Use este identificador para citar o ir al link de este elemento: http://hdl.handle.net/1843/BUOS-8CVJ45
Registro completo de metadatos
Campo DCValorIdioma
dc.contributor.advisor1Walmir Matos Caminhaspt_BR
dc.contributor.referee1Glassio Costa de Mirandapt_BR
dc.contributor.referee2Clever Sebastiao Pereira Filhopt_BR
dc.contributor.referee3Marcos Flávio Silveira Vasconcelos D'Angelopt_BR
dc.creatorMaurilio Jose Inaciopt_BR
dc.date.accessioned2019-08-11T01:46:48Z-
dc.date.available2019-08-11T01:46:48Z-
dc.date.issued2010-05-31pt_BR
dc.identifier.urihttp://hdl.handle.net/1843/BUOS-8CVJ45-
dc.description.abstractIn the Power Electric Systems the transmission line is the most vulnerable element, since they are subject to faults caused by external and internal factors. Protection systems are employed to minimize the impacts caused by the faults and, currently, digital relays meet thelead role in the fault diagnosis. Several algorithms for fault diagnosis can be used in digital relays and, recently, researches have focused on the use of techniques of signal analysis and intelligent systems, in an attempt to overcome the disadvantages of conventional methods. This work presents a methodology for fault detection and classification of shortcircuit and open circuit faults on transmission lines. The proposed methodology uses the Wavelet Transform for detection and uses the Logic Neurofuzzy Network for classification of the fault, from the extraction of information of current and voltage signals of the transmissionline. In the training of the Logic Neurofuzzy Network was included the Participatory Learning in step generation of membership functions of fuzzy subsets. The algorithms were implemented in a Fault Detection and Classification System and results obtained through simulations had demonstrated the robustness and efficiency of the methodology proposal.pt_BR
dc.description.resumoNos Sistemas Elétricos de Potência a linha de transmissão é o elemento mais vulnerável, pois está sujeita a faltas provocadas por fatores externos e internos. Sistemas de proteção são empregados para minimizar os impactos causados pelas faltas sendo que, atualmente, os relés digitais cumprem o papel principal no diagnóstico das faltas. Diversos algoritmos para diagnóstico de faltas podem ser utilizados nos relés digitais e, recentemente, as pesquisas têm se concentrado no uso de técnicas de análise de sinais e em sistemas inteligentes, na tentativade superar as desvantagens dos métodos convencionais. Neste trabalho é apresentada uma metodologia de detecção e classificação de faltas do tipo curto-circuito e tipo circuito aberto em linhas de transmissão. A metodologia proposta utiliza a Transformada Wavelet para detecção da falta e utiliza a Rede Lógica Neurofuzzy para classificação da mesma, a partir da extração de informações dos sinais de tensão e corrente da linha de transmissão. No treinamento da Rede Lógica Neurofuzzy foi incluído o Aprendizado Participativo na etapa degeração das funções de pertinência dos subconjuntos fuzzy. Os algoritmos foram implementados em um Sistema de Detecção e Classificação de Faltas e resultados obtidos através de simulações demonstraram a robustez e eficiência da metodologia proposta.pt_BR
dc.languagePortuguêspt_BR
dc.publisherUniversidade Federal de Minas Geraispt_BR
dc.publisher.initialsUFMGpt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectEngenharia Elétricapt_BR
dc.subject.otherEngenharia elétricapt_BR
dc.titleDetecção e classificação de faltas em linhas de transmissão utilizando transformada Wavelet e rede lógica neurofuzzy com aprendizado participativopt_BR
dc.typeDissertação de Mestradopt_BR
Aparece en las colecciones:Dissertações de Mestrado

archivos asociados a este elemento:
archivo Descripción TamañoFormato 
maurilio_jos__inacio.pdf2.33 MBAdobe PDFVisualizar/Abrir


Los elementos en el repositorio están protegidos por copyright, con todos los derechos reservados, salvo cuando es indicado lo contrario.