Please use this identifier to cite or link to this item: http://hdl.handle.net/1843/52585
Full metadata record
DC FieldValueLanguage
dc.creatorLeonarde do Nascimento Rodriguespt_BR
dc.creatorLucas da Conceiçãopt_BR
dc.creatorÂngelo Malachias de Souzapt_BR
dc.creatorOdilon Divino Damasceno Couto Júniorpt_BR
dc.creatorFernando Iikawapt_BR
dc.creatorChristoph Friedrich Denekept_BR
dc.creatorDiego Scolfaro da Silvapt_BR
dc.date.accessioned2023-04-27T16:04:59Z-
dc.date.available2023-04-27T16:04:59Z-
dc.date.issued2021-
dc.citation.volume4pt_BR
dc.citation.issue3pt_BR
dc.citation.spage3140pt_BR
dc.citation.epage3147pt_BR
dc.identifier.doihttps://doi.org/10.1021/acsanm.1c00354pt_BR
dc.identifier.issn2574-0970pt_BR
dc.identifier.urihttp://hdl.handle.net/1843/52585-
dc.description.resumoStrain-based band structure engineering is a powerful tool to tune the optical and electronic properties of semiconductor nanostructures. We show that we can tune the band structure of InGaAs semiconductor quantum wells and modify the helicity of the emitted light by integrating them into rolled-up heterostructures and changing their geometrical configuration. Experimental results from photoluminescence and photoluminescence excitation spectroscopy demonstrate a strong energy shift of the valence-band states in comparison to flat structures, as a consequence of an inversion of the heavy-hole with the light-hole states in a rolled-up InGaAs quantum well. The inversion and mixing of the band states lead to a strong change in the optical selection rules for the rolled-up quantum wells, which show vanishing spin polarization in the conduction band even under near-resonant excitation conditions. Band structure calculations are carried out to understand the changes in the electronic transitions and to predict the emission and absorption spectra for a given geometrical configuration. Comparison between experiment and theory shows an excellent agreement. These observed profound changes in the fundamental properties can be applied as a strategic route to develop novel optical devices for quantum information technology.pt_BR
dc.format.mimetypepdfpt_BR
dc.languageengpt_BR
dc.publisherUniversidade Federal de Minas Geraispt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentICX - DEPARTAMENTO DE FÍSICApt_BR
dc.publisher.initialsUFMGpt_BR
dc.relation.ispartofACS Applied Nano Materials-
dc.rightsAcesso Abertopt_BR
dc.subjectBand structure inversionpt_BR
dc.subjectSemiconductor quantum wellpt_BR
dc.subjectOptical selection rulespt_BR
dc.subjectRolled-up microtubespt_BR
dc.subjectTensile and compressive hybrid statept_BR
dc.subjectCurved semiconductor membranept_BR
dc.subject.otherMicrotubospt_BR
dc.subject.otherSemicondutorespt_BR
dc.subject.otherInformação quânticapt_BR
dc.titleRolled-up quantum wells composed of nanolayered InGaAs/GaAs heterostructures as optical materials for quantum information technologypt_BR
dc.typeArtigo de Periódicopt_BR
dc.url.externahttps://pubs.acs.org/doi/10.1021/acsanm.1c00354pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-8703-4283pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-8416-3805pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-0865-7379pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-8556-386Xpt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-1127-4990pt_BR
Appears in Collections:Artigo de Periódico

Files in This Item:
File Description SizeFormat 
Rolled-Up Quantum Wells Composed of Nanolayered InGaAs GaAs.pdf3.22 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.