Please use this identifier to cite or link to this item: http://hdl.handle.net/1843/32958
Type: Tese
Title: Exploring the CRISPR-Cas9 potential to revert beta-lactam resistance in clinically relevant gram-negative bacteria
Authors: Thaysa Leite Tagliaferri
First Advisor: Simone Gonçalves dos Santos
metadata.dc.contributor.advisor2: Hans-Peter Horz
First Co-advisor: Tiago Antônio de Oliveira Mendes
metadata.dc.contributor.advisor-co2: Ralph Panstruga
Abstract: The antimicrobial resistance (AMR) crisis urgently requires countermeasures for reducing the dissemination of plasmid-borne resistance genes. Of particular concern are opportunistic pathogens of Enterobacteriaceae family. One innovative approach to tackle AMR is the use of CRISPR-Cas9 system which has recently been employed for plasmid curing in model strains of Escherichia coli. During this thesis, this system was further exploited by targeting the blaTEM-1 resistance gene located on a high copy plasmid (i.e. > 100 copies/cell) and by directly tackling the blaTEM-1-and blaKPC genes from clinical isolates, both prevalent in multidrug-resistant bacteria. It is known that clinical Enterobacteriaceae strains possess multiple resistance mechanisms which could impair the efficiency of the system. In addition, the resistance levels are directly dependent of the plasmid copy number. Hence, the aim of this thesis was to explore further the CRISPR-Cas9 technology in challenging conditions, especially when facing high copy plasmids and when targeting clinical bacteria. This thesis aims at contributing to clarify all the possible scenarios obtained with the application of the CRISPR-Cas9 system in resistance reduction in order to establish this tool as an alternative method to counteract AMR. By using independent techniques as fluorescence-activated cell sorting (FACS), qPCR, and fluorescence microscopy, low levels of plasmid maintenance were detected in the cells upon CRISPR-Cas9 insertion. However, even though plasmid integrity could be detected, sequence alterations in the blaTEM-1 gene were observed, resulting in a dysfunction of the gene product and, therefore, in an antibiotic sensitive strain. In a clinical isolate of E. coli, plasmid clearance and re-sensitization to five beta-lactams were achieved. Reusability of antibiotics could be confirmed by infecting larvae of Galleria mellonella with CRISPR-Cas9-treated E. coli, as opposed to infection with the 16 unmodified clinical isolate. The drug sensitivity levels could also be increased in a clinical isolate of Enterobacter cloacae and to a lesser extent in Klebsiella variicola, both of which harboured also the blaCTX-M gene. When changing target to the blaKPC gene, resistance reduction to the intermediate level of imipenem was achieved in 63% of the retrieved clones of Klebsiella oxytoca clinical isolate. Interestingly, both still resistant and intermediate sensitive clones had the plasmid copy number and the blaKPC gene expression reduced. Moreover, fitness levels were also significantly decreased when either intermediate or still resistant clones were compared to the CRISPR-Cas9 untreated control. However here, CRISPR-Cas9 did not contribute to increase larvae survival after challenge with different clones of K. oxytoca. Finally, a functional CRISPR-Cas9 delivery system via bacteriophages was developed, expanding the possibilities of applicability of the technique. To conclude, our data demonstrated that the targeted strain was not able to sufficiently evade the CRISPR-Cas9-based manipulation and maintain resistance phenotype by means of plasmid amplification. Despite the versatile challenges imposed by clinical isolates, the interference with the resistance gene led after all from minor to clear resistance reductions. Overexpression of efflux pumps or alterations in porins in the clinical isolates, if having occurred, did not prevent resistance reduction. Moreover, all possible CRISPR-Cas9-based outcomes of targeting a resistance gene, i.e. plasmid clearance; resistance gene disruption; or reduction of plasmid copy number impacted the horizontal gene transfer of resistant plasmids. In light of the fact that antimicrobial resistance has spread worldwide with serious impact on human lives, the findings of this study provides relevant details regarding the possible outcomes when using the CRISPR-Cas9 as an alternative tool to reduce resistance in clinically relevant pathogens.
