eficiência na previsão precisa 

de mortalidade em pacientes pediátricos com COVID-19. 

 

Palavras-chave: COVID-19; inteligência artificial; aprendizado de máquina; criança; 

morte. 

 

 

 

 

 

 



 
 

   

 

ABSTRACT 

 

The COVID-19 pandemic has catalyzed the application of advanced digital 

technologies such as artificial intelligence (AI) to predict mortality in adult patients. 

However, the development of machine learning (ML) models for predicting outcomes 

in children and adolescents with COVID-19 remains limited. This study aimed to 

evaluate the performance of multiple machine learning models in forecasting 

mortality among hospitalized pediatric COVID-19 patients and assess their feasibility 

when applied to large-scale datasets. In this cohort study, we used the SIVEP-Gripe 

dataset, a public resource maintained by the Ministry of Health, to track severe acute 

respiratory syndrome (SARS) in Brazil. To create subsets for training and testing the 

machine learning (ML) models, we divided the primary dataset into three parts. Using 

these subsets, we developed and trained 12 ML algorithms to predict the outcomes. 

We assessed the performance of these models using various metrics such as 

accuracy, precision, sensitivity, recall, and area under the receiver operating 

characteristic curve (AUC). Among the 37 variables examined, 24 were found to be 

potential indicators of mortality, as determined by the chi-square test of 

independence. The Logistic Regression (LR) algorithm achieved the highest 

performance, with an accuracy of 92.5% and an AUC of 80.1%, on the optimized 

dataset. The Gradient Boosting Classifier (GBC) and Adaptive Boosting (ADA) 

algorithms closely followed the LR algorithm, producing similar results. Our study 

also revealed that baseline reduced oxygen saturation, presence of comorbidities, 

and older age were the most relevant factors in predicting mortality in hospitalized 

children and adolescents. The use of ML models can be an asset in making clinical 

decisions and implementing evidence-based patient management strategies, which 

can enhance patient outcomes and overall quality of medical care. LR, GBC, and 

ADA models have demonstrated efficiency in accurately predicting mortality in 

COVID-19 pediatric patients 

Keywords: COVID-19; artificial intelligence; machine learning; child; death. 
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1. INTRODUÇÃO 

 

Os profissionais de saúde têm lidado com uma quantidade crescente de informações 

em seus ambientes de trabalho, assim como sobrecarga dentro dos hospitais (1). 

Essa sobrecarga foi agravada pela pandemia de COVID-19, que aumentou o 

número de pacientes hospitalizados em todo o mundo. Estudos mostram que 

dezenas de milhares de pessoas morrem a cada ano devido a erros médicos, 

frequentemente causados por exaustão ou estresse que os médicos experimentam 

em suas vidas diárias (2-6). 

Durante e após a pandemia de COVID-19, o mundo tem experimentado uma 

evolução tecnológica no campo da inteligência artificial. Com o poder dos algoritmos 

de aprendizado de máquina, tarefas rotineiras e administrativas foram transferidas 

para esses sistemas, possibilitando que pessoas se tornem mais produtivas com 

menos esforço (7,8). Na área da saúde, a IA tem o potencial de auxiliar os 

profissionais em suas diversas áreas de atuação tanto do ponto de vista pessoal 

como profissional. Por exemplo, no campo pessoal a IA pode aliviar a exaustão dos 

profissionais, simplificar as tarefas cotidianas e reduzir a carga de trabalho, 

automatizando deveres administrativos. No campo de atuação profissional, a IA 

pode contribuir com o desenvolvimento de uma medicina personalizada e de 

intervenção precoce por meio de desenvolvimento de modelos de análise preditiva 

(9). 

Utilizando sistemas eficientes de aprendizado de máquina, profissionais de 

saúde podem triar pacientes com suporte computacional e avaliar probabilidades de 

diversos desfechos, como óbito, internação em UTI, necessidade de suporte 

ventilatório, gravidade de uma doença específica, entre outros. Isso otimiza o fluxo 

de trabalho do médico e da equipe de saúde, fornecendo indicações de quais 

pacientes necessitam de atenção imediata e têm maiores riscos de complicações 

(9). 

Estudos na literatura já foram conduzidos utilizando metodologias de Machine 

Learning (ML) na medicina para prever diversos desfechos em diferentes domínios 

médicos, por meio de tipos variados de dados, como texto e imagens (10). No 

entanto, ainda há uma lacuna a ser preenchida quanto ao uso desses algoritmos em 
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pediatria. Poucos estudos exploram o uso de algoritmos de ML para previsão de 

desfechos em crianças e adolescentes, especialmente no contexto da COVID-19 

(11). 

Dessa maneira, o objetivo deste estudo é explorar técnicas de aprendizado de 

máquina para melhorar a compreensão e previsão dos desfechos da COVID-19 em 

crianças e adolescentes. Dentre as principais metas, incluem-se o desenvolvimento 

de modelos preditivos robustos para identificar os fatores de risco de mortalidade em 

pacientes pediátricos hospitalizados com COVID-19. Ao analisar um conjunto de 

dados abrangente que engloba vários parâmetros clínicos e demográficos, este 

estudo busca determinar os preditores mais significativos de mortalidade, ajudando 

assim os profissionais de saúde a tomar decisões informadas para o manejo do 

paciente. 

Além disso, esta tese tem como objetivo comparar o desempenho de 

diferentes algoritmos de aprendizado de máquina, como AdaBoost, CatBoost, 

Random Forest, Regressão Logística, entre outros, na previsão da mortalidade por 

COVID-19 em casos pediátricos. Por meio de um processo rigoroso de avaliação, 

utilizando métricas como precisão, sensibilidade e área sob a curva ROC, o estudo 

pretende identificar o modelo mais eficaz para a previsão de mortalidade. Esta 

análise comparativa visa destacar os pontos fortes e limitações de diversas 

abordagens de aprendizado de máquina no contexto dos desfechos da COVID-19 

em pacientes pediátricos. 

Finalmente, este estudo pretende contribuir com percepções importantes para 

as políticas de saúde pública, mostrando a utilidade dos algoritmos de aprendizado 

de máquina na análise de bancos de dados de domínio público e fornecendo 

informações para os tomadores de decisão em saúde. Ao identificar parâmetros-

chave na previsão do risco de mortalidade, este estudo tem como objetivo aprimorar 

a qualidade do atendimento e os desfechos clínicos dos pacientes pediátricos com 

COVID-19.  

Seguindo as normas do Programa de Pós-Graduação em Saúde da Criança e 

do Adolescente, esta tese é estruturada da seguinte forma: Introdução, Revisão da 

literatura sob o formato de artigo científico previamente publicado, seguida pelos 

objetivos. A seção de Métodos está incluída dentro de cada artigo, tanto a revisão da 
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literatura quanto o artigo original. Resultados, Discussão e Conclusões serão 

apresentados no formato de um artigo original intitulado "Análise Comparativa de 

Algoritmos de Aprendizado de Máquina para Previsão de Mortalidade por COVID-19 

em Crianças e Adolescentes Usando um Grande Conjunto de Dados Públicos no 

Brasil." Finalmente, a conclusão da tese e apêndices são fornecidos. As Referências 

Bibliográficas são listadas no final de cada artigo ou seção. As citações no texto 

seguem o sistema Vancouver (Uniform Requirements for Manuscripts Submitted to 

Biomedical Journals: Writing and Editing for Biomedical Publication - www.icmje.org). 
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Abstract 

Background and Objectives: We aimed to analyze the study designs, modeling 

approaches, and performance evaluation metrics in studies using machine learning 

techniques to develop clinical prediction models for children and adolescents with 

COVID-19. 

Methods: We searched four databases for articles published between 01/01/2020 

and 10/25/2023, describing the development of multivariable prediction models using 

any machine learning technique for predicting several outcomes in children and 

adolescents who had COVID-19. 

Results: We included ten articles, six (60% [95% confidence interval (CI) 0.31 - 0.83]) 

were predictive diagnostic models and four (40% [95% CI 0.17 - 0.69]) were 

prognostic models. All models were developed to predict a binary outcome (n=10/10, 

100% [95% CI 0.72 - 1]. The most frequently predicted outcome was disease 

detection (n=3/10, 30% [ 95% CI 0.11 - 0.60]). The most used machine learning 

models in the studies were tree-based (n=12/33, 36.3% [95% CI 0.17 - 0.47]) and 

neural networks (n=9/33, 27.2% [95% CI 0.15 - 0.44]). 
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Conclusion: Our review revealed that attention is required to address problems 

including small sample sizes, inconsistent reporting practices on data preparation, 

biases in data sources, lack of reporting metrics such as calibration and 

discrimination, hyperparameters and other aspects that allow reproducibility by other 

researchers and might improve the methodology. 

 

Systematic Review Registration: PROSPERO, CRD42023414699. OSF, 

https://doi.org/10.17605/OSF.IO/EW2JD 

 

Introduction 

 

The healthcare landscape has witnessed a significant transformation in recent years 

with the advent of predictive models powered by advanced machine learning 

algorithms (1). These models have played a role in the evidence-based medicine 

revolution, providing clinicians with tools to improve decision-making, ameliorate 

patient outcomes, and optimize healthcare (2). A prediction model can be defined as 

a computational tool that utilizes historical data and statistical techniques to forecast 

future events. The analysis of large amount of patient data, including demographics, 

clinical variables, and diagnostic information, has the potential to aid in early detection 

of diseases, risk assessment, treatment planning, and personalized medicine (3-5). 

As predictive modeling continues to evolve, its impact on healthcare continues to 

grow, enabling clinicians to make more informed decisions and ultimately leading to 

better outcomes and patient care. Clinical prediction models typically fall into one of 

two main categories: prognostic prediction models, which predict the likelihood of 

developing a particular health outcome over a specific period, and diagnostic 

prediction models, which determine an individual's likelihood of having a particular 

health condition (typically a disease) (6). 

Machine learning techniques have been helping in the analysis of large-scale 

COVID-19 data, including in studies with children and adolescents. Several studies 

provide insights into the clinical outcomes, vaccine efficacy, and risk factors 

associated with COVID-19 in this specific population (7-9). These algorithms can 

https://doi.org/10.17605/OSF.IO/EW2JD
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assist clinicians and researchers in analyzing these datasets by identifying patterns, 

predicting outcomes, and finding relevant risk factors for severe illness or adverse 

events. Taking advantage of computational methods, machine learning can help 

uncover hidden relationships, identify early warning signs, and help clinical decision-

making. In the context of pediatric patients, machine learning can provide a tool for 

extracting actionable insights from the complex and diverse data related to COVID-19 

in children and adolescents, ultimately contributing to the development of targeted 

interventions. 

Development and validation of prediction models for clinical settings rely on the use of 

appropriate study designs and modeling strategies. However, there is a lack of 

comprehensive information regarding the specific study designs, modeling 

approaches, and performance measures employed in studies that utilize machine 

learning for prediction modeling (10). Therefore, our objective was to conduct a 

systematic review to analyze and summarize the key characteristics related to study 

design, modeling techniques, and performance measures reported in studies focusing 

on clinical prediction models developed using supervised machine learning algorithms 

in pediatric patients with COVID-19. 

 

Methods 

 

We followed the PRISMA 2020 guidelines for systematic reviews (11). This 

systematic review was registered and approved in PROSPERO under the protocol 

CRD42023414699 and in OSF available at https://doi.org/10.17605/OSF.IO/EW2JD. 

 

https://doi.org/10.17605/OSF.IO/EW2JD
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Figure 1. Flowchart of included studies 

 

The systematic mapping was conducted following three adopted stages 

described below. (12) 

Step 1 - Conduct searches: Based on the research questions, a replicable method for 

searching and retrieving articles in four selected scientific databases was defined and 

executed. The databases were Embase, Google Scholar, Pubmed, and Scopus 

Elsevier.  

Step 2 - Selection of studies: A systematic method was defined and applied to select 

only the relevant articles for this study using inclusion and exclusion eligibility criteria. 

We used the open-source software Zotero (version 6.0.26) to exclude duplicate 

articles from the search results. 

Step 3 - Data extraction and analysis: Finally, the relevant data from the primary 

studies were summarized and presented in this study. For each study, we collected 

the following information: study design characteristics (such as cohort, case-control, 
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randomized trial), data source (such as routinely collected data, registries, 

administrative databases), study population details, outcome measures, setting 

information, patient characteristics, sample size (before and after participant 

exclusion), number of events, number of candidate and final predictors, handling of 

missing data, hyperparameter optimization, dataset splitting (such as train-validation-

test), method for internal validation (such as bootstrapping, cross-validation), number 

of models developed and/or validated, and availability of code, data, and model. 

Country was defined based on the location of the first author's affiliation. For each 

model, we extracted information on the algorithm used, predictor selection methods, 

variable importance reporting, use of penalization techniques, hyperparameters 

reporting, and performance metrics (such as discrimination and calibration). 

 

Step 1 - Search strategy for scientific articles 

 

To identify possible primary studies relevant to data extraction, the search was based 

on (i) studies using keyword combinations derived from our objective and (ii) the 

execution of automatic searches on scientific databases using search terms. Initially, 

relevant keywords related to four main fields were selected: (a) COVID-19; (b) 

medicine; (c) early childhood, childhood, and adolescence; (d) Artificial Intelligence 

and Machine Learning. 

The resulting keywords for each main field were: 

COVID-19: COVID-19 OR SARS-COV-2 

Medicine: outcomes OR outcome OR mortality OR death OR hospitalization OR 

hospitalized OR ICU OR ventilation 

Population: Early childhood, childhood, adolescence: child OR "early childhood" OR 

children OR newborn OR adolescent OR adolescents 

AI and Machine Learning: "machine learning" OR "artificial intelligence" OR 

algorithm OR algorithms OR dataset OR dimensions OR training OR sample OR 

samples OR prediction OR predict OR predicting OR forecast OR forecasting OR 
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classification OR regression OR dimension OR models OR model OR predictive OR 

predictors OR bootstrapping OR bootstrap 

Search terms were defined by grouping keywords in the same domain with the 

logical operator "OR" and grouping the three main concepts with the logical operator 

"AND". Then, automatic searches were executed on four scientific databases, 

including Embase, Google Scholar, Pubmed, and Scopus Elsevier. The search 

limited articles by year of publication (2019 to 2023). 

 

Step 2 - Eligibility criteria (Selection of studies) 

 

The studies retrieved from automatic searches were filtered to exclude articles 

not aligned with the study objectives. At this stage, three independent researchers 

defined and applied the following inclusion and exclusion criteria. 

 

Inclusion criteria: 

 

Studies whose main focus is on the use of machine learning algorithms to predict 

deaths and other outcomes in children or adolescents who had COVID-19. 

The search period comprises 01/01/2020 to 10/25/2023. The year limit of 2019 

was used because some databases did not allow filtering with monthly granularity. 

Thus, it was not possible to specify the month of March 2020 (the beginning of the 

pandemic). 

To be included in the first selection, articles must address the topics of COVID-

19 in children or adolescents and use machine learning algorithms to predict various 

outcomes in these patients. Although the outcome of death is highlighted in the 

search keywords in the Medicine domain, this search also considered other outcomes 

to increase the range of possible articles returned in the search. Only articles written 

in English were considered for the search. Only articles published in journals or 

conferences were considered for this search. Regarding articles published in 
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conferences, we consider those papers presented at conferences and published in 

the conference proceedings. 

 

Exclusion criteria: 

 

Articles written in languages other than English. Articles that do not deal with COVID-

19 in children and adolescents, articles that do not use machine learning algorithms in 

the prediction of various COVID-19 outcomes, duplicated articles, and articles that 

were selected in the databases but whose completed text files were not obtained 

even after demanding the corresponding authors. 

The study selection process was carried out in two phases: (i) in the first 

selection phase, the titles and abstracts of the studies retrieved from the searches 

were read, and studies that did not meet the inclusion criteria were excluded; (ii) in 

the second selection phase, all articles were downloaded, and their introduction and 

conclusion were read to remove studies that met the exclusion criteria. 

For this review, we did not use the "snowballing" technique, which involves 

checking if there are any articles in the references of the selected articles, after a 

complete reading, that were not found in the initial database search. If such articles 

are identified, they are then selected for inclusion in the review. Figure 1 presents the 

number of articles selected after each phase and the application of inclusion and 

exclusion criteria. And the table in the Supplemental File 1 also summarize the results 

after each phase. 

 

Screening and selection process 

 

The titles and abstracts were thoroughly examined by three researchers 

independently from a team of eight researchers to identify studies that potentially met 

the eligibility criteria. The group of researchers comprised two senior medical 

professors, a doctoral candidate, and five undergraduate medical students. The 
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undergraduate medical students and the doctoral student were involved in research 

projects related to the effects of COVID-19 in children and adolescents. 

Subsequently, full-text articles were obtained, and three groups of two researchers 

independently evaluated all articles, while the same articles were collectively 

reviewed by four researchers to ensure agreement. In the event of any discrepancies 

during the screening and selection process, the primary reviewer of this study was 

consulted to assess the concerned article and resolve discrepancies carefully. 

