Please use this identifier to cite or link to this item: http://hdl.handle.net/1843/BUBD-AYKLAC
Type: Dissertação de Mestrado
Title: Avaliação teórica e experimental do uso de resíduos siderúrgicos na sinterização
Authors: Victor Freire de Oliveira
First Advisor: Mauricio Covcevich Bagatini
First Referee: Aline Lima da Silva
Second Referee: Luiz Fernando Andrade de Castro
Abstract: A qualidade das reservas mundiais de minérios vem se alterando ao longo dos anos, exigindo que matérias-primas de menor teor de ferro sejam usadas pela siderurgia. Em concomitância com esse cenário, as legislações ambientais ao redor do mundo tornamse, a cada dia, mais restritivas, limitando a estocagem de resíduos siderúrgicos ou exigindo destinação específica para esses materiais. Tendo esses fatores em vista, o uso de resíduos ricos em ferro tem sido estudado, visando a obter ganhos em todas essas esferas e fornecendo sínter com propriedades adequadas ao uso no alto-forno. Para tal, é necessário verificar o comportamento dos diferentes resíduos siderúrgicos nas condições termodinâmicas e cinéticas do processo de sinterização bem como o efeito desses materiais sobre a qualidade do sínter e a influência nos parâmetros de processo da sinterização. Com esse objetivo, amostras de matérias-primas típicas de sinterizações de usinas brasileiras foram obtidas e caracterizadas (sínter feed, calcário, cal, dolomita, pó de coletor de alto-forno, lama de alto-forno, pó de aciaria e lama fina de aciaria). Misturas com conteúdo variado de resíduos foram preparadas e submetidas a testes a alta temperatura em um forno resistivo tubular. Os resultados de composições químicas e fases minerais confrontados com as previsões de um modelo termodinâmico de equilíbrio multicomponente, visando à validação desse último. Os resultados demonstraram que a reciclagem de 100% da geração típica de resíduos de uma usina siderúrgica pela rota de sinterização levaria a não mais que 4,5% de resíduos na mistura a sinterizar. A caracterização realizada apontou que o uso de até 50% de resíduos na mistura não alteraria sensivelmente a distribuição de tipos de partículas (nucleantes, aderentes, etc.) das misturas em comparação a uma mistura sem resíduos. Foi verificada, também, a presença, nesses resíduos de teores apreciáveis de ferro e carbono, de bom aproveitamento no processo de sinterização. Observou-se que, embora contenham teores maiores de zinco do que o sínter feed, os resíduos possuem propriedades químicas comparáveis ou superiores às do sínter feed. Dentre essas, destacam-se o maior teor de ferro total e menor teor de sílica. Os ensaios em temperaturas elevadas realizados indicaram que a reciclagem de 100% da geração típica de resíduos siderúrgicos pela rota de sinterização leva à obtenção de um sínter de propriedades químicas e fases minerais exatamente iguais às do sínter produzido sem nenhum resíduo. Observaram-se aumento do conteúdo de zinco no sínter produzido e mudança das fases minerais nos produtos, com maior teor de wustita (menos redutível) apenas a partir de 25% de resíduos na mistura a sinterizar, o que é inatingível com a geração típica de resíduos siderúrgicos. As predições de composição química e fases minerais obtidas com o modelo termodinâmico de equilíbrio multicomponente foram coerentes com os resultados experimentais, em especial para elementos como cádmio, cromo e chumbo, volatilizados durante o processo de sinterização, e componentes escorificantes como CaO, MgO, SiO2 e Al2O3. A partição de componentes sujeitos a oxidação e redução como as espécies de ferro, zinco e álcalis apresentou diferenças quantitativas em relação aos resultados experimentais, atribuídas às importantes limitações cinéticas do processo real de sinterização, que ocorre em condições distantes do equilíbrio. Ainda assim, o modelo foi coerente na previsão da formação de hematita, magnetita, wustita e silicato dicálcico para os testes realizados, tanto durante as etapas de aquecimento das misturas quanto de resfriamento, que ocorrem em atmosferas de potenciais de oxigênio distintos. Os resultados da pesquisa demonstraram que não há impactos apreciáveis do uso de resíduos seja na química do sínter produzido, na distribuição granulométrica das misturas a sinterizar, e tampouco no carregamento estimado de elementos deletérios como zinco, álcalis, metais pesados e enxofre no alto-forno. Assim sendo, concluiu-se que há espaço, na siderurgia, para o maior aproveitamento de resíduos na sinterização
Abstract: The quality of worldwide iron ore sources has been changing in the past years, forcing raw materials with lower iron contents to be used in steelmaking. In parallel, environmental legislations throughout the world are becoming progressively more restrictive, which limits the amount of residues that can be landfilled or stored, besides demanding specific destinations for these materials. In light of this context, the usage of iron-bearing residues has been studied as an alternative for reaching advantageous results in all these spheres and for supplying sinter with proper quality for blast furnace ironmaking. For that to be possible, it is necessary to verify the behavior of metallurgic residues in the thermodynamic and kinetic conditions of the sintering process as well as their effects on sinter quality and sintering process parameters. With this goal, samples of typical Brazilian sinter plant raw materials were obtained and characterized (sinter feed, limestone, lime, dolomite, blast furnace dust, blast furnace sludge, BOF dust and fine BOF sludge). Mixes with various residue contents were prepared and submitted to high temperature tests in a tubular resistive furnace were performed. The chemical analysis and mineral phases results were confronted with the predictions of a multicomponent thermodynamic equilibrium model, aiming also at the validation of the latter. The results demonstrated that recycling 100% of the typical generation of the residues of an integrated steel mill does not add up to more than 4,5% of residues in the sintering mix. The raw material characterization indicated that using up to 50% of residues in the sintering mix does not sensibly alter the distribution of particle types (nucleating, adherent, etc.) of the mixes as compared to a mixture without residues. Appreciable iron and carbon contents could also be found in the residues, which are advantageous for the sintering process. It could be seen that, though they contain more zinc than the sinter feed, residues have comparable or better chemical properties than the latter. Amongst these, the increased total iron content and lower content of silica stood out. The high temperature tests indicated that recycling 100% of an integrated steel mills residue generation through the sintering route produces sinter with identical chemical and mineral properties to a sinter produced with no residues at all. Increases in zinc content and a higher wustite content (which is less reducible) were observed only beyond 25% residues content in the sintering mix, which is unattainable with the typical generation rates of metallurgical residues. The multicomponent thermodynamic equilibrium model gave out coherent predictions of the chemical composition and mineral phases when compared to the experimental results, especially for elements such as cadmium, chromium and lead, which are volatilized in the sintering process, and for slag components such as CaO, MgO, SiO2 and Al2O3. There were quantitative differences between experimental results and model predictions for the partition of components which are subject to oxidation and reduction reactions, such as iron, zinc and alkali. These differences were attributed to the important kinetic limitations of the actual sintering process, which takes place in non-equilibrium conditions. Nevertheless, the model was coherent in predicting the formation of hematite, magnetite, wustite and dicalcium silicate for the high temperature tests, both for the heating and cooling steps of the process, which take place in atmospheres with different oxygen potentials. The results of the research indicated that there are no appreciable impacts of using residues, be it on the product sinter chemistry, on the size distribution of sintering mixes or on the estimated blast furnace charging of harmful elements such as zinc, alkali, heavy metals or Sulphur. Therefore, the conclusion is that there is space, in ironmaking, for increasing residue recycling proportions through the sintering process
Subject: Engenharia metalúrgica
Minérios de ferro
Residuos
Metalurgia extrativa
Reciclagem Industria
Sinterização
language: Português
Publisher: Universidade Federal de Minas Gerais
Publisher Initials: UFMG
Rights: Acesso Aberto
URI: http://hdl.handle.net/1843/BUBD-AYKLAC
Issue Date: 1-Mar-2018
Appears in Collections:Dissertações de Mestrado

Files in This Item:
File Description SizeFormat 
y2018m03d20___disserta__o_mestrado_victor_oliveira.pdf4.83 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.