Use este identificador para citar ou linkar para este item: http://hdl.handle.net/1843/65087
Tipo: Artigo de Periódico
Título: Development of a human motion analysis system based on sensorized insoles and machine learning algorithms for gait evaluation
Título(s) alternativo(s): Desenvolvimento de um sistema de análise do movimento humano baseado em palmilhas sensorizadas e algoritmos de aprendizado de máquina para avaliação da marcha
Autor(es): Diego Henrique Antunes Nascimento
Fabrício Anicio Magalhães
George Schayer Sabino
Renan Alves Resende
Maria Lúcia Machado Duarte
Claysson Bruno Santos Vimieiro
Resumo: Human gait analysis can provide an excellent source for identifying and predicting pathologies and injuries. In this respect, sensorized insoles also have a great potential for extracting gait information. This, combined with mathematical techniques based on machine learning (ML), can potentialize biomechanical analyses. The present study proposes a proof-of-concept of a system based on vertical ground reaction force (vGRF) acquisition with a sensorized insole that uses an ML algorithm to identify different patterns of vGRF and extract biomechanical characteristics that can help during clinical evaluation. The acquired data from the system was clustered by an immunological algorithm (IA) based on vGRF during gait. These clusters underwent a data mining process using the classification and regression tree algorithm (CART), where the main characteristics of each group were extracted, and some rules for gait classification were created. As a result, the system proposed was able to collect and process the biomechanical behavior of gait. After the application of IA and CART algorithms, six groups were found. The characteristics of each of these groups were extracted and verified the capability of the system to collect and process the biomechanical behavior of gait, offering verification points that can help focus during a clinical evaluation.
Abstract: A análise da marcha humana pode fornecer uma excelente fonte para identificar e prever patologias e lesões. Nesse aspecto, palmilhas sensorizadas também apresentam grande potencial para extrair informações da marcha. Isso, aliado a técnicas matemáticas baseadas em aprendizado de máquina (ML), pode potencializar as análises biomecânicas. O presente estudo propõe uma prova de conceito de um sistema baseado na aquisição de força de reação vertical do solo (vGRF) com palmilha sensorizada que utiliza um algoritmo ML para identificar diferentes padrões de vGRF e extrair características biomecânicas que podem auxiliar durante a avaliação clínica. Os dados adquiridos do sistema foram agrupados por um algoritmo imunológico (IA) baseado em vGRF durante a marcha. Esses clusters passaram por um processo de mineração de dados utilizando o algoritmo de árvore de classificação e regressão (CART), onde foram extraídas as principais características de cada grupo e criadas algumas regras para classificação da marcha. Como resultado, o sistema proposto foi capaz de coletar e processar o comportamento biomecânico da marcha. Após a aplicação dos algoritmos IA e CART, foram encontrados seis grupos. As características de cada um desses grupos foram extraídas e verificada a capacidade do sistema em coletar e processar o comportamento biomecânico da marcha, oferecendo pontos de verificação que podem auxiliar no foco durante uma avaliação clínica.
Assunto: Fenômenos biomecânicos
Marcha
Análise da marcha
Aprendizado de máquina
Idioma: eng
País: Brasil
Editor: Universidade Federal de Minas Gerais
Sigla da Instituição: UFMG
Departamento: EEF - DEPARTAMENTO DE FISIOTERAPIA
ENG - DEPARTAMENTO DE ENGENHARIA MECÂNICA
Tipo de Acesso: Acesso Aberto
Identificador DOI: https://doi.org/10.3390/inventions7040098
URI: http://hdl.handle.net/1843/65087
Data do documento: 2022
metadata.dc.url.externa: https://www.mdpi.com/2411-5134/7/4/98
metadata.dc.relation.ispartof: Inventions
Aparece nas coleções:Artigo de Periódico



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.