Please use this identifier to cite or link to this item: http://hdl.handle.net/1843/42604
Full metadata record
DC FieldValueLanguage
dc.contributor.advisor1Ana Paula de Carvalho Teixeirapt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/0157609658246739pt_BR
dc.contributor.advisor-co1Paula Sevenini Pintopt_BR
dc.contributor.referee1Maria Helena de Araujopt_BR
dc.contributor.referee2Fernando Soares Lameiraspt_BR
dc.creatorLucas Lorenzinipt_BR
dc.creator.Latteshttp://lattes.cnpq.br/8919762194055093pt_BR
dc.date.accessioned2022-06-22T19:46:35Z-
dc.date.available2022-06-22T19:46:35Z-
dc.date.issued2022-01-31-
dc.identifier.urihttp://hdl.handle.net/1843/42604-
dc.description.abstractThe iron mining is one of the most important activities in Brazil. The iron ore beneficiation process is responsible for generating a large volume of two types of tailings: sandy and mud tailings. Both are directed and stored in containment dams. The sandy tailings have high levels of SiO2 in their composition and, when reacting with an alkaline base, can be extracted as silicate from the corresponding alkali metal, producing a product of high added value. In this work, two different routes were used to obtain potassium silicate from iron mining tailings (RM), the hydrothermal route (HR) and the solid route (SR). For the hydrothermal route, the reaction was carried out at different times (4, 6, 8, and 24 hours) and different amounts of KOH (12, 15, and 18 g), using 12 g of mining tailings. In the solid route, for the same RM mass, only the amount of KOH used (12, 15, and 18 g) was varied. The SiO2 and K2O contents of the products obtained in each of the routes were quantified by titration. X-ray Diffraction (XRD), Mössbauer Spectroscopy, Infrared Absorption Spectroscopy (IR-ATR), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Spectroscopy (EDS) were performed to understand the transformations that occur in the quartz and iron phases after the reactions. The results obtained by the characterization techniques showed the fragmentation of quartz particles present in the RM, indicating that the methodologies used were effective. Potassium silicates produced through the hydrothermal processes carried out at 2, 6, 8, and 24 hours showed 7.58, 7.85, 8.82 and 14.65 wt% SiO2, respectively. When the procedure was performed by varying the base concentration, 14.08, 14.65 and 13.27 wt% SiO2 were obtained using 12, 15, and 18 g of KOH, respectively. The SR, which used 18 g of potassium hydroxide, produced a material with K2O and SiO2 contents of 45.88 and 35.60 wt%, respectively. This material was used in the preparation of an activator solution for the production of geopolymers in different formulations, using iron mining tailings as filler (25 and 50% proportions). The materials presented results of mechanical resistance to compression that vary between 9.64 and 21.12 MPa, after 7 days of curing. In addition, a new proposal for geopolymer synthesis was carried out starting from solid potassium silicate and without the previous preparation of an activating solution. After 7 days of curing, the material showed a compressive strength of 31.21 MPa. The resistance results presented are close to those described in the literature.pt_BR
dc.description.resumoA exploração do minério de ferro é uma das atividades econômicas mais importantes do Brasil. O processo de beneficiamento do minério de ferro é responsável por gerar um grande volume de dois tipos de rejeito: o rejeito arenoso e a lama. Ambos são direcionados e armazenados em barragens de contenção. O rejeito arenoso apresenta elevados teores de SiO2 em sua composição e, ao reagir com uma base alcalina, a sílica presente pode ser extraída como silicato do metal alcalino correspondente, produzindo um produto de alto valor agregado. Neste trabalho, duas rotas diferentes foram utilizadas para obter silicato de potássio a partir de rejeitos de mineração de ferro (RM), a rota hidrotérmica (RH) e a rota sólida (RS). Para a rota hidrotérmica, a reação foi realizada em diferentes tempos (4, 6, 8 e 24 horas) e diferentes quantidades de KOH (12, 15 e 18 g), utilizando 12 g de rejeito de mineração. Na rota sólida, para a mesma massa de RM, variou-se apenas quantidade de KOH utilizada (12, 15 e 18 g). Os teores de SiO2 e K2O dos produtos obtidos em cada uma das rotas foram quantificados por titulação. Análises de Difração de Raios X (DRX), Espectroscopia Mössbauer, Espectroscopia de Absorção na Região do Infravermelho (IV-ATR), Microscopia Eletrônica de Varredura (MEV) e Microanálise por Espectroscopia de Raios X por Dispersão em Energia (EDS) foram realizadas com intuito de compreender as transformações que ocorrem nas fases de quartzo e ferro após as reações. Os dados obtidos pelas técnicas de caracterização evidenciaram a fragmentação das partículas de quartzo presentes no RM, indicando que as metodologias empregadas foram eficazes. Os silicatos de potássio produzidos através dos processos hidrotérmicos realizados em 2, 6, 8 e 24 horas apresentaram um teor de SiO2 (em massa) de 7,58, 7,85, 8,82 e 14,65%, respectivamente. Quando o procedimento foi realizado variando-se a concentração da base, 14,08, 14,65 e 13,27% de SiO2 foram obtidos ao usar 12, 15 e 18 g de KOH, respectivamente. A RS, que utilizou 18 g de hidróxido de potássio, originou um material com teores de K2O e SiO2 de 45,88 e 35,60% (em massa), respectivamente. Este material foi utilizado no preparo de uma solução ativadora para a produção de geopolímeros em diferentes formulações, empregando rejeito de mineração de ferro como carga (proporção de 25 e 50%). Os materiais apresentaram resultados de resistência mecânica à compressão que variam entre 9,64 e 21,12 Mpa, após 7 dias de cura. Além disso, uma nova proposta de síntese de geopolímero foi realizada partindo de silicato de potássio sólido e sem o preparo prévio de uma solução ativadora. Após 7 dias de cura o material apresentou resistência à compressão de 31,21 Mpa. Os resultados de resistência apresentados estão próximos aos descritos pela literatura.pt_BR
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopt_BR
dc.description.sponsorshipFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Geraispt_BR
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal de Minas Geraispt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentICX - DEPARTAMENTO DE QUÍMICApt_BR
dc.publisher.programPrograma de Pós-Graduação em Químicapt_BR
dc.publisher.initialsUFMGpt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectRejeito de mineração de ferropt_BR
dc.subjectSilicato de potássiopt_BR
dc.subjectRota hidrotérmicapt_BR
dc.subjectRota sólidapt_BR
dc.subjectGeopolímeropt_BR
dc.subjectIron mining tailingspt_BR
dc.subjectPotassium silicatept_BR
dc.subjectHydrothermal routept_BR
dc.subjectSolid routept_BR
dc.subjectGeopolymerpt_BR
dc.subject.otherQuímica inorgânicapt_BR
dc.subject.otherResíduospt_BR
dc.subject.otherFerropt_BR
dc.subject.otherMinas e mineraçãopt_BR
dc.subject.otherSilicatospt_BR
dc.subject.otherPotássiopt_BR
dc.subject.otherCompósitos poliméricospt_BR
dc.subject.otherSílicapt_BR
dc.subject.otherMossbauer, Espectroscopia dept_BR
dc.subject.otherMicroscopia eletrônica de varredurapt_BR
dc.subject.otherEspectroscopia de infravermelhopt_BR
dc.subject.otherRaios Xpt_BR
dc.subject.otherDifraçãopt_BR
dc.titleObtenção de silicato de potássio a partir de rejeito de mineração de ferro para produção de geopolímerospt_BR
dc.typeDissertaçãopt_BR
Appears in Collections:Dissertações de Mestrado



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.