Use este identificador para citar o ir al link de este elemento:
http://hdl.handle.net/1843/76413
Tipo: | Artigo de Periódico |
Título: | Evaluation of artificial neural networks and the ARIMA model applied to temperature prediction in a charcoal oven |
Autor(es): | Rogério Santos Maciel Nilton Alves Maia Maurílio José Inácio Fernando Colen Sidney Pereira Luiz Henrique de Souza |
Resumen: | This work used the Artificial Neural Networks RBF- Radial Basis Function and MLP- Multilayer Perceptron, the Neurofuzzy ANFIS- Adaptive-network-based Fuzzy Inference System and the model ARIMA-Auto Regressive Integrated Moving Average, to predict the temperature. Different topologies were tested for Artificial Neural Networks and also for Neurofuzzy, in order to find the best configuration. To evaluate the performance of the predictors, the following metrics were used: Root Mean Square Error - RMSE, Mean Square Error - MSE and Mean Absolute Error - MAE. The analysis of the quality of the predictors was also performed using Theil's U coefficient. Analyzing the results of this study, it was possible to verify that the Artificial Neural Networks, the Neurofuzzy Network and the ARIMA model, can be applied to predict the temperature in charcoal kilns, with the MLP and ANFIS networks presenting the best results. |
Asunto: | Redes neurais (Computação) Carvão vegetal Controle de temperatura |
Idioma: | eng |
País: | Brasil |
Editor: | Universidade Federal de Minas Gerais |
Sigla da Institución: | UFMG |
Departamento: | ICA - INSTITUTO DE CIÊNCIAS AGRÁRIAS |
Tipo de acceso: | Acesso Aberto |
URI: | http://hdl.handle.net/1843/76413 |
Fecha del documento: | 2023 |
metadata.dc.url.externa: | http://www.ijern.com/journal/2023/March-2023/04.pdf |
metadata.dc.relation.ispartof: | International Journal of Education and Research |
Aparece en las colecciones: | Artigo de Periódico |
archivos asociados a este elemento:
archivo | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Evaluation of artificial neural networks and the arima model applied to temperature prediction in a charcoal oven.pdf.pdf | 740.43 kB | Adobe PDF | Visualizar/Abrir |
Los elementos en el repositorio están protegidos por copyright, con todos los derechos reservados, salvo cuando es indicado lo contrario.