 

Step 3 - Data extraction 

 

We selected several items from existing methodological guidelines for reporting and 

critical appraisal of prediction model studies to build our data extraction form 

(TRIPOD and PROBAST) (13-14). The following items were extracted in the selected 

studies based on the systematic review conducted by Navarro et al. (10), including 

the items described in step 3 of our methodology. One reviewer recorded all items, 

while the other reviewers collectively assessed all articles. Articles were randomly 

assigned to reviewers. Discrepancies in data extraction were discussed and solved 

between the pair of reviewers. No limitations were imposed on the number of models 

extracted per article. 

 

Summary statistics and integration of findings 

 

The findings were condensed into percentages (with confidence intervals calculated 

using the Wilson score interval and the Wilson score continuity-corrected interval, as 

appropriate), medians, and interquartile range (IQR), accompanied by a descriptive 

synthesis. 

We reported only overall performance data from the studies, specifically the 

overall mean performance reported in the studies. We did not differentiate 

performance into corrected, external validation, or apparent validation segments. We 
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did not report external validation data, even for studies that validated their models 

using different data from the model development and testing phase. 

Rather than assessing the intricacies of each modeling approach and its 

performance, our evaluations remained at the study level. We refrained from 

conducting a quantitative synthesis of the models' performance, such as a meta-

analysis, as it fell outside the scope of our review due to the reason that the available 

studies on the topic may have significant heterogeneity in terms of study design, 

patient populations, interventions, or outcomes, making it inappropriate or unreliable 

to combine their results quantitatively. All analyses were conducted using the 

software R version 4.1.0 (R Core Team, Vienna, Austria). 

 

Results 

 

The search in the selected databases for this review yielded 5022 articles. After 

assessing the titles and abstracts, 25 studies potentially met the eligibility criteria. 

Following a thorough reading of all 25 studies, ten articles were included in this 

review: 6 (60% [95% confidence interval (CI) 0.31 - 0.83]) were predictive diagnostic 

models and 4 (40% [95% CI 0.17 - 0.69]) were prognostic models (Figure 1). 

We evaluated the quality of the articles regarding their adherence to the 

TRIPOD guidelines and also assessed the risk of bias in the selected studies using 

the PROBAST tool. Regarding the adherence to the TRIPOD guidelines, the selected 

studies showed an average adherence of 67.09%. TRIPOD is a checklist consisting 

of 31 items, and the selected studies, on average, fulfilled 20 items from this 

checklist. The results of the adherence assessment of each article to the TRIPOD 

guidelines can be found in Supplemental File 2. 

Regarding the risk of bias assessment using the PROBAST tool, five studies 

showed a high risk of bias concerning their prediction models, four studies showed a 

low risk of bias, and one study had an unclear result regarding bias risk. The results 

of the assessment for each study in the dimensions evaluated by PROBAST 

(Participants, Predictors, Outcome, and Analysis) can be found in Supplemental File 

3. 
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Among the 10 articles, 7 studies (70% [95% CI 0.40 - 0.89]) developed 

prediction models and assessed their performance using internal validation 

techniques, while 3 studies (30% [95% CI 0.11 - 0.60]) developed and externally 

validated the same machine learning predictive model. Six studies were published in 

2022 (60% [95% CI 0.31 - 0.83]), three in 2021 (30% [95% CI 0.11 - 0.60]) and one 

study in 2023 (10% [95% CI 0.018 - 0.40]). The clinical fields involved in the selected 

articles were pediatrics (n=7/10, 70% [95% CI 0.40 - 0.89]), public health (n=2/10, 

20% [95% CI 0.057 - 0.51]), and pulmonology (n=1/10, 10% [95% CI 0.018 - 0.40]). 

The retrieved articles originated from Europe (n=4/10, 40% [95% CI 0.17 - 0.69]), 

Asia (n=3/10, 30% [95% CI 0.11 - 0.60]), and North America (n=3/10, 30% [95% CI 

0.11 - 0.60]). Other study characteristics are presented in Table 1. 

 

Table 1 – General characteristics of the included studies 

 Total (n = 10) 

Key characteristics n (%) [95% CI] 

Study aim  

   Diagnosis 6 (60) [0.31 - 0.83] 

   Prognosis 4 (40) [0.17 - 0.69] 

Study Type  

   Model development only 7 (70) [0.40 - 0.89] 

   Model development with external validation 3 (30) [0.11 - 0.60] 

Outcome aim  

   Classification 6 (40) [0.31 - 0.83] 

   Risk Probabilities 4 (40) [0.17 - 0.69] 

Setting a  

   General population 6 (60) [0.31 - 0.83] 

   Secondary care 1 (10) [0.018 - 0.40] 
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   Tertiary care 3 (30) [0.11 - 0.60] 

Outcome format  

   Binary 10 (100) [0.72 - 1] 

Type of outcome  

   Death 1 (10) [0.018 - 0.40] 

   Severity prediction 1 (10) [0.018 - 0.40] 

   Hospitalization prediction 2 (20) [0.063 - 0.55] 

   Complications 2 (20) [0.063 - 0.55] 

    Need of ICU 1 (10) [0.018 - 0.4] 

   Disease detection 3 (30) [0.11 - 0.60] 

Mentioning reporting guidelines (Tripod, Strobe, Charms, other)  

  TRIPOD 1 (10) [0.018 - 0.4] 

  None 9 (90) [0.60 - 0.98] 

Model availability a  

   Repository for data 5 (50) [0.24 - 0.76] 

   Repository for code 2 (20) [0.057 - 0.51] 

   Model presentation 8 (80) [0.49 - 0.94] 

   None 2 (20) [0.057 - 0.51] 

a Counts are absolute numbers with column percentages in parentheses. The percentages sometimes do not add up to 100% 

because studies reported more than one option. ICU = intensive care unit 

 

In total, 33 prediction models were developed (Mean: 3 models per study, IQR: 

4, Range: 1-5). We did not set a limit for extracting models per study, since were few 

articles included in this review. Thus, all 33 models found in the selected studies were 

evaluated. The most used machine learning models in the studies were tree-based 
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(n=12/33, 36.36% [95% CI 0.17 - 0.47]) and neural networks (n=9/33, 27.27% [95% 

CI 0.15 - 0.44]). Other algorithms encountered are described in Table 2. 

 

Table 2 - Algorithms used for modeling in all extracted models from the selected studies 

 All extracted models (n 
= 33) 

Modeling algorithm a n (%) [95% CI] 

Tree Based Models 12 (36.3) [0.17- 0.47] 

   Decision trees (for example, CART) 3 (25) [0.089- 0.53] 

   Random forest 2 (16.6) [0.047- 0.45] 

   Gradient boosting machine (Catboost) 3 (25) [0.089- 0.53] 

   XGBoost 4 (33.4) [0.14- 0.61] 

Neural Network (incl. deep learning) 9 (27.2) [0.15 - 0.44] 

Support Vector Machine 2 (6.06) [0.017 - 0.20] 

Naive Bayes 1 (3.03) [0.0054 - 0.15] 

Multiple logistic regression 1 (3.03) [0.0054 - 0.15] 

Logistic regression 4 (12.1) [0.048 - 0.27] 

Linear discriminant analysis 2 (6.06) [0.017 - 0.20] 

Other (TabNet, AutoM, DeepFM, etc) 3 (9.09) [0.031 - 0.24] 

a Counts are absolute numbers with column percentages in parentheses. The percentages sometimes do not add up to 100% 

because studies developed more than one model. 

 

Participants 

 

The participants included in the reviewed studies were recruited from the general 

population (n=6/10, 60% [95% CI 0.31 - 0.83]), tertiary care settings (n=3/10, 30% 

[95% CI 0.11 - 0.60]), and secondary care settings (n=1/10, 10% [95% CI 0.018 - 

0.40]) (Table 1). 
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Data sources 

 

The prediction models were predominantly developed using administrative databases 

(n=7/10, 70% [95% CI 0.40 - 0.89]). Prospective cohort data (n=1/10, 10% [0.018 - 

0.40]) and retrospective cohort data (n=1/10, 10% [0.018 - 0.40]) were reported in 

one study each. The reviewed studies utilized electronic medical records and 

surveys. However, there was no information available in the selected articles 

regarding the time spent on data collection for the studies. Similarly, no studies 

reported the time horizon for the predictions (n=10/10, 100% [95% CI 0.72 - 1]). 

 

Outcomes 

 

All models were developed to predict a binary outcome (n=10/10, 100% [95% CI 0.72 

- 1]). The most frequently predicted outcome was disease detection (n=3/10, 30% [ 

95% CI 0.11 - 0.60]) followed by hospitalization prediction and complications both 

with two studies each (n=2/10, 20%, [95% CI 0.057 - 0.51]). Other outcomes of 

severity prediction are described in Table 1. 
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Table 3 - Study design of included studies 

 Total (n = 10) 

Key items a n (%) [95% CI] 

Data sources  

   Prospective cohort 1 (10) [0.018 - 0.40] 

   Retrospective cohort 1 (10) [0.018 - 0.40] 

   Electronic health record 1 (10) [0.018 - 0.40] 

   Administrative databases 7 (70) [0.4 - 0.89] 

   Survey 1 (10) [0.018 - 0.40] 

Predictor horizon  

   None 10 (100) [0.72 - 1] 

Sample size justification  

   Size of existing/available data 7 (70) [0.40 - 0.89] 

   None 3 (30) [0.11 - 0.66] 

Internal validation a  

   Split sample with test set 9 (90) [0.60 - 0.98] 

      (Random) split 5 (50) [0.24 - 0.76] 

      (Nonrandom) split 2 (20) [0.018 - 0.59] 

      Split 1 (10) [0.022 - 0.40] 

Bootstrapping 1 (10) [0.022 - 0.40] 

   With test set 1 (100) [0.21 - 1] 

Cross-validation 5 (50) [0.24 - 0.76] 

   Nested 5 (100) [0.57 - 1] 

External validation 3 (30) [0.11 - 0.60] 

   Independent dataset 3 (100) [0.44 - 1] 

a Counts are absolute numbers with column percentages in parentheses. The percentages sometimes do not add up to 100% 

because studies reported more than one option. 
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Candidate Predictors 

 

Candidate predictors extracted from the studies were clinical history (n=5/10, 50% [ 

95% CI 0.24 - 0.76]), demographics including sex, gender, and ethnicity/race 

(n=5/10, 50% [ 95% CI 0.24 - 0.76]) and disease (the diagnosed disease) (n=5/10, 

50% [ 95% CI 0.24 - 0.76]). Other predictors extracted (physical examination, blood 

or urine parameters, imaging, pathology, and questionnaires) are described in Table 

4. None of the selected studies used treatment modalities as predictors for the 

developed models and for one study, treatment as a candidate predictor is not 

applicable, since the developed models are dealing with imaging data. Studies 

included a median of 15 candidate predictors (IQR: 6 - 14.5). Four studies included 

continuous variables as candidate predictors (40% [ 95% CI 0.17 - 0.69]), the other 

three studies did not use continuous variables as predictors (30% [ 95% CI 0.11 - 

0.60]). Most studies did not report the methods to handle continuous predictors (60% 

[95% CI 0.31 - 0.83]). 

 

Table 4 - Predictors in included studies 

 Total (n = 10) 

Key items n (%) [95% CI] 

Type of candidate predictors a  

   Demography 5 (50) [0.24 - 0.76] 

   Clinical history 5 (50) [0.24 - 0.76] 

   Physical examination 3 (30) [0.11 - 0.6] 

   Disease 5 (50) [0.24 - 0.76] 

   Blood or urine parameters 3 (30) [0.11 - 0.6] 

   Imaging 1 (10) [0.018 - 0.40] 

   Pathology 3 (30) [0.11 - 0.60] 

   Questionnaires 1 (10) [0.018 - 0.40] 
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   Scale Score 1 (10) [0.018 - 0.40] 

Treatment as candidate predictor  

   Yes  

   No 9 (90) [0.60 - 0.98] 

   Not applicable 1 (10) [0.018 - 0.40] 

Continuous variables as candidate predictors b  

   Yes 4 (40) [0.17 - 0.69] 

   No 3 (30) [0.11 - 0.60] 

   Unclear 3 (30) [0.11 - 0.60] 

A-priori selection of candidate predictors  

   Yes 5 (50) [0.24 - 0.76] 

   No 5 (50) [0.24 - 0.76] 

Methods to handle continuous predictors a, b  

   Nonlinear (planned) 1 (10) [0.018 - 0.40] 

   Unclear 6 (60) [0.31 - 0.83] 

  Not applicable 3 (30) [0.11 - 0.60] 

Categorization of continuous predictors b  

Not reported 10 (100) [0.72 - 1] 

a Counts are absolute numbers with column percentages in parentheses. The percentages sometimes do not add up to 100% 

because studies reported more than one option. 

b as data preparation 

 

Sample size 

 

Selected studies had a median sample size of 11,108 participants (IQR: 5,664 - 

65,518). Most studies report a sample size justification or calculation rationale as the 
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size of existing/available data used (n=7/10, 70% [95% CI 0.40 - 0.89]), and 3 studies 

did not report any rationale about sample size (n=3/10, 30% [ 95% CI 0.11 - 0.66]) 

(Table 3) (Table 5). 

 

Table 5 - Sample size of included studies 

 Total (n = 10) 

Key items n (%) [95% CI] Median [IQR], range 

Initial sample size 10 (100) 11,108 [5664 - 65518] 105 to 
23 million 

Final sample size 10 (100) 7,801 [5664 - 65518] 99 to 
23 million 

   Model development 10 (100) 6,955 [3000 - 65518] 99 to 
20 million 

   Internal validation 9 (88.9) 7,139 [799 - 58188] 99 to 16 
million  

   External validation a 3 (22.3) Not significant 

Number of candidate predictors 10 (100) 23 [14 - 33] 3 to 200 

Number of included predictors 10 (100) 16 [7 - 21] 3 to 65 

a Only three studies conducted external validation. For the IQR calculation to have significance, a minimum of four values is 

required. 

 

Missing values 

 

Missing values were an exclusion criterion of participants in three studies (30% [ 95% 

CI 0.11 - 0.60]). On the other hand, seven studies were unclear regarding missing 

data being a criterion for exclusion of participants, as we did not find this information 

(70%, [95% CI 0.40 - 0.89]). When a study did not explicitly mention that there are no 

missing data, we consider that the study was not clear about the existence of missing 

data. To handle missing data, most of the studies are unclear (n=4/10, 40% [95% CI 

0.17 - 0.69]). One study used Bayesian optimization (n=1/10, 10% [95% CI 0.018 - 

0.40]), and two studies did not make imputation of the missing data in the data source 

(n=2/10, 20% [95% CI 0.057 - 0.51]). Other information about how studies reported 

ways to handle missing data is presented in Table 6. 
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Table 6 – Methods used for missing values handling 

 Total (n = 10) 

Key items n (%) [95% CI] 

Missingness as exclusion criteria for participants  

   Yes 3 (30) [0.11 - 0.6] 

   Unclear 7 (70) [0.4 - 0.89] 

Number of patients excluded  

   Median [IQR] (range) 1007 [303 - 6,247,840] (6 to 12,494,266) 

Methods of handling missing data  

   No missing data 3 (30) [0.11 - 0.6] 

   No imputation 2 (20) [0.057 - 0.51] 

   Bayesian optimization 1 (10) [0.018 - 0.4] 

   Unclear 4 (40) [0.17 - 0.69] 

Presentation of missing data  

   Not summarized 6 (60) [0.31 - 0.83] 

   By all candidate predictors 1 (10) [0.018 - 0.4] 

   Not applicable 3 (30) [0.11 - 0.6] 

 

Class imbalance and dimensionality reduction techniques 

 

Eight among 10 studies (80%, [95% CI 0.49 - 0.94] did not report unbalanced data or 

any strategy to deal with class imbalance like Synthetic Minority Oversampling 

Technique (SMOTE), Random Undersampling Boosting (RUSBoost), Random 

oversampling, random under sampling, or other techniques. For one study class 

imbalance is not applicable, since the study deals with imaging as a data source and 

one study report the use of SMOTE to deal with class imbalance. Regarding 

dimensionality reduction, most studies did not report any technique to reduce the 

dimension of data (n=8/10, 80% [95% CI 0.49 - 0.94]). One study used principal 

component analysis (PCA) to reduce the dimension of data (Table 7). 
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Table 7 - Machine learning aspects in the included studies 

 Total (n = 10) 

key items n (%) [95% CI] 

Data preparation a  

   Cleaning 2 (20) [0.057 - 0.51] 

   Aggregation 1 (10) [0.018 - 0.40] 

   Augmentation 1 (10) [0.018 - 0.40] 

   Encoding 2 (20) [0.057 - 0.51] 

   Normalization 1 (10) [0.018 - 0.40] 

   Other 2 (20) [0.057 - 0.51] 

  Not reported 6 (60) [0.31 - 0.83] 

Data splitting  

   Train-test set 6 (60) [0.31 - 0.83] 

   Train-validation-test set 4 (40) [0.17 - 0.69] 

Dimensionality reduction techniques  

   Principal component analysis 1 (10) [0.018 - 0.40] 

   Not Reported 8 (80) [0.49 - 0.940] 

   Not applicable 1 (10) [0.018 - 0.40] 

Class Imbalance  

   SMOTE 1 (10) [0.018 - 0.40] 

   Not Reported 8 (80) [0.49 - 0.94] 

   Not applicable 1 (10) [0.018 - 0.40] 

Strategy for hyperparameter optimization a  

   Cross-validation 4 (40) [0.17 - 0.69] 

   Manual search 1 (10) [0.018 - 0.40] 

   Predefined values/default 1 (10) [0.018 - 0.40] 

   Done automatically by CatBoost 1 (10) [0.018 - 0.40] 

   Not Reported 7 (70) [0.40 - 0.89] 

a Counts are absolute numbers with column percentages in parentheses. The percentages sometimes do not add up to 100% 

because studies reported more than one option.  SMOTE = Synthetic Minority Oversampling TEchnique 
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Modeling Algorithms 

 

Neural networks were used in 9 among 33 models (27.2% [95% CI 0.15 - 0.44]) 

extracted from the selected studies, including multilayer perceptron, convolutional 

neural network, and recurrent neural networks. Tree-based models were reported in 

12 among 33 models (36.3% [95% CI 0.17 - 0.47]). Other models such as TabNet, 

AutoML, and DeepFM were also adopted in the selected studies (n=3/33, 9.09% 

[95% CI 0.031 - 0.24]). We did not find any study that reported penalized regression 

models. Support Vector Machine (SVM), a popular machine learning technique, was 

also reported two times (n=2/33 6.06% [95% CI 0.017 - 0.20]). 

