Use este identificador para citar ou linkar para este item: http://hdl.handle.net/1843/35377
Tipo: Tese
Título: Inferência Bayesiana exata para processos de Cox level-set
Título(s) alternativo(s): Exact Bayesian inference in spatial level set Cox processes
Autor(es): Bárbara da Costa Campos Dias
Primeiro Orientador: Flávio Bambirra Gonçalves
Primeiro membro da banca : Dani Gameman
Segundo membro da banca: Marcos Oliveira Prates
Terceiro membro da banca: Rafael Izbicki
Quarto membro da banca: Daiane Aparecida Zuanetti
Resumo: Esta tese propõe uma família de processos de Cox multidimensionais com função intensidade constante por partes e uma metodologia Bayesiana exata para se fazer inferência estatística nessa família. A família proposta é baseada no modelo Bayesiano Level-set proposto por Dunlop et al. [2016]. A. A motivação para se propor esses processos é o fato de processos de Cox com intensidade constante por partes serem adequados para modelar diversos fenômenos e, por serem mais simples, proporcionarem uma menor variabilidade quando comparado a modelos em que a intensidade varia continuamente no espaço. Uma função de ajuste de nível, determinada por um processo Gaussiano latente, determina de forma flexível as regiões do espaço que apresentam intensidades constantes. Apesar da não tratabilidade da função de verossimilhança e da dimensionalidade infinita do problema, a metodologia de inferência proposta é baseada em um algoritmo MCMC (Markov chain Monte Carlo) que converge para a distribuição a posteriori exata da função intensidade e outras componentes latentes do modelo. Isso significa que não existe erro de discretização envolvido, como nas metodologias existentes na literatura para abordar o mesmo problema. O algoritmo MCMC utiliza técnicas recentes de simulação estocástica, como Pseudo-Marginal Metropolis e Poisson estimator.
Abstract: This thesis proposes a novel family of multidimensional Cox processes with piece-wise constant intensity function and an exact Bayesian approach to perform statistical inference in this family. This family is based on the Bayesian Level-set model proposed by Dunlop et al. [2016] and is motivated by the fact that such processes may be efficient to model a variety of point process phenomena. Furthermore, due to its simpler form when compared to continuously varying intensity functions, it is expected to provided more precise results. A level set function depends on a latent Gaussian process to flexibly determines the regions of the space with constant intensities. Despite the intractability of the likelihood function and infinite dimensionality of the parameter space, the proposed methodology does not resource to discrete approximations of the space (unlike competing methodologies in the literature) and Monte Carlo is the only source of inaccuracy. This arises from an MCMC algorithm that converges to the exact posterior distribution of all the unknown quantities in the model. The MCMC algorithm relies on recent stochastic simulation techniques, such as Pseudo-Marginal Metropolis and Poisson estimator. Finally simulated and real examples are presented to demonstrate the efficiency and applicability of the proposed methodology.
Assunto: Estatística - Teses.
Teoria bayesiana de decisão estatística - Teses.
Markov, Processos de – Teses.
Processos gaussianos – Teses.
Idioma: por
País: Brasil
Editor: Universidade Federal de Minas Gerais
Sigla da Instituição: UFMG
Departamento: ICX - DEPARTAMENTO DE ESTATÍSTICA
Curso: Programa de Pós-Graduação em Estatística
Tipo de Acesso: Acesso Aberto
URI: http://hdl.handle.net/1843/35377
Data do documento: 3-Dez-2019
Aparece nas coleções:Teses de Doutorado

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Texto.pdf1.85 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.