Use este identificador para citar o ir al link de este elemento: http://hdl.handle.net/1843/BUOS-94NM9E
Tipo: Monografias de Especialização
Título: Aprendizado ativo para descoberta de falhas em códigos fonte utilizando o problema da maximização de diversidade
Autor(es): Silvio Rogerio Tassini Borges
primer Tutor: Gisele Lobo Pappa
Resumen: O presente trabalho tem como principal objetivo apresentar uma nova abordagem de Aprendizado Ativo, e propor uma forama de utilizá-lo na busca por código-fontes passível de falha. A tecnologia crescente tem permitido sistemas de software cada vez mais complexos e, por conseguinte, códigos-fonte cada vez maiores. A busca por código com falha torna-se, então, tarefa de alto custo e, por vezes, humanamente inviável. Dessa forma, o problema de busca por falha em código-fonte é melhor tratado quando modelado como um problema de aprendizado. Ainda assim, existe a necessidade de um número de dados, códigos, rotulados para o aprendizado do algoritmo. Para diminuirmos essa necessidade, utilizamos o paradigma do Aprendizado Ativo, que seleciona dentro de um conjunto, um subconjunto de elementosque forneçam informações relevantes para aprendizado. Nesse trabalho determinamos que a seleção seja baseada no problema da diversidade máxima, um problema de otimização que busca selecionar elementos que apresentem maior diversidade em relação a uma característicadentro de um conjunto.
Asunto: Engenharia de software
Idioma: Português
Editor: Universidade Federal de Minas Gerais
Sigla da Institución: UFMG
Tipo de acceso: Acesso Aberto
URI: http://hdl.handle.net/1843/BUOS-94NM9E
Fecha del documento: 8-ago-2011
Aparece en las colecciones:Especialização em Informática

archivos asociados a este elemento:
archivo Descripción TamañoFormato 
silviorogerioborges.pdf160.25 kBAdobe PDFVisualizar/Abrir


Los elementos en el repositorio están protegidos por copyright, con todos los derechos reservados, salvo cuando es indicado lo contrario.