 

Selection of predictors 

 

Regarding the strategy to build models, different methods of selection of predictors 

were reported as presented in Table 8. Some of the strategies found in the selected 

studies include term frequency-inverse document frequency (TF-IDF) embedding, 

frequency encoding, and embedding in the learning process (data-driven approach), 

decided by pediatricians and others. The most cited method for model building was 

Spearman Correlation (n=4/33, 12.12% [95% CI 0.048 - 0.27]). 
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Table 8 - Model building of all included studies 

 Total (n = 33) 

Key items n (%) [95% CI] 

Selection of predictors a  

Impurity Based Feature Importance 1 (3.03) [0.054 - 0.15] 

   TF-IDF Embedding 1 (3.03) [0.054 - 0.15] 

   Frequency Encoding/Count Encoding 1 (3.03) [0.054 - 0.15] 

   Spearman Correlation 4 (12.12) [0.048 - 0.27] 

   All predictors 2 (6.06) [0.017 - 0.20] 

   Decided by pediatricians 1 (3.03) [0.054 - 0.15] 

   Propensity Score 1 (3.03) [0.054 - 0.15] 

   Embedded in learning process 1 (3.03) [0.054 - 0.15] 

   Unclear 1 (3.03) [0.054 - 0.15] 

Hyperparameter tunning reported  

   Yes 2 (6.06) [0.017 - 0.2]0 

   No 7 (21.21) [0.11 - 0.38] 

   Unclear 1 (3.03) [0.054 - 0.15] 

Variable importance reported a  

   Shapley Value 2 (6.06) [0.017 - 0.20] 

   By Random Forest 2 (6.06) [0.017 - 0.20] 

   Weights/correlation 4 (12.12) [0.048 - 0.27] 

   Gain information 1 (3.03) [0.054 - 0.15] 

   None 3 (9.09) [0.031 - 0.24] 

Penalization methods used  

   Not reported 10 (30.3) [0.17 - 0.47] 

Abbreviations: TF-IDF, term frequency-inverse document frequency. 

a Counts are absolute numbers with column percentages in parentheses. The percentages sometimes do not add up to 100% 

because studies developed more than one model. 
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Variable Importance and hyperparameters 

 

The variable importance scores provide valuable information on the extent to which 

each variable contributed to the prediction model (Probst et al, 2019). Despite our 

sample of studies being small, we found a heterogeneity of information about variable 

importance. Three studies did not provide any information about scores for variables 

(9.09% [95% CI 0.031 - 0.24]). For 4/33 (12.12% [95% CI 0.048 - 0.27]) the 

importance weights of variables/correlations were used to report variable importance 

to the models. Shapley values, another method to determine importance, were used 

in two studies (6.06% [95% CI 0.017 - 0.20]). Other methods informed by studies to 

determine variable importance are defined in Table 8. Hyperparameters (including 

default settings of models) were not reported in 7/10 (70% [95% CI 0.40 - 0.89]) 

studies. The most described strategy for hyperparameter optimization was cross-

validation (n=4/10, 40% [95% CI 0.17 - 0.69]). Seven studies did not report any 

information about hyperparameter optimization (n=7/10, 70% [95% CI 0.40 - 0.89]), 

as shown in Table 7. 

 

Performance metrics 

 

The most used measure for the extracted models was the area under the Receiver 

Operating Characteristic curve (AUC/ROC) (n=15/33, 15.15% [95% CI 0.30 - 0.62]) to 

describe the discriminative ability of the proposed models (Table 9).  Few methods for 

measuring agreement between predictions and observations (also called calibration) 

were used in the selected studies. Only four models used a calibration plot (12.12%, 

[95% CI 0.048 - 0.27]). Other measures of calibration used were calibration slope and 

calibration-in-the-large. General metrics were found in most studies for the developed 

models, such as accuracy (n=25/33, 75.75% [95% CI 0.59 - 0.87]) and F1-score 

(n=12/33, 36.36% [95% CI 0.22 - 0.53]). 
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Table 9 - Performance measures reported by included studies 

 All extracted models (n = 33) 

Key items n (%) [95% CI] 

Calibration a  

   Calibration plot 4 (12.12) [0.048 - 0.27] 

   Calibration slope 1 (3.03) [0.0054 - 0.15] 

   Calibration in the large 1 (3.03) [0.0054 - 0.15] 

   None 5 (15.15) [0.067 - 0.31] 

Discrimination  

   AUC/AUC-ROC 15 (45.45) [0.30 - 0.62] 

   AUPRC 8 (24.24) [0.13 - 0.41] 

   Min(Re,Pr) 3 (9.09) [0.031- 0.24] 

   C-statistic 1 (3.03) [0.0054 - 0.15] 

   None 1 (3.03) [0.0054 - 0.15] 

Classification  

   Sensitivity 12 (36.36) [0.22- 0.53] 

   Specificity 12 (36.36) [0.22- 0.53] 

   Recall 9 (27.27) [0.15- 0.44] 

   Precision 8 (24.24) [0.13- 0.41] 

Overall a  

   Predictive values 1 (3.03) [0.0054 - 0.15] 

   AUC difference 2 (6.06) [0.017 - 0.2] 

   Accuracy 25 (75.75) [0.59 - 0.87] 

   F1-score 12 (36.36) [0.22 - 0.53] 

   Youden Index 1 (3.03) [0.0054 - 0.15] 

Abbreviations: AUC/ROC, Area Under the Receiver Operating Characteristic Curve, AUPRC, Area Under the Precision-Recall 

Curve, Min (Re, Pr), Minimum value between Recall and Precision. 

a Counts are absolute numbers with column percentages in parentheses. The percentages sometimes do not add up to 100% 

because studies developed more than one model. 

 

Predictive performance 

 

Studies that reported their discriminative abilities of the proposed models had solid 

results (AUC next to 1) with an internally validated median AUC of 0.91 (IQR 0.76-
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0.98; range 0.68 - 0.98). For calibration and overall performance metrics, as shown in 

Table 10. 

 

Table 10- Predictive performance of all extracted models a 

 All extracted models (n = 33) 

Key items Reported, 
n (%) 

Apparent performance 
___________________ 

Median [IQR], range 

Calibration   

   Slope 2 (6.06) Not significant 

   Calibration-in-the large 1 (3.03) Not significant 

   Pearson chi-square 1 (3.03) Not significant 

Discrimination   

   AUC 15 (45.45) 

0.98 [0.84 - 0.98], 0.68 to 

0.98 

   AUPRC 3 (9.09) Not significant 

   AUROC 3 (9.09) Not significant 

Accuracy 22 (66.66) 

0.81 [0.8 - 0.92], 0.79 to 

0.96 

F-Measure 11 (33.33) 

0.84 [0.84 - 0.92], 0.45 to 

0.92 

Min(Re, Pr) 3 (9.09) Not significant 

Sensitivity 18 (54.54) 

0.90 [0.69 - 0.93], 0.69 to 

0.94 

Specificity 18 (54.54) 

0.89 [0.87 - 0.94], 0.87 to 

0.99 

Precision 10 (30.3) 

0.83 [0.83 - 0.93], 0.77 to 

0.99 

Recall 7 (21.21) 0 [0.85 - 0.85], 0.82 to 0.92 

Abbreviations: AUC/ROC, Area Under the Receiver Operating Characteristic Curve, AUPRC, Area Under the Precision-Recall 

Curve, Min (Re, Pr), Minimum value between Recall and Precision. 

a Counts are absolute numbers with column percentages in parentheses. The percentages sometimes do not add up to 100% 

because studies reported more than one option. 

 

Internal validation and external validation 

 

Nine among 10 studies (88.9% [ 95% CI 0.60- 0.98]) internally validate their models, 

splitting samples into a training and test set. The train-test set was split randomly into 
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5/10 studies (50% [ 95% CI 0.24 - 0.76]) and 2/10 studies used a nonrandom split 

(20% [ 95% CI 0.057, 0.51]). One study reported bootstrapping on a test set without 

citing the number of iterations. Five studies that performed cross-validation (50% 

[95% CI 0.24 - 0.76]), all of them used nested cross-validation (100% [95% CI 0.57 - 

1]). For further details, see Table 4. Only three studies performed an external 

validation of their models (30% [ 95% CI 0.11 - 0.60] by using independent datasets 

to validate their models (100% [95% CI 0.44 – 1]). 

 

Model availability 

 

We did not find any studies that created an online calculator or web system 

containing some way to use the developed models. We found a repository for data in 

five studies (n=5/10, 50% [ 95% CI 0.24 - 0.76]), and in two studies we did not find 

any information about data, code, and even a detailed description of model 

construction (n=2/10, 20% [95% CI 0.057 - 0.51]). The presentation of the models in 

detail with flowcharts or other images that convey the architecture of the solution 

proposed in the study was found in eight articles (80% [95% CI 0.49 - 0.94]). We 

found two studies that reported a repository for accessing and reading the source 

code of the developed model (Table 1). 

 

Discussion 

 

Principal findings 

 

The present review aimed to identify and analyze predictive and prognostic models 

developed using machine learning techniques for children and adolescent who had 

COVID-19. Firstly, a notable finding was the low number of studies found that utilized 

machine learning models for predicting various outcomes in children and adolescents. 

This highlights the need for further studies of this nature in the field of pediatrics. 

Despite obtaining a low number of studies in this review, the quantity of 

machine learning models found in the selected studies was diverse. The most used 
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models were tree-based models, such as XGBoost, decision trees, and Categorial 

Boosting (CatBoost) (14-15). XGBoost is an optimized gradient boosting algorithm 

that excels in handling complex datasets and achieving high predictive accuracy. It 

utilizes a combination of gradient boosting and regularization techniques to produce 

strong predictive models. XGBoost is widely recognized for its scalability, speed, and 

effectiveness in a variety of machine learning tasks. In another spectrum of machine 

learning, neural network models were also utilized in the selected studies. An 

example of a neural network model is the multilayer perceptron. A multilayer 

perceptron is a type of artificial neural network consisting of multiple layers of 

interconnected neurons (16). It is commonly used for non-linear regression and 

classification tasks. The network utilizes forward propagation to process input data 

and backpropagation to adjust the weights and biases during the training process. 

Our findings suggest that machine learning techniques have potential for 

developing accurate predictive models across various clinical fields. For instance, 

several studies demonstrated high accuracy rates for predicting outcomes including 

disease diagnosis or prognosis. These models could be used to improve patient care 

by identifying high-risk individuals who may benefit from early interventions or 

personalized treatment plans. 

Despite the promising results of some studies, we found that there was a lack of 

consistency in reporting model development and validation procedures across the 

selected articles. For instance, some studies did not provide detailed information 

about data sources or model construction methods. This lack of transparency can 

hinder reproducibility and limit the generalizability of the models to other populations 

or settings. 

Concerning data sources, there are several biases existing in datasets used 

for machine learning model constructions. Bias, a statistical term, denotes when a 

model fails to provide an accurate representation of the population. Some biases 

present in datasets include: 

  

• Selection Bias: This bias arises when data from a specific part of the 

population is used, not representing the entire target population of the study. 
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To mitigate this bias, it is essential to audit the dataset, ensuring samples 

accurately represent the study's target population. 

  

• Overgeneralization Bias: Researchers encounter this bias when assuming 

that observations in their dataset mirror those in any dataset aimed at 

assessing the same problem. To address this issue, external validation is 

crucial for evaluating model performance. 

  

• Automation Bias: This bias occurs when researchers heavily rely on 

automation tools for data processing before model training. Complete trust in 

these tools is discouraged; it's vital to verify correct data transformation 

outcomes. 

  

• Sampling Bias: This bias occurs when sampling techniques are not used to 

balance classes within the dataset. This may lead to models with high 

accuracy in classifying the most represented class in the dataset. 

 

Still regarding to biases in the data, the most common inconsistency observed in the 

identified articles pertains to the failure to share modified training data. Researchers 

should elucidate the state of data post-modifications made for training, including the 

removal of erroneous features, handling of features with substantial missing data, 

categorical variable encoding, data sampling, and other relevant procedures. Mere 

mention of using data from a specific website is insufficient. Without this crucial 

information, the assessment of the actual data employed in the studies becomes 

challenging. This can lead to indications of biases in the models and render them 

less interpretable. Studies that do not disclose their data and source code make the 

research less transparent. 

To address these issues, future studies should follow established guidelines for 

developing and reporting predictive models (e.g., TRIPOD statement) (17). 

Additionally, researchers should consider external validation of their models to 

assess their performance in independent datasets (18). 

Another consideration is the ethical implications of using machine learning models in 

clinical practice. For instance, there is a risk of perpetuating bias or discrimination if 
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the models are trained on biased data or if they are not validated across diverse 

populations (19). Therefore, it is crucial to ensure that these models are developed 

and used ethically and responsibly. 

Another finding from our review is that the majority of the selected studies 

used administrative databases as their primary data source. This suggests that 

machine learning techniques may be particularly useful for analyzing large-scale 

administrative datasets to identify patterns and predict outcomes. 

The machine learning models have a potential impact on clinical decision-

making. These models have shown promise for improving patient outcomes by 

identifying high-risk individuals or predicting disease progression. However, the 

models should not be viewed as a replacement for clinical judgment or human 

expertise (20). Instead, they should be used as a tool to support clinical decision-

making and improve patient care. 

There is a deficiency in the way the selected studies reported data in the 

models. The limitations include inadequate reporting of sample sizes, missing 

information about hyperparameter tuning, lack of implementation details, and 

performance measures of the models. These issues are important for reproducibility 

purposes (37). 

Few studies employed cross-validation techniques in model development. Cross-

validation helps to prevent the phenomenon of overfitting (21), where the model 

achieves 100% accuracy on the test data, which represents the model's development 

data that has not been seen by the model before. However, if the test data happens 

to be identical to the training data, it is necessary to train and test the model using 

different folds of the data. Cross-validation divides the model development data into 

multiple folds, using each fold as both training and testing data. The lack of cross-

validation can lead to inaccurate information regarding the performance of the 

models. 

The most commonly used method for predictor selection in the selected 

studies was Spearman correlation. Few studies discussed techniques for 

dimensionality reduction of predictors, although most studies had a low number of 

features for model development. The selected studies did not provide clear 
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information about missing data and how they handled it. Many methodological details 

in the majority of studies were unclear. Several studies did not make their code or 

data available in separate repositories for other researchers to read and reproduce 

the analysis. Many studies did not report information regarding the calibration and 

discrimination of the models. It is important to report data about the calibration and 

discrimination of a machine learning model because these metrics provide insights 

into the model's performance and reliability. Calibration measures the agreement 

between the predicted probabilities and the observed outcomes, indicating whether 

the model's predictions are well-calibrated and accurate. Discrimination, on the other 

hand, assesses the model's ability to distinguish between different outcomes or 

classes, indicating its predictive power. Reporting these metrics allows researchers 

and practitioners to evaluate the model's effectiveness, identify potential biases or 

limitations, and compare its performance against other models or benchmarks. 

Ultimately, it promotes transparency, reproducibility, and informed decision-making in 

utilizing machine learning models. 

