Please use this identifier to cite or link to this item: http://hdl.handle.net/1843/58412
Full metadata record
DC FieldValueLanguage
dc.contributor.advisor1Arnaldo de Albuquerque Araújopt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3059520185406581pt_BR
dc.contributor.advisor-co1Jean Coustypt_BR
dc.contributor.advisor-co2Yukiko Kenmochipt_BR
dc.creatorEdward Jorge Yuri Cayllahua-Cahuinapt_BR
dc.creator.Latteshttp://lattes.cnpq.br/3239895135949017pt_BR
dc.date.accessioned2023-09-04T18:15:33Z-
dc.date.available2023-09-04T18:15:33Z-
dc.date.issued2023-05-09-
dc.identifier.urihttp://hdl.handle.net/1843/58412-
dc.description.abstractA segmentação de imagens ´e um problema aberto na visão computacional que tem sido extensivamente investigado por muitos anos. A tarefa de segmentar uma imagem envolve dividir os pixels de uma imagem em diferentes partes, onde cada parte representa uma característica distinta na imagem. Existem duas abordagens gerais que foram desenvolvidas para a segmentação de imagens: segmentação de imagem plana e segmentação de imagem hierárquica. Em uma segmentação de imagem plana, o algoritmo visa capturar em uma ´única partição todos os elementos distinguíveis na imagem. Os objetos de uma imagem são compostos de vários detalhes; em uma abordagem de segmentação de imagem plana, tais detalhes e seus relacionamentos não são considerados. Isso significa que não há estrutura ou ideia de composição de detalhes para os objetos da imagem. Por outro lado, a segmentação hierárquica de imagens aborda a natureza multi-escalar de uma imagem e produz uma representação hierárquica da imagem. A literatura sobre algoritmos de segmentação plana de imagens ´e muito ampla e atualmente possui fundamentos teóricos mais estabelecidos em comparação com a segmentação hierárquica de imagens. Do ponto de vista teórico e algorítmico, existem poucos métodos bem compreendidos na segmentação hierárquica; consequentemente, existe uma brecha entre os estudos teóricos bem estabelecidos feitos para segmentação plana em comparação com a segmentação hierárquica, tal brecha nos d´a uma grande oportunidade para pesquisas sobre os aspectos teóricos e algorítmicos da segmentação hierárquica. Nesta tese, estudamos as noções teóricas e algorítmicas para um algoritmo de segmentação hierárquica de imagens. Examinamos e analisamos um m´método de segmentação de imagens planas baseado em grafos bem estabelecido e o estendemos para uma abordagem de segmentação de imagens hierárquica. As principais contribuições desta tese são as seguintes: •Um m´método de segmentação hierárquico de imagens baseado em grafos: propomos um m´método no qual, similarmente `a extensão de watersheds de segmentação plana para segmentação hierárquica, um n´nível da hierarquia resultante corresponde a uma instância do problema de segmentação plana baseado em grafos planos. • Uma base teórica para hierarquizar um m´método de segmentação de imagens baseado em grafos: elaboramos um formalismo preciso para estudar as propriedades formais para hierarquizar um m´método de segmentação baseado em grafos. Como resultado desta base teórica, somos capazes de propor algoritmos eficientes e exatos para produzir um m´método de segmentação hierárquica de imagens. • Uma série de estratégias para a identificação de hiper parâmetros do m´método: estudamos a identificação de hiper parâmetros de nosso m´método baseado em grafos hierárquicos e propomos novas estratégias para configurar esses hiper parâmetros. • Uma extensão da segmentação baseada em grafos original: propomos uma generalização sobre a noção de medida de relevância originalmente usada pelo m´método baseado em grafos, tal generalização nos permite produzir hierarquias que dão mais importância a regiões que contem certas características. • A demonstração de bom desempenho em uma avaliação prática: validamos e mostramos que todas as nossas propostas têm um bom desempenho em situações práticas, utilizando um framework de avaliação especificamente proposto para hierarquias. Em conclusão, esta tese fornece uma nova base teórica e algorítmica sobre a hierarquização de uma segmentação de imagens baseada em grafos. Nossas contribuições levam a algoritmos eficientes e exatos para calcular um m´método de segmentação hierárquica de imagens baseado em grafos, que ´e prático para seu uso em análise de imagens e visão computacional.pt_BR