Abstract: A crise de resistência bacteriana a antimicrobianos (AMR) torna necessária o desenvolvimento de medidas efetivas para a redução da disseminação de genes de resistência transmitidos por plasmídeos, cenário em que os patógenos oportunistas da família Enterobacteriaceae apresentam um papel relevante. O sistema CRISPR-Cas9 representa uma abordagem inovadora e efetiva para combater a AMR, o qual foi recentemente empregado para a total eliminação de plasmídeos em linhagens laboratoriais de Escherichia coli. Nesta tese, este sistema foi amplamente explorado, tendo como alvo o gene de resistência blaTEM-1 tanto localizado em um plasmídeo de alto número de cópias (> 100 cópias / célula) quanto presente em isolados clínicos. Além disso, o gene blaKPC, prevalente em amostras multirresistentes, também foi utilizado como alvo para o CRISPR-Cas9, em isolados clínicos bacterianos. Sabe-se que as linhagens clínicas da família Enterobacteriaceae possuem múltiplos mecanismos de resistência que podem prejudicar a eficiência do sistema. Além disso, os níveis de resistência são diretamente dependentes do número de cópias do plasmídeo. Assim, o objetivo desta tese foi explorar ainda mais a tecnologia CRISPR-Cas9 em condições desafiadoras, isto é, na presença de plasmídeos de alto número de cópias e para reverter resistência em isolados clínicos. Com isso, o presente estudo visa contribuir para o esclarecimento de todos os possíveis cenários obtidos com a aplicação do sistema CRISPR-Cas9 na redução da resistência, a fim de consolidá-la como um método alternativo para neutralizar a AMR. Utilizando técnicas independentes como citômetro de fluxo (FACS), qPCR e microscopia de fluorescência, foram verificados níveis baixos de manutenção de plasmídeos nas células após a inserção do CRISPR-Cas9. No entanto, mesmo detectando a integridade do plasmídeo, a sequência do gene blaTEM-1 se encontrava alterada, resultando em uma 18 disfunção da proteína transcrita e, portanto, em um clone sensível a antibióticos. No isolado clínico de E. coli, CRISPR-Cas9 foi responsável pela completa remoção do plasmídeo, juntamente com a re-sensibilização bacteriana a cinco beta-lactâmicos. Antibióticos puderam ser reutilizados com eficácia para tratar larvas da espécie Galleria mellonella infectadas com clones de isolados clínicos de E. coli previamente tratados com CRISPR-Cas9. De forma contrária, baixos níveis de sobrevivência foram obtidos em larvas infectadas com o isolado clínico não tratado pelo CRISPR-Cas9. Os níveis de sensibilidade a antimicrobianos também aumentaram em isolados clínicos de Enterobacter cloacae e, em menor grau, em Klebsiella variicola, ambos contendo também o gene blaCTX-M. Ao alterar o alvo para o gene blaKPC, foi possível obter uma redução da resistência a imipenem para o nível intermediário em 63% dos clones de Klebsiella oxytoca. Curiosamente, em ambos os clones resistentes e com sensibilidade intermediária, uma redução no número de cópias do plasmídeo, bem como na expressão gênica do blaKPC foi obtida. Além disso, os níveis de fitness bacteriano também foram significativamente reduzidos quando clones com sensibilidade intermediária ou ainda resistentes foram comparados ao controle, este não tratado pelo CRISPR-Cas9. Apesar disso, nenhum impacto in vivo pôde ser alcançado quando larvas de G. mellonella infectadas com diferentes clones de K. oxytoca foram tratadas com imipenem. Finalmente, um sistema funcional de entrega do CRISPR-Cas9 por meio de bacteriófagos foi desenvolvido, ampliando as possibilidades de aplicabilidade da técnica. Para concluir, nossos dados demonstraram que as linhagens tratadas pelo CRISPR-Cas9 não foram capazes de evadir eficientemente do sistema e manter o fenótipo de resistência por meio de amplificação do plasmídeo. Apesar dos desafios versáteis impostos pelos isolados clínicos, a interferência por meio do CRISPR-Cas9 nos genes de resistência levou tanto a aumentos marginais quanto significativos na sensibilidade a 19 antimicrobianos. A superexpressão de bombas de efluxo ou alterações nas porinas nos isolados clínicos, caso tenham ocorrido, não impediram a redução da resistência. Além disso, todos os possíveis resultados obtidos pelo CRISPR-Cas9 quando usado para reduzir AMR, isto é, eliminação total do plasmídeo; ruptura do gene de resistência; ou redução do número de cópias do plasmídeo, impactam diretamente na transferência horizontal de genes. Tendo em vista o fato de que a resistência antimicrobiana se espalhou globalmente, gerando graves impactos na vida humana, os resultados deste estudo fornecem detalhes relevantes sobre o uso do CRISPR-Cas9 como uma ferramenta alternativa para reduzir a resistência em bactérias clinicamente relevantes.
Subject: Microbiologia
Proteína 9 Associada à CRISPR
Resistência a antimicrobianos
Plasmídeos
language: eng
metadata.dc.publisher.country: Brasil
Publisher: Universidade Federal de Minas Gerais
Publisher Initials: UFMG
metadata.dc.publisher.department: ICB - INSTITUTO DE CIÊNCIAS BIOLOGICAS
metadata.dc.publisher.program: Programa de Pós-Graduação em Microbiologia
Rights: Acesso Aberto
URI: http://hdl.handle.net/1843/32958
Issue Date: 15-Jan-2020
Appears in Collections:Teses de Doutorado

Files in This Item:
File Description SizeFormat 
Thesis_Tagliaferri_Corrections.pdf8.29 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.