The studies did not provide a solid contribution to the medical community as 

they did not create any website or other means for physicians and other interested 

parties to test the model. There is a need for closer collaboration between this 

emerging field of evidence-based medicine and practicing clinicians. The availability 

of models is crucial for other physicians to provide feedback on the performance of 

the models developed for data specific to their regions.  

No selected study provided information on the prediction horizon of the models. This 

type of information can be important for the clinical field to understand the validity of 

the predictions made. 

It is worth noting the lack of external validation to effectively test the selected 

models with unseen data. However, obtaining external validation data can be 

challenging, and testing models with multiple sources requires time and effort to 

acquire and organize large databases for evaluation by machine learning models. 

The nature of the data was not widely discussed in the majority of articles. As 

important as the model itself, the quality and preparation of the data used for training 

greatly influence the model's performance. If the data is not properly prepared before 

training, biases may be introduced, affecting the model's true performance. Few 
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studies mentioned how the data were treated in terms of their nature (continuous, 

discrete, etc.) and how the data were encoded for evaluation by the developed 

models. 

 

How models were externally validated 

 

In the three studies that use external validation to validate their models, the 

procedure has been conducted to assess the model's real-world applicability. The 

studies conducted external validation, adapting to their specific dataset 

characteristics. For models with small sample sizes, the researchers in the first study 

employed data splitting, allocating a portion of the dataset for training and another for 

validation. Additionally, they acquired external data from independent sources to 

further validate the model's performance. Key performance metrics, such as accuracy 

and precision, were calculated and compared between the internal and external 

datasets, ensuring a comprehensive assessment of generalization of results. In the 

second and third study, addressing models with large sample sizes, adopted a similar 

approach, splitting their dataset into training and validation subsets. They 

emphasized the importance of external validation, even with large data, by obtaining 

an independent and unseen dataset. Performance metrics were evaluated on both 

the internal and external validation datasets. Data splitting was complemented by 

techniques such as k-fold cross-validation to maximize data utilization. Since all 

studies report good metric values with tests with the external validation datasets, this 

can exemplify the importance of external validation in machine learning research, 

contributing to the transparency and real-world applicability of their findings. 

 

Traditional Statistical Models versus Machine Learning Models 

 

Traditional statistics has greater transparency and interpretability of relationships 

between different variables in the data, clearly showing insights between dependent 

and independent variables. On the other hand, machine learning models can learn 

different relationships between data that were not detected by traditional statistical 
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models, but this is not the focus. Until recently, developers paid little attention to the 

explainability of machine learning models. The models were seen as black boxes. 

This scenario has changed, and today's models are more explicit about their results. 

However, the aim of machine learning models is different from traditional statistical 

models. The aim of these models is that from a set of data that the model has never 

seen, it is able to classify that data correctly or predict something correctly as if it 

were a human being, machine learning models are oriented towards the result and 

the final performance of the prediction. 

For example, when using a diagnostic system for a disease that uses machine 

learning, the aim is for the doctor to enter the patient's data into the system and it will 

tell them whether the patient is likely to have the disease, showing which variables 

contributed most to that outcome. These models often see different relationships 

between the data compared to traditional statistics, as the focus is on providing an 

answer with a higher degree of accuracy for the task proposed to the model. For the 

same set of data, machine learning models often find different relationships between 

the data than statistical models. This is because for the model to give the correct 

answers as to which classes the data belongs to, the variables that are important to it 

are different. 

We will delve into a comparison of machine learning models and traditional statistical 

models regarding performance and utility, highlighting the strengths and limitations of 

both approaches (39-41). 

 

Strengths and Limitations of Traditional Statistical Models: 

 

• Statistical models are designed for inference about the relationships between 

variables. They are used to identify the underlying patterns and relationships 

in the data and establish both the scale and significance of the relationship. 

• Statistical models explicitly specify a probabilistic model for the data and 

identify variables that are usually interpretable and of special interest, such as 

effects of predictor variables. 

• Statistical models are best suited for small to medium-sized datasets. 
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• Statistical models require a lot of assumptions to identify the underlying 

relationships between variables. 

• Statistical models presuppose that the input variables are not highly 

associated with one another and do not exhibit multicollinearity. 

• Certain statistical models rely on the sample size being sufficiently big to 

guarantee precise parameter estimates. 

 

Strengths and Limitations of Machine Learning Models: 

 

• Machine learning models are designed to make the most accurate predictions 

possible. They are built for providing accurate predictions without explicit 

programming. 

• Machine learning models can provide better predictions than statistical 

models. 

• Machine learning models are more empirical and do not impose relationships 

between predictors and outcomes, nor isolate the effect of any single variable. 

• Machine learning models are best suited for large datasets. 

Machine learning models are more difficult to understand and explain than 

statistical models. 

• Machine learning models do not provide a level of interpretability that is 

possible with statistical models. 

 

Choosing between machine learning models and traditional statistical models 

depends on the purpose of the analysis. If the goal is to find and explain the 

relationships between variables, statistical models are the better approach. If the goal 

is to make accurate predictions, machine learning models are the better approach. 
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Comparison to previous studies 

 

To the best of our knowledge, at the present moment of writing the results of this 

study, we did not find another study that has conducted a systematic review to 

identify the methodological conduct and study design of research utilizing prediction 

models for outcomes in children and adolescents using machine learning algorithms. 

However, in other similar studies that evaluated machine learning models for adult 

patients, similar issues regarding methodological conduct and reporting have been 

identified in various reviews that have explored different machine learning techniques 

(22-24). Neglected aspects such as missing data, sample size, calibration, and model 

availability have been consistently observed (22, 24-26). In a review examining the 

trends of prediction models utilizing electronic health records (EHR), it was noted that 

the utilization of ensemble models increased from 6% to 19% (27). Another 

comprehensive review focusing on prediction models for hospital readmission 

revealed a substantial growth in the application of algorithms including Support 

Vector Machine (SVM), Random Forest (RF), and Neural Networks (NN), with an 

increase from none to 38% over the past 5 years (28). Additionally, the adoption of 

methods to address class imbalance in EHR datasets increased from 7% to 13% 

(27). 

Limitations of this study 

The information extracted in our study was solely based on the content reported in 

the articles. Regrettably, only a small number of articles provided the essential 

information required by reporting guidelines, making the process of data extraction 

challenging (29). Additionally, there was inconsistency in the terminology used across 

papers. For instance, the term "validation" was frequently used to describe both 

tuning and testing (i.e., internal validation), a concern previously identified in a review 

of studies on deep learning models (30). This highlights the necessity of a uniform 

terminology for the critical evaluation of machine learning models (31). 

In our study, we encountered such limitations that prevented us from 

conducting a meta-analysis. The scarcity of studies refers to the limited number of 

relevant studies available, which may arise due to the novelty of the research area, 

ethical considerations, or limited research resources. Additionally, the heterogeneity 
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among studies, in terms of study design, population characteristics, interventions, or 

outcome measures, the variation in methodologies and findings across studies may 

introduce substantial clinical and methodological heterogeneity, making it 

inappropriate to combine the results quantitatively. 

Our data extraction form was primarily drawn based on the items and signaling 

questions from the TRIPOD and PROBAST tools. Although these tools were initially 

developed for regression-based prediction models, the majority of items and 

signaling questions were still applicable to studies on machine learning-based 

models. 

 

Implications for future research 

 

The extent to which the selected studies aimed to improve clinical care with the 

developed models or primarily sought to showcase promising results with the 

proposed models is questionable. There was limited emphasis on aspects including 

the study's objective, clinical workflow, outcome format, prediction horizon, and 

clinically relevant performance metrics. Guidelines and meta-epidemiological studies 

have strongly emphasized the importance of applying optimal methodology and 

transparent reporting in prediction model studies (32,35). The TRIPOD and 

PROBAST provide best practice recommendations for the design, conduct, and 

reporting of prediction models, regardless of the modeling technique employed 

(12,17,32,33). However, it is crucial to extend these recommendations to include 

areas such as data preparation, tunability, fairness, and data leakage. 

Extensions of PROBAST and TRIPOD specifically designed for artificial 

intelligence (AI) or machine learning-based prediction models, namely PROBAST-AI 

and TRIPOD-AI, are currently being developed (31,34). As machine learning 

continues to gain importance in healthcare, it is highly recommended for future 

studies to reinforce the adoption of a minimum standard in methodological conduct 

and reporting to increase the generalizability and applicability of these models 

(12,17,32, 33). 
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Furthermore, the limited accessibility of the developed models poses a barrier 

to conducting independent validation, a crucial step before their integration into 

clinical practice. Openly sharing the source code and, ultimately, the clinical 

prediction model itself is a fundamental measure to establish trust and credibility in 

the application of AI and machine learning in the clinical setting (36). 

 

 

Conclusion 

 

Our study highlights important considerations when developing and using machine 

learning models in healthcare settings. Future research should focus on addressing 

limitations including small sample sizes, inconsistent reporting practices, biases in 

data sources, and ethical implications to ensure that these models are developed and 

used responsibly to improve patient care. 
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3. OBJETIVOS 

 

3.1 OBJETIVO PRINCIPAL 

 

Utilizar algoritmos de Aprendizado de Máquina para identificar as principais 

características clínicas e fatores de risco para mortalidade de crianças e 

adolescentes hospitalizados com COVID-19. 

 

3.2 OBJETIVOS SECUNDÁRIOS 

 

1 - Realizar uma revisão sistemática da literatura com o objetivo de analisar estudos 

que utilizaram modelos preditivos com Inteligência Artificial para estudar 

características clínicas e fatores de risco relacionados à COVID-19 em crianças e 

adolescentes. 

2 - Utilizar algoritmos de Aprendizado de Máquina para identificar as principais 

características clínicas e fatores de risco preditivos da gravidade da COVID-19 em 

crianças e adolescentes hospitalizados com COVID-19. 

3 - Comparar o desempenho e a precisão dos modelos para prever óbitos na 

população-alvo. 
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4. MÉTODOS 

 

Desenho do estudo 

 O delineamento da pesquisa é de um estudo de coorte retrospectivo incluindo 

a análise de todos os casos de COVID-19 em crianças e adolescentes 

hospitalizados (pacientes com idade inferior a 18 anos) registrados no Sistema de 

Informação de Vigilância Epidemiológica da Influenza (SIVEP-Gripe) e não 

hospitalizados incluídos no sistema e-SUS Notifica do Ministério da Saúde-Brasil 

(MS). 

Fonte dos dados 

Sistema de vigilância e-SUS Notifica:   

Em 27 de março de 2000, o Departamento de Informática do SUS – 

DATASUS disponibilizou o e-SUS Notifica, ferramenta online para registro de 

notificação de casos suspeitos e confirmados de síndrome gripal leve relacionada à 

COVID-19. 

Sistema de vigilância SIVEP-gripe: 

Sistema de registro de dados de abrangência nacional estabelecido pelo 

Ministério da Saúde em 2009 para manter vigilância de infecções respiratórias 

agudas graves no Brasil. O SIVEP-Gripe tem sido a principal fonte de informações 

sobre as admissões e óbitos hospitalares do COVID-19 no Brasil(1, 2). A notificação 

do COVID-19 é compulsória no Brasil e o SIVEP-Gripe recebe notificações de 

pacientes internados em hospitais públicos e privados(3). Para todos os pacientes 

cadastrados no sistema, os dados relativos às características demográficas e 

clínicas têm sido registrados sistematicamente. 

O Ministério da Saúde do Brasil disponibiliza essas bases de dados na plataforma 

OpenSUS (https://opendatasus.saude.gov.br/dataset). Portanto, informações 

detalhadas sobre esses bancos de dados, incluindo formulário de relatório e 

dicionário de dados, códigos e todos os dados não identificados, como dados de 

participantes individuais, estão disponíveis publicamente neste site. 
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Para o presente estudo, baixamos a última versão disponível dos conjuntos de 

dados em abril de 2023. Para o propósito da presente análise, limitamos o período 

do estudo de 24 de fevereiro de 2020 a fevereiro de 2023. 

O SIVEP-gripe é disponibilizado em arquivos únicos divididos por ano desde 2009. 

Já os arquivos e-SUS Notifica são divididos por ano e UF da Federação. O Brasil é 

um país continental com uma população de mais de 200 milhões de pessoas. Além 

disso, o e-SUS Notifica registra não apenas os casos confirmados de COVID-19, 

mas todos os casos sintomáticos com sintomas respiratórios ou outros suspeitos de 

infecção por SARS-CoV-2. No Brasil, o registro é obrigatório; portanto, prestadores 

de serviços de saúde públicos e privados devem notificar casos suspeitos de 

COVID-19 e internações. 

Assim, devido à grande quantidade de dados disponíveis, o e-SUS Notifica é 

disponibilizado em arquivos de acordo com os 27 Estados da Federação. Além 

disso, para alguns Estados populosos, como São Paulo, foram 13 lotes com cerca 

de 800.000 indivíduos por arquivo. Assim, foram disponibilizados 144 lotes com 

informações de interesse para nossa análise.  

Abordamos esses arquivos passo a passo para obter informações confiáveis pela 

seguinte metodologia. Primeiro, baixamos a última versão disponível dos conjuntos 

de dados em abril de 2023; Em seguida, retiramos todos os indivíduos cadastrados 

fora do período de interesse do nosso estudo; Retiramos indivíduos maiores de 

18anos; Por fim, retiramos indivíduos sem informações sobre o teste de COVID-19 

ou com testes indisponíveis no momento da análise. Após essas etapas, mesclamos 

sequencialmente os arquivos por Estado, por Regiões e para todo o país. Por fim, 

unimos as duas bases de dados (SIVEP-gripe e e-SUS Notifica), reunindo todos os 

dados em um único arquivo para análise. Antes de combinar os conjuntos de dados, 

tornamos as variáveis incluídas compatíveis para o processo de mesclagem. 

Também, antes da análise final, procuramos ativamente por indivíduos duplicados 

nos conjuntos de dados. 
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Participantes 

Os critérios de inclusão e exclusão para o estudo são os seguintes: 

a) Critérios de inclusão 

Serão incluídos no estudo todos os pacientes registrados consecutivamente 

nestas bases de dados, com idade inferior a 18 anos, com um resultado positivo do 

teste RT-PCR quantitativo (RT-qPCR) ou de antígeno para SARS-CoV-2. 

Para ser incluído no banco de dados SIVEP-Gripe, o caso deve apresentar quadro 

clínico de síndrome respiratória semelhante à gripe e pelo menos um dos seguintes 

critérios: dispneia ou dificuldade respiratória ou saturação de O2 menor que 95% em 

ar ambiente ou cianose ou sintomas específicos para crianças (retrações 

intercostais, batimento de aletas nasais, desidratação e inapetência).   

Para ser incluído no banco de dados do e-SUS Notifica, o caso deve apresentar uma 

síndrome gripal leve com a seguinte definição: Indivíduo com quadro respiratório 

agudo, caracterizado por pelo menos 2 (dois) dos seguintes sinais e sintomas: febre, 

calafrios, dor garganta, dor de cabeça, tosse, corrimento nasal, distúrbios do olfato 

ou distúrbios do paladar. Para crianças, além dos itens anteriores, a obstrução nasal 

também é considerada, na ausência de outro diagnóstico específico. 

 b) Critérios de exclusão 

Pacientes com idade superior a 18 anos de idade. Casos sem confirmação 

laboratorial de COVID-19. 

Após coletado e armazenado dos dados, conforme descrito acima, os dados foram 

preparados para análise. Esta etapa envolveu tarefas como limpeza dos dados, 

recodificação, integração de dados, transformação de dados, manipulação de 

valores ausentes, remoção de valores discrepantes e garantia da consistência dos 

dados. Após todas estas etapas, de um total de aproximadamente 135 milhões de 

indivíduos registrados nas bases de dados, foram selecionados 3,521,883 crianças e 

adolescentes elegíveis para a participação no estudo, como descrito nos 

fluxogramas abaixo na Figura 1 e Figura 2. 
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Figura 1 – Digrama mostrando os processos de inclusão e exclusão de participantes no estudo para a 

base de dados e-SUS Notifica. 
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Figura 2 – Digrama mostrando os processos de inclusão e exclusão de participantes no estudo para a 

base de dados Sivep-Gripe. 

Variáveis expositivas 

Entre as variáveis expositivas forma incluídas dados clínicos e demográficos.  

Dados demográficos: idade, sexo, etnia e regiões do país. O Brasil está 

geopoliticamente dividido em cinco macrorregiões: Norte, Nordeste, Centro-Oeste, 

Sudeste e Sul. Essas macrorregiões têm diferenças históricas na capacidade e 

cobertura social, econômica e do sistema de saúde(4, 5). O Instituto Brasileiro de 

Geografia e Estatística (IBGE) classifica racialmente a população brasileira em cinco 

categorias. Essa classificação do IBGE é baseada na cor e os indivíduos são 
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solicitados a se auto identificarem como Branco, Preto, Pardo, Amarelo, ou 

Indígena(6).  

Dados clínicos: data de início dos sintomas, definida como o dia em que o primeiro 

sintoma ou sinal ocorreu, e a data de admissão quando o paciente foi hospitalizado. 

