Please use this identifier to cite or link to this item: http://hdl.handle.net/1843/38138
Type: Tese
Title: Thermodynamic and cost analysis of Organic Rankine Energy Storage (ORES) systems
Other Titles: Análise termodinâmica e de custo do sistema de Armazenamento de Energia Rankine Orgânico (ORES)
Authors: Maury Martins de Oliveira Junior
First Advisor: Matheus Pereira Porto
First Co-advisor: Antônio Augusto Torres Maia
First Referee: Rafael Augusto Magalhães Ferreira
Second Referee: Thales Alexandre Carvalho Maia
Third Referee: Paulo Alexandre Costa Rocha
metadata.dc.contributor.referee4: Jonathan Radcliffe
Abstract: CAES (Compressed Air Energy Storage) and LAES (Liquid Air Energy Storage) are two of the most promising long-term energy storage solutions. However, CAES requires robust equipments and components due to the higher working pressures involved and also lower energy density, while LAES requires air liquefaction cycles,which imposes a relevant restriction to efficiency and increase costs. This work evaluate the potential use of organic fluids as an energy storage medium and proposed an energy storage system, named ORES (Organic Rankine Energy Storage) as na alternative to LAES and CAES. The objective of the ORES system is to gather some of the qualities and mitigate some of the drawbacks of both CAES and LAES. This study first focused on the evaluation of the potential of organic fluids as na energy storage medium in terms of exergy density and cost of the storage system (tank and fluid). Before evaluating the storage system, a set of five organic fluids was selected based on technical maturity, safety and environmental factors, namely R-152a, R-134a, R-142b, R-365mfc and R-141b. The evaluation of the potential of organic fluids as an energy storage medium showed that all of the evaluated working fluids achieved an exergy density higher than that of compressed air. The maximum exergy density for the organic fluids ranged from 8 to 15 kWh 𝑚−3 for pressures up to 4,200 kPa while the maximum exergy density for compressed air is 6.5 kWh 𝑚−3 and 180 kWh 𝑚−3 for liquid air. The cost of the storage system (tank and fluid) was found to be around 33% cheaper for the organic fluids close to their respective critical pressure when compared to the cost for compressed air at common CAES operational pressure (8,000 kPa). Then, the cost per unit exergy was calculated, R-152a, R-134a and R-142b had the lower cost per unit exergy. While the minimum cost per unit exergy for compressed air ranged from 3,000 to 5,000 $ kWh−1, the cost for R-152a, R-134a and R-142b ranged from 1,000 to 2,000 $ kWh−1 for storage volumes of 2 and 10 m3, respectively. In the second part of this study, a novel energy storage system based on the ORC (Organic Rankine Cycle) was proposed. The ORES system was evaluated under a quasi-steady state analysis and transiente analysis for the same fluids as for the organic fluid potential analysis. The quasisteady state analysis evaluated the effects of pressure at the HPT (High Pressure Tank) and the superheating degree on round-trip efficiency and the transient analysis evaluated the effects of high and low pressure tank volume on efficiency, energy density and CAPEX. The round-trip efficiency of the ORES system was relatively high for both the quasi-steady state and transient analysis, reaching up to 74% and 73%, respectively, similar to that of CAES and LAES. However, the energy density for all organic fluids was lower than that of CAES, reaching only up to 2.29 kWh m−3 for R-365mfc. This study showed that organic fluids have the potential to be an alternative to CAES and LAES for medium-scale, long-duration, energy storage systems, both in terms of efficiency and cost. It is believed that the proposed system can be further improved and, potentially, surpass the energy density of CAES while also reducing CAPEX, which was already cheaper than CAES.
