Use este identificador para citar o ir al link de este elemento: http://hdl.handle.net/1843/76413
Tipo: Artigo de Periódico
Título: Evaluation of artificial neural networks and the ARIMA model applied to temperature prediction in a charcoal oven
Autor(es): Rogério Santos Maciel
Nilton Alves Maia
Maurílio José Inácio
Fernando Colen
Sidney Pereira
Luiz Henrique de Souza
Resumen: This work used the Artificial Neural Networks RBF- Radial Basis Function and MLP- Multilayer Perceptron, the Neurofuzzy ANFIS- Adaptive-network-based Fuzzy Inference System and the model ARIMA-Auto Regressive Integrated Moving Average, to predict the temperature. Different topologies were tested for Artificial Neural Networks and also for Neurofuzzy, in order to find the best configuration. To evaluate the performance of the predictors, the following metrics were used: Root Mean Square Error - RMSE, Mean Square Error - MSE and Mean Absolute Error - MAE. The analysis of the quality of the predictors was also performed using Theil's U coefficient. Analyzing the results of this study, it was possible to verify that the Artificial Neural Networks, the Neurofuzzy Network and the ARIMA model, can be applied to predict the temperature in charcoal kilns, with the MLP and ANFIS networks presenting the best results.
Asunto: Redes neurais (Computação)
Carvão vegetal
Controle de temperatura
Idioma: eng
País: Brasil
Editor: Universidade Federal de Minas Gerais
Sigla da Institución: UFMG
Departamento: ICA - INSTITUTO DE CIÊNCIAS AGRÁRIAS
Tipo de acceso: Acesso Aberto
URI: http://hdl.handle.net/1843/76413
Fecha del documento: 2023
metadata.dc.url.externa: http://www.ijern.com/journal/2023/March-2023/04.pdf
metadata.dc.relation.ispartof: International Journal of Education and Research
Aparece en las colecciones:Artigo de Periódico

archivos asociados a este elemento:
archivo Descripción TamañoFormato 
Evaluation of artificial neural networks and the arima model applied to temperature prediction in a charcoal oven.pdf.pdf740.43 kBAdobe PDFVisualizar/Abrir


Los elementos en el repositorio están protegidos por copyright, con todos los derechos reservados, salvo cuando es indicado lo contrario.