Please use this identifier to cite or link to this item: http://hdl.handle.net/1843/60864
Full metadata record
DC FieldValueLanguage
dc.creatorAndrey M. Stejkopt_BR
dc.creatorAlexander G. Kosovichevpt_BR
dc.creatorNicholas Andrew Featherstonept_BR
dc.creatorGustavo Andres Guerrero Erasopt_BR
dc.creatorBradley W. Hindmanpt_BR
dc.creatorLoren I. Matilskypt_BR
dc.creatorJörn Warneckept_BR
dc.date.accessioned2023-11-13T15:20:58Z-
dc.date.available2023-11-13T15:20:58Z-
dc.date.issued2022-
dc.citation.volume934pt_BR
dc.citation.issue2pt_BR
dc.citation.spage1pt_BR
dc.citation.epage11pt_BR
dc.identifier.doihttps://doi.org/10.3847/1538-4357/ac7a44pt_BR
dc.identifier.issn1538-4357pt_BR
dc.identifier.urihttp://hdl.handle.net/1843/60864-
dc.description.resumoGlobal hydrodynamic simulations of internal solar dynamics have focused on replicating the conditions for solar-like (equator rotating faster than the poles) differential rotation and meridional circulation using the results of helioseismic inversions as a constraint. Inferences of meridional circulation, however, have provided controversial results showing the possibility of one, two, or multiple cells along the radius. To help address this controversy and develop a more robust understanding of global flow regimes in the solar interior, we apply a “forward-modeling” approach to the analysis of helioseismic signatures of meridional circulation profiles obtained from numerical simulations. We employ the global acoustic modeling code GALE to simulate the propagation of acoustic waves through regimes of mean mass-flows generated by global hydrodynamic and magnetohydrodynamic models: EULAG, the Pencil code, and the Rayleigh code. These models are used to create synthetic Dopplergram data products, used as inputs for local time–distance helioseismology techniques. Helioseismic travel-time signals from solutions obtained through global numerical simulations are compared directly with inferences from solar observations, in order to set additional constraints on global model parameters in a direct way. We show that even though these models are able to replicate solar-like differential rotation, the resulting rotationally constrained convection develops a multicell global meridional circulation profile that is measurably inconsistent with local time–distance inferences of solar observations. However, we find that the development of rotationally unconstrained convection close to the model surface is able to maintain solar-like differential rotation, while having a significant impact on the helioseismic travel-time signal, replicating solar observations within one standard deviation of the error due to noise.pt_BR
dc.format.mimetypepdfpt_BR
dc.languageengpt_BR
dc.publisherUniversidade Federal de Minas Geraispt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentICX - DEPARTAMENTO DE FÍSICApt_BR
dc.publisher.initialsUFMGpt_BR
dc.relation.ispartofThe Astrophysical Journal-
dc.rightsAcesso Abertopt_BR
dc.subjectHelioseismologypt_BR
dc.subjectSolar convective zonept_BR
dc.subjectSolar meridional circulationpt_BR
dc.subjectHydrodynamical simulationspt_BR
dc.subject.otherSolpt_BR
dc.subject.otherHidrodinâmicapt_BR
dc.titleConstraining global solar models through helioseismic analysispt_BR
dc.typeArtigo de Periódicopt_BR
dc.url.externahttps://iopscience.iop.org/article/10.3847/1538-4357/ac7a44pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-7483-3257pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-0364-4883pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-2256-5884pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-2671-8796pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-7612-6628pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-9001-6118pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-9292-4600pt_BR
Appears in Collections:Artigo de Periódico

Files in This Item:
File Description SizeFormat 
Constraining Global Solar Models.pdf1.17 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.