Use este identificador para citar o ir al link de este elemento: http://hdl.handle.net/1843/80498
Tipo: Artigo de Periódico
Título: Deep learning-based pathology image analysis predicts cancer progression risk in patients with oral leukoplakia
Autor(es): Xinyi Zhang
Frederico O. Gleber Netto
Shidan Wang
Roberta Rayra Martins Chaves
Ricardo Santiago Gomez
Nadarajah Vigneswaran
Arunangshu Sarkar
William N. William Jr.
Vassiliki Papadimitrakopoulou
Michelle Williams
Diana Bell
Doreen Palsgrove
Justin Bishop
John V. Heymach
Ann M. Gillenwater
Jeffrey N. Myers
Renata Ferrarotto
Scott M. Lippman
Curtis Rg Pickering
Guanghua Xiao
Resumen: Background: Oral leukoplakia (OL) is associated with an increased risk for oral cancer (OC) development. Prediction of OL cancer progression may contribute to decreased OC morbidity and mortality by favoring early intervention. Current OL progression risk assessment approaches face large interobserver variability and is weakly prognostic. We hypothesized that convolutional neural networks (CNN)-based histology image analyses could accelerate the discovery of better OC progression risk models. Methods: Our CNN-based oral mucosa risk stratification model (OMRS) was trained to classify a set of nondysplastic oral mucosa (OM) and a set of OC H&E slides. As a result, the OMRS model could identify abnormal morphological features of the oral epithelium. By applying this model to OL slides, we hypothesized that the extent of OC-like features identified in the OL epithelium would correlate with its progression risk. The OMRS model scored and categorized the OL cohort (n = 62) into high- and low-risk groups. Results: OL patients classified as high-risk (n = 31) were 3.98 (95% CI 1.36-11.7) times more likely to develop OC than low-risk ones (n = 31). Time-to-progression significantly differed between high- and low-risk groups (p = 0.003). The 5-year OC development probability was 21.3% for low-risk and 52.5% for high-risk patients. The predictive power of the OMRS model was sustained even after adjustment for age, OL site, and OL dysplasia grading (HR = 4.52, 1.5-13.7). Conclusion: The ORMS model successfully identified OL patients with a high risk of OC development and can potentially benefit OC early diagnosis and prevention policies.
Asunto: Carcinogenesis
Disease progression
Leukoplakia, oral
Convolutional neural network
Mouth neoplasms
Idioma: eng
País: Brasil
Editor: Universidade Federal de Minas Gerais
Sigla da Institución: UFMG
Departamento: FAO - DEPARTAMENTO DE CLÍNICA
Tipo de acceso: Acesso Aberto
Identificador DOI: https://doi.org/10.1002/cam4.5478
URI: http://hdl.handle.net/1843/80498
Fecha del documento: 2023
metadata.dc.url.externa: https://onlinelibrary.wiley.com/doi/10.1002/cam4.5478
metadata.dc.relation.ispartof: Cancer Medicine
Aparece en las colecciones:Artigo de Periódico

archivos asociados a este elemento:
archivo Descripción TamañoFormato 
Deep learning-based pathology image analysis predicts cancer progression risk in patients with oral leukoplakia.pdf2.28 MBAdobe PDFVisualizar/Abrir


Los elementos en el repositorio están protegidos por copyright, con todos los derechos reservados, salvo cuando es indicado lo contrario.