Abstract: Este trabalho avaliou o potencial uso de fluidos orgânicos como meio de armazenamento de energia e propõe um sistema de armazenamento de energia, chamado de Armazenamento de Energia Rankine Orgânico (ORES) como alternativa aos sistemas LAES (Armazenamento de Energia por Ar Liquido) e CAES (Armazenamento de Energia por Ar Comprimido). CAES e LAES são duas das principais alternativas para armazenamento de energia de longo prazo. No entanto, CAES requer equipamentos e componentes robustos para lidar com as elevadas pressões e também apresenta baixa densidade de energia, enquanto o LAES requer ciclos de liquefação de ar, o que impõe sérias restrições à eficiência e maior custo. O objetivo do sistema ORES é incorporar algumas das vantagens enquanto mitiga as desvantagens de ambos os sistemas CAES e LAES. Este estudo focou, inicialmente, na avaliação do potencial dos fluidos orgânicos como meios de armazenamento de energia em termos de densidade de exergia e do custo do sistema de armazenamento (tanque e fluido). Antes de avaliar o sistema de armazenamento, um conjunto de cinco fluidos orgânicos foram selecionados com base na maturidade técnica, segurança e fatores ambientais, R-152a, R-134a, R-142b, R-365mfc e R-141b. A avaliação do potencial de fluidos orgânicos como meio de armazenamento de energia mostrou que todos os fluidos avaliados atingiram densidade de exergia superior à do ar comprimido. A máxima densidade de exergia para os fluidos orgânicos variou de 8 a 15 kWh 𝑚−3 para pressões de até 4,200 kPa enquanto a máxima densidade de exergia para o ar comprimido é 6,5 kWh 𝑚−3 e para o ar líquido 180 kWh 𝑚−3. O custo do sistema de armazenamento (tanque e fluido) para os fluidos orgânicos foi cerca de 33% menor quando comparados ao ar comprimido em condições operacionais comuns de sistemas CAES (8.000 kPa). O custo por unidade de exergia foi, então, calculado, sendo obtidos os menores valores para R-152a, R-134a e R-142b. Enquanto o custo por unidade de exergia mínimo para o ar comprimido variaram de 3.000 a 5.000 $ kWh−1, o custo para R-152a, R-134a e R-142b variou de 1.000 a 2.000 $ kWh−1 para volumes de armazenamento de 2 e 10 m3, respectivamente. Na segunda parte deste estudo um novo sistema de armazenamento de energia baseado do ORC (Ciclo Rankine Orgânico) é proposto. O sistema ORES proposto foi avaliado considerando uma análise em regime quase-permanente e uma análise transiente para os mesmos fluidos avaliados na análise do potencial dos fluidos orgânicos. A análise quase-permanente foi usada para avaliar os efeitos da pressão no HPT (tanque de alta pressão) e o grau de superaquecimento na eficiência de ciclo e a análise transiente foi usada para avaliar os efeitos do volume dos tanques de alta e baixa pressão, na eficiência, densidade energia e CAPEX do sistema. A eficiência de ciclo do sistema ORES obtida foi relativamente alta sob ambas a análise quasi-permanente e transiente, alcançando 74% e 73%, respectivamente, valores similares aos alcançados pelos sistemas CAES e LAES. No entanto, a densidade de energia do sistema ORES foi inferior ao do CAES, alcançando 2,29 kWh m−3 para o R-365mfc. Este estudo demonstrou que os fluidos orgânicos têm o potencial de se apresentar como alternativa aos sistemas CAES e LAES para armazenamento de energia em média escala e longa duração ambos em termos de eficiência e custo. Acredita-se que o sistema proposto pode ser aprimorado e, potencialmente, superar a densidade de energia do sistema CAES e ter seu CAPEX reduzido.
Subject: Engenharia mecânica
Energia - Armazenamento
Fluidos
language: eng
metadata.dc.publisher.country: Brasil
Publisher: Universidade Federal de Minas Gerais
Publisher Initials: UFMG
metadata.dc.publisher.department: ENG - DEPARTAMENTO DE ENGENHARIA MECÂNICA
metadata.dc.publisher.program: Programa de Pós-Graduação em Engenharia Mecanica
Rights: Acesso Aberto
metadata.dc.rights.uri: http://creativecommons.org/licenses/by-nd/3.0/pt/
URI: http://hdl.handle.net/1843/38138
Issue Date: 3-Aug-2020
Appears in Collections:Teses de Doutorado

Files in This Item:
File Description SizeFormat 
Thesis_Oliveira_2020_Thermodynamic_and_Cost_Analysis_of_the_ORES_system.pdf2.36 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons