Uso de informações estruturais da matriz de projeção para regularização de Extreme Learning Machines

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Primeiro orientador

Membros da banca

Leonardo José Silvestre
Rogério Martins Gomes
Murilo Saraiva de Queiroz

Resumo

O estudo tem como objetivo principal avaliar a possibilidade de se utilizar alguma informação a respeito da separabilidade linear dos dados projetados na camada oculta de uma rede neural do tipo ELM como informação para obtenção automática de um parâmetro de Regularização de Tikhonov. Redes neurais do tipo ELM são redes que podem ser treinadas de forma muito rápida e que apresentam a propriedade de aproximação universal. Alguma forma de regularização é necessária para que redes neurais do tipo ELM sejam capazes de generalizar e a regularização de Tikhonov é uma possibilidade. No entanto, tal técnica envolve a escolha de um parâmetro que pondera entre a minimização do erro de treinamento e a minimização da norma dos pesos. Tal escolha é geralmente feita por meio de um processo de validação cruzada, que é caro e contraditório a um dos princípios das ELM, que é, justamente, a alta velocidade de treinamento. As metodologias propostas geram modelos regularizados em tempo muito menor que o gasto para obter parâmetros por validação cruzada e com desempenho (medido em termos de acurácia) muito semelhante. Foram ainda, brevemente, desenvolvidas ideias estudando a possibilidade de se utilizar a matriz de distância da camada oculta de uma rede neural do tipo ELM para o treinamento e a respeito da regularização (sem parâmetros) de redes ELM construídas com spiking neurons.

Abstract

This work aims at evaluating the usage of some linear separability measure taken from the structure of a hidden layer projected matrix of an Extreme Learning Machine as prior information for automatic obtention of a regularization parameter for a Tikhonov Regularization. Extreme Learning Machines (ELM) are networks that can be trained very quickly and present universal approximation property. Some regularization is usually necessary in order to stop ELMs from overfitting and Tikhonov Regularization is a straightforward option. Such technique, however, demands the selection of a regularization parameter that weights the training error minimization and the network weights norm minimization. This selection is usually carried out by cross validation, which increases training times and in fact goes against ELM philosophy. Proposed methodologies are capable of generating regularized models with similar performance to those obtained through cross validation and in much shorter times. The distance matrix calculated from the hidden layer of an ELM is also briefly explored and a proposal of parameterless regularization of Spiking Neurons ELMs is introduced.

Assunto

Engenharia elétrica, Aprendizado do computador, Redes neurais (Computação)

Palavras-chave

Regularização, Redes neurais, Aprendizado de máquinas

Citação

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por