Sinais e/ou sintomas de apresentação (febre, tosse, desconforto respiratório, 

gastrointestinal e saturação de oxigênio reduzida) e presença de comorbidades 

preexistentes (doença cardíaca, doença pulmonar, asma, doença renal, doença 

neurológica (incluindo atraso no desenvolvimento), doença hematológica, diabetes, 

obesidade, deficiência imunológica, malignidade, anormalidades pós-transplante, 

sindrômicas e cromossômicas) também foram registrados. Para análise, a presença 

de comorbidade será categorizada em dicotomizada (sim/não) e em quatro níveis 

(nenhuma, uma, duas e três ou mais condições médicas preexistentes). A evolução 

clínica foi relatada em termos de suporte respiratório (nenhum, suporte não invasivo 

de oxigênio e ventilação invasiva), admissão em unidade de terapia intensiva (UTI), 

recuperação, óbito e situação clínica em andamento. A data do óbito ou alta também 

foi registrada. 

Desfechos 

O desfecho primário será o tempo até o evento (mortalidade intra-hospitalar). 

O tempo de sobrevida foi definido desde o dia da admissão até o evento (óbito ou 

alta). Como desfechos secundários, também serão avaliados o uso de recursos 

assistenciais (internação na UTI e suporte respiratório, definidos como nenhum, não 

invasivo ou invasivo). 

Definições dos desfechos 

Os seguintes desfechos serão considerados para a análise dos casos com 

infecção comprovada por SARS-CoV-2:  

1. necessidade de suporte respiratório: estratificado em três grupos nenhum, 

suporte não invasivo de oxigênio e ventilação mecânica invasiva, 

2. UTI: Admissão em unidade de terapia intensiva, dicotômica (sim/não) 

3. Gravidade da COVID-19: As categorias de gravidade clínica incluem leve 

[sem necessidade de suporte de oxigênio sem internação na unidade de 

terapia intensiva (UTI)], moderada (necessidade de suporte de oxigênio sem 
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ventilação mecânica invasiva) e grave (necessita de ventilação mecânica 

invasiva ou morte 

4. Tempo até a morte (mortalidade intra-hospitalar): Criamos variáveis para as 

análises de sobrevida de risco competitivo. Por exemplo, a partir dos campos 

“data de admissão” e “data de alta ou óbito” criamos a variável time_event 

(em dias de internação). Alternativamente, por falta de informação nestes 

arquivos, foram utilizados, respectivamente, os campos “data de início dos 

sintomas” ao invés de “data de admissão” ou a data de fechamento do 

formulário ao invés de “data de alta ou óbito”. O tempo de sobrevida será 

definido desde o dia da admissão até o evento (óbito ou alta). 

 

Análise Estatística 

A amostra será composta por todos os pacientes pediátricos (idade < 18 

anos) com COVID-19 cadastrados nos sistemas de vigilância do MS entre fevereiro 

de 2020 e fevereiro de 2023.   

Para a análise descritiva, serão utilizadas medianas e interquartis ou médias e 

desvio-padrão para resumir variáveis contínuas e frequências calculadas e 

proporções para variáveis categóricas. Para comparação de medianas e proporções, 

serão utilizados, respectivamente, os testes qui-quadrado e teste de Mann-Whitney.  

A mortalidade será avaliada por análise de riscos competitivos, utilizando a função 

de incidência cumulativa (CIF)(7). A alta foi analisada como evento concorrente na 

análise de riscos competitivos(8). Dados completos não estavam disponíveis para 

todas as variáveis, especialmente etnia, sintomas na apresentação e comorbidades. 

Realizamos imputação múltipla usando todos os preditores mais o CIF para o 

desfecho primário. Isso envolve a criação de várias cópias dos dados e a imputação 

dos valores ausentes para cada conjunto de dados com valores sensíveis 

selecionados aleatoriamente de sua distribuição prevista. Dez imputados serão 

gerados usando o pacote de equações da cadeia de imputação múltipla (MICE) do 

software R. Combinamos os resultados das análises de cada um dos valores 

imputados usando as regras de Rubin para produzir estimativas e intervalos de 

confiança que incorporam a incerteza dos valores imputados(9). Para aqueles casos 

com dados ausentes sobre um determinado sintoma ou comorbidade, assumimos 

que a condição clínica estava ausente. Informações detalhadas sobre o 
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gerenciamento de dados ausentes são fornecidas no artigo apresentado na seção 

de resultados desta Tese. 

Desenvolvimento do Modelo de Previsão de Risco (estatística convencional)  

Desenvolvemos um modelo de predição clínica e um sistema de pontuação de risco 

baseado em pontos seguindo as diretrizes fornecidas por Austin et al.(10)  para 

modelos na presença de riscos concorrentes. A coorte de desenvolvimento será 

derivada dos casos admitidos na primeira onda da COVID-19 no Brasil.  

Os dados não disponíveis para variáveis, especialmente etnia e sintomas de 

apresentação serão imputados para as análises. Para comorbidades, consideramos 

os valores faltantes como ausência do quadro clínico. Serão usados medianas e 

intervalos interquartis ou médias e desvio-padrão para resumir as variáveis 

contínuas e será calculada frequências e proporções para as variáveis categóricas. 

Será examinado o desenvolvimento espacial e temporal da epidemia de COVID-19 

(total de casos e mortes) em todo o país, dividindo nossa amostra em quartis. A 

mortalidade será avaliada por análise de riscos concorrentes, usando a função de 

incidência cumulativa (CIF). A alta hospitalar será analisada como um evento 

concorrente pela análise de riscos concorrentes. O modelo de sub-distribuição 

proporcional de riscos de Fine e Gray será ajustado para estimar o efeito das 

covariáveis na mortalidade. As covariáveis usadas para análises multivariadas serão 

selecionadas com base em sua significância na análise univariada (p <0,10). As 

variáveis do modelo final com valor de p <0,05 serão consideradas estatisticamente 

significativas. Os resultados serão expressos como taxas de risco ajustadas (HR) e 

seus intervalos de confiança de 95% (CI). 

Desenvolvimento do Modelo de Previsão de Risco (inteligência artificial) 

Outro ponto a ser abordado neste projeto é a utilização de algoritmos de 

aprendizado de máquina para comparar e predizer desfechos clínicos de crianças e 

adolescentes com COVID-19. Este conjunto de dados incluindo quase 4 milhões de 

pacientes pediátricos, seguramente configura uma das maiores bases de dados 

disponíveis sobre este tema em todo o mundo. Para a análise de banco de dados 

deste porte (na literatura de análise dados chamados de BIG DATA), as técnicas de 

inteligência artificial podem construir com relevantes informações(11). Esta etapa 
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exige a aplicação de várias técnicas de análise de dados para obter insights 

clinicamente relevantes. Deve envolver análise descritiva, análise exploratória de 

dados, análise estatística convencional, mineração de dados, aprendizado de 

máquina ou modelagem preditiva(12). Devem ser usados algoritmos e metodologias 

apropriados para analisar os dados e testar suas hipóteses. A hipótese investigada é 

de que possa haver diferentes fatores relacionados aos desfechos clínicos durante a 

pandemia(13).  Para entender esses fatores e, principalmente, lidar com possíveis 

mudanças na importância desses fatores em diferentes períodos, trabalharemos 

com modelos de causalidade em aprendizado de máquina. O conceito de 

causalidade em aprendizado de máquina vai além de simplesmente prever o 

desfecho baseado em um conjunto de fatores. Isso porque a previsão do desfecho 

por si só pode não ser tão relevante quanto seus efeitos na proposta de intervenções 

– seja através de mudanças nos protocolos de tratamentos ou mesmo em políticas 

públicas – para reduzir, no caso dessa proposta, mortalidade, a necessidade de UTI 

ou uso de respiradores na população de interesse. 

Modelos de causalidade vão além de detectar simples correlações nos dados, e 

trabalham com um grafo causal(14). Um grafo causal pode ser aprendido 

automaticamente a partir de um conjunto de dados, e posteriormente validado e 

refinado por especialistas do domínio.  Tendo o grafo e um modelo de aprendizado 

capaz de inferir os desfechos, é possível planejar intervenções e simular 

contrafactuais.  

Mais especificamente, um modelo de aprendizado de máquina é associativo, ou 

seja, capaz de responder perguntas utilizando padrões encontrados nos dados, 

como: quais os fatores que levam um paciente a UTI? Já um modelo de intervenção, 

que depende tanto do modelo associativo quanto do grafo causal, consegue 

responder perguntas do tipo "e se?". Por exemplo, e se os pacientes tivessem sido 

vacinados contra COVID-19, isso diminuiria suas chances de ir para UTI? Por último, 

tendo esses dois elementos e o modelo causal, conseguimos gerar contrafactuais, 

ou seja, simular se realmente ao receber a vacina contra COVID-19, um menor 

número de pacientes necessitaria de UTI. 
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Abstract 

Background 

The COVID-19 pandemic has led to the use of advanced digital technologies such as 

artificial intelligence (AI) to predict mortality in adult patients. Nevertheless, machine 

learning (ML) models capable of predicting outcomes in children and adolescents are 

scarce. The primary objective of this study was to develop several ML models for 

forecasting mortality in hospitalized children and adolescents with confirmed COVID-

19, and to assess their practicality in relation to extensive databases. 

Method 

In this cohort study, we used the SIVEP-Gripe dataset, a public resource maintained 

by the Ministry of Health, to track severe acute respiratory syndrome (SARS) in 

Brazil. To create subsets for training and testing the machine learning (ML) models, 

we divided the primary dataset into three parts. Using these subsets, we developed 

and trained 12 ML algorithms to predict the outcomes. We assessed the performance 

mailto:adriano.santos@ifmg.edu.br
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of these models using various metrics such as accuracy, precision, sensitivity, recall, 

and area under the receiver operating characteristic curve (AUC). 

Results  

Among the 37 variables examined, 24 were found to be potential indicators of 

mortality, as determined by the chi-square test of independence. The LR algorithm 

achieved the highest performance, with an accuracy of 92.5% and an AUC of 80.1%, 

on the optimized dataset. GBC and ADA closely followed the LR algorithm, producing 

similar results. Our study also revealed that baseline reduced oxygen saturation, 

presence of comorbidities, and older age were the most relevant factors in predicting 

mortality in hospitalized children and adolescents. 

Conclusions  

The use of ML models can be an asset in making clinical decisions and implementing 

evidence-based patient management strategies, which can enhance patient 

outcomes and overall quality of medical care. LR, GBC, and ADA models have 

demonstrated efficiency in accurately predicting mortality in COVID-19 pediatric 

patients. 

Keywords: COVID-19; artificial intelligence, machine learning; children; death 

prediction. 

 

 

 

 

Introduction 

Since the onset of the COVID-19 pandemic, the global community has witnessed 

remarkable progress in artificial intelligence (AI), particularly in machine learning (ML) 

algorithms, such as large language models (LLMs) [1,2]. These models have played a crucial 

role in assisting researchers globally in devising innovative solutions to the diverse 

challenges in the healthcare field. The utilization of generative AI to provide diagnoses and 

prognoses for various diseases across different medical specialties has experienced 

substantial growth in recent years [3]. This growth also encompasses the application of ML 

algorithms to predict various outcomes of COVID-19. 

Despite the extensive use of ML algorithms in diagnostics and prognosis of 

COVID-19 in adults, there is a notable lack of studies specifically for children and 

adolescents. This significant gap needs to be addressed [4]. Early identification of 
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high-risk patients is vital for reducing the strain on healthcare systems and 

formulating public policies aimed at minimizing death and mortality rates. The 

development of a predictive model that anticipates unfavorable outcomes in patients 

with COVID-19 could aid in the efficient allocation of scarce medical resources, 

improve healthcare quality, and optimize patient management strategies. 

The objective of this study was to examine the ability of machine learning (ML) 

models to predict mortality or hospital discharge in a cohort of hospitalized children 

and adolescents with laboratory-confirmed COVID-19. To accomplish this, this study 

utilized data from a comprehensive nationwide dataset provided by the Brazilian 

government. This analysis aimed to determine the most critical predictors for ML 

models and the criteria used by these models when making predictions. Additionally, 

this study evaluated the effectiveness of these models in forecasting deaths resulting 

from COVID-19. 

 

Methods 

 

Study design and dataset description 

 

In this retrospective cohort study, we used data from the Surveillance Information 

System (SIVEP-Gripe) to investigate COVID-19 cases among hospitalized individuals 

aged < 18 years. In 2009, the Ministry of Health established a nationwide database to 

register severe acute respiratory infections in Brazil. SIVEP-Gripe has served as the 

primary repository for information on COVID-19 hospitalizations in the country.  The 

reporting of hospitalizations due to COVID-19 is mandatory in Brazil, with SIVEP-

Gripe receiving notifications from both public and private hospitals. The database 

systematically recorded the demographic and clinical findings of all enrolled patients. 

Our analysis covered the period from epidemiological week 08 (commencing on 

February 16, 2020) to epidemiological week 08, 2023 (ending on February 19, 2023). 

We included all consecutively registered patients under the age of 18 years who 

tested positive for SARS-CoV-2 using quantitative RT-PCR (RT-qPCR) or antigen 

tests and had been admitted to a hospital. 

 

Data preparation  
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Over the designated period, 56,330 patient records with verified RT-PCR test 

outcomes for SARS-CoV-2 infection were documented. After completing the required 

procedures for preprocessing data for the machine learning algorithms, 24,097 

records were chosen for the training, validation, and testing stages of the models. 

The subset of data from the SIVEP-Gripe dataset, which includes information about 

children and adolescents, is hereafter referred to as the SIVEP-Kids dataset. 

In the SIVEP-Kids dataset, there are 37 primary features in four main categories: 

patient demographics (four features), clinical features (12 features), personal 

disease/comorbidity history (14 features), virus strain information (one feature), 

vaccine information (two features), a feature indicating the number of different 

comorbidities a patient has, a feature indicating whether a patient has comorbidities 

or not, a feature categorizing the number of comorbidities a patient has, a feature 

indicating the time of the outcome, and an output variable (0: survived and 1: 

deceased) for COVID-19 patients. The primary features of the SIVEP-Kids dataset 

are presented in Supplementary Table 1. 

Regarding the primary features presented in the SIVEP-Kids dataset, the 

ethnicity feature had five categories: Asian, Black, Brown, Indigenous, and White. 

Similarly, the region was divided into five regions: Central West, North, Northeast, 

South, and Southeast. The virus strain feature identified four types of strains in the 

dataset: ancestral, delta, gamma, and Omicron. For features 6 through 32, all are of 

the nominal type and have values of "Yes" or "No," indicating the presence or 

absence of a specific disease or clinical condition in the patient. The total comorbidity 

feature records the total number of comorbidities per patient in the SIVEP-Kids 

dataset. Feature 34 (number of vaccine doses) had valid values ranging from zero to 

three doses. Feature 38 is the target variable of this study, with three types of 

outcomes: discharge, death, and in-hospital, with the latter referring to cases in which 

the patient is still in the hospital in an ongoing clinical situation. In the present study, 

we considered only two types of outcomes in the target variable: death and 

discharge. This decision aimed to enhance the accuracy of machine learning 

algorithms, as multi-class problems (those with more than two classes in the target 

variable) are challenging and tend to reduce the accuracy of ML models because of 

the large number of decision boundaries to navigate, often failing to accurately 
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separate instances across more than two classes [5,6]. Detailed information on the 

clinical, demographic, and epidemiological covariates recorded in the SIVEP-Gripe is 

described elsewhere [7, 8]. 

 

Data pre-processing 

 

Data preprocessing is a critical step in addressing the influence of irrelevant, 

redundant, and unreliable data, ultimately improving data quality and resolving 

inconsistencies [9]. In this study, data preprocessing was conducted prior to training 

the machine learning models. Initially, the patient records with missing data were 

removed from the dataset. For example, records of sex, ethnicity, and reduced 

oxygen saturation were excluded if any missing values were detected. Missing values 

for the target variable were treated as the absence of the outcome of interest (death). 

Additionally, we utilized categorical encoding to transform nominal data into 

numerical representations. By applying one-hot encoding, we ensured that our 

analysis was guided by intrinsic relationships within the data rather than by the 

constraints of non-numerical representations [10]. 

After applying the criteria for excluding data in the pre-processing step, we obtained a 

final sample consisting of 24,097 records. The dataset comprised 22,586 and 1,511 

cases in the discharge and death classes, respectively. An imbalanced input 

distribution can lead to a bias in the results towards the dominant class, potentially 

skewing model performance and reducing generalizability. To address the problem 

posed by an imbalanced dataset, we employed the Synthetic Minority Over-sampling 

Technique (SMOTE) method, as outlined in <https://imbalanced-learn.org/stable/>. 

The SMOTE algorithm, which is widely utilized for synthetic oversampling, generates 

artificial samples for the minority class by randomly selecting instances from the 

minority class and their k-nearest neighbors. In this approach, a random data 

instance along with its k-nearest neighbors is chosen. Subsequently, the second data 

instance was selected from this set of k-nearest neighbors [11]. The synthesis of a 

new sample occurred along the line connecting these two instances as a convex 

combination. This process was iterated until a balance was achieved between 

minority and majority classes. The SMOTE method mitigates the risk of overfitting, 



70 
 

   

 

distinguishing it from the random oversampling technique, and it is recognized for its 

potential to produce better results [12, 13, 14]. 

 

Feature Selection 

 

Chi-square tests were used to discern statistically significant differences 

between the outcomes of discharged and deceased patients. Feature importance 

scores derived from XGBoost and random forests (as detailed in Supplementary 

Figure 1) were utilized to identify the essential variables for forecasting COVID-19 

mortality. This methodology aims to increase the interpretability and steadfastness of 

mortality prediction models. 

Feature selection techniques exhibited elevated scores for robust predictors 

such as overall comorbidities, diminished oxygen saturation, and age. Nevertheless, 

some disparities were evident in the importance scores between XGBoost and 

random forest for specific parameters. XGBoost showed considerable importance in 

reducing oxygen saturation and overall comorbidities, whereas random forest 

allocated minimal importance. A statistically significant difference (P < 0.01) in 

oxygen saturation and total comorbidities was observed between patients who 

survived and those who died. Chi-square tests were applied to recognize crucial 

mortality predictors, demonstrating moderate to high importance in XGBoost and low 

importance in random forest. 

Owing to the inconsistencies observed between the two methods, we opted to 

select the most pertinent features for training the models using the chi-squared test. 

Consequently, we developed three distinct datasets to train and validate the machine 

learning models. These datasets included a dataset with features selected using the 

chi-squared test, a dataset with features chosen by two pediatricians, and a dataset 

with all 37 features, according to Supplementary Table 1, except for the target 

variable. Our objective was to determine the dataset that yielded the most favorable 

results. 

The dataset containing characteristics chosen by pediatricians comprised 17 

features: sex, age, ethnicity, region, virus strain, dyspnea, fever, cough, 

odynophagia, abdominal pain, ageusia, anosmia, respiratory distress, reduced 

oxygen saturation, total comorbidities, vaccine doses, and nosocomial. The dataset 
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selected by the chi-squared test comprised 24 features: age, ethnicity, region, viral 

strain, dyspnea, cough, respiratory distress, reduced oxygen saturation, cardiology, 

pulmonary disease, hypertension, immunosuppression, renal disease, asthma, total 

comorbidities, comorbidities, dichotomous comorbidities, time for outcome, vaccine 

doses, hematology, neurology, oncology, Down syndrome, and nosocomial infection. 

For the purpose to conducting feature selection calculations using the Chi-square 

test, XGBoost, and random forest, the Scikit-learn library in its version 1.3.1 was 

used. The Pycaret library version 3.1.0 was employed for training and validating the 

models. Statistical significance was set at P < 0.01.  

 

Model Development 

 

In this study, a total of twelve machine learning algorithms were employed to develop 

predictive models. These algorithms included Gradient Boosting (GB), AdaBoost 

(Ada), CatBoost (Cat), Random Forest (RF), Extreme Gradient Boosting (XGBoost), 

Extra Trees (ET), Logistic Regression (LR), Linear Discriminant Analysis (LDA), 

Decision Tree (DT), Naïve Bayes (NB), k-nearest neighbors (KNN), and Quadratic 

Discriminant Analysis (QDA) [11]. The evaluation process involved the use of k-fold 

cross-validation, which is known to have low bias and variation. The optimized 

hyperparameters for the machine learning algorithms are provided in Supplementary 

Table 2, with constant values maintained across the three variations of the SIVEP-

Kids dataset. 

The performance of the predictive model was evaluated using various metrics, such 

as accuracy, precision, sensitivity, F1 score, and area under the ROC curve (AUC). A 

comprehensive analysis was conducted across all 12 machine learning algorithms to 

determine the best model for predicting mortality in COVID-19 patients. 

Ethical aspects  

We assessed data in SIVEP-Gripe, which are de-identified and publicly available. 

The study was approved by the Federal University of Minas Gerais institutional 

review board (register 6.127.414). The funding organizations had no role in the 

design and conduct of the study; collection, management, analysis, and interpretation 

of the data; and preparation, review, or approval of the manuscript. 
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Results 

 

Feature Selection 

 

Twenty-four features, comprising demographic and clinical factors, were 

identified as the most relevant predictors using the chi-square independence test 

(Table 2). Additionally, Table 2 shows mean decreases in impurity and the 

importance scores of these variables calculated using the XGBoost and random 

forest algorithms. The descriptive statistics of these features are summarized in 

Supplementary Table 3 

Table 2 - The significance levels, importance scores, and mean decreases in Gini for the key variables 

in COVID-19 mortality prediction were computed using XGBoost, Random Forest, and Chi-squared 

tests. 

Nº Feature Name Chi-squared test Random Forest XGBoost 

X² P-value Mean decrease 

impurity 

Importance Score 

1 Age 396.94 < 0.001 0.171 0.029 

2 Region 17.02 < 0.001 0.084 0.035 

3 Ethnicity 9.59 < 0.001 0.04 0.022 

3 Virus Strain 34.25 < 0.001 0.048 0.023 

4 Dyspnea 57.69 < 0.001 0.026 0.025 

5 Cough 37.89 < 0.001 0.030 0.050 

6 Respiratoy distress 79.53 < 0.001 0.025 0.035 

7 Oxygen saturation reduced 

at admission 

175.43 < 0.001 0.027 0.125 

8 Obesity 66.27 < 0.001 0.005 0.020 

9 Cardiology 212.09 < 0.001 0.009 0.029 

10 Pulmonary 33.75 < 0.001 0.006 0.025 

11 Hypertension 25.17 < 0.001 0.002 0.011 

12 Immunosuppression 108.01 < 0.001 0.008 0.032 

13 Renal 49.48 < 0.001 0.004 0.016 
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14 Asthma 18.74 < 0.001 0.007 0.040 

15 Total Comorbidities 861.55 < 0.001 0.021 0.106 

16 Comorbidities dichotomic 527.13 < 0.001 0.012 0.000ª 

17 Comorbidities categoric 830.74 < 0.001 0.019 0.000ª 

18 Time for Outcome 504.48 < 0.001 0.208 0.023 

19 Hematology 27.33 < 0.001 0.004 0.014 

20 Neurology 278.64 < 0.001 0.013 0.024 

21 Oncology 52.08 < 0.001 0.003 0.020 

22 Down Syndrome 79.18 < 0.001 0.006 0.023 

23 Nosocomial 70.17 <0.001 0.013 0.024 

ªComorbidities dichotomic and comorbidities categoric had zero values for importance scores 

calculated with XGBoost. This is because the XGBoost algorithm detected multicollinearity between 

the two characteristics and total comorbidities. In this case, these two columns are ignored by the 

algorithm. 

 

The findings in Table 2 suggest that the most important factors, as identified 

by the chi-square test, were age, cardiovascular disease, decreased oxygen 

saturation upon admission, total comorbidities, comorbidities as a binary feature, 

comorbidities as a categorical feature, and time to outcome. These factors 

demonstrated a higher level of statistical significance in distinguishing between the 

patients who experienced fatal outcomes and those who were discharged. This 

statistical significance is also apparent in the developed models and was of 

paramount importance in the training process. 

In contrast, odynophagia, vaccine dose, abdominal pain, fever, vaccination, 

transplant, diabetes mellitus, vomiting, other syndromes, sex, diarrhea, and ageusia 

were identified as less relevant features in predicting COVID-19 mortality. Despite the 

clinical significance of these parameters in treatment efficacy and mortality prediction, 

a considerable number of them could be excluded from our machine learning 

analyses. Consequently, the execution of mortality prediction models could be 

achieved with a reduced set of factors while maintaining equivalent accuracy. 

 

 

 



74 
 

   

 

Assessment of the developed models 

 

In this study, COVID-19 mortality prediction models were developed using 12 ML 

algorithms, namely, GBC, ADA, CatBoost, RF, XGBoost, ET, LR, LDA, DT, NB, KNN, 

and QDA. These models were trained on three feature datasets: dataset 1, 

containing all features; dataset 2, with features selected by pediatricians; and dataset 

3, with features selected by the chi-squared independence test. The performance 

evaluation metrics used were accuracy, AUC, recall, precision, and sensitivity. The 

results are shown in Figure 1. 

 

Figure 1 – Metrics of ML algorithms per dataset. (a) Accuracy performances, (b) AUC, (c) Precision 

(d) Recall, (e) Sensitivity and (f) F1-score. 
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In general, the majority of the models demonstrated comparable levels of 

accuracy, displaying good to excellent performance across all three datasets. More 

specifically, numerically, the models performed best when trained on Dataset 3, 

which was selected using the chi-square method, followed by Datasets 2 and 1. 

However, Dataset 1 still exhibited commendable performance even when all features 

were included. For Dataset 3, the highest accuracies were achieved by LR (92.53%), 

GBC (92.34%), and ADA (92.19%). For Dataset 2, GB (92.08%), ADA (91.92%), and 

LR (91.73%) achieved the highest accuracy. For Dataset 1, GBC (91.41%), ADA 

(90.32%), and CatBoost (90.01%) were the best-performing models in terms of 

accuracy. Among the 12 algorithms analyzed, QDA consistently displayed the lowest 

performance across all datasets. Detailed comparison of the AUC for the top three 

models trained on Dataset 3, which achieved better results, is provided in Figure 2. 

Considering the reliability of the AUC metric for imbalanced datasets, particularly 

relevant in our study despite using SMOTE for balancing, is crucial. The AUC results 

are nearly identical across all three datasets, with a notable emphasis on dataset 1 

containing all features.  

 

Figure 2 - ROC curves of the three best ML models for Dataset 3 that achieved better results. 
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Model Interpretation 

 

We used SHAP summary and force plots to explain the decision-making 

process of the Gradient Boosting Classifier (GBC) model. GBC was chosen for its 

high ranking across the three datasets, and its decision-making process was 

analyzed to identify the most important features influencing its predictions.  The force 

plot analysis is presented in Supplementary Figures 2 and 3. 

In the summary plot for the SHAP values, the impact of each feature on the 

model's output is displayed as a dot on the horizontal axis. The position of the dot 

represents the SHAP value for that feature, indicating its contribution to prediction. 

The color of the dots corresponds to the value of the feature: red for higher values 

and blue for lower values, aiding in understanding the direction and magnitude of the 

impact on prediction. Figure 3 illustrates the contribution of feature values to the GBC 

decision. Features are plotted in the order of importance, with the most important 

characteristics at the top and the least important at the bottom. 
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Figure 3 – A summary plot of SHAP values for mortality prediction on dataset 3 (features selected by 

Chi-squared test) 

 

 

Figure 3 shows a summary plot of the SHAP values for each data point in the 

dataset. Each line corresponds to a point representing the impact of each feature. A 

greater separation of feature values indicates more effective variables for decision-

making. In this context, the most crucial feature in the model's decision-making 

process is "oxygen saturation reduced." Blue points indicate low values of the 

feature, with "oxygen saturation reduced" taking on values of zero and one in our 

dataset. Zero indicates normal oxygen saturation and one indicates reduced 

saturation. Therefore, the graph illustrates that when "oxygen saturation reduced" is 

0, it contributes to predicting a favorable outcome (patient discharge), whereas a 
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value of 1 contributes to predicting a worse outcome (death). Similarly,  the variable 

"comorbidities categoric" also exhibited a notable separation. Higher values in this 

variable, indicating the number of different comorbidities a patient may have ranged 

from zero to three or more, showed a significant influence. The graph reveals that for 

high values of this variable signifying patients with numerous comorbidities, the 

model tends to predict our target variable as 1 (death). Similar patterns were 

observed for dyspnea, respiratory distress, total comorbidities, and comorbidities. 

 

Discussion 

 

Key Points  

 

In this study, we analyzed data from a large public dataset provided by the Brazilian 

government on patients hospitalized with COVID-19 in Brazil to develop and evaluate 

ML models predicting COVID-19 mortality risk in pediatric patients. Demographic 

information, risk factors, and clinical manifestations were evaluated to identify the key 

mortality predictors. We tested the ML models using three data subsets: (1) all 

dataset features, (2) features selected by pediatricians, and (3) statistically relevant 

features for predicting mortality. Our results show that ML models are robust and 

effective even without previous feature selection, which minimally improves model 

accuracy. However, we believe that feature selection is crucial for the model 

development. Dataset 3 (24 features) performed the best, followed by dataset 2 (17 

features selected by medical experts). The findings from Dataset 1 may not apply to 

other data contexts. Models with fewer features are preferred if they achieve equal or 

better results. Therefore, for clinical use, models with fewer features, such as those 

trained on datasets 3 and 2, are preferable because they require less input from 

clinicians while providing accurate predictions. 

 

Comparative analysis  

 

Our findings are in agreement with other studies that have reported some important 

clinical predictors for COVID-19 patient mortality, the most relevant features included 

age[17, 18, 19, 20, 21], ethnicity[22], region [22], dyspnea[23], cough[17, 18, 21, 24, 
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25, 26], reduced oxygen saturation[26, 27, 28], cardiology disease[17, 19, 22, 26, 29, 

30], pulmonary disease[17, 27], immunosuppression[22, 31, 32], renal[22, 33],  

asthma[22, 34, 35, 36], total comorbidities[17, 27, 34], hematology disease[37, 38, 

39], neurology disease[17, 20, 21, 22], oncology disease[17, 20, 26, 40, 41], 

hypertension[17, 19, 20, 25], down syndrome[42], and total comorbidities [43]. 

In our analysis, 12 ML algorithms were tested to develop prediction models for 

hospitalized pediatric patients with COVID-19. The LR model performed the best, 

with 92.5% accuracy, 98.11% sensitivity, 94.13% precision, 96.07% F1-score, and 

80.15% AUC. GBC and ADA models also showed good performance, with AUCs ≥ 

79.6%. Other ML algorithms had acceptable performances, with AUCs ranging from 

80.1 to 81.6%. The DT model had the weakest performance (AUC = 62.9%), and 

QDA had the lowest accuracy (7.9% to 24.3%).  In addition, the importance and 

efficiency of multiple features in predicting COVID-19 mortality using XGBoost, 

random forest, and chi-squared tests were investigated. The results indicated that 

reduced oxygen saturation at admission, comorbidities, and older age were the most 

relevant predictors of mortality risk, as shown in the SHAP plots. These features are 

strong predictors of mortality risk in hospitalized pediatric COVID-19 patients. 

Integrating these with 23 other statistically relevant features improved the prognostic 

performance of the ML algorithms for mortality prediction in this group. 

Models are often presented in the literature as black-box systems, lacking 

transparency regarding the contribution of each characteristic to their predictions. 

Machine learning models make decisions based on individual feature values, and it is 

crucial to understand these decisions, particularly in medical applications in which 

patient well-being is at stake. The concept of Explainable Artificial Intelligence (XAI) 

[44] enhances the interpretability and trustworthiness of these models. One XAI 

technique is the SHapley Additive extension (SHAP) values, which explain model 

outputs by attributing each feature's contribution to the prediction. Rooted in 

cooperative game theory, the SHAP values provide a unified measure of feature 

importance, considering all feature combinations. SHAP is a post-hoc interpretation 

technique that can be applied to any machine learning model. In this regard, our 

analysis revealed that reduced oxygen saturation, comorbidities  (presented as 

numerical, binary, or ordinal features), dyspnea, and respiratory distress at admission 

were reliable predictors of mortality in pediatric patients with COVID-19.  
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Few studies have evaluated ML models for predicting deaths of children and 

adolescents with COVID-19. In this regard, we recently conducted a  systematic 

review to analyze and summarize the key characteristics related to the study design,  

modeling techniques, and  performance measures reported in studies  focusing  on 

clinical  prediction models  developed using  supervised machine learning algorithms 

in pediatric patients with COVID-19 [4]. We found 10 studies (six  predictive 

diagnostic models, and four were prognostic models). All models were developed to 

predict binary outcomes. The most frequently predicted outcome was disease 

detection. The most commonly used machine learning models in these studies were 

tree-based and neural networks. However, our systematic review revealed that most 

studies failed to address relevant issues, including small sample sizes, inconsistent 

reporting practices on data preparation, biases in data sources, lack of reporting 

metrics such as calibration and discrimination, hyperparameters, and other aspects 

that allow reproducibility by other researchers and might improve the methodology.  

Other studies have evaluated ML models for predicting various outcomes in the 

pediatric setting, but in contexts other than COVID-19. Detailed information regarding 

each of these studies is provided in Supplementary Material. 

 

Public policies in data management, Information Systems and audit for 

government data 

 

As shown in the methodology section the SIVEP-Kids dataset had a total of 56,330 

records and after data pre-processing, 24,097 records were kept in the database. 