dc.description.resumoImage segmentation is an open problem in computer vision that has been extensively investigated for many years. The task of segmenting an image involves dividing the pixels of an image into different pieces, where each piece represents a distinguished characteristic in the image. There are two general approaches that have been developed for image segmentation: flat-image segmentation and hierarchical image segmentation. In flat-image segmentation, the algorithm aims to capture in a single partition all the distinguishable elements in the image. The objects in an image are composed of several details; in a flat-image segmentation approach, such details and their relationships are not considered. This means there is no structure or idea of the composition of details for the objects of the image. On the other hand, hierarchical image segmentation tackles the multi-scale nature of an image and produces a hierarchical image representation. The literature about flat-image segmentation algorithms is ample and currently has a more established theoretical background than hierarchical image segmentation. From a theoretical and algorithmic perspective, there are few methods well understood in hierar- chical segmentation; consequently, there is a gap between the well-established theoretical studies made for flat segmentation compared to hierarchical segmentation, such gap gives us a great opportunity for research on the theoretical and algorithmic aspects of hierar- chical segmentation. This thesis studies the theoretical and algorithmic notions for a hierarchical image segmentation algorithm. We examine and analyze a well-established graph-based flat im- age segmentation method and we extend it to a hierarchical image segmentation approach. The main contributions of this thesis are the following:• A hierarchical graph-based image segmentation method: we propose a method that, similarly to the extension of watersheds from flat to hierarchical, one level of the resulting hierarchy corresponds to one instance of the flat graph-based segmentation problem. • A theoretical background for hierarchizing a graph-based image segmentation method: we elaborate a precise formalism to study the formal properties to hierarchize a graph-based segmentation method. As a result of this theoretical background, we are able to propose efficient and exact algorithms to compute a hierarchical image segmentation method. • A series of strategies for the identification of key hyper-parameters of the method: we study the identification of key hyper-parameters of our hierarchical graph-based method and propose new strategies to set up these hyper-parameters. • An extension of measures for the original graph-based segmentation: we propose a generalization on the notion of relevance measure originally used by the graph- based method. Thanks to our generalization, we are able to include new relevance measures in the hierarchical graph-based image segmentation method. The new relevance measures produce hierarchies that give more importance to regions that contain certain characteristics. • The demonstration of good performance in a practical evaluation: we validate and show that all of our proposals have a good performance in practical situations, using an evaluation framework specifically proposed for hierarchies. In conclusion, this thesis gives new theoretical and algorithmic background on the hierarchization of graph-based image segmentation. Our contributions lead to efficient and exact algorithms to compute a hierarchical graph-based image segmentation method, which is practical for its usage in image analysis and computer vision.pt_BR
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopt_BR
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpt_BR
dc.languageengpt_BR
dc.publisherUniversidade Federal de Minas Geraispt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃOpt_BR
dc.publisher.programPrograma de Pós-Graduação em Ciência da Computaçãopt_BR
dc.publisher.initialsUFMGpt_BR
dc.rightsAcesso Abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pt/*
dc.subjectImage segmentationpt_BR
dc.subjectHierarchical analysispt_BR
dc.subjectQuasi-flat zonept_BR
dc.subjectIncremental algorithpt_BR
dc.subject.otherComputação – Tesespt_BR
dc.subject.otherSegmentação de imagens - Tesespt_BR
dc.subject.otherAnálise hierárquica – Tesespt_BR
dc.subject.otherAlgoritmo incremental – Tesespt_BR
dc.titleAlgorithms for hierarchical graph-based image segmentationpt_BR
dc.typeTesept_BR
Appears in Collections:Teses de Doutorado

Files in This Item:
File Description SizeFormat 
tesisForUFMG.pdf18.14 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons