Please use this identifier to cite or link to this item: http://hdl.handle.net/1843/79970
Type: Tese
Title: Desenvolvimento e avaliação de scaffolds compósitos e híbridos de vidros bioativos e poli(álcool vinílico) por técnicas avançadas de fabricação
Authors: Diogo Maia Moreira dos Santos
First Advisor: Eduardo Henrique Martins Nunes
First Referee: Daniel Cristian Ferreira Soares
Second Referee: Marcello Rosa Dumont
Third Referee: Breno Rocha Barrioni
metadata.dc.contributor.referee4: Manuel Noel Paul Georges Houmard
metadata.dc.contributor.referee5: Daniel Majuste
Abstract: A engenharia de tecidos ósseos é uma área de pesquisa promissora, com grande potencial para substituir ou reparar defeitos ósseos, oferecendo alternativas mais eficazes e econômicas em relação aos métodos tradicionais de enxerto. O uso de scaffolds bioativos na regeneração óssea não só melhora os resultados clínicos, mas também pode reduzir os custos hospitalares associados a procedimentos mais invasivos. Esse estudo apresenta o desenvolvimento e a caracterização de scaffolds compósitos à base dos vidros bioativos 58S (% m/m 58:33:9 de SiO2:CaO:P2O5) e 13-93 (% m/m 53:20:12:6:5:4 de SiO2:CaO:K₂O:Na2O:MgO:P2O5) variando entre composições de 30/70, 50/50 e 70/30 em porcentagem de massa entre os sólidos e de scaffolds de vidro bioativo 58S e o polímero biodegradável poli(álcool vinílico) (PVA) em porcentagens 95/05, 90/10 e 80/20, produzidos pelo processo de freeze-casting. Híbridos de vidro 58S e PVA de proporção 50/50 foram produzidos por impressão 3D. Os materiais obtidos foram caracterizados por microscopia eletrônica de varredura, espectroscopia de dispersão de energia por raios X, microtomografia de raios X, ensaios de porosidade e testes mecânicos de compressão uniaxial. A bioatividade foi analisada por imersão em solução fisiológica simulada, enquanto a citotoxicidade foi avaliada por citometria de fluxo e microscopia óptica. As propriedades mecânicas variaram de acordo com a proporção das fases. Nos scaffolds de 58S/13-93, um maior teor de 13-93 resultou em maior resistência mecânica e módulo de Young com valores de 11,25 ± 2,48 Mpa e 0,81 ± 0,27 GPa, respectivamente. Já nos scaffolds cerâmico-poliméricos, o aumento da fração polimérica culminou em um módulo de tenacidade de 154,0 ± 15,8 x 106 J.m-3, devido ao efeito de aglomeração das partículas provocadas pelo do PVA. Os scaffolds produzidos por freeze-casting e impressão 3D apresentaram porosidade adequada para aplicações em engenharia de tecidos, com valores superiores a 60 %. Além disso, todos os materiais demonstraram elevada bioatividade, com a formação de hidroxiapatita após 24 horas de imersão em fluido corpóreo simulado. Os testes de citotoxicidade confirmaram viabilidade celular superior a 80 %, indicando a biocompatibilidade dos materiais. Este trabalho demonstra que a proporção entre os vidros bioativos 58S e 13-93 e o polímero PVA pode ser ajustada para otimizar as propriedades mecânicas, a bioatividade e a estrutura porosa dos scaffolds, oferecendo soluções promissoras para a regeneração óssea.
Abstract: Bone tissue engineering is a promising research field with significant potential to replace or repair bone defects, offering more effective and cost-efficient alternatives to traditional grafting methods. The use of bioactive scaffolds in bone regeneration not only improves clinical outcomes but also reduces hospital costs associated with more invasive procedures. This study presents the development and characterization of composite scaffolds based on the bioactive glasses 58S (wt.% 58:33:9 of SiO₂:CaO:P₂O₅) and 13-93 (wt.% 53:20:12:6:5:4 of SiO₂:CaO:K₂O:Na₂O:MgO:P₂O₅) in compositions of 30/70, 50/50, and 70/30 by weight fraction between solids, as well as scaffolds of bioactive glass 58S and the biodegradable polymer polyvinyl alcohol (PVA) at percentages of 95/05, 90/10, and 80/20, produced via the freeze-casting process. Hybrids of 58S glass and PVA with a 50/50 ratio were produced by 3D printing. The obtained materials were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray microtomography, porosity analysis, and uniaxial compression mechanical tests. Bioactivity was analysed through immersion in simulated physiological solution, while cytotoxicity was assessed via flow cytometry and optical microscopy. The mechanical properties varied according to the phase ratio. For the 58S/13-93 scaffolds, a higher 13-93 content resulted in greater mechanical strength and Young's modulus, with values of 11.25 ± 2.48 MPa and 0.81 ± 0.27 GPa, respectively. In ceramic-polymer scaffolds, increasing the polymer fraction resulted in a toughness modulus of 154.0 ± 15.8 × 10⁶ J·m⁻³, attributed to particle agglomeration effects induced by the PVA. The scaffolds produced by freeze-casting and 3D printing showed porosity suitable for tissue engineering applications, with values exceeding 60%. Additionally, all materials exhibited high bioactivity, with hydroxyapatite formation observed after 24 hours of immersion in simulated body fluid. Cytotoxicity tests confirmed cell viability above 80%, indicating the biocompatibility of the materials. This work demonstrates that the proportion of bioactive glasses 58S and 13-93 and the polymer PVA can be adjusted to optimize the mechanical properties, bioactivity, and porous structure of the scaffolds, offering promising solutions for bone regeneration.
Subject: Materiais
Ciência dos materiais
Engenharia de tecidos
Vidros bioativos
Biomateriais
Impressão 3D
language: por
metadata.dc.publisher.country: Brasil
Publisher: Universidade Federal de Minas Gerais
Publisher Initials: UFMG
metadata.dc.publisher.department: ENG - DEPARTAMENTO DE ENGENHARIA METALÚRGICA
metadata.dc.publisher.program: Programa de Pós-Graduação em Engenharia Metalúrgica, Materiais e de Minas
Rights: Acesso Aberto
metadata.dc.rights.uri: http://creativecommons.org/licenses/by-nc-nd/3.0/pt/
URI: http://hdl.handle.net/1843/79970
Issue Date: 18-Oct-2024
Appears in Collections:Teses de Doutorado



This item is licensed under a Creative Commons License Creative Commons