Please use this identifier to cite or link to this item: http://hdl.handle.net/1843/50706
Full metadata record
DC FieldValueLanguage
dc.creatorBruno Ricardo de Carvalhopt_BR
dc.creatorSwastik Karpt_BR
dc.creatorVincent Henry Crespipt_BR
dc.creatorMauricio Terrones Maldonadopt_BR
dc.creatorLeandro Malard Moreirapt_BR
dc.creatorYuanxi Wangpt_BR
dc.creatorKazunori Fujisawapt_BR
dc.creatorTianyi Zhangpt_BR
dc.creatorEthan Kahnpt_BR
dc.creatorIsmail Bilginpt_BR
dc.creatorPulickel Madhavapanicker Ajayanpt_BR
dc.creatorAna Maria de Paulapt_BR
dc.creatorMarcos Assunção Pimentapt_BR
dc.date.accessioned2023-03-07T17:01:28Z-
dc.date.available2023-03-07T17:01:28Z-
dc.date.issued2019-
dc.citation.volume20pt_BR
dc.citation.issue1pt_BR
dc.citation.spage284pt_BR
dc.citation.epage291pt_BR
dc.identifier.doihttps://doi.org/10.1021/acs.nanolett.9b03795pt_BR
dc.identifier.issn1530-6992pt_BR
dc.identifier.urihttp://hdl.handle.net/1843/50706-
dc.description.resumoOne-dimensional defects in two-dimensional (2D) materials can be particularly damaging because they directly impede the transport of charge, spin, or heat and can introduce a metallic character into otherwise semiconducting systems. Current characterization techniques suffer from low throughput and a destructive nature or limitations in their unambiguous sensitivity at the nanoscale. Here we demonstrate that dark-field second harmonic generation (SHG) microscopy can rapidly, efficiently, and nondestructively probe grain boundaries and edges in monolayer dichalcogenides (i.e., MoSe2, MoS2, and WS2). Dark-field SHG efficiently separates the spatial components of the emitted light and exploits interference effects from crystal domains of different orientations to localize grain boundaries and edges as very bright 1D patterns through a Čerenkov-type SHG emission. The frequency dependence of this emission in MoSe2 monolayers is explained in terms of plasmon-enhanced SHG related to the defect’s metallic character. This new technique for nanometer-scale imaging of the grain structure, domain orientation and localized 1D plasmons in 2D different semiconductors, thus enables more rapid progress toward both applications and fundamental materials discoveries.pt_BR
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopt_BR
dc.description.sponsorshipFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Geraispt_BR
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpt_BR
dc.description.sponsorshipINCT – Instituto nacional de ciência e tecnologia (Antigo Instituto do Milênio)pt_BR
dc.languageengpt_BR
dc.publisherUniversidade Federal de Minas Geraispt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentICX - DEPARTAMENTO DE FÍSICApt_BR
dc.publisher.initialsUFMGpt_BR
dc.relation.ispartofNano Letters-
dc.rightsAcesso Restritopt_BR
dc.subjectNonlinear dark-fieldpt_BR
dc.subject2D monolayer dichalcogenidespt_BR
dc.subjectDefects imagingpt_BR
dc.subjectPlasmonspt_BR
dc.subjectNanoantennaept_BR
dc.subject.otherPlasmonspt_BR
dc.titleNonlinear dark-field imaging of one-dimensional defects in monolayer dichalcogenidespt_BR
dc.typeArtigo de Periódicopt_BR
dc.url.externahttps://pubs.acs.org/doi/10.1021/acs.nanolett.9b03795pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-5188-8685pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-6478-7082pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-3846-3193pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-0659-1134pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-3827-6921pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-7614-1972pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-8551-5948pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-3389-0682pt_BR
Appears in Collections:Artigo de Periódico

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.