Please use this identifier to cite or link to this item: http://hdl.handle.net/1843/60866
Full metadata record
DC FieldValueLanguage
dc.creatorGustavo Andres Guerrero Erasopt_BR
dc.creatorBonnie Romano Zairept_BR
dc.creatorPiotr Krzysztof Smolarkiewiczpt_BR
dc.creatorElisabete Maria de Gouveia Dal Pinopt_BR
dc.creatorAlexander G. Kosovichevpt_BR
dc.creatorNagi Nicolas Mansourpt_BR
dc.date.accessioned2023-11-13T15:49:18Z-
dc.date.available2023-11-13T15:49:18Z-
dc.date.issued2019-
dc.citation.volume880pt_BR
dc.citation.issue1pt_BR
dc.citation.spage1pt_BR
dc.citation.epage20pt_BR
dc.identifier.doihttps://doi.org/10.3847/1538-4357/ab224apt_BR
dc.identifier.issn1538-4357pt_BR
dc.identifier.urihttp://hdl.handle.net/1843/60866-
dc.description.resumoTwo fundamental properties of stellar magnetic fields have been determined by observations for solar-like stars with different Rossby numbers (Ro), namely, the magnetic field strength and the magnetic cycle period. The field strength exhibits two regimes: (1) for fast rotation, it is independent of Ro, and (2) for slow rotation, it decays with Ro following a power law. For the magnetic cycle period, two regimes of activity, the active and inactive branches, have also been identified. For both of them, the longer the rotation period, the longer the activity cycle. Using global dynamo simulations of solar-like stars with Rossby numbers between ∼0.4 and ∼2, this paper explores the relevance of rotational shear layers in determining these observational properties. Our results, consistent with nonlinear a W2 dynamos, show that the total magnetic field strength is independent of the rotation period. Yet at surface levels, the origin of the magnetic field is determined by Ro. While for Ro 1, it is generated in the convection zone, for Ro 1, strong toroidal fields are generated at the tachocline and rapidly emerge toward the surface. In agreement with the observations, the magnetic cycle period increases with the rotational period. However, a bifurcation is observed for ~Ro 1, separating a regime where oscillatory dynamos operate mainly in the convection zone from the regime where the tachocline has a predominant role. In the latter, the cycles are believed to result from the periodic energy exchange between the dynamo and the magneto-shear instabilities developing in the tachocline and the radiative interior.pt_BR
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopt_BR
dc.description.sponsorshipFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Geraispt_BR
dc.description.sponsorshipFAPESP - Fundação de Amparo à Pesquisa do Estado de São Paulopt_BR
dc.format.mimetypepdfpt_BR
dc.languageengpt_BR
dc.publisherUniversidade Federal de Minas Geraispt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentICX - DEPARTAMENTO DE FÍSICApt_BR
dc.publisher.initialsUFMGpt_BR
dc.relation.ispartofThe Astrophysical Journal-
dc.rightsAcesso Abertopt_BR
dc.subjectDynamopt_BR
dc.subjectStarspt_BR
dc.subjectMagnetic fieldpt_BR
dc.subject.otherEstrelaspt_BR
dc.subject.otherCampos magnéticospt_BR
dc.titleWhat sets the magnetic field strength and cycle period in solar-type stars?pt_BR
dc.typeArtigo de Periódicopt_BR
dc.url.externahttps://iopscience.iop.org/article/10.3847/1538-4357/ab224apt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-2671-8796pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-9328-9530pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-7077-3285pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-8058-4752pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-0364-4883pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-3927-3917pt_BR
Appears in Collections:Artigo de Periódico

Files in This Item:
File Description SizeFormat 
What Sets the Magnetic Field.pdf8.06 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.