Use este identificador para citar o ir al link de este elemento: http://hdl.handle.net/1843/EABA-95WQZF
Tipo: Tese de Doutorado
Título: Sobre o funcional de ação mínima de Mather: propriedades genéricas e diferenciabilidade
Autor(es): Alexandre Alvarenga Rocha
primer Tutor: Mario Jorge Dias Carneiro
primer miembro del tribunal : Daniel Massart
Segundo miembro del tribunal: Clodoaldo Grotta Ragazzo
Tercer miembro del tribunal: Elismar Oliveira
Cuarto miembro del tribunal: Carlos Maria Carballo
Resumen: Nesta tese, apresentamos algumas propriedades genéricas e suas consequências na dinÂmica do conjunto de Aubry, o qual aparece na Teoria de Mather sobre La-grangianos de Tonelli e sistemas Hamiltonianos. Também estudamos condições para diferenciabilidade do funcional de ação mínima de Mather e algumas implicações de sua regularidade na dinâmica do sistema. Na primeira parte, provamos que, no conjunto de Lagrangianos Magnéticos Exatos, a propriedade Existem finitas classes est´aticas para toda classe de cohomologiaé genérica. Obtemos também algumas consequências dinâmicas dessa propriedade. Na segunda parte, apresentamos uma condição dinâmica de modo a obter diferenciabilidade da função de Mather. Mais precisamente, nós obtemos diferenciabilidade de em todas as classes de homologia correspondentes aos vetores de rotação de medidas cujos suportes estão contidos em um gráfico Lagrangiano Lipschitz, invariante por Hamiltonianos de Tonelli. Também mostramos a relação entre diferenciabilidade local de e integrabilidade local do fluxo Hamiltoniano. Na última parte, mostramos um exemplo de uma função de Mather definida sobre o grupo de homologia do toro T2, usando os resultados obtidos sobre sua diferenciabilidade.
Abstract: In this thesis we present some generic properties and its consequences to the dynamics of the Aubry set that appear in the Mathers theory about Tonelli Lagrangians and Hamiltonian systems. We also study conditions for differentiability of the Mathers minimal action functional and some implications of its regularity to the dynamics of the system. In the first part, we prove that for the set of exact magnetic Lagrangians, the property There exist finitely many static classes for every cohomology class is generic. We also obtain some dynamical consequences of this property. In the second part, we present a dynamical condition in order to obtain differ-entiability of Mathers -function. More preciselly, we obtain differentiability of on all homology classes corresponding to rotation vectors of measures whose supports are contained in a Lipschitz Lagrangian absorbing graph, invariant by Tonelli Hamil-tonians. We also show the relationship between local differentiability of and local integrability of the Hamiltonian flow. In the last part, we show an example of Mathers -function on the homology group of two torus T2, by using the results obtained about its differentiability.
Asunto: Matemática
Idioma: Inglês
Editor: Universidade Federal de Minas Gerais
Sigla da Institución: UFMG
Tipo de acceso: Acesso Aberto
URI: http://hdl.handle.net/1843/EABA-95WQZF
Fecha del documento: 22-ene-2013
Aparece en las colecciones:Teses de Doutorado

archivos asociados a este elemento:
archivo Descripción TamañoFormato 
tese_revisada__alexandre.pdf520.65 kBAdobe PDFVisualizar/Abrir


Los elementos en el repositorio están protegidos por copyright, con todos los derechos reservados, salvo cuando es indicado lo contrario.