Use este identificador para citar o ir al link de este elemento:
http://hdl.handle.net/1843/76535
Registro completo de metadatos
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Anaclara Gonçalves Fernandes | pt_BR |
dc.creator | Nermy Ribeiro Valadares | pt_BR |
dc.creator | Clóvis Henrique Oliveira Rodrigues | pt_BR |
dc.creator | Rayane Aguiar Alves | pt_BR |
dc.creator | Lis Lorena Melucio Guedes | pt_BR |
dc.creator | André Luiz Mendes Athayde | pt_BR |
dc.creator | Alcinei Mistico Azevedo | pt_BR |
dc.date.accessioned | 2024-09-17T13:10:48Z | - |
dc.date.available | 2024-09-17T13:10:48Z | - |
dc.date.issued | 2023 | - |
dc.citation.volume | 13 | pt_BR |
dc.citation.spage | 1 | pt_BR |
dc.citation.epage | 8 | pt_BR |
dc.identifier.doi | https://doi.org/10.1038/s41598-023-34375-6 | pt_BR |
dc.identifier.issn | 20452322 | pt_BR |
dc.identifier.uri | http://hdl.handle.net/1843/76535 | - |
dc.description.resumo | The objective was to verify whether convolutional neural networks can help sweet potato phenotyping for qualitative traits. We evaluated 16 families of sweet potato half-sibs in a randomized block design with four replications. We obtained the images at the plant level and used the ExpImage package of the R software to reduce the resolution and individualize one root per image. We grouped them according to their classifications regarding shape, peel color, and damage caused by insects. 600 roots of each class were destined for training the networks, while the rest was used to verify the quality of the fit. We used the python language on the Google Colab platform and the Keras library, considering the VGG-16, Inception-v3, ResNet-50, InceptionResNetV2, and EfficientNetB3 architectures. The InceptionResNetV2 architecture stood out with high accuracy in classifying individuals according to shape, insect damage, and peel color. Image analysis associated with deep learning may help develop applications used by rural producers and improve sweet potatoes, reducing subjectivity, labor, time, and financial resources in phenotyping. | pt_BR |
dc.description.sponsorship | CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico | pt_BR |
dc.description.sponsorship | FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais | pt_BR |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | pt_BR |
dc.language | eng | pt_BR |
dc.publisher | Universidade Federal de Minas Gerais | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | ICA - INSTITUTO DE CIÊNCIAS AGRÁRIAS | pt_BR |
dc.publisher.initials | UFMG | pt_BR |
dc.relation.ispartof | scientific reports | - |
dc.rights | Acesso Aberto | pt_BR |
dc.subject | Batata-doce | pt_BR |
dc.subject | Redes neurais (Computação) | pt_BR |
dc.subject | Genética vegetal | pt_BR |
dc.subject | Melhoramento genético | pt_BR |
dc.subject.other | Batata-doce | pt_BR |
dc.subject.other | Redes neurais (Computação) | pt_BR |
dc.subject.other | Genética vegetal | pt_BR |
dc.subject.other | Melhoramento genético | pt_BR |
dc.title | Convolutional neural networks in the qualitative improvement of sweet potato roots | pt_BR |
dc.type | Artigo de Periódico | pt_BR |
dc.url.externa | https://www.nature.com/articles/s41598-023-34375-6 | pt_BR |
Aparece en las colecciones: | Artigo de Periódico |
archivos asociados a este elemento:
archivo | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Convolutional neural networks in the qualitative improvement of sweet potato roots.pdf | 1.24 MB | Adobe PDF | Visualizar/Abrir |
Los elementos en el repositorio están protegidos por copyright, con todos los derechos reservados, salvo cuando es indicado lo contrario.