Use este identificador para citar o ir al link de este elemento: http://hdl.handle.net/1843/59821
Tipo: Artigo de Periódico
Título: Feasibility of computational vision in the genetic improvement of sweet potato root production
Título(s) alternativo(s): Viabilidade da visão computacional no melhoramento genético na produção de raízes de batata-doce
Autor(es): Ana Clara Gonçalves Fernandes
Nermy Ribeiro Valadares
Clóvis Henrique Oliveira Rodrigues
Rayane Aguiar Alves
Lis Lorena Melúcio Guedes
Jailson Ramos Magalhães
Rafael Bolina da Silva
Luan Souza de Paula Gomes
Alcinei Místico Azevedo
Resumen: The improvement of sweet potato is a costly job due to the large number of characteristics to be analyzed for the selection of the best genotypes, making it necessary to adopt new technologies, such as the use of images, associated with the phenotyping process. The objective of this research was to develop a methodology for the phenotyping of the root production aiming genetic improvement of half-sib sweet potato progenies through computational analysis of images and to compare its performance to the traditional methodology of evaluation. Sixteen half-sib sweet potato families in a randomized block design with 4 replications were evaluated. At plant level, the weight per root and the total number of roots were evaluated. The images were acquired in a “studio” made of mdf with a digital camera model Canon PowerShotSX400 IS, under artificial lighting. The evaluations were carried out using the R software, where a second-degree polynomial regression model was fitted to predict the root weight (in grams) and the genetic values and expected gains were obtained. It was possible to predict the root weight at plant and plot level, obtaining high coefficients of determination between the predicted and observed weight. Computer vision allowed the prediction of root weight, maintaining the genotype ranking and consequently the similarity between the expected gains with the selection. Thus, the use of images is an efficient tool for sweet potato genetic improvement programs, assisting in the crop phenotyping process.
Abstract: O melhoramento da batata-doce é um trabalho oneroso em decorrência do grande número de características analisadas para a seleção dos melhores genótipos, fazendo-se necessária a adoção de novas tecnologias, como o uso de imagens, associadas ao processo de fenotipagem. Objetivou-se desenvolver uma metodologia para a fenotipagem da produção de raízes para o melhoramento genético de progênies de meios irmãos de batata-doce por meio da análise computacional de imagens e comparar seu desempenho com a metodologia tradicional de avaliação. Foram avaliadas 16 famílias de meios irmãos de batata-doce em delineamento de blocos casualizados com 4 repetições. Avaliou-se a nível de plantas o peso por raiz. As imagens foram adquiridas em um “estúdio” feito com mdf com uma câmera digital modelo Canon PowerShotSX400 IS, sob iluminação artificial. As avaliações foram realizadas no software R, onde para a predição do peso das raízes (em gramas) foi ajustado um modelo de regressão polinomial de segundo grau e foram obtidos os valores genéticos e ganhos esperados. Foi possível predizer o peso das raízes a nível de plantas e de parcelas, obtendo altos coeficientes de determinação entre o peso predito e observado. A visão computacional permitiu a predição do peso das raízes, mantendo o ranqueamento dos genótipos e consequentemente a similaridade entre os ganhos esperados com a seleção. Assim, o uso de imagens é uma ferramenta eficiente para programas de melhoramento genético da batata-doce, auxiliando no processo de fenotipagem da cultura.
Asunto: Batata-doce
Genética vegetal
Melhoramento genético
Análise de imagem
Idioma: eng
País: Brasil
Editor: Universidade Federal de Minas Gerais
Sigla da Institución: UFMG
Departamento: ICA - INSTITUTO DE CIÊNCIAS AGRÁRIAS
Tipo de acceso: Acesso Aberto
Identificador DOI: https://doi.org/10.1590/s0102-0536-20220405
URI: http://hdl.handle.net/1843/59821
Fecha del documento: 2022
metadata.dc.url.externa: https://www.scielo.br/j/hb/a/Gj6QyQkqQtyfnXKDXK3MVRv/?format=pdf&lang=en
metadata.dc.relation.ispartof: Horticultura Brasileira
Aparece en las colecciones:Artigo de Periódico

archivos asociados a este elemento:
archivo Descripción TamañoFormato 
Feasibility of computational vision in the genetic improvement of sweet potato root production.pdf935.31 kBAdobe PDFVisualizar/Abrir


Los elementos en el repositorio están protegidos por copyright, con todos los derechos reservados, salvo cuando es indicado lo contrario.