Use este identificador para citar o ir al link de este elemento:
http://hdl.handle.net/1843/59078
Registro completo de metadatos
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Emilly M.lima | pt_BR |
dc.creator | Luana Giatti | pt_BR |
dc.creator | Sandhi m. Barreto | pt_BR |
dc.creator | Wagner Meira jr | pt_BR |
dc.creator | Thomas b. Schön | pt_BR |
dc.creator | Antonio Luiz Pinho Ribeiro | pt_BR |
dc.creator | Antônio h. Ribeiro | pt_BR |
dc.creator | Gabriela m. m. Paixão | pt_BR |
dc.creator | Manoel Horta Ribeiro | pt_BR |
dc.creator | Marcelo m. Pinto-filho | pt_BR |
dc.creator | Paulo r. Gomes | pt_BR |
dc.creator | Derick m. Oliveira | pt_BR |
dc.creator | Ester c. Sabino | pt_BR |
dc.creator | Bruce b. Duncan | pt_BR |
dc.date.accessioned | 2023-10-02T23:03:18Z | - |
dc.date.available | 2023-10-02T23:03:18Z | - |
dc.date.issued | 2021 | - |
dc.citation.volume | 12 | pt_BR |
dc.citation.issue | 1 | pt_BR |
dc.citation.spage | 1 | pt_BR |
dc.citation.epage | 11 | pt_BR |
dc.identifier.doi | 10.1038/s41467-021-25351-7 | pt_BR |
dc.identifier.issn | 20411723 | pt_BR |
dc.identifier.uri | http://hdl.handle.net/1843/59078 | - |
dc.description.resumo | The electrocardiogram (ECG) is the most commonly used exam for the evaluation of cardiovascular diseases. Here we propose that the age predicted by artificial intelligence (AI) from the raw ECG (ECG-age) can be a measure of cardiovascular health. A deep neural network is trained to predict a patient’s age from the 12-lead ECG in the CODE study cohort (n = 1,558,415 patients). On a 15% hold-out split, patients with ECG-age more than 8 years greater than the chronological age have a higher mortality rate (hazard ratio (HR) 1.79, p < 0.001), whereas those with ECG-age more than 8 years smaller, have a lower mortality rate (HR 0.78, p < 0.001). Similar results are obtained in the external cohorts ELSA-Brasil (n = 14,236) and SaMi-Trop (n = 1,631). Moreover, even for apparent normal ECGs, the predicted ECG-age gap from the chronological age remains a statistically significant risk predictor. These results show that the AI-enabled analysis of the ECG can add prognostic information. | pt_BR |
dc.format.mimetype | pt_BR | |
dc.language | eng | pt_BR |
dc.publisher | Universidade Federal de Minas Gerais | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO | pt_BR |
dc.publisher.department | MED - DEPARTAMENTO DE CLÍNICA MÉDICA | pt_BR |
dc.publisher.department | MED - DEPARTAMENTO DE MEDICINA PREVENTIVA SOCIAL | pt_BR |
dc.publisher.initials | UFMG | pt_BR |
dc.relation.ispartof | nature communications | - |
dc.rights | Acesso Aberto | pt_BR |
dc.subject | Electrocardiography | pt_BR |
dc.subject | Artificial Intelligence | pt_BR |
dc.subject | Cardiovascular Diseases | pt_BR |
dc.subject.other | Electrocardiography | pt_BR |
dc.subject.other | Cardiovascular Diseases | pt_BR |
dc.subject.other | Artificial Intelligence | pt_BR |
dc.title | Deep neural network-estimated electrocardiographic age as a mortality predictor | pt_BR |
dc.type | Artigo de Periódico | pt_BR |
dc.url.externa | https://www.nature.com/articles/s41467-021-25351-7 | pt_BR |
Aparece en las colecciones: | Artigo de Periódico |
archivos asociados a este elemento:
archivo | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Deep neural network-estimated pdfa.pdf | 416.12 kB | Adobe PDF | Visualizar/Abrir |
Los elementos en el repositorio están protegidos por copyright, con todos los derechos reservados, salvo cuando es indicado lo contrario.