This loss of data in pre-processing was due to errors and inconsistencies in the data 

that arise from the process of generating these datasets. Currently, the Brazilian 

government does not have an entity to audit health data made available by the 

Ministry of Health. Furthermore, there is no concern in the development of the 

systems that feed this data. Many systems have important fields that are not 

mandatory. In a hospital, during periods of high demand, the tendency is for 

healthcare professionals who are working to fill out data in these systems to only 

provide the data that is mandatory, or those that they consider most important. In this 

way, a lot of data is lost, or important information is not reported in these systems. 
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It is important that the Brazilian government creates public policies for data 

management and auditing, as well as modernizing monitoring systems, constantly 

updating them and investing in staff training so that they can correctly fill in data in 

government systems. 

 

 

Strengths and limitations of this study 

 

The strength of this study lies in the use of a nationwide database to provide 

comprehensive data on COVID-19 in Brazilian pediatric patients. With a large sample 

size of lab-confirmed cases, this study details the clinical features, risk factors, and 

outcomes of hospitalized children. Another important finding of our study is that ML 

algorithms are robust for large databases, which may provide valuable insights for 

public health policies. Additionally, ML models may assist in clinical decision-making 

and evidence-based patient management, enhancing outcomes and medical care 

quality.  

However, its limitations include a lack of generalizability to other regions, inclusion of 

only hospitalized (likely severe) cases, absence of hospital record data, missing data 

issues, and lack of a national audit system for data consistency.  

 

Conclusions 

 

In this study, we compared various machine learning (ML) algorithms to predict the 

mortality of hospitalized children and adolescents with COVID-19. The LR, GBC, and 

ADA models were particularly effective in accurately predicting mortality in 

hospitalized pediatric COVID-19 patients, potentially optimizing hospital resources, 

and improving patient survival chances. 

Our findings revealed that characteristics such as reduced oxygen saturation levels 

at the time of admission and the presence of comorbidities are crucial factors for 

decision-making in ML models. By employing a Logistic Regression (LR) predictive 

model that incorporated a set of predictors, we were able to effectively identify high-

risk patients upon admission, thereby improving the likelihood of patient survival. 

Further studies are required to explore different feature sets for classifier training and 
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validation. For instance, this study focused on predicting short-term adverse 

outcomes, such as mortality or discharge, rather than long-term effects or protective 

public health measurements, such as the vaccination program. 
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6. RESULTADOS ADICIONAIS PRELIMINARES 

 

Esta tese também utilizou modelos de aprendizado de máquina para predição de 

outros desfechos, que foram: gravidade da COVID-19, necessidade de UTI (Unidade 

de Terapia Intensiva) e necessidade de suporte ventilatório. Esses desfechos 

estavam presentes na base de dados do SIVEP -Gripe e, portanto, foram analisados 

pelos algoritmos de aprendizado de máquina que também avaliaram o desfecho 

óbito. Para todos os desfechos existentes na base de dados do SIVEP-Gripe, o 

melhor método de seleção de características da base de dados foi o método Chi-

quadrado. Nas seções a seguir apresentaremos os resultados dos modelos para 

esses desfechos. Todos os procedimentos metodológicos adotados para o desfecho 

óbito e que foram apresentados na seção 5 (artigo original) também foram adotados 

para os desfechos apresentados nessa seção. 

6.1. Desfecho gravidade da COVID-19 

O desfecho gravidade diz respeito à evolução da COVID-19 nos pacientes. A 

evolução da doença está relacionada com os outros desfechos, mas é importante 

analisarmos esse desfecho isoladamente para saber o comportamento dos modelos 

em relação as características e a predição de gravidade para um determinado 

paciente. A Tabela 1 mostra o resultado dos modelos de aprendizado de máquina 

para o desfecho gravidade.  

Tabela 1 – Desempenho dos algoritmos de aprendizado de máquina no conjunto de dados 3 

(características selecionadas pelo teste de independência de Chi-quadrado) para predição de 

gravidade da COVID-19. 

Algoritmo  Acurácia AUC Recall Precisão F1 Sensitividade 

NB 0.7040 0.6811 0.3311 0.4888 0.3946 0.3311 

XGBOOST 0.6959 0.7328 0.6232 0.4836 0.5444 0.6232 

RF 0.6875 0.7241 0.6308 0.4733 0.5406 0.6308 

GBC 0.6854 0.7429 0.6643 0.4720 0.5517 0.6643 

ET 0.6839 0.7135 0.6187 0.4686 0.5330 0.6187 

ADA 0.6684 0.7360 0.6839 0.4544 0.5459 0.6839 

DT 0.6469 0.6363 0.6109 0.4262 0.5019 0.6109 

QDA 0.6216 0.6455 0.4657 0.4498 0.4067 0.4657 

LDA 0.6084 0.7112 0.7499 0.4070 0.5276 0.7499 

KNN 0.6063 0.6692 0.6966 0.3995 0.5077 0.6966 

LR 0.6053 0.7111 0.7522 0.4049 0.5263 0.7522 
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Como podemos ver na Tabela 1, os três algoritmos que tiveram melhor 

desempenho na predição de gravidade da COVID-19 em pacientes pediátricos 

hospitalizados foram: Gradient Boosting Classifier (GBC), Adaboost (ADA) e Extreme 

Gradient Boosting (XGBOOST). Lembrando que para conjuntos de dados que 

precisaram de ser balanceados com SMOTE como foi o caso do nosso conjunto de 

dados, a AUC é a nossa métrica principal. A AUC é uma métrica mais confiável para 

dados desbalanceados e que passaram por processos de imputação. 

Os modelos apresentaram uma baixa sensibilidade na predição da gravidade 

da doença. Isso significa que, para o desfecho gravidade, os modelos tenderam a 

classificar um número maior de falsos negativos, dessa forma identificando um 

paciente que teve maior gravidade da doença como sendo um paciente de baixo 

risco para este evento. A acurácia dos modelos para o conjunto de dados foi 

mediana, apresentando em média 65% de acertos em relação aos dados do 

conjunto. 

A Figura 3 mostra o gráfico de resumo de contribuições de características 

para a decisão do melhor modelo na predição de gravidade por COVID-19, o modelo 

GBC. As características com maior discriminação para que o modelo classifique um 

paciente com gravidade acentuada, moderada ou leve por COVID-19 foram: 

saturação de oxigênio reduzida, total de comorbidades, tosse, desconforto 

respiratório, problemas cardiológicos e diabetes. Em relação à saturação de oxigênio 

reduzida, a presença deste quadro clínico no paciente faz com que o modelo tenha 

tendência para classificar o paciente como quadro de gravidade acentuada ou 

moderada de COVID-19 e a não presença faz com que o modelo classifique o 

paciente como um quadro que não vai apresentar gravidade acentuada ou 

moderada. Essa é a característica mais importante do modelo. A mesma lógica vale 

para o total de comorbidades e para pacientes que tem problemas cardíacos e 

diabetes. 
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Figura 3. Gráfico de resumo de contribuições para tomada de decisão do algoritmo GBC para 

predição do desfecho gravidade. 

 

6.2. Desfecho Necessidade de Suporte Ventilatório 

 

O desfecho suporte ventilatório diz respeito a necessidade ou não de ventilação 

mecânica para um paciente. A Tabela 2 mostra o resultado dos modelos de 

aprendizado de máquina para esse desfecho presente no conjunto de dados do 

SIVEP-Kids. 
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Tabela 2 – Desempenho dos algoritmos de aprendizado de máquina no conjunto de dados 3 

(características selecionadas pelo teste de independência de Chi-quadrado) para predição de 

necessidade de suporte ventilatório. 

Algoritmo Acurácia AUC Recall Precisão F1 Sensitividade 

NB 0.5767 0.7029 0.5767 0.6217 0.5922 0.5910 

ET 0.5618 0.7374 0.5618 0.6370 0.5842 0.4622 

XGBOOST 0.5592 0.7461 0.5592 0.6448 0.5840 0.4608 

RF 0.5565 0.7445 0.5565 0.6441 0.5807 0.4402 

GBC 0.5438 0.7613 0.5438 0.6522 0.5703 0.3951 

ADA 0.5255 0.7597 0.5255 0.6579 0.5521 0.3331 

DT 0.5236 0.6538 0.5236 0.6151 0.5512 0.4418 

LDA 0.4681 0.7546 0.4681 0.6695 0.4468 0.0779 

LR 0.4414 0.7447 0.4414 0.6611 0.4555 0.1370 

KNN 0.4274 0.6579 0.4274 0.6113 0.4652 0.2821 

QDA 0.3671 0.6091 0.3671 0.3315 0.2980 0.2225 

 

Os modelos não apresentaram bons resultados para o desfecho necessidade de 

suporte ventilatório, sendo os três melhores: GBC, ADA e LDA. Entretanto, as 

acurácias para a base de dados do SIVEP-Gripe não foram satisfatórias, ou seja, os 

modelos erram mais do que acertam para esse tipo de desfecho. A Figura 4 mostra 

o gráfico de resumo de contribuições de características para tomada de decisão pelo 

modelo GBC. As características mais importantes para que o modelo classifique que 

o paciente pediátrico terá necessidade de suporte ventilatório são: saturação de 

oxigênio reduzida, total de comorbidades, tosse, desconforto respiratório, infecção 

nosocomial, diabetes e ageusia.                                          
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Figura 4. Gráfico de resumo de contribuições para tomada de decisão do algoritmo GBC para 

predição do desfecho suporte ventilatório. 

 

6.3. Desfecho admissão em Unidade de Terapia Intensiva (UTI) 

 

Nesse desfecho, os modelos tentam prever se o paciente pediátrico será internado 

na Unidade de Terapia Intensiva - UTI a partir dos dados presentes no conjunto. O 

desfecho UTI se aproxima muito do desfecho suporte ventilatório em termos 

práticos, pois pacientes com COVID-19 que foram para UTI fizeram a utilização de 
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suporte ventilatório na maioria das vezes. A Tabela 3 mostra o desempenho dos 

modelos para esse desfecho. 

Tabela 3 – Desempenho dos algoritmos de aprendizado de máquina no conjunto de dados 3 

(características selecionadas pelo teste de independência de Chi-quadrado) para predição de 

necessidade de UTI. 

Algoritmo Acurácia AUC Recall Precisão F1 Sensitividade 

NB 0.7155 0.6727 0.3215 0.4261 0.3663 0.3215 

QDA 0.7151 0.6699 0.3229 0.4254 0.3670 0.3229 

XGBOOST 0.6991 0.7215 0.5795 0.4339 0.4961 0.5795 

GBC 0.6940 0.7334 0.6403 0.4336 0.5169 0.6403 

RF 0.6875 0.7096 0.6006 0.4221 0.4956 0.6006 

ET 0.6823 0.6916 0.5887 0.4147 0.4865 0.5887 

ADA 0.6688 0.7263 0.6705 0.4098 0.5086 0.6705 

DT 0.6537 0.6330 0.5905 0.3846 0.4658 0.5905 

LDA 0.5968 0.7011 0.7437 0.3604 0.4855 0.7437 

KNN 0.5954 0.6607 0.6937 0.3523 0.4672 0.6937 

LR 0.5936 0.6997 0.7437 0.3582 0.4835 0.7437 

 

De forma similar aos outros dois desfechos, nos resultados para necessidade de UTI 

o algoritmo GBC apresentou melhor performance, considerando AUC como métrica 

principal, seguido pelos algoritmos ADA e XGBOOST, respectivamente. Por outro 

lado, os resultados de acurácia foram um pouco melhores que os outros dois 

desfechos com valores de AUC um pouco mais elevados. Em relação à 

sensibilidade, os algoritmos continuam produzindo falsos negativos e, nesse caso, 

deixando de prever casos que foram positivos. Em relação a Figura 5, o gráfico de 

resumo de contribuições, mostra as principais características clínicas utilizadas pelo 

modelo GBC para realizar a tomada de decisão entre classificar um paciente que vai 

para a UTI e um paciente que não vai. A principal característica para que o modelo 

classifique um paciente para ir para UTI é o tempo para o desfecho, ou seja o tempo 

que o paciente está no hospital, isso quer dizer que quanto maior o tempo do 

paciente no hospital maiores as chances de ir para a UTI. Também foram 

considerados saturação reduzida de oxigênio, desconforto respiratório e total de 

comorbidades do paciente.  
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Figura 5. Gráfico de resumo de contribuições para tomada de decisão do algoritmo GBC para 

predição do desfecho UTI. 

6.4. Sistema de suporte a decisão na triagem de risco de mortalidade para 

crianças e adolescentes por COVID-19 

 

O trabalho apresentado nessa tese também quis ampliar os horizontes de aplicação 

de aprendizado de máquina e levar o contexto dos algoritmos para um sistema 

prático, permitindo que profissionais de saúde possam utilizar um sistema de suporte 

à tomada de decisão em um ambiente real. Dessa forma, desenvolvemos um 

sistema que utiliza o melhor algoritmo de aprendizado de máquina para o desfecho 
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óbito e disponibilizamos o sistema para utilização neste link: 

https://covidriskcalculator.streamlit.app/. O sistema foi totalmente desenvolvido 

utilizando-se a linguagem de programação Python. 

 A Figura 6 apresenta a tela principal do sistema que contém as características 

selecionadas para treinamento dos modelos, como campos de entradas de dados 

pelo profissional de saúde. O profissional informa as características clínicas e 

comorbidades do paciente e após inserir os dados desejados ele seleciona o botão 

realizar previsão. Na parte esquerda da imagem, o sistema informa o risco de 

mortalidade do paciente que pode ser alto risco de mortalidade ou baixo risco de 

mortalidade e informa também o percentual de confiança que o modelo tem naquela 

previsão de mortalidade informada. 

 

Figura 6 – Tela principal do sistema de suporte a decisão para triagem de risco de 

mortalidade de crianças e adolescentes por COVID-19 

Com o presente sistema esperamos que as aplicações de aprendizado de 

máquina para saúde saiam do âmbito exclusivamente teórico e possam também 

contribuir para o contexto prático, ou seja, hospitalar. Isso possibilitará que 

profissionais de saúde tenham uma ferramenta com inteligência artificial à 

disposição como suporte para a tomada de decisão. É importante ressaltar que um 

profissional de saúde não pode definir o destino de um paciente somente baseado 

https://covidriskcalculator.streamlit.app/
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no que é informado pelo sistema. O sistema serve apenas como um apontador de 

indícios. Quaisquer decisões devem ser tomadas pelo médico de acordo com as 

evidências clínicas e laboratoriais. É importante destacar que este sistema foi 

desenvolvido apenas para ilustrar as potencialidades das aplicações de IA utilizadas 

em nosso estudo. É imperativo comentar que a implementação na prática clínica de 

um sistema desta natureza deve seguir os princípios científicos mais rigorosos e os 

trâmites legais e éticos previstos nas legislações dos diversos órgãos regulatórios. 
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7. PERSPECTIVAS 

 

O presente estudo se insere no contexto da utilização da IA e do chamado Big Data 

em Medicina e de suas promissoras aplicações na área. Essa nova era, propiciada 

pelo acelerado desenvolvimento tecnológico das últimas décadas, abre um leque de 

oportunidades inéditas para o avanço do conhecimento científico e para a prática 

médica. As aplicações de IA podem gerar inovações em diversos aspectos da 

Medicina, desde a identificação de novos fármacos e o desenvolvimento de terapias 

personalizadas até a compreensão mais profunda dos complexos mecanismos 

fisiopatológicos, sociais, e epidemiológicos que determinam a saúde e a doença. 

Essa vasta gama de dados, proveniente de diversas fontes como bancos de dados 

públicos, prontuários eletrônicos, pesquisas genômicas e dispositivos médicos de 

monitoramento contínuos, oferece uma riqueza de informações sem precedentes 

para a pesquisa médica. Em nossa opinião, para extrair o máximo de conhecimento 

do Big Data na Medicina, é fundamental a sinergia entre métodos estatísticos 

tradicionais e técnicas de IA. A combinação da robustez e flexibilidade da estatística 

com o poder de aprendizado de máquina da IA permite aos pesquisadores analisar 

conjuntos de dados complexos e identificar padrões sutis que podem ter um impacto 

significativo na compreensão de doenças e no desenvolvimento de novas terapias. 

Contudo, a utilização do Big Data na Medicina não está isenta de desafios. A 

garantia da privacidade e segurança dos dados, a integração de diferentes fontes de 

informação e a interpretação dos resultados complexos gerados pelas análises de 

Big Data exigem soluções inovadoras e colaboração interdisciplinar. No entanto, as 

perspectivas para o futuro são promissoras. Acredita-se que a IA aliada ao Big Data 

têm o potencial de revolucionar a Medicina, levando a diagnósticos mais precisos, 

tratamentos mais eficazes e uma melhor compreensão da saúde humana em sua 

totalidade. 

Ao se inserir nessa área da pesquisa médica, julgamos que este estudo pode 

contribuir para o avanço do conhecimento e a busca por soluções inovadoras para 

os desafios da prática clínica em Pediatria. Além disso, a extensiva revisão da 

literatura indica um amplo espaço para pesquisas com aprendizado de máquina na 

Pediatria. Para futuros estudos, pretendemos utilizar modelos de aprendizado de 
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máquina para verificação da efetividade das vacinas na prevenção de óbitos por 

COVID-19. Também pretendemos utilizar esses modelos para diagnósticos e 

prognósticos de outras doenças em crianças e adolescentes, integrando dados 

clínicos, laboratoriais e de exames de imagem. Outra área de investigação para 

trabalhos futuros é sobre a utilização de grandes modelos de linguagem como 

ChatGPT, Llama e Gemini para auxiliar estudantes, residentes e profissionais de 

saúde no treinamento do diagnóstico clínico e na atuação nos mais diversos 

cenários da prática pediátrica. 
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8. CONCLUSÃO 

 

Esta tese apresentou modelos de aprendizado de máquina para prever a 

mortalidade em crianças e adolescentes com COVID-19 e seus principais fatores 

clínicos de risco. Os resultados foram satisfatórios, mostrando que os modelos de 

aprendizado de máquina podem auxiliar os médicos em um processo de triagem 

para identificar pacientes com uma probabilidade maior de mortalidade. Os principais 

fatores preditivos da mortalidade de crianças e adolescentes hospitalizados com 

COVID-19 de acordo com os algoritmos de aprendizado de máquina utilizados 

foram: baixa saturação de oxigênio na admissão, dispneia, desconforto respiratório, 

total de comorbidades apresentadas pelo paciente ou se paciente tem alguma 

comorbidade. Os resultados dos algoritmos de aprendizado de máquina para os 

desfechos UTI, suporte ventilatório e gravidade da COVID-19 não tiveram o mesmo 

desempenho em comparação aos resultados para o desfecho óbito. 
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Supplementary Material Systematic Literature Review 

Supplemental File 1 - Selected studies after selection process   
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studies  

Studies 
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title  

Duplica

te 

studies  

Studies that do 

not address 

COVID-19 in 

children or 

adolescents  

Studies 

where 

the PDF 

was not 

found  

Selected studies 

after complete 

screening  

  Elsevier   

Scopus  509  2  0  0  0  2  

  Embase  1406  7  0  4  0  4  

  Pubmed  1995  7  6 0  0  1  

  Google 

Scholar  1112  8  1  1  3  3  

  Total  5022  25  7  5  3  10  
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Supplemental File 2 - Tripod adherence score per study 

Study Tripod adherence score per study (Total 

Tripod checklist items: 31) 

Byeon2022 24 (77,41%) 

Cetin et al 2022 26 (83,87%) 

Gao 2022 21 (67,74%) 

Liu2022 26 (83,87%) 

Ma2021 25 (80,64%) 

Magrelli2021 14 (45,16%) 

Mamlook2021 15 (48,38%) 

Nugawela2022 16 (51,61%) 

Pavliuk2022 16 (51,61%) 

zhang2023 25(80,64%) 

Mean 20,8 (67,09%) 
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Supplementary material from the original article 

 

Supplementary Figure 1 - The importance scores of the predictors were calculated using random 

forest (a) and XGBoost (b) tests. 
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Supplementary Table 1 – Primary features documented in the SIVEP-Kids database. 

No. Feature name Variable Type No. Feature name Variable type 

1 Gender Nominal 21 Hypertension Nominal 

2 Age Numeric 22 Immunosuppression Nominal 

3 Ethnicity Nominal 23 Renal disease Nominal 

4 Region Nominal 24 Asthma Nominal 

5 Virus strain Nominal 25 Hematology disease Nominal 

6 Dyspnea Nominal 26 Neurology Nominal 

7 Fever Nominal 27 Oncology Nominal 

8 Cough Nominal 28 Transplanted Nominal 

9 Odynophagia Nominal 29 Down Syndrome Nominal 

10 Diarrhea Nominal 30 Other Syndrome Nominal 

11 Vomit Nominal 31 Nosocomial Nominal 

12 Abdominal pain Nominal 32 Comorbidities dichotomic Nominal 

13 Ageusia Nominal 33 Total Comorbidities Numeric 

14 Anosmia Nominal 34 Number of vaccine doses Numeric 

15 Respiratory distress Nominal 35 Comorbidities categoric Nominal 

16 Oxygen saturation reduced Nominal 36 Time for outcome Numeric 

17 Diabetes Nominal 37 Vaccinated Nominal 

18 Obesity Nominal 38 Outcome (Target Variable) Nominal 

19 Cardiology Nominal    

20 Pulmonary Nominal    
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Supplementary Table 2 - The Hyperparameters of the selected ML algorithms for COVID-19 mortality 

prediction in children and adolescents. 

ML Algorithms Hyperparameters used to create the models 

GBC criterion='friedman_mse', learning_rate=0.0005, max_depth=9,  

max_features='log2', min_impurity_decrease=0.001, min_samples_leaf=1, 

min_samples_split=9, n_estimators=120, subsample=0.9, tol=0.0001, 

validation_fraction=0.1. 

  

ADA algorithm='SAMME', learning_rate=0.005, n_estimators=260. 

  

CATBOOST 

 

Iterations=1000, learning_rate=0.1, depth=6, l2_leaf_reg=3.0, subsample=0.8, 

colsample_bylevel=0.8, border_count=128, loss='log_loss'. 

  

RF criterion='gini', max_depth=4, max_features=1.0,  max_leaf_nodes=None, 

min_impurity_decrease=0.3, min_samples_leaf=2,  min_samples_split=7, 

n_estimators=90. 

  

XGBOOST booster='gbtree', colsample_bytree=1, learning_rate=0.4, max_depth=1, 

min_child_weight=2, n_estimators=120,  objective='binary:logistic' 

  

ET criterion='gini', max_depth=4, max_features=1.0, min_impurity_decrease=0.3, 

min_samples_leaf=2, min_samples_split=7, n_estimators=90. 

  

LR C=0.662, fit_intercept=True, intercept_scaling=1, l1_ratio=None, 

max_iter=1000, penalty='l2',  solver='lbfgs', tol=0.0001. 

  

LDA shrinkage=0.4, solver='lsqr', tol=0.0001. 

  

DT criterion='entropy', max_depth=4, max_features=1.0, 

min_impurity_decrease=0.5, min_samples_leaf=3, min_samples_split=2, 

splitter='best'. 

  

NB var_smoothing=1 

  

KNN leaf_size=30, metric='manhattan', n_neighbors=50, p=2, weights='distance'. 

  

QDA reg_param=0.29, tol=0.0001. 
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Supplementary Table 3 - Descriptive statistics of the most important variables selected in the feature 

selection phase for mortality in COVID-19 children and adolescents’ patients. 

Nº Feature name Variable Type Frequency or mean  ± SD 

1 Age Numeric 5.04 ± 5.25 

2 Region Nominal Southeast (10,819) 

South (4,379) 

Northeast (4,033) 

North (2,609) 

Central West (2,257) 

3 Ethnicity Nominal Asian (178) 

Black (778) 

Brown (11,467) 

Indigenous (221) 

White (11,453) 

4 Virus Strain Nominal Omicron (13,432) 

Gamma (8,251) 

Delta (2,414) 

5 Dyspnea Nominal Haven’t (11,126) 

Have (12,971) 

6 Cough Nominal Haven’t (7,198) 

Have (16,899) 

7 Respiratory distress Nominal Haven’t (11245) 

Have (12852) 

8 Oxygen saturation reduced at admission Nominal Haven't (12018) 

Have (12079) 

9 Obesity Nominal Haven’t (23675) 

Have (422) 

10 Cardiology Nominal Haven’t (23314) 

Have (783) 

11 Pulmonary Nominal Haven’t (23608) 

Have (489) 

12 Hypertension Nominal Haven't (24029) 

Have (68) 

13 Immunosuppression Nominal Haven't (23580) 

Have (517) 

14 Renal Nominal Haven't (23876) 

Have (221) 

15 Asthma Nominal Haven't (22711) 

Have (1386) 
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16 Total Comorbidities Numeric 0.22 ± 0.54 

 

(0, 19670) 

(1, 3512) 

(2, 757) 

(3, 128) 

(4, 24) 

(5, 2) 

(6, 2) 

(7, 1) 

(10, 1) 

17 Comorbidities dichotomic Nominal Haven't (19670) 

Have (4427) 

18 Comorbidities categoric Nominal Haven't (19670) 

One (3512) 

Two (757) 

Three or more (158) 

19 Time for Outcome Numeric 7.63 ± 6.83 

20 Hematology Nominal Haven't (23649) 

Have (448) 

21 Neurology Nominal Haven't (22397) 

Have (1700) 

22 Oncology Nominal Haven't (24048) 

Have (49) 

23 Down Syndrome Nominal Haven't (23681) 

Have (416) 

24 Nosocomial Nominal Haven’t (23476) 

Have (621) 

 

 

 

Supplementary Figure 2 – Force plot of feature contributions to the decision-making process of the 

model for discharge outcome. 
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In a force plot for SHAP values, as can be seen in Supplementary Figure 2 (showing 

specific cases where the model made medical discharge predictions) and Figure 5 

(showing specific cases where the model made death predictions), the goal is to 

illustrate the contributions of individual features to a specific model prediction. Each 

feature is represented by a horizontal bar, and the length of the bar corresponds to 

the magnitude of the SHAP value for that feature. The features are arranged 

horizontally based on their importance to the prediction. We show in each figure three 

examples of force plots for each class of model prediction (death or discharge). 

The plots in Supplementary Figure 2a illustrate the forces for three patients 

who were discharged from the dataset. Each plot corresponds to an individual 

patient, and it is evident that reduced oxygen saturation is the most influential feature 

in the model's decision-making process. However, the force associated with this 

feature is lower compared to other values, resulting in the classification of the patient 

into class 0 (medical discharge). It is noteworthy that the region representing the 

southern region of Brazil had the highest force value, influencing the model's decision 

to classify the patient as discharged. The absence of respiratory distress, short 

hospitalization duration, white ethnicity, and the absence of comorbidities were also 

important factors in the model's decision to classify these patients as discharged. A 

comparison of Supplementary Figure 2a, 2b, and 2c reveals that lower age values 

tend to lead the model to classify the patient as discharged, while higher age values, 

as seen in Supplementary Figure 2b, contribute to the model classifying the patient 

as deceased. Additionally, variables associated with comorbidities with lower values 

contribute to the model classifying the patient as discharged. 

 

 

Suplementary Figure 3 – Force plot of feature contributions to the decision-making process of the 

model for discharge outcome. 
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In Supplementary Figure 3a, we observe that a patient presenting reduced 

oxygen saturation was the primary feature contributing to the model classifying the 

patient into class one (deceased). Additionally, the model considered an ethnicity 

value of 2, indicating indigenous, as a variable contributing to an increased prediction 

value for the higher class, which is deceased. Furthermore, factors such as the 

northern region of Brazil and reports of respiratory distress contribute to the model 

classifying the patient as deceased. In Supplementary Figure 3b, the presence of 

comorbidities emerges as an important factor for the model to classify as deceased. 

However, solely relying on the presence of comorbidities in patients does not serve 

as a strong predictor for the model, as the final value of the model's decision function 

was negative, close to zero. Nevertheless, the model correctly classified this instance 

as deceased. In Supplementary Figure 3c, besides variables crucial for decision-

making regarding mortality, we observe that higher age leads the model to predict the 

patient as deceased, in contrast to what was shown in Supplementary Figure 2. 

 

 

Other studies in the literature that evaluated ML algorithms for predicting 

deaths in children and adolescents. 

 

Other studies evaluated ML models for predicting the deaths of children and 

adolescents from COVID-19. The study conducted by Zhang et al [1]. utilized ML 

techniques to predict infant mortality rates in the United States based on factors 

related to birth facility, prenatal care, labor and delivery, and newborn characteristics. 

The analysis was performed on data from 2016 to 2021, including 116,309 infant 

deaths among 22,669,736 live births. Among the five ML models compared, XGBoost 

demonstrated the best predictive performance, achieving an AUC of 93% and an 

Average Precision (AP) score of 0.55. The study highlighted the significance of 

utilizing the original imbalanced dataset over balanced datasets created through 

oversampling techniques, as the former yielded superior predictive outcomes. The 

validation of the predictive model on data from 2020 to 2021 maintained the 

performance level, with an AUC of 93% and an AP value of 0.52. The performance of 
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the model during both pre-pandemic (2016–2019) and pandemic periods (2020–

2021) shows potential utility in informing strategies to mitigate infant mortality rates. 

In the study conducted by Byeon et al. [2], a population-based cross-sectional 

survey was employed to investigate the impact of the COVID-19 pandemic on the 

prevalence of obesity among South Korean adolescents. The research utilized 

categorical boosting, specifically the CatBoost algorithm, to develop a predictive 

model for adolescent obesity. The model's performance was evaluated using various 

metrics, and the results indicated that the model achieved an AUC of 68%, with a 

general accuracy of 82%. The data used in the study encompassed a range of 

factors including exercise, academic performance, and lifestyle habits, which were 

analyzed to identify potential risk factors for adolescent obesity. The utilization of the 

CatBoost algorithm, in conjunction with the evaluation of various performance 

metrics, underscores the rigorous approach taken to predict vulnerability to obesity in 

South Korean adolescents post-pandemic. 

Gao et al. [3] presents a hybrid approach that combines domain knowledge-

based features with data-driven methods to predict pediatric COVID-19 

hospitalization and severity. The authors split two cohorts into training, validation, and 

testing sets by 6:1:3 and used the training set to fit the models, the validation set to 

determine the hyper-parameters, and the testing set to evaluate the models. The 

evaluation metrics were AUROC, AUPRC, and Min (Re, Pr). The best model, 

MedML, achieved a 3% higher AUROC and 4% higher AUPRC on the hospitalization 

prediction task and a 7% higher AUROC and 14% higher AUPRC on the severity 

prediction task compared to the best baseline model. The authors used the N3C Data 

Enclave with Code Workbook and the mini-batch gradient descent to train the models 

and the batch size was set to 128. The results showed that MedML is generalizable 

in all nine national geographical regions of the United States and temporally across 

all consecutive pandemic stages. The authors state that MedML serves as a bridge 

between clinicians, data engineers, and computer scientists to augment the clinical 

decision-making process through intuitive knowledge representation, explainable 

construction, and powerful computation. 

Pavliuk et al. [4] developed a ML model for analyzing and predicting the 

hospitalization numbers of children in the Lviv region during the fourth wave of the 

COVID-19 pandemic, characterized by the Omicron strain's dominance. The surge in 
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hospitalizations, especially among children, is attributed to their high sociability and 

low vaccination rates in Ukraine. Utilizing publicly available data, the ML model 

comprises analysis and prediction components. Pearson correlation coefficient was 

employed for analyzing hospitalized children's numbers, while short and medium-

term predictions utilized neural networks. 

The study of Mamlook et al. [5] focuses on evaluating and comparing five well-

known ML approaches, including artificial neural network (ANN), random forest (RF), 

support vector machines (SVM), decision trees (DT), and gradient boosted trees 

(GBM), to detect COVID-19 in children. The classification performance of each model 

was assessed using a standard 10-fold cross-validation procedure. The findings 

reveal that the classification model based on decision trees (CART) outperforms 

others, achieving 92.5% accuracy for binary classes (positive vs. negative) based on 

laboratory findings. Important predictors such as Leukocytes, Monocytes, Potassium, 

and Eosinophils were identified, suggesting their crucial role in COVID-19 detection. 

The proposed model offers a tool for medical experts to predict COVID-19 in children 

and validate primary laboratory findings, showcasing the potential of ML methods in 

facilitating accurate predictions for COVID-19 laboratory outcomes in pediatric cases. 

Ma et al. [6] investigate whether clinical symptoms and laboratory results can 

serve as predictors for the necessity of CT (Computed Tomography) scans in 

pediatric patients with positive RT-PCR results. Data from 244 pediatric patients were 

collected, and advanced decision tree-based ML models were employed. The study 

revealed that age, lymphocyte count, neutrophils, ferritin, and C-reactive protein are 

crucial indicators for predicting CT outcomes. The developed decision support 

system demonstrated promising performance, achieving an AUC of 84% with 

accuracy of 82% and sensitivity of 84%. These findings suggest a reconsideration of 

CT use in pediatric patients, highlighting the potential non-indispensability of this 

imaging modality. 

Nugawela et al. [7] developed a predictive model for identifying children and 

young people at a higher risk of experiencing long COVID, defined as having at least 

one impairing symptom three months after SARS-CoV-2 positive RT-PCR testing. 

The research utilized data from a nationally matched cohort of SARS-CoV-2 test-

positive and test-negative patients aged 11 to 17 years. Predictors considered 

included SARS-CoV-2 status, demographic factors, quality of life/functioning, 
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physical and mental health, loneliness, and the number of symptoms at testing. The 

logistic regression model demonstrated an accuracy of 83%, achieving good 

calibration and discrimination